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ON THE STRUCTURE OF LAMINAR DIFFUSION FLAMES

-

BY

AMABLE LINAN

ABSTRACT

‘The strueture of laminar diffusion flames is analyzed in the limiting case of large, although finie, reaction
rates.

It is shown that the chemieal reaetion takes place only in a very thin region or -chemieal boundary layers»
where conveetion effects wmay he negleeted.  Then the temperature and mass fraction distributions within the
reaction zone are obtained analyiically,

The flame position, rates of fuel consumption, and temperature and concentration distributions outside of
the reaction zone may bo obtained by using the assumption of infinite reaction rates.

For large Reynolds numbers mixing and cowbustion take place in boundary layers and free mixing layers.
And agnin analytical solutions are obtained for the teniperature and mass fraction distributions outside of the
reaction zone.

NOMENCLATURE

The following is a list of the most important symbols used in this paper.
tad o

A, Parameter given by [44], that measures the deviations from the Burke-Schumann
solution,

c, Specifie heat at constant pressure,

b Diffusion coefficient.

I Activation energy of the chemieal reaction,

! Dimensionless steeam funetion.

K, Mass fraction of species i

l. Some overall eharacteristic length,

M Mean molecular mass,

m Mass rate of fuel comsumption per unit flame surface.

P'r Prandtl number.

p P'ressure.

q Heat released pee unit mass of fuel,

R Universal gas constaut.

Re Revnolds number.

Se Schmidt number.

T Temperature.

T, Mdiabatie flame temperature given by [24).

T, Temperature at the ideal flame surface.

i Characteristic chemical time defined by [15).
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Chiaracteristic mixing time, £, =3,/D,.
Characteristic overall veloeity.

Veloeity components in boundary layer coordinates.
Velocity veetor,

Diffusion velocity of speeies i

Mass production: rate, per unit volume, of species i
Mixing boundary layer coordinates,

Position veetor,

Chemieal hboundary layer coordinates.

¥
, ({l/ {:,.)(i!/.
4

s,

Universal funetion giving the temperature disteibution within the reaction zone. De-
fined by [39].

Mixing length, 4, - p, Dyin.

Charvaeteristie thickness of the reaction zone given by [41].

Dimensionless distanee normal to the mixing layer.

Non-dimensional temperature, = (1'—"TH/(T;—T,).

FRCT, T

' ‘o.’l('l‘l'_'l‘o)-

(Te—Ta/(T~ To).

",

Viscosity coefficient.

Stoichiometrie ratio species 2 to 1.

Non-dimensional distanee along the mixing layer.

Denxity,

Stress tensor.

SUBSCRIUTS:

1.2,3 Indicate fuel, oxidizer and producets respectively.

»
"

r

Indicates conditions at the fuel exit.
Indicates conditions on the oxidizer side of the flame, far from the flame,
Indicates conditions at the flante surface for infinite reaction rates,

The asterisk is used for the pon-dimensional variables introduced in seetion I, 6.

I. INTRODVCTION

Diffusion flames ave obtained when the reacting species are initially separated.  Combus-
tion and mixing takes place simultaneously.

In these flames the reaction zone separates the two reacting species which diffuse, through
inert gases and combustion products, from cach side towards the flume.

The reacting specics burn very rapidly as they reach the reaction zone; therey the
combustion veloeity is generally conditioned to the aceesibility of the speecies ta the reaction




zone; or in other words, to their facility to diffuse across the inert gases and combustion
products,

It seems that we can arrive at a desceription of some of the most important features of
diffusion flames by using the assumption, first introduced by Burke and Schumam (1), of
infinitely fast reaction rates.  Then the actual zones of combustion beeome infinitely thing and
the mixing process alone becomes responsible for the rate of burning and for flame location
and xize.

Burke and Schumann have suceessfully used their assumption for the caleulation of the
shape and length of the laminar diffusion flame formed when a fuel jet discharges within a
tube.  In this tube an air stream moves with the same veloeity as the fuel jet. The same as-
sumption lias been utilized by Hottel and Hawthorne (2), Wobl, Gazley and Kapp (3), Yogi
and Saji (40, and Bave (3), for the prediction of the length of open flames, both laminar and
turbulent,  Through rudimentary approximations they obtain an expression for the flamo
length containing an unknown funetion: this they determine empirieally from the results of
their experiments,  Fay (6) has ealealated, by using Burke Schumann assumption, tho shapo
and charaeteristies of the luminar diffusion flame obiained when a fuel jet discharges into
the open atmosphere,

The infinite reaction rate assamption has also been utilized (7). (8) for the study of diffu-
sion flames in boundary layers,

In addition, an extensive literature exists on the application of the assumption to fuel
droplet combustion.

The Burke-Sehumann assumption eliminates chemienl kineties from the process, simpli-
fying the governing equations and their solution.  However, this solution does not provide the
eriterion for the extinetion of the flame., or for the validity of the assumption and solution.

Zeldovieh (9 has taken into considerstion the finite thickness of the reaction zone to
explain the blowing-off phenomenon.  Similar studies have been performed by Spalding (10),
(1. ¢12) with the purpose of relating the fuel consumption rate per unit aren at extinetion
and the fuel consumption rate per unit area in o premixed flame.

For a general deseription of the diffusion flames see, for example, the review papers by
Barr (13) and Wohl and Shipmann (14), where data and bibliography on the subjeet can be
found.

We aim in this work to show the effeets of finite chemieal reaction rates on the strueture
of Tnminar diffusion flames.  In order to do so, we will study certain limiting eases, in which
simple analytical solutions can be obtained.  We will limit ourselves to the study of one step
chemical reaetions in which the forward reaetion is dominant.

We shall show that for large reaction rates the chemical veaction takes place only in a
very thin resgion or <chemieal boundary layers. This has already been shown (15) in the simple
case of the mixing and combustion of two pavallel streams of fuel and oxidizer moving with
the same veloeity.  There convection effeets may be negleeted compared with the mueh more
important diffusion conduction and chemieal reaction effeets. The governing equations
reduee in this case to ordinary differential equations.  The kineties of the reaction appears
in the solution: but the temperatures ave elose to the adiabatic flame temperaiure, and in this
range of temperatures the coneept of an overall kinetie scheme has been found by Levy and
Weinberg (16) to be valid,

The solution with the assumption of infinite reaction rates (which we shall call the Burke-

EOTRpp—Y
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Schumann solution) represents the true solution outside of the reaction zone. 1t may also be
used to calculato the flame position and fuel consumption per nnit flame area.

If the Reynolds number, based on some o
combustion will take place only in & very thit
approximations may he used (17), (18), (19).
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The mixing layer location and goneral flow characteristics outside of the mixing layer
may be determined by using the inviseid flow equations. However, we must allow for the
existonee of discontinuities in the velocity, density, temperature, and mass fraction distribu-
tions within the flow field.

In Fignra 1 the femperature and mass fraetion distributions, as obtained by different
limiting assumptions, are schematically represented.

. (GEXNERAL EQUATIONS

We shall begin by writing the general equations governing the steady laminar flow of a
reaeting gas mixture (20), (21), (22). We will use the assumption that the fluid may be consider-
od as a continuous medium formed by @ mixture of perfect gases.

Only three speeies will be considered: Fuel, oxidizer, and products, For the sake of
simplicity, any inert species present will be considered as produets,

Besides the usual dependent variables of ordinary fluid mechanies, i. e. veloeity i:, pres-
suroe p, density g, and temperature T, three new variables, the mass fractions of the reactant
species, enter. Therefore, three new cquations, stating the mass conservation law for each of
the species, must be added to the fundamental equations of fluid mechanies,  In addition, the
refations hetween the transport parameters and mass fractions, temperature, and pressure of
the mixture will he required.

We shall use subseript 1 for fuel, 2 for oxidizer, and 8 for the produets. The mass {rac-
tions of species 7 will be written

l\' 0,10,

The three mass fractionsg obviously satisfy the relation

K, | K, £ Ky=1. [1]

I1.1.  Equalien of State.
If the fluid is considered as a mixtore of perfeet gases the equation of state is as follows
p==o(R/M)T [2]
where B is the universal constant of the gases, and
-

M I NK, M, I (3]
1

is the mean molecular mass.
I ordes to stmplify t

ant value for M. ‘This ap-

s eies are not vory different or

P T T < 3 ifal
PIUORHITNGH 8 jUsaiida

"
when the reactants are very dilute. Then

In any case the results will not be essentially changed by considering M as variable.
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I11.2.  Equation of Continuily for the Micture,

This simply states the law of mass conservation

v-(pr)=0. 4]

11.3.  Equations of Mass Conservation for the Species.

These state that the mass quantity of each constituent entering unit volume per unit time,
either due to ¢onveetion or diffusion, equals the mass gquantity of the constituent disappearing
as a consequence of the chemiecal reaction,

These equations are ax follows

-

ov-t R, | V'(?Kn;tii):'!"' 1o

where 1:',,,» is the diffusion velocity of speeies i, and o, is the mass production rate por unit
volume of species i

Weo consider a one step ehemieal reaction in whieh the forward reaction is dominant, the»
backward reaction being negligible. For an Arrhenius type reaction with xecond order choe-

mical kineties, we may write

wis - E(pIRT)yexp| - RT]K, K, [6a]

whoere B i= the aetivation energy of the reaetion and & is the frequeney fuctor. Also if vis tho
stoichiometrie ratio oxidizer-fuel

wy, o vy, wy==—(1 1 2w, (6]

We shall use relation [6a] through most of this study.,  The extension to more general
reaction rates of the form

w0 — g UF, pyexp|— K/RT] KK 171

is ensily made.

The diffusion velovities depend on pressure, temperature and speeies coneentration
gradients,  Usually the pressure geadient effeet on diffusion veloeities is small compared to
those due to mass fraction gradients. This is specially true when mixing takes place in thin
mixing regions and houndary Iayers.  Thermal diffusion will be negleeted beeause diffusion
velaeities due to gradients of tewiperature are generally a small fraction of the velocities due
to coneentration gradients,

It moleenlar masses of the species are approximately equal we may use Fiek's law
for the determination of ):4,,.

K, 7y DYK, [8]

where i1 is an average diffisdon coefficient,
If the coneentration of one of the species is small, Fiek's law is valid for the other two
species, This always happens in diffusion flames where oxidizer concentration, for example,

i

PRy




— 11 -

is very smll in the reaction zone, or in the fluid side of the flame. Then we may use Fick's
luw for fuel and oxidizer with the diffusion coefficients determined by the binary mixtures;
fuel-products and oxidizer-products respeetively.  In this study we will use a single average
diffusion coefficient D.

Inxerting [R] into [5] we obtain

PR, = (') T (aDTK,) - /p.

. (9]
1.4, Momentum equation.
PeVa= (g Tp - (1/p)T s [10]

Where s is the stress tensor

2 dn, dr, Ov;
T T zl(-."+ X ’)-

3 [ du; da;
We negleet the diffusion stress tensor.  Gravity forees will also be neglected for simplieity,
although they can only be negleeted for large Froude numbers and this is not always the
ase in diffusion flames,

Lo, Energy Egualion,

If the speeifie heats e, of the species are assumed to be equal and constant the energy
oguation may be written

. 1 1 S I wy
Ao v-( V'r),:- A R L [11]
o I'r uey, 1y

» [

where 3: 4 is the Rayleigh dissipation function and q is the chemieal energy that a combus-
tible mixtare containing a unit mass of fuel and v units of oxidizer has available for conversion
into theemal enervgy g=h{ i-+b- (1 =G Pris the Prandtl number which will he assumed
coiastant. Thermal radiation is not taken into account.

Lguations [2]), [4], [10], [11] and [9] (for i==1,2), together with relations [6] and the
funetiona! relations between the transport parameters and p, T, and K, constitute the
system of differential equations governing the strueture of diffusion flames,

In addition we must include the appropriate boundary conditions,

Without losing much generality we ean state as boundary conditions for the temperature
and max fractions that they be constants at some surfaces or zones of the flow fleld.

For example, on some surface or region at the fuel side of the flame — the fuel exit —
K=K, . T=T,
112]

and

b —

K=K, . T=T,

on some surinee or region lare from the fliime on the oxidizer side of the flame,

i
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I1.6. Dimensionless Form of the Equations.

Let us introduee the following non-dimensional variables

z=La* Woe=Us o p=pgt L, p=plitpt
UL 13
T="T.4+ T e w o oMept o, Ro= """ »w  Se= L (3]
Cp It pl)

Re is the non-dimensional Reynolds number, and Se is the Schmidt number that will be
assumed to be constant and equal to the Prandt]l number.

Subseripts , and . will indicate houndary conditions far from the flame, on the oxidizer
and fuel side of the flame respeetively.

The characteristic length L and velocity U7 are some overall eharacteristic magnitudes.

In terms of these non-dimensional variables the governing equations take the form.

I ”’;‘:, I]):p::{';(l - I (,[‘ IT,) ’»,‘
00 3K Cy r,

T (o ) =0

. 1 i 1
LR WL P S ok *, x
A o* v Il\’u‘ ot Ve {14]

1 | R S ¥ w\*
s 7]

Pl t
! Relr | o* p

. ot Lojpw® qUgs eyt -
",.‘.,,l..;l ' —"-V'-(]L*“‘T')— l("]) {_I J”"V'l" l‘l I R ’J'ZV"D'
Relbr §p* Uil g q ~qRe | p*

Here

.\ * .
I l and (!"') =1, ('?”')
U, [ 0

R P I )
Ch. wp (- 5
f=h (my) ”"( R, [15]

where

T, will be the adiabatie temperature of the flame
JR——
T q h'_".'( 1 3 - Kzr)
s e

(‘,, I\g,, -y !\”,
as we shall see later. Then £, is a characteristic chemieal time, such that (#,/p)* will be of
order unity if the mass fractions are not small and the temperature is elose to the adiabatic
flame temperature.
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II.  DISCUSSION OF THE EQUATIONS AND LIMITING CARES

HI.1. General Discussion.

By choosing appropriately the characteristic magnitudes, the non-dimensional factors and
terms in equation [14] should be of order unity exeept, at most, at regions such as boundary
layers, shock waves, free mixing layers. In these regions the funetions », K, T or their
derivatives may change very rapidly. If such layers do not exist, or in any other region, tho
relative importance of the different terms in equations [14] is measured by the values of the
non-dimensional parameters

1 L. [ 1 1
“w oy " T w Dr~1,
Re e q g Re
This is not exactly true for the torm (L/UL) (w;/g*) because of the large variations of
(rifoy* with temperature and mass fractions.
I‘rom equations [6h] and [9] we deduee
. ] , 1 1 o .
*VHR Ky Rel? AR Tl vl | (PRI (S ER |16]
err

0"l
¢

Also il Uz/g-- 1 and (1;Re) (U2 /g) <« 1 the energy equation may be written

- 1 1 I jfie\*
LT T (T i, 17
' l RePr I RN , Ut (9) (17

And if the fuel diffusion equation is added to [17] we obtain

. 1 1
UK T =l l—_—\"-:m*\"(l\' -1 18
RiNY Rebr o | 11 K [ ]
If the form [17] of the cnergy equation is nsed, and iaking into aceount the diffusion
equations. the funetion
Ky Ky —v1 L Ky KT
Koo Ko vy - K ' Koo =Ko Fv(B o —Ky)  °

?:Tg_i

satisfies the differential equation
Ty I : I e e [19]
T Rebrlg s T

that when solved with the boundary conditions [12] gives

P P i . et
Kool - KKy, - K, vRKaT [20]

i K, Ko - (K, — K
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Solution [20] is independent of the chemical kinetics. There are cases, however, in which
the boundary conditions as given in [12] are not known «a priori» because they depend on
the chomical kinetics. For example, in the case of a fuel droplet burning in an oxidizing
medium, the oxidizer mass fraction at the droplet surface (which is zero for infinite or very
large reaction rates) may build up to some unknown value when the reaction rate be-
comes low,

I11.2.  Burke-Schumann Solution.

For the study of diffusion flames, Burke and Sehumann introduced the assumption t.at
the region where wfe is different from zervo is infinitely thin, and K, =0 on one side of the
flame, and K;=0 on the other.

This should be true when L/U{ is very large. If both K; and K, were different from
zero in a region where the temperature is not low compared with Ty, then (/p)* would be of
order unity and the term [L/AE] (/o) would be very large compared with

. 1 1
oK, and et A W (LA [
TR, I R(_'l,l_J g TR,
that are of order unity.
Alzo it in system [14] we take the limit L;Uf,—e, then we obtain the result (rjo)* =0

Soeither K, ==0 or K, 0, and system [14] takes the following form, where i=1,3, j=2
on the fuel side of the flame and =23, j==1 on the oxidizer side of the flune,
. ; ¢ ) \
ol ] ) \
f’ul : Cp ln
T (ot =0
TR - ! -+ ! ! T o*
p* Re p* =
/ |21}

1* T (K

0O
¢

. 1
DR wl ) (e
MRS l RePr

. 1 1 1 )1 LI I
B v AL v, il vald L T 5‘:"' ok | ,t_(l *
' I I Relr I o (T l Re o l o o ¢ o v I

Kj=0
We ean use with system [21] the same boundary conditions [12] (*) of system [14], if we
allow for discontinuities in the mass and temperature distributions at the zero thickness flame,

In the flame the equations of conzervation of mass and energy indieate that, 1) fuel and
oxidizer diffuse towards the flame in stoichiometrie proportions; 2) that the heat leaving the

) Ry amd Ky must be zero if LU » 2.

L T v —

g e soha it i AP 5k 10b S i

* o
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flame due to conduction equals the heat released by the reacting species when reaching the
flame. That is

oK, 0K, |
YFa, T o, ‘ "
. w oK, v o | .
¢, On, On, ' an,

where d;0n, and d/dn, indicate derivatives normal to the flame surface toward the fuel and
oxidizer sides respeetively.  They must be evaluated at the flame,

The temperature, mass fractions, and therefore the density and veloeity, are continuous
funetions at the flame.  For this reason, mass and heat transport by conveetion is not tuken
into account when writing the conservation equations through the flame.

By solving the system of equations [21], with boundary eonditions [12] and [22], we obtain
the Burke-Schumann veloeity, mass fractions, and temperature distributions,

In particular, lot i

K, —Kep=fi@ |
b , (23]
K, TP =) 5

be the solutions of equations [16] and [18] (valid only for U?/g-¢ 1 and (1/Re) Ug-£1).
The equation of the flame surface is obtained by writing

K,—K, 0 «fr)=0.
Also according to [20] at the flame

k4 4T \'
Tt==T# = (Kie 1T Ky
K4 Ky

and

g (K FTO Ky

(L ]
I [ » . -
Cp v l\“- 1 1\-_...

(24]

By writing K,-=0 on the fuel side of the flame surface and K, =0 on the oxidizer side,
we obtain the temperature and mass fraction distributions.

Ky = f, () | K, =0
K,.-=0 Cforf, 0 L K=oy fy @) for £y 00, [25]
T o= fe(":) -~ (4':) T = (":) \

It is interesting to point out that the Burke-Schumann solution satisfies the complete
system of equations [14] and also its boundary conditions.  Thig solution is not the correet
one. only because the first derivatives of the temperature and masg fraction disiributions
have discontinuous first derivatives within the flow field.

Solutions [28} of equations [16] and [18] are modified when finite values of 1jU{, are con-

—




— 16 —

sidered. The reason for these modifications is that, although reaction rates do not appear
explicitly in equations [16] and [18], the variables ¢, # and ¢ that appear in those equations
will depend on the reactions rates,

However, we may expeet that, for sufficiently large values of LjU{, the reaction zone (or
region where w;4:=(0) will be very thin. Henece the Burke-Schumann solution [25], for which
the reaction zone has zero thickness, will be a very good approximation in the case of iarge
but finite I/U{. This will bo espeeially true outside of the reaction zone.

Equations [16] and [18}, in particular, should remain practically unchanged. This is
oxactly right when mixing and reaction takes place in constant pressure regions and boundary
layers if gp is assumed to be constant.  In such cases equations [16] and [18] as well ag the
bhoundary conditions (for large L/U 1), will be independent of the reaction rates. The samo
will happen then to their solution,

Summing up:  If the reaction rate is sufficiently large the reaction zone will bo vory thin
compared with any other important length (as for example, the width of the mixing vegion),
Then, in order to obtain the veloeity, temperature and mass fraetion distributions outside of
the reaction zone, i, oo, for the study of the external strueture of the diffusion flame, we may
use the assumption of infinite veaction rates,

IV, STRUCTURE OF THE REACTION ZONE

INL The < Chemical Boundary Layer -

The faet that in the limiting ease of infinite reaction rates the thickness of the reaction
zone is zero, and that the fivst derivatives of K; and T normal 1o the flame are discontinnous
there, suggests that for large, although finite, LU L:

) The thickness of the reaction zone will be small,

bh) ‘The diffusion terms

1 0 (1 -51\',-) and 1 0 /p OT
0 :9;7( proon ) ™M 'B_;f(l’r”dn')

will balance the chemical production terms w/o, these torms being very large compared
with all the other terms of the equations,  (Here 001 indicates differentintion normal o the
flame).

In other words, for large values of the chemical reaction rates the reaction zone will he
a very thin region or «ehentieal boundary laver..  There, due to the rapidly varying gradients
of temperature and mass fractions normal io the flame, mass diffusion and heat conduction
normal to the flame constitute the only transport mechanis required to halanee the chemieal
production terms. Transport by diffusion or conduction in other direetions or convection
may be negleeted within the reaction zone.

In order to show this, Jet us assume that we know the Burke-Schumann solution [25].
Henee, we know the flame surface location for infinite 1.-U 4. and therefore the approximate
loesiion of the flame region for large L U4

IFor simplicity we will limit ourselves to the two-dimensional ease,  The results, however,
are completely general. We shall write the equations of motion, and mass and energy
conservition equations in a cnrvilinear system of coordinates.  In this system, see Fig. 1,

£
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T =

a will be the distanee measured along the flame surface, as determined by the Burke-Schu-
mann solution.  The distanee normal to this surface will be indicated by » v and » will be
the veloeity components in the » and g directions: 1/K is the radius of curvature of the flame
at point o Limiting oursclves fo a region where Ky is small compared with 1 the line
element has components (1-+ Ky)da and dy and the equations are as follows:

Continuity for the mivcture

Kpe
L —Ty

9 (pe) | 4 ) -+
————— (&) e Ap ) - =
' oy et Ky

Equations of wotion

I u du 1 ou Kue l i op | e
O] - —— - ==~ R S
T Ky o oy 1Ky 1| Ky oo "
l w o | dr K2 I op *
o R S O
11Ky o Jy 1+ Ky oy !
where
i 1 d3,, 03, 2Ks,,
R . . !
" 1{ Ky o oy 1K i
- 1 03,4 : 03y ; Kisy,- 3,
"1 Ky o oy 1iky
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Now Iet L and U be overall eharvacteristie length and veloeity,  Let 5, and §, be the

m

thicknesses of the reaction zone and of the mixing region respeetively. We could show that

~

for low Reynolds number, 3, 1. while 3, « [ D, LU Tor lavge Reynolds numbers.

The mass fractions just at the outer edge of the reaction zone will be of order 6,5, Thoe
sime order of magnitnde will be valid inside of the reaction zone.

Let us now introducee the non-dimenxional variables w8 Wiy (o) £.(5,,70,0%, Dy
steetehing the coordinates, mass aetions and reaction rates, so ax to make the non-dimension-
al Taetors and terms ol order unity within the reaction zone.  For the remaining variables
we may use the simine non-dimensional varviables used in seetion 11,

We will weite the governing cquations in ferims of these non-dimensional varinbles,
Now, if the terms accouniing for the conduetion and diffusion normal to the fhune are going
to be of the order of the chemieal production term, 82§, Dyl

IFwe now take, in the energy and diffusion equations, the limit 5.3, -0, most of the terms
in these equations drop out. Weare left with the ToHowing differential equations:

1 0 0K, "w;
(l’l' 6_/;)

o dy

4
v

1 2w o TR
o Oy (-I’r oy ) O
that we have written in dimensional form,

From the momentum equation we deduee that the vavintions of pressure across the
reaction zone are of order 1.,

Henes we may assume, when weiting the equation of state, that the pressure is constant
seross the reaction region and equal to the value obtained at the flame with the Borke-Sehu-
mann assumption.

Therefore in addition 1o the above conations Tor K 0K, and ‘T we have the equation
peey o TRM
where peetis a known function of -«
Al<a
wLoeoowy hofptey RT exp  — 1 RTIK K, |29}

orwe may use the general exprression [T for wy as is done inappendix A

S
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No derivatives with respeet to e appear in system [26] to [29]. Therefore these equations
nity be solved as ordinary differential equations in which a stands as a parameter.,

As boundary eonditions we will write that when y--» - ¢ the temperature and mass
fraction distributions coinecide with those obtained by assuming the reaction rate to be
infinite,

IN2. The Solulion of the Clieiiical Boundary Layer Equations.

oy
By introducing the new variahle y,:/ (o/e) d g, i we assume that ppo=p,p, equa-
0
tions [27] and [28] may be written
d? K, 1 ey
R i 130]
Ay by o
d'r [T
L. [31]

dg Dy g
From equations [30] if we take into secount that wy=vw, we got
K- Kov=M\y . B, [32]

Similavly, from [30] and [31] we obtain

Ky Tr=—=A,y, o+ Dy [33]

Kow - 1%  Aywy 0 B [34]

Relations [32] to [34] are independent of the ehemieal reaction rates. However, they are
only valid within the reaction zone. The constants AL B, must be chosen so that these
relations eoineide with the <similar reliations obtained from the Burke-Sehumann solution, at
lestst foar low values of . Then, velations [33] and [34] may he written,

K val " v );l
N == R i
' ! IS 2 Do I o !

. (35]
. o s . v m
K, T, ll Yy K ) b .u.l
! snd M 1)y

-\ ———

Where

S Koty - K . oK
U R O 5 ) and  wm(r) ol) ! .
!/ ! v dl/
Hly- o

Koo v Ky,

sometimes ealled flamie stvengthe ix the inass eate of Tuel comsamption per unit fiame surface.
Also we may write o, Dongry=3, () where 46 is a mixing Jayer thickness.
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Now, by using expression [6a] for the fuel production rate, equation {31] takes the
following form:

.

(i3} M P 1 16, 8, 1—8 1 [
AV i L ot e “1 —04 "L“ 1—0— (T;—ﬁ-;“—) {’L] [36]
’11”, 1)0 tc Pa 0“ +0 ! 14 0“ 00 *—ﬂ l\:.'l‘ 0, . lf’ I\‘.’n om

where f,==¢,T,iq and §,=Ke¢,/Rq is the non-dimensional activation energy of the reaction.

By solving equation {36] with the boundary conditions K,=0 for y,—ew and K,=0 for
> — 2, we obtain the temperature distribution within the reaction zone.

IT the reaction rate is sufficiently large, the temperature will not deviate appreciably,
within the reaction zone, from its limiting value (when £—0) =1 at g,. 0.

Then a good approximate solution of [36] may be obtained by substituting the factor
0 I—H

(‘X])} “

L4 b, 0,000

hy its value at y, =0, Let 0-=0,(r) for y==0. Then woe approximate oquation [36] by

10 VIF p 1, h,oo1-b, ; i ;
‘ - M ) exp Y. (Ii —hy Y j,‘ ll%"' (” _ "' ) .\/: I [37]
(I!lf l)u’.- DPu G100, ! o, 0, ”4"‘ K;m 9, I/’* l\mn 9,
Thix we may write in the form
3
Do gt 2? [38]
2z

and the boundary conditions are:

Here
p T v 1 Wy W
3=\ A1 0 ( S f*) I o oa= 39
\ l K,, 2175, , (3]
where
T A B R 40
AT S Xp {—
"D, py b, e ti6, 0,109, 140]
o 1), < pa Oy 18, L RN
[ Lo =5, It — " WY * . 41
" w hn v op L, ex] [1 0, 6,104 (41]

Equation [39] was solved numerically (15).  Its solution

"4’:[‘7(‘:). [38"]

ix represented in Figo 2 with a xolid line.  In particular 3(o) 0866, An approximate
sohution is presented in Appendix A,

e e e e s e
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Fig. 3 shows the variation with 2 of 3?22 which is proportional to the fuel mass
consumption rite per unit volume. For r=3.2 its value is roughly one per cent of its
maximunm value at 2=0, Henee we may conclude that the thickness of the reaction zone or
chemical houndarvy layer is of the order of 635,

According to [38a] the temperature at the ideal (Burke-Sehumann) flame surface position,
¥, -0, ix given by the following velation

0.87
N [42]
vaA

0 ==1—

o

A first approximation for 0, is obtained by writing 6, =1 when evaluating A, Then 0, is

given by

O.87
bomt— L [43]
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where
. )G h o3 1D,
Ag=4vT/* L =4y L Pl (44
2o Dt Pa il
A second approxinuition for 6, valid for values of 6, >0.8 is
0.87 n - 1-—8, 0.877
R FETR A [45]
\ A, 31 0-0,) \ A,
Similarly
9
3.5 Log—n). [46]

R

IN.S. Discussion of the solulion.,

Relation [H5] shows that deviations of the temperature from its asymptotic Burke-Schu-
mann value O:=1 depend on the paramceter A, This parameter incorporates both thoe
chemieal kinetie parameters (through the value of the eharacteristic chemieal time £) and the
fluid mechanieal pavameters (through the mixing time £, (e)==85, (). Do) N~ 1AL

The obvious result is that the deviations of the temperature and mass fractions from
their limiting asymptotie values inerease with deereasing values of the vatio 1,/ Now ¢t is
fnversely proportional to the fuel rate of sapply to tie fune w. Henee we deduee that by
inercasing the fuel rate of supply, the flame temperature will decrease,

The initial el minl oxidizer mass feactions influenee the results through the factor T
thiat appearsin L By diliting the fuel or the oxidizer we get larger devintions from the
Birke-Selinmann result,

Relation 6} indicates that the thickness of the reaction region deereases with inereasing
valdues of the mass vate ol fuel supply.

IYor this chemienl hboundary layer scheme to bhe valid 5.5, must be small compared to
unity, henee the =ame eriterion may be used for the validity of the Burke-Sehumann assump-
tion winl solution, and for the validity of the ehemical boundanry fayer solution.

Obviously, the most important charaeteristies of the ehemieal houndary layer solution
and those of the Burke-Schumann solution coineide,  For example, flame loeation and the
quantity of Tuel burning per unit fiune area are the <ame in both solutions,  The chemieal
honndary layer solution, however, gives a finite thickuess for the reaetion zone, and a small
correction 1o the femperature and mass feaction distribations. This correetion ean be
evaluated very casily amd accurately in terms of the chemical kinetie parameters of the
reaction. So, the chemieal hboundary laver solution ean he of help for the study of chemieal
kineties by means of experimentation in diffusion Thunes (12), (23),

The parmneter A, that measures the deviations from the infinite reaction rte solution,
may be used Tor the determination of an exiinetion eriterion. This is supported by the
Tollowing reasons:

) Due o the high valnes of the activation energy of many of the chemieal reactions,
the chemieal praduction term is very sensitive to temperataee variations, This accounts for
the lact that Hame extinetion ocenrs ina rather sharply defined way. This may also be due
to tire existenee of some ignition temperatare for the reaction,
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1) The concept of an overall reaction rate is not in general valid through a large tom-
porature range.  Then, the idea of solving the complote exact equations, for obtaining an
<oxast: extinetion eriterion, loses part of its interest if use has to be made of some assumed
overall reaction rate expression throughout the whole temperature range,

¢} The chemieal boundary layer solution, although it cannot explain extinetion except
in a quaiitative way, can provide a eriterion for extinetion not to oceur if the overall reaction
rate is known to be valid in a given temperature range.

Whenever the parameter A, is sufficiently low as to make T.~_0.8'F, (and this occurs for,
roughly, A, 80), the thickness of the reaetion region begins to be comparable with the
thickness of the mixing region.  Then the rate of fuel consumption begins to diminish and
henee T, will begin to decvease even faster with deercasing A,

Therefore, A, - 80 may be used as an approximate extinetion eriterion as well as a
eriterion for the validity of the Burke-Schumann solution.

We have seen that A, ~ 3 Die* .. Now, this same parameter appears in the theory of
premixed laminar flames.  There it takes a value of the order of 100, that depends on tho
initial mass fractions and energy of activation of the reaction (24), when e is substituted by
the fuel consmmption ride G per unit area. Therefore an .approximate» relation may he
established (9, (10) between the value of we ot extinetion (maximum flame strengih) and @:

Moxe ~ G

V. THRE EXTERNAL STRUCTURE OF LAMINAR DIFFUSION FLAMES

Vi Large Begnolds Number Case,  Inviscid Equulions,

The ehemical boundary layer equations, governing the temperature and mass fraction
distributions within the reaction zone, have been solved in the most general ease.  Howover,
for the detailed evaluation of the solution we must know some parameters appearing there.
They inelide the mass vate e of fuel consumption per unit flame surface, and the ideal flame
tocation.

In arder to evaduate these parameters as well as the mass fraction and temperature
distributions outside of the reaction zone. the Burke-Schumann solution must be obtained
lirst.

As mentioned in the introduetion this solution has heen obtained in some particular eases,
Unfortanately, even when using the Burke-Schumann assumption of infinite reaction rates,
the resulting system of equations [21] and houndary conditions {12] and |22] is so complicated
that only a few approximate solutions exist,

Marhle and Adamson (17) have pointed out that a number of important combustion
problems may be investigated analyticadly with the help of boundary layer approximations,
Most of the solutions so far obtained make use of these approximations.  These may be used
whenever the Rexnolds number, hased on some overall dimension of the flow field, is
sulficiently large.

We will show here that, by using sone additional assumptions, a fairly simple solution of
the Burke-Schumann mixing problem is obtained
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If in system [21] we take the Hmit Re s 2, we obtain the following system of differential
equations, that we ghall write in dimensional forn:

p==sTRIM
‘.-(:;l:):“
FTr= l »
p ! [47]
FeT K=
Y | S 1
2oV Te= r-Vp
@ ¢y

The boundary couditions {22] ennnot bo vefained beeause, in the provess of tuking the
it Re vz, we dropped the higher derivatives in the equations,

However the houndary conditions [12] ean e satisfied if we allow for the existence of
discontinuitios in temperatare, mass fractions, density, and veloeity at some stream surfaco.
The position of this surfase is determined by reguiving that all the houndary conditions {13}
b sutisfied,

I we consider only low Mach number flows, them

1) The deasity, temperature and maxss factions will he constant, although possibly with
different values, on enech side of the discontinnity surfaee.  See Fig, 1.

2 Eguations [47] veduee to the system

\'v;*:f(l }
. . i ' (48]
AR AR o 1) \

1

and tangeatial discontinuities of v are allowed Tor af some surfaee, so ns to satisly the
requived botndary conditions on . The pressure must, of conrse, he continuous at the
surface,

Asan exainple, the solution of this problem for the low speed source flow is presented in
Appendix O

N2 Miving Layer Equations.

For large bat finite Reo the ddeal discontinuity suvface is substituted by a thin mixing
layer with the szme approsimate foeation.  Mthough the diseontinuitjes in the temperature,
mass fractions, ete, no longer exist, the devivatives of these vielabler normal to the mixing
Taver will bhe very large compared 1o the derivatives in the surface direetion:

In opder to study the stracture of the mixing region, we will write the system {21} in
boundary laver coopdinates. Then we can obtain the mixing laver cquations by using the
well known bowndary Javer limiting process,




— 2% —

Limiting ourselves to the two-dimensional or axially-symmetrie low Mach number flow
cases, we will write these equations in the form given by Lees (25).

o
Fo tho / ™ (o/ae)d Y '
t):
e s [49]

alte e PR d X

-

whore =0 for two-dimensional flows and =1 for axially-symmetric flows; w«,(2) is the
veloeity at the oxidizer side, just outside of the mixing layer.
By introduecing the stream funetion ¥ such that
Y ov

gk = oyt P erk — [50]

The continuity equation is automaticully satisfied. Lot
UE )= 25f(n. 5. Then wu, f(v,5) |51}

whore the primes denote differentiation with respeet to v, We will assume pp=g,p,. "Then
the mixing layer equations take the form

.4 \
2 3 o 1P

RN [T (P =tidE

", dz
.. . . ’ H2
Ky 1 PR —=tidz , K 0 [52]
™ Prflf=tid.t
Where i==1,3: j==2 on the fuel side of the flame, and i==2,3; j=1 on the other side,
The i Zs in the right hand side of the equations indicate terms involving derivatives with
respeet to =,
As boundary conditions we may write
(:31\',) dl(._.) o N
v — - - - - =
o 1 S, vy, ’
, [53a]

T R

Where 7,.(2) gives the ideal flame position.

In addition
Kpo o T=T, for 4> re
[l').ﬂ}}

K, W T=T, for v-—»>—ce |

For the solution of the above mixing problem a third boundary condition for f is
required. This should be derived from the compatibility condition of the higher order
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approximation (26). However, for our purposes we may write as third boundary condition
f(6,%)=0, because the only effect of changing the value of f(0,%) is a displacement of the
mixing laver in the Y direetion.

V3. Local Similarity Approximation.

As the houndary conditions are independent of %, the funetions f, K; and T would be
funetions only of », and simikarity would exist, if the presure gradient parameter (28/u,) duyfd &
were constant.

This oveurs at the stagnation point where the parameter has the values 1/2, for the
axially-symmetrie ease, and { for the two-dimensional one.

Similarity also exists in the constant pressure ease corresponding to the mixing of two
parvatlel stremns. Tn this case the pressure gradient term is obviously zero. Tho local

similarity approximation may be used when (2274,) du,:d 2 is a slowly varying funetion of g,

Then we may negleet the Licd.%'s in the right hand side of equation [52]. Tho resulting
system of differentinl cquations may then be integrated as a system of ordinary differential
equations,

Itis interesting to point out that the factor [T/T,- - (f)?] in the pressure gradient terni
approaches zero at hoth edges of the mixing layer.  The negicet of the pressure gradient
term is similar to the negleet of free conveetion in diffusion flames,

The pressure gradient term is neglected, without muceh justifiention, by Spalding when
studying the opposed jet diffusion flame (12),

H our main purpose ix assessing the effeets of chemieal kineties in diffusion flames, only
an approximate analytical solution of the cquations is required.

This may be obtained easily if we negleet the pressure gradient term in the momentum
equation [52]. Then it reduces to the Blassius equation

£ =0 [54]

with the boundary conditions
ftoy-—-, [ y=1. PO =)y = n,

An approximate analytical solution of this equation is given in Appendix B. The first
approsimation is

. i Lo RS
! "o, 9 wood 9 ! erf (I ‘2 'r‘)' 1561

From vquations [52] we deduace the following system of cquations
(K, Koo - Prfk, - K, ) =0 {56

(K, - T Prfk, - T =0 (57]

ety .
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Taking into aceount the boundary conditions [33b] we obtain, it Pr 1,

1.4
)

Y 7') I 8]

And the boundary conditions at v, ave satisfied identieally.

The flame surface is located at the point v=7y, where

11 Kiw  Kouiv K
- . : 549
”r( 9 "f) Kiv @ Koov (5]
and
. oK, o3 Dy tty 1 dl{,) 2Dyt L U [ DR T SR
1t == oD ) . =" . (Ky e - Kyefv) L (1)
I dy ., |2z on I, j2z 2=
So
1 L. . [t 0 tin, .
5,5 ez Bo o Rand 2y oxy 161}

The parameter A, measurving the deviations from the Burke-Schumann solution, ean now
he evaluated,  Also the temperature and mass fraction distributions outside of the reaetion
zone may be obtained from [57] and [68] by mutting K, =0 for » >, and K,=0 for y- v,

In the particular case h=1, we get f==1, and the equations may be solved oven for
f*v¢ 1. We obtain

P s
K, Koe=K,, (K,  Kuav) 1, I| | m-rl ",‘,- -,'l ;

T Ky == TE K,y l) I] ‘,l,rl 719,- _"l

162}
- o,
oDyt R I'r R
wo— " (N, - Kao ¥ —e
J2: ) 2=
P T
orf I " ‘" Ky —N,,

o2 Ky, - Koo
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Fig b Temperature distribution profiles at several distances to the initial mixing point.
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V.4, Parlicular (uses,
In particular let us consider:
a)  Axially-symmetrie stagnation poim
W U Re o . 31N \ 1in ol .
o KL :
ol D, (K, | Koo 9 iz (x|)( PR [63]
And according to | 144]
As - R UL [64)
b)  Mixing of two parallel streams
W by . . Jtio TEn
SR N _expi- . 36
b |t T R R (66]
I 8=z . . S -
R T -uxp; AT [66]
Therefore
A Ul [67]

In reference (15) a numerieal integration of the equations for the mixing and simultaneous
chemical reaction of two parallel streams of fuel and oxidizer, moving with the same veloceity,
was cirried out in arder to compare with the ehiemieal boundary layer solution,  The results
are shown in Figs, 4,5 and 6.

VI.  RisvMe

Experiments (2) and the sueeess of the existing theories on laminar diffusion flamos have
clearly shown that, in those cases where a stable laminar diffusion flame has been obtained,
the Burke-Sehumann assumption (infinitely fast reaction rate) applies.  However, the Bur-
ke-Sehumann solution is independent of chemical kineties, and does not give any eriterion
cither for flame extinetion or for the validity of the solution.

The Taet that in this solution the flame thickness is zero sugeests that in practieal cascs
the reaction zone must be of negligible thickness. making it possible to obtain a solution of
the houndary Jayer type including the effeets of chemieal kineties,

At each side of the extremely thin reaction zone, chemical reaction effeets are neglected
as compared with conveetion, conduetion, and diffusion effeets, The reaction zone reduces
to a flame front of negligible thickness, which aets as a sink for the reactants and as a source
for the heat and products evolved in the chemieal reaction. The loeation of the flame front,
rate of hurning, and temperature and coneentration distributions in ihe exterior of the
reaction zone are determined by using the Burke-Sehiumann assumption.

in order to analzy e the structure of the burning zone we may negleet in it conveetion
elfects as compared with conduction, diffusion and chemical reaction effeets. The equations
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governing this chemical boundary layer are ordinary differential equations with boundary
conditions determined by the Burke-Schumann solution.  Temperaturves there are elose to
the adiabatie flame temperature, and then an overall kinetie seheme applies.

The eriteria for extinetion of the flame and for the validity of Burke-Schumann as-
sumption approximately coineide, and may be obtained by solving, onee the Burke-Sehumann
solution is known, the chemieal boundary layer cquations.  This solution also provides the
temperature and concentration distributions in the reaction zone.

If our main purpose is the evaluation of the chemieal kinetie effeets in diffusion flames
an approximate solution of the Burke-Sehumann mixing problem will he sufficient. This we
may ohtain casity for farge Reyvnolds numbers by uxing well known boundary layer ap-
proximations.
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APPENDIX A

In this appendix an integral method for the approximate solution of equation [31] is
presented.  Wo will use the same approximations as those used in obtaining [37] from [36].
We will consider the more general mass production rate expression given by {7]. Then, if
relations [35] are taken into aceount, by taking [7] into [31], we obtain

20 yl,'l\tu iho 5 v i | 1 v " o
e Tt —0 ST —e— . ! . A1
d”i‘ ”u [4- F l\;‘l) '\?," | I ("[‘ K._,. ) Bm l lt ]
Where
T.. — K T T,
— .q(“, » “xp‘\ L |
g (T pa) I RTy, I §
and
[ "=y (Tppdexp  ERT [A.2]

Here, however, we will not choose () as the temperature at g, ==0, but as the tempera-
ture at a point that we will determine Iater on,
By introdueing the variables

1
Ay
l 5 ' \ v ! i
T N VTN ( o ) % A3
. l)“ "' ! ’ ' l\‘.’u ‘-)'l‘l' ()m I ]
1
] . a o by
PN 0
< 4 14 Ad
2 I " b, A4]
cquation (A1 transforms to
d*3 . 3
Lo @) [A.5]
d =
That must be solved with the bonndary conditions
;1 B t) for R

In order to solve equation jAS5) in an approximate way. we will use the following
integral method,

If z, is the point where
may be written in the form

37 reaches its maximum value, the right hand side of equation [A.5]
(3 203 e e
Where

3,00 51 aid hizy =k oz e
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Negleeting higher order terms in the expansion of h(2) in powers of (z— ). equation [A.5]
may be written in the approximate form
d?3 . N
dz? B2y e M {A.6]
The constants 3, z; and b will be determined as follows:
a)  The solution 3(2) of [A.6] should satisfy the following boundary conditions for 3(&);
nately #-»+1 for 2> 4.

Then
chE gy ) i z
I « u;:" dz==2=(}, m:l)"(pl'i':l)hf"z’k -2
or
. . . 2k
[RIEIEE L A S — [A7]

=

and integrating [A.6] between 2, and o, we get 3,=0 (*).
B If by means of the relation
2 3 2A L2 (o =)
(B Lo e (A8]

we define 3==3(2). then we will choose the paramoters 3y, 2, and & so that the following rola-
tions hold:
=0 and By B2 @2 [A9]

Irom relation [AR] we deducee

a—1)  bE-+1

—2hN e zy)

Bz pts
g A by ay 10 b(E 1R
pox 3z (32 (R
In particular for &= 5. we obtain '
a b
. e, =) [A.10]
RIS e
2a a !
R K T [A.11]
DI (G- 24P (312

*y 1 in addition use would be made of the houndary condition 3+ : =0 for 2. » .. %, then

Bkl =@Mt g0

and
E= 5 - rerlk: [kl— V1 exp- k2!

which is also o fairly good approsinte < Gution of e puation [A5].
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From {A.10] we deduee
. b—a 5 24 5 2a .
1T bta P [ REES b 3 A Vfilirb Br. [A.lZ]
Then from [A8]. [A.11] and [A.12] we get the relation
a o\ 2h N at b («--b)* 1 = 2a \* 2h 3\,
( ) ) ( ) ) 5 3': iho ) — — ( ) ( “, ) 3-(u+h) [A\“}]
aib a b kN dab 3 2\ tb a-tb !
that has the solution, it 1/« -} b 1 ¢)=s,
W wih | ) o 7:(‘;717;)* ) ¥
=y l za*h® (l R [A-14]
Now 2y and & may be determined in terms of 3, by means of the relations
b, |z ( 2 )( 20 )", O
hEEE K : == gu b, TA15
T g ! wid k 2 \a-i-b/ \a b o tA.15]

As an approximate sofution of equation |A.1] we may use either the funetion

3O % e mperfhe oz (=R expl ATE -2 ) [A.16]

oblained by integrating equation 6], or the more approximate, but also more diffieult to
evaluate, funetion 3(z) solution of the algebraie equation [A8].  In both eases the paraneters
Boo s and kare as given by [A 4] and [A15).

In ovder to compare the above approximate solutions of equation |A.5] with the exact
numerical solution, we consider the particular ease « 1. 6=1. Then

ﬁl ::(l.&?. = O, k 067 [:\.171

and
=087 - rerfO672 OB4[1 -exp (L6722 |-\.18]
o[ uT6exp (06727 A1)

The approximate solution 2(z2) has bheen plotted with a dashed line in Fig. 2 to compare
with the exaet =elution deawn with a solid line.

Going back to the geneval case m which a and & are not neeessarily one, let us choose
the temperature at the point 2, as the temperature used in approximating equation |3t].

Then from relation 3] by making & 50 we wet

N2

5 S 2,7 -
ol '/.«..-.u,;l S . ), l [A.20]
T, K. bl

b et
| b/ 1

This is an algebraie equation for b
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Again a first approximation to the solution is obtained by making 6,- 1 when evaluating
%{x,8). Then relation [A.20] transforms to

[A21]

whoere

() fova ! 2T b—a |vs
Ag= 4+ L, DT 1~'( *“) I%
) v Dut, (u )? I;| Koo bla
and
L, )==1 o p== .

A second approximation, similar to 45, may be obtained for 6, without major difficulties.

APPENDIX B

n order to approximately solve the Blassius cquatio
In order to a imately solve the Blassiu uation

[N =0 [B.1]

with the houndary conditions

[{e) 1. [l-=)=n  floy=0,
following Meksyn (27) let us write equation [B.1] in the form

I ay _,

r = f= gy 2- 7* - 92

LA RO [B.2]

where a, = f'(0) and a,== f"(0) are assumed to he known,
Then by integrating [B.2] twice we got

[ uy=ua, [llvxp; ({:' FANRE (:: v,"»l,—m)fdn. [B.3]
0 2

As the shear stress deereases very rapidly with inereasing values of |7}, we may expeet
that most of the contribution to the integral [B.3] comes from those low values of |y|, for
which f can be well approximated using only the first terms in the power seories expan-
sion [B.2].

If we write
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then

EYs ay 1/2%
} 12+ (1 a, 12+ ) R . (B-4]
| = e U l w Tfo Tor 0]
| Then the integral [B.3] may be evaluated and we obtain
i , -- 2 a,
1 fl=a,+ l'.)(; llzm‘”r - L":W_ (I—e=7) 4 ]' TI>0‘.
: =M o
1 a, |7 orf] <4 12a, ( ¥ 0 (15
| oty — - |IEerfle AT (e ) 0}
| [=a 12a, 3 ] =
i If wo now make s— + 2, we obtain
‘ a, 1= @, D)

==~ = - |1, i D
o, { l"| i 9 3”?:/2 l = l I
[13.6]

oy !

Y= t, l T 1 (t, )
; ' |ay 2 b o3ai? l b

The sories in [B.6] may be expeeted to converge very rapidly.  Keeping only the first two
terms of the series expansions appearing within brackets in [B.6). we get

o) -
i b= ' - o, ]
o, (
and B.7
S R TRt \ 17]
“, - I .
2 l 22 3z (l i L)
that may be approximated with less than 47, evror by
Ton]. 2 g1--nye
LR L :;.-.(yh)l )
T 1 1 |l;'\‘]

T L e

Now by means of relations [RS8 the solution [B5] may be written up to the second ap-
proximation. A first approsimation is
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APPENDINX ¢

Low SPEED SOURCE Frow,

The laminar diffusion flame produced when a point souree of fuel is immersed in an
oxidizer stream has been qualitatively diseussed by Penner (28).

Let the density and temperature of the fuel Jeaving the souree be equal to the density
and temperature of the oxidizer stream, 1 M is the mass vate of supply of fuel due to the
source, the veloeity distribution is given by

. , M .
» \‘(lm.xm 4:%-‘,_]') [C.1]

where 7y==]w? - w2 a2 and the oy axisis in the free, oxidizer, stream direetion.  The source
ix Toeated at the origin and U is the free steeam veloeity,

The strsum surface that separates Tuel and oxidizer is easy to caleulate, and that has
been done elsewhere.  In partieular, the radius ol curvatore at the stagnation point is

| o8
"":(4:,...1'1 ) . €2

Then A, at the stagnation point may be evaluated by nsing relations [44] and [63). We
obtain

Moo
‘\u I . " l( "31
'.h‘_"
o U3
Therefore the eritervion for either the validity of the Burke-Schumann assumption or for
extinetion is practically independent of the tramsport properties.  They enter only through
the values of Prand Se
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