UNCLASSIFIED 434593

DEFENSE DOCUMENTATION CENTER

•

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

2

64-11

A FCEL - 03 - 046

00

4

 $\hat{\mathbf{O}}$

4

3

- AF 61(052) 664
- 13 November 1963

AD

TECHNICAL NOTE NO. 2

AUGER EFFECTS IN DIVING RECOMBINATION CENTRES

ار

P. T. LANDSBERG, J.A. EVANS and C. RHYS-ROBERTS

UNIVERSITY COLLEGE, CARDIFF, GREAT BRITAIN DEPARTMENT OF APPLIED MATHEMATICS

TISIA

The research reported in this document has been spontored by, or in part by the Cambridge Fes arch Laboratories, O.A.R. through the European Office, Aerospace Research, United States Air Force

JUU CATALOGED BY \mathcal{L}

University College, University College, Cardiff, Great Britain. Department of Applied Mathematics. 13 November, 1963	AUGER EFFECTS INVOLVING RECOMBINATION CENTRES P. T. LANDSBERG, D. A. EVANS and C. RHYS-ROBERTS. ABSTRACT : The concentration dependence of the lifetime of minority carriers in copper-diffused germanium is explained quantitatively. The fit yields an Auger effect mass-action constant which is shown to be in order-of-magnitude agreement with theory.	University College, AF61(052)644x664 Cardiff, Great Britain, TN-2 Department of Applied Mathematics. SOLID STATE 13 November, 1963	AUGER EFFECTS INVOLVING RECOMBINATION CENTRES P. T. LANDSBERG, D. A. EVANS and C. RHYS-ROBERTS. ABSTRACT : The concentration dependence of the lifetime of minority carriers in copper-diffused germanium is explained quantitatively. The fit yields an Auger effect mass-action constant which is shown to be in order-of-magnitude agreement with theory.
UNIVERSITY COLLEGE, UNIVERSITY COLLEGE, CARDIFF, GREAT BRITAIN. CARDIFF, GREAT BRITAIN. DEPARTMENT OF APPLIED MATHEMATICS. 13 November, 1963	AUGER EFFECTS INVOLVING RECOMBINATION CENTRES P. T. LANDSBERG, D. A. EVANS and C. RHYS-ROBERTS. ABSTRACT : The concentration dependence of the lifetime of minority carriers in copper-diffused germanium is explained quantitatively. The fit yields an Auger effect mass-action constant which is shown to be in order-of-magnitude agreement with theory.	UNIVERSITY COLLEGE, CARDIFF, GREAT BRITAIN. DEPARTMENT OF APPLIED MATHEMATICS. 13 November, 1963	AUGER EFFECTS INVOLVING RECOMBINATION CENTRES P. T. LANDSBERG, D. A. EVANS and C. RHYS-ROBERTS. ABSTRACT : The concentration dependence of the lifetime of minority carriers in copper-diffused germanium is explained quantitatively. The fit yields an Auger effect mass-action constant which is shown to be in order-of-magnitude agreement with theory.

.

, **t**, .

二人を読んがい シー・シャント・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー

It is well known (Shockley and Read, 1952) that the statistics for the recombination of electrons and holes in semiconductors by single-electron processes via localized states leads to a recombination rate per unit volume

$$u = \frac{np - n_1^2}{\tau_p(n+n_1) + \tau_n(p+p_1)}$$
(1)

Here n_1 and p_1 are electron and hole concentrations despectively when the Fermi level is at the trap level. τ_n and τ_p are steady-state lifetimes of the minority carriers in p-type and n-type material respectively. If the four possible Auger effects which involve the localized state are taken into account, one arrives again at (1), except that τ_p and τ_p are replaced by τ_n^* and τ_p^* (Evans and Landsberg, 1963). The interpretation of the τ^* s as steady-state lifetimes of the minority carriers remains valid. However, the τ^* s depend now on the carrier concentrations:

 $N/\tau_{n}^{*} = T_{1}^{*} + T_{1}^{n} + T_{2}^{p}$ (2) $N/\tau_{p}^{*} = T_{2}^{*} + T_{3}^{n} + T_{4}^{p}$ (3)

 T_1^s and T_2^s are mass-action constants for the Shockley-Read processes and the other four T's apply to the Auger effects. It is the concentration of recombination centres.

Some striking experiments on the lifetimes of minority carriers in heavily-doped germanium have been published by Karpova and Kalashnikov (1962). These authors find concentration-dependent lifetimes in samples cut from in a stratic their figs. 1 and 21, and show in samples into which additional copper was introduced by diffusion (their fig. 3). An attempt to fit the relations (2) or (3) to the experimental curves was successful only in the case of the diffused spacinens (n-type). This is illustrated in the accompanying graph (fig. 1), in which the discrete points are team deried from Karpova and Kalashnikov s fig. 3, while the solut line was calculated using equation (3), and the commutation N = 1.5 x 10^{14} cm⁻³, given by these suthors.

 $1.5, 2.5, 3.11^{-1} \text{ soc}^{-1} \text{ ross } 1_3 = 10^{-26} \text{ cm}^6 \text{ Hec}^{-1}$ (4)

A veration of the from these signres still yields a reasonable fit.

÷ -

Karpova and Kalashnikov state that the holes are captared into the copper level lying $E_{\chi} = 0.26$ eV below the conduction hand. This enables one to apply the formula

 $T_{3} = \frac{128}{\epsilon^{2}} \frac{\pi^{2} e^{4}}{\pi_{0}} \left(\frac{\hbar}{E_{0}}\right)^{3} \frac{E_{1}}{E_{0}} \left(\frac{E_{1}}{E_{0}}\right)^{3/2} \left(\frac{E_{1}}{E_{0}}\right)^{3/2}$

(5)

(Beach-Brewich and Gulyaev 1960), where $E_{\rm g}$ is the energy gap, ϵ the dielectric constant and $m_{\rm e}$ the effective electron mass. Using $m_{\rm e}$: 0.22 m_o, $\epsilon = 16$, $E_{\rm g} = 0.665$ eV. (5) yields $T_{\rm g} = 1.36 \times 10^{-27}$ cm⁶ sec⁻¹, which is a factor of 7.3 smaller than the empirical value. The formula (5) needs

correcting because of certain overlap integrals which ought to be included, and because of certain approximations made in integrating over electron and hole distributions. The first correction tends to reduce (5) while the second tends to increase it. If one includes only the second correction the theoretical value of T_3 becomes 2.32 x 10^{-27} cm⁶ sec⁻¹ and is smaller than the empirical one given by (4) only by a factor of 4.3. There is, of course, an additional uncertainty regarding the value of the effective mass one cught to use in (5)

To obtain (5) the centre is regarded as hydrogen-like with an ionisation energy related to the conduction band. If the ionisation energy is related to the valence band of a different formula is obtained, but it yields only a slightly different value of T_3 for this case.

If one interprets the 0.26 eV level as corresponding to a doubly negatively charged ion before hole capture, one finds from the work of Mashovets (1958) an independent empirical value of $T_2^{s} = 20 \times 10^{-10} \text{ cm}^3 \text{ sec}^{-1}$. There is, therefore, adequate independent evidence that the order of magnitude of the constants (4) is correct.

This is particularly interesting as it seems to furnish the first empirical estimate of T_3 . The reasonable agreement with a theory leading to (5), based on hydrogen-like wave functions makes it desirable to develop this approach further. This will be done in a future communication (Landsberg, Rhys-Roberts and Lal 1963). In this paper the the corrections to equation (5), which have been mentioned above, are discussed in detail, and the theory of the massaction constants $T_1, \ldots T_4$ is presented in a unified manner. This theory deals also with the case when recombination or impact ionisation involves an excited state, rather than the ground state, of the recombination centre.

References

Bonch-Bruevich V.L. and Gulyaev, Iu.V., 1960, Fiz., Tverdogo Tela, 2, 465.
Evans, D.A., and Landsberg, P.T., 1963, Solid State Electronics, 6, 169.
Karpova, I.V., and Kalashnikov, S.G., 1962, Froc. of the International Conference on the Fhysics of Semiconductors, Exeter (London: Institute of Physics and Fhys. Soc.), p. 830.
Landsberg, P.T., Rhys-Roberts, C., and Lal, P., 1963, to be published.
Mashovets, T.V., J.Tech.Phys. (U.S.S.R.), 29, 1140.
Shockley, W., and Read, W.T., 1952, Fhys.Rev. <u>87</u>, 835.

The above work was sponsored in part by the Cambridge Research Laboratories through the European Office of Aerospace Research. United States Air Force. One of us (C.R-R) is indebted to the Admiralty for support.

Constant South State

station.

. .