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AESTRACT

The radZatica impedance of & cyliuirfcal sound source of
finite length can be expressed &s the sum of two coomponents:

Z=Z!_<I»Zcx

vhere Z, 1r the impedance evaluated by m2ans o the genera..y
used techmique originated dy Rodey, vhich esstvaes tlat tae radi-
ating surface is brackeied betveen ¢two rigid semi-infinife oy~
lipdrice) bvaffles. Z. is asoocioted with the redizl velocity
distribution a(z) over tkese two semi-infinite cylindrical sur-
faces and is therefore in the nature of e correction fuctor <o
Robey's impedsnce. afz)} is an wmknown function which satisfies
a non-homogsneous Fredholm integral equaticn. A functionel J{a]
is contructed vhich is steticmery and proportiosel to Z, for the
correct solution a{z):

8Jla}/ea = 0, Za = J[a]

From this variational principle a velue of Zy is calculsted by
means of 2 Raylesgh-Ritz-type procedure. Finally, the far field
is evalusted. The variztional principle used here parallels
the Levire-Schwinger principle widely used to obtain scattering
cross sections. Varietional solutions are presented for scolid
and free-flocding cyliunders for axisyrmetric and for arbitrary
velocity distributions. A varistional solution ic¢ givem for
“squirters” of finite wall thickness, but it is ret .ricted to
thin valled transducers. In an Appendix, non-variationzl solu-
tions of the integral eauation for a{z) are presented for
"squirterr” of greater vull thickness.

In & companion report, the procedures developed here ere epplied
to t'e evslustion of the self~ and mutusl-radiaticn impedances
of e.ezents in an array of coexial, free-flooding axially spaced
ring vransducers. Dr. J. 5. Greenspon, cf J G Engineering
lesearch Associates, evalusted the inverse Fourier transliorme
required for these solutions and obtained quantitetive results
which he will present in & separate report.
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{Alrernstive svbseripts, viz o?, are used to condense two eguaticos

into on2, the upper subscript cn the left side of tae eguation being
asscelated with the upver sigas and subscripts on the rignt side of
the equaticn, and vice versa.)

radius of cylindrical scurce (Fig. 2); meen radius of "squirter® (Mg, 3)
inner spd cuter radius of “squirter,” respectively (Fig. 3)
sound velocity in fluid mediwm

Gi,Go,gi,so,Gi.pGi_,i'(z-z'), and H(z) Green's functions an{ related “uncticas

B
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l:"NM"A‘ Pi‘af-c -3
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r .,z
R,8
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Zy

afz)

<

o

defired in tebie 1, p. 1

Hankel function of the first kind, of order w (with {his notstiom, a
massive reactrace is negative)

nalf thicknoss of "squirter" {Rlg. 3)

Beqsel function of onder m

wvave nusbey, egual te w/c

radfal wvave puzber, egqual to (k2~k§)é

axial wave nuzber

m1f length of cylinirical rediator (Figs. 2 and 3)
sound pressure

cylipdricol coordinates

spherical coordinstes

radisl velocity smplitude of cylindricel source {Pig. 3)

radiel velocity distribution on cylindrical surface (r=2), positive
ostward {Fig. 3)

radiation impedence of cylindrical source in units of force/velocity
eguel to (Zr+Za) (Pig. 2)

ra.istion impelance obtained fro= Robey's model (Fig. 1b) for vhich
afz) = 0

correction facior 2ssociatc * with ve;ucity distribution az) ond to be
~dded to Z_ (Pig. 2)

radfal velecity in the regions ,z| > L (Pig. 2) wormelized to 7elocity
amplitude U of cylindrical surface

Poisson's ratio of tramsducer zmterisl
density of fluid medium
"

velocity potential (outwerd velocity is -3%,dr); subseripts "i" and "o
refer respectively to regions r < send r > 2

circular frecuency {harmomfc time dspendence factor exp(~1m‘:.) whict multi-
plies the velocities and the potentiuls, bas beea suppressed throughout
this report]

Rtuer symbols zre defiped im the text.
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1 Table 1
R GRERXN 'S FUNCTIONS ARD FRIATED FUKCTIONS A
o Syrbol Bquation| Region | Sound Source Configurution | Descriptivnm
vhere to Laich Applicable
- . Appli-
ot cable
e . 8 (r,8,2-2") | .1 r>. | All configurations with
L axisymmetric velocity
L. distribution General form of
i 6.(r,a,z-2') | v.2 r<a | Pree-flooding cylinder with 2’;2“?:{;;“11
: axisymetric velccity sreen
distribution
go(r,e,z-z') IV.6 r>a All configurstions with Bvea cozponent of
e T axisymmetric velocity dis- G‘>
P _ {ribution symmetrical
;,_,t-‘, ' about 2z = 0 ) _
W H gi(r,a ,z-2') | vIIL.2 r<a Free-flooding cylinder vith | Even component
v, * axisymmwetric velocity dis- |of Gi
o T tributisa symmetrical about
g ? 1 2=0
,n ) (;H(r,a; .3 r<a Green's function
; gz} and b z>L whose normal de-

rivative 3/0z

Solid cylinder with hes cu end

axisymmetyic velocity

P
A

2wt

Doy

Fapte—" orvaow

Ty distribution pz=t
; G, (:,e; Iv.3 r<e Green's function
. " z-z2’) snd L 2 <L vhose normal de-
rivative 0/dz van-
) ishes on end cap
lz = L
¢ _(r» ; X.b4 ro>a {
o2 -9 Cylinder with arbitrary General form of
z-z's velocity distribution ex- non-axisymmetric
- precsed as 8 Pourier series | Green's function
Gm(r,a; .6 r<s tn o (2g. X.”)
W’
MR
I{z-z2") Iv.1l r=a Solid cylivder
VIII.ka r=a Free-flooding cylinder of Linear cozbination
and vanisaing wall thicknees of Oreen's
VIII.5 functions
IX.lha r=e “Squirter" e
1(z) Iv.8 Solid cylinder .
VIII.W Free-flooding cylinder of Integral of Green's
vanishing wall thickness function over

radiating surface

.1 l "Squirter”

vi
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I. S of Stu

In this report a variational technique is used to derive expressions for <he
raciation loading of redially pulsating cylinders of finite length. End effecus
are accounted for, no restrictions being placed on the circulation of the acous-
tic fluid around the edges of the cylinder. The far field potentials, on the axis
of the cylindricsl radistor and for other bearings are aiso given. The amalysis
is parformed for (1) a solid cylinder, {2) en open-ended, free-flooding cylinder
of vanishing wall thickaess, and (3) a "squirter" of small, but non-vanisbing
thickness-to-radius ratio. The final section presents an extension of the ¢ Al-
ysis to cylindrical radiators embodying an arbitrary, non-axisymmetric velocity
distridbution. A non-variational technique presented in Appendix B extends this
study to "squirtei.  o: I-~rger wall thickness.

Hith the present approach, the need for machine calculations has been con-
fined to the evaluscion ot Green's functiocns in the form of Robey's integrals.

As mentioned in the acknowledgmant, these integrals are being evalusted by Dr.
Greenspon, J G Engireering Research Asccciates. The technique developed in this
study has been extended to the evaluation of the mutual radiation irmpedances be-
tween elements of an array of free-flooding ring transducers.® Rumerical results
for this configusation are also being obtained by Dr. Greenspon and vill be in-
cluded in his report: "Axialiy Symmetric Green's Functicns for Cylinders."”

IX. A Review of Published Analytical Approaches to the Finite Cylindrical
Radiator

The fluid potentiasl % generated by a sound radiator is given by the familiar
Helrholtz integral equationl

(R) = I{G(ﬁ,'ﬁ') 3_;?_:)_ - y—‘g-&ﬂ #(R’)] as’ (rr.1)
sl

*This snalysis will be presented in a report to be published in March 196k,
"Mutusl Redistion Imprdance fo- Spaced, Coanisl, Free-Flooding Ring Transducers,”
CAA Report U-178-48, Contract Konr-2739.

n




vhere 8° 1s the radiating surfsce, apd n’ is the outward normel to the surface of
integration. The first term in the integrand can be readily evaluated, if the
normel velocity u(8’), of tue radiating surface, which equals -d%/n’, is known.
The sacond term in the integrand involves the unknown potentisl on the radisting
surface, #(R’). We must therefore, in general, solve ap integral eguaticnu to obe
tain this potentisl. In the iast two years, the gensral aveilsbility of lerge,
digital computers has made it practical to use & finite-difforence method to ob-
tain mmerical solutions of the Helmholtz integral egquation for the finite cylian-
dricel radtator-’> (Fig. 1a and the Table cn p.3). The drawback of this approsck
is that the large cozputational effort involved must be repeeted for every combi-
nation of length-to-radius ratic¢, of ka, ~nd of surface velocity distribution.

Another suctessful approach to the finite cylinder problem, vhich circumvents
the Helmholtz integral equation, uses an expansicn of the potential in sphericel
wave harmcs.h For this spproach the volume of calculastions i1s less than for
the finite-difference approach described above. Thus, epproximste results were
obtained in ref. & without the help of electronic computers, by confining the
series expansicn to only a few teras. For practical applications, this method
also requirss computer faciiities.

An approximmte method vhich, historically, precedes the approaches described
above, consists in constructing a Green's function vhose derivative 30/’ vau-
ishes on the infinite cylindrical surface r=8. If we nov prolong the cylindri-
cal raaiator by two semi-infinite rigid cylindrical baffies of the same Jdismeter,
the surface integral in Eq. IX.1 is confined to the cylindrical surface (Fig. 1b).
Over this surfacs, the second term in the integrand, vhich involves the unxnoun
potent’al, has been elimimated by our choice of the Green's function. We can
therefore obtsin an approxisave expression for the potential withrut having to
solve 8n integral egqu=%tiza:

¥E) = - ! u(®’)6(R,R’) as’ (1.2

With this approach laird and Coben5 derived an amlytical expressicn for the far
tield potential, the integrals being eveluated by the method of stationary phase.

Thege integrals, vhich for the exisymmetric velocity distribution are knowm es
Robey's {nmtegrals, must unfortupately be evaluated mrrerically if the potentisl
on or near the radieting surface is required.  Orcepspon has sirplified the
technique for parforming this integmtion.7 fie and Shorcen also egvaluated these
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integrals for non-axisymmetric velocity distnbutims.a The drawback of Fobey's

mathematical nodel is that it doss not parmdt circulation of the fluid around the
edges of the transducer, because of the assumption of two semi-infinite cylindri-
cal baffles. Neither does this model lend itself to the evalusticn of axially
vibrating solid cylinders, or of the fres-flooding open-znded cylinders known in
acoustical vernscular as "squirters.” Robey originally approximsted the radisticn
loading of such free-flooding trapsducers by essuming that the fluid columm jnside
the "squirter” is termina*ed by pressure-release pistons.’ He then refined his
apalysis by assuming the terminal impedance to be that of & piston in an infinite
plane baff1e™C (Fig. 1lc).

In sumpary, 2xisting analyses use €ither a largy computational effort which
mst be repeated for every particular combinatica of sound source parameters, or
8n elegant approximate technique which, however, does not account for the cirecu-
1stion of fluid around the two extremiti-. of the cylinder.

IIX. Description of the Pressnt Approach

The present approach mak:s use of & Green's function similar to Robey's,
tias eliminating from the Jeluholtz equation the term conteining the potential on
“he cylindrical surface r=a. However, instead of assuming the socurce to be
bracketed by rigid teffles, the potential is expressed in terws of an ucknown
radiel veloeity dustribution, afz), over the two seami-infinite cylindricsl bound-
aries prolonging “he scund source (Fig. 2). The potentizl in the cylirdrical
colwm in the r:g.on r < a i3 then foreuiated with the help of a suitsble Green's
function vhose ncreml derivetive vanishes on the boundary r=a. The potential in
this cylindricsi regior i slso expressed in terms or the unknown velocity distri-
butica afz). By reguiring continuity of these two potentisls across the cylindri-
cal boundary r=a, |z} > L, ax integral aquatien for az) is obtained. If we con-
ere this formulation to Che free-space Green's funttion formmlatisi in ref. 2 and
3, ve see that 43 unknown functico c{:) apd the surfece r=a, {zi > L take,
respectively, t22 place of #(R’) and of the rsdistor surfacu. One adventsge of
the present 8p:roach is that a givez error in the expression tor a{z) cen be ex-
pected t0 resul’ in 8 smallar error in the rt 13ation fmpedance than would result
Yrom 8 similer ervor in ¥(B’) in ref. 2 apd 3. The primcipsl advantsze, however,
i3 that this approach lends itself to an sonroximste varintion( 1 solution both of




the solid and open-ended finite cylingder.*
The radistion impedance Z car be written as the sum of the impedance Zr ob-
tained by setting a{z} = 0, and of an impedsnce Z, associated with afz), the

unknown velacity distribution in the region ]zl > L:
Z= Zl’ + (III.I)

6

A
«
Z(z is thus ig the pature of & correction factor to icpedances computed by Robey,
&reenspen,7’ 8 and Sbernnns from Robey's mathematical model. By virtue of the
variational principle to be derived in Section V, for the corrsct soiutica of the
integral equation afz), Z, is proportional to & functionsi Jfaj which 1s station-
ary with respect to first order variations of o(z):

Z, = b3 003
31x]
bl (zzz.2)

Purthermore, J{a] depeads on th: functionsl rorm of &{z) but not on its amplitude.
The technique for computing Za is similar to the Rayleigh«Ritz technique for
evaluating the maturel freguency.

This spproaoch parvlilels the use of tie Levine-Schwinger varistiorel principle
{or acaiiering cross sceiivas, wnich Das beer Zpplied to 2 large nusber of 4if-
fraction problem.m The equivalent prin.iple for radistion impedances is proved
in its general form, usirg free-spiace QGreen’s functions, by Morse and Pesh'oach.n
These authors do not, however, use it t solve &ny particular probiex. /Zpperent-
ly, only Storerlh applied this prinmciple tc & specific problem, viz. tu-» effect
of a finfte circular baffle on thz radistiocn loading of a cosxial anterps. In
1954, Professor Storer, of Harverd University, sugsested to the authar of this
report tlat the axisymmetrically vibrating cylinder of finiie length could alsc

be antlyzed in this fashion. Consequently s rather sketchy variationzl soclutisn

#A rigorous Wieper-Hopf type solution of the integral equation is vossible for
seai-infinite cylirdrical radistor problems formulated in this fashion, Bccord-
ing to Levine ang Schwinger.’’ Theze suthors cention this formuletion as on 8l
terpative to the one they actually used in their apalysis of sound racistion from
a semi-infinite pipe. Levine,’?8 extended this study to pipes of arbitrary cross
section. One of his approximaticns for the rellecticn coefficient i3 obtoined
from & variational solution of an integral equation (his "variztional primciple A")
appliable over the gsemi-infinite cylindrical sucface exterding the pipe, and is
therefore of the fors of the integral equation uced iz tkis report.

1
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of the solid cylindrical source was presented in an intermal memorandum of the
Hsrvard Acoustics Research Isboratory.l” A detailed amalysis vas not carried out
because numerical results depended on the evaluation of Robuy's integral, which at:
that time was not availabie. Since, as mentiocned earlier, sach integrsls c¢In nov
ve readily evalusied, and sincs Dr. Greenspox: kizdly agresd to apply his experi-
ience in this type of calculation to the problez at band, it is now worthwhile to
use the variational formuletion to obtain & solution to the finite cylinder
problem.

IV, Integral Equation Formulation of the Solid Cylinder Problem

The infinite region surrouncing che cylindrical radistor is subdivided into
three regions (Fig. 2): an outer region, r > a, identified by subscript o; and two
semi-infinite inner regions, : < a, ons corresponding z > L and identified by the
subscript 19, and a second inner region corresponding to values of z < L, identi-
fied bv the subscript i-. The Green's function for the outer region satisfying
the condition 3G/or’=0 for =*=z, was constructed by Robey:6

6 ( ‘) = -t " B 0) [1x (z-z°)] & (zv.1)
r,a,2-2°) = - = : exp Z-2 .
oY ! !asea "ral‘ ‘r“, 2 z

Tre evalwtion of G_ %5 the subject of references 6 end 7. Simce kreixa-ki)ﬁ, the
functions or £ . 10 the integrens are even in kz‘ Bonse, only tie real component

of thy exponentisl functiaa, cos[kz(z-z')f[ cantridutes to the integral. The seme
comaent spplies to the Green's function for the infinite eylimdrical regiom r < a:

-4

J (k
8,(r0,22°) = - ; I ——‘7-(—3:)—— explik {z-2")] dk, (zv.2)
bsa 4 erl(kra)

This functica is derived apd svslwated in Appendix A.
In the =832 of the solid cylindricel radiator it 4s convenient to cowbine two
Green®s functionz of the form of Fy. IV.2 so that the norsml derivative of the re-
sultant Green's function vanishes over the end cfps of the cyMader, L.e., in the
two circular regions r <&, z = ¥L. This will eliwirate the potentizl ¢erm from
the Helmholtz iutezral ovar the end ¢aps, 85 well ag over the cylipdrical surfece.




Such Green's functions are readily constructed by icotroducing imasge sources:

Gi+(r,a,s-z‘) = Gl(r’a'z-zl) + Gi{r,a,ziz'-aL)
Gi_(r,a,zoz') = Gi(r,a,z-z‘) + Gi(r,a,z+z'+2L) (1v.3)

These Green's functions can be written more concisely ag®

G, { ] 3 j i [x_(z%L)}cos(k_(z'71)} (zv.4)
o AT,2,292 ) = - cos 2¥L} jeosik_{(z %L) ik, Iv.
% A 2$!2& J erl(kra) z 2 z

We can now write the potentiels in these three regions by making use of the modi-

fied Helmholtz integral in Bg. II.2. If we assume tbat the end caps ere rigid,

the surface integral reduces to the cylindrical surface:**

-

Qo(r,z) = axaf u{ z')Go(r,a,z-z') az’ (Iv.5e)}
-
-
éit(r,z) = 32:31 u(z')[Gi(r,a,z-z') + Gi(r,a,z+z' 3 2L)) az’ {Iv.5p)
+#

The time dependence of u{z’) end of the potentisls is harmoniz. The time-dependent
function exp{-iwt} has been cmitted, for the soke of brevity throughout this
report. These integrals are of opposite sign, because d%/dn’ in the Helmholtz
equation equals -Q§ o/&r:u in the outer region, and +<‘.°1/6r= -u in the {mper region.
With this sign convention, the sound pressure equals p;. If the velocity distri-
bution of the radiator ie symmetri.al about the piene 2=0, the two inner regions
w11l have identical potentiasls end we need concern ourselves with only one innper
region which we will degignste by the subs~—ipt {. For the case of a symmetrical
velocity distribution, only the part of the Green's function which is symmetrical

*Here, £nd elsevhere in this report, alternative subscripts and signs have been
used, for the sake of brevity, to condense iwo cquations into one, the upper sub-
script on the left side of the eguation being associated with the upper sign on
the right sfde of the cquation, &nd vice verss.

“*In sccticn X expressions usre given for an arbitrary veiocity distribution over
the radiating surfuce. The potential contributed by vibrating esd caps is given
in BE3. X.1 and 8.




stout z’=0 comiribaites to the potentisl. We will demote thiz even component of
Go k7 &y3

H(kr)
g(r,a,z-z)n-o——j——-ck—ajcoskzmkz &, {1v.6)

Weo further speciamlize the problez by assu=ming that the radisl velocity of
the sound source is constsnt snd equal to U. u{z’) is therefore & kuovn function
for |z{ < L. The velocity distributicn along the cylindrical boundsries
z ™1, r=a, is an unknovn functics, sey Waf{z). The integrals for the potentials
nov bacuse

Qi(r,z) = 258 UJf a(z')[Gi(r,a,z-z‘) % Gi(r,a,z-bz'-al;}] az’ {(iv.72)

[
o) = b U [ g fraeeat) @' + [aleg fr,e,ene) '] (7. 70)
¢ i
For the sake of trevity we will from ncv on axpress the known cooponen’ of the
potentinl & , svalusted on the crlindrical surface r=a, s & faction, say B{z},
rathsr ther as an iptegral

L
I
B\(3) = J g (a,a,2-2") a2’ (1v.8)

We can now construct the integral equation which the unkpown function afz)
must satisfy. This integral eguaticn is derived from the requirement that the po-
tentisle be comtinmuous scross the cylinder boundary r=a, 2 > L:

Qo(a,z) - it(a,z) =0, forz>§ {1Iv.9)

wnen we suhstitute Eqz. IV.5, this contimuity condition ¢akes the forz of & non-

SOEOESnSouS Froahis fntcgiel Squtticn of the firgt Hind

fr(z-z') afz’) az’ = -8(2), forz>1
L




vhere the kermel oi this equetion is Zven by
[{z-37) = go(a,a,z-z') + %‘- Gi(a ,8,2-2') + -]é'- Gi(a,a,z+z'~2L) (xv.11)

Wo will now show tnat the function a{z’) wvhich satisfies this integrsl equation
gives a stationary value for the radiation impedsmze, with respect to
variations &.

V. Derivatior of the Varietional Principle for the Redistion Impedance

We note ror future use that the remdtant radiation impedsnce on the cylinder
is obtained by integrating the pressure

poawe

e

pla,z) p&o(a,z)

-
"

-iwps (a,2) (v.2)

over the surface of the cylinder:
7 = . Si=p fﬁ (a,z) az
¢ 4 0
o]

b2
= = i{hsa)empJ, {8(z) + jcx(z’)go(a,a,z-z’) daz’] az {v.2)
0 L

The radiation impedance is thus clearly the sum of tvo component impedances, 23
indtcated in Bg. III.1l. The impedance computed from Robey's model is

i
zZ. = -(l-r-v..t.i)2 imp !H(z) éz

: L
I

YT

= -(Usa)” wp ! [ g (a,8,2-2) az” 4z (v.3;

0

Like H(z), Zr is 8 known quantity since {t does not involve the unknown fuaction
a{z). The correction term in Bq. III.1, wvhich embodien the contribution of the




flow across the cylindrical boundaries prolonging tnie source is

2, = ~(une)? 1mp f[ a(z’) g (a,8,8-c") @2') @z (v.u)
oL

Sirce tha Green's function is symmtricsl in 2 and z’ the order of integration in
Eq. V.4 can be inverted:

2, = ~(uma)® 1op J' {f‘go(a,a,z-z') az’] afz) dz
« O

= -(4m)® mpl B(z) afz) az (v.5)

A functional J{a} will be defined below, Bas. V.9 and 10. XFor future reference
ve note that for the corvect function afz), i.e., for the function which sstise
fies the integral equation, Eq. IV.10, this functicnal ccn also be written as

-]
Jia)l = - I R(z) afz) dz, for afz) solution of BEq. IV.10. (v.6)
L
Comparing this with Eq. V.5, ve can relate this functiome) and the impedance Za:
2, = wop(uma)?3lal, for alz) solutien of Bq. IV.10. v
We will ncw prove that J{a] is statiomary with respect to first order varis-
tions &x about the correct fuaction @{z). For this purpose, we relate J{al to
the integral equation, Fq. IV.10. Ue multiply both sides of this eguation by

alz) and integrate with respect to z over the regiorn z > L. We then divide bath
sides of the equation thus cbtained by

[ f 8(z) a(z) az)®
L

Our original integral equation now taekes Lhe rorm




; {

)

.- @

‘: A Jja(z)l'(z-z') a{z’) a2’ az

T » genid (v.8)
S [;rH(z)a(z) azl? f 8(2)a(z) 4z

L A L

. . The functicnmsl Jia] is defin>3 as the reciprocal of the left side of this eguation:

2
sia) = 43 (v.9)

vhere
Ala] = f a(z) a(z) dz (v.108)
L
Blaj = ) fa(z) I(z-2') a{z’) az’ az (v.10m)

.‘_': LL

For a function az) vhich satievies the integral equation, and therefore the
equality in Bq. V.8, the reciprocsl of the right side of Eq. v.8 is also equal to
.- the Jla), as already indicated in BEq. V.6. If the functionsl derined in Eq. V.9 is
indeed stationary with respsct to small veriations of the functicn @(z), then, by
definition,the increment 8J[c] associsted with an increment bx is zero:

sata) - 2501 -[B(z) sa(z) az -

“
[retowy g

-él-a-l . ’ rr(z-z')[cx(z)éa(z')w(z')éa(z)1 &z’ az=¢ {(v.11)
Flar 3¢

Like the Green's functions in Bg. IV.11, {2-z’) 1s symmetricel with vespect to
2 and 2. We can therefore i~vert the order of integratica in the former of the

tvo terms of the integrand of the double imtegrsl in Eq. V.11. The double inte-
gral cap thus be condensed to

- b

( -
=2 r} M(z-2') of{dea(z) az* dz (v.12)
LL

" -
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From the integral equaticn, Bg. IV.10, we see that the integral over z’ equals
-H(z) for the correct function %{z). The doudle integral can thus finally be
written as

U“ - fﬂ(z) safz) dz (v.13)
L

When we substitute Eg. V.13 in place of the double integrsl in Eq. V.11 and sul-
tiply the terms of this cguation by the retio 82[01/2A[a] , e obtain

E{al + Alail) . {R(z) tx(z) dz = 0 (v.1k)
A

8ince the integral is not identically zero the sum in brackets, which sultiplies
this integral, must vanish, i.e.,

s{a} = -Alal {V.15)

When «e swistitute the definitions of these two functionals, Egs. V.10, this
bectmes:

@ &

a{z) [{z-2’) a(=") az’ 4z = - {E{z) afz) az {v.2€)

[
J
L L

Jd

L
This equction is obviously satisfied if a(z’) sstisfies our origizal integral
equation, Bq. IV.10., We have thus shown thet the functiomel Jia]. as defined in
Bq. V.y, does indeed tske on & staticuary value for the correct value of the
function &(z). Since the fractionsl J{a] is stetiomary with respect to the cor-
rect function, the errcr in J{al is of & higher order them the error in a{z).

We shall now iliusirate tie evaluation o ths radistion impedsncs by means

of the variaticasl principle just derived.




VI. Evesluation -.C the Radiation Jupedance from the Variational Piinciple

We first proceed to select the simplest trial function a{z) which yields e
far field potential §1 in the desired form of a spherically spreading wave,

éi(a,z) = -l-%l- exp(ikz) , for large iz} (vi.1)

If the cylindricol boundary r=a, |[z| > L vere in the fora of a rigid pipe, the

far field potential would only decay as & result of viscous losses, as embodied in
an imaginary component of the wave number. The far field poteatial in a rigid
pipe can therefore only decay exponentinlly. The desired spherical spreading
loss, Bq. VI.1, must therefore be the result of energy flow across the cylindrlcsl
toundary assocleted with the velocity az). The rate of ensrgy ontflow, per unit
axial distapce, along the “pipe” is

%L"l = akapcl (2,2} a(z) |, (n.2)

This pust balance the decrease, per unit axial distance, of *he acousiic zpergy
prapegating down the pipe:

a
’ g%.z.l = % {xcck2 !l&i(r,z)‘ Erd_r] .3)

In the far field, and for the values of ke chsracterictic of tramsducers, %,{r,z)
can be set egqual to éi(a,z).' We csn thus replace the isteprsd in ¥y, YI.3 by
ai?i(a,zf/e. When we substitute Eq. VI.1 for 3, i Bqs. VI.2 ard 3, ve oin solve
for ja(z) . :

b dewen} Py oy L "y

o

b w— L] fermmnon

b amenng

;a(z)‘ = %‘3--'-1—'-2 , for large ‘z‘ {vi.x)
|z

We thus conclude, that in the far field, a(z) must be of taw form

afz) = e—r-n-{%ﬂ , for large |z {v1.5)
‘2

f

We will pow illustrate the use of the variatiorzl principle by celacting the

*Even for lsrge ka, the value of Qi averaged over the cylindricax cross sz~tion
is equal to a constont times Gi(a,z). e Tunctional relation derived in Eq. VI.h
therefore still holds, but the constant in this equatica will not equel A,

[ )
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simplest trias) function which satisfies Eq. VI.5 and which can also account for a
more rapidly decaying near field. Such a finction requires the use of at least
two unknovn coefficients, x and %

afz) = (% + 2) expluxa) (v2.6)
FA z

8ince Xy and Xy are generally complex quantities, this expression allows for a
phase shift between the two conponents of the potentials. By virtue of the
variational principle, the best values of the unknown coefficients are those which
give a statiomary value to the fuacticnel Jlc]:

Wfa)/x, =0
daj/ax, = 0 (vr.7)

When we substitute Eq. V.9 for the functionsl J{a] we can write these equations,
after some manipulation, as

2 i}‘i‘l ala) - 2l gia) - o (v1.8)
1

ete,
¥hen we combine the =asumed trianl function, Bg. VI.6, vith the definitions of the
functionals A{a] and B{x], Egs. V.10, these two functiocnals are found to be,
respectively, linear apd quadratic in xl and %55

Ala) = ax) + 8%, N[k, =8, N/X, =8,
Bla] = blxi + ngg +2by, XX,
3B/dx, = X+ DX, BfA, = Wyxy+ Dy, X, (v1.9)

vhere coefficients 8y, 85, bl’ b2 and b12 are known, complex quantities. When ex-

pressicns VI.O are substituted in Fgs. VI.8 a sct of two simultaneous linecar
equations is obtainped:
2
2(&1 - b Jlal)x; + 2(8132-1:12 Jfal)x, = 0

2(a,2, - by, Jal)xy 2(a§-b2 3lal)x, = 0




[ S S
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8ince this sst of equations is homogenecus, its coefficient matrix must vanish:

2(a§-b13[a]) 2(ela2-b12.1[a] )

=0
2(a,a,-b ,3[a]) 2(a§-b23[a1 ) (vI.n)

Expanding this matrix we only obtain terms proporticnal to Jz[a] and Jfal. The
equations can thsrefore be solved for J{a):

a +aab - 2a,a. b,
oy - 2221 122 (v1.12)

blb - b12

The remerkable feature of this result is thet the functional is independent of X,
g_ng_xa- Like the coefficients a5 25, bl, b2 and b12 the functional in Bg. VI.12
i3 complex. We see, by referring to Bq. V.7, that the jmsginary compopent of
Jic] embodies the rmaintion resistance, and its real component, the reactance.

If ve are merely interested in the radiation icading we necd not evaluate the
unknown coefficients Xy and X, . If, however, we wish to compute the far
field potentisls, ve must substitute the expression for a(z) in Egs. IV.8, end
therefore require the values or Xy and Xye The ratio of these two coefficients is

obteined from either of the “wo homogeaneous equations, Bq. VL.10

X, (-ai + blatc])
% T e )
vhere the value of J{a] is known from Eq. VI.12. The coefficient X, is obtained

by substituting the ratios x,‘,/xl, oq. VI.13 in Bg. VI.6, which is then substituted
for a(z’) in the integral equation, Eq. IV.10. Unless the functional dependence

of the trisl fumction, By. VI.6, on z i{s the correct one, the coefficient %, can
not be selected so ac to satisfy the integral egquatica in the whole range {z| > L.
It is advantegeous to select & coefficient X vhich sitisfies the integrul equa-
tion for a velue of z associated with a relatively lerge velue of a(z) and hepce
with a large contributiou to tiae far field potential, viz. for z ® L, say L + e:

x, == 28{1ee) (V1.10)
2 ’
M(ire-z’) * (S5 + 2 ~23) exp(ticd) dx
f 2'2 x1::'3
L
15




An alternstive procedure, vhich pives more nearly equal veight to the whole region
of z vhere the integral equation apr .jes, is based on the fact that for the correct
function a(z), Jla] equals -Alx], from Bgs. V.6 and V.10a. Hence, substituting the
ratio xalﬁ, from BEq. VI.)3, and the value of J{a] from Eq. VI.12, in the expres-
sion for Afa], Bg. VI.9, we can solve for %

n= al+;:i:‘27xl’ {v1.15)

Experience with numerical calculations will indicate which procedure is preferable.

To refine the zelection of the trial function further, we can introduce addi-
tion2l unknown coefficients associeted, for extxple, with nca-propawavircg incom-
pressible near iield components of the potentials. The trial function might thus,
for exzmple, be expressed in terms of three coefficlonts: x, and Zne associsted
with propagating components of the potentials, and x3 with an incompressible, near-
field component decsying rapidly with distance:

Il

afe) = (2 + 2) expltse) + 3 (¥L.6)
z 2z Z

This ylelds three sim:itancous equations of the rorm of Eg. VI.8. Once again, we
will find that ¢th se equaticns are linear ir thethree unknown coefficients end,
of course, howmogenecus. We can therefore construct & third order detarminant
similar to Bg. VI.11. The constant tern and the lipesr term in Jla] ere found to
cancel, leaving only 8 cubic apd a quadratic term in J{a). The determinart thus
yleids a single root Jiaj:

2 2 2 2 2 2
Jel = [al(b2b3-323) + 82(b1b3-b13) + a3(b1b2-b12) +

+ 2a1a2(’o13b23-b3b12) +2 8163(b12b23-b2b13)

+ 28233(b12b13-b1b23)] . [blb2b3+2b12b13b23

2 2 2 \4-1
- " .
(b1b23+b2 L3+b3b]2)] {vI.123)
We then solve three of the sst of three homogentous equations, Egs. VI.8, for tvo
ratios of underternmined coefficients. Firally, ve solve for the amplitude of the
one remainirg coefficient by satisfying the integral equation et z = L 4+ ¢, or in
the manner indfcated in Eg. VI.15.
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If afz) is expressed in terms of N unknown coerficients, the functionals
Afa] and Bla] and th=ir darivatives toke on the following form:

K

Ala] ==X:x\:‘{u ? %—=an
o n

N
Bla] = E (bnxfJ +2 ) b xx)
ns,

3B
. Ty t2 ; L {(VI.%)
n

The set of K homogeneous linear equations for the .knova coefficients corres-
vonding to Ega. VI.10 15 of tlke general form

3

When the ccefficient mairix of this set of equationus is set egual to zero it
wiil b found that only thz terms containing the two highest povers of Jla],
N end B-1, do not cancel. When both teres are divided by (J{a])n'l, a ligear
equstion in J{a] is obtained. The Nth order determinant for J{x] hzs e single
non-vanishing root. Thias is consistent with the requirement that the integral
equation, Eq. IV.10, have only oz= solution.

Experfence with oumcricel calculations will shov whether the radiation ime
pedance 13 sensitive to the selection of the trial function afz). If this
should be the case, the functional 1ependence of the near field potentials on z,
particularly of the non-propegeting inccmprassible components, can be studied
more closely so as to construct a more sophisticated trial functicn than
Eqs. VI.6 or €a. Theoretical insight into this functional relstior ~an be gain-
ed from the fluid mechunics literzture desling with accessions to inertia of
vibrating solidn. Comparison with the results of the non-varisifonal solutions
presented in Apperdix B can aiso be used to evolve more refined expressions of
a(z).

fact that Jfal] br, referring to £g. V.7, Za) con be evaluvated fron o
varietional principle, vithout previcusly de*ermining tae smplitude of the

- " I
(e -x Jial)kx, + 2 (anam-bmJ[ou x =0 (v1.102) I




wnknown coefficients of the ¢rial function oz(z), has alresdy been related to tre
Levine-Schwinger vsriatiowal principle for scattering cross se~tiems (Ssctiou 13I).
Agother poerallel viich myy be mose familiar to sume readers is Iound in the

Raylsizh~Ritz method for optimizing the natural frequenciss obtained from Raylelgh's
principle.l In this method a trias) function is ssswursd for the dymawmic configura-
tion of the vibraiing system. The best choice of the zoefficients in Shis triel
function is determined by giving a statiomary value to the matural xequency ob-
taipned from Reylzigh's principle. If E unknova coefficients are used in expressing
the trial function, 8 set of K linear homogenesus eqQuations is obiained with the
coefficients as unknown quantities. By setting tiae cosfficient zatrix of this cet
of equations equal to zero, values of matural freguencies are cbtained, vwithou"
ever baving to compute the unknown coefficie*s themdelves. The fundamental natu-
ral Zrequency® thus obtairned is eguivalent to the :uncuioral Jia). To compute the
ratio of the undetermincd coefficients at that frequency ope substitutes this
vaive of the fundsmental frequency back in the set of N homogoneous equations and
solves for E-1 ratics. The amplitude of the Hth unknown coofficient is finally
obtained from sn inhooogenecus equation of motion.

To conclude our study of the solid cylindrical radiator, we now turn to the
evalvation of the far field potentials.

VIiI. The Far Field Potentials

To evaluate the potemiial in the regionr < a, z > L we substatute the
Green's function, Gi’ 3. Iv.2, 1a Bg. IV.7a:

z I (xrx)
éi(r,z) = g;fa(s’)dz' j i:?qé;ﬂ {e:zplzlkz(z--z')]+m:;,~{11‘2(2%'-21.)]}dkz (vir.1)
L -

For afz’), we substitute a trial function of tke form of Eg. VI.6, with the un-
known cosfficients oxpressed in terms of J{a], as described in 3ection VI. The
k;,-integral associated with the Zirst exponentinl term in braces in Eq. VII.1 is

*In contrast to the variational principle used here, vhich yields a single
solutian sf{a}, t™e Rayleigh-Ritz techniques yields & nuzmbir of natursl freguencies
evuas to the mmber of unknown coefficients iz the azsumed trial function.
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is given in Appendix A, Eg. A.1h. Substituting (-z‘42L) in place of 2z, we obtain
the kz-inteml associated with the second expomential t2rm. When we add the two
integrals, we obtain

Idk -2“1[@:2(11:‘:-2 i) + ﬂ[ﬁk(ﬁhz -EL‘)I}Q"&KI T — J (k r}
g (6 )% ofJ (ka)-J,(k a)]

lepl102420E ez’ | expts 0 era o))} (viz2)

vhere (x a) is the nth root of the Bezsel function Jy. The integral over 2f in
Eg. VIL.1, must be split into two regions of integration: {1) from L to z, where
‘z-z" is taken equal to (z-z‘), and (2) from z to =, unere jz-2° | equals -(z-2°).
Since even the lovest root, k1a=3.83, is generally lerger than the ka.value of
resonant piezoelectric or magnetostrictive transducers, the terms under the summa-
tion sign decay expenentislly vith increasing lz—z". Because the source distii-
bution a(z) extends to infinity, these "nesr field” terms contribute to the far
field. By using energy flow considerations it was shown in Section VI thet the
desired far field behavior of ¢,, Eq. VI.1, requires that the ‘unction a{z) emdody
lerns of order lz‘ -2 snd h:g’aer. The dominant, plape-wave compcnents of the in.
verse transforz of the Greea'’s fuaction, Eq. VII.2, do not decay with increasing z!.
In combinstion with the far rield ters of a{z’), these plane wave components of
the Green's function therefore give rise to a far field potential vhose absolute
value varies as | 1z17%az = - |21"L. Tuts result {s consistent with the poteutial,
Eq. VI.1, used In deriving the functionsl form of a(z) in the far field. The
evaluation of the inverse traansform of the Green's function, Eq. A.1l4, i3 thus
onsistent with the energy flow analysis in Egs. VI.2 to k.

The far field in the region r > a is obtained by substituting the appropriste
Green's function, Bq. XIV.1, in Bq. IV.S5s:

H,(x,x) , ,
8(r,2) = '2; j j —W explik_(2-27)] u(z’) dx, dz’ {v11.3)

’

The integration over z° can be carried out immediately by making use of the
. definmition of the Fourier transform of the velocity distribution u(z'):

»

u(kz) -.-J ulz’) exp(-ikzz') az’ (ver.e)




The expression for the potentinl now becomes

(x,)E (x.r)
b\rz)=-2-;f‘-‘-——(i%r:—exp(ikzz) dk,

When the asymptotic, large argument expression for the Hankel function,

B ) = (! emtitr- 1) (viz.6)

is substituted in the integrand in Bq. VII.5, and using spherical ccordinates R
snd 6 in lieu of the cylinder coordinates,

z =R cos® apl r = R sing,

the far field potential becomes

5 (8,6) = Sxplotn/b) "~ expl1R(k, 5109 + k,c039)]
, (QZBR sme)é - kiﬂl(kra)

(viz.7)

This integral was evaluated by laird and Gohxen‘j using the method of ststiomary
phase. The resulc thus obtained is

-fulk cosg ¥R
QO(R,B) “ F%R siod B.lhca sm; (vix.8)

The velocity transform u{k cos8) car be written mcre explicitly in terms of the
trisl function afz’) as

ulk cosg) = 2U{sm kL °°s; 21 fa(z') coelkz’ co88) 4=’} {v11.9)
L

Ve nov have concluded the anslysie of the solid cylindriesl radiator. and
proceed with the open-ended cylinder.




VIII. The Open-Ended Free-Flooding Cylirdrical Radiator of Vanishing
Wall Thickness

We consider a8 cylindrical radiatcr whose wall thickress is pegligible com-
pared to both its radius apd the acoustic wavelength. For such 2 source configu-
ration we can comstruct a single potectial «}1 far the region r < a extending now
frez ~» <z <=, This is in contrast to the solid radiator where we had to define
two potentials §1+ and §i- each valid in 8 semi-infinite region. The cuter poten-
tial §° is simflar to the outer potential derived Yor the solid cylinder, Zgs. IV.5a
and 7Ta. The inner potential is of the form

-
éi(r,z) = «278 ju(z') Gl(r,a,z-az') az’ (vizr.1)
-

vhere the Green's function Gi 1s giver = 25, IV.2. ¢ evaring this with Bg. IV.%Dd
we see that the pstentials ’i defined, respectively, for tbe free-flooding and
solid case differ es to the range of 2’over whi_l the integration is performed as
well as to their Green's functions. As in the case of Go’ it ig¢ convenient to
de?ine separately the companent of G,, which is symmetrical about z'=0, and which
alone coatribules to the potential when the welocity distribution is similerly
sycmetricals

( ) 1 A K Kk 2’ ay (viiz.2)
r,a,z-2") = - cos k zZ cos k 2 4% .
& NN ¥ A X)) z z 2

Assuming 8 constant velocity U over the radiating surface, this potentisl is again
expressed in terms of an unknown velocity distribution U 2(z’):

él(r,z) = - hza U[) Bi(r,a,z-z') az’ + J’a(z')ﬁ(r,n,z-z') az’]  (vIIi.3)
o]

The continmuity condition et the boundary rsa, z > L, is sgain in the forn of
BEq., IV.9. The corresponding integral equstion is therefore also, formally st least,
similar to the integral squation derived for tne solid cylinder, 3g. IV.10. How,




howsver, the kernel I'(z-z°) and the non-homogeneous term B(z) are

I(z-2’) = gi(s,a,z-z') + go(a,a,z-z') (vIIr.ks)
L

B(z) =f[gi(a,a,z-z’) + go(a,a,z-z')] az’ (VIII.bb)
C

The expression for ['(z-z‘) can be simplified by using the Wromskian relation for
Ho and J ot

ao(xra) :o(kra)

1 ’
I(z-2') = E![W - W] cos k2 co8 k z° dk,

= v ol
i cos kzz cos k2
a* 2 k33 (x_a)H (k. a) e
0 "rivr )El r
The radiation impedance of the free-flooding shzll differs from that of the solid
cylinder in that the pressure on both the outer apnd inper surface contribute to it

{virx.s5)

L
Zsc - ﬁ'i-u—igfho(a.z) - Qi(a,z)] dz (vxi1.6)
0

The tve components of this impedance stated in Eq. III.1 cen again be separated.
The irpedonce associated with Robey's mathematicasl model is:

z = -(una)® 1mp jif?(z-z') 4z’ az
00

L

= -(428)? tmp grﬁ(z) dz (vIx1.7)

The correction term resulting from fluid flow across the cylindrical boundary
r=a, |z|> L is

L =
2 = -lixa)? 1m0 [ [fate) ae?) @27)
0 L
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Since [(z-2') 15 symmetricel in 2z and z°, vo can invert the order of integration
and, using the definition of H(z) in Rq. VIII.kb, write the unkrows componert of
the radiation Ispedance as follows:

o0
2, = -(ma)® 1mp J ofz)a(z) az {vrrr.o)
L

The construction of the functional and the proof thet it is statiosnsyy for the
correct form of the unknown function a(z) parallels formally the proof gizes in
Egs. V.8 to 15 for the sol’l cylinder. The relation between the unknown impedance
Z, aud the funstionsl Jla], Eq. V.7, is also applicabie. The variationel soluticn
of the free-flooding thin-walled shell is therefore formrlly idemticsl with thet of
the soifd cylinder provided the definitions of ['{z-z') end H(z) given in Bgs. VIII.ka
and b are used, instead of the corresponding definitions, Bq. IV.11 and 8, re-
spectively, which apply to the solid cylinder cmse, ¥e will see in the next sec-
tion that this parallel does not hold vhen we assuze a realistic free-flooding
transducer or “squirter" wvhose wall thickness is not negligible.

The expression for the far field potential §° is still given by Eqs. VII.8 and
9. The expression for the poten.iel Qi is somevhat different, because of the con-
tribution of the region | 2’| < L vhich is absent in the case of the solid cylinder:

1 i ? g J-o(k!‘r) ¢ ’
éi(r,Z) = 52 f u(z’) [ W e)tplikz(z-z )] d, dz {VIII.10)

The integral over dkz is given in Appendix A, Bg. A.14. The comments nsde in
connection vith Bgs. VII.1 and & apply.

IX. The Free-! _ooding Cylindrical Trensducer or "Squirter”

When we drop the assuwption of a vanishing wall thickness, we must formulate
the analyeis in terms of three cosxisl cylindrical bounderies and their respective
radisl velocities (Fig. 3).

{1) r-ai=a(l - %); radial vei~ ty “1(z)

(2) r=a ; radial velocity u(z)
(3) rea 21 + 2-); radisl velocity u (z) (xx.1)
23




Bach of these cylindricsl boundaries is of infinite extent in the z-direction.

The required modifications in the expressions for the potontials, Eqs. IV.S5a
and VIII.l, are self-evident and involve merely labeling 8 and u with the appro-
priate subscripts £ or o. There is an equally obvious change in Eg. VIII.6 for
the radiation impedance, vhere the potentials & A and 01 must nov be muitiplied,
respectively, by the ratius e 0/a and ai/a. A non-trivicl chsnge must be intro.
duced in the statement of the continuity condition, which pow no longer tskes the
form Qi(a ,z)=5°(a,z). Rather, we assume an incompressible potentisl in the ennu-
lar ngion & 1 <r < ao. With this assumption the difference between the poten-
tials §1 and §c mst be matched to the inertis force exerted by the fluid located
in this annular region.

L+ olaz) - -2 4(s,,2) = camlely, for |2f>1 ()

The assumption of en incomprecsibls pctentisl implies that the ratio 2h/ is
small. This condjtion is generally satisfied.”

We will pow derive relations between the radial velocities on the threu cyliu-
drical surfaces defined above. As & result of the assweption of an ‘acompressible
potential in the sunulsr region & 1 <r< ao the velocities in the two gemi-
infinite regions prolonging the transducer can bz derived Zrom the requirement

th2t inflew zust balance cutflow acress the cylandriczi boundsrvies r=a, 8, and 8,
u, = uat!/a1
= uf(1-bfe) |
P, - 7
“o"ua/ao ’ -or‘z,(J
= /(1 « v/a)) (x.3)

“*For the BRL magpetcstrictive transducer ving 2h/M is spproximately 0.07. For
trapsducers where thées assumption is not valid, 2 compressible potential, °a , must

be constructed for the region B, <zr<a. The three potentialrs must setisfy two *
continuity runditions, viz: éi(ai)da(ai) and §a(a°)=!°(u°). Instead of one, two
unkprun radial velocity diatridution over tbe boundsries, r=a, and r=a must he de-
termined frexw the two simultaneous integral equstions arising from the two poten-
tial continuity requirerents. These ejustions have been constructed, but it has
not yet been verified vhether & varistionol principle ran be applied o their

solution.
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For Iz <L, i.e., in the reglon of the transducer, different relations must be
used. The form of the equations relating these three-velocities depends upon
vhether vwe are deeling with piezoelectric or megnatostrictive elements. In the
cage of piezoelectric transducers, the vcltege applied to the electrodes located
on the inner and outer surfaces of the ceramic ring produces a radisl strain L
The corresponding circuiferential s<cain € of the mean surface of the elemeut is
tha rT5udt of Poisson coupling:

ew I er (D(.!&)

where v is Poisson's ratio. This circumferentisl strain is related to the radial
velocity u of the mean surface ag follows:

€p = uf(-1xa) {1x.5)
Hoting that €, is of opposite sign than CQ’ and hence then the displacement
u(-ﬂn)'l, ve f£ird thst the velocitv of the outer 2nd inner surface are recpective-

1y reduced and increased by the radiai gtrain

ui--u-hcr

u =u+ hér (xx.6)

o
vhere a contraction correspoads to negative L% Coxbining these equations we
finally hsve

h
u, = u(1 + E)

u, = ufl - &) (.7

In the csse of 2 ring-shaped megnetostrictive transducer the current in the
solenoid produces 8 circumferentisl strain cq’. In this case it is the radial
strain that results {som Poisson coupling:

Cr Z LV Gw

2 -y u(-ima)'l (1x.8)
Combining these equations we nov have
vh
u, = u(l + a—-)

u, = u1 - 2 (x.9)
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For the sake of brevity, we define the following coefficients, which tend to unity
for small values of hfa:

88 =asdHat L), for ptezoslectric transeucers

33 = (1F3) 1t ®), for mmetostrictive transdvers (1x.10)

If ve now substitute these veiocities in the expressiocns for the pouentisls used
in the boundary ccodition, ®q. IX.2, we obtain a more complicsted iniogral equee-
tion than for the two easlier configurations:

s alz) + J ofa' s D (ay0,,e-2) + (1- Dy (s, 0, ,2-2)] oz’

2 - f[3°(1+ %)go(ao,ao,z-z') + 81(1- 2)51(ai,ai,z-z')] az* vorlz| >1
° (xx.11)

As vill be seen shortly, the presence of the limear &~ in afz) outside the
integral sign, which makes this into a Fredholn igt .«1 eguaticn of the second
kipd, do=s not interfere with the applicstion c¢f 4@ vari tional principle. The
presence of the coefficients 8 4 and Bo in the aon-homogensous term of the integral
equstion does unfortumately make the applicition of the variational principle im.
practical because the statiomary potentisl J{c! <hich can be constructed, 1s no
longer proporticnsl to Za’ as stated in BEq. V.7. To make this simple reistion
applicable, we muet assume

B, ®8 %1 {xx.12)

The error in this procedure is scen from Bg. IX.10 to be

]

e=2 () - & v (zX.138)

for magnetostrictive transducers. For plezcelectric tranazducers the error is larger
h 1 h 1

e-la-d. @2 (2x.130)

The simple varistionsl technique is therefore detter sulted to magnstostrictive
than to piezoelectric transducers. PFor the magnetostrictive HRL traasducer




ving (2e=5-7/8 in., 2h=} in.), the error computed from Eq. IX.13a is approximately
6 percent. It may seem inconsistent to inmtroduce assumpticn IX.12 and not to drop
the linear term in a(z) from Bq. IX.11, and the ratio h/a from terms of th: form

{1 t bfa). PFurther work is necessary to determine whether retention of these terms
increagea accuracy. Until this is dope, we shsll retain these terms, because they
do not cowplicate the variationsl technique. In sddition to introducing the assurp-
tion stated in Bq. IX.11, we give a new definition of the function r(avz') and of
H(z)

T(z-2’) = (2 + D lam,2-2) + (1 - Py o0 ,22") (X 2e)
L
B(z) = J[(l + g—)ga(aa,ao,z-z') + {1 - %)gi(ai,ai,z-z')] az’ (1X.14)

Furthermoie, we peke the integral equation, Bq. IX.ll, formslly into a Fredholm
equation of the first kind by the artifice of sdding a Dirac delta function
5(z-2’) to the kernel:

©

j[l‘(z-z') + -2-2-; 8(z-2")] afz®) az’ = - 8(z), for 2l > (1x.15)
5

The functional J{a] is still of the scme form 23 in the two earlier amalyres,
Eq. V.9, and the definition of the functicnrl Af{a}, also revains formelly the same,
Bq. V.10a. T%c functional Bfa] is, however, different.

Bla) = ffu(z)[r(z-z') + ;‘-l-;-; 8(z-2")] afz’) az az’ (1x.16)
LL

we will nov shov that the statiopary character of J{a] can be established as before.
Setting the increment of the runcticnal equal to O, ve have

GJ[a] o 0s Fat(_g.ar]. j,ﬂ(z) 6(1(2) dz -

L

- -

Ll j [M(z-2' )+ 5o8(z-2)la(2)ba(z Walz Yoal2) Jaz a2’ (IX.17)
i

T

{a]




The order of integration of the a(z)s(z’) term in the doudble intezal can oe
inverted.

[

From here on, the proof parallels exactly the steps from Eqs. V.13 to 16 and will
therefore not be repeated. The rsdiation impedance correction factor Za, is cnce
again formally given by Bq. VIII.S, with I'(z-2’) defined in Eq. IX.llks, Thus by
setting the coefficients [ equal to unity, Za can still be expressed in terms of
the functional J{a] as in Eq. V.7. The component of the radiation impedance 8550
ciated vith Robey's mathematical model is

T{z-z’) + -2-2; 6(z-z’)] a(z’) &alz) 3z az’ (1x.18)
L

LL
z= ~wo(tm)? J J [B,(1+ Bg (o022 18, (1 B, (o0, 2"} ) @2’ iz (X29)

Even if the coefficients B had not been set equal to unity, a stationary po-
tentisl J{a] could szve been comstructed with

Ala) =Ia(z) {f[so(lﬁ- %)go(ao s8s3et ’)+51(1- E)gi(ai,ai ,2=27)) az’)az {T.20)
L 0

instead of the expression in Eq. V.10a. Tte usefulness of the variational wethod
is hovever impaired, because the radistion impedance component Za does not change
in the same manner as Ala]: 2, 1s given, 1s before, by Kq. VIII.8 with I(z-z') as
defined in Bq. IX.lha. It therefore does not involve the coefficients 8, vhether
we set the coefficients equal to unity or not. Z':x is therefore not proportional
to Afa],Bq. IX.20, end Eq. V.7 relating Z, aud J{al does not spply. Thus even
though the variationtl methiod can be used for "squirters™ whose walls are too thick
to perxit setting the cosfficients 8 equal tu unity, the unknown ccefficients in
the trisl function afz) must be solved for before computing Zye Wnether such a
procedure is competitive with the non-varistional solutions presentea in Appendix B
for thick-walled “squirters” can best be verified empirically after numerical cal-
culations have been performed.

We shnll now exterd the variational technique to arbitrary non-axisymmetric
velocity distributions of the radisting surface.




X. Cylinders Vibrating in Longitudinal and in Hon-Axisymwetric Modes

The analysis of the "squirter" and of the solid cylinder can be directly adapted
to the case of nonuniferm axisymmetric velocity diutributions over the radiating
surface, by replacing the constant velocity U in the region |z| < L with a 2-
dependent velocity u(z). If u(z) is not symwetrical about 2=0, the most convenisnt
approach is to consider the velocity distribution as the sum of a symeetrical dis-
tribution ms and of 2u antisymmetric distribution uy. As ve sre dealing with a
linear problem, we can add the corresponding potentials. We first sompute the
potential associated with u 88 in the preceding analysis, setting as(z)zaa(-z),
and using the corresponding Green's functions g , Eq. 17.6, and &> K. VIII.2
(the latter in the case of the open-ended cylinder). To this we add the potentinl
resulting from the velocity distributicm u, for which Cta(z) a -aa(-z). The suit-
able partial Green's functions are obtained by modify'ug the expressinos for g o
end g, given, respectively, in Egs. IV.6 and VIII.2, sin 3,8 sin kzz' being sub-
stituted for the product of cosines. We aust thus solve two uncoupled integral
equations for the two unknown velocity distributions, a, and aa.' Thless we pro-
ceed in this fashion, the solid cylinder with arbitrary velocity distribution u(z)
gives rise to three different potentials 90, .1+ R 01_ which iz turn result in tvo
distinct boundary conditions corresponding, respectively, to the regions z < L and
z > L. The two resulting integral equstions will thus be coupled, eacls fmvolving
both unknown velocity distributions, afz < 0)and az > 0).

In the case of & piston or ring vibrating in phase on a finite cylindrical
beffle or array, the velocity distribution of the active element is of course con-
stant and hence symsetrical over the midplane (z=0)of the element, but umless this
element is centrally located with respect to the baffle or array, the velocity dis-
tribution afz) will not be symmetrical. In this respect. the prerent mathemetical
wodel differs from Robey's model, in which the potential apd the velocity distri-
bution ere always syzmetrical sbout the plane of symmetry of the sctive clement.

A configuration of practicsl interest is that of a xolid cylinder whose end
caps reciprocste in the axial direction. This situstion grises as a resvit of
Poisson coupling with predominantly radisl, axisymwetric modes. End cap wotion
can contribute the major porticn of the sound field in the cgse of the so-called

*This procedure will be fllustrated in the repart dealing with en arrsy of ring
transducers (see footmote cn p. 1).




accordion modes, which are predominantly longitudinal. To account for an axisyn-
metric velocity distribution v(r’) over the end caps, the following integmel is
added to tke surface integrals in Eq. IV.5H:

a

o, {r,2) =% ’m[v(r') Gi(r,rﬁz FL)r- ar’ (x.1)
vhere v has been taken positive in the positive z-dfrectica. If the cylindrical
surface of the radistcr is motionless, the potential 50, in the region r > a is
associazed entirely with the velocity distribution afz) ac-oss the two surfaces
{r=e. z21).

The variaticual amelysit .an be extended further, to include an srbitrary non-
axigymetric velocity distribution

Lo

ulo,2) = & Z_ U,,(2) expltms), for 2] < (x.2)

e

U, is 2 modal velocity awplitude, the maximm value of the function fa(z) being
unity. %o each Fourier cosponent Ua of the velocily, corresponds a partiasl po-
tential ia(r,z), the total potentiel beiug of the form

>

=

)= Y (re) expling) (x.3)
Szt

The partisl potentials are obbair . ftrom BEgs. IV.5 apd Bq. VIIX.1, by substitu~
ting in place of the axisymmetric Green's functions given in Egs. IV.1 and 2 the
following.

AR XCEY ,
Gos(r,z,w',z-Z')c~;i-é-;¢xp{1m(w’)lf E%?r;;;’@?{ikz(z_z’)l&z: for r>a  (X.4)
- “3 -

s

The near field value of this integrael bas been evaluated by Gresnspon and Shermn.s

Its asymptotic far field walus is giver by leaird snd Cohen:s

! 3
ClReeo’lf = Aemplud) s 31';’ 2L | for1argr R (X.5)
r'=a 2g 8k R gish 2




The correspondiag Green's functicn in the cyiindrical reglon is derived in Appendix
&, Bg. A.6:

-]
3 (krr)
3 -
Gm(!‘,&,z-zis o3 )= ;;gzexP[im(M')] E;%i’(i:i', xp[ikz(z-z')}dka, for r<ea {X.6)
2 h

The integral is evajuated in Eg. A.18. Each potentisi éu i5 the sum of two coespe-
rents: o potential *m' eszociated with the knom modal veloeity disiribution
Umfa(z) over thw radisting surface, snd & component & 2ssociuted vith the unknown
wodal velocity distribution Uaau(z) in the tvo regicas |z > L. The forwer com-
yonznt §nr iz of course tiy: componsit computed froz Robey's wathematicel model of
the tylinder prelcaged by two seai-infinite gylindrical baffles. The modal imped-
ance associated with the zth mode of the rsdfator omn be exyrassed, as in Eq.IIX.1,
as the sux of Rousy's ixmpedance, sssocieted vitk 6&,, and of a correctien tern
agsociated witn *}m:

L
X r [y
.=~ %?— _}l gx(a,z)fu(z, 1z
i
F
2= - Um f{ 8 (8.2)2 (2} az £x.7)
=

This {apadance can ba used o cozpute the generslized force asscciated with rsdia-
tion loading oOf the oth alastic mod: of the cylfpde~, and heace the mod2l imped-
snces and netus2l frequencies of the subze ved cylinder. MNodal rsdiation isped-
saces can alco be combined to coxpute the self-radiation impedance of rigid
pistons in finite cylindrical 3:fivles.® Becsuse of the simf{larity in the fors of
the Green's fumcticns of the axisvemmetric case anslyzed in detail fn thid report
and of the non-2zisysmetric redistor configuraticus, it is obvicus that the inte-
gral squations which an(z) wist satisfy are of the ssme form as the integral
eguations -bich define @z) in the axisymmetric cvse. Functiospals 'Tn[an] ata*ion-
ary with respect to the correct funelion ua(z) can be constructed and sre found to
be of the ssme form as ti functionsl J{a] constructed esrlier for the axisymmet-
ric radfator. She proof thut the impedsnce 2_, is proporticnal to Ju{an] for the

irana.,

*The component 2 r Of this izpedance s computed oy Greenspon end Sbaemn.e

K4




cussect fora of c‘::{s) pArallels the proof inm Secticn V. The veriational techaiqus
lustrated in Section VI zen therafure be used to evaluate 2 ! and peed not te
repeated here.

Ix the casa of ths solid cylinder, ncurigid vibrating erd caps can be accounted
for by adding to the sxpression for the potentiels Q:L'.‘I & surface integral gver the
ena cap3:

> 2z @
A§, =¥ 2 Y-‘ f Iv{r',:g') G, (r,rf o0z 3L)r & (x.8)
= L-..n & i
=% J 0
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Appendix A"

DERIVATIOH ARD EVAUJATION OF THE GREEN'S FUNCETX(H Gi
POR THE CYLINDRICAL REGIO¥ r < a

1. Constructicn of the Green's Function

Tnis derivation parallels the comstructicn aof the Green’s fumction Go for the
region r > a given by Robey6 for Keunann bowidary conditions {0#/dm known, oG/
a8de to venish on bousdary) and by Papasl® for Dirichlet boundsry conditions (3
known, G made to vanish on boundary). The Green's function associated with the
uth Fourier component of “he velocity distribution in ¢ csn be expressed in terms
of an inverse Fourier %ranaform in {z-z°):

explin(e-9')]
Gia(r,r',e-cp',z-z’) 2 i:‘g' J Gm(r,r',kz)exp{ms(z-z')] dk, (.1)

The Green's functioa satisfies, Ly definiticn, the non-homogencous Helzholtz
eavation expressed in eylindrical coordinates. Comsequently, the transform of the
Green's functicn satisfies the following equation:

2 ’
2 %—; {= g?) +x¥ 2. -3-2-] 6 (r,r' k) = - LIt ] == (a.2)

Toe step> lesding from the nso-homogenezus Helmholtz equation 4o Eg. A.2 are pre-
sented in detail in reference 1l. Bxcept vhen r=r', Eq. A.2 48 of the form of
Bessel's equetion. A suitable solution to this equation mush be regular when
r < vanishes {r < spd r > 2re, respeciively, %he smaller and the larger of the
quantities r and r’). The solution of Bg. A.2 must therefore contain only Bessel
functions of argument proporticssl to r < ; Heumann or Hankel funstions can only
hsve sr:usents propertionzl to r > or 8. A cozbinmation of cylinder functions
which satisfies these conditicns, and shose radial derivative 63/31-' vanishes on

"fhzs mterial is inciuded here tecsuse it does not sppear to be available in
the liverature. Arpendix A is condensed from @ Barve:d Acoustioe Research Labors-
tory Memorsndum.!” Amalytical details opd proofs which hsd to be cmitted to keap
the length of this report within resgon, csn be found in reference 17.
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the cylindrical boundary r > = v, is of the form:

Sm(r,r', k)= AnJm{krr <)[Ré(kr&)a'm(krr >) . Em(kx_r >)J';(kra)] 1a.3) .

The coefficients Aﬂ are determined from the equati.n defining the discontinuity
of the first derivstive of the Green's Tunnrtion: -

foper’s

r % Gm(r,r', kz) { ) 2 -1 {A.k)
rer’-

.

v

After some transformations the coefficient Am is found to be

A -51

o = W (A.5)

When we substitute this coefficient in Eq. A.3, set r' s r>=nandr =r <, end
use the Wronskisn relation between Bm("ﬁ-‘) and Jn(kra)’ we finally obtain the
folloving expression for the Green's function

4

I (k. r)

explin(ep)] A

Gm(r,a.w',z-z') = 7 ¥ )] exp[ikz(z-z')] dk, (A.6)
a S ravr

For the axisymmetric case, we bave J’;=J‘é=41, which yields the Green's function

given in Bg. IV.2. We will Zollow the notation used in the body of the report, ;

vwhereby the subscript m 53 omitted vhen m=0, i.e., in vhat lollows, Gi’ I, Rn and

kn indicate, respectively, Gm, 10, ROn and kOn'

2, Bveluntion of the Inverse Fourier Transform

We will not evaluate the infinite integ—al in 2q. A.6. For the purpose of
analysis the wave number is assumed to bave & small imaginary component

k, = §+ 1y (A.7)

The i:tegrstion in Eq. A.6 will be performed in the complax plene along a closed
counterclonkvise contour including the real aris and a half circle of infinite
radius (Fig. 4). By the residue theoren,19 tke value of the contour integral is
271 times the s of the r residues at the poles xm of the integrand.




4“

fImdkz = 2ri ZR , tor z-2! > 0, and km in upper half-plane

=-231Z_Rm_ , for z-2z’ <0, and k_ in lower half-plame (+.8)

“ere I stands for the integrand in Eq. A.6. This contour integral equals the
integral slong the real axis if the contribution of the half-circle vanishes. To
&chieve this cordition the integrand must vanish as kz tends to infinity, i.e.,
‘e:p(ikz(z-z')jl in the integrand must decrease exponentielly with imcreasing k.
Hence

n >0, for z-2’ >0 (Integration in upper half-plane)
n <0, for z-z* <0 (Integration in lower half-plane) {A.9)

Like kz, k can be assumed tov te comwplex. Its infinjtesimel imaginary comporent
can be asgsocisted with viscous losses in the acoustic medium, i{f a physicsl in-
terpretation is desired. The complex quantity +k lies just sbove the real exis,
and -k just belov it. Tb. contours of integruvion are then as shown in Fig. 4.

We will first evaluste the axisymmetric Green's function. The integrand I
has peles at k =0, i.e., et k = * k. Teking the asymptotic expression of the
Bessel functions J and Jé as their argument tends to zero, we find that the
integrand tends to

2 explix (k,-2')]
e® (kz+k)(kz-k)

I(x,) - as x_ ~tx (a.10)

2

The two sicpie poles at k = * x give riss to the falloving residues
o [
nmaﬂli_‘.{g;ul , for Z-T.I>O
ka

’

Ry = = kﬂ;" , far z-2' <0 (A.11)

Other poles, all of them simple, occur at the roots (kna) of Jé(kra). The corres-
ponding residues are
&
o 12 exp[ti(kz-ki)‘(z-z')] Jo(knr)
=
nd 82 (k2°ki )} J o(kna ) .JQ (knu )

(a.12)
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Because

-

R, (z-2") = R tz'-2) , (1.12)

the integrel can be stated as follows, without regard for the relstive magnitude
of z and 2

ne .2 l‘
. -2_‘}- En‘nlz_z’!) exp[*\k ’kn) 'z’z ] ‘To(knr) \
r Tax, =S5t ka +2 (C-x2)E a Jo(kna):fé(kna)] (a.24)
n

-® n=

For all roots k a of J’é vaich exceed ka, the terms under the summation sign decay
exponentially with increasing !z-z'l. For higher order roots, the terms under

the sumwation sign are proportionmal to

miﬂﬁ), for n large (a.15)
n(ra)

The series expression in Bg. A.ll4 is thus seen to be convergent except for z=z',
vhich fulfills the requirement of & Green's functiecn.

The convergence of the Green's functicn 2s |z | tends to infinity is not
spherical, but relies on the small imaginary component of the wave nmumber k. The
reagon is that ve Mave constructed & Green's function suitadble for cylindricsl
region, viz. A circuler pipe, vhere only viscous losses, but no spreading losses
occur. The potential 3, does, hovever, vary as P exp(ikz) for large |z|,
because the radial velocity a(z) gives rise to a net outflow of acoustic energy
froz the region r < a (see Egs. VI.l to 6, and comments following Bg. VIX.2).

We now turn to the evaluation of the non-axisymmetric Green's function. At
k= t X, for m > 0 the integrand tends to

o
I - -(Eéa)— exp[ikz(z-z')] ask, - %k (a.26)

There are therefore no poles at kz= 1 k, oaly for m=0. For mf0, all the residues
are associated with the roots of J;:

bexp( #4682 ) (z-2")) 3, (k?)
R 4= =
et K (kz-kew)f-‘ I CUC) R P CIC) SN G

for mf0  {A.17)
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Once again the integrand can be expressed without regard for the sign of (z-z'):

PR S T
.L - s A a %5_1 (ke_kin)é- 2Jm(k rma)-.l’ m-a(kma"J ma(kma)

for ofc  (A.18)

Tae higher order terms are again found to be proportiomal to the expression in
Eg. A.15, and thus to conform to Greea's fuaction requirement by converging for
zfz’. A proof was given in ref. 17 of the fact timt even though the function
(E-2)% bes & brench cut tn the region |k, <X of the real axis, the integrand
in Eg. A.6 does not have branch points at any of its poles.
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Appendix B

FOA-VARTATIONAL TECHRIGUES FOR SOLVING THE "SQUIRTER" INTEGRAL
BQUATIOR, EQ. IX.11

In Section IX it was shown that the variational technique developed for the
s0lid cylinder iz applicable to the free-flooding cylinder only when the coeffi-
cients Bi snd Bo, Eqg. IX.10, can be set egqual to unity, i.e., when the ratio of
wall thickness to radius 2hfa is small. It wes also poirted out that when the
ratio of w21l thickness to acoustic wavelength 2h/). is not smell encugh to make
the coupressibility of the fluid exmulus in the region a, <r<«< e, negligible, a
complicated analysis involving two coupled simultanecus integral equations must be
used. The purpcze of this Appendix is to present a technique for dealing with a
"squirter® for which the ratio 2h/2 is not small emough to permit satting the co-
efficients B in Eg. IX.10 egual to unity, even though the corresponding ratio
2h/M is sufficiently small to allow us to ignore the cowpressibility of the fluid
in the annular region. The most straightforwvard approach is to evaluate the un-
perturbed potentials, which ere obteized by setting afz) = 0, and to use these
potertinls to compute 3 perturbstion solution of afz) from BEq. IX.2:

L
a{o) {z)= - -2? [So(1+ -:‘f)so(adao,z-z') + Si(l-é)si(li.ai,z-z')] dz’ (8.1)

The perturbation solution of the impedsnce correction factor Za is obtained
by substituting this expression for a{z) in Bq. VIII.8, with M(z-z’) as defined
in Bg. IX.ik. The far field potentials csa of course also be obtained in a straight-
forvard fashion by substituting a(o)(z) {n Bq. VII.8 and 9, for ¢, and Eq. VIII.3
tor 61.

The perturbation solution can be improved by iteration as followe: One sudb-
stitutes a(o'\(z') for a{z’) in the z'-integral fn Eq. IX.11 and solves for a(z).
This szounts t< solving Bq. IX.1 for a(z) using the perturbation solutions of ¥
and §1- If this iteration process is repeated p times, one finds that the pth
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: iterste of a(z) is related to the (p-1)th iterate as follovs:

P o®le) - - 22 ¢ )fL (8, ¢ Blg o o,2-2) + B,(1- e oy, 2-2)] oz’
0
" . [ (P2 (27) [z-z’) a2} (5.2)

where I'(z-2’) 1s defined in Eq. IX.lks.

We will row present a finite-difference procedure for solving the integral
equations. Instead of requiring that the integral equation, Eg. IX.11, be satis-
fied for all valuezs of z in the region ‘zl > L, we satisfy it at a finite number
of points z, = 21,22,33.....zn separated by intervals adn. These intervals should
be szlected smaller in regions clnse to the transducer extremities, vhich mske &
more important contribution to the potentials than more distant regions. PFurther-
more, ve assume that the unknown function a(z) has a constant value @, in each
interval (zn-dn) <z < (z,+d) and varies discontimously from one intervel to the
pext, We thus arrive at a set of K simultaneous equaticas in ¥ unknown
guantities cn:

.-2_};_8_.., 2dlr(0) e%r(zl-za'). . e 2dxr(zl-zu)q (al\ (?(zl)\
24,{z,-2,) et 2a, T (0) ol { a, Sy #z,) >

o

24,22, ) e e e e -2%'» 24,7(0) o5, | Flz)
where

L
Pz ) = 6[ 18,1+ g @y8,,2,-2) + 8,(3- Dg, loya, 2, -2")) a2’ (8.3)

- The two Green's functions vhich enter into the linear combtoation T(z~z’), Bq. IX.lks,

- have & pole at z=z'. The diagonal terms in the above matrix do not, however, display
a singularity, since they are equivalent ¢o an integral of [{z-2°) ¢ver z’, which,
iike the potentisl, is well behaved.
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Solving this set of equations for the values of an ve can compute the radiation
impedance compenent Z, from Eq. vIIz.8

L
Z, = -a(lms)a mpi aa [ I{z-z n) dz (B.4)
ns,

Robey's impedance comporent, Zr' is given in 2q. IX.19.
Yhen applying the finite-differeme method to the non-axisymmetric velocity
distributions discussed in Section X, 1% is not necessary to construct = two~
dimensional gx1d of points (zn,qap) over the tvo cylindrical surfaces r=a,iz | > L.
Rather, a one-dizmensional set of finite-differcnce equations in 2z, of the fora of
Eq. B.3 applies to each modal velocity distribution am(z',‘ essociated with the
non-axisyrmetr .{c Green's functions, Eq. X.3 and 5.
In wuule 35, 1t is recalled (end of Section IX) that & variational solution +
ir appliceble, oven when 2h/a is not =zsll, but that Z, annot be cbtained direct- .
1y from the functional J{a], without also solving for the unknown cosfficients in
the trisl function afz).
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Finite-Difference Calculntion {

(Baron, Matthews ard Bleich,® 1
Chen and Schweikert®)

Grid of pointesources approximates
radiating surface. Source strength
deterndned from finite-difference
eolution of Helwmholtz integral equetion

Robey's Mathematical Model of

'TPPP

the Cylindricsl Source

(L2ird and Cohen,® Robey,’
Greenspon,”” and Shermen®)

Integral equation circumvented
by assuming rigid cylindrical
baffles r=a, [2{ > L, and by con-
structing Green's functicn for
which (36/dr’)=0 for r’=a

@ Kncwn velocity distribution
over radiating surface

12) Semi-infinite rigid baffles

Robey's Mathematical Model of "Squirter"”
(Robey” )

Seme as Fig. 1(t) but plane baffles in
regions r > 8, z = * L

Q) Infinite rigid baffles

Pig. 1.
(See Table 2 on p.

b3

REVIEW OF PUELISHED ANALYSES OF CYLINMDRICAL RADIATORS

3)




Fig. 2. SIMMARY OF PRESERT APPROACE (8ee Table 2 on p. 3)

':D Knovn velocity distribution of the radiating surfece (L < z < L, r=)

@ thnknown velocity dictriduticn u(z) satisfies integral ogustion on sur-
faces r=a, |z{ > I [z-dependent phase shift of a(z) is not indicated]

Radiation iepedance = Zr + Za
where Zr = impedance ccsputed from Robey's mathematical model, Fig. b
Za = correction associsted with unknown velocity 2ictribution afz)

Variational principle: for correct a(z), Z, = J{a)

8J[al .0
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