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ABSTRACT 

A brief descriptive survey of the various satellite orbit 
computation methods is presented here in order to give the systems 
engineer an introduction to the various methods and problems which 
currently exist. 
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A BRIEF SURVEY OF SATELLITE ORBIT COMPUTATION 
METHODS AND MAJOR PERTURBATIVE EFFECTS 

SECTION I 

INTRODUCTION 

Many systems engineers who have very limited knowledge of celestial 

mechanics, but who are, nevertheless, occasionally concerned with designing 

space systems, may find a brief introduction to the practical problems of com- 

puting satellite orbits useful for their work.    The following exposition makes no 

attempt at completeness, but merely discusses some of the more common and 

useful computation methods.    The mathematics involved is kept to a bare mini- 

mum, since it would be almost impossible to give even a fairly complete listing 

of the various formulae used in these orbit computation methods without filling 

several books.   However, references and bibliography compiled at the end of 

this paper will serve to guide those more interested in details to some of the 

most important sources. 
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SECTION II 

REFERENCE SYSTEMS z 

Fig. 1   Geocentric Reference System 

The most commonly used reference system for earth satellites is the 

geocentric equatorial system which is fixed in inertial space (see Fig.  1).   The 

x-axis points toward the vernal equinox y   which is that point in inertial space 

where the apparent orbit of the sun crosses the equator from south to north, 

the z-axis points toward the North Pole, and the y-axis forms a right-hand 

system.    The x-y plane, which is the equatorial plane, is the fundamental plane 

of the system. 

The orbit of a satellite is an ellipse with one focus at the center of the 

earth (see Fig. 2), and is completely described by six independent parameters. 

Three of these parameters  fi , W ,   and   i  fix the orientation of the orbit in 

space, and the other three parameters   a,   e,   and   T  fix the size and shape 

of the ellipse and the time of the point of closest approach of the satellite. 

Using Figs.  1 and 2 for illustration, we have: 
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a = the semi-major axis of the satellite orbit. 

e = the eccentricity of the ellipse. 

i = the inclination of the orbit plane. 

Q = the longitude of the node. 

u = the argument of perigee. 

T = the time of perigee passage. 

-lAf 

Fig. 2   Reference System 

o  =   center of earth B  =  apogee height 
A   =  perigee height q =   perigee distance 

Normally, the element   M,   the mean anomaly,  is used in place of the time of 

perigee passage. 

M = k  a~3/2(t-T) 
e 

where  k      is the Gaussian constant. 
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SECTION III 

THE DETERMINATION OF SATELLITE ORBITS 

The determination of a satellite orbit may be outlined as follows: 

(a) The first determination of "intermediate elements"   E    from 
l 

observations.    "Intermediate elements" will be regarded as 

geocentric position and velocity, or the standard elements   a, 

e,   i,   Q ,   w,   M  or some other set of parameters which are 

normally obtained in first approximation methods using incom- 

plete observations. 

(b) The "representation" or calculation of what the observations would 

be if the basic intermediate elements were correct.   This process, 

which ends in the determination of residuals, may involve additional 

observations as well as those upon which the intermediate elements 

are based. 

(c) The differential correction.   The differential correction utilizes 

residuals in differential formulae that relate them to corrections 

of the adopted elements    &E..    Finally, we transform the set of 

intermediate elements into an adopted set of "terminal elements" 

E     = E. + AE. .   Terminal elements may be initial position and 

velocity, but more often they will be elliptical parameters such 

as  a, e,  i, 0,  u,    M  or some other parameters especially 

suited in a particular problem to ephemeris computation and 

analytical correction programs. 

It is in the first determination of the intermediate elements that one finds 

the greatest number of alternative procedures or methods.   This variety is a 
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result of mathematical complexities and of differing observational patterns. 

With observations scattered in time, kind, and quality,  it is not possible to 

select a single orbit-determination method that will be satisfactory in all 

circumstances. 

An orbit may be determined from a six-dimensional fix,  i. e. , topocentric 

position and velocity.    The simple coordinate transformation performed in this 

method makes it possible to determine the orbit without approximations, and 

hence, no corrections are needed until additional observational data are 

available. 

Two or more complete three-dimensional topocentric position fixes may 

be available with present radar equipment. Geocentric fixes may be obtained 

immediately from the relation 

A. "   JL - 5. 

and used as intermediate elements.   The quantities £  and Ji_  are the vectors 

directed to the satellite from the observer and the dynamical center, respectively, 

and  R_ is the vector from the observer to the center of the earth.    If three or 

more fixes are available, it may be preferable to determine the position and 

velocity at some central date by the use of the Herrick-Gibbs formula        and 

use these as intermediate elements.   If more than three observations are used, 

a least-squares reduction of the velocity at the central date is obtained.   Since 

the velocity is obtained from series expressions neglecting higher terms, 

representation is necessary to determine if differential correction is necessary. 

A limitation of the Herrick-Gibbs program is its requirement for three 

radar fixes separated by not more than one radian of arc as seen from the 

center of the earth.   Observations spaced over any arc can be processed by the 

"Two-Position Program" developed by Aeronutronic; the data may be separated 

6 
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by several revolutions of the satellite in its orbit.   Observations spaced at 

geocentric angles   0   and   180 degrees apart produce singularities in the method, 

as two-position vectors with either of these particular singularities make it 

impossible to ascertain the orbit plane. 

Aeronutronic has conducted much experimentation with the Herrick-Gibbs 

initial orbit programs to demonstrate the usefulness of range rate measurements 

in accurate determination of the orbital elements, particularly in the determi- 

nation of the period.    The observations were those made by the Millstone radar 

over a period of about one week.    The elements were differentially corrected 

with all the observations so as to obtain a standard against which elements out 

of the initial orbit program could be compared.    The results are good, con- 

sidering the short radar track of one and two minutes.    The use of range rate 

significantly improved the period determination in all but one test case.    The 

effect on the rest of the elements is not conclusive and, in any event, the error 

in the period is orders of magnitude more significant than the errors in any 

of the other elements. 

A great deal of literature is available on orbit determination from sets of 

angles and angular rates.    The basic methods are frequently associated with 

the names of LaPlace,   LaGrange, Gauss, and Gibbs, though there have been 

many modifications by subsequent writers.    The relatively poor observations 

of earth satellites limit the usefulness of some of the classical methods. 

In the LaPlacian method, one determines position and velocity at a central 

date, to be used as "intermediate elements" for correction purposes prior to 

the determination of the "terminal elements. "  The first approximation is based 

upon Taylor's series expansions of the observed angular coordinates or direction 

cosines; the large angular rates further limit its usefulness for satellites.    This 

approach fails for close earth satellites because the rapid topocentric angular 
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motion gives rise to prohibitive truncation errors.   In oi-der to use the method 

successfully for such satellites, one either processes a large number of angles 

in a least-squares reduction or employs additional data, e.g. , range rate 

observations. 

The methods of LaGrange,  Gauss, and Gibbs, in their simplest and most 

effective forms, all make use of the same first approximation.   This approxi- 

mation is also based on Taylor's series expansions, but in the dynamical 

coordinates (e.g. , geocentric coordinates for geocentric orbits) rather than in 

the observational ones.   Thus, for geocentric orbits, not only is the angular 

motion greatly reduced, but also it is possible to include some of the higher 

derivatives in the series with the aid of the dynamical properties of motion.    The 

resulting first approximation, which yields three geocentric position vectors, 

may be more successful in one of the methods than in the others because of the 

way in which the position vectors are used in the determination of the terminal 

elements. 

The first approximations of LaPlace and LaGrange-Gauss-Gibbs share an 

indeterminacy that occurs when the basic observations lie on a great circle arc. 

Thp indeterminacy may be overcome with three observations if the plane of the 

great circle does not pass through the dynamical center.   If it does, one must 

seek a fourth observation from which the indeterminacy is eliminated. 

It would be impossible to go into the details of these orbit computations 

in this short report.    Reference 1 provides equations and procedures for use of 

the Herrick-Gibbs method and for those of LaPlace,  LaGrange and Gauss. 

Moulton provides a thorough discussion of the methods of LaPlace and Gauss. 
[ 3] Herget's privately published book provides detailed numerical procedures 

and manv numerical examples for computing orbits using the methods of LaPlace 
[ 4] 

and Gauss.   Watson's book, though published in 1885, is still a useful guide. 
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Many new methods for computing earth satellite orbits using canonical and other 

element sets have been proposed.    The most significant recent works are papers 
r   r   o   n   Q 1 

by Brouwer, Kozai, Garfinkel, and Vinti.   ' '   '   ' 

Once the intermediate orbital elements are determined from the initial 

orbit routines, the approximate position can be easily computed and compared to 

the observed position of the satellite.   One thus gets a residual between the observed 

and computed position 

an - a    = An 
0 c 

where   a may be range, altitude, or azimuth (or right ascension and declination). 

Since  a is a function of the six orbital elements   e ,   e ,  ... e  .   We can 

expand  a into a Taylor series of the parameters  e ,  ... e .   Thus, 
1 6 

9a, 9 a da , . , 
A a = a. - a   =   -    A en  + ■*   Ae  +... +    A e„ +  higher 

0       c        9 e 1 9 e0 2 9 •_ 6 
1 £ b 

order terms. 

Neglecting the higher order terms, we have the equations for the differential 

correction.   Since the partial derivatives    9o/9e.    are functions of the orbital 

elements and can easily be computed (actually, the formulas are somewhat long 

and complicated), we have an expression for the error in the observations due 

to the errors in the orbital elements.   What we wish to find, however, are the 

errors in  e., e ,  ... e.   due to the differences in the observed and computed 
12 D 

positions.    Therefore,  if we have six observed differences    Aa,  Aa ,  ...  ,Aff , 

we can invert the matrix of coefficients of the  Ae.'s: 
l 
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9« 9ö 9a 
A»,  = -— Ae,  + -— Ae + .. . +   Ac 

1     3e, 1      9eo        2 9e„        6 
1 2 b 

dCl2 da2 da2 
Aa_ = r— Ae,  + -— Ae + . .. +   Ae 

2     9e 1      9e 2 9e 6 

AQ,K = ^T~ Aei   + ^T"  Ae + ... + —- Ae        , 6      9e_ 1       9eo 2 9e„        6 
12 b 

and solve for the corrections to the elements, the  Ae   . 
i 

If we have more than six observational residuals and hence, more than 

six equations of condition, then we can perform a least-squares fit.    In matrix 

form, we have 

A X ■ R , 

where 

9a: 

3en 

9a„ 

9e, 

9a 
m 

9 a 

9e 

!^2 
9 e 

da 
m 

10 



X = 

R - 

'Ad, 

A a 

Aa 
m 
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and   m > n . 

Usually  n=6   (the number of orbital elements), but sometimes a seventh 

"element" or drag parameter is used in the differential correction. 

It is appropriate to point out that each equation of condition 

da    . a»   A                    da   , 
A a =   A e    +   Ae + ... +  A e 

8e,        1 9eo       2               8e„        6 
1 I                                                  O 

11 
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may be weighted by multiplying it by 1/CT where  cr  is the root-mean-square 

(r. m. s.) of the error of the observation.    The values of a  are different for 

different radars and various types of optical obsei-vations and are determined 

independently of the differential correction process.   Quite often, however, 

since the weighting of these equations does not contribute substantially to the 

accuracy of the final results, and since the values of a  are often difficult to 

determine, a common practice is to omit the weighting altogether and assign 

each equation a unit weight of one (e. g. ,  SPADATS). 

Since littie is known about the values of   a   for the various tracking 

installations, a study of this problem is being conducted at Aeronutronic.  NASA, 

on the other hand, does make use of a weighted least-squares technique in the 

Project Mercury Program. 

In matrix form, we may get the normal equations (usually six) by multi- 

plying by the transpose of  A. 

T T 
A    AX = A    It. 

B X = C 

We will then have six equations in six unknowns which can be solved by standard 

elimination methods such as the Gauss-Jordan reduction. The solution of these 

equations will give us the correction to the elements    Ac , Ae  , . .. Ac    . 

At Space Track, after forming a set of residuals corresponding to a set 

of observations, the magnitudes of the angle and range residuals are compared 

with an absolute maximum value of 1000 km, and the range rate residual is 

compared with an absolute maximum value of 0. 5 km/sec.   All residuals 

exceeding these limits are rejected from the current iteration.   Upon completion 

of the first residual rejection test, a second similar residual rejection test is 

12 
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performed with a new maximum value equal to (1. 5) (r. m. s. value of the 

previously accepted residuals).   The remaining number of residuals is then 

used in the differential correction equations.    Upon completion of the calculation 

of the new set of corrected elements, however, the absolute maximum value of 

the first rejection test is subject to change from 1000 to 75 km if the new r. m. s. 

value of the residuals is less than 50 km.   With the existing system of not too 

accurate radars, it is necessary to have many observations to get a good satellite 

orbit.   It is necessary to use a large number of observations (usually 20 or more 

per satellite) in a "least-squares differential correction" every one or two weeks 

to update a satellite orbit; however, satellite orbits not appreciably affected by 

drag can often be accurately predicted without running the differential corrections 

for periods of from 30 to 60 days. 

The literature contains three excellent and most complete references on 
f 4 9 101 

the differential correction methods. ' References 4 and 10 contain 

excellent sections on the least-squares technique and on the weighting of residuals, 

though the notation is somewhat clumsy since matrix notation is not used. 

One should point out that the particular set of orbital parameters 

e  , e ,  ...  , e    one chooses and the particular method of orbit computation 

depend on the kind of orbit.    Since the perigee  fa)     is not well-determined in a 

nearly circular orbit, it is necessary to use other orbital element set.J which 

can be better determined.    For oroits of low eccentricity, the elements   a, 

e cos w,   e sin w,   Q,    i, M  are useful.   Since the node  ft is not well- 

determined in a nearly equatorial orbit,  it is also necessary to use a different 

orbital element set in this case.    For orbits of low inclination, the elements 

a, e,   w,   sin i sin fi, sin i cos tt,  M  are sometimes used.    For orbits of low 

inclination and low eccentricity, Herrick has found orbital elements that depend 

on vector quantities such as   U   ,   V    most useful, where   U     is a unit vector 
—o     —o —o 

13 
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in the direction of the satellite at time   t    and V    is perpendicular to    U 
o —o —o 

and in the orbital plane of motion of the satellite.   A differential correction 

developed Eckert and Brouwer makes use of infinitesimal rotations and 

corrects on  A^: , Atp9>   and  Ail1    where these are the resultants of rotations 

of the orbit about the  x, y,   and   z   axes,  respectively.   Actually the Eckert- 

Brouwer method uses combinations of these and other elements to yield several 

sets of elements, each suited to a particular type of orbit (for example  AM   + 

A# , A ip,. A^ , eA^> , Aa/a,   and  Ae  are used for low eccentricity orbits). 
3 1 a o 

All in all, there are many different sets of orbital elements and computation 

methods, each with its own advantages and disadvantages. 

14 
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SECTION IV 

PERTURBATIONS OF THE SATELLITE ORBIT 

The significant perturbative forces are oblateness of the earth, drag, and 

solar radiation pressure.    Less significant perturbative forces are those due 

to magnetic effects, lunar and solai gravitational attraction. 

Oblateness 

The potential function for the earth can be written as 

U= H J9                9                   ^3 3 
1 - —— (3 sin 6-1) —   (5 sin°6 - 3 sin<5) 

.        2r 2r 

J4 4 2 
(35 sin  6 - 30 sin 6 + 3) 

8r4 

e c o 

—'-   {63 sin <5 - 70 sin <5 + 15 sin 6) 
8r°   ' 

  (231 sin ö - 315 sin 6 + 105 sin2<5 - 5) 
6 

16r 

where 

6   is the instantaneous latitude of the satellite, 

u   is the gravitational constant for the earth 1.407639, 

r   is the radial distance of the satellite from the center of the 

earth in earth equatorial radii, 

J      =    1.08228xl0"3 (±.00003xl0-3), 

-6 a 
J      =   -2.3x10     (±.2xl0"b), 

ö 

J      =   -2. 12xl0_6(±.05xl0"6), 
4 

15 
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-6 _r 
J.    =   -.2x10     (±.lxl(Tu),   and 

5 

J6 
J      =    l.Oxlo"     (±.8xl0-6) 

For most practical estimates of the oblateness effect, the   J    term is 

the onl> one that need be considered.   These oblateness effects are quite con- 

siderable on close earth satellites and can affect the perigee and nodal points 

by as much as several degrees per day.   One can see by looking at the potential 

function that as   r  increases, the effect of the oblateness is diminished. 

The oblateness of the earth primarily affects three orbital elements   fi, 

u>,   and   M;   however, the small effect on the remaining elements can be 

accurately determined analytically. '   *   * The equatorial bulge causes 

the node   Q to precess in a manner similar to that of a spinning top. 

The formula for this precession is given by 

J'  n cos i 
D-     2 

2
/i 2x2 

a (1 - e ) 

where 

j;    =   1.62345x10"  , 
m 

a   ■   the semi-major axis, 

e   =   the eccentricity, 

i   =   the inclination of the orbit to the equator, and 

n   =   the mean motion (angular velocity) of the satellite 

in its orbit. 

We should note, however, that at  i = 90 degrees, cos i = 0   and hence, 

Ü = 0; also,   Q can reach a maximum of slightly more than 10 deg/day for 

certain low inclination orbits.    Actually,   i~l  is referred to as the regression 

of the node since its sign is minus.    Figures 3 and 4 are most instructive. 

16 
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NORTH POLE 

SATELLITE'S 
ORBIT 

SOUTH POLE 

Fig. 3   Regression of the Node 

EQUATOR 
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Fig. 4    Nodal Regression Rate as Functions of Mean Altitude and 
Orbital  Inclination Angle   (from Reference 13) 
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The second important effect of the bulge at the earth's equator is that the 

orbital ellipse rotates steadily in its own plane (see Fig. 5). The rotation rate 

is given by the formula 

u = 
J ' n (5 cos    i - 1) 

~~2 2 2 
2a (1-e ) 

The rotation is forward, in the same direction as the satellite motion, for 

i < 63.4 degrees, zero when   i = 63.4 degrees, and backward for   i > 63.4 

degrees.   We should note from Fig. 6 that this precession of perigee (often 

called apsidal precession) can reach 20 degrees in certain near equatorial 

orbits. 
ORBITAL 

PLANE 

Fig. 5    Diagram Showing Rotation of the Orbital 
Ellipse in Its Own Plane.   (Initially the 
orbit is nearest to the earth at A, and 
later, at B.) 

19 
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Fig. 6   Apsidal Precession Rate as a Function of Mean Altitude 
and Orbital Inclination Angle (from Reference 13) 
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The mean anomaly  M  of the orbit is also severely perturbed by the 

earth's oblateness.    Thus, 

J' n (3 cos   i - 1) 
M =- 2 

2a2(l-e2)f 

The oblateness has a small effect on the remaining orbital elements, but they 

are generally not too important for short time periods.    Complete investigations 

of the effect of oblateness on all the orbital elements may be obtained from the 

papers of Brouwer, Kozai, and Garfinkel.    '   ' 

Drag 

The perturbative effects of air drag are significant at altitudes below 

about 300 miles.   It is usual to express the aerodynamic drag  D  of a satellite 

in terms of a drag coefficient   C    ,   based on the maximum frontal area  A 

of the satellite: 

D " i CDVV2 ' 

where 

p    is the local air density and 

V   id the magnitude of the satellite velocity. 

In most formulations, however, the drag deceleration is found to be the basic 

quantity 

D       CDAc        „2       m ,r2 —  = —    p V    = BpV 
m 2m ^ 

21 
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Considerable simplification may be achieved by the use of the ballistic coefficient 

B,    since the problem may be soived parametrically for a series of values of 

B which eliminates the necessity for variables   C   ,   A ,   and   m. 
' D       c 

For a given vehicle mass   m   is obviously known, but for more complicated 

shapes each particular case will necessarily determine its own coefficient of 

drag and reference area.    The drag coefficient for upper atmospheres is a func- 

tion of the flow regime and the body shape wherever the reference area is a 

function of shape and body dynamics such as orientation tumbling, etc.   It can be 

shown that at about 75 statute miles the satellite is out of the slip flow region, 

and free molecular flow conditions apply for any velocity and any satellite size. 

For free molecular flow, the fraction of diffusely reflected particles is 0. 9; 

thus, the curve for diffuse reflection should be used for design consideration. 

It is noted in Reference 13 that for high molecular speed ratios,    C    a 2  is 

reached for both spherical and cylindrical satellites.   This value is a valid 

first approximation.    The reference area for steady flight is the cross-sectional 

area perpendicular to the air stream,  i. e. , for a sphere    A   = — D   .    For 

tumbling satellites it is assumed that each orientation is equally probable, and 

the average reference area is given by the total surface area divided by four. 

Numerical results from Reference 13 are compared in Fig. 7 for two satellites. 

It can be seen that for a cylinder with a diameter-to-length ratio of 0. 078, the 

relative drag for random tumbling is 11.9 times higher than for an orientation 

with the main axis parallel to the air stream, and 28 percent lower than for an 

orientation with the axis perpendicular to the air stream. 

In addition to the satellite drag based strictly on the air densities of an 

atmospheric model, such as ARDC 1959, certain special effects exist which 

should be considered. 

22 
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A ssumed Surface Interaction:   Diffuse Rs-emission V.-»* 

Accommodatlon Coefficient - 0,50 \ 

Satellite 
1058 82 

Sputnik ID 
1956 • 

Explorer fV 

Shape Cone Cylinder 

Dimensions 

J                  ABA  «r?   t - 5.67 ft 
- 11.75 ft fc-fH urr3 LL     d 

(■ i     >i 
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Attitude ^X^ Drag 

Coefficient 
CD 

Relative* 
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Fig. 7    Effect of Attitude and Tumbling on Drag of 
Representative Sattellites (from Reference 13). 

The earth's oblateness basically adds a latitude effect into the atmospheric 

tables, which is presently missing in all the existing air density models.   Good 

discussions of the oblateness effects on the air drag are given in the Literature, 

References 14,  15 and 16. 

Rotation of the atmosphere causes the orbital lifetimes of satellites launched 

in retrograde orbits to be different from those of satellites in corresponding direct 
f 17 181 

orbits.   This problem has received some attention.        ' 
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Diurnal atmospheric bulge exists above 125 statute miles and is believed 

to result from thermal and gravitational air expansion effects.   Also, the 

atmosphere is very unstable between 50 and 70 statute miles due to large waves 

and tidal motions in the air.   At 125 statute miles, the solar flares may cause 

changes of 40 percent in air density, becoming more important above 175 

statute miles.    There seems to be large variations related to the seven-year 

sun spot cycle, which would imply that the satellite lifetime is also a function 

of the year in which the orbit is established. 

Since it is well-known that drag is the major influence on satellite life- 

time, it is appropriate to mention that a fairly accurate estimate of a satellite's 

lifetime can be obtained at the beginning of its career if the initial eccentricity 

e     is known and is not larger than about 0. 2, and if the period of revolution has 

been measured for several days.   The total lifetime of the satellite,   t   ,    is 

given by 

Q ß     T 3      o   o 
L ~   4        x 

where 

T     is the initial period of revolution, and 
o 

x   is the daily decrease in the period of revolution. 

If, for example,   e    =0.1,    T    ■  100 minutes  and  x = 0.05 minutes/day, 

we find   t    = 150 days, and this estimate of lifetime should not be in error by 

more than about 15 days. 

The most important facts to remember about air drag are that it varies 

widely and it is difficult to predict these short period fluctuations.    Figures 

8, 9 and 10, dealing with air density and drag, should prove useful and 

informative. 
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The points plotted are the values of air density obtained from the 
orbits of each of the satellites, with the full line drawn through 
them representing the average density.    The broken line shows the 
density according to the pre-satellite ARDC model, which is too 
low by a factor of between 3 and 1 1 at heights between 120 and 
250 miles.   Sea-level density is 0.0765 Ib/cu.  ft., or 0.00123 
grams/cm^. 

Fig. 9   The Variation of Air Density with Height (from Reference 19) 
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The Figure shows that density departs from its average value by up to 
35 percent, and that the maximum values of density occur at intervals 
of about 28 days. 

Fig. 10    The Variation of Air Density during 1958, at Heights 
between 100 and 150 Miles, as Given by Sputnik 3 
Rocket   (from Reference 19) 
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Aerodynamic drag primarily affects the elements   M, a,   and   e.    In a 

circular orbit, the air drag slows down the speed of a satellite slightly,  but as 

its speed drops below the orbital speed proper to its height, it begins to descend 

at a small angle.   As soon as this happens, gravity accelerates it on its down- 

hill path.   So the satellite begins to go faster, and the speed increases beyond 

its original value until it reaches the slightly higher speed, which is the proper 

orbital s ieed at this new and slightly lower height.    Then drag begins to slow 

it, and the whole cycle begins again.    The net result is that the satellite slowly 

descends at a steadily increasing speed in a nearly circular spiral.    In this case, 

the semi-major axis  a   is continually decreasing and since the period 

-ft).». 

the period also decreases. 

If the initial orbit, instead of being circular, is appreciably elliptic, the 

effect of aerodynamic drag is quite different at first.    Since air density falls off 

rapidly as height increases, a satellite in an elliptic orbit will get a much greater 

wallop from drag at or near perigee than at or near apogee.   In fact, the drag 

can be largely ignored except in the region near perigee.   Over this short section 

of the orbit, drag causes a small loss in speed of the satellite.    The minimum 

height of the satellite is reduced only to a very negligible degree, but the maxi- 

mum height at apogee is reduced to a much greater extent.   The effect of 

aerodynamic drag on an elliptic orbit, therefore, is to make the orbit more 

nearly circular by steadily reducing the maximum height and scarcely reducing 

the minimum height.   As in the circular case, the semi-major axis   a  and the 

period   P  are also decreasing.    In eccentric orbits, however, the eccentricity 

is also decreased since the orbit continually grows more nearly circular. 
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Very gross errors in satellite position and the orbital elements would 

develop in a few orbits if the major perturbations such as oblateness and drag 

were ignored.   One can fairly easily account for the major changes in earth 

satellite orbits caused by oblateness by using the formulas for the secular vari- 

ations in    fi , u ,   and   M  as given in the section on oblateness.    The effect on 

the mean anomaly   M  by drag is a very considerable one.   If one writes the 

mean anomaly as a function of time 

2 3 
M = M    + c   (t-T) + c   (t-T)   + c   (t-T)    + periodic terms   , 

then the  o     constant is just the Kepler two-body change in the orbit plus the 

secular perturbations due to oblateness.    The   c    and  c     constants which are 

the drag terms are usually determined empirically by a least-squares fit, i.e., 

the differential corrections corrects on the seven elements   a,   e,   i,   ft,   w, 

M,    and  c     and  c     are only used in the case of very high drag satellites; 
Zd o 

Smithsonian and SPASUR have found that the use of the  c     term with low drag 

satellites often decreases rather than increases the accuracy of prediction. 

Drag corrections based on this empirical   c    can also be made to the elements 

a  and  e   in a straightforward manner: 

a = ao"   i  aoC2(t-T)' 

and 

1 - 
a (1-e ) 

o        o 

All existing operational systems in NASA, Space Track, NAVSPASUR, 

JPL, Smithsonian, etc. , make use of these simple corrections for drag and 

oblateness; however, the inclusion of more terms (i. e., shurt and long periodic 
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[ 5] perturbations and more sophisticated techniques is quite prevalent in the 

above tracking and computational centers.    Figures 11 through 17 serve to 

illustrate and clarify this discussion. 

MINIMUM HEIGHT IS REDUCED 
ONLY VERY SLOWLY 

ORBIT WHEN 
/.BOUT 85%  OF 
SATELLITE'S LIFE 
IS PAST 

INITIAL 
ORBIT 

ORBIT WHEN 
ABOUT 50%J OF 

SATELLITE'S LIFE 
IS  PAST 

Fig. 11     Shrinking of Satellite Orbit Under the Action of Air 
Drag — Not Exactly to Scale (from Reference 19) 

Solar Radiation Pressure 

Solar radiation pressure produces significant perturbations only on large 

light satellites such as Echo.   More specifically,  this perturbation is significant 
2 [ 131 

for satellites with area-to-mass ratios of approximately 25 cm /gm or greater, 

although solar radiation pressure also produces measurable effects on small, 

dense satellites at high altitudes.    Solar radiation pressure is estimated to be equal 

to the air drag at a 500-statute mile altitude     Its must important effect is dis- 

placing the geocentric center of the orbit.    For certain resonance conditions, the 

30 



TM-3 641 

TIME ,'ROM PERIBEE - MINUTES 
-T 

-20 0 
ANGLE FROM PER/SEE • 

The average drag during the 20 minutes when drag is 
appreciable is just under 50 percent of the maximum 
drag, the area of the rectangle shown being equal to 
the area under the curve.    The graph applies to a 
satellite with orbital eccentricity near 0.1. 

Fig. 12    The Variation in the Drag Acting on a Satellite Near 
Perigee (from Reference 19) 
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Fig. 15     Lifetimes for Circular Orbits (from Reference 13) 
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Fig. 16    Satellite Lifetimes (from Reference 13) 
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orbital lifetime is changed by significant amounts.   For the Beacon satellite 
2 

(area-to-mass ratio of 23. 2 cm /gm) at a mean altitude of 950 miles, the life- 

time can vary by a factor of 10, depending on the hour of launch. 

In general, during a complete orbital period, solar radiation pressure 

causes a first-order perturbation of all six orbital parameters.    However, the 

most conspicuous effect for a nearly circular orbit is a displacement of its 

geometric center.    This displacement is perpendicular to the earth-sun line in 

the orbit plane and in a direction such as to decrease the altitude of that part 

of the orbit in which the satellite moves away from the sun.    Calculations show 

that at a mean altitude of 1000 miles, radiation pressure can displace the orbit 

of the 100-foot Echo balloon at rates up to 3. 7 miles/day, the orbit of the 12- 

foot Beacon satellite at 0. 7 miles/day, and even the orbit of Vanguard I at a much 

slower rate of about one mile/year. 

For certain resonance conditions, these perturbations due to solar radi- 

ation pressure accumulate and drastically affect the satellite's lifetime.    For 

the Beacon satellite at a mean altitude of 950 miles, an initial eccentricity of 

0.106 and an inclination of 40 degrees, the lifetime can vary by a factor of 10, 

depending on the hour of launch.    For an inclination of 48 degrees of the Beacon 

satellite, these conditions are no longer resonant, and the variation in lifetime 

is reduced to a factor of 2. 

For the Echo balloon placed in a 1000-mile altitude circular orbit and an 

inclination of 35 degrees, we find that the lifetime is 240 days.   For an initially 

circular equatorial orbit, the resonance altitude of 4000 miles leads to a 1. 3- 

year lifetime, while the same orbit at 1000 miles altitude has an extremely 

long lifetime. 

For an excellent report on the effects of solar radiation pressure on 
I 20,21 ] 

satellite orbits, one is urged to read papers of 1.1. Shapiro. They are 
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brief, lucid and give very valuable information.    F>ir the present, we offer 

Figures 18 through 23, which depict the radiation effects on eccentricity, 

perigee height, and the argument of perigee,   u . 
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Fig. 18    Time Variation of Perigee Height and Mean Altitude 
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Magnetic Effects 

If the outer shell uf the satellite becomes electrically charged, its move- 

ment in a plasma creates three kinds of electromagnetic drag effects:   couloumb 

Hrag, induction drag, and wave drag.   It has been estimated [13] that for a 
LI O 

negative potential of 10 volts and a particle density of 10   electrons/cm , the 

ratio of electrical-to-aerodynamic drag may be about 0.4 for certain cases, 

while inductive and wave drag appear to be negligible.   At altitudes above about 

750 statute miles, the magnetic drag may exceed neutral drag for large balloon 

satellites.   Generally, this source of drag, however, has a negligible effect. 

Lunar and Solar Perturbations 

Lunar and solar attractions are the major sources of perturbations above 

the 24-hour orbit altitude of about 22, 300 statute miles,  but their effects are 

almost negligible for close earth satellites.    The principal ^ffwrt i« a rpgrp.^sinn 

of the satellite orbit plane about the normal to the orbit plane of the perturbing 

body.   This regression is given by 

cos 1 

, Ö cos 1 

2. o 

1 + :',--- 

V 1-e' 

where the subscript  d  indicates a parameter of the disturbing body.   This 

effect is plotted in Figs. 24 and 25 for the sun and the moon.   There is also a 

radial or tidal perturbation, the maximum value being about 
4 

Ar 
»A    r 

max 

for circular orbits of radius   r .   This value is plotted in Fig.  26.    A summary 

graph of the major perturbations is given in Fig. 27. 
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