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COMPRESSIBLE PLASMA FLOW OVER A BIASED BODY 3

I. Introduction.

Recently there has been a revival of interest in using Langmuir

il

proves as a measuring device in plasmas., However, the classical low

density theory cannot be applied to high density plasma flows, which
are encountered in devices such as shock tubes and plasma arcs, Ad-
ditional interest in the probe problem arises from its relation to the
hypersonic aerodynamic problem in which a plasma is generated behind
the bow shock formed in front of a blunt body flying at hypersonic
speeds. In the probe problem one is interested in the current-voltage
characteristics from which one hopes to obtain some information regarding
the properties of the plasma., In the blunt body aerodynamic problem
the main interest is in the distribution of charged particles around
the body and any change in the heat transfer characteristics which may
occur due to the flux of charged particles to the body surface which,
in most practical situations, is at the floating potential.

A continuum theory of electrostatic probes in a statie isothermal
plasma was given by Su and anl for negative probe potentials above the
- floating potential, andrby'CohenQ for moderate probe potentials (between
the vlasma and floating potential). In such analyses, the sheath was
not assumcd, a priori; rather it turned out to be a consequence of a
careful asymptotic amnalysis. However, the structure of the sheath vas
based on the collision-dominated diffusion'equation. The limit of
validity of such a description is obtained by requiring that the electrical

energy gained by e :harséd particle during one free flipght is much less




than its thermal energy. It is relatively easy to show that such a

criterion implies:

AD >> 9 : for a very negative probe,
Ap.2/3 1
(;74 >> &— for a moderately negative probe ,
P D
where AD is the electron Debye length based on the undisturbed charged

particle density, ¢ is a typical mean free path between charged and
neutral particles, and rp is the probe radius., These inequalities place
rather strong limitations on the results in Refs. 1 and 2. In genefal
the ionization fraction has to be fairly low* (sny 10"‘).

These continuum concepts were later extended by Lam3 to an incom-
pressible, isothermal fiow of a weakly ionized gas for moderate surface
potentials, Because of his assumptions that the gas is weakly ionized,
incompressible, and isothermal, the diffusion of the charged particles
to the solid surface is decoupled from the mass motion of the neutral pgas,
The existence of an electric field in the inviscid region was first pointed
out in this work. 7The current collected by the body is essentially de-
termined by the electron mobility (diffusion due to the electric field)
in the inviscid repgion. Chunph has tackled the Couette flow and stapna-
tion flow of wenkly ionized pases numerically. ‘“The sheath structure he
obtaincd checked qualitatively with that piven in Refs. 1 nndr2.A This is

not surprising since in the Couette (low there is no convective motion;

This was pointed out to the present writer by J.ery and K., F, Probstein

of F.1.%.
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the poverning diffusion equation is identical to the static case while
in the stagnation flow the‘shenth was assumed to be thin and close to
the solid surface where convective motion is entirely negligivle. The
analysis in the inviscid rerion was neplected even though he seemed to
note that there was residual electric field intensity at the outer

edre of the viscous boundary layer.

Previous to the work discussed above, Taibot5 introduced the concept
of a "quasi-continuum" stapnation probe analysis. The continuum equation
was used to describe the diffusjon of mass, momentum, and energy in the
viscous boundery layer, while within the sheath, {which was assumed, a
priori, to occupy a distance of one mean free path from the surface) the
charged particles fall freely down the potential hill*. The chanpge in
potentinl in the viscous layer was neplected. Tt was demonstrated in
llefs, 1 and 2 that within the continuum framework the potential drop for
a static plasme outside the sheath can be of the same order of mepnitude

an {or larper than) that within the sheath. Tnlbot's assumption of no

chanpe in potential within the viscous layer is therefore open to question,

Even thourh ‘walbot's analysis is nccessarily crude, the quasi-continuum
model is a more recalistic one for plaspas of hiph ionization fraction. A
complete analysis of this problem would, however, require a kinetic treat-

ment,

Yhe dgea of pultineg a collision-dorminated qunsi-neutral solution and a
gnllision=rec shenth terselner was first suprested in 1v36 by Davydov

ang Laonovakalns . Guch an apnroxiration ¢an at best pive rross results
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In the present paper, we shall adopt a strict continuum description,

The restriction on such a continuum analysis which we have mentioned pre-
viously is the same for the present problem, It will be shown, however,
that for bodies at floating potential, the structure of the sheath does

not enter the calculation of the heat transfer and charged particle dis-
tribution. Therefore the limitation mentioned is not relevant to the
calculation of these quantities. Our analysis will first extend Lam's
results3 to & frozen non-isothermal plasma, The electric field in the
inviscid region will then be discussed for & general flow field., Since

the flow characteristics in the viscous boundary layer are well known,

the discussion concentrates on the diffusion of the charged particles and
the accompanying electric potential distribution. It will be shown that
within the viscous layer, the diffusion is ambi-polar in nature, even
though the electron current is not necessarily equal to that for the ions,
The potential distribution is decoupled from the system in the sense that
it is determined after one has obtained the solutions for the other flow
variables, The probe potential is assumed to be moderate, so that the sheath
is thin and stetic (though with diffusion, of courée). Finally the stagna-
tion probe is discussed in more detail and an approximate analytic current-

voltage characteristic is derived under the assumption of a very thin sheath,

II. Formulation.
The governing continuum equations for the physical system to be dis=-

cussed are as follows:



2
vy =0, (1)

n

d (=) +divi(n w)=0 |,
p a -u

P at

with

and

a=1,2, ..., ' (2)

(3)

pE et P =Reaviy.g -gl+g-E , (¥
o = - bme (n; =n) . : (5)

Eq. (1) is the overall continuity equation while Eq. (2) is the
continuity equation for each species, We shall consider a system with
three species: neutrals, ions, and electrons. The species equations
which need to be considered will therefore be for the ions and electrons
only. Eqs. (3), (4), and (5) are the momentum, energy, and Poisson
equations respectively., The subscripts 1 and e stand for ions and elec=~
trons respectively and all other symbols have their usual meaning. The

6

dissipative fluxes (n ',{g) are given by

v,
a —-a' =

g
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i e M4
I‘1=niy_i=-;;;l):.L [grad-‘;—-t-k-,Fp—-grad o) (6a)
e e e
VT, =n, ¥, = <o [grad‘;—-ﬁ;—grad o) (6v)
3v v 2 ave 'ave
v = L .= =& —
g =¥ (Bxk M TRl VS o SRR el (6e)
e e
3 *
q=-x grad T + N Py ¥y By (perfect gas) . (6d)
a=1

The boundary conditions for p, v, T are well known. In addition, we
shall assume that the body is a perfect absorber of charged .particles, so

that on the body surface

for a = i and e.
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"
o

The potential on the body is given as ¢p with respect to the potential

far ahead of the body.

We shall assume in our subsequent analysis thet the net current drawn
by the body is small such that the Joule heating "J . E" is neglipible,
The enthalpy diffusion flux in the heat flux vector g can be

simplified by writing

Ipugoha=(hi-hﬁ)oi_\‘;i*(he-hg)ne)j_e ’

St e o e gt

The ion and electron temperatures T are assumed to be equal,

i




where the subscript g stands for the neutral gas and h is the thermal

enthalpy per unit mass. Since

hi =h and h >>h ’
& e g
we have Xp wh =hp w =h'n w , vhere h' is the thermal enthalpy
' % —a e'e —e e e —e? e

per electron. We shall now assume that the flow is frozen and that elec=
trons and ions do not recombine except on the body surface. The enthalpy
h in (4) and (6d) is then taken to be thermél enthalpy only. However, in
our formule for the heat transfer to the wall, h will include both the
thermal enthalpy and the ionization enthalpy,

If we appropristely non-dimensionelize Egs. (1) - (5), the order of
the magnitude of each term may be expressed as follows:

1) Overall Continuity Equation

l:1=0 .

2) Species Continuity Equation

3} Momentum Equation

4) Energy Equation

N e g asares s ol e
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2 2

4 Y=, g v LK vooo Ve
pdt(h+2) at+d1v{!-%-_c_grad2 +Z,grad(h+2)
b P
-h (5~prad C +p w )}
e : i e a =a
P

2 2 .
T SUPAE NS U NS WS SR S s

Hg Pr’ Re H6 *Pr Re * 'lLe .Sc Re HG'o5

5) Poisson Equation

A
D,2
(;—) =1:1 .
p
Here
Sc = Schmidt number = (;%—) .
a *
D = Ambipolar diffusion coefficient .

pu T
Re = Reynolds number = (-—;—E)

r_ = Typical body dimension ,

p
Hé = Typical total enthalpy '
ug = Typical velocity ,
n6 = Typical charged particle number density »
kT
Azn = Debye length = .
bxn_e
8
pc_D

Le = Lewis number = -—%}Jﬁ s

c u
Pr = Prandtl number = -E- N

The reason for using the ambipolar diffusion coefficient, Dys Will be

made clear in the discussion of the viscous boundary layer.
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pc
c = Zc (] = 2 _“_PE .
p a pa o
neme
C B — .
e P

All the quantities with subscript § will be identified later as the values
at the edge of the viscous boundary layer.

It is reasonable to assume that the non-dimensiondl parameters Sc,
Pr, Le, uQG/HS, nadelpéﬂs are all of order unity in comparison with the
two important parameters Re and AD/rp. In most cases of practical interest

the following inequalities are satisfied, i.e.,

R (1)
P

Both of the above two parameters are associated with the relevant
highest order derivatives in our system of equations. It is therefore
expected that there will be two sinpular perturbations in the problem,
one for the viscous layer, associated with the Reynolds number Ke (Prandtl
boundary layer) and another for the sheath, associated with the Debye
lenpth parameter AD/rp { Langmuir boundary layer)., Because of the in-
equalities (7), we see that the sheath is imbedded within the viscous layer.
Qualitatively, we can now say that there are three distinct regions where

different physical mechanisms operéte:



1) Inviscid region: Diffusion of mass, momentum, and energy are

relatively unimportant compared with convection. Charge neutrality is
maintained.

2) Viscous layer: Convection and diffusion operate simultaneously.
Charpe neutralitylis also maintained in this region.

3) Sheath: Here charge separation can take place. Convection is
unimportant since the region is thin and adjacent to a solid surface,
Diffusion and mobility of the ions and electrons are the main features
of the sheath, ’

Because of the assumption that the sheath region adjacent to the
surface is thin, we shall automatically restrict ourselves to a moderate
probe potential. If the potential is strong enough, the sheath can be
thick and the problem of convection within the sheath has to be properly

taken into account,

ITI. Inviscid Region.

In this region, the system of equations becomes doubly degenerate,
First the Laplacian in the Poisson equation is neglected on the basis of

the smallness of (AD/rD)Q. This gives

A2
2 +0 (=) (8)
e r2 ’

ny

p

H
S
I
A

which 1s the well known quasi-necutral solution; Next we drop all dissipae

tion terms in Eqs. (1) to (L), i.e.,




=11~

3p -
¢+ div (py) =0

nu 1
T (;—) =0 (ﬁ;

dlr_ _32 1

PR GD (9)
4 1.2y _3n_,4 (L

par (h+5Vv)-5p=0(F .

To this order of accuracy, the density p, mass velocity v, and fluid
enthalpy h, as well as the charged particle density n = n;, =n, are de-
termined by this degenerate set of equations. However, any information

regarding the electric force is lost from the system. This lost informa-

tion can be recovered by subtracting the two species continuity equations

(annihilation of the dominant terms), i.e.,

div [ne W, =0y Ed] =0 (10a)
or from the flux relations (Eqs. (6a) and (6b)
n_ e
div {- p(De - Di) grad ;+ T (De + Di) n grad ¢} = 0 , (10b)
With n, p, and T determined from Eq. (9), we can calculate the electric

potentinl in the inviscid region by means of Eq. (10b)., It is obvious that

the walidity of (10b) is independent of the large Reynolds number assumption,
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It is valid as long as quasi-neutrality is maintained*. Moreover, within
the sheath, even though n, # n., since the mass velocity is smnll (of the
order the ratio of the sheath thickness to the viscousAlayer thickness),
Eq. (10b) is still approximately vnlid*. Note after multiplying by e,

the quantity within the bracket in (10b) is the conduction current, Thus
we conclude that the conduction current through a closed surface in the
flow field is zero. Within the viscous and sheath layers the flux through
a surface normal to the wall is negligible so that we have constancy of the

conduction current density throughout the layers, i.e,,

=]
=
=

n
L, 13 2
p * kT p By] * pDe [3y p

Iq)

- pD, [_3__

£
i "9y p

] = <= J/e .

al°
Q

¥

(11)

where J is an intepration constant which is identified as the conduction
current density collected by the probe, i.,e.,, J = Ji - Je = e(I‘e - Fi).
We have shown that the electric potential in the inviscid region is
roverned by Eq. (10b) with n, p, and T obtained from lqs. (9). Onc
boundary condition for Eq. (10b) is obtained by evaluating Eq. (11) at the t é

outer edge of the viscous boundary layer, i.e.,

BN A o

-
We have assumed (AD/rp)‘ << 1/Re,

T

Fq. {10b) is approximately valid within the sheath if the convection

there is neplipible. Since ihe convective velocity on the wall is
zero, the convection within the sheath is of the order of the thickness

of the shenth,




kT
L1 S ) L . . (p -pyan 12a
;;y|(S eiDe + Di; n, [e o i ) ay|6] (12a)
In addition, we require
*
¢ » 0 at infinity . (12v)

In special cases such as stagnation point flow, flow over a flat
plate, and the end wall problem in a shock tube, the quantities n, p,
and T are approximately constant in the inviscid region., In this case
Eq. (10b) and the boundary condition Eq. (12a) are greatly simplified
so that the equation for the potential and the boundary conditions

becomes

ve=0 T (13a)
3 _ > LJ (13b)
ay!6 e De + Di n. e

¢ » 0 at infinity . (13c)

The conduction current density J collected by the body is still an
unknown constant which must be determined by the boundary conditions

specified on the body surface, 1In other words, J is determined only

Eq. (10b) is an elliptic second order linear partial differential
equation. The boundary conditions we have specified uniquely define

a selution,

Eq. (13a) was first shown to be spproprinte to the present problem by Lam

3
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after one solves the sheath properly, However, at the floating potential, g

%
&

J is by definition zero. It follows then from (13a) and (13b) that in

the inviscid region

It is seen that the reversal of the parity of the electric field in
the inviscid region occurs at the floating potential in contrast to the

plasma potential in the no flow case.

IV, Viscous Laxer.

Within the viscous boundary layer, the dissipative terms (with the
gradient in the direction normal to the wall) are of the same order of
magnitude as the convective terms. However, quasi-neutrality is still a

good spproximation. 1In this layer we have the following set of equations: .

90 _
¢ * div (ov) =0 ,

d iy _ 2, 3 (dy,e 13

P 5 =yt i[ay( )t 5T 3 5%“ ’

d e, 2 2 e, e e a¢
D-d'?(—)-'a-;{pe['g}j(o) HB——;“ ’ (1h)




d u 3 3 1 ) u K 9 u
— —) = — - me) S (e — +
pgg(h+z) =50+ (2 Pr)ay(z)*cp—ay(h 7
K ace
- h, (E—'3§_ + pewey)} ’

XDQ
n,=n, +0 (:5—)

p

oo

where Ce = pe/p and wey is the electron diffusion velocity in the direc~
tion normal to the wall,

It was pointed ou§ in the last section that Eq. (11) is valid within
the viscous boundary layer. Such an equation gives the relation between
the charged particle distribution and the electric potential within the

layer. As in the inviscid region it is a great simplification that the

solution for the density distribution of charged particles can be determined
at first independently of the electric potentisl. We shall see that this is

in general true, provided quasi-neutrality is valid. The second of Egs.

s B B o el s BT o oo i

(14%) can be integrated to give

o=
<

Similarly for the electron continuity equation

y

Ll 3 (my _ e n3g
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From the above equations we obtain

©
[=N)
ct
—
~—
§

ay - 3. 2 — 3 (M) = . 3 _n
) 3y [17Di+17De Ay (p)] Y ["Dag(;”

=9 =3
57 [- niwiy] =55 (- newey] , (15)
_ 1 1 . . X R s s
where D = 2/(fr-+ Erd is the ambipolar diffusion coefficient,
i e
Ve conclude from Eq. (15) that
nw, = -pD 2= () 4 4 (16)
i'iy a3y p ’
nw_=-pD 2= () 4p (17)
e ey a3y 'p ’

where A and B are two arbitrary constants. It may be seen from (11) that
A-B=-J/e. 1t can also be seen from Eqs. (16) and (17) that the dif-
fusion in the viscous layer is essentially characterized by ambipolar
diffusion. However, we must emphasize that the ion and electron currents
are the same only when the body is at the floating potential., In view of
Eq. (15), we see_thnt the Schmidt pumber introduced earlier should be based

on the ambipolar diffusion coefficient. Since the latter is of the same

X R R

Eq. (15) was first obiasined by Chung for stapnation point flow, Howéver,r
he did not point out the simple relations (16) and (17), which show that
the ratio of the electron and ion currents cannot be a constant throughout

the viscous layer.




order of magnitude as Di’ we conclude that the thickness of the diffusion

layers (both for electrons and ions) are of the same order of magnitude
as the viscous momentum layer, i.e,, of order Re-l/2.
The constants A and B can be determined at the outer edge of the

viscous layer. We find these
B == pD [.E__._i..a_(ﬂ.)_e__ﬁﬂ]l . (18)
e .

In the special cases such as stagnation point flow, flat plate flow,

or the end wall of a shock tube, KN (%)| = 0, then
[

3y
eD D
e 3¢ J e
B:——n‘_ 5 e emc—— (19)
kT, 68yl6 e D+ D,
2 L (with D, <<D )
e i e
Similarly
D D
__Jd_1 J 1
A - e +1D, * %D (20)
e i e

These are essentially the currents due to the mobilities of electrons
and ions. Tt is seen that with D, >> D;, the value of A fs negligible com-
pared with B, and thus eB is approximately the current density one draws
from the plasma. At the floating potential, we see from Eqs. (19) and

{20) that A = B = 0,




The governing equations within the viscous layer cen now be simpli-

fied as follows:

ap . _
=t div (pv) =0

@ = o0 (B

T 3 ay a 3; o}
du_ _%p, 2 (& % .
PEE T " "t oy Cu Ay * 3y 0
2 , 2 2
d u, _9p 3 1 3 ,u u o u
raE bt =gy QA -F G sy ez

1 aCe
- (fz - 1) oDh_ 3y - Bmeh,}

The electric potential is obtained from Eq. (11) after this set of
equations is solved for p, n, v, and T.
Except for the addition of the last term in the energy equations,

Eqs. (21) are the usual boundary layer equations for a frozen dissocisted

<
gasa'). For steady two-dimensional and axisymmetric flow (an analogous

treatment applies to one-dimensional unsteady flow), we apply the usual

similarity transformations used in compressible boundary layer theorya'g.
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- 2J
£(x) = I Pgughgry” dx

0
Jy
_ PsY%s%o f 0
n = _dy .
2E L P

Equations (21) then reduce to

' du p
"y " - 2£ |2 - 6
(N£")' + £f ;Z-EE— (r 3-]

N 26f'2 d(n/o)

___zu)l + fz!

Sc (n/oT6 d¢
2
aH, u
N oy v o 28f'g 6, 6 1 vpn
pr 6')' + f& H, @ * H, (g - 1) nete”]

(5/2) 2 (olo)g  sw /. _w

A 5 7 3n
§ PsHs¥sT0

N 1
5e (E;'- 1)

(23)"

*
Eqs. (23) were first used by Talbot’

for the present type of problem,

Since he restricted himself to weakly ionized gases, the last two terms

in the energy equation which arise from the enerey flux due to electron

diffusion did not appear in his formulation.
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=20

where

]
o=
~
oY
iR -]

O
m
§

i
=3
-+

Sc

and the prime indicates differentiation with respect to n. Egs. (23)

reduce to the ordinary differentiel equations if all the terms on the

right side of them are functions of n alone,

on the conditions of similarity see Ref. 8.

For more detailed discussion

f

For a weakly ionized gas only collisions between charged and neutral

particles are taken into account, so that

R (5n/32)pfc _ 10
= ghy = Gerge T M

For monatomic atoms

~  u
5 Zn“an 5 [nak ‘3

eI T TETAT e, 3

L 8 10

-

P

5 15

For a fully ionized gas tlie charged particle collisions must be taken into

nceount when cvaluating the mixture transport coefficients, in this case

one may, for example, use the mixture rules piven in Ref. 11.
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We recall that Eqs. (23) are obtained under the assumption of quasi=

neutrality. Such an assumption will break down inside the sheath near the
wall where we expect a rapid variation in potential. Since we shall later
‘demonstrate that the sheath is thin, it is clear that the change in density,
velocity, and temperature across the shesth will be very small, If we ;e-
quire Egqs. (23) to satisfy the boundary conditions given on the wall, the
relative error introduced in the solutions for density, velocity, and tem-
perature will be of order of the sheath thickness, The difficulty, however,
arises when we try to calculate the potential distribution by means of Eq.
{11) based on a charged particle density distribution obteined in the

above fashion, In the first place, the current J cannot be determined.
Second, and more important, the electric field becomes infinite at the edge
of the sheath, This suggests that althéugh the velocity and temperafure
distributions are decoupled from the system within the sheath, the charged

particle density and.potential distribution have to be solved simultaneouslyl’a.

B L TR IR

However, in the problem of a blunt body at floating potential (J = 0), one :
is interested only in the charged particle distribution around the body and :
the charged particle fluxes to the wall., As long as the sheath is thin,
even though it may be collision dominated or collision free, the charged
particle distribution and the heat flux can be determined vith an error of

order of sheath thickness by letting Eqs. (23) satisfy the boundary condi-

L e b

tions given on the wall., We give the heat transfer to a floating wall as

R

follows:

Corbadnl o




2 aC aC ‘
_ k 23 u e e 3a_(n, ,(0)
qQ =< T 3 (b + 2 ) + hg (E- Wy oDy 3y ) - oDy oy (p) h
P P
an k g ng? n{0) 1, _,(0)
D e e [] - — ]
v = Hﬁ {g*(0) + 06H6 Le [W-T- +1 Le] z } ’
p

(24)

(0)

where h is the ionization energy per electron~-ion pair. For the case

(9 55 (572)kT

(0)

=k oy '(o)+LLe 2'(0)} (2ka)
q, yz 68 Pl )
P

The zero arguments of g and z in Eqs. (24) and (2ka) are referred to the
edge of the sheath, which in the floating case can be identified as the
wall,

Near the solid surface, f n n2, f' v n, z v n, so that the second

equation in (23) is reduced to
L 1)
(sc z') o .

Thus

z' = C, = constant (25)

or

dn R
a-y- c . (25a)




The corresponding electric potential is obtained from Eq. (11) as

d
E— + (De - Di)C

& (eo . 1.D
dy (kT ) = D + D n n (26)
W e i

It is not surprising, although interesting, that the behavior of
the density aend potential distributions is exactly the same as for the
quasi-neutral solution in the static no flow casel’g. The two constents
C and D are related to the number density fluxes in the following way:

re
(i;- +

e
il
1
ro|+-

®
ol -
W 1N
<
-

(ES - :l)
De Di

(27)

o
il
AV T

These constants as we have mentioned earlier have to be determined by
the boundary conditions at.the wall through a careful analysis of the

sheath,

V. Charge Separation Sheath.
Since we shall consider the case of moderate potential, the charge
- *
separation sheath can be assumed to be thin . The analysis within the

sheath will then be similar to that given by»Cohen2. The coordinate y

For a detailed discussion on this mstter, see the section on "Probes

at arbitrary potentials" in Ref. 1.
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in Eqs. (25a) and (26) with (27) (as is in the viscous layer) is the
physical length multiplied by Relfa. If we choose the probe radius rp
and the free stream charged particle density n6 to be the normalization

quantities, Eqs. (25a) and (26) with (27) beconc

r r r
dn __l,.e,_ L =-1
E“'e(ne*ni)ﬁi'"e("i*je) ’ (28)
dy _ 1 - L
Tz =305 (29)

where
r r

J =.-.i.'.&e_2‘ w:e—¢—
i,e Di n ' kT .

6 6 W

The electric field outside the sheath is of order Rel/2 in contrast
to order unity in the static case. From Poisson's equation, (5), it can
be seen that the stretching factor for the sheath is proportional to
(An/rp)gl3 Rel/3 instead of (AD/rp)'?/3 in the static case. The electric

field in the sheath is of order

A A
( ;13)-2/3 re~1/3 Rel/2 - }2)-2/3 pel/6 | (30)
P p

The thickness of the sheath is of the order

A A
(29273 pel/2pel /2 o (D)3 7116
P p

. (31)

A s S BB o e N R Aoty 1T

b gl
vt P e N e St




Within the sheath, one works with the electric field instead of
the potential. In the numerical solutions given by Cohenz, the body
potential is not posed as the boundary condition; instead one chooses
a value of l/2(Je + Ji),'and the corresponding‘;alue of l/Z(Je-- Ji)
is found by satisfying the charged particle density boundary conditions
on the wall, The potential on the body is then found by integrating over
the solution for the electric field. In the present problem we can also
assign a value of 1/2(,1e + Ji)' in which case 1/2(3.e - Ji) is determined
through the sheath solution which is required to go over into Egs. (28)
and (29), With 1/2(,3e + Ji) and 1/2(Je - Ji) known, the value of J éan
be calculated and the electric field through the viscous and sheath
layers can then be determined. This gives the potential difference be-
tween the body and the edge of the viscous layer. The potential at the
latter point, taking the potentiaiwfo be zero at infinity, is obtained
by solving Eq. (10b) subject to the boundary conditioms (12).

The probe potential can be written as follows:

st st
s v L]
PR "R Qv .
!bp ! (dyo)s dy, + (dyo)v dy, + dr « Vg,
0 st st
8 v

where yo is the physical length variable normal to the wall, and
1> 6: >> 68 (6s = thickness of sheath)

1> 6:’>> 8, (8, = thickness of viscous layer)




Here the subscript s represents the sheath solution; v the viscous layer

solution; and I the inv;scid solution, »é
With a certain amount of manipulation, the potential formula can be 7

put into the following form:

by
_ 1 - D\2/3 . =1/6
—wp-wd—g(.)e-di) 1n [(;—) Re ]

p

w (32)

dy d d d

e[, g, -G, ,, - @
0

where (%%)v +s is the matching between the sheath and the viscous layer
as given in Eq. (29). The logarithmic term in Eq. (32) is due to a first
order pole singularity of the electric field in the matching region be-
tween the sheath and viscous layer., We display this logarithmic behavior
explicitly, sinqe it is the leading term in Eq. (32) for a very thin
sheath“. In Eq. (32) *a is the potential at the outer edge of the boundary
as obtained from the inviscid solution.

In the next section we shall apply this general procedure to & stag-

nation probe.

Vi. Stapnation Probe.

In the neighborhood of the stagnation point of a body, one can assume
that the quantities n, p, and T are approximately constant in the inviscid

repion, 'The solutien of the electric field is then governed by Eq. (lBé)

subject to the boundary conditions (13b) and (13c). Under the conventional

The nrpument of the loparithm in Eq. (32) is the thickness of the sheath

- {see Eq. (31)5;




approximation of stagnation flow, (flow impinpging on an infinite plane)

there is no solution satisfied by Eq. (13a) subject to the boundary con-
ditions unless

1) J =0, i.,e., for a floating body, in which case the electric
field in the inviscid region is identically zero.

2) The body is floating except for a small but finite current
element located at the stagnation point. Such an arrangement is of great
practical interest. In what follows we shall consider this problem,

We shall make the current element mentioned above small enough such
that the usual stagnation flow assumptions can be applied to such an
element, However, the element is considered to be much wider than the
boundary layer thickness, so that the electric potential distribution is
essentially one-dimensional within the boundary layer. The solutions for
the ordinary flow properties are well known. From Egqs. (13) the electric
potential in the inviscid region is now given by the following equation

and boundary conditions:

o =0

KT f

4 . 8 LJ for r ¢ a :
dy e De + D1 n, e i
y=0 g
= (0 r <a %

¢ » 0 at infinity .
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where y = 0 is the outer edge of the viscous layer, and where the current
element is taken to be a circular disc of radius a, We are not very in=-
terested in the detailed potential distribution in the half-space y 2 O.
The only information required for the construction of the current-voltage

characteristic is the value of the electric potential on the element

y=20 r

"
o

The solution for the potential is given simply by the potential dis-

tribution resulting from a charged disc of surface charge density

E JkT 2\
°='2%="%’1? 2 : =7 4DD
Nde (De + Di) e i

Assuming the variation of the potentiasl across the disc to be small,
which is reasonable provided the viscous layer is thin and much smaller

than the dimension of the current element, then we need only calculate

the potential at the origin. The potential distribution along the y-axis

is given by

bq JA
¢(y, r=0) = f Las = (Jy + a

[ D+D

over the (33)
disc

and

2
kn XDuJ

D +0D
e

06(y=0.r=0)=- X




0 in

[11]

At the floating potentiel oo J = 0, so that 95 = 0 and ¢

the inviscid region. For ¢ < ¢f, J = Ji - Je > 0, and by Eq. (33) we

have ¢6 < 0., The potential in the inviscid region is then negative.

3

For potentials slightly above ¢f, we see that ¢6 > 0., The current in
the inviscid region is mainly due to the electron mobility., Since the
field is zero for the floating potentisl, the reversal of parity of the
electric field in the inviscid region occurs at the floating notential
instead of the plasma potential as in the case of the static plasma,
Consequently, unlike the static case, y = 0 is not a solutign of the 7
problem, i.e,, when a probe is at the plasma potential there is still an |
electric field within the plasma,
Within the viscous layer; the flow field is governed by Egs. (23)

with the following assumptiong:

2
2 %, il
re-=fao0 Ve O
(34)
d_ (8y -EH_‘Szo
d§ "n’$ d¢ *

The last two terms in the energy equations of (23) are due to the

St

electron diffusion flux, Under the stapgnation flow assumptlion, they have

L

a similarity property. The solutions for the velocity and temperature

[
REIMH

are solved in the usual fashion, i.e.,, one ignores the existence of the : E

thin sheath by applying the wall conditions for the velocity and

For a discussion of this approximation, see Ref, 12,




temperature to the first and third equations of (23). This procedure

is not possible for the second equation of (23) because of the divergence
of the electric field. For stagnation flow, Eq. (25) is valid through-
out the viscous layer., However as was mentioned before, the constants C
and D must be determined by an anelysis of the sheath. Once the charged
particle distribution inside the viscous layer is solved, the electric
field is then calculated by the use of Eq. (11)., Together with the
electric field in the sheath, the current-voltage characteristic is given
by Eq. (32). A complete solution can be obtained only through a detailed
numerical computation (both in the viscous and the sheath layer)., How-
ever as indicated in Eq. (32), the leading behavior of the current-
voltage characteristic can be obtained analytically, i.e.,

A
vy =3 (g - 4) [(f)a‘/3 Re"16] + 0(1) (35)

To give an idea of the accuracy of (35), we take AD/rp = 10-h,
Re = 106. The relative error by neglecting the terms of order unity is
then ebout 10%.

The potential wp is normalized by the thermal energy at the well,

From Eqs. (26) to (29), we have

D -D
1 J Tp e~ P11
=(3. -3 ) R - =(3. +3,)
2 'Ye i e nG(De + Di) De + Di 2 ‘VYe i
Jr“ 1
e 5 (e viy) forD >>D .

de

it oraise 5. -

By AN




Using this relationship in Eq. (35) we obtain the current-voltage

characteristic as follows:

r
ST - U+ 3 e/ (R RO L (36)
§e p D

From Eq. (28) we see that the quantity =- % (je + Ji) is the charged
particle density gradient near the solid surface given by the quasie

neutral solution. To within a relative error of the order of the sheath

thickness, one can obtain this slope by forcing the density equation to
satisfy the boundary condition at the wall, For a complete determina-
tion of the density gradient, one has to solve Eqs. (23) simultaneously,
However, if we assume that N and Scare constant throughout the viscous
layer, together with the stagnation appréximations given in Eq. (34),

one obtains from the first two equations in (23) that”

0.47 &1/3

Z'(O) =T ,
N

(37)
vhere N and are evaluated at the wall (N = Nw)'

Using Eq. (28) and the transformation (22) in Eq. (37), we find

that

2
1 o, rp (dualdx)
-~2—(Je+31)=0.663 {

0}1/2
pd Putv

se1/3 (38)

= x(dua/dx)o.

In obtaining this, we have set ug




The current-voltage characteristic is then given explicitly as

p,, (du /dx) r
JD = 0.663 2 & 01/251/3 , \ 4 1p [(32)2/3 rel/6]
€Nse Ps  Puby p P )

(39)

T

This formula differs from the corresponding one for the static

plasma first by the factor Rel/6

in the argument of the logarithm,
Furthermore, it is not difficult to show for a spherical probe in the

static plasma that
1 =
- §'(Je + Ji) =1 .

In the static plasma we see then that the current collected by a probe

at the plasma potential is the random current flux, while in the flowing
plasma, the current is given by the first term in Eq. (38)., It should be
pointed out that Eqs. (35) and (38) become invalid when the probe

potential is much above the plasma potential such that Ji - Je & O.

VII. Uiscussion,
Within the framework of the continuum assumptions, the flow of an

ionized gas over a biased Lody is analyzed. The strongest assumption in

the present work lies in the use of the continuum fluid equations for
the analysis of the sheath structure, For such a description to be mean-

ingful, one must satisfy the following condition:




A
( D)2/3 Re-1/6 s X
r r
p P

where £ is the typical mean free path in the system. However, since the
* problem for a body at floating potential is independent of the detailed
structure of the sheath, the above mentioned restriction does not apply
to the results obtained for the heat flux to the surface and for the
charped particle distribution around a floating body.

We have also assumed that

R

Under such an assumption, which is what one generally encounters in the
laboratory, the whole flow field is divided into three regions:

1} Inviscid quasi-neutral, A

2) Viscous (transport of mass, momentum, and energy) quasi-neutral.

3) Charge separation sheath. The body potential is taken to be
moderate (between the plasme and floating potentinl) such that the sheath
is thin and convection can be neglected.

The conduction current is found to vanish through eny closed surface,

b A e

This is true in the outer two regions because of the quasi-neutrality
{even for unsteady flow). The statement is true in the sheath only if

the convection and the time variation inside the sheath can be neglected,

RERUNT R JOTRPS
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As an example, the stagnation probe problem is worked out in detail.
An explicit expression for the current-voltsge characteristic is given

(Eq. (33)) under the assumption that
"p2 . 1/6
1n [(XBO Re l1>>1 .
D

As we have mentioned, an error of about 10% is expected in this formula.
The potential in the inviscid region is identically zero for the
probe at the floating potential, Consequently, in contrast to the static
plasma, the potential distribution is not necessarily monatomic through-

out the whole flow field. This fact was }irst pointed out by Lam3.
Also, at the piasma potential, the current collected by the probe is, in

general, not the random flux current,

s %w%qmm.
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