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GEOMETRIC   tMMHfHMMIOi ÜF  DANTZIG ' S CONVEX PKOGRAMMING ALGORITHM 

by Pierre Huard 

1.     Reviev of the Algorithm  [1] 

We consider the following program: 

(1) PI 
ind x € R such that 0n(x)  Is maximum {ind 

ubj ubject to 0i(x) ^ 0 f^r i = 1,2,...,i 

where 0O , p±    are concave in x and R is compact and convex. 

We replace PI by a linear program PII-K which gives a lower 

approximate solution 0o(x) for PI. This linear program is constructed 

from a finite number of points x = XJ , J e K, which belong to R in 

the following way: 

Tind X. ^, 0 , j e K such that 
J 

I 0o(XJ)>v  is maximum 

PII-K<subject to 

(2) 

(3) 

i = 1,2,, 

jeK 

let    0 be a column vector whose components are 0,1= 1,2,...,m . 

AK = {0(XJ) | j 6 K) , matrix of columns 0(XJ) 

f = (0O(X
J)| j e K) , row vector of components 0O(X

J) 

e = (1,1,...,l), row vector of components eJ = 1 , j e K 



The linear program PII-K and the corresponding Kuhn-Tucker conditions 

In matrix notation read: 

/ 

PII-K 

(2) 

(3) 

W 

5) 

(6) 

(7) 

Find >£ £ 0 and maxlmlzt dHV, 

subject to 

e\=l 

/- 

Kuhn- 
Tucker 
conditions 

n   (n0) 

nAK    + n0eK + fK 

IIA
J 

\ 

Z   0 

=    0 

[HA*    + nu
e

K + tK] \   =   o 
\ 

The dual variables n(vector) and IT (scalar) correspond respectively 

to the relations (2) and (5). 

The optimization of the linear program PII-K yields an optimal 

solution 7y , at finite distance, and corresponding dual variables S 

-0 
and It as functions of K . 

One solves then the following auxiliary program 

P1II-K 
Find x e R    such that 

2^ n^Cx)  + 0o(x)  is maximum 
1=1 

l£t x = X  be the optimal solution of PIII-K .  The index s  is then added 

to the set K of the indices   which define the linear program PII-K . 
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PII-K has then one more varlaole > .  If this new variahle is a s 

candidate for entering the basis, then PII-(K+s)  can be improved 

if not then PII-K yields the optimal solution x for PI , viz: 

(8) -l*% 
jeK 

or with obvious notations 

(9) x = x\ • 

If the algorithm is infinite, and with the restriction of a nondegenerate 

solution to the iitlal PII, the solutions of PII-K converge to the 

optimal solution of PI. 

II. Geometric Interpretation of PII 

If we consider the point x(X^) defined by 

(10) JtOg) = *\ 

where    ä      has the same meaning that in  (9), we have for ell feasible 

solutions    "K      of    PII: 

(11) 

(12) 

0[x(y] ^ A^^O 

0o[x(V^ f\  . 

K K_ 
In fact, A >^ and  f "K      represent barycentric  interpolations 

of concave functions. From relation (11) we know that to every feasible 

solution >y of PII-K corresponds a feasible solution x(>y) to PI, 

i.e., that the domain of the solution x(?0 obtained from feasible solu- 

tions 7^. for PII is contained in the domain of feasible solutions of 

PI. Moreover, relation (12) shows that the value of the objective function 

-1*- 



of PII-K is less than or equal to the value of the objective function PI 
IT 

at every corresponding point of the domain on which f  is defined. These 

remarks show that the linear program PII-K is a lower approximation to the 

given problem and this for a pair of reasons. 

0o(X2) 

0o(x
3)- 

fKXK 

^0(X
h 

Fig. 1 
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III.  Geometric Interpretation of PHI 

PHI  has the following form: 

PHI 
Find x e R such that H0(x) + 0O(

X)  is maximum 

where H ^ 0  is a given vector. 

We have seen that PHI is used to determine the candidate variable of the 

simplex method to enter the basis of PII  (line&r prcgrcrn in 70. 

In the standard simplex method, each step corresponds to an extreme 

point.  To each edge leaving that vertex corresponds a non-basic variable 

X. . We then determine an edge leaving that vertex which gives the greatest 

increasing slope of the objective function.  The slope being taken with 

respect to the nonbasic variable A.  corresponding to that slope. We can 
J 

also select any edge yielding a strictly positive slope (not necessarily 

the largest). 

Here the problem is different: we do not have these edges, but we 

have to construct one, with positive slope (or the largest positive slope), 

increasing the A-space by one dimension.  The position of the new edge and 

the position of the new gradient to the objective function are related and 

are functions of the selection of a point x = X of R .  On the contrary, 

the projections of the normals on the new faces of PII as well as that 

of the new gradient in the old X-space, remain constant. 
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Fig. 3 

When PIII-K has generated a candidate A , the first iteration of 

FII-(K+s)  is the introduction of As  in the basis, because it is the only 

candidate. But., once the basis is changed, there may exist other candidates. 

namely slack variables.  Note that PIII-K yields an additional variable and 

candidate for entering the basis to PII-K , the criterion of choice of 

that candidate takes only into account the relative gain (or slope, as we 

said above) of the first iteration of PII-(K+s) and not the total gain 

of the following iterations necessary for the optimization of PII-(K+S) . 

The optimization of PIII-K does not necessarily yield the "best" 

candidate for PII-(K+8), in the sense of improvement for the objective 

function of PII-(K+8).  Let us illustrate this by an elementary example. 
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EXAMPLE Let x be a scalar, M a very large scalar. 

PI 

Find x e [-M,M]  such that ^(x)  Is maximum 

subject to   0 (x) ^ 0 

Cycle 0:XK = [XX , X2] 

the initial basis of PII-K has 

two elements 

Optimum PII-K 

Point <3>   (\ > 0 

^2   > 0 

slack = 0 

Optimum PIII-K 
-  vs x = X 

1. Chanae of basis of PII-CK+S): 

Cycle 1 

(D -   ® 
A  enters the basis 
s 

>>  leaves the basis 

^2 > 0 

slack = 0 

2. Change of basis of PII-(K+s): 

Cycle g s~\ 

TV) leaves the basis 

the slack enters the basis 

\-1 

Fig. k 

The slope of increase of the objective function of PII-(K+s) when we 

go from Q to 0 (first iteration), is with respect to >vs , we have (for 

notation, see Figure h) 

(15) 
d + b„ 



We have also d = H b1 (classical result of the parametrlzation of the con- 

stant column of a linear program) 

CU) 

(15) 

"0 \ +^ 

\+\'\ 

(similar triangles) 

(similar triangles) . 

It follows that the value of the slope is 

h 
(16) 

ä   0  „1 
p = TT + 7v- = n al + ^0 ' 

S     5 

This slope is a function, by a  and a , of x = X  given by PIII-K 

Letting x be the abscissa of the point (J): 

(17) 

(18) 

ai(x) = ^1(X) " -J- (X " X) + 0 

a0(x) = ^O^  + c (X " X)  + C 

tt  tollovrs 

(19)  P(X) -^^(x) + a0(x) = Il^U) ♦ 0O(| - f)(x - x) 

= IT 01(x) + 0o(x) + C 

We see that for the objective function of PHI the part n 0-, (x) has 

for origin the term d/7v , i.e., the increase of the optimal value of 

the objective function of PII due to the enlargement of the domain of 

feasible solutions, whereas the part $n(.x)    has the term h /'A  for 

origin, corresponding to a better approximation of the function 0n(x) 

of PI for the new form of the objective function of PII. 

These results can be reproduced for the n-dimensional case. 
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Let: ^K  be an optimal solution of PII-K 

%1      the solution obtained after the first 

iteration of PII-(K+s) 

I   the optimal basis of PII-K, with respect 

to XK 

E   the set of indices of the constraints (2) 

of PII-K satisfied exactly (equality) 

for * = \ 

basic matrix of PII-K 

■ x\ 

x'= (XK, XS) ^ . 

We have: Variation in the objective function of PII from 

x to x' 

= Variation of the old objective function of PII 

from x to x1 

+ Variation at the point x' when we replace the 

old objective function by the new one. 

More precisely: 

Variation of the old function from x to x' = 

(20)      ^(f\) = fIA\ 

= f1^ - xL) 

-fV1 

= (IMH   K 

(nAs + n0)v 
-11- 



^gtigg-gL-J^ .. due to the change in functions 

The total variation is 

(22)        s ^ * n0 ♦ fs) x; = m*)  ♦ n0 + p0(x)]v 

and the slope, with respect to V , is the well-known result 

(25) rfp(x) + 11° + j3o(x) . 

The two first terms represent the effect of the enlargement of the 

domain of PH-K, and the last one the improvement in the approximation of 

the objective function of Pi. 

REFERENCES 
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A TRANSLATION 

by Ellis Johnson and Mostafa El-Agizy 

The following paper was presented at the Second International 
Conference on Operational Research, Aix-en-Provence, France, i960, 
and may he found in its original form in the Proceedingp of the 
Conference, published by English Universities Press, Ltd., London. 
(1961). #    »      » 

It was felt that these results were deserving of wider dis- 
semination among "chercheurs," and this translation is a modest 
attempt to further this objective.  The translation was done by 
graduate students, supervised by the undersigned; no claim of accuracy 
is made, but it is hoped that at least the spirit of the original 
is maintained. 

Acknowledgnient is due the author, who kindly gave permission 
for the translation, and the International Federation of Operational 
Research Societies, who hold the copyright. 
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THE PROBLEM OF THE MAXIMUM FLOW IN TRANSPORTATION 

WITH CORRESPONDING CONSTRAINTS 

A, Ghouila-Hourl 

(Member of the Operations Research Group of the S. N. C. F., France) 

In a transportation network in which for each entry arc there corres- 

ponds an exit arc and vice versa, corresponding pairs of entries and exits 

are required to carry the same flow.  Under these conditions, we can obtain 

the maximum flow by applying the Ford-Fulkerson algorithm to a sequence of 

networks, each of vhich is obtained from the labeling of the preceding net- 

work.  The final result is attained in a finite number of steps. 

1.  Introduction 

The study of the problem of engine scheduling at the S. N. C, F. led 

us to the following theoretical problem: 

We consider a transportation network in which there is a two-way 

correspondence between entry and exit arcs. 

COLLECTION OF NODES 
OTHER THAN SOURCE 
AND SINK 

FIG. I 
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To each arc u in the network is attached a capacity C(u).  The 

problem is to send flow in this network subject to the capacity con- 

straints:  0(u) ^ C(u)j the correspondence constraints:  flow through an 

entry arc = flow through the corresponding exit arc, and such that the 

flow is maximum. 

2.  The Problem of the Maximum Flow in a Transportation Network (To 

review known notions) 

We shall recall the principles of the Ford-Fulkerson algorithm 

which allows us to solve the following simpler problem: 

Given a transportation network; for example, the one shown in 

Fig. 2, in which the numbers between parentheses represent arc capa- 

cities, the problem is how to send maximum flow from source to sink. 

■^LJU 

G    lJI 

FIG. 2 

The algorithm of Ford-Fulkerson consists of the following operations: 

(l)  Send an arbitrary flow:  as illustrated in Figure J. 
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Fl G. 3 

(2) Proceed with labeling nodes according to the following rules: 

a) S must be labeled (with x) 

h) For a non-saturated arc (x , y) if x is labeled, label y 

c) For a non-empty arc (y , x) if x is labeled, label y 

(5) a) if S'  is labeled, we can improve the flow by one unit.  For 

example, in Figure 5,  S is labeled by rule a; C , F , and G 

by rule b; E by rule c;    B by rule b; A by rule c; D and 

S by rule b.  If we add one unit of flow to SC, CF, FG, sub- 

tract one unit of the flow from EG, add one unit to EB, subtract 

one from AB, add one unit to AD and DS' we obtain, as shown 

in Figure k,  a one unit improvement over the previous flow. 
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FIG. 4 

b) If it is not possible to label S'  (for example in Figure k, 

only S can be labeled), then maximum flow is attained. To 

prove this, consider the set of arcs U  such that the be- 

ginning nodes are labeled and the end nodes are unlabeled, 

and the set of arcs U" such that the end nodes are unlabeled 

and the beginning nodes are labeled.  The flow through the net- 

work from S to S'  is also the flow out of the set of labeled 

nodes (containing S) to the set of unlabeled nodes (containing 

S'). Accordingly, it is the sum of flow in arcs going from the 

first set to the second minus the sum of flow going from the 

second to the first set 

^ 0(u) - ^ 0(u) 

ueU+      ueu" 

3.  Return to the Main Problem: Auxiliary Graph 

Let x , x ,   .. .x.      be the nodes other than source and sink in 

the network under consideration. We shall introduce a capacitated auxiliary 

graph G with an unlimited number of nodes denoted by x  when 
P 
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i = 1, 2, ... m and where -«>< p < « .  The arcs of this graph and 

their capacities will be defined in the following manner: 

iST ENTRY ARC — 

nd /  (2| 

2       ENTRY   ARC 

iST EXIT ARC 

" 2ndE>-lT   ARC 

HMITIAL    NETWORK 

(31         f'p i to *Zp-l 

Uh 
(il      (i> 

AUXILIARY    GRAPH 

FI6, 5 

a) For each value of p , the nodes x1 , x2 ..... x" are con- 
P   P      p 

nected by arcs exactly like the one in the initial network. 

b) For each entry or exit arc in the initial network say Sx1 , 

x S' , and for each p there corresponds an arc x^x1 . with 
P P+l 
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a capacity equal to the smallest of the two capacities. 

Figure 5 illustrates the construction of such an auxiliary graph. 

In a network, send flow which assigns to every arc u a positive 

integer flow n(u) <; C(u) such that at every node other than source 

and sink the conservation equations are satisfied; i.e., the sum of 

the flows in entering arcs equals the sum of the flows in exit arcs. 

We say likewise for the auxiliary graph G that we have sent a flow into 

G if to each arc u is assigned a positive Integer flow n(u) ^ C(u) so 

that at each node the conservation equations are satisfied. We say that 

the flow is periodic if the flow is the same in any two homologous arcs, 

where homologous arcs are two arcs which correspond to the same arc or 

pair of arcs in the initial network. Under these conditions, it turns 

out to be the same to send flow in the initial network obeying the corres- 

pondence constraints or sending periodic flow in the auxiliary graph G. 

k.     Expression for the Quantity to be Maximized 

The quantity to be maximized, which In the initial network is the 

sum of flows In entering arcs, is found in the graph Q as the sum of 

flows In the arcs connecting nodes with subscript p to the nodes with 

subscript p + 1 • However, we can give it a more general expression. 

Consider a function p(l) which assigns to every val\ie of the super- 

script 1 a value of the subscript p .  Each function p(i) defines a 

partition of nodes of graph G into two sets r  the set E[p(i)]  of x 

such that p <^ p(l) , and the complementary set.  Calling U[p(i)] the 

set of arcs for which only the origin node belongs to E[p(i)] , W[p(i)] 

the set of arcs for which only the terminal node belongs bo E[p(i)] and 

finally, given a periodic flow passing through G , we call n(u) the 
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Um  in arc u . If we take for the p(i) the constant function of 

i , say p(i) = P , then the quantity to be maximized according to 

what we mentioned previously is 

£  n(u) ; 

ueu[p(l)] 

on the other hand for such a function constant in i , the set W[p(i)] 

is empty since we did not have in the construction of G arcs with the 

origin node having subscript p + 1 , and terminal node having subscript 

p . Accordingly, we can put the quantity to be maximized in the form 

y  n(u) - 2_,      n(u) 

ueu[p(i)]      uew[p(i)] 

where p(i) is a function constant in i . From the flow conservation 

equations, we can easily deduce that the quantity 

y  n(u) - YJ      
n(u) 

ueU[p(i)]      ue*f[p(i)] 
r 

does not depend on p(i) and we denote this quantity by F[n(u)] . 

If ve define C[p(i)] =  7   C(u) the following theorem is obtained: 

ueu[p(i)] 

THEOBEM: For any function p(i) , F[n(u)] ^ C[p(i)l .  Indeed 0 ^ n(u) 

^ C(u) and hence 

F[n(u)l =  X   n(u) " I    ^^ ^ ^    C(U) = C[P(i)] ' 
U€U[p(i)]       UÖ/[p(i)]       U6U[p(i)] 
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ß. Transportation Network Associated with p(i) 

With a function p(i)  is associated the transportation network 

G[p(i)] defined as follows: 

The nodes of G[p(i)]  are the elements of A[p(i)] = 

E[p(l)] - E[p(i) - 1]  to which are added four points I , J , 

I , J . o '  o 

The arcs of G[p(i)] are the arcs of G after the following 

transformation:  (i) replace by I any node of E[p(i) - 1]; 

(ii) replace hy J any node not in E[p(i)]; (iii) discard any 

arc with both ends at the same node;  (iv) add the arcs (I , l) 

and (J , J ) both with infinite capacity. 

Three categories of arcs will be distinguished: 

The set U  of arcs which do not touch I or J ; 

the set U  of arcs whose origin is I or whose end is J ; 

the set U  of arcs whose end is I or whose origin is J . 

Figure 6 shows a network G(p(i)]  corresponding to the example of 

Figure 5 taking p(l) = p(2) = p(3) = p(4) = 1, p(5) = p(6) = p(7) = 0 . 

FIG 6 

6.     Properties of the network Associated with   p(i) 

Let    N[p(i)]    be the value of the maximum flow in    G[p(i)].     Then 
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N[p(i)] is nonnegative since a zero flow is alvays possible. In 

addition, N[p(i)] ^ G[p(i)] where C[p(i)] is the capacity of the 

arc consisting of the arcs other than J , Jo having one end at J . 

The Ford-Fulkerson algorithm applied to this network yields a 

partition of the nodes of G[p(i)] into labeled nodes (including I ) 

and unlabeled nodes (including Jo) . For p(i) let 0 , v(i) be a 

corresponding function equal to p(i) if x1 (i) is labeled, to 

p(i) - 1 if xp(i) is not labeled. Then CW-^jCDl  is precisely 

the capacity of the cut indicated by the preceding partition, so then 

N[p(i)] = C[0p(i)(i)] . 

7- Solution of the Given Problem 

Suppose for the moment that p(i) is such that N[p(l)] = 

C[p(i)] and the flow in G[p(i)]  is maximum.  Then the arcs of U 

are saturated, and those of U  are empty. 

Furthermore, an arc of U.  and an arc of U  for A 9^ u. or for 

A = |j. = 1 cannot correspond to identical or homologous arcs of G , 

and any arc  u of G is homologous to at least one arc corresponding 

to an arc v of G[p(i)] .  If u e l^ , let n(u) be the flow in v . 

If v e U2 , let n(u) the flow in v .  If v € U , let n(u) = 0 . 

A periodic flow in G is obtained in this way.  The periodicity 

is trivial, and it is easily seen that the capacity constraints and 

conservation equations are satisfied. This flow is maximum because 

F[n(u)] =  )    n(u) -  Y   n(u)  =  V   c(u) 

ueu[p(i)]     uöJ[p(i)]      ueU[p(i)] 

I 0 - C[p(i)], 

uew[p(i)] 
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and a previous theorem shows that any flow in G satisfies F[n(u)] ^ 

CXp(i)] . 

Hence, we can obtain the answer to the given problem once a func- 

tion p(l) is known such that N[p(i)] = C[p(l)] . 

Thus, the following theorem is important: 

THEOREM: There exists p(l) such that N[p(i)] = C[p(i)] . 

PROOF: Consider the sequence of functions p (i) , p (i),...,p (i),  

defined beginning with the arbitrary function p (i) by the recurrence 

relation Pn.1(
i) = ^ (i)^ • To 1't corresponds a sequence of posl- 

^n 
tive Integers C[po(i)] , CEp^i)],..., Ctpn(i)],... .  This sequence 

cannot be strictly decreasing. Hence, there is an Integer n such that 

CtPn(i)] = C[pn+1(l)] . But N[pn(i)] = C[0p (i)(i)] = C[pn+1(l)] . 

Hence N[pn(i)] = C[pn(i)] . 

The preceding proof defines an algorithm which will be applied to 

the network of Figure 5 as an example: 

To begin, let us take P0(i) = 0 . G[p (i)]  is the initial network 

(except for the modifications of the capacities of entry and exit arcs). 

Figure 7(a) shows a maximum flow in this network (with the same flow in 

corresponding entry and exit arcs). 

FIG. 7a 
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3   Jo 

FIG 7b 

j J. 

FIG 7c 

FIG 7d 

Then we obtain p1(l) = 0 , j>x{2)  = p^j) = p^h)  = p1(5) 

= p1(6) = p (?) = -1 and the network of Figure 7(b) in which a 

maxiinum flow is found.  From it pg(6) = -2 , p (l) = 0 , p (2) 

= P2(3) = PgCO = P2(5) = P2(7) = -1 , and the network of Figure 

7(c) is obtained.  In figure 7(c), N[p2(i)] = r;[p2(i)] . 

Then we obtain the solution of the problem (Figure 7(d)). 

-2k- 





A TECHNIQUE FOR RESOLVING  DEGENERACY IN LINEAR PROGRAMMING 

by 

Philip Wolfe 
J. Soc. Indust. Appl. Math. 11 (1963), 205-211 

Prepared by George B. Dantzig 
for 

"Mathematical Reviews" 

Geometrically, the simplex method for solving linear programs 

passes iteratively from one extreme point to a selected neighbor In 

a convex polyhedral set.  If the set is defined by a system of m 

linear equations in n non-negative variables then algebraically 

an extreme point solution E is obtained if, setting n - in 

variables equal to zero, there is a unique non-negative solution in 

the remaining "basic" set of m-variables.  If the same extreme point 

E  corresponds to more than one basic set, the solution is called 

"degenerate." If so, the value of linear "objective" form (to be 

minimized) may not decrease from iteration to iteration.  Several 

special selection rules for successively choosing basic sets have 

been proposed to guarantee, under degeneracy, termination in finite 

number of steps. 

According to the author, his paper "is closely related to the 

material of Dantzig's Inductive proof of the simplex method.  That 

paper may be viewed as showing the existence of a class of choice 

rules which prevent cycling in the simplex method and the present 

paper viewed as exhibiting a member of that class." At any iteration 

let R be the set of equations in the simplex tableau whose constant 

terms are zero and from which the pivot term can be selected.  These 

■C6- 



constant terms are each replaced by the polynomial 0 + e where  e > 0 . 

(In selecting pivots, polynomial expressions in e and later e2,... 

are compared using a lexicographic ordering of their leading coeffi- 

cients).  Degeneracy becomes less "deep" if a pivot term occurs outside 

of R ; if so, there will be a positive decrease of the objective form. 

However, degeneracy deepens if a proper subset of R' of the R equa- 

tions should develop polynomial expressions in e with all zero coeffi- 

cients.  For these equations, the constants are replaced by 0 + Oe + e 

and pivots are now selected from R' , etc. 

The author's proof is essentially inductive (although not exactly 

so stated).  The number of pivots selected in the subset R will be 

finite because, by induction, there can be only a finite number of steps 

in R' which results in an optimum solution or a non-zero decrease in 

the e term of the objective form.  This implies nonrepetition in the 

choice of basic sets of variables. 

The paper concludes with some empirical observations on the number 

of iterations required to solve some simple degenerate problems using, 

unfortunately, a different pivot selection rule. 
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