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ABSTRACT 

The interaction of ultrasonic beams in solid media has been in- 
vestigated fron both the theoretical and experimental viewpoint. An error 
in the previously reported classical calculation has been corrected and 
relatively good qualitative agreement now exists between the classical and 
quantum mechanical calculations. Experiments are described which verify cer- 
tain theoretical predictions concerning the magnitude of interaction and the 
conditions of resonance. Techniques have been devised for producing inter- 
action in specimens of unusual shape. Furthermore^ the feasibility of using 
interaction techniques in making a three-dimensional analysis of elastic 
anisotropy has been demonstrated. 

This technical documentary report has been reviewed and is 
approved. 

^^r-b-^X. 
W. J. TRAPP 
Chief, Strength and Dynamics Branch 
Metals and Ceramics Division 
Air Force Materials Laboratory 
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I.  INTRODUCTION 

This report covers work performed durinß an inveGtlgation of ultra- 
sonic wave propagation and interaction in solid materials.  The work is essen- 
tially a continuation of an earlier contract* which was directed toward a 
study of ultrasonic methods for the nondestructive measurement of residual 
stress.  In the earlier investigation certain stress-dependent aspects of 
ultrasonic propagation in solids were explored in the hope that a thorough 
understanding of these properties would facilitate the ultimate use of ultra- 
sonics in all types of stress measurement problems including the nondestruc- 
tive measurement of residual stress. 

The propagation velocity of ultrasonic waves In solids varies with 
stress in a manner that depends on the third-order elastic constants. In 
addition, shear-wave velocity depends upon the angle between the polarization 
axis and the stress direction. These properties can combine to produce an 
effective rotation of the polarization axis as the shear wave travels through 
a stressed medium. The effect is in many respects very similar to certain 
photoelastic effects. Techniques for observing and utilizing the stress- 
dependent aspect of shear-wave propagation have been described in earlier 
reports.iü/ R. T. Smithi/ has recently written an excellent review article 
on the use of ultrasonics in the study of stress-induced anisotropy. 

During the final few months of the earlier contract a significant 
discovery was made relative to the experimental interaction of ultrasonic 
beams.  The intersection of pulsed ultrasonic beams under "resonant" condi- 
tions revealed that Interaction effects are indeed detectable. A theoreti- 
cally predicted^/ third beam (generated at the point of intersection) was 
experimentally observed in a number of materials.  Some experimental results 
have been reported in a previous reportä/ and paper.S/ 

The study of interaction phenomena has continued during this report 
period with emphasis being placed on a thorough understanding of the basic 
effect. A cross-check between a quantum mechanical approach and the pre- 
viously derived classical results has revealed an error in the classical cal- 
culations. The corrected amplitude expressions show some extremely interest- 
ing relationships between the various interaction cases and the dependence of 
the Interaction magnitude on third-order elastic constants. In addition, ex- 
perimental effort has been directed toward a more complete understanding of 

Manuscript released by the authors January 1954 for publication as a ML 
Technical Documentary Report. 

* Contract No. AF 33(616)-7058. 



(l) sensitivity of interaction magnitude to deviations from resonant condi- 
tions, (2) correlation vith theoretical predictions, and (3) techniques of 
introducing the ultrasonic 'beams into test specimens. Although much of our 
recent work has been of a rather basic nature, we have not overlooked pos- 
sible applications of the interaction phenomenon in testing material proper- 
ties . The feasibility of using interaction techniques in making a three- 
dimensional analysis of elastic anisotropy has in fact been demonstrated. 
Other areas of possible application are discussed in subsequent sections of 
thi s report. 

II.  THEORY RELATED TO INTENSITY OF ULTRASONIC BEAMS 
GENERATED THROUGH INTERACTION 

Expressions for the displacement amplitude of ultrasonic beams 
arising from various interaction cases were given in the Appendix of Ref. 3. 
These expressions wejje derived using the classical approach described in 
other reports &tSl     During the past few months we have extended the quantum 
mechanical approach^/ (used previously only to calculate transition proba- 
bilities) to get amplitude expressions (see Appendices II and III), that 
could be compared with those obtained using the classical approach. The re- 
sultant expressions did not agree. Although exact agreement was not expected 
for the entire expressions, certain terms appeared much too far out of line. 
In attempting to run down the source of disagreement, an error was found in 
the classical calculations.  One term had been inadvertently dropped from the 
defining expression for the vector I  . The correct, expression is given 

Ti 
below: 

- I (n+AA)| (Ao-B0)(k2-k2)ki -   (A0-B0)(k1-k1)k2 

♦ (B0-k1)(k2-k2)Ä0 i (A0-k2)(k1-k1)B0+2(Ä0-k2)(k1-k2)B0 

* 2(B0-k1)(k1-k2)A0U I (KW3+A/4+.B) i (A0-B0)(k1.k2)k2 

* (A0-Bo)(kl-k2)*l ♦ (B0-k2)Cki-k2)Ao t  (A0 •£;].) (^1^2 )S0 [ 

- I (A/4+B),j (A0.k2)(B0.k2)ki * (A0 .k1)(B0 .kx)^ + (A0 .k2)(B0 .kj.)k2 

• (A^kgHBo-k^kxl- I (itec) |(^4c1)(^4tetft * (Ao-kl)(V*2)*l[ 

- J (K-lu+B)  (A0.ki)(k2.k2)B0 * (B0.k2)(k1.k1)A0| 
2   3 



The last term that is underlined was erroneously left out of the 
original calculation.2^5/ Appendix III contains the corrected classical ex- 
pressions along with the expressions derived using quantum mechanical tech- 
niques. Except for the multiplying coefficient, the agreement hetween the 
expressions is very good. 

One of the factors that led us to suspect the validity of the 
original classical calculations was the apparent lack of internal agreement 
between interaction cases that we considered to be somewhat equivalent. 
Table 1, republished from previous reports,2x2/ lists five independent cases 
in which interaction should occur. It is true these five cases have an 
element of independence, but there is also an element of equivalence. For 
example, if we consider the modes of all waves involved (i.e., the two primary 
waves as well as the resonant wave) we note that Case I and Case V are similar 
in that one longitudinal wave and two transverse waves are involved. -Likewise, 
Cases II, III, and IV are similar in that one transverse wave and two longi- 
tudinal waves are involved. The similarity is even more obvious when we con- 
sider Figure 1. Looking first only at the solid lines, we see that they rep- 
resent Case III of Table 1. The angle, 0 , must of course satisfy the 
resonant condition for this interaction and the scattered wave travels in the 
k^ direction as defined by (k^ + l^)- Remembering that, the angular rela- 
tionship between the vectors represents the conservation of wave number and 
the frequency relationship is tied to the conservation of energy, it is not 
difficult to see that all of the interaction cases listed in Table 2 can be 
satisfied by interchanging the various waves in Figure 1. 

If one plots the amplitude or intensity of the generated wave 
against the frequency ratio, a = tug/u)^ , for a particular interaction case, 
it is often found that the generated wave amplitude goes to zero at some 
value of this ratio (see graphs in Appendix III). Before correcting the 
error in the original classical calculation, we were somewhat disturbed by 
the fact that the "related" interaction cases* did not exhibit zero amplitude 
at equivalent values of the frequency ratio. After correction, and agreement 
with the quantum mechanical expressions, we now find that the related cases 
do indeed "go to zero" at equivalent values of the frequency ratio. This can 
be best illustrated by referring back to Figure 1 and Table II. Let us assume 
that the intensity of the interaction Case III, 

L^) + T(a)2)  ► L(u)3)  , 

goes to zero when a ■ 7/5 , i.e., for the condition, 

L(5) + T(7)  ► L(l2) 

* The related cases are: IA and VA; IB and VB; and II, III, and IV. 

3 
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TABLE 2 

INTERACTION CASES REPRESENTED IN FIGURE 1 

Resonance Direction of 
Interaction Case AnRle Primary Waves 

LU^) + T(u)2)-^L(a)3) 
Case III 

"l k^ and kg 

L((D5) + Td^)—»Ldux) 
Case IV 

^ kj and kg 

L(u)i) + Lduj) —>T(ou2) 0b kx and k3 

Direction of 
Scattered Waves 

k3 

kl 

k2 
Case II 

We would then expect 1fhe Case IV interaction, 

L(l2) + T(7)  » L(5) with a = 7/l2  , 

and the Case II interaction, 

L(12) + L(5)  > T(7) with a = 5/l2  , 

to also go to zero. A close examination and comparison of the amplitude 
curves (see Appendix III) for related cases indicates that this relationship 
between the zeros does hold. Moreover, the entire transition probabilities 
between related cases have been shown to be exactly equivalent when the 
number of phonons of the second wave is much greater than unity.* 

There is another aspect of the amplitude expressions that is very 
interesting.  If we consider the related cases (ll. III, and IV), we note 
that the part of the "6" term that forces the amplitude expression to zero, 
as the frequency ratio is varied, does not depend on the third-order elastic 
constants. This is particularly evident in Case II where two longitudinal 

waves interact and 6 ■ [(2B+A+K+-=)cos 0J . The cos 0 term goes to zero 

when 0 = 90°, i.e., when the two primary longitudinal beams are perpendicular. 

* The geometrical volume of interaction is not equivalent in related cases. 
Hence, the amplitude expressions in Appendix III are not exactly equiv- 
alent . 

6 



In fact, it can be easily shown that the amplitude becomes zero in all three 
cases, whenever the resonant conditions necessitate the two longitudinal waves 
being orthogonal.  It should be emphasized that this condition holds true ir- 
respective of the material in which the interaction occurs. In contrast, the 
amplitude expressions for the related Cases (I and V) can also go to zero (en- 
tire "6" term), as evidenced in the plotted curves, but in these cases the 
zero point depends on the third-order elastic constants of the material. Also 
in contrast, one does not find the zero point characterized by a fixed angular 
relationship between any of the three waves as there was in Cases II, III and 
IV .  The shape of the curves in Appendix III emphasizes the different char- 
acter of the 6  term for the related Cases (I and V) or (II, III and IV). 
In the former cases the shape is very dependent on the material whereas in the 
latter cases the shape is relatively independent of the material. 

Some of the other similarities and disagreements between the clas- 
sical and quantum mechanical expressions should also be mentioned.  In each 
case,  X3 , the displacement amplitude of the third beam is proportional to 
the product of the primary displacement amplitudes and the common 6 term. 
Beyond this, there is little apparent agreement between the classical and 
quantum expressions.  It is the 6  term, however, that primarily influences 
the shape of the amplitude curves (as shown in Appendix III) so the remaining 
terms that are in disagreement act as a multiplying factor that shifts the 
curve up or down with only a slight influence on the shape of curve.  The fre- 
quency dependence is consistently different in the two approaches.  There is 
an uu? dependence in the classical case and an tu^/^ dependence in the quantum 
case.  The classical approach leads to a r*** fall-off in X3 whereas in the 
quantum case we have treated all three beams as plane waves neglecting both 
diffraction and dissipation. 

An interesting, and fundamental, difference between the classical 
and quantum mechanical approaches is exhibited by the amplitude expressions 
for Case II. When the two primary waves are identical, classical physics re- 
quires the amplitude expressions to be independent of the labeling of the two 
waves.  The classical and quantum mechanical amplitude expressions for Case I 
do indeed have this labeling independence.  However, in Case II the quantum 
mechanical amplitude expression does not have this independence whereas the 
classical amplitude expression does.  The reason for this is quite simple. 
Classically both primary waves participate equally in the interaction.  Quan- 
tum mechanically one phonon splits whereas the other phonon merely acts as an 
"enhancer" to the interaction and is not physically transformed.  Therefore, 
in difference frequency cases, the two primary phonons are not identical and 
can be differentiated between.» Mathematically this difference appears as a 
(N2+1) term in the transition probability where Ng  is the number of "enhanc- 
ing" phonons.  Hence as Ng becomes very large with respect to unity the 
classical result of labeling independence is approached. 

* This difference makes a parametric amplifier theoretically feasible. 

7 



Ill  EXPERIMENTAL RESULTS RELATED TO 
SCATTERED WAVE INTENSITY 

A. General 

During the past year, we have performed a relatively large number 
of experiments related to the interaction phenomena. Most of the successful 
experiments have been confined to specimens of fused silica, polycrystalline 
aluminum, and polycrystalline magnesium. Unsuccessful experiments have been 
attempted in polystyrene and polycrystalline iron. The two latter materials 
exhibted greater attenuation than the other three and it is probably this 
property that most strongly influences our ability to pick the scattered-wave 
signals out of the noise. 

The accurate measurement of absolute intensity of megacycle ultra- 
sonic waves in solid materials 1s a fairly difficult problem; however, a 
number of indirect techniques have been developed for this purpose. Fleury 
and Aleral/ have conducted a comparative study of several such techniques 
and found them to be in reasonably good agreement. Several of their tech- 
niques are not adaptable to the pulsed conditions and specimen geometries re- 
quired in interaction experiments. Thus far, ve have restricted our attempts 
to measure primary and scattered wave intensities to simple calculations 
based on the equivalent circuit theory of piezoelectric transducers. Fluery 
and Alers found that such calculated values deviated from more consistent 
values, obtained using other techniques, by several hundred per cent. The 
largest source of error in the calculated values is probably the bond between 
the transducer and the test specimen. The quality and type of bond strongly 
affect the mechanical power delivered to the specimen. 

We have measured the intensities for many different interaction 
cases. Repetition of the same experiment with different transducer bonds 
indicates that reproducibility is pretty good if care is taken during the 
bonding procedure. In a fairly typical case, two transverse beams of approx- 
imately 1 w/cin^ produced a sum-frequency longitudinal beam with an intensity 
of about 10"^ w/cm2.  It would be desirable to conipare the "experimental" in- 
tensity of the generated beam with the intensity that could be calculated 
from the theories of interaction. The latter calculation of course requires 
knowledge of the third-order elastic constants (see expressions in Appendix 
III) but unfortunately these constants are not known for the materials with 
which we have been working. 



Many of the interaction experiments discussed in this report have 
teen performed with several thousand volts applied to the primary transducers. 
However, we have also performed tests to see just how low the voltage across 
the primary transducers could be reduced and still produce a detectable 
scattered wave. One such experiment was performed in fused silica by inter- 
secting two 15 Mc shear waves to produce a 30 Mc longitudinal wave.  The 
primary beams were produced by driving 5 Mc transducers at their third har- 
monic . The scattered wave signal was still easily detectable with 70 v. 
peak-to-peak applied to the primary transducers. These results indicate 
that moderate voltages applied to primary transducers can produce detectable 
interaction effects. The "threshold" primry voltage would have been reduced 
further if 15 Mc fundamental crystals we-;-a used instead of the 5 Mc trans- 
ducers. The 70 v. signal mentioned above is not an uncommon voltage for 
delay line inputs. We would therefore expect that spurious signals could 
very easily arise in delay lines where "information" intersects other- "in- 
formation" at the angle of resonance. 

B. Relative Comparison of Primary and Scattered Beam Amplitudes 

The expressions that appear in Appendix III all indicate that the 
scattered wave amplitude should be proportional to the product of the pri- 
mary beam amplitudes. An experimental confirmation of this relationship has 
been obtained in several different experiments . One such experiment was 
performed using the interaction, 

TCu^) + tim^)   >   1(2(1)!)  • 

In this case both primary transducers were driven with the same generator. 
We would therefore expect the scattered wave amplitude to be proportional 
to the square of the primary wave amplitudes.  It can be shown from piezo- 
electric equivalent circuit theory that when half-wave transducers are driven 
at resonance the displacement amplitude and voltage are linearly related. 
Under these circumstances, the voltage generated by the receiving (generated 
wave) transducer should be proportional to the square of the voltage applied 
to the two primary transducers. Figure 2 shows how closely this relationship 
was followed. 

C. Dependence on Frequency of Primary Waves 

It was mentioned earlier that a discrepancy exists between the 
classical and quantum amplitude expressions relative to the frequency 
dependence . 



(V ARBITRARY   UNITS 

Figure 2 - Curve Showing Linear Relationship Between (Vp)2 

and Vs where Vp is the Voltage Applied 
to the Two Primary Transducers and 
Vs is the Transducer Voltage 
Produced by the Scattered Wave 
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The displacement amplitude of the generated beam is proportional to (u£ in 
the classical theory but it is proportional to afi'  in our quantum mechan- 
ical calculations (see Appendix III). It appears that the lower power on 
{»1 in the quantum mechanical treatment comes directly from our interpreta- 
tion of the transition probability as developed in Appendix II. 

Since much of the future work in phonon-phonon interactions will 
be performed at frequencies much higher than those used in this program^ it 
is very important to know the exact relationship between X_  and tu-, • We 
have attempted to solve this question by comparison with experimental results 
but the scatter in our data was great enough to prevent any definite conclu- 
sions . A reduction in data scatter should be attainable with greater care 
in the bonding of transducers.  In addition, study of a wider range of fre- 
quencies (over an order of magnitude) with suitable corrections for attenua- 
tion should reveal the true nature of the frequency dependence. 

D. Detection of Zero-Intensity Points 

It is well illustrated in Appendix III that the interaction theo- 
retically becomes nil for certain frequency and mode combinations. We have 
experimentally verified the existence of these "zero points" and obtained 
excellent agreement with theory. The case that we explored involved the 
interaction of longitudinal and transverse waves to produce a sum frequency 
longitudinal beam (Case III). The specimen was a 6 in. diameter disk of 
magnosium with many flats machined along the circumference to facilitate 
attainment of resonant conditions for various primary frequency ratios. 

Figure 3 illustrates the striking agreement between the experimen- 
tal and theoretical results after a "normalization" factor is applied to the 
theoretical curve. As the third-order elastic constants are not known for 
magnesium, it is not yet possible to calculate the absolute values for quan- 
titative comparison with the experimental results. However, as mentioned 
earlier. Case III is one of the cases where the general shape of the curve 
is not influenced by the third-order elastic constants. We can therefore 
compare the curve shapes without knowledge of the third-order constants. 

The experimental data points follow the theoretical curve very 
closely and confirm the position of the theoretical "zero point." The zero 
point occurred when the two longitudinal beams (one primary beam and the 
generated beam) were perpendicular. This condition is, of course, also in 
agreement with theory. 

11 



FREQUENCY    RATIO     (a=|ijf) 
I 

Figure 3 - Displacement Amplitudes for Generated Beams in Case III 
Interaction Showing Experimental Data (Open Circles) 

and Normalized Theoretical Curve (Solid Line) 
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Dependence on Plastic Deformation 

In the theoretical treatment of beam interaction the material is 
considered to be perfectly elastic although nonlinear effects are of course 
included. The possibility that dislocations also contribute to interaction 
effects has been considered and preliminary experiments performed to detect 
such effects. Figure 4 illustrates one experimental setup. Two 5 Mc shear 
waves were crossed at the center of a 6 in. diameter disk of 1100 aluminum 
to produce a 10 Mc longitudinal wave that propagates toward the transducer at 
position B. Straight across the disk from position B another 10 Mc x-cut 
transducer was pulsed at 10 Mc simultaneous with the pulsing of the two 5 Mc 
shear wave transducers• The longitudinal wave packet travels much faster than 
the two shear waves and it therefore passed through the "interaction zone" 
prior to arrival of the shear wave packets. Two 10 Mc signals were thus de- 
tected by the transducer at position B. The first signal originated at 
transducer A and the second signal was produced by interaction of the two 
shear packets. Both signals were displayed on the same oscilloscope trace 
and initially adjusted for equal amplitude . 

Changes in dislocation density, loop length, etc., were produced by 
applying compressive loads to a small area at the disk center, i.e., at the 
interaction zone . The deformation area was far enough removed from the disk 
circumference that surface deformation effects such as loss of parallelism 
and bond cracking were not noticeable. The first signal (from the opposite 
10 Mc transducer) was used primarily as an indication of attenuation effects 
produced by the dislocation changes in the interaction zone. This signal 
remained essentially constant whereas the signal from the interaction changed 
appreciably as the load was applied and removed. The signal from the inter- 
action also varied with time immediately following a variation in load. 
These results at first appeared to indicate a strong relationship between 
interaction intensity and dislocation content. However, subsequent observa- 
tion of the first echo from one of the 5 Mc transducers showed that this sig- 
nal also varied considerably as the load was changed. This variation may be 
due to dislocation changes or it might be caused by rotation of the polariza- 
tion direction in the stress field around the compressed volume . Additional 
experiments will be necessary to completely pin down the source of the ob- 
served changes. 

13 
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IV. CRITICALITY OF ANGULAR RELATIONSHIPS DURING INTERACTION 

A. Apparatus 

Some preliminary results on the angular spread of the scattered 
wave were included in a previous report^./ but more recent experiments have 
improved our understanding of all of the angulation and collimation charac- 
teristics of the interaction phenomena. The investigation has been greatly 
facilitated through the use of the apparatus shown in Figure 5. This "ultra- 
sonic goniometer" was designed specifically for interaction experiments in 
which one or more of the ultrasonic beams can be coupled into (or out of) 
the specimen through a water bath. A 2-l/2 in. diameter cylindrical shaft 
is mounted perpendicular to a heavy baseplate and the center of this shaft 
is an axis of rotation for two immersion type transducers and the disk- 
shaped test specimen. Two transducer holders are attached to heavy rings 
that fit concentrically about the center shaft. The ring-shaft fit is very 
close and yet rotation of the rings about the shaft is smooth and easy. The 
transducer holders are equipped with alignment screws that work against pres- 
sure provided by heavy springs. The disk-shaped specimen is waxed onto a 
cap-like piece that fits snugly over the top of the shaft and also rotates 
about the shaft axis. 

Figur« 6 is a schematic presentation that illustrates the versatil- 
ity of the above equipment. The specimen is shown as a 6 in. diameter disk 
with a "flat" machined at position A.  Shear-mode transducers can be bonded 
directly to this flat using either solid couplants such as Salol or viscous 
liquids such as Nonaq. The other two transducers (B and C) are immersion- 
type units. The central mounting shaft acts as ar axis for the independent 
rotation of the two immersion type transducers as well as the disk-shaped 
specimen. The apparatus is partially submerged in water to provide suitable 
coupling between the specimen and the immersion transducers. The arrows in 
Figure 1 indicate the propagation vectors for a typical experiment,, however, 
each transducer is interchangeable in its role as a transmitter or receiver. 
The angular positions of the specimen and the two immersion transducers are 
reproducible to better than one degree. 

B.  Angular Spread of Scattered Wave 

The first experiments performed on the above apparatus only in- 
volved measurements on the "spread" or collimation characteristics of the 
scattered wave. Two flats were machined on the disk for this experiment so 
two shear waves could be intersected at the resonant angle to produce a 
longitudinal wave. 
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Ficure 5 - Apparatus for Performing Interaction Experiments with 
Immersion Transducers 
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Figure 6 - Schematic Presentation of Variable Angulation Apparatus 
for Studying Ultrasonic Beam Interactions 
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The first case studied was the following interaction: 

T(5) + T(5)  *   L(10) 

Interaction occurred at the center of a 6 in. diameter magnesium disk. The 
scattered wave then traveled through 3 in. of magnesium, was coupled into 
water at the disk circumference, and was subsequently detected with an immer- 
sion transducer. The signal was then observed as the transducer was rotated 
about an axis which passed through the Interaction zone. Maximum signal 
occurred at the theoretically predicted angle and the angular width of the 
beam at "half-peak amplitude" was approximately 6°. These results were ob- 
tained when the active area of the primary beam transducers was circular with 
a diameter of l/2 in. 

When the two 5 Mc transducers were driven at their third harmonic 
(15 Mc)^ a scattered wave of 30 Mc was detected but the angular width at "half- 
peak amplitude" was then only about 3°. This apparent increase in beam colli- 
mation is probably due to several factors including (l) better collimation 
and smaller relative bandwidth of the primary oeams at the higher frequency, 
and (2) increase in ratio of interaction zone dimension to wavelength of the 
scattered wave. 

If we consider the interaction region to behave somewhat like a 
piston source, one might reasonably expect side lobes to be associated with 
the scattered waves. A search was made for such side lobes by looking for 
slight increases in the scattered signal amplitude as the transducer was 
scanned along the "tail" of the gaussian-like response curve. Side lobes 
were not observed when either the full face of the transducer was used or 
when an absorbing mask with a 2 mm. wide slit was introduced between the 
specimen and the transducer. The slit was used in an attempt to increase 
resolution and thus the sensitivity for detecting slight variations in beam 
intensity. The actual capability of our equipment to detect side lobes from 
a piston source was subsequently checked by cutting one of our disk-shaped 
specimens along a diametral line and mounting a 10 Mc quartz transducer 
(dia. = 1.1 cm.) at the center of one half. The geometry of our arrangement 
was thus changed very little except that the transducer, rather than interac- 
tion, produced the 10 Mc longitudinal wave that was detected with the immer- 
sion transducer. Side lobes were easily detected in this case. The total 
angular width of the main lobe was measured at approximately 7°. This is in 
reasonable agreement with the theoretical prediction of about 8°. 
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It must be admitted that the curved nature of the solid-liquid 
boundary influences the character of the emerging wave. Nevertheless, the 
results obtained with the half disk suggest the influence is slight. The 
apparent lack of side lobes associated with the scattered beam deserves ad- 
ditional study. 

C. Angulation of All Three Beams 

A series of three interaction cases were investigated for the 
angular relationship between all three beams. The cases studied were: 

L(10) + T(5)  > L(15) 

L(l5) + T(5)  *■ li(lO) 

L(l5) + L(10)  > T(5) 

All three of the above cases can, of course, be studied with the same three 
transducers, i.e., two immersion type units having resonant frequencies of 
10 Mc and 15 Mc plus one 5 Mc shear-mode crystal blank. 

The fact that "scattered" waves were easily detectable in all 
three of the above mentioned cases is important to the ultimate application 
of the interaction phenomenon to nondestructive testing.  It illustrates 
that interaction effects can be observed even when two of the three beams 
involved are coupled into (or out of) the specimen through a liquid medium. 
To make conditions even more; difficult, the liquid-solid boundary was curved. 
The results thus suggest that interaction may be produced in specimens of 
rather complex shape using immersion techniques. Even the shear-wave that is 
always present could possibly be produced (or detected) by using a third 
longitudinal beam in the liquid medium and planning for the refractive mode 
conversion that occurs at the boundary. 

The preceding section gave some data on the angular spread of the 
"scattered" beam. Experiments have also been performed to explore the 
criticality of the resonant angle, 0 , between the two primary beams. Reso- 
nant conditions were first established in each case and then the angle be- 
tween the two primary beams was varied on either side of the optimum angle 
until the amplitude of the scattered signal dropped to one-half the amplitude 
under resonant conditions. The total angular change, A^ , to go from one- 
half peak amplitude on one side of resonance to one-half peak amplitude on 

It can be argued that 
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when ^  is varied from the resonant angle, the position of the scattered 
wave detector should be altered also since the direction of the scattered 
wave is defined as (k^ ± kg) where k^ and kg are the propagation vectors 
of the two primary waves. Attempts were made to observe this effect by- 
rotating the detector slightly after ^ had been varied from the resonance 
angle.  However, we were unable to observe any appreciable recovery in the 
amplitude of the scattered wave. In interpreting the above results, the 
frequency bandwidth, as well as the spread and dimensions of the two primary 
beams must be kept in mind. 

The amplitude of the scattered wave was also studied as a function 
of frequency of one primary beam. The ideal way to perform this experiment 
would be to attain resonance conditions and then vary the frequency of one 
primary beam without altering the intensity. Unfortunately, this is very 
difficult to do with the "resonant" transducers one usually uses in ultra- 
sonic work. Varying the generator frequency away from the natural frequency 
of the transducer produces rather severe changes in the intensity of the 
ultrasonic pulse. Some improvement in the "flatness" of the transducer re- 
sponse was achieved by driving it "off-resonance" to start with. Under these 
conditions the angulation between all transducers was set up for maximum 
amplitude of the scattered signal.  In one such case, we drove the 15 Mc 
transducer at 12.5 Mc. The amplitude of the scattered wave was then halved 
by decreasing the primary frequency to 12.0 Mc . However, an incr-ease in 
frequency to 15.3 Mc was necessary to get similar results. Thus, we see 
that the crystal resonance still controlled the experimental results. 

Even though crystal resonances made it very difficult to vary fre- 
quency and maintain intensity, we were able to observe the effect of fre- 
quency changes on the required beam angulation for maximum interaction. For 
example, when a 15 Mc longitudinal beam is interacted with a 5 Mc transverse 
beam in magnesium, the calculated value of 0 is 40.8°.  Our experimental 
setup verified this condition.  If the 15 Mc is changed to 12 Mc, the theo- 
retical value of 0 decreases to 35.7". After experimentally observing 
interaction for 

L(15) + T(5) L(10) 

the 15 Mc transducer was driven at 12 Mc. The scattered signal had to be 
amplified more, of course, to remain detectable at this nonresonant condi- 
tion. The angle 0 was next altered to maximize the scattered signal and 
then the position of the 10 Mc transducer was varied in the same manner. 
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After the first try at maximization, very little change in angles was ob- 
served even though 4 should theoretically have changed about 5° for the 
interaction 

L(12) + T(5)  *  L(7) 

However, we subsequently noticed that, if the 15 Mc transducer and the 10 Mc 
transducer were alternately positioned for maximum scattered amplitude, the 
theoretical values were finally obtained after about 10 alterations. Attempts 
to further maximize the scattered wave amplitude did not produce any addi- 
tional angular changes . 

V. USE OF INTERACTION TECHNIQUES IN THE STUOT 
OF ELASTIC ANIS0TR0PY 

A very brief outline of a potential technique for three-dimensional 
stress analysis using the interaction phenomenon was presented in an earlier 
report.3/ More recently, we have illustrated the feasibility of this tech- 
nique under very special circumstances. The large block of magnesium shown 
in Figure 7 was first examined for elastic anisotropy in the following manne . 
Two 6 Mc shear crystals were positioned opposite each other to make a trans- 
mitter-receiver combination through the 4 in. thickness (z-direction) of the 
magnesium block. When the transmitter crystal was oriented so that the shear 
wave was polarized along the x-axis, the receiver signal amplitude was ob- 
served as the receiver crystal was rotated. The results indicated that the 
emergent beam was still plane-polarized along the x-axis. Similarly, when 
the incident beam was polarized along the y-axis, the emergent beam was alao 
found to be polarized along the y-axis. The lack of apparent rotation sug- 
gested that the block was either (l) elastically Isotropie or (2) the x- and 
y-axes were axes of anisotropy. The latter situation was later confirmed by 
polarizing the incident beam at 45° between the x-axis and y-axis. The emer- 
gent beam was then found to be plane-polarized but the plane of polarization 
had rotated 90° from that of the incident beam.  The interaction technique 
illustrated in Figure 7 was then used to further examine the elastic anisotropy 
at various points along the thickness (z-axis). 

We wished to produce a transverse wave at the intersection point, 
so the interaction 

LCu^) + Ldug)  *• Tdi»! - («2) 
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Figure 7 - Magnesium Block with Transducers Mounted 
for Interaction Experiment 
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was chosen. The transverse wave produced by such an interaction is initially 
polarized in a plane generated by the propagation vectors of the two primary 
beams.  In the preceding paragraph we saw that, in order to observe shear- 
wave rotation for z-axls propagation, the shear wave should be polarized at 
45° to the x- and y-axes. A comer was thus cut off of the block at 45° 
(see Figure 7) to permit bonding of one primary transducer.  Figure 8 is a 
top view and section of the block in which one can easily see the angular re- 
lationship between the three beams. The specific interaction, 

L(l4) + L(8)  >   T(6) 

was selected for this particular experiment because the 8 Mc longitudinal 
beam and the 6 Mc shear beam turn out to be perpendicular to each other as 
shown in the figure. The 6 Mc beam thus travels perpendicular to the major 
faces of the block. The wedge, used to couple the 14 Mc beam into the block, 
was also made of magnesium in order to minimize impedance mismatch and re- 
fraction at the wedge-block boundary.  The 14 Mc x-cut transducer was bonded 
to the wedge with Salol but the 8 and 6 Mc crystals and the magnesium wedge 
were all coupled to the block with castor oil. This facilitated translation 
of both the wedge (14 Mc beam) and the 8 Mc crystal, and rotation of the 
6 Mc receiver crystal. 

The two primary beams were varied in position such that intersec- 
tion always occurred along a single line running through the block thickness 
(line ZZ, in Figure 8). When the intersection point was within l/4 in. of the 
top surface we obtained results almost identical to those observed when two 
6 Mc crystals were used as a transmitter-receiver pair, i.e., a 90° rotation 
of the plane of polarization occurred as the shear wave traveled through the 
thickness of the block. As the intersection point was moved down along ZZ 
in l/2 in. intervals, the shear wave arriving at the receiving crystal gen- 
erally had an elliptical character to the particle motion. The ellipticity 
was roughly determined by using the AC-cut quartz crystal as an analyzer, 
and comparing the signal amplitude produced when the sensitive axis of the 
crystal was alternately rotated along the major and minor axes of the 
ellipse. For propagation through the entire thickness we essentially ob- 
served a line ellipse with a 90° rotation of the plane of polarization. 
Table 3 contains the relative magnitudes 'of the maximum and minimum signal 
observed as the receiver crystal was rotated. The elastic anisotropy is 
seen to be relatively uniform through the thickness of the block. Note that 
when intersection occurred midway through the block, the emergent shear wave 
was almost circularly polarized. The results also show that in our original 
experiment, where two 6 Mc crystals were used for propagation through the 
entire thickness, the 90° rotation of the plane of polarization corresponds 
to a phase retardation between the component waves of 180° rather than some 
odd-integer multiple of 180° . 
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(a) TOP  VIEW 

WEDGE 

AC-CUT QUARTZ 
"CRYSTAL 

(b) SECT ION   A-A 
Figure 8 - Top View of Block and  Section Through Plane of Interaction 

Showing Single Wedge Technique 
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TABLE 3 

Distance of Intersec- 
tion Point From Top of 

Block in Inches   

Relative Amplitude 
When Sensitive Axis 

of Receiver was Parallel 
to Plane of Interaction 

0.5 *** 1 
1.0 3 
1.5 6 
2.0 9 
2.5 10 
3.0 10 
3.5 10 

Relative Amplitude 
When Sensitive Axis 

of Receiver was Perpendicu- 
lar to Plane of Interaction 

10 
10 
10 
10 
5 
3 

< 1 

Although there is much roan for improvement in the foregoing exper- 
iment, it illustrates the feasibility of using interaction techniques to 
study elastic anisotropy on a three-dimensional basis. Residual stresses 
can, of course, produce or contribute to such anisotropies. 

The interaction case used in the previous experiment is somewhat 
limited because the plane of interaction is not readily variable . A much 
more versatile arrangement is illustrated in Figure 9. The use of two wedges 
will facilitate continuous rotation of the plane of interaction (and thus 
the initial polarization of the generated shear wave). The principal axes 
of anisotropy can thus be determined and a suitable calibration would permit 
determination of the degree of anisotropy. 
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(a)  TOP  VIEW 

(b)   SECTION   E-E 
Figure 9 - Top Viev of Block With Section Throußh Plane of Interaction 

Showing Double Wedge Technique 
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APPENDIX I 

GLOSSARY OF TERMS 
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All variables with a numerical subscript have the meaning given by 
the variable symbol but pertain only to the waves designated by the subscript 
number. The glossary is not complete but contains terms which may be re- 
ferred to frequently. 

A,B,C - third-order elastic constants 

a - ratio of primary frequencies 

c+ - velocity of shear wave 
Cf -  velocity of longitudinal wave 

ct 
ratio of velocities — 

Ti 

K 
k 

Planck's constant divided by 2TT 
bulk modulus 
propagation vector 

/2 - cross-sectional area of square beam 
L(u)) - longitudinal wave of frequency w 

m - mass of a volume of interaction 
N - number of interacting phonons 
r - distance between point of intersection and point of 

observation 
R3 _ "volume" occupied by one phonon 

T((ju) - transverse wave of frequency w 
V - volume of intersection 
X - displacement amplitude 
01 - angular frequency 
D - density 
u - shear modulus 
0 - angle between primary waves at resonance 
a - angle between first wave and scattered wave 
6 - angle between polarization direction and plane of inter- 

action 
6 - intermediate variable defined in Appendix III 
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APPENDIX II 

RELATIONSHIP BETWEEN TRANSITION PROBABILITY AND WAVE AMPLITUDE 

31 



In this appendix an approximate relationship between the transition 
probability and the classical amplitude of the scattered wave is obtained. 
The derivation is admittedly rough but a more refined calculation does not 
seem to be warranted until more accurate information is available on the 
third-order elastic constants and the measurable nonlinear effects. 

Let us envision a classical elastic wave packet of square cross 
section, tr , as oeing an ideally dense homogeneous beam of phonons. The 
intensity of the beam is given as 

II = Pihujici 

where "h is Planck's constant divided by 2TT , oj is the phonon density 
and C]_ is the speed of beam 1. The well known classical expression for 
the intensity is given by 

where  o is the density of the material and X^ is the classical displace- 
ment amplitude. Thus 

OU)-. 
0i = iT x?    • 

Each phonon can be considered as occupying a cube of space. 

Ft? =    . Now consider one such space cube located in the volume of inter- 
1  Dl 

? 
action but having a fixed position.  In dt seconds, DpCoBidt phonons of 
the second beam and OiC-iR-idt phonons of the first beam transverse this 

D2c2 
space cube.  Consequently, as dt—> 0 ,       phonons of the second beam 

interact with each phonon of the first beam. In other words, the phonon 
numbers for the initial state are given by 

o2c2 
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Assuming large beam lengths, so that end effects can be disregarded, 
the total number of phonons in the scattered beam, n, , is given by 

n3 = OJVWJLT , 

where V is the volume of interaction, T is the total time of interaction 
between the two beams, and W^ is the transition probability per unit time 
for one phonon of the first beam undergoing a transition to a higher or 
lower energy state. However, n-^ is also given by 

n3 _ 03L3A3   l 

where Lrj  is the length of the scattered beam and A3 is its cross-sec- 
tional area. Of course. 

% = C3T   • 

Combining the last three equations, we obtain 

Y? Plwl 
03 = V A3 ^  es  • 

Expressed in terms of amplitudes this equation becomes 

'v_\ «3*1^2 
A3 ' U>5C3  1 

Assuraing V is the geometrical volume of interaction the value 

V 
of V and r- can be determined frcm the interaction geometry as diagrammed A3 

in Figure 10. 
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Figure 10 - Geometry of Interaction - In Sum Frequency Cases the 
Upper Beam No. 3 is Emitted While in Difference 
Frequency Cases the Lower Beam No. 3 is Emitted. 

Omitting the geometrical details, we obtain 

V = /^ esc cp , 

A3 = cos a sin cp + sin a (l - cos c?) When ^ = '"I + ^ 

or    — = when A3 - cos a sin c? + sin a (l + cos co) wnen «* " "1 " «IB 
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The calculation of V is included since the classical amplitude expressions 
contain this factor..5/ These very rough calculations are not valid for 
cp = 0", 180° . 

The transition probability per unit time is all that remains to 
be evaluated. The conventional equation for this evaluation is§./ 

Wl=^ 

Et 

2TT Sin  * 

TTE 
< i ^ert f > 

where t is the time duration of the interaction. The 
pertubing Hamiltonian and < i 

\ ert 
the 

H    I f > is the matrix"element between 
pert ' 

the initial and final states. The matrix elements for all interaction cases 
can be determined in a straightforward, if laborious, manner.* For large 
tu>5 

Et 
ft 

TTE ^ ii:6(u* = i ±lü2) 

Consequently we have 

AA    2TTOI      ^ 
S  - W  fi2uf c3       T- 

a2cg | 
< 1  '   °lcl  *   0 I HPert f > 

This is the equation used to determine the quantum mechanical results of 
this report. 

Caution should be exercised in this evaluation. Many of the perturbing 
Hamiltonians published in the literature are incorrect. 
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APPENDIX III 

SCATTERED WAVE AMPLITUDES PREDICTED BY THE CLASSICAL 
AMD QUANTUM MECHANICAL THEORIES 
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All of the scattered wave amplitudes* predicted by the classical 

and quantum theories are listed in this appendix. The expressions include 
the approximate value of the interaction volume as calculated in Appendix II. 
In addition to the amplitude expressions the equations for cos cp and tan a 
are listed under each case . As previously stated, cp is the angle between 
the propagation direction of the No. 1 wave and the propagation direction of 
the No. 2 wave. The angle a is the angle between the propagation direction 
of the No. 1 wave and that of the scattered, or No. 3, wave. Both angles 
are defined such that they lie between 0° and 180°. 

All of the amplitude expressions were programmed for the IBM 1620 
computer and calculations were made foi polystyrene, pyrex, copper, iron, and 

REX 535 nickel-steel. These five materials are the only ones for which the 
third-order elastic constants are known.lx§/ On the basis of physical prop- 
erties, these five materials could be grouped into two classes:  (l) poly- 
styrene and pyrexj and (2) copper, iron, and nickel-steel. An interesting 
result of the computer calculations is that, on the basis of nonlinear ef- 
fects, the following two classes seem to be warranted:  (l) polystyrene and 
iron; and (2) pyrex, copper, and nickel-steel. 

As examples of the predicted effects, graphs of the computer re- 
sults for pyrex and iron are given in each case directly opposite the mathe- 
matical expressions. The values predicted by the quantum theory are always 
about two orders of magnitude lower than those predicted by the classical 
theory. The values for a = 1 (cp = 0) in Case II are omitted since the ap- 
proximate values of the interaction volume are not valid at this point. The 
value of a is also limited to those which give a real value for <p   .  In 
reading the graphs it is important to remember that absorption has been neg- 
lected. 

These graphs were obtained by assuming the following typical exper- 
imental conditions. Both input transducers are driven with a voltage of 
4,000 v. The frequency of the as-,     transducer is set at 10 mc . and the fre- 
quency of the other transducer is varied to give the stated value of a . 
The following numerical data, in c.g.s. units, were also used: 

♦ Absolute values only. 
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I = 0.908 

Pyrex:  0 =2.32 

X ■ 1.353 x ID11 

A = 42 x 1011 

Iron:  o = 7.87 

X = 11 x ion 

A ■ 110 x lOH 

r = 1 

H = 2.75 x 1011 

K = 3.186 x 1011 

B = -11.8 x lOH 

p, = 8.2 x lO11 

K = 16.47 x lOH 

B = -158 x 1011 

The value of r does not satisfy the validity conditions^/ for the classical 
equations but it does permit a more valid comparison between the two theoret- 
ical calculations i 
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Case IA 

Two transverse waves interacting to produce a scattered longitu- 
dinal wave  of  sum frequency. 

TUX) rt^^- ^ = ep = - cp ^4 1 2      2 

T((üg) 

cos cp =  c2 +   [(c2  - l)(a2 + l)/2a] 

a sin to tan a 
1 + a cos cp 

61 =  U-0 "•" K "   3 )c2(l + a)2  cos W +   (2M. ♦ A/2)[a +  (l + a2)  cos cp + a cos2 cp]? 

Classical Result 

X3  = X1X261m\r'fx esc cp/errrpc^c^d+a) 

Quantum Mechanical Result 

X^  = X^d^^U/pc^il+afj^c^l esc  cp/8(l+a) 
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S 

10.0 

CASE   IA 
^"""-■"■■" ClassiceQ. Theory 

— ""^~"" Quantum Theory (x 10^) 

7.5 

5.0 

2.5 

0.25 0-6 0.8 
Frequency Ratio (lug/u)^) 

Pyrex Input: X^  = 51.6 A Iron Input: Xi  = 15.5 X 
Xg = 51.6 Ä Xg = 15.5 X 

1.0 
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Case IB 

Two transverse waves interacting to produce a scattered longitu- 
dinal wave  of  sum frequency. 

TCCUX) r-* <-12L- 9    =9-o 
«pV* 

T(u)2) 

cos cp = c2 +  [(c2  - i)(a2 + l)/2a] 

tan a a sm cp 
1 + a cos cp 

62 =   [(2B +K + A + ■^) cos2 cp -  (B + n + |)] 

Classical Result 

Xj  =  X^gö^a   (1+a)   /3  esc   cp   /sirrpc2^ 

Quantum Mechanical Result 

Xj  = X1X262tu1     (a/oc^Cj,)  ^TTC;jt esc  cp/8(l+a) 
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1J..5 

CASE   IB 
10.0 

* 

3 

+> c 

s 

i I i 
r-t 
P. 

7.5 

5.0 

2.5 " 

Classical Theory- 
Quantum Theory (x 102) 

0.25 0.4 0.6 0.8 

Frequency Ratio (oue/iui) 

1.0 

Pyrex Input: X^ = 51.6 X 
Xg = 51.5 A 

Iron Input: Xi  = 15.5 % 
X2 = 15.5 X 
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Case II 

Two longitudinal waves interacting to produce a scattered trans- 
verse wave of difference frequency. 

«•iJ rt Q  % - o 
V \ 
L(u)2)     TCU)! - 102) 

cos cp = l/c2 + [(c2 - l)(a2 + l)/2ac2l 

a sin cp 
tan a _ 

1 - a cos co 

6, = (2B + A + K + r^) cos cp 

Classical Result 

/ 
3^ = X1X263(u^a(l+a)i-y'8TTroctc^ 

Quanturn Mechanical Result 

X3 ■ X1X263tin''
I/8o(l-a)c* I ^8TT(a+Xi/X2)a(l+a)c ^ sin ep 
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1J..5 

CASE 
10.0 

to 
X 

i 

a 

J A H n 

m 

i 

l 

Classical Theory 

Quantum Theory (x 102) 

7.5 

5.0 

2.5 

0.25 0.6 0.8 

Frequency Ratio (fug/oui) 

1.0 

Pyrex Input: X^ = 20.5 X 
X2 = 20.5 X 

Iron Input:  X^ = 5.77 X 
Xg = 5.77 X 
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Case III 

A longitudinal wave interacting with a transverse wave to produce 
a scattered longitudinal wave of sum frequency. 

, L(u)^ + oug) 

to 

«4 

Classical Result 

L(a)l)  T*     JL-  92  = 0 
cp y 

TCcug) 

cos cp =  c  +     a(c2  -  l)/2cl 

tan ■ =       a  sin B 
c  + a cos qp 

(2B + A  + K + l£)   Fa  +  c   (2  + 2a + a2)  cos  cp] 

Quantum Mechanical Result 

X3  = XlX264!üi/'2[a/0ctc/(1+a^2l J^i^  sin «p/8(a","c) 
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22.0 

20.0 

15.0 

n 
x 

3  I 
a  -P 
4)    to 

I 
10.0 

b.Q 

CASE m 
Classical Theory 

Quantum Theory (x 102) 

0 1.0 2.0 3.C 

Frequency Ratio (lug/ujx) 

Pyrex Input: X^ = 20.5 I. 
X2 = 51.6 X 

Iron Input:  X^ = 5.77 A 
X2 = 15.5 X 
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Case IV 

A longitudinal wave interacting with a transverse wave to produce 
a scattered longitudinal wave of difference frequency. 

LCU)!) 

A 
9p = 0 

T(u)2)     LUi-u^) 

;os cp =  c + I&{1 -  c2)/2c] 

tan a a  sin 9 
c  - a cos cp 

65 =*  (2B + A + K + -^i)   [-a + c   (2 2a + a' ) cos cpl 

Classical Result 

3  3 /    2 3 
Xj = X1X265u)-[a / / 8nrpctc (l-a) 

Quantum Mechanical Result 

h  " 
3 /p /   p   ? p      » ^1 / 

XlX265tul    /pctCi^1'a^      f1^**  + "ä^0!* sin cp/8(a+<:) 
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2.a 

2.0 

CASE   15L 
Classical Theory 

Quantum Theory (x 102) 

1.5 

c> 
a 
p 

■p a 

I 

m 

-p m 

1.0 

0.5 

tyrex  Input: X^ 
X2 

0.6 0.75 

Frequency Ratio {UQ/W^) 

= 20.5 X Iron Input:  /]_ = 5.77 X 
31.6 X Xg = 15.5 X 
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Case VA 

A longitudinal wave interacting with a transverse wave to produce 
a scattered transverse wave of difference frequency. 

L((jui) P-* -,  92 = 93 = n 

7(102) T(üUI - lug) 

cos tp = l/c  +  [(c2 - l)/2ac] 

 a  sin cp tan a =   — c  - a cos cp 

65 = [(B + K - , )(c cos cp - a) + (2^, + p)(c - a cos cp) cos cpj 

Classical Result 

3  3      /    4 «3 = X-j^XgogU)^ £ esc cp / enrpc^^c^ 

/ 

Quantum Mechanical Result 

X3 -  Ix^ögu)^/2 /pcc^l-ajl^nCac  + TZht*- esc cp /saCa+c) 
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+> ■ 
to 

I   .§ 

22.0 

20.0 

1                                            1                                             1 

CASE   3Z:A 
- 

— — — —   Quantum Theory  (x 102) 

1 

15.0 

1         /'"~\ 
10.0 

I 
5.0 

1    xl                                               /                           ^.^      I 
/• 

\L^— .—^ >^ 
0.1 0.3 0.5 0.7 

Frequency Ratio (cug/tui) 

0.85 

Pyrex Input: X^ =  20.5 % 
XQ ■■--  51.6 X 

Iron Input:  X]_ = 5.77 % 
Xg = 15.5 %. 



Case VB 

A longitudinal wave interacting with a transverse wave to produce 
a scattered transverse wave of difference frequency- 

Ldu-, ) 

Tdug)        T(mi -  (1)2) 

cos cp ■ l/c + [(c2 - l)/2ac] 

92 = 93 = 0 

tan cp 
a sin cp 

c - a cos f 

67 = [(2B + K + A + ^i)(c COG >j) - a)2 - (B + M, + -)(l - a)2] 

Classical Result 

3  3 
'S  ~    X^Xpö^ou^a t    esc «p Snrpc c (l-a) 

Quantum Mechanical Result 

r / / ] xi / 
Xj   -    XL)!267uü?/2/pc3cA(l-a)^n(ac + jSfciti esc cp/eCa+c) 



5.5 
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N 

4) 
-d 
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-P +J 
■rl •H 
1-1 Ö 
^1 UJ 

I 
+> H 
d ■t-> 

en 
B :.: 1 

r
C| 

3 0 

2.0 

1.0 

CASE    SB 
Classical Theory 

Quantum Theoiy (x lO2) 

o L_ 
0.1 0.5 0.7 

Frequency Ratio (u^/tui) 

0.85 

Pyrex Input:  Xx = 20.5 X 
X2 = 51.6 X 

Iron Input:  X^ = 5.77 %. 
X2 = 15.b Ä 

.r^ 
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