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An analytial study such as the one here presented Is of
pracLical vulue only if it can be readily used to obtai.n
il erical results. This analysis escapes the fate of being a
mere mthematical exercise because Dr. Joshua B. Greenspon, of
J G Engineering Research Associates, Baltimore, Maryland, has
applied to this analysis his vast experience in evaluating the
comlicated integrals chtracteristic of radiation problems in
cylindirical coordinates. These qcuantitative results vill be
presented by Dr. Greenspon in a companion repart: "Axial'y
Sy~tric Green'o Functions for Cylinders." Drs. Alexander

SIlb4Ver and Rnltd G. Eichler of this firm contributed useful

I
I

_., , i ,



4-

ii

I

The radiation impedance of cyli..Irical sound source of
finite length can be expressed as the sum of tVo co=ponents:

I
Z r + Z

where Zr ir the impedance evaluated bý nmans o' the geaarasy
used technique originated by Robey, which assrmes that tee radi.-
ating surface is bracketed betueen two rigid semi-infinite cy-
lindrical baffles. 2., is asoocicted with the radial velocity

distribution a(z) over these wao semi-infinite cylindrical sur-

faces and is therefore in the ,.ure of a correction factor to
Pobey's impedance. C(z) is an mknova function which satisfies
a non-homogeneous Predholm integral equation. A functional Jfc]
is contructed which is stationary and proportional to Zj for the
correct solution a(z):

I u8[=c/6 = o, ZO, = j[Cl

From this variational principle a value of Za is calculated by

means of a RayleJSgh-Ritz-type procedure. 1inally, the far fiel4
is evaluated. The variational princý.ple used here parallels
the levine-Schwinger principle widely used to obtain scattering
cross sections. Variational solutions are presented for solid
and free-flooding cylinders for axisymetric and for arbitrary
velocity distributions. A variational solut.ion iz given for
"squirters" of finite vall thickness, but It is rez .ricted to
thin walled transducers. In an Appendix, non-variational solu-

tions of the integral equation for a(z) are presented for
"squirterr" of greater %%ll thickness.

In a conpation report, the procodures developed here are applied
to t'ie evaluation of the self- and mutual-radiaticn impedances
of e..eents in an array of coaxial, free-flooding axially spaced
ring transducers. Dr. J. S. Greenspon, of J G Engineering
Research Associates, evaluated the inverse Fourier tra for-rs
required for these solutions and obtained quantitative results

which he will present in a separate report.
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(Alternative subscripts, v1z U, are used to condense tvo equaticns

into one, the upper subscript on the left side of tCe equation bling
associated with the upxner signa and subscripts on the right side of
the equaticn, and vice versa.)

a radius of cylindrical scurce (Fig. 2); naan radius of rsquirter" (Fig. 3%
aia° 0inner and outer radius of "squirter," respectively (Fig. 3)

c sound velocity in fluid meditin

Gij~ ,,g 1 ,G1+,G1 ,'(z-z'), ancm H(z) Green's functions anC related ct

defired in table 1, p. 1

H Hankel function of the first kinz,, of order a (with this notation, a
m massive reactrace is negatiie)

h hbalf thickn-ss cr "squirter" (Fig. 3)

j Be'sel function of order m
m

k wave number, equal to W/c

k r radial wave number, equal to(- z
XZ axial %mve number

L half length of cylintrical radiator (Figs. 2 and 3)

p sound pressare

r,es,z cyliwdrical coordinates

R,O spherical coordinates

U radial velocity amplitude of cylindriml source (pig. 3)

u(z) radial -eloc-ty distribution on cylindrical surface (ra), positive
outuard (Fig- 3)

z radiation iopedence of cylindrical source in units of force/velocity

equal to (z +za ) (-Rig. 2) Hbysndl ~ frihc
7, raAetion impe.ance obtained f Robey's model (Fig. lb) for wich

a(z) = 0

Z,, correction fact-or associate w ith vaiveity distribution Ca(=) and to be
-dded to Zr (Pig. 2)

cr(z) rad~al velocity Iu the region& , z > L (Fig. 2) normalized to velocity
ampistude U of cylindrical surface

0 Poisson's ratio of transducer cmterial

0 density of fluid medium

Svelocity potential (outward velocity Ls -6,')r); subscripts "i" and "o"
refer respectively to reggion r < a and r > a

Scircular frequencj [haermnmic time dependence factor exp(-iwt) whict multi-
plies the velocities and the potentials, has been suppressed throughout
this report]

*M7•r syols are defined in the text.
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Table 1

GEM'S MICTIONS AKD JAM lAM FCTIO• S

Syaol Equation Regioa Sound Source Configurdtion Descriptiun
where to lich Ap-plicable
Appli-
cable

3 (r,a,z-z') IV.1 r > All configurations with
axisysmetric velocity

,_distribution General form of

_V. axisymtiG.(ra,z-z') -V.2 4 r < a Free-flooding cylinder with ns metric
Waxlsymetric velocity Oreen's function

distribution

go(rs,z-z') IV.6 r > a All configura•tions with Even component of
axis.wmetric velocity dis-
tribution symetrical
about z = 0

g (r,a,z-z') VIIL. r < a Free-flooding cylinder with Even component
"axisym-etric velocity dis- of Gi
tributifi syetrical about

G.+(r,a• XV.3 r < a Green's function

z-} and 4 z > L whose normal de-

Solid cylinder with rivative 6/,)z

axisycetyie velocity vanishes on end

distribution cap z = L

"G i(t,ea IV.3 r <a Green's function
"- z-z) and 4 z < L whose normal de-

rivative ý/Cz van-
ishes on end cap
z -L

G Go(r.•l x.4 r > a
SCylinder with arbitrary General form of

___ velocity distribution ex- non-axisymnetric

Gm(ra -.6 - r <a priessed as a Fourier series Green's function
in .< (Eq. X.1)

r(z-z') IV.ll r = a Solid cyliuder

VIIM.I.a r = a Free-flooding cylinder of Linear combination
and vanishing wall thickness of Green's
Vm5_I_. ___functions

IX.l4a r = a "Squirter"

O(Z) IV.8 Solid cylinder

VII.4b Free-flooding cylinder of Integral of Green's
vanishing wall thickness function over

IX.l4b " Squirter",rd~i ufc
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I. Scope of Study

In this report a variational technique is used to derive expressions for the

rae-ation loading of radially pulsating cylinders of finite length. End effects

are accounted for, no restrictions being placed on the circulation of the acous-

tic fluid around the edges of the cylinder. The far field potentials, on the axis

of the cylindrical radiator and for other bearings are also given. The analysis

is parformed for (1) a solid cylinder, (2) an open-ended, free-tlooding cylinder
of vanishing wall thickness, and (3) a "squirter" of small, but non-vanishing

thickness-to-radius ratio. The final section presents an extension of the E l-

yais to cylindrical radiators embodying an arbitrary, non-axisymmetric velocity

distribution. A non-variational technique presented in Appendix B extends this
study to "squirte,.. o- :i-rger wall thickness.

With the present approach, the need for machine calculations has been con-

fined to the evaluacion of Green's functions in the form of Robey's integrals.

As mentioned in the acknowledgment, these integrals are being evaluated by Dr.

Greenspon, J G EngiLeering Research Associates. The technique developed in this
study has been extended to the evaluation of the muxtual radiation impedances be-

tween elements of an array of free-flooding ring transducers.* Numerical results

for this configuation are also being obtained by Dr. Greenspon and will be in-

cluded in his report: "Axislly Synmetric Green's Functlons for Cylinders."

I. A Review of Published Analytical Approaches to the Finite Cylindrical
Radiator

The fluid potential I generated by a sound radiator is given by the familiar

Helmholtz integral equation

S

OThis analysis will be presented in a report to be published in March 1964,
"Mutual Radiation Imp.-dance fo- Spaced, CoaJial, Free-Flooding Ring Transducers,"
CAA Report U-178-48, Contract Nonr-2739.

II i l •II '•I • rlI! I I ' ~ll l • I I



where S' is the radiating surface, and n" is the outward normal to the surface of

integration. The first term in the integrara can be readily evaluated, if the

normal velocity u•#), of the radiating surface, which equals -•*/', is known.

The a•econd term in the integrand involves the unknown potential on the radiating

surface, *'). We mst therefore, in general, solve an integral equatior, to ob-

tain this potential. Li the last two years, the gennral availability of large,

digital computers has made it practical to use a finite-difference meth.-o to ob-

tain n-."erical solutions of the Helmholtz integral equation for the finite cylin-

drical radiator 2 ' 3 (Fig. la and the Table on p.3). The drawback of this approach

is that the large computational effort involved nst be repeeted for every combi-

nation of length-to-rediu$ rati., of ka, --d of surface velocity distribution.

Another successful approach to the finite cylinder problem, which circuavents

the Helmholtz integral equation, uses an expansion of the potential in spherical

wave harmonics. For this approach the volmae of calculations is less than for

the finite-difference approart described above. Thus, approximate results were

obtained in ref. 4 without the help of electronic computers, by confining the

series expansion to only a fev terms. For practical applications, this method

also requires computer facilities.

An approsiate method which, historically, precedes the approaches describel

above, consists in constructing a Green's function whose derivative W/f& * van-

ishes on the infinite cylindrical surface r=-s. If we nov prolong the cylinzdrL-

cal raaiator by two semi-infinite rigid cylindrical baffles of the same diameter,

the surface integral in Eq. 3l.l is confined to the cylindrical surface (Fig. 1b).

Over this surface, the second term in the integraed, which involves the unknown

potert'al, bas been eliminated by our choice of the Green's function. We can

therefore obtain an approximere expression for the potential withnut having to

solve an integral eqt.I'a*:

+• .Iu(R')G(-R,'f') ,S' (..,

With this approach Laird and Cohen5 derived an arilytical expressicn for the far

field potential, the integrals being evaluated by the method of stationary phase.

These integrals, which for the axisymmetri•, velocity distribution are known as

Robey's integrals, m'.t unfortunately be evaluated = rerically if the potential

on or near the radiating surface is r-.quired.6 Greenspon has simplified the

technique for p.srformang this inte•ration.7 He and Shorsan also evaluated these

2
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integrals for non-xismmtric velocity distributions.8 The dravback of Bobey's
msthemtical model is that it does not prmxit circulation of the fluid around the

edges of the transducer, because of the assumption of two semi-infinite cylindri-

cal baffles. Neither does this model lend itself to the evaluation of axially

vibralting solid cylinders, or of the free-flooding open-4ded cylinders known in

acoustical vernacular as "aquirtcirs.' Bobey originally approximated the radiation

loading or such free-flooding tranducers by assuming that the fluid column inside

the "squirter" is terandnred by pressure-release pistons.9 He then refined hi3

analysis by as,3ming the terminal impedance to be that of ; piston in an infinite

plane baffle (Fig. lc).
In summary, existing analyses use either a largu computational effort which

must ba repeated for every particular combinatioa of sound source parameters, or

an elegant approximate technique which, however, does not account for the circu-

lation of fluid around the two extremitl-i of the cylinder.

III. Des crIntion of the Pres=nt Approach

The prescnt approach ,ak'ts use of a Green's function similar to Robey's,

tll a. eliminating from the lelt~aoltz equation the term containing the potential on

.he cylindrical surface r=a. Ebwever, instead of assuming the source to be

bracketed by rigid bEffles, the potential is expressed in terw of an unknown

radial velocity dstr.butian, a(z), over the two semi-.infinite cylindrical bound.-

aries prolonginG ';he sound source (Fig. 2). The potential in the cylindrical

column in the rX=on r < a is then foromuated with the help of a suitable Green's

function whose normal derivatie vanishes on the boundary r-a. The potential in

this cylindrical region in also expressed in terms ot the uinfown velocity distri-

bution a(z). By requiring continuisy of these two potentials across the cylindri-

cal boundary r-a, z I > L, as: integaal equation for a(z) is obtained. If we coo-

pe-e this formulation to the free-space Greet's function form2nAtL"a in :ef. 2 and

3, we see that te miknowwn function a(z) and the surface r=a, jzI > L take,

respectively, tle place of fCR') and of the radiator suefacm. One advantage of

the present asppoach is tAt a givea error in the expression tar a(z) can bc ex-

pected to resul• in a smallaer error in the rf- listion i ance t Vould result

from a sinjrl error in O(Pi') in ref. 2 and 3. The prielpal advantnne, however,

is that this pproaclh len4a itself to an apprvcxinte varintiom 1 solution both of

!4



the solid and open-ended finite cylinder.*

The radiation impedance Z can be written as the sum of the impedance Zr ob-

tained by setting a(z) = 0, and of an impelance Z. associated with C(z), the

rC

un oavelocity diLstribution lin the region Iz j > L"

z =Zr 1*za (z--'l.1)

Za is thus in the nature of a correction factor to impedances computed by Robey, 6

dreenspon,7,8 and Sherman8 from Robey's mathewatical model. By virtue of the

variational principle to be derived in Section V, for the correct solution of the

integral equation a(z), Z is proportional to a functional J(cz] which is station-

ary with respect to first order variations of a(%):

ha al 0 ( M -.2)

Purthermore, J[a] depeads on the functional torm of r(z) but not on its amplitude.

The technique for computing Zu is similar to the Rayleigh-Ritz technique for

evaluating the natural frequency.

This approach jareflel the use of the Levine-Schwinger variatiosal principle

fo•i! oca 'ering cross savuida•, wbich has bee- applied to a large number of dlIf-

fraction prcIlea.12 The equivalent prin,'7.e for radiation impedances Is proved

in its general form, usirg free-space Greer's functions, by Morse and FeshbJch. 1 3

These authors do not, however, use it to olve &ny particular prob.Le,4. tpparent-

ly, only Storer applied this principle to a specific problm, viz. ti, effect

of a finite circular baffle on the radiation loading of a coaxial antemb. In

1954, Professor Storer, of Harvard University, sugosted to the author of this

report that the axisymetrically vibrat.ing cylinder of finit length could also

be anmlyzed in this fashion. Consequently a rather sketchy variational soluti-n

*A rigorous Wiener-Hopf type solution of the integral equation is nossible for
semi-infinite cylindrical radiator problems formulated in this fashion, accord-
ing to Levine and Schwinger.1 1  M=- authors mention this formulation as an al-
ternative to the one they actually used in their analysis of sound radiation f.om
a semi-infinite pipe. Levine,' 2 g extended this study to pipes of arb.trar7y cross
section. One of his approximations for the reflection coefficient i2 obtained
from a variational solution of an integral equation (his "variptional principle A")
"appliable over the semi-infinite cylindrical surface extecling the pipe, and is
therefore of the form of the integral equation uzed in t1-is report.

5



of the solid cylindrical source was presented in an internal memorandum of the

Harvard Acoustics Research Laboratory.1 5 A detailed analysis vas not carried out

because numerical results depended on the evaluation of Robey's integral, which at

that time was not available. Since, as mentioned earlier, sach integrals cn now

be readily evaluated, and ziw,- Dr. Greenspo= tinly egred to apply his e•peri-

ience in this type of calculation to the problem at band, it is now worthwhile to

use the variational formulation to obtain a solution to the finite cylinder

problem.

IV. Integral Equation For=Uatio• of the Solid Cylinder Problem

The infinite region surrounaing rhe cylindrical radiator is subdivided into

three regions (Fig. 2): an outer region, r > a, identified by subscript o; and two

semi-infinite inner regions, r < a, one corresponding z > L and Identified by the

subscript i+, and a second inner region corresponding to values of z < L, Identi-

fied by the subscript i-. The Green's fiunction for the outer reagion stisfying

the condition aG/ar*=O fcr r*=c, Tas con•tructed by Pobey: 6

1 H(krr)

Go(r,a..z-z') f . r1j!('rr) exzItkC(Z-Z')] dkz (xv-i)

The evaluation of G0 is the subject of references 6 and 7. Since Z k (2

functions or tr in the integrend are even in kz. Hcnze, only the real component
of the exponential functioa, coslk zCz-z)] contributes to the integral. The sawe

coo t applies to the Green's function for the infinite cylindrical region r I- a:

.- ; G(krr expt .,.-z')] di (xV.2)

!lds function is dsrived a3d evslubted in Appeulb A.

In the -ase of thn solid cylirdrical radiator it is convenient to combine two

Green's functiona of the form of Fg. ZY.2 so that the normal derivatIve of the re-

sultanz Green's function vnanis'hes over the end cqps of the cylUrder, I.e., in tae

two circular regions r < a, z ± +L. This rill eliaite the potential term from

the Helaholtz Integral ovar the ent csps, as well a3 aveer the cylindrical surface.

S! !! alr l! !] ' ;l]l •'•a~l~ l"II • "II am•r lin mi •-• !•u! !':!!•6



Such Green's functions are readily constructed by introducing image sources:

Gi~(r,a,s-z') = G.(r,a,z-?/) + 4 -2(r,a,zz'-L)

Gi(r,s,z-z') = G (r,a,z-z') + Gi(r,a,Z+Z'42L) (V.3)

These Green's functions can be written more concisely as*

G (r,a,z-z') = 22 krTo(krr) coS[ks (z')..(-.)

ita kri (Ica) cosa((Z*L)]eos(kzz!Ljk

We can now write the potentiels in these three regions by making use of the modi-

fied Helmholtz integral in Eq. 11.2. If we assume t.At the end caps are rigid,

the surface integral reduces to the cylindrical surface:**

=o r,-) 2xa f u(z')G0(r,a,z-z') dz' (IV.5a)

+.

Su(z')G (r,a,z-') + Gi(r,a,z+z' ; 2)] dz' (IV.5b)

The time dependence of u(z*) and of the potentials is harmonic. The time-dependent

function exp(-iwt) has been umitted, for the sake of brevity throughwut this

report. These integrals are of opposite sign, because P/an' in the Helcholtz

equation equals -6§oar=-u in the outer region, and +ZO./ /r- -u in the inner region.

With this sign convention, the sound pressure equals J4. If the velocity distri-

bution of the radiator is tymnetrial about the plane z=O, the two inner regions

will have identical potentials and we need concern ourselves with only one inner

region which we -ill designate by the subs-1ipt I. Fbz the case of a syFetrical

velocity distribution, only the part of the Greez's function which is symmetrical

*Here, end elsewhere in this report, alternative subscripts and signs have been
used, for the sake of brevity, to condense two equations intfo one, the upper sub-
script o the left side of the equation being associated with the upper sign on
the right- side of the equation, and vice vers&.
"•In section X expressions ure givcn for an arbitrary telocity distribution over

the radiating surface. The potential contributed by vibrating end caps is given
in Eq. X. 1and 8.

7



atcut z 't0 eo _lbribtes to the potential. We viil. aenoto this even component of"

G0 tyg0

g 0 (r,a,z-z') f HrjI,7. co, ky& cos k~'d.s (IV.6)

We further specialize the problem by assuming that the radial velocity of

the sound source is consftnt and equal to U. u(z') is therefore a rkn function

for iji - L. The velocity distributica along the cylindrical boundsries

z > L, r=a, is An unknown function, say UX(a). Mhe integrals for the patentials

nov bemuse

§r(rz-) -2(r,,z-z) + dz' W-70

L

f (r,z) =4x Uf go(r,a,z-z') d--' + !a(z')g o(r,a,z-z') d'] (V.7b)

0 L

For the sake of brevit7 "r will from ncw on express the knawn cmpo n. of the

potential 0, -valusted on the cylindrical surface r=a, as a f.nction, say B(z),

rather than as an integral

L

3i) a lg•(aaz-z') dz' (tv.8)

We can now construct the integral equation which the unknown function c(z)

must satisfy. This integral equation is derived from the requirevnt that the po-

tentials be continuous across the cylinder boundary rma, 2 > L:

o(az) - *1(a,z) • 0, •or z > L (•V.9)

Wnen we su!7tstitute Eqs. IV.", this continuity condition takes the form of a non-

f r(s-z') a(z,') de' - -(z), for z > L (IV.lo)

L

_ . t t _ _ , . . . _ , .!



where the kernel oif this equation is g•ven by

S= g.(asz-z') + !Gi(a,a,z-z') + G 0 1 (a,a,z+z'-2L) (iV.U)

We will now show that the function c(z') which satisfies this iutegral equation

gives a stationary value for the radiation impedaz-ce, with respect to

variations 6a.

V. Derivation of the Variational Principle for the Radiation Impedance

We note Lor future use that the rewIzant radiation impedance on the cylInder

is obtained by integrating the pressure

p(a,z) = pt.(az)

= -inoo(a,z) (V.1)

over the surface of the cylinder:

z = - f4o¢(a,z) dz

0

= i(4ta)2 W J [I(z) + fa(z')gof(,a,z-z') dz'] dz (V.2)

0 L

The radiation impedance is thus clearly' the sum of two component impedances, 3z

indicated in Eq. III.1. The impedance computed from Robey's model is

L

Zr = ( Ia)2 1W IH(z) dz

LL

= "(Oa) ip f g°(aaz-z9) at, az (V.3%

Like H(z), Zr is a known quantity since it does not involve the unknown function

a(z). The correction tern in Eq. 1I.1, which embodiea the contribution of the

I

!I
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flow across the cylindrical boundaries prolonging Ue source is

i-(4a) sp', [ (z') go(a,a,L-z') dz'] dz (V.4)

0 L

Since the Green's function is syts-rical in z and z' the order of integration in

Eq. V.A can be inverted:

76 = -(4=) 2 IP f[1 0 (a,a,z-z') dz'] a(z) dz

- (4)2 H(s) c~z) dz (V.3)

A functional J[cr] will be defined below, Eqs. V.9 and 10. For future reference

we note that for the correct function C(z), i.e., for the function which satis-

fies the integral equation, Eq. IV.I0, this functional con also be written as

J[a] 4 H(s) Ca(z) de, for a(z) solution of Eq. IV.1i. (V.6)

L

Ccwparing this with Eq. V.5, we can relate this functenOM and the impedance Zo:

zog = Iwa(4,,) 2Jt[], for a(z) solution of Eq. IV.1o. (V.7)

We will now prove that J[a] is stationary with respect to first order varia-

tions 6a about the correct function a(z). For this purpose, we relate J(a] to

the inteGral equation, Eq. IV.D0. Ue multiply both sides of this equation by

a(z) and integrate with respect to z over the region z > L. We then divide besth

sides of the equation thus obtained by

(f[(z) a(z) dz]

L

Our original integral equation now takes 14ae form

10



CD .C .

SH(,z)(z) dz]2 (z) dz

L L

The functional J[a] is defii as the reciprocal of the left side of this equation:

J ax] (V.9)

where

A[Q] = fH(z) a(z) dz (V.la)
L

(a] =;fa(z) r(z-z') a(z') dz' dz (v.10b)
LL

For a function Cl(z) vhich satiefies the integral equation, and therefore t'-!-

equality in Eq. V.8, the reciprocal of the right side of. Eq. V.8 is also equal to

the J(a], as already indicated in Eq. V.6. If the functionul derined in Eq. V.9 is

indeed stationary with respect to small variations of the function a(7), then, by

definition,the increment 6J[a] associated with an increment 6(x is zero:

6i~a).f' (z) 6cx(z) dz -

Býy
[r

- a . r(z-z')[a(zl•)(z').z(Z')6a(z)1 d-' dz = 0 (v.1)
[ L

Like the Green's fmc.tions in Eq. IV.ll, r(Z-z') is symetrical with respect to

z and z'. We can therefore i-vert the order of integration in the former of the

two terms of the integrand of the double integral in Eq. V.1I. The double inte-

gral can thus be condensed to

r r -r(z~z,) (V.12)

LLt ll



From the iLntegrol equatica, Eq. IV.l0, we- see that the Integral over z' equals

-1(z) for the correct function (z). The double Integral can thus finally be

written as

Jff= -2f 1(z) 6c(z) dz (V.13)

L

When we substitute Eq. V.13 in place of the dcuble integral in Eq. V.11 and =m-

tiply the terms of this c $ation by the ratio Pe[a)]/2A[a], we obtain

jHia] + Ata}) • Hi(z) 6a(z) cz - 0 (V.l1,)

Since the Integral is not identically zero the s'x in brackets, which multiplies

this Integral, must vanish, i.e.,

B(a) - -A~c] (V.15)

When de suAstitute the definitions of these two functionain, Eqs. V.10, this

bectmes:

( (z) r(z-z') a(-') dz' dz = - [(z) a(z) dz (V.10

L L L

1Mis equation is obvioualy satisfied if ca(z') satisfies our original integral

equation, Eq. IV.I0. We have thus shown that the tunctiocal J(aL] as defined in

Eq. V.9, does indeed tske m a statioury value for the correct value of the

function a(z). Since the f.*ctional J~c] is stationary witb respect to the cor-

rect function, thee rrcr !n J[ja is of a higher order then the error in U(Z).

We shall now illustrate t•i evaluation j? the radiation Impedance by •eans

of the variational principle Just derived.

12
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I

VI. Evaluation -X the Radiatiao mpdance from the Variational Pdinciplo

We first proceed to select the simplest trial function Cr(z) which yields a
far field potential * in the desired form of a spherically spreading wave,

|i
I i,(a,z) = -A exp(ikz) , for large 1st (Via.)

If the cylindrical boundary r=a, jzI > L were in the form of a rigid pipe, the

far field potential would only decay as a result of viscous losses, as embodied in

Ian imaginary component of the wave number. The far field poteatial in a rigid

pipe can therefore only decay exponentiilly. The desired spherical spzeading

loss, Eq. VI.l, must therefore be the result of energy flow across the cylindrical

hmundary associated with the velocity cr(z). The rate of enerV ouflowper unit

axial dist-•cealong the "pipe" is

This mst balance the decrease, per unit axial distance, of the acoustic energy

propagating down the pipe:

a

U(Z C) oco 2 j~ir~ zI.j (VL3

In the far field, and for the values of kL characteristle of tranducers,

can be set equal to 0 (a,z ). We can thus replace th-e integWy in 'q. VI.3 by

al§i(a,s•/2. When we substitute Eq. VI.l for J in Rqs. V-I.2 OW 3, ve :n solvy"

for ca(z)

We thus couclude, that in the far field, Ce(z) must be- if ta,' ."orm

a'z) = x(• for large jz (VI..5)

We will ncri illustrate the use of the variatioral principle by relecting tbe

*Even for large ka, the value of 0 averaged over the cylindrical caross se-tion

is equal to a ccnstant times Th(a,z). Me functional relation derived in Eq. VI.A

therefore still holds, but the constant in this equation will not equal A.

1 13
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Since this set of equations is homogeneous, its coefficient matrix must vanish:

2(Vj-b1 Jtcz1) 2(sal 2 -bl 2 J~a])

Expanding this matrix we only obtain terms proportional to j2[ai and jraz!. The

equationq can therefore be solved for Jjaj:

JEC9] 1 2 2 1 12Y 2 (VI.12)
13.2 -1 2

- The remarkable feature of this result is that the functional is indextinent of

and x2. Like the coefficients a,,' ~21 b 1 , b2 and b12 the functional in Eq. VZ.1.2

is couplex. We see, by referring to Eq. V.7, that the imaginary component of

Jjcz] embodies the raoiation resistance, and its rez. compone-nt, the reactance.

I If we are merely interested in the radiation loading we nft-ý not evaluate the

unknown coefficients x, and ,2. If. however, we wish to compute the thr

I field potentials, we must substitute the expression for a(z) in Eqs. rV.8, and

therefore require the values of~ xl1 and x2 . The ratio of these two coefficients is

Iobtained from either of the two homogeaeous equations, Eq. V1,l0

X2 _ a2 + b1JTtIl) V13
1l Y~2 -b 2 tI

where the value of Jjcz] is known from Eq. M1~2. The coefficient~ x3. is obtained

by substituting the ratios 12/11, Jq* VI.13 in Eq. VI.6, which is then substituted

for c*(z') in the integral equation, Eq. XV.lO. Unless the functional dependence

of the trial function, Eq. VI.6, on z ic the correct one, the coefficient x I can

not be selected so at to satisfy the integral equation in the whole range IZI > L.

It is advantageous to select a coefficient x., whlch sstisfies the integrtil equn-

tion for a value of z associated with a relativ~ely large value of al(%) and herce

with a large contributioi to t~ie far field potential, vit. for z *L, say L + P:

x -H(I!!S) (vI.141 1 fr z,' (-l + ~-.L) exp(ik-'1 4%'

I L



An alternative procedure, which Lives ware nearly equal weight to the vwole region

of z where the integral equation ap~ .ies, is based on the fact that for the correct

function aCz), J[a] equals -A(C], from Eqs. V.6 and V.lOa. Hence, substituting the

ratio ,a/xl, from Eq. VI.13, and the value of J[C] from Eq. V1.12, in the expres-

sion for A[t], Eq. VI.9, we can solve for x1

-JIC,1 (V.l(5)

Experience with numerical calculationo will indicate which procedure is preferable.

To refine the selection of the trial function further, we can introduce addi-

tional unknown coefficients associated, for ezugle, with non-prop abciLg incom-

pr(ssible near field compoents of the potenlials. The trial function might thus,
for example, be expressed in terms of three coerfic Lonts: xI Rnd X. associated

with propagating components of the potentials, and X3 with an incompressible, near-

field component decaying rapidly with distance:

This yields three s~laztaneous equations of the rora of Eq. VI.8. Once again, we
will find that th se eqwaticns are linear in the three unknown coefflcientt and,

of course, homogeneous. We can therefore construct a third order determinant

similar to Eq. V11. The constant term end the linear term in Jja] are found to

cancel, leaving only a cubic and a quadratic term in Jjc]. The determinant thus
yie1ft a single root J[J]:

Jja] -%(b~b._-") t a.(blb3 "b 3 ) + s2(bjb2 -bl2) +

"+ 2a la 2 (bl 3b23 -bpb32 ) + 2 a 2a3(b32b.3-b2bl3)

"2na 23(b b,-bb P2)1 * Ebb b2b ý b t'3

- (b~b +b b2 +b b 2 1-14 (Il
i'23 2 13 3 32'

We then solve three of the set of three homogeneous equations, Eqs. VI.8, for tvo

ratios of undertermined coefficients. Finally, ,e solve for the amplitude of the

one rem•inirg coefficient by satisfying the integral equation r-t z + e ÷, or in
the manner indicated in Eq. VI.15.

16



Iif c(z) is exprersed in terms of N unknown coefficients, the functionais

Ala] and Bta] and tbely der~vati-mar I-ac = han 1Dt- form.

N

BCQ] L(bn2D+ 2 , : nmnm

N

2b x + 2 bx V.a

The set or N homogeneous linear equations frr the .Akno-a coefficients corres-

ponding to Eq3. V1.10 is of the general form

2(a -b Jjcx])x + 2 (a am-b J[OaJ)x =0 (VI.l0a)I

Whan the coefficieat marxor this set of equatiorts is set equal to zero it
wilb-found that onyteterms containing the two hig::est powers of JfCI],

N ndV-,do not cancel. When both tergas are divided by (JacD -,a lItnear

equtio inJ~a] is obtained. The Nth order determinant for Jfca] !has a single
non-vanishing root. This is consistent with the requirement that the integral

equation, Eq. IV.l0, have only o=s solu.tion.

Experience with wa~rical calculations uIll show wihether the radiation im-

pe~dance is sensitive to the seleetim~ ot the trial function a(z). If this

shoPuld be the case, the functional± Aependence of the near field potentials on z.,
particularly of the non-propagating in=cmmaeaible components, can be studied

more closely so as to constru-t a more sophizticated trial function than

Eqs. VI.6 or 6a. Theoretical insight into this functional. relation !-so bb, Rain-

ee from the fluid macbunion litera-ture dealing with accessions to inertia of

vibrating solldin. Coaparicin with the results of the non-varia ~1onal solutions

presented in Appendix B can al~so be use!d to evolve more refined expresrions ofO(ZI
The fact that J[G1 ýr referring tn Eq. V-7, Za) cen be evaluated froma

variational principle, witho.ut previously dst.emining Ct'g amplitude of' the

17
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unknown coefficlents of the trals function or(z), has alrewdy been related to tte

Lerine-Schvwnger variational principle for scattar'ig cross se•ttj% s (Sectiou III).

Awother parallel Voich my be mom.- familiar to sae readers is Zound in the

Ray~lsih-Fdtz method fo:" oatimizlng the natural frequenci-S obtained from Rayleigh'l

principle.16 In this method a tria3 function is assund for the dynatic configura-

tion of the vibrating system. The best choice of the cmefficients in this trial

function iz determined by giving a stationary value to the natural frequency oh-

tained from Phy).ýigh's principle. If N unknown toefficients are used in expressing

the trial function, a set of N linear homogeneo-w equations is obtained with the

coefficients as unknown quantities. By setting the coefficient tatrix oa this set

of equations equal to zero, values of natural fiequencies are obtained, withou,

ever baving to compute the unknown coefficie a tbhemelves. The fundamental natu-

ral ftequency* thus obtained is equivalent to ;nt .-_WczAior J•cr]. To compute the

retio of the undetermincd coefficients at that frequenqy one scbatitutes this

value of the fudamental frequency back in the set of N homogmeous equations and

solves for R-1 ratios. The amplitude of the Nth unknown coofficient is finally

obtained from an inhoaogeneoun equation of motion.

To conclude our study of the solid cylindrical radiator, we now turn to the

evaluation of the far field potentials.

VII. The Far Field Potentials

To evaluate the potential in the region r < a, z > L toU abstm.tute the

Green's function, G., Eq. IV.2, in Eq. IV.7a:

,(r,z) =2--a(--')dez'r- l f . Ir) [exp[ikz(z-zo)]+exp[ikz(z+zp-2L)]}dk~z. (VII.I)

L

For a(s'), we substitute a trial function of the fom of Eq. VI.6, with the un-

known coefficients expressed in terms of J[a], as described in Zlection VI. The

k7-integral associated with the •irst exponential term in braces in Eq. VII.1 is

*In contrast to the variational principle used here, wbich yields a single
solution ;[a], t'e Rayleigh-•itz techniques yields a nunzbT of natural frequencies
e..'ueL to the nuaber of unknown coefficients in the assumed trial function.
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is given in Appendix A, Eq. A.14. Substituting (-Z'+2L) in place of z', we obtain

the kz-integral associated with the second exponential "erm. When we add the two

integrals, we obtain

""O efik) (1k(z.)z'- J 0 0nr)

fz 4a - 2 2  J (k a)- a
.1 (0k 0 n J(na

(exp[i(k2-k2,)1k-z'j lexpi(k-k;)(+-"1 (V31.2)

where (kna) •_s the nth root of the Bessiel function Jl. The integral over 't in

Eq. VI3:l, must be split Into two regions of Integration: (1) from L to z, where

I-Z-'I is taken equal to (z-z'), sad (2) fro z to -, h-ere Iz-'I equals -(z-z').

Since even the lowest root, kja=3.83, is generally larger than the ka-value of

resonant piezoelectric or magnetostrictive transducers, the terms under the sui-

tion sign decay exponentially with increasing IZ-Z'I. Because the source distzi-

bution C(z) extends to Imlinity, these "near field" terms contribute to the far

field. By using energy flow considerations it was shown in Section VI that the

desired far field behavior of 4 Eq. V1.1, requires that the A.•nction Cx(z) embody

terms of order I zj2 and higher. The dominant, place-wave components of the in-

verse transfor?. of the Green's function, Eq. V31.2, do not decay with increasing z'.

In combination with the far 2ield term of a(Z'), these plane wave components of

the Green's function therefore give rise to a far field potential whose absolute

value varies as zIZI-2dz - 1a". MT4A result is consistent with the pot.,etial,

Eq. VI1., used fn deriving the functional form of a(z) in the far field. The

evaluation of the inverse transform of the Green's function, Eq. A.1h, is thus

*,cnsistent with the energy flow analyzis in Fqs. VI.2 to 4.

The far field in the region r > a is obtained by substituting the appropriate

Green's function, Eq. 17.1, in Eq. IV.5s:

4 0 (rz) rH lj k r r) exp[ik (--z')] u(z') dk5 dz' (v71.3)

The integration over z' can be carried out lImmediately by making use of th-u

definition of the Fourier transform of the velocity distribution u(z'):

u(k) --fu(z') e!p(-ik•z') dz' (vn.4)

19
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The expression for the potenti-a nov becomes

+ou,.,. )K 0 i (kr)(r)

0rz) f ik...(0 a:) e-p(kez) dk, (v1.5)

When the asymptotic, large argument expression for the Eankel function,

Hoekr) (vE (- ' € - (V3:1.6)

r

is substituted in the integrand in Eq. VII.5, and using spherical coordinates R

and e in lieu of the cylinder coordinates,

z = R cose and r = R sine,

the far field potential becomes

§o(RG) - ex,(.i1l) exip[i(krzsine + kcoa.)] (Vn.-)
k3 El(kra)

This integral was evaluated by laird and Cohen5 using the method of stationary

phase. Thc rt.ult thus obtained is

(o1,9.) = e xp( ,) (vII. 8)

The velocity transform u(k cose) can be written more explicitly in terms of the

trial function a(z') as

u(k cos9) , 2U•r'n(I'L cose) + fa(z') cos(kz' -osg) d-,'] ('111.9)
k cosO f

L

We now have concludeC the analyais of the solid cylindrical rad5itor. and

proceed with the open-ended cylinder.

20



VIII. The Open-Enaded Free-FloodIg Cylindrical h.diator of Vanishi
ball Thickness

We consider a cylindrical radiatcr whose wall thickness is negligible com-

pared to both its radius and the acoustic wavelength. For such a source configu-

ration we can construct a single potential ti for the region r < a extending now

fran -- < z < . This is in contrast to the solid radibtor where we had to define

two potentials i+ and 0i- each valid in a semi-infinite region. The outer poten-

tial § is similar to the outer potential derived for the solid cylinder,, Eqs. IV.5a

and 7a. The inner potential is of the form

4i(r,z) = -2sa fu(z') G 1(r,a,z-z') dz' (VIII.l)

where the Green's function G. is _ i-_ _. . IV.2. i.'?-ring this with Eq. IV.,b1

we see that the potentials 1, defined, respectively, for the free-flooding and

solid case differ as to the range of z'over whI.•z the integration is performed as

well as to their Green's functions. As in the case of G0, it is convenient to

define separately the component of Gi, which is symetrical about z =O, and which

alone contribiftes to the potential when the velocity distribution is similarly

syrmetrical:

g(raz - cos k z cos kz' d(VI.2)

Assuming a constant velocity U over the radiating surface, thts potential is again

expressed in terms of an unknown velocity distribution U a(%')"

§1(r,z) 4 - %a U[j gi(r,a,z-z') dz"' + a(z')gi(r,a,z-z') dz'] (VfII.3)

0

The continuity condition at the btundary -a. z > L, is agin in the form of

Eq. gV.9. The corresponding integral equation is therefore qiso, fo-rmally at least,

similar to the integral equation derived for tne solid cylinder, Sq. IV.0O. Now,
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hbo-ever, the kernel r(z-z') and the uon-haomgeneous term H(z) are

r(z-z,') g. (s,a,z-z') + go(a,a,z-z') (IMI.4a)

L

H1(z) = f Igi(a,a,z-z') + g0 (a,a,z-z')] dz' (VIXI.Ig,)
0

The expression for r(z-z") can be simplified by using the Wroaskian relation for

H 0and J:

1, H• o (k r) J o (k.r _,
F(z-z') ;T- eo kzz ook d

a !:.,v1(kra)• ka}dz('I•I

cos kzz cos k o

,t, 0 r~jl'r&'1'r')

The radiation Impedance of the free-flooding ahall differs from that of the solid

cylinder in that the pressure on both the outer and Inner surface contribute to it

L

"z = m 1#U 0 [(a.7) - i(az)1 dz (VnI.6)

0

Mhe two components of this impedance stated in Eq. M11.1 can again be separated.

The impedance associated with Robey's mathematical model is:

r 4a 2 imp Z )dz A dz
0 0
L

-(u,,a) I H(z) dz (vzII.7)

The correction term resulting from fluid flow across the cylindrical boundary

rue, IzI >L is

L

0 L
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,I
Since r(z-z') is symetrical in z and zt, Y, can invert the order of integration
and, using the definition of H(z) in Eq. VIII.4b, vrite the unkwwa component ofI
the radiation .:medance as follows:

Z, (j 4 )
2,m ctfz)H(z) dz 0

L

The construction of the functional and the proof that it is stationary for the

correct form of the unknown function a(z) parallels formlly the proof gi-.en in

Eqs. V.8 to 16 for the sol!J cylinder. The relation between the unkown impedance

Z. and the fum.-tionwl J[c], Eq. V.7, is also applicable. 5ie variational solution

of the free-flooding thin-walled shell is therefore formally identical with that of

the solid cylinder provided the definitions of r(z-Z5 ) and H(z) given in Eqs. VIfl.4a

and b are used, instead of the corresponding definititns, Eq. IV.ll and 8, re-
spectively, which apply to the solid cylinder case. Ye will see in the next sec-

tion that this parallel does not hold when we assume a realistic free-flooding

transducer or "squirter" whose wall thickness is not negligible.
The expression for the far flield potential 0o is still given by Eqs. MII.8 and

9. The expression for the potential 0i is somewhat different, because of the con-

tribution of the region 17"1 < L which is absent in the case of the solid cylinder:

(rz)= fU(z) J oo krr(a) explikz(z-z')] dk5 dz' (VIII.lO)

I The integral over dkz is given in Appendix A, Eq. A.14. The coments usde in

I connection with Eqs. VII.l and , apply.

I IX. Thz Free-1-ooding Cylindrical Transducer or "Squirter"

When we drop the assmption of a vanishing wall thickness, we must formulate

the analysis in terns of three coaxial cylindrical boundaries and their respective

I radial velocities (Fig. 3).
(1) r-a=a(l ); radial ve;:- ty u1 (z)

(2) r=a ; radial velocity u(z)

1 (3) r-aa(l + radial velocity o(z) (IX.1)

I
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Sach of these cylindrical boundaries is of infinite extent in the z-direction.

The required modifications in the expressions for the potentials, Eqs. IV.5a

and MI.1, are self-evident and involve merely labeling a and u wl.th the appro-

priate subscripts i or o. There is an equally obvious change in Eq. VM.6 for
the radititon impedance, where the potentials to and #i v•st now be wlt~liplied,
respectively, by the ratios a /a and as/a. A non-trivi cbange must be intro.

duced in the statement of the contenuity conditaon, which a• no boneer takes the

form #i(a,z)=lo(a,z). Rather, we assume an inccpressible potential in the annu-

War wion ai < r < aioe. With this assumpteon the difference between the poten-

drtials and sra must be matched to a nelth forhe aeexerted by the fluid located
inu this annular region.

( +÷1 &z 1-!)#(iz = -2h(zUfo I z1 > L IX2

small. This condition is geerally satisfied.*

Ve wil now de-rive relation between the radial velocities on the tb,- cyl-

dricl surfaces define above. As a reut of zhe assumption of an lacomrssible

potential in the annultr region ai < r <a 0 the velocities in the two semi-

infinite regions prolonging the transducer can be derived from the requirement

that Inflow must balance cutflou across the cyl2ndric-.l boundaries rua, i', and a 0
Ui = u/i '

U, ua/ai

U/(l-h/a)

U0 0 5a

= u/C!.. h/a)) Cn.3)

- teM agetcztýtctiy. transducer ring 2h/k Is approximately 0.07. For

tran-ducers •ere thW assumption is not. valid, a compressible potential, 0., must

be constructed fc- the region ai < a<% . The three potentialr must actisfy two

continuity '-,nditiona, viz: 0ida) and (o)= (so). Instea of one, two

uskimn radial velocity distribution over the boundaries, r=ai and r~ae must be de-

termined from the two simlItaneous integral equations arising from the two poten-

tial continuity requirements. Thes, eqktiond have Deen constructed, but it hAs

not yet been verified whether a variational principle con be applied to their

solution.
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For IzI < L, i.e., in the region of the transducer, different relations must be

used. The form of the equations relating these three- velocities depends upon

whether we are dealing with piezoelectric or magnetostrictive elements. In the

case of piezoelectric transducers, the voltage applied to the electrodes located

on the inner and outer surfaces of the ceramic rIng produces a radial strain er.

The corresponding circutferential srain e, of the mean surface of the elemeut is

t1- -:-oult. of Poisson coupling:

S- v er (.4)

where v is Poisson's ratio. This circuaferential strain is related to the radial
velocity u of the mean surface as follows:

e = u/(-ia*) (Ix.•)

Noting that er is of opposite sign than eP and hence than the displacement

u(-I)"1,- we find that the velocity of the outer and inner surface are recpective-

ly reduced and increased by the rad.A ! strain

ui u - hir

u =0 u + hi (IX.6)

where a contraction correspoads to negative er. Combining these equations we

finally hsve

ui =u(l + h

uou(l - ) (L•.7)

In the c&se of a ring-shaped magnetostrictive transducer the current in the

solenoid produces a circumferential strain c. In this case it is the radial

strain that results f'om Poisson coupling:

a r =-V 9 t

= su(-in)" (Ix. )
S Combining these equations we now have

U, = u(i + "-')
a

u . u(l - 2) (X.9); 0 a"

25

I



For the sake of brevity, we define the folloudng coefficients, uhich tend to unity

for smal values of h/a:

( ( , for piezoelectric transducers

(= ( 1 t --) , for nagnetostrictive transzed rs (IX.1O)

If we now substitute these veiiities in the expressions for the pozentials used

in the boundary condition, Rq. 31.2, we obtain a more complicsttd 1•rtgrl equa-

tion than for the two ea.-Iier conflgumtions:

oa(z) + j (z'X(l+ k)ga 0 ,ao,z-z') + (1- ) ar]dz'

= - SB0 (1+ b)g (a 0 ,A $Z-z') + 8,(l- !!)gi(ai,ai,z-z')] dz eorzI > L

As will be seen shortly, the presence of the linear t-- in a(z) outside the

integral sign, which akes this into a Fredholm SW, .W! equation of the second

kind, does not interfere with the application ef t. var'. tional principle. The

presence of the coefficients 9i and o in the aon-homogeneous term of the integral

equation does unfortunately toke the applietion of the variational principle in-

practical because the stationary potential Jcl. -hich can be constructed, is no

longer proportional to Z., as stated in Eq. V.7. To make this sinple reltion
applicable, we must assume

The error in this procedure is seen from Eq. IX.lO to be

_ he h(1-i) - UXt' (.13a)

for magnetostrictive transducers. For p.ezolectric transducers the error is larger

~~ 2i 1 1•)
e ) - (IX13b)

The sitple variational technique is therefore better sated to magmtostrictive

than to piezoelectric transducers. Fbr the rmgnetostrictive MMRL transducer
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ring (2a=5-7/8 in., 2h4 in.), the error computed from Eq. IX.13a is approximately

6 percent. It may seer inconsistent to introduce assumption JX.12 and not to drop

the linear term in a(z) from Eq. IX.11, and the ratio h/a from terms of th- form

(1 t h/a). Further work is necessary to determine whether retention of these terms

increasea accuracy. Until this is done, we shall retain these terms, because they

do not complicate the variational technique. In addition to introducing the assump-

tion stated in Eq. IX.11, we give a new definition of the function r(z-zI) and of

H(z)

r(z-z' + 1)g (a ,a ,Z-z') + (I - )±(ai,ai,-') .l)

L
H(Z) = C(l + A)go(aa,aoz-z') + (1- k)g:(apai,z•,')] dz' (LC.14b)

Furthermore, we wake the integral equation, Eq. IX.11, formlly into a Fredholm

equation of the first kind by the artifice of adding a Dirac delta function
6(z-z') to the kernel:

Jr(z-z') + - 6(z-z')] a(z;) dz' - H(z), for tiz > L (1X.15)

The functional J(C] is still of the stue form as in the two earlier enalyres,

Eq. V.9, and the definition of the functional Ala], also re.ains formally the some,

Eq. V.lOa. Tt functional B[a] is, however, different.

B] z)r(z-z h (z-z)] fz') dz dz' (IX.16)
LL

We will now show that the statiovary character of Jtc] can be established as before.

Setting the increment of the ifunctional equal to 0, we have

6J[cz] 0 a J 11(z 6cz(z) dz -

L

- i-f[] /r••'+•• (z-z')I[aC-)6a(z')4(z')6a(z)jdz d' OX .1)

?[a] L~
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The order of integration of the a(z)aa(z') term in the double Intesal can oe

inverted.

ff= a/f [ + h 6zz)z+ 2 a(z') 6a(z) dz dz' (]X.18)
L L LL

From here on, the proof parallels exactly the steps from Eqs. V.13 to 16 and will

therefore not be repeated. The radiation impedance correction factor Z , is once

again formally given by Eq. VI.8, with F(z-z') defined in Eq. M.l. Thus by

setting the coefficients 0 equal to unity, Za can still be expressed in terms of

the functional J[(a] as in Eq. V.7. The component of the radiation impedance asso-

ciated with Robey's mathematical model is

LL

Zr= - -o(4=)2f [to(l+ h)go(ao,ao,z-z')i(l-h Ag(a,at,z-z')] dz' dz (3X.19)

Even if the coefficients 0 bad not been set equal to un•ity, a stationary po-

tential J(a] could =ve been constructed with

A~u]=fa~ to { ,(1÷ h)go(ao'ao,.• )i(l- h)g(a ~ai z-z') ] dz' ]dz (=.20)

L 0

instead of the expression in Eq. V.IOa. The usefulness of the variational method

is hxwever impaired, because the radiation impedance ccponent Z. does not change

in the same mnner as A[a]: Za is given, as before, by Eq. VIII.8 with '(z-z') as

defined in Eq. iX.l4a. It therefore does not involve the coefficients 8, whether

we set the coefficients equal to unity or no',. Z a is therefore not proportional

to A(a],Sq. IX.20, and Eq. V.7 relating Za and J[aj does not apply. Thus even

though the variationL1 method can be used for "squirters" whose walls are too thick

to permit setting the coefficients S equal to unity, the unknown coefficients in

the trial function a(z) must be solved for before computing Z . Whether such a

procedure is competitive with the non-variational solutions presentea in Appendix B

for thick-walled "squirters" can best be verified empirically after numerical cal-

culations have been performed.

We shall now extend the variational technique to arbitrary non-axisy-etric

volocity distributions of the radiating surface.
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X. lalnders Vibrating in Longitudinal and in Non-Axisaetric Nodes

The analysis of the "squirter" and of the solid cylinder can be directly adapted

to the case of nonuniform axisyuaetric velocity diutributions over the radiating

surface, by replacing the constant velocity U in the region IzI < L 'ith a z-

dependent velocity u(z). If u(z) is not symetrical about z=O, the most convoniezn

approach is to consider the velocity distribution as the sum of a symmetrical dis-

tribution u and of ea antisymmetric distribution ua . As ye are dealing with a

linear problem, we can add the corresponding potentials. We first ompute the

potential associated with u5 as in the preceding analysis, setting (z)a(-z),

and using the corresponding Green's functions go, Eq. 1V.6, and gi, Eq. VM.2

(the latter in the case of the open-ended cylinder). To this we add the potential

resulting from the velocity distributicn ua for whi-h •a(z) - -a(-z). The suit-
able partial Green's functions are obtained by modify'ng the expressions for go

and gi given, respectively, in Eqs. IV.6 and VII.2, sin '2z sin kzz' being sub-
stituted for the product of cosines. We 3int thus solve two uncoupled integral

equations for the two unknown velocity distributions, as and a'* •iless we pro-

ceed in this farhion, the solid cylinder with arbitrary velocity dintribution u(z)

gives rise to three different potentials 00, #i÷s #i- which in turn result in two

distinct boundary conditions corresponding, respectively, to the regions z < L and

z > L. The two resulting integral equations will thus be coupled, eacr inivolving

both unknown velocity distributions, a(z < O)and a(z > 0).

In the case of a piston or ring vibrating in phase on a finite cylindrical

baffle or array, the velocity distribution of the active element is of course con-

stant and hence symmetrical over the midplane (zO)of the eleei.t, but unless this

element is centrally located with respect to the baffle or array, the velocity dis-

tribution a(z) will not be symmetrical. In this respect, the prepent mathematical

model differs from Robey's model, in which the potential and the velocity distri-

button are always sy=trical about the plane of symmetry of the active element.

A configuration of practical interest in that of a golid cylinder whose end

caps reciprocate in the axial direction. This situation arises as a result of

Poisson coupling with predominantly radial, axisy=Atric modes. End cap motion

can contribute the major portion of the sound field in the cage of the so-called

*This procedure will be illustrated in the report dealing with an array of ring
transducers (see footnote on p. 1).

29



accordion modes, which are predominantly longitudinal. To account for an axisyn-
metric velocity distribution v(r') over the end caps, the following integral is

added to the surface integrals in Eq. IV.5b:

a

4* (r,z) = ldzfv(r') G1 (r,r'z ; L) r' dr'i I Cx.1)

where v has been taken positive in the positive z-direction. If the cylindrical
surface of the radiatcc is motionless, the potential o in the region r > a is
associated entirely with the velocity distribution a(z) act.-s the two surfaces

(r-a- A).
The variational analysis an be extendod further, to include an arbitrary non-

xisymet.-ric velocity distribution

' %Uf(-) exp(iw), for jut '- (x.2)

U is a modal velocity aeplitude, the mrxinm value of the function f%(z) being

unity. To each Fourier corponent U of the velocity, corresponds a partial po-
tential #,(r,z), the total potential belug of the form

4(r,z) = " %(r,z) czp(imp) (X.3)

The partial potentials are obtjx a i om Eqs. IV.5 and Eq. VIII.l, by substitu-

ting in place of thee axisymtric Grc= 's functions given in Eqs. XV.I and 2 the

folloding.

Sj 4) k for r>e (x.4)

The near field value of thiz integral bas been evaluated by Oreespon and 3herran.6

Its asymptotic far field valu-, is gievn by LOird and Cohen: 5

O(Re,2-9L' in, for lrgeR (x.5)
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The corresponding Green 's function in the cylindrical region Is derived in Appeuaiz

A, Eq. A.6:

~~~ -z-')]%,-cp f for r<a (X.6)
r~'n

The integral is evraluated in Eq. A.18. Each potential 0. is the OsV of tO CUpe-

Wnts: a potent:Al '. eassociated with the knovm modal velocity distribution

U1 M ' (z) over tAt- radiating surface, and a component f., awsocirnted vith the uawnmv

nodal veloclty distribrUt~oa U a (z) in Tbe two regic-no jat > L. The foinmor zon.-

,oners t r is of course tha zowpo•e•nt couputed from flobey's motheWtical model or

the cylinder pralcaged by two semi-infinite cylindrical baffles. The m=62 isped-

ance associated with the mth mode of the rafiator can be expressed, as in Eq.1n.l,

as the sun of F.,ey'*s mpedance, vssociated vd! l and of a correction tera

associated with %:

L
r

-L

Zw [(8 z)fntn o (X.7)

This ia'edance can ba used t4 ea-pute the geerliUzed force associated with radio-

ticm londing or the rth elastie wn- of the cylinde-, and hece the modal imped-

ances and natural frequencies of the su,-- Ved cylinder. Modal radiation izd-

arces can alcn be combined to ezoVute the self-radiation Imedance of rigid

pistons in finite cylindrical hee. Because of the similarity in the form cS
the Green's functtonu of the axislyetria case analyzed in detail in thi2 report

and of the non-.zisy.ontric radietor configurtions, it is obvious that the inte-

gral equations which a. (z) =wt ýatisfy are of the same form as the integml

equntions -hich define a(z) In the axisy=etric cose. Functisnals .Ta[a ] sth÷ion-

ary with respect to the correct function am(z) can be constru^ted and are found to

be of the same form as ti functional J[c] constructed earlier for the axisy=et-

ric radiator. Zm proof t1hat the impedance ZC is proportional to J ( 1 for the

"The ctamponent Zar of this izpedance is cmputed by G•reenspon and Sherman.
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ect'ect form of (-.) pmrallels the proof in Sectlion V. Te variational technique

.1u;trseted In Section VT cea therefore be used to evaluate Z , and need not te

repeated bore.

In tWe oeae of thm solid cylinder, ncarigid vibrating end caps can be accounted

for by addlaG to the -xpressiot for the potentials §i" t 3urface integral over the

em cap*s:

' 2 1' j vr'')G(r,r',"-w, L) r" dr** do' (X.8)
='..3 032
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Appendix A*

DERIVATIOR AND EVAWATIM OF THE GREI'S FUNC2CU G
FOR THE CYLIDRICAL R=I0 r < a

1. Construction of the Green's Function

This derivation parallels the construction of the Green's function Go for the

region r > a given by Robey 6 or Nel-nn bmodary conditions (6#/& known, W/&

ma~e to vanish on boundary) and by Papas for Dirichlet boundary conditions (0

known, G made to vanish on boundary). The Green's function associated vith the

mth Fourier component of #he velocity distribution in p can be expressed in terms

* of an inverse Fourier transform in (z-z*):

-G,.fr~r'rk,•expj'}= " 5(z')] •k (A.1)

I

The Green's functioa satisfies, Ly definition, the non-hcsogeneous Hoel•holtz

enation expressed in cylindrical coordinates. Consequent.ly, the transform of the

Green's function satisflies the following equation:

11 r + k 2 _k m 2 1 6Ckr-r' (A.2)r z - M Gmrr'k r
r

Ze step-, leading from the n=-hmogeneous Helmholtz equation to Eq. A.2 are pre-

sented in detail in referece I1. Except when r-rI, Eq. A.2 is of the form of

Bessel's equation. A suitable solution to this equation muish be regulsr when

r < vanishes (r < snd r , are, respectively, the smaller and the larger of the

quantities r and r'). The solution of E•. A.2 must therefore contain only Bessel

run-ctions of argument proporti.nal to r < ; Neumsnn or Hankel f.un.tns can only

hsve ozinents proportional to r > or a. A combination of cylinder T.unctions

which satisfies these conditie-u, and .Ahose radial derivative ao/fr' vanishes on

"This material is included here because it does not appear to be available in
the liteeratzre. Appendix A is condensed from a Harvard Acousti, Research Labors-
tory Kemorandum,". Analytical details and proofs which had to be omitted to keep
the length of this report within rmson, can be found in reference 17.
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the cylindrical boundary r > = r, is of the form:

~(r,r', k,) -Aj(krr <)E!(3'(k a)JIk r >) - Hm(krr >)Jý(kra)] 'A.3)

The coefficients A are determined from the equati.; defining the discontinuity

of the firai; derivative of the Green's function:

! (A.•)
r: G,(rr, k ) (A-1

r=r

After some transforntions the coefficient Am is found to be

-Xi
A =-.a(A. 5)

When we substitute this coefficient in Eq. A.3, set r' a r > = a and r = r <, and

use the Wroaskian relation between Hm(kra) and J=(kra), we finally obtain the

following expression for the Green's function

Gi (r,a." *,z-z,) . j Jm'kr) exp[ iXi(z-z')] •O) (A.6)im 4.8 krJýI[kra)e•izz•.#]€k A6

For the axisyrmetric case, we bo.,ve J , J'=-J1 , which yields the Green's function

given in Eq. IV.2. We will follow the notation used in the body of the report,

whereby the subscript m .. cmitted when n=O, i.e., in vhat ^ollows, Gi, I, Rn end

k indicate, respectively, Go, 1o, Ron and kon"

2. Evalustjjn of" .-he Inverse Fourier Transform

We dn1 not evaluate the infinite integral in Eq. A.6. For the purpose of

analysis the wave number is assumed to have a small imaginary component

=z = 9 + il (A.7)

The iW/egrrtion in Eq. A.6 will be performed in the complax plane along a closed

coizterdloerkwise contour including the real ayis snd a half circle of infinite

radius (Fig. 4). By the residue theorefn, 1 9 the value of the contour integral is

2ui times the sai of the n residues at the poles k = of the integrand.
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fI mdz = ,sa E +' . o *>0,adknI upper half-plane
- n

=-2ti Rmn .for z-zl < 0, and kma in lower half-plane (A .8)
Ln

,bere I stands for the integrand in Eq. A.6. This contour integral equals the

integral along the real axis if the contribution of the half-circle vanishes. To

achieve this condition the integrand must vanish as It tends to Infinity, i.e.,

k•nEnL.(z-z') ]I in the integrand must decrease exponentially with increasizg kz.

Hence

Ti > 0, for z-z" > 0 (Integration in upper half-plane)

S< 0, for z-z' < 0 (Integration in lower half-plane) (A.9)

Like kz, k can be assumed to te complex. Its infinitesimal ieginary component

can be associated with viscous losses in the acoustic medium, if a physical in-

terpretation is desired. The complex quantity +k lies Just above the real axis,

and -k Just beloy it. My- contours of integrazion are then as shown in Fig. 4.

We will first evaluste the axisymetric Green's function. The integrand I

has poles at kr=O, i.e., at kz= t_ k. Taking the asymptotic expression of the

Bessel functions JO and J' as their argument tends to zero, we find that the0integrand tends to

I(k, 2 exp-ik ( (k.-z')] , asks -. k (A.10)

The two simzpe poles at k- . t k give rise to the following residues

expfik(z-z')1Ra2 for z-nl > 0

S,-x,(z-')I for z-:' < 0 (A.11)
O ka2

Other poles, all of then simple, occur at the roots (k a) of J0(krB). The corres-

ponding residues are

V2 exp[*i(k 2_12~( I)i ZZ)] Ok

8,2 (it 2 k2)j J70 knr)4(Akn2)
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Bt-cause

Fn+(Z--') = -H .z'-z) (.I.3)

the integral can be stated as follows, without regard for the relative magaitude

of z and zI:

2*1. ex1k 'exp'i)k2-k2Iz-z II JTO(krir)

aI dka n (k?-k 2 )i' a J'O(kna) (2 k5a)

For all roots k a of J" vsich exceed ka, the terms under the sumation sign decay

exponentially with increasing zza{'I. For higher order roots, the terms under

the summation sign are proportional to

e'p('rxj"zI/a) for n large (A.15)
n(raA'

The series expression in Eq. A.14 is thus seen to be convergent except for z=ze,

which fulfills the requirement of a Green's function.

The convergence of the Green's function as szj tends to infinity is not

spherical, but relies on the smell iginary component of the move number k. The

reason is that we have constructed a Green's fAmction suitable for cylindrical

region, viz. a circular pipe, where only viscous losses, but no spreading losses

occur. The potential § does, however, vary as z"1l exp(ikz) for large Iz I,
because the radial velocity a(z) gives rise to a net outflow of acoustic energy

from the region r < a (see Eqs. VI.1 to 6, and comments following Eq. VU.2).

We now turn to the evaluation of the non-axisybmetric Green's function. At

kz± t k, for m > 0 the integrand tends to

-Ra exp[ik (z-z')I as kz- k (A.16)

There are therefore no poles at kz= t k, omly for m=O. For 40, all the residues

are associated with the roots or J;"

R*. ~ i?- n n -Z~ Jm(kzmr)Rm- t 2(k2• 22(kn) (ka) for •0 (A.17)
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IJ

Once again the integrand can be expressed vithout regard for the sign of (Z-z'):

Im dl %ý x~~k-2)l-. Jm(Xkr)j I z~ . m = . . .. ... .

S2Jm(k a)-Jn2v' (k a)-

for *# (.%.18)

SThe higher order terms are again found to be proportional to the expression in

Eq. A.15, and thus to conf.rm to Green's function requirement by converging for

zjiz'. A proof was Liven in ref. 17 of the fact that even though the function

has a branch cut in the region jkI k of the real axis, the integrand
j in Eq. A.6 does not have branch points at any of its poles.

I
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Appendix B

NON-VARLATIONAL 7EMQ FOR SOLVIM W "SQUIMEr" DFIERAL
EMMATON, EQ. IX.11

In Section UK it was shown that the variational technique developed for the

solid cylinder is applicable to the free-flooding cylinder only when the coeffi-

cients 0i and 0 0, Eq. IX.lO, can be set equal to unity, i.e., when the ratio of

wall thickness to radius 2h/a is small. It was also poirted out that when the

ratio of mll tiicknwas to acoustic wavelength 2bh/ is not small enough to make

the coc'presslbility of the fluid atnulus in the region ai < r < a0 negligible, a

complicated analysis involving two coupled simultaneous integral equations must be

used. The purplre of this Appendix is to present a technique for dealing with a
"squirter" for which the ratio 2h/a is not small enough to permit setting the co-

efficients B in Eq. IX.10 equal to unity, even though the corresponding ratio

2h/, is sufficiently small to allow us to ignore the compressibility of the fluid

in the annulj region. The most straightforward approach is to evaluate the un-

perturbed potentials, which are obtaired by setting a(z) = 0, and to use these

potentials to compute a perturbation solution of C(z) from Eq. 3X.2:

CBo,- ( l+ !)g 0 OaaZ-Z') + O dz' (B.1)

The perturbation solution of the iwpedsnce correction factor Z. is obtained

by substituting this expression for a(z) in Eq. VIII.8, with r(z-z') as defined

in Eq. IX.i4. The far field potentials can of course also be obtained in - straight-

forward fashion by subst 4 .tutirmg (O)(z) in Eq. VII.8 and 9, for to, and Eq. VI1.3
for 0 i"

The perturbation soluteon can be improved by iteration as follows: One sub-

stitutea Ct(" ('z for a(z') in the z'-integal in Eq. IX.II and solv-s for a(z).

This amounts tc solving Eq. 11.1 for a(z) using the perturbation solutions of

%nd " If this iteration process is repeated p times, one finds that the pth
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iterate of a(z) is related to the (p-l)th iterate as follows:

--2 ?xBo(l+ h)g0 6,a 0,--z') + 0,(l- h)gl(al'lz-z')] dz'

0

+ a(P•-)(z,) r(z-z') dz'] (B.2)

-,here r(z-z') is defined in Eq. iX.la.
We will now present a finite-difference procedure for solving the integral

equations. Instead of requiring that the integral equation, Eq. 3X.l., be satis-
fied for all values of z in the region IzI > L, we satisfy it at a finite number

of points zn = lZ2,3 ..... zN separated by intervals 2 dn. These intervals should

be selected smaller in regions close to the transducer extremities, which make a

more important contribution to the potentials than more distant regions. Further-

more, we assume that the unknown function a(z) has a constant value a in each

interval (zn-dn) < z < (zn+d) and varies discontinuously froa one interval to the

next. We thus arrive at a set of N simultaneous equation. in H unknown

quantities

h +,2d ) 2drIs a1

S + 2,da1 (o) -d 1(zz-"Q .• ,-Z-

2d r(z-z ) _+ 2d2r (o) ...... a.21 2z'z 1 2sa + C•ý

2lr( z) .. . . ... _ + 2djr(o) a F(z)

where
L

?(Z,) a [$.(I+ o) (ýao,za-Z') + - •)goaz,,-.')] dz' (B.3)

The two Green's functions which enter into the linear conbintion F(z.z'), Eq. IX.14a.

have a pole at z=z'. The diagonal terms in the above matrix do not, however, display

a iingularity, since they are equivalent to an integral of r(z-z') over z', whl$ýh,
like the potential, is well behaved.
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Solving this set of equations for the values of we can compute the radiation

impedance component Z from Eq. VIIl.8

-2(4,m) 2  d dn a r(Z-zn) dz (B.4)

Robey's impedance component, Zr, is given in Eq. IX.19.

'When applying the finite-differere method to the non-axioymetric velocity

distributions discussed in Sec-tion X, it is not necessary to construct a two-

dimen3ional grid of points (zyq) over the two cylindr:cal surfaces r=a,z z)> L.

Rather, a one-dimenslonal set of finite-differcnce equations in z, of the form of
Eq. B.3 applies to each modal velocity distrIbution % (z; associated with the

non-axisyx•xe ic Green's functions, Eq. X.3 and 5.

In . s , it is recalled (end of Section LX) trat a variational solution

ir applicable, even when 2h/a is not '-msll, but that Z. munot be obtained direct-

ly from the functional J([], vithout also solving for the unknown coefficients in

the trial function a(z).

4
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(a) Finite-Difference Calculat ion

(Baron, Matthews ard Bleicb,a
Charn and SchweikerO)

Grid of point-sources approximates
radiating surface. Source strength
determined from finite-difference
solution of Helmkoltz integral equation

(b) Robey's Mathematical Model of
the Cylindrical Source

(Ldird and Cohen,' Robey,-
Greenspon,7 and Shermnd)

Integral equation eircumveuted
by assuming rigid cylindrical +L
baffles r=s, jzj > L, and by con-
structing Green's functicn for
which (ýG/ýr')=O for r t t
D Knc-in velocity distribution

over radiating surface;! 7
Semi-infinite rigid baffles

(c) Robey's Mathematical M~odel of "Squirter" IAIL 1 L

(Robe?)

Saw so Fig. l(b) but plane baffles in 20
regions r > a, z - t L Z
01 Infinite rigid baffles

Fig. 1. REVIEW OF PUBLISHED ANZALYSE OF CYLINDRICAL RADIATOIR
(See Table 2 on p. 3)
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2 2

Fig. 2. SIH(A,! OF PRF T APPtOWS (See Table 2 cc p. 3)

i) Known velocity distribution of th-t radiati&g surface (-L < z < L, r=a)

2) Unlwom velocity distribution U(z) satisfies integral equation on sur-
faces rcs, IzI > L [z-dep=&.nt phase shift of a(-) iz not indicated]

Radiation impedance Zr + Za
where Zr ' impedance computed from Robey's mathazatical model, Fig. lb

Za a correction associated with unknown velocity diatribution a(z)

Variational principle: for correct a(z), Za - Jfz]

mJ cl o 0
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