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Abstract 

using the idea of maximum likelihood, we derive an estimator for 

a distribution function possessing an increasing (decreasing) failure 

rate and also obtain corresponding estimators for the density and the 

failure rate. We show that these estimators are consistent. 

\ 



Maximum Likelihood Estimation for Distributions 

with Monotone Failure Rate 

Albert W. Marshall and Frank Proschan 

Boeing Scientific Research Laboratories 

1. Introduction. Given a set of observations X-. ,.,.,X  from a 

common distribution function F, it is natural in the absence of additional 

information to estimate F by the usual empirical distribution function. 

However, one would not use this estimator if there were at hand sufficient 

a priori information about the distribution F, e.g., that F is a member 

of a given parametric class such as the normal.  In this paper, we examine 

an intermediate case, the case that F is known to have increasing 

(decreasing) failure rate, using the idea of maximum likelihood, we derive 

an estimator for F which itself has increasing (decreasing) failure rate, 

and also obtain estimators for the density and failure rate.  These estima- 

tors are shown to be consistent. 

2. Properties of IFR distributions, and formulation of the problem. 

The failure rate r of a distribution F having density f is defined 

by r(x) = f(x)/[l - F(x)], for F(x) < 1. It is easy to verify that if 
x 

r is increasing, then f r(z)dz = R(x) = -logCl - F(x)] is convex on the 
0 

support of F, an interval.  (Throughout this paper we write "increasing" 

for "nondecreasing" and "decreasing" for "nonincreasing.")  Whether f 

exists or not, we say that F has increasing failure rate (IFR) if the 



support of F is of the form [a,ß] -=> < o < ß < <», and if R is convex 

on [a,ß). The importance of the IFR property and its applications to 

life testing and reliability are discussed in C3,'t]. 

The continuous part of an IFR distribution F is absolutely continuous. 

To see this, choose e > 0, z such that  R(z) < », and points 

o^ < ß1 < a2 < ß2 < • •• < am < ß < z satisfying S (ß. - o^) < e/r+(z), 

where r (z) = lira [R(z + 6) - R(z)]/6 exists finitely since R is convex. 
610 

Then 

m m R(ß. ) - R(a. ) m 
E   lR(ß,)  - R(a,)|   = S  1 ~- (ß. -a.) < r+(Z)S (ß, -a.)  < e. 
1 1 i lßi-ai i      i    - i11- 

Thus R is absolutely continuous on (-«>,z), and the result follows. 

For convenience, if F is IFR we define r(x) = <*>    for all x such 

that r(x) = 1.  Note that for any distribution F and any x for which 

r is defined on (-<*>,x.),   we have 

x 
(2.1)  1 - F(x) = exp[- J r(z)dz]. 

Further, properties of IFR distributions have been discussed in [2]. 

Let &   be the class of IFR distributions, and let X. < X_ < ••• < X ' 1 — 2 —    — n 

be obtained by ordering a random sample from an unknown distribution F in 

0,    It is not possible to obtain a maximum likelihood estimator for F e £7 
n 

directly by maximizing JT f(X.) , since for F e <7, f(Xn) can be arbitrarily 
1=1  :L ^M large.  Consequently, we first consider the subclass 0       of distributions 

F in  £7 with corresponding failure rates bounded by M, obtaining 

__ '■'MM 
sup JT f(X.) < IT. We shall see that there is a unique distribution F in 0 

F^4 i    X 



at which the supremum is attained. The conventional maximum likelihood 

estimators F^  for &      converge in distribution as M -* " (i.e., as 

3r  -> &}     to an estimator F e £? which we call maximum likelihood for ST. 
n  — 

Furthermore, the density f  and failure rate r  of F  converge in a 

natural way to the density f  and failure rate  rn  (of the continuous 

part) of F  as is shown below in Section 3. r n 

3.     Derivation of the estimators.     From  (2.1)  we obtain that  the log 

likelihood    L = L(F)     is given,   for    Fey   , by 

X. n ni 
(3.1) L = 2 log r(X )  -SI    r(z)dz. 

1 x 1 -» 

L is maximized over 0      by a distribution with failure rate constant between 

observations, as may be seen as follows: Let F e £7  have failure rate r 

and let F* be the distribution with failure rate 

0 ,     x < Xj^ 

(3.2) r*(x) = | r(Xi),  Xi < x < Xi+1, i = 1,2 ,...,n-l 

r(X ), x > X 
n '   — n 

xi       xi 
Then F* e 5rM, and r(x) > r*(x)  so that - f r(z)dz < - J* r*(z)dz 

-oo —=> 

for all i; we conclude that L(F) < L(F*). Thus, we may replace L by 

the function 

n n-1 
(3.3) S log r(X.) - S (n - i)(X   - X )r(X ). 

1       x   1 

The procedure for maximization of (3.3) subject to r(Xi) < '*• < 
r(xn^ = 

M 

can be obtained as a direct application of [6, Corollary 2.1 and the discussion 

following] (see also [10, 11]). This procedure yields for r (corresponding 



to F e ^ )  the estimator 

O.M 

where 

(3.5) 

^M ,v .     . r 1  r -1 r (X.) = mm  max t  Qr + 
v>i+l u<i v - u  u + r;-i^ 

-i 

rj = C(n-j)(X.+1-Xj)]"
1, j  =  l,2,,..,n-l, rn = M , 

with the convention that  r. = M when  [(n-3)(X. ,-X.)]  >M. 

The maximization procedure which yields (3.'+) may be described as 

follows.  First, find the maximum of (3.3) restricted only by  r(x) < M, 

obtaining'(3.5) .  If there is a reversal, say r. > r. -. , then set 

r(X.) = r(X. _)  in (3.3) and repeat the procedure.  After at most  n 

steps of this kind, a monotone estimator is obtained.  The maximum derived 

with r(X.) = r(X.  )  can be directly obtained by replacing r.  and r. .. 

by their harmonic mean, (r. + r..,)  .  Succeeding steps amount to further 

such averaging which is extended just to the point necessary to eliminate 

all reversals.  It can be seen that this is exactly what is called for in 

(3.^).  (In this connection, see also [1,5].)  The resulting estimator r 

is of the form 

rn(x) = 

0, x < X1 

r  ,     , X  n < x < X    n n.+l,n. ., ' n.+l —     n. ,+1 
x  ' i+l x         x+1 

M, x > X 
—  n 

where r,   < r 
h ~     "1 

and r 

• • < r 0 = n„ < n., < 
1 ,nn — 'n^+ljn, — ' " — ^n.+l.n-l' ^ " "O ~ "i '      "^ 

< n-1. 

n,+l,n. -  is the harmonxc mean of r  , , r  -,,...1 r   . Of 1  ' x+1 n.+l  n.+2'     n. . 
i     x        x+1 

course, the n.  are determined by the rule which determines the extent of 



the averaging. 

The estimator for r corresponding to F e ^ is obtained by letting 

M -• oo in (3.^) , and is given by 

(3.6) W = mi.n  mSOC ^7^7 [(n~u)(Xu+l"Xu) + ••• + (n-v + l)(Xv-Xv_1]3'
1, 

v>i+l u<i 

i = l,2,...,n-l  and  r (X ) = «>#  For the remaining values of x, r (x)  is 

determined by (3.2) with  r  replacing  r and  r*.  The corresponding 

estimators  F  and  f  for F and  f are obtained from  r  using (2.1) 
n       n n    ^ 

and the relation f (x) = r (x)[l - F (x)]. 
n      n        n 

It is of interest to note that the estimator r  can also be written 
n 

in the form 

(3.7) f-n(x) = inf sup { J Cl - Fn(y)]dy/:Fn(v) - F^u)])"1 

v^ u<x  u 

where F  is the empirical distribution. Similarly, when r(x)  is increasing, 

it is given by (3.7) with F replacing F . 

k.     Consistency.  In case we restrict ourselves to distributions with 

support contained in [0,"), it is not difficult to verify that the regularity 

conditions used in [8] are satisfied by the family &  .    Thus from the results 

of [8], it follows that  f (t)  is a consistent estimator of f(t)  for this 

restricted family.  For fixed t < ß, choose M >  r(t); then it follows that 

fM(t) = f (t).  We conclude that  f (t)  is a consistent estimator of  f(t) 
n      n n 

for the family &    of IFR distributions  F satisfying F(0)  = 0.  However, 

rather than verify the regularity conditions, we choose to give a direct 

proof of consistency. In so doing, we avoid the question of whether or not 

the regularity conditions are satisfied when F(x) > 0 for all x. 



Theorem ^-.l.  If r is increasing, then for every t-, 

(4.1)      ^o") - lim inf ^n^O^ - lim SUP ^n^O^ - r(t0+) 

with probability one. 

N2(n) rl 
X (t„) =  ., , s  ., / v     E   (n-i)(X. , -X.)   . n 0   LN2(n)-N1(n) i=N (n)+]L       i+l  ij 

Proof.  The right-hand inequality is trivial if r(t +) = <=; otherwise, 

let t1 > tn satisfy r(t ) < <», and let a.(n) +1 be the index of the 

largest-observation £ t., j =0, 1.  Let' N..(n)  and Np(n)  be defined by 

N0(n) 

ri(t0) =| N^C^-N.Cn) ._u 

-, -r(t )y 
Let  Y = -[r(t )]" log[l-F(X)3, so that P[Y >  y} = P{l - F(X) < e      ) 

-rCt^y 
= e      , i.e., Y has an exponential distributior.  Since the X  are 

order statistics from the distribution F,  Y. = -CrCt..)]   logCl-F(X.)] 

are order .statistics from the exponential distribution, and  (n'-i)(Y. . - Y. ) 

are independent, identically distributed exponential random variables, with 

mean l/r(t ).  Finally, 

i+1 
X. 
i 

X.   . 
i+l 

(4.2)       Vx-Yi =   tr(t1)]"1[.r        r(z)dz - ,f    r(z)dz]  = J [r(z)/r(t1)]dz 
-co —oo X. 

1 

- xi+l'xi' i - al(n)' 

\ 
From  (3.6)   and  (4,2),   it   follows  that 

' an(n) 
,.   .      I 1 

r (O  < I —/   v 1 „  ;   v S        (n- i)(X.   , - X.) I *    0'   -l^T^Gt ±=^n)+1 i+l       xj 

r     i        ai(n) T1 
<!—,   \     .,  /   x £        (n-i)(Y.   -,-Y.)        . 
" Lal(n)-Nl(n) 1=^(^+1 i+1      1 J 

But 



lim 
n-w> 

r    i       ai(n) r1 

Lai(n)-Ni(n) l^N^iD+l      1+1  X J 
= Kt^ 

with probability one, by the strong law of large numbers 

(lim [a (n) - N (n)] > lim [a (n) - a (n)] = "» with probability one), 
n n 

We conclude that lim sup r (tn)<r(t ) with probability one, and the right- 

hand inequality of (4.1) follows.  A similar proof yields the left-hand 

inequality, || 

Corollary k.Z.     If  r is increasing, then for all t, lim'F (t) = F(t) 
n-x» 

with probability one. 

Proof.  It 'is sufficient to prove the theorem for t satisfying 

F(t) < 1, in which'case F (t) <1  for sufficiently large n.  By Theorem 

k.l,  lim r (z) = r(z)  except possibly for z  in a set of Lebesgue measure 
n-«> 

zero.  For z e[x,t], x > -<=, f (z) < <», and by the Lebesgue dominated 

convergence theorem, lim J r (z)dz = J r(z)dz with probability one.  Then, 

by (2.1), 

1-Fjt) 

n-«0 x 

(4.3)   lim 
n-o> 1 - F (x) 

n 

l-F(t) 
l-F(x) 

with probability one, 

If we knew that  F(x) = 0 for some x > -<*>, this would complete the proof. 

x 
In order to obtain an upper bound for  |  r (z)dz, we first note that 

r 

i+l 
[(n-(n +1))(X )+...+(n-ni+1)(X -X )]} 

x     ' i i+l i+l 
n.+l,n.   n   -   ^(n.   ,+l)-(n.+1)LV"  ^i^'^^+S' TV" "i+l'v   n, . n+l    n, 

x     '  x+1 ' 

< t? rrn TrCCn-n,  OCX     0-x     n)+...+(n-n.  -XX,,     ^-K 
- '■(n.+1+l)-(n.+l) x+l'x  n±+2    n^+1' i+l      ni+i

+1    ni^ 
)]] 

-1 

ni+l-ni 
(n-n.+1KXn      -Xn +1) 

x+l      i 



Let k = k(n)  be the index of the largest observation not greater than x; 

if X  is in  [X  , ,X     ), we obtain by (5.6), 

?n.+l,n. ,  S ^^^■^.^^(n-Cn-.lXX^^-X   ).....(n-k)(Xk+1-Xk)]} ' 

< {_i_C(n_k)(Xk+i_xn ^D)"
1. 

J o. 

From  these  estimates,   it  follows  that 

T r  (z)dz <    S    r       , "(X ..-X,,  ^J+r    .,   „       /Y Y \ ^    *■ •>     n —  .   ^    n.+l.n.   ,     n.   ,+1    n.+l       n.+l,n.  -(.X, ,,-X     .n; < rrT7 • -e» i=0       i     '  i+1       i+l i J 0+1    K+l     n.+l    — n-k 

If    0 < e < —    and    x    sat 
k F(x) 

ätisfies     F(x) < e,  then    lim ^^ = 1 _ ^/^ 
x "  ■'■ 

< •=-—— < 2e     with probability one,  so  that     lim sup J   r (z)dz < 2«,  and by 
1-6 -co 

(2,1), lim inf[l-F (x)] > e"26 > 1 - 2«. This together with (4.3) completes 

the proof. || 

Corollary k.3.     If r is increasing and continuous on Ca,b], then 

(i)   lim  sup  If (t) - r(t)| = 0 
n-» tc[a,b] 

(ii)   lim  sup |Fn(t) - F(t)| =0,. 
n-x» -<»<t<<» 

(iii)  lim  sup  |fn(t) - f(t)| = 0, 
n-«o te[a,b] 

each with probability one. 

Proof,  (i) and (ii) follow from the same methods as in the usual proof 

of the Glivenko-Uantelli theorem,  (iii) follows from (i), (ii), and the fact 

that f(t) = r(t)Cl-F(t)).|| 



9 

5.  Comparison between r (t) and f (t).  We shall show that with 
n   —— n 

respect to a certain metric r (t) is closer to r(t)  than is r (t), 
n                              n 

where 

1° for 0 < t < X1 

(5.1)  rn(t) = jUn-jKX^-Xj)}"
1 for X^. < t < X.+1,  j = 1,2 n-1 

u for X < t < ». n — 

Note that r (t)  represents the "unaveraged" estimate of the failure rate, 

i.e., the estimate that does not take into account the requirement that 

r(t)  be increasing. The result is similar to an inequality of [1, page 6V»-] 

and is really a special case of the results of C7]. We give a simple proof 

for convenience and completeness. 

We need the general result: 

Theorem 5.1.  Let h be nondecreasing, g be integrable with respect 

to the measure p., the discontinuities of h distinct from the points at 

which v, places positive mass, and 
t 

J g(e)dii(e) 

I« = sup inf %{t)_v{s)   . 

Then 

(5.2)   r(g-h)2dH > .f(g-h)2d>i + r(g-g)2dp.. 

Proof.  It suffices to show j^g - h)(g - g)dp > 0-  The x-axis can be 

broken up into single points and maximal intervals on each of which g(x) 

is constant.  At a single point  x, g(x) = g(x).  Let  Ca,b]  be an interval, 
x 

with g(x) = g  on  Ca,b].  Define G(x) = J g(9)dii(e).  Then 
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J* (g-h(x))(g(x)-g)dv.(x) = J" {G(x)-G(a) - g[v.(x) - Vi(a) ])d{h(x) - g} > 0, 
a a 

G(t)-G(a)          G(t)-G(s) 
—r-rr 5—r = sup int   

t>x ^(t)-^(a)  8<X t>x 
G(x) - G(a) > ")"( ZX£i  =  SUp inf ~}:(     "^"f = g. 
U(x) -v.(a) - ^„ v-(t) -V-(a)  „^ K^ V-(t) -Ms) 

Identifying h(t) as r(t) , g(t) as rn(t), g(t) as rn(t), and 

^(-o.^]  as F (t), the usual empirical distribution, we obtain from 

Theorem 5-1! 

Theorem 3.2. With probability one, 

(5.3) fir  (t)-r(t)}2dFn(t) > jV^t) - r(t) 32dFn(t) + J (rn( t) - ?n(t) 3
2dFn(t) 

Thus, in the sense made precise by (5.3), ? (t)  is closer to r(t) 

than is  r (t) . n 

6.     DecreasinR  failure  rate.     A distribution    F    is said  to have 

decreasing failure  rate  (DFR)   if  the support  of    F    is  of the  form     Ca,"), 

a  > -oo^   and  if    log[l-F(x)]     is  convex  on  [o,").     Such distributions arise, 

e.g.,as   mixtures of  exponentials   (see  [9]). 

If     F    is   DFR  then by an argument  similar  to  that  used in the  IFR case, 

it  is  absolutely continuous  except possibly  for a  discontinuity at  the 

point    a.    Thus,  the measure  determined by    F    is  absolutely  continuous with 

respect   to    u     =6     + ^    where    6       places  unit mass  on    {a}     and    \    is 
^ tx a a 

Lebesgue measure;  we  denote  the  density  of    F    with  respect  to    V-a    by     f, 

and again define the  failure  rate  of    F    by    r(x)   =   f(x)/[l - F(x-)].     If    F 

is DFR,  we always  take a version of    f     for which    r    is decreasing in    (a,»). 

Allowing for the fact that     f    is a density with respect  to    V^ we see 

that  (2.1)  is replaced by 
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(6.1)      l-F(x) = [l-r(a)]exp[- J r(z)dz]. 
(a,x] 

Estimation in the DFR case parallel that in the 1FR case, but with 

some interesting differences.  The first of these is that there are really 

two problems in the DFR case, depending on whether or not the point  a is 

known. 

First consider the case that a  is known and suppose a = X1 = ••• 

= X.<X.1<-"<X      (in case k = 0, we define X = a), using 

(6.1), f(x) = r(x)[l - F(x-)] and the relations r(a) = f(a) = F(a+) , we 

write the log likelihood in the form 

n n    i 
k log r(a) + (n-k) log (l-r(a)) + S log r(Xi)- E  J r(z)dz. 

i=k+l        i=k+l a 

Maximization of the first two terras yields  f (a) = k/n = F(a+).  Maximiza- 

tion of the last two terms is quite analogous to that in the IFR case, and 

yields for r the estimator 

r(x)=f(X.), X. n<x<X.,i= k+1,.,,,n 
n      n i '  i-l    - 1'       '   ' 

where 

^„(X,) = max min l-^—[(n - u)(X ,-X ) + ••• + (n - v + 1) (X - X  )])  , 
V>X U<1-1 

and X- = a in case k = 0. 

Contrary to the IFR case, this DFR estimator is not unique; it is 

determined by the likelihood equation only for x < X , and may be extended 

beyond X  in any manner that preserves the DFR property. 
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Consider now the case that a is unknown, and assume for the moment 

that  F is absolutely continuous with respect to Lebesgue measure.  If 

F is DFR on [a,<»)  for a > X , then the likelihood A(F)= TTfCX^) = 0, 

If F is DPR on Ca,")  for a < X1, then A(F) < A(F) where F is 

defined by 
F(x) -F(X1) 

l-FU-,)  '  x - Xl 

F(x) 

x < X-, 

Thus the maximum likelihood estimator for a unknown is found among those 

DFR distributions with support [X ,<=°) , and the problem reduces to the case 

of known a.  Note that the estimator F  has a jump of at least  1/n at 
n 

The proof of consistency in the DFR case is similar to the proof in 

the IFR case. 

7. The discrete case.  A related problem of interest occurs in the 

case that F is discrete IFR.  If F is a discrete distribution with mass 

p.  at x., i = ...,-1,0,1,2,...  and the x^^ are ordered increasingly, 

the ratio 

Pi = VA/  
S
 Vy     i =... ,-1,0,1,2,... , 

is called the (discrete) failure rate of F. If r.  is increasing, then 

F is said to be discrete IFR.  It is easily verified that 

i-1 
p. = P. TT (1-pJ, i = ...,-i,o,i,... . 

1 j=-oo     J 
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If a sample of n independent observations from F consists of m. 

occurrences at  x. , where for notational convenience, i = 1,2,..,tk, then 

the log likelihood function is 

k k 
L = S m log p = S {m log p + (m  +• • .+m.)log(l - p.)). 

i=l 1=1  x      x    l+J.     K        i 

We wish to maximize L subject to PT < PT < * •" < Pi,. 

With proper identification, this problem is exactly the one solved in 

[1]. The solution is obtained by averaging (through adding numerators and 

denominators) the quantities 

(7.1)  pr 

o, i < i 

mi/(mi+" •+tiL) ,  i = l,2,..,k 

11, i > k, 

to eliminate any reversals p* > pt ,.  After sufficient averaging a set 

of increasing estimates p.,...,Pi, are obtained which may be written as 

m +m - + •••+m 
/r, -,-,   -              s  s+1      r (7.2)  p. = mm max . 

k>r>i B<i   « , . 
 —   E (m. + -.«+m,) 

j=r J 

The estimator given in Section 3 for the continuous case may be derived 

from this as a limiting case.  Consistency of the estimator (7.2) follows 

as in [1]. 

If p.  is decreasing, then F is said to be discrete DFR. In this 

case, maximum likelihood estimators may be obtained and consistency proved 

using the same method as In the discrete IFR case with obvious modifications. 

Acknowledgment. We would like to thank Professor Ronald Pyke for his 
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