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ABSTRACT 

This report discusses methods for predicting 

future values of discrete time series from past observed 

values of the time series.    The points at which the  auto- 

correlation function is computed are the past points used 

in the analysis.      Classical ideas are reviewed,   and then 

extended to handle more advanced time series problems. 

Applications of these results are explainedfor seakeeping 

applications of:     (a) long range ocean activity prediction, 

(b) short term roll prediction, and (c) vibration response 

prediction.   Further material appears on statistical tests 

for coefficient determination, and on digital computer 

requirements. 
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1.    INTRODUCTION 

In the subsequent discussion it will be assumed that a discrete random 

process,  namely,  a digitized process is being analyzed.     The process will be 

assumed to be a time series   x(t),  which is defined as a set of observations 

taken in time sequence.    Much physical data is obtained in this way either 

directly or from digitizing the original continuous data.     The procedure to 

be considered will be that of using statistical multiple regression techniques 

in order to perform a linear least squares extrapolation for the future employ- 

ing the previously observed values of the time series. 

The past observed values of the variable at certain special points will 

be thought of as separate variables.    More particularly,   the points at which 

the autocorrelation function is computed will be the special points in the 

regression equation.    For example,   if the autocorrelation function is computed 

at the time delay   T =  1  second,   2 seconds,   etc. ,   up to   n   seconds,  then the 

variables will be the value of the time series   x(t)   at x(-l) seconds,  x(-2) 

seconds,   etc.,   up to x{-n) seconds.    In general,   there will be   n   variables 

present in the regression equation.    The final objective will be to obtain a 

regression equation as a function of previous values of the time series so as to 

predict an extrapolated value of the time series for some time in the future. 

This general type of analysis is sometimes termed "autoregressive" analysis. 

These matters are discussed in detail in the following sections,   and 

are illustrated on appropriate physical applications.    Sections 2 and 3 review 

classical ideas on multiple regression techniques,  while Sections 4 and 5 

are devoted to more advanced time series concepts.    Application of these 

results,   particularly to seakeeping problems,   are developed in Section 6. 

Further material on statistical tests and on digital computer requirements 

appears in Sections 7 and 8. 



REGRESSION FOR A SINGLE PREDICTOR VARIABLE 

As an introduction, to the basic concept o£ regression,   the case for a 

single predictor value   x  will be reviewed,   Ref. 111.    Assume a random 

variable   y   exists,   with mean zero,   and also assume that   y   may be 

theoretically expressed as a linear function of a variable   x   plus a random 

error   € .    That is 

y = Px + e (1) 

where   ß    is an unknown constant to be determined.     The usual estimation 

procedure   is to calculate an estimate of   (3   by the method of least squares. 

Assume one has collected   N   observations each of   x   and   y   denoted by 

(x. ,   y.),   i = 1, 2, , . . , N,    One then wants to minimize the quantity 

N N 

i= 1 i= 1 
I (2) 

where the quantity   ß   is replaced by   b   in Eq,  (2) and   y a bx to indicate that 

a sample estimate   b   of   ß   will be obtained rather than the true population 

value   ß.     The hat (/>)    is used over the   y   to indicate   y   is a predicted or 

estimated value of   y. 

Differentiating with respect to   b   and equating to zero,   one obtains 

b = 

N 
/   x.y. 

i=l 
N     2 

i= 11 

Ess s 
^ x 7 = r     -J 

2 xy    s (3) 

where   F        is the sample correlation coefficient given by xy o / 

r    = 
xy 

Yx.y. 

V^f^f 
Tx.y./N 

s   s 
x  y 

(4) 
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The value of   b   given by Eq,   (3)   is the optimum least square estimate of   ß. 
2 2 The sample variances    s       and   s       in Eqs.(3) and (4) are defined by 

N      2 
E xi 

2       i=l     1 

N 
(5) 

Then    s   ,   the sample standard deviation,   is the positive square root of   s 
X 2 2  X 

It should be noted that   s       is a biased estimator of the true variance   o-   . 
x 

For large   N >  30,   however,   the bias is insignificant. 

The variance of   b   may be shown to be 

2 

Var (b) u (6) 

Under the assumptions of an underlying normal distribution the quantity 

V y ^ i 

has a normal distribution with zero mean and unit variance.    Also,   it may be 

shown,   see Ref.    3     ,   that the quantity 

DA v2 
^i - yJ 

y 

has a    x       distribution with (N - 2) d.f.     Therefore,   this implies that the 

statistic 

/V 
= (b-ß) 

v/ V N-2 

(N-^^x.2 

(7) 

has a t distribution with (N - 2) d.f.    Hence,   the hypothesis that   b = ß   may 

be tested at a desired level of significance   a   for a specified value of   ß. 
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3.    REGRESSION FOR TWO AND MORE PREDICTOR VARIABLES 

The case for one predictor variable is easily generalized.    This will be 

illustrated first for the two variable case and then for   n   variables. 

For two variables one desires to compute   the coefficients  b]   and  b      in 

the regression equation 

y = Vi+ Vz (8) 

The sum of squares to be minimized for this case is 

Dvi-^EtVi-V! -Va/ (9) 

Differentiating partially with respect to   b      and   b   ,   one obtains two simul- 

taneous linear equations which may be solved for  b      and   b   .      These are 

N N N 

b,     /     x,    + b.   /       xn   x.,    =    /       y.x, 
1   *-;    1.       2  '—',     1.2.      f—',     i i. 

1= 1       1 1= 1        11        1= 1 1 

(10) 
N N N 

i= 1       i     i i= 1      i i= 1 i 

The coefficients    b     and   b      are usually referred to as the sample partial 

regression coefficients. 

The generalization to   k   variables   x. ,   i =  1, . . . , k   follows directly. 

In this case one wants to determine'k  coefficients   b. ,   i = 1, . . . , k   to obtain 
i 

a regression equation 

A 

^blXl+b2X2+---   +\^ (11) 

The sum of squares to be minimized becomes 

,2 
Dvi-y,) -Dyi-Vi.-Vz -••• -W       (12) 

, 
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I The result after minimizing the sum of squares is   k   simultaneous equations 

which may be solved for the   b. ,   namely, 

i ii i     i i 

bl^Xl.X2. +b2^X2. + •••   +bk^X2.Xk.    =^yiX2. 

(13) 

bi^xi.xk. + b2^x2.xk.+ ---+bk^xk2.   s£yi\. 
ii ii i i 

One should be careful to contrast this model with a correlation analysis. 

Here it is assumed that   y   is a random variable of which readings are taken 

as the   x.   are varied through predetermined values.    In this case the   x. 
i i 

are not assumed to be arbitrary random variables.    In contrast,  for a 

classical statistical correlation analysis,   one usually assumes a joint  (k+1) 

dimensional normal distribution where the y variable and the   x.    variables, 
i 

i =  1, . . . , k,   are all assumed to be random.     That is,   one has not controlled 

the variables   x.   but has performed some experiment where all the variables 

have random outcomes.    In this case one wants to estimate all the correla- 

tions between the variables.    In other words,   one wants to estimate the 

correlation or covariance matrix of the  (k+1) dimensional normal distribution. 

To explain further,   in a true correlation analysis one collects observa- 

tions on all the variables of interest where none of the variables are controlled 

but only observed.    However,   in a true regression analysis one would control 

one variable,   say for example pressure,   and then observe another,   say 

temperature,   as pressure was stepped through a predetermined range of 

values.    In this case,   only the temperature variable would exhibit random 

fluctuations.    In practice,   however,   one is not usually able to control variables 

through predetermined ranges as is theoretically required.     This gives rise to 

no real practical problems,   though,   since if underlying normal distributions 

I 



are assumed,   the computational procedures for obtaining correlation co- 

efficients are the same as the initial computations required for obtaining the 

coefficients of the regression equation. 

4.    APPLICATION TO TIME SERIES 

Consider now the situation where one has collected N + k   observations 

from a stationary random process as a function of time which has a zero 

mean value.    Suppose that these are equally spaced observations and are 

denoted by   x. ,   x   ,   . . . , Xp,, ,1     where   x     is the first observed value and 

x^        is the last.     These observations could be obtained by reading   N   values 

from an analog record or they might naturally arise at discrete points as in 

certain digital processes.    In order to perform an autocorrelation analysis 

on the data,   compute the sample autocorrelation function at   k   points as 

defined by the formula 

—i     ; 

N 

R    (i) 
XX 

i y 
—T      /        X.X.  ,   . 

J=l    J  J 

i = 0, 1 k (14) 

It will be assumed that   k   is much less than N,   that is,   there are many 

more observations available than points at which the autocorrelation function 

is computed. 

A more convenient quantity to work with is the normalized autocorrelation 

function.    This is defined by dividing   R     (i)   by   R     (0).    In  equation form 

one has 

R    (i) 
r   (i) = _iS~ 
^ R     (0) 

XX 

0, 1, . . . ,k (15) 

These quantities,   r     (i) ,   are called correlation coefficients and it may be 
XX 

easily proved that they are bounded in absolute value by unity.      That is 

-i< r  (i) < i ,        i= o, i, ...,k (16) 
XX 

II 



After the correlation function has been computed,  a regression analysis 

may follow.    The object of the regression analysis would be to obtain a linear 

equation which would be used to predict ahead (extrapolate) in the time series. 

This is a reasonable objective since if there are high correlations indicated 

by very high peaks in the correlation function at certain time delays,   then 

this implies some prediction can be made this far ahead in the time series. 

For example,   if there is a peak in the correlation function at   i =  10 seconds, 

then as the series is being observed and data is being collected in real time, 

say,   one would expect to be able to predict ahead approximately 10 seconds 

with much greater accuracy than at other times. 

Now it is desired to calculate coefficients   b. ,   i =  1, 2, . . . ,k   for a 
i 

regression equation of the form of Eq.   (11),   namely, 

VVl  Sb2X2+  ■•■   +bkXk (17) 

In this case,   the variables   x   ,   x   , . . . , x.     all represent observations from 

the given time series as opposed to being different variables.    To be specific, 

x    = the present observed value of the time series,   x    = the value observed 

one time unit in the past,   and so on up to  x^   which represents the observa- 

tion  (k- 1) time units in the past.     The variable   x      is displaced one time 

unit from   x     and therefore represents a value of the time series one time 

unit into the future.     This is,   of course,   the prediction to be made. 

To be more precise in notation,   Eq.   (17) should be written with sub- 

scripts as follows. 

fit+l=bIXt+b2Xt-l+---   +Vt-k + l (17a) 

In words,   all variables are translated with respect to   t.    However,   avoiding 

the more complicated subscripts simplifies notation and should cause no 

confusion. 



4. 1      COMPUTATIONAL, DETAILS 

The coefficients,   b. ,  will be found from solving a set of simultaneous 

linear equations similar to those indicated by Eq.   (13) using the values of 

the autocorrelation function which have already been computed.    The set of 

simultaneous linear equations may be re-written in a slightly different form 

as follows. 

b1R(0)   +  b-R{l) + . . .  +  b, R(k- 1)  » R(l) 

b.R(l)   +  b-R(O)  + . . .  + b, R(k-2)  = R(2) 
at £l IC 

; 

(18) 

b  R(k - 1) +b2R(k - 2) + . . . + b  R(0)   = R{k) : 

In the above equation   R{i) = R     (i)   to simplify notation. 

The solution of this set of   k   linear equations requires essentially the 

inversion of a  k by k matrix.    If   k   is large,   say on the order of 30 or 40, 

which would not be at all unreasonable,   the necessary matrix inversion would 

be a considerable computational task,   even on a digital computer.   Therefore, 

it would seem to be advisable to restrict one's attention to only those points 

in the correlation function which exhibit a fairly high peak as determined by 

some method.     By confining one's attention to only those points in the corre- 

lation function which are significantly different from zero,   one can reduce 

the order of the matrix to be inverted considerably.     It would be most desir- 

able if all non-significant points in the correlation function could be 

eliminated from consideration entirely.    Unfortunately,   this is not the case 

as will be illustrated in the derivation of the necessary least squares 

equations below. 

As an example,   assume that significant peaks in the correlation func- 

tion occur at points 3,  4, 8, and 11.     The  variables which appear in the 

regression equation are therefore   x   ,   x   ,   x   ,   and x      .    The coefficients 

8 
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to be estimated from the data are denoted by b- ,   b   ,   b   ,   and b        in Eq. (18) 

below. 

Vb3X3+b4X4 + V8 + bllXll <19) 

The sum of squares to be minimized is 

N N 

E K - V2   =   ^ (X0 " b3X3  " b4X4 " b8X8 " bllXll)2 (20) 

1= 1 i= 1 

Differentiating with respect to the   b.    coefficient,   and equating to zero,   one 

obtains the following set of simultaneous linear equations. 

3 
Zx3

2   + b4:rx3x4 + b8£x3x8 + biii:x3xll =Ex3x0 

b3^X3X4     +     b4^X42 +    b8^X4X8      +  bll^X4Xll      := ^ X4X0 

b3^X3X8      +     b4^X4X8     +    b8^X82 +bll^X8Xll      = ^ X8X0 

b3^X3Xli   +     b4^X4Xll    +    b8^X8Xll    +bll^Xl2l ^X11X0 

In the above equations all summations are assumed to run from i =  1 to N. 

Note that it is assumed that   N+ 11   observations are available so that all 

points of the correlation function are based on N  observations. 

Rewriting the above equations in terms of the correlation function 

values,   one obtains the following set of simultaneous linear equations 

b3R(0) + b4R{l) + b8R(5) + bj ^(8)       - R(3) 

(21) 

b3R{l) + b4R(0) + b8R(4) + b11R(7) = R(4) 

b-R(5) + b.R{4) + bQR(0) + b, .E(3) = R{8) 

b3R(8) + b4R(7) + b8R(3} + bj^RCO)      = R{11) 

/??\ 



In the above equations only R(3),  R(4),   R(8),   and R(ll) are considered to be 

significant points on the correlation function.    However,   in deriving the 

least squares equation,   the points R(0),   which is of course the variance, 

and R(l),   R(5),   and R(7) also enter into the equations.      However,   the 

necessary matrix to be inverted is now only of order 4, as opposed to order 

k   if all   k   points of the correlation function were employed for .the prediction 

equation. 

The general set of equations,   when one chooses sonne subset of the 

points of the correlation function,   is as follows.    Suppose one decides upon 

r    separate points of the correlation function as being significant peaks. 

Suppose further these are labeled   a   ,   a   ,   . . . , a   .    The points of interest 
1        c r 

: 

in the time series are,   therefore,   x     ,   x     , . . . ,x The set of simul- 

taneous linear equations to be solved for the   b     coefficients now becomes 

b     R(0) +   b     R(a   -a,) +...   +    b     R(a   -a,)=R(a1) 
a, a.,       d,     1 a r     1 1 12 r 

b     R{a   -a   )    +   b     R(0) +...   +    b     R(a   -a   ) = R(a-) 
a,^i              a_ ar^ ^ 12 r 

(23) 

b     R(a   -a,)    +   b     R(a   -aj   +...   +    b     R(0) = R(a   ) a r     1 a r     2 ar r 

i; 

No particular systematic method will be considered in this report 

for choosing the values of the correlation function which are significant and 

which,   therefore,   should be included in the regression equation.    In many 

cases of interest,   a significant peak or peaks will be obvious in the com- 

puted correlation function.    In many other typical cases the correlation 

function will exhibit a damped oscillatory behavior as in the widely observed 

exponential-cosine autocorrelation function.    In this case one should use the 

first several peaks (positive and negative) as variables for the regression 

equation. 

10 
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4. 2      COMPARISON WITH OTHER PROCEDURES 

One may compare the preceding results to that of the "optimum Wiener 

linear predictor."    The approach here as a regression problem gives the 

same results since both procedures are based on a least squares error 

criterion.    The optimum Wiener linear predictor is essentially given by 

Eq.   (17a) except that it is usually presented in continuous integral form: 

X(t)   =/       X(t   -   T) b(T)   dT (24) 

where the coefficients   b.    or "weighting function" b(T)   are obtained from 

solving Eq.  (18) or the equivalent. 

Also,   classical data smoothing procedures extended to an extrapola- 

tion procedure would lead to the same results if an underlying linear trend 

is assumed.    In this case there is a difference in concept involved since 

one never considers "noise" extrapolation or prediction when thinking of 

smoothing data.    One invariably assumes observations are composed of an 

underlying signal,   e.g. ,   an nth degree polynomial,   and additive independent 

noise.    One then performs a "curve fitting" procedure with a least squares 

error criterion to obtain an equation of the form of Eq.   (17a) in the discrete 

case or Eq.   (24) in the continuous case. 

I 
11 



5.    EXTENSION TO CROSS-CORRELATED VARIABLES 

The preceding regression techniques may be extended to predict one 
IJ 

variable as a function both of past observations of itself and as a function 

of past observations of another variable.    The procedure for obtaining the 

necessary coefficients of the regression equation will be directly analogous 

to the preceding method,   although now the cross-correlation between the 
' J 

first variable   x   and the second variable   y   will be brought into play.   The 

necessary equations will be obtained below for the case where peaks in the 

autocorrelation function and the cross-correlation function are taken into 

account to reduce the amount of computation. 

Suppose as before that the points of significance for the autocorrelation 

function are at a, ,   a0 , . . . ,a      for the variable   x.    For the cross-correlation Id r 
of   x   with   y,   assume the significant points of this function are designated 

by   d   , d   , . . . , d    .     The points of the autocorrelation function of the 

variable   x   will be denoted by   R  (a   ),   R  (a,), . . . ,R  (a  ).    The values of 

cross-correlation function between the variables   x   and   y   will be denoted 

by R     (d.),   R     (d-), . . . , R     (d  ).     The least squares equations are obtained 7      xy    1 xy    2 xy    s 
in exactly the same way as was done previously.    After minimizing the 

appropriate sum of the squares,   the simultaneous linear equations are as 

shown in Eqs.(25).      In these equations (25) the relation R     (i) = R     (-i) 

has been employed.    From this set of equations the coefficients of the 

following regression equation are obtained: 

x0 - ba  xfaj) + . ..   + ba x{ar) + cd yld^f... + cd yidj      (26) 
1 r I s 

To illustrate these equations more concretely, assume that peaks 

occur at   R   (1)   and R   (3)   in the autocorrelation function for  x and at xx 
R     (2)   and   R     (4)    in the cross-correlation function between x and y. xy xy 

12 
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For this special case four simultaneous linear equations are obtained,  namely, 

b,R  (0) +b  R  (2) +  c,R     (1) +  c.R     (3) 1   x                 3   x                   2   xy 4   xy 

b.R  (2) + b_R  (0) +  c,R     (-1) +  c.R     (1) 1   x                  3   x                    2   xy 4   xy 

b,R     (1) +b,R     (-1) +  c0R  (0) +   c^R  (2) 
1   xy                3   xy                  2   y 4   y 

b^     (3) + b,R     (I) +   c0R   (2) +   rR   (0) 1   xy                3   xy                 2   y 4   y 

Rx(l) 

Rx(3) 

V2) 

V4) 

(27) 

From these equations the coefficients for the following prediction are 

obtained: 

0 Vl  + b3X3 + C2y2 + C4y4 (28) 

Note that values of the aiutocorrelation function for   y   are required and that 

also   R     (-1) is required or equivalently R     (1). 
xy yx 

It is clear that the above equations can easily be extended to account 

for cross-correlations between more than two variables.      However,   the 

case of two variables shown above adequately illustrates the general form 

of the equations to the general case will not be developed here. 

14 
: 



6.    SEAKEEPING APPLICATIONS 

Applications of the autoregressive techniques described on the pre- 

ceding pages are performed most directly for relatively low frequency and 

qua si-periodic data.    Four specific seakeeping applications will be discussed 

here.    The first three concern oceanographic data analysis,   and the fourth 

(describes an application to the area of vibration and acoustical data analysis. 

This application to vibration and acoustics is not involved with direct 

I analysis of an individual vibration record,   but from a broader standpoint 

of predicting vibration properties from other data. 

I 

I 
I 
I 
I 
I 

I 

l 

I 

6. 1      LONG RANGE OCEAN ACTIVITY PREDICTION 

Many applications exist in this general area which can be associated 

with the weather.    When viewed as a time series,   the weather is somewhat 

periodic and of a relatively low frequency nature.    In Reference  16,   page 129   , 

Pierson suggests the possibility of applying the techniques described in this 

report for long range weather forecasting.    Similarly,   since ocean wave 

activity is influenced by the weather,   these techniques could be valuable in 

obtaining a long or short range forecaster of gross ocean wave activity. 

For example,   the wind has considerable influence in the generation of 

a confused sea while air pressure and temperature might exhibit some more 

indirect effects.    Also,   ocean activity in one geographical area might lead 

to activity at a later time in a different geographical area. 

To illustrate this matter,   assume one has collected time histories 

x{t)   and   y{t)    of-some parameter of ocean wave activity at two different 

geographical points,   and a time history of the wind,   z(t),   at one of these 

points.     The normalized autocorrelation function of   x(t)   and the normalized 

cross-correlation functions between   x(t),   y(t),   and x(t),   z(t) might appear 

as pictured in Figure 1. 

If the correlation functions were as shown in Figure 1, then the auto- 

correlation function of x(t) itself would only be of use for very short term 

predictions.    However,   since peaks occur in the two cross-correlation 
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Figure 1 

Hypothetical Correlation Functions 
for  Sea Activity Prediction Example 
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functions at longer time delays,  predictions could be made on the basis of 

this information for relatively longer prediction times.    If the time interval 

for   T   was one minute,   then Figure 1 indicates that the prediction could be 

made for a two-hour period in advance.    The regression equation would be 

0 
c   v   +c   v   +d   z   +d   z 
122y122   123y123   203 203   204 204 (29) 

The linear equations in matrix form to be solved to obtain the coefficients 

in Eq.   (29) are 

R     (0) R     (1) R     (81) R     (82) 
yy yy yz yz 

R     (1)        R     (0) R     (80) R     (81) 
yy yy yz yz 

R     (81)      R     (80)      R    (0) R     (1) yz yz zz zz 

R     (82)      R     (81)      R    (1) R     (0) 
yz yz zz zz 

—    —. 
C122 

C123 
_ 

d203 

d204 

R    (122) xyx 

R     (123) 
xy 

R    (203) xz 

R     (204) 
xz 

(30) 

After this set of equations has been solved,   then Eq.   (29) could be used as 

a predictor of ocean wave activity. 

6.2      SHORT TERM ROLL PREDICTION 

The possibility  of obtaining short term predictions utilizing information 

contained in the autocorrelation function of the time series consisting of 

certain ship motions is suggested by St. Denis and Pierson in Reference 1 7, 

page 35 .   The practical use of such a prediction would undoubtedly be in a 

short term control system of some sort in a ship.    Assume for example 

that roll,   denoted by   x(t),   is the motion being considered. As indicated, Ref. Ill , 

these various ship motions look like narrow band noise under an exciting force 

of a random sea due to the fact that the ship acts as a narrow band filter. 

The typical autocorrelation function that arises from narrow band noise is 

a damped exponential-co sine.     Therefore,   experimental data might give 

rise to an autocorrelation function as depicted in Figure 2. 

17 



T (sec) 

Figure 2 

Hypothetical Autocorrelation Function for Ship's Roll 

If   T   is in seconds,   then Figure 2 indicates that a one-second prediction 

could be made by use of the regression equation 

\ 

■ 

x^ = b,x,  + b-X_  + b_x- + b„x., + b„x 
11 3   3 5   5 7   7 8   8 

(31) 

In order to obtain the coefficients in Eq.   (31),   the following set of five 

linear equations must be  solved. 

R     (0) xx 

R     (2) 
XX 

R     (4) 
XX 

R     (6) 
XX 

R     (7) 
XX 

R     (2) 
XX 

R   (0) xx 

R     (2) 
XX 

R     (4) 
XX 

R     (5) 
XX 

R  (4) 
XX 

R (6) 
XX 

R  (7)" 
XX "V "R (1)~ 

XX 

R (2) 
XX 

R  (4) 
XX 

R (5) XX b3 
R (3) 
XX 

R  (0) 
XX 

R (2) 
XX 

R  (3) 
XX 

b5 
= R (5) 

XX 

\JZ) R (0) 
XX R (1) XX b7 

R (7) 
XX 

R>J3> R (1) XX R (0) 
XX   _ _\ R (8) 

XX 

(32) 

If a longer range slightly less accurate prediction is desired,   x    could be 

discarded or perhaps both   x      and   x   . 

The control procedure could possibly be implemented in one manner 

by utilizing a modern day shipboard high speed digital computer such as the 

18 



AN/UYK-1 (TRW-130).    The system would require some sort of device to 

sample the roll time series   x(t))  at least once per second and probably more 

like ten times per second.    This information would have to be analog to 

digital converted and then fed into the computer.    The regression equation, 

such as Eq.  (31),  would then be evaluated with a predicted value   x. 

obtained.    This value could then be processed appropriately,   output perhaps 

to a digital to analog converter,   and then used by some anti-roll device.  All 

these procedures would be accomplished in "real time."   Perhaps every few 

seconds a new correlation function estimate could be developed and its values 

tested for significance by some simple procedure to determine whether or 

not to use a point in the prediction equation. 

A matrix of values such as given in Eq.   (32) would have to be inverted 

in order to obtain the coefficients for the prediction equation which would 

then replace the previously used prediction equation.      This matrix would, 

of necessity,   be restricted to some maximum size so that the inversion 

could be performed in a reasonable amount of time.     Evaluating the regression 

Eq.   (31) would prove no problem timewise since,   for example,   the add time 

of the AN/UYK-1 is  12 microseconds (fi.s) for a 15-bit word and its multiply 

time is 57 |j.s maximum.     Therefore,   the necessary instructions to evaluate 

Eq.   (31) would require about 500 fj,s,   allowing for the necessary load and 

store operations. 

The remainder of the problem,   that is,   evaluating the correlation 

function,   inverting the correlation matrix,   and input/output functions could 

be performed on a piecemeal basis at a slower rate.    Military computers 

such as the AN/UYK-1 usually have interrupt capabilities such that when an 

input or output device is ready,   it can send a signal to interrupt the computer 

processing.    Therefore,   if it was time for the anti-roll device to receive 

information,   it could interrupt,   say,   the matrix inversion routine.    The 

computer could perform the necessary processing to output information, 

and then return to the matrix inversion.    This type of processing would 

19 
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possibly allow for an output rate of five or ten control signals per second. 

A block diagram for this type of system is illustrated in Figure 3. 

: 

Digital Computer 

x(t) (roll) A-D 
Conversion 

Evaluate 
A 
X„ 

10 sec 
intervals 

Compute 
Correlation 

Function 

Test Correlation 
Function Points 
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Invert 
Correlation 

Matrix 

D-A 
Conversion 

Anti-roll 
Device 

n 
i s ■ 

u 

r i 

Compute New 
Regression 
Equation 

I 1 

Figure 3 

Possible Digital Control System for Ship's Roll 
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In order to efficiently perform all the required processing,   it would 

probably be necessary to evaluate certain quantities,   such as the correlation 

function in a recursive manner.    For example,   with the first observation, 
2 2 

x. ,   one computes x.   .    With the second observation one computes x.   ,    and 
2 2 1+1 

x.x.   ,    and   accumulates   x.   + x. , ,   .    With the third observation   x.   _    one 
ii+12 ii+1 i+2 

computes x. , . ,   x. , _.x. , x.   _x. . ,  ,   and accumulates   x.   + x.   ,  + x.   .,     and r 1+2       i+2   i      i+2   i+l i i+l i+2 
x.x.   ,   + x. , ,x., _.        This procedure would then continue until sufficient 

i  i+l        i+l   i+2 
observations had been obtained to allow reliable correlation function 

estimates.    Perhaps more efficient approximate procedures could be 

developed. 

The prediction procedure might even be improved by including other 

information,  for example,   by cross-correlating directly with a record of 

ocean wave amplitudes.    Another possibly would be including a cross- 

correlation with pitch or heave information.      Although,   in practice,  the 

six degrees-of-freedom of ship's motion are usually assumed to be 

independent,   in actuality,   the motions may be correlated and use of this 

information might allow for better predictions of motion. 

-   " 

6 . 3      OCEAN WAVE AMPLITUDE PREDICTION 

Asa third example for oceanographic problems,   suppose that a time 

series   x(t)    consists of observations of the height of ocean waves at a given 

point on the surface of the sea.    Assume that observations are taken at one- 

second intervals.    The first step in the analysis would be to compute the 

points of the autocorrelation function at,   say,   ten-second intervals as 

defined by Eq.  (14).      The correlation function could be expected to fall off 

fairly rapidly and then a peak should be encountered corresponding to the 

predominant frequency of the wave process.    Assume that this occurs 

at a delay of 30 seconds. It is not unreasonable that another underlying 

periodicity might occur of much greater period.    This fact would be 

exhibited by a peak in the correlation function at a greater time delay,   say, 

2i ! 



X0 ~ b10X10 + b3OX30 + b150X150 
(33) 

If 

for example,   at 150 seconds.    The over-all normalized correlation function 

for this data might then appear something like that pictured in Figure 4. 
U 

Figure 4 

Hypothetical Autocorrelation Function for Ocean Wave Data 

For this example one would choose as variables in the regression 

equation,   x      ,   x      ,   and finally x .     These variables correspond to the 
1 u        3 u 150 

points R(10),   R(30),   andR(150) of the correlation function.    One then wants 

to estimate the coefficients in the following linear equation. 

i 

The set of simultaneous linear equations to be solved would be as follows. 

b10R(0)        + b30R{20)     +   b150R(140)   =    R(10) 

b10R(20)      +  b30R{0)        +   b150R(120)   =    R(30) (34) 

b10R(140)    +  b30R(120)   +   b150R(0) R(150) 

C ■— 
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Once the coefficients b      ,   b      ,   and b have been computed,  then 

Eq.   (33) may be used to predict on the basis of presently observed and 

past, observed data for a period of ten seconds into the future.    A prediction 

of ten seconds into the future may or may not be of practical value as far 

as ocean waves are concerned.    However,   in this example,  due to the strong 

correlations exhibited at both 30 seconds and 150 seconds,   it might be 

desirable and of interest to compute regression equations based on x      and 

x, _„ ,   or possibly even just on x, _- alone.    In the first case,   one could 150 150 
then be predicting ahead 30 seconds into the future and in the second case one 

could be predicting ahead 150 seconds into the future.     These predictions 

might be of more practical value.    However,   one loses precision in the 

prediction when pertinent data is neglected such as exists at x n which is 

indicated by the strong correlation at the point   i =  10.     The over-all 

correlation-regression analysis described in this example has the value of 

pointing out the fact that in addition to the basic "periodicity" with a period 

of 30 seconds,   there is an additional underlying "periodicity" with a period 

of approximately 150 seconds.     This information may or may not have been 

obvious from the original data. 

6.4      VIBRATION DATA APPLICATION 

For a vibration data application,   the emphasis of the procedure will 

be shifted;    A problem that is of interest is to obtain a vibration data time 

series as a function of other time series.     For example,   pressure trans- 

ducers might be mounted at various external points on a ship's structure 

and an accelerometer might be located at an internal point of interest on 

the structure to measure the vibration response at that point.     The pressure 

transducers at various points on the structure would effectively measure 

sources of vibration excitation.    These exciting forces would transmit 

directly through the structure,   or acoustically through the air to produce 

vibration at the structural point where the accelerometer is located.    There 
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would be time delays between the excitation and response due to the finite 

amount of time that it takes to transmit the vibration through the structure 

or the surrounding medium.    Therefore,  the vibration response at the 

accelerometer might be obtained as a function of the response measured 

at the various pressure transducers at some time in the past.    The vibration 

response would then be given as a function of lagged values of the pressure 

variables.    In this example only the cross-correlation analysis would be of 

interest. 

For purpose of this example,   let   x(t)   represent readings taken from 

an accelerometer located at a point on a ship structure,   and let   y(t)   and 

z{t)   represent the readings of two pressure transducers located at other 

points on the structure.     The normalized cross-correlation functions of 

x(t)   with   y(t)   and of   x(t)   with   z(t)   might then appear as illustrated in 

Figure 5. 

1.0 + Accelerometer/Pressure 1 

R     (i) 

l/R    (Ö)R    (0) 
xx        yy 

R     (i) xz 

VR   (o)R   (0) v     xx zz 

Accelerometer/Pressure 2 

Figure 5 

Hypothetical Cross-correlation Functions 
for Vibration Response Example 
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Variables to choose in predicting vibration as indicated by the above 

accelerometer data,   then,  would be pressure transducer No.   1 readings 

at lags of 8 and 10 time units,  and pressure transducer No.  2 at a lag of 

6 time units.    Hence,  the variables would be   y0 ,   y.n,  and z, .    The 
oil) O 

regression equation to give accelerometer readings as a function of the 

two pressure transducer readings is then 

% = C8y8 :l0y10 + d6Z6 (35) 

The coefficients of this equation may be obtained from the following set of 

linear equations 

R     (0) R     (2) R     (-2) 
yy yy yz 

R     (2) R     (0) R     (-4) 
yy yy Y

Z 

R     (-2)      R     (-4)       R     (0) yz yz zz 

^8^ ~V8)' 
cio s V10) 

-d6 _Rxz(6) . 

(36) 

In this problem one needs the autocorrelation function for   y(t)   and 

the autocorrelation function for   z(t),  the cross-correlation function 

between   x(t)   and y(t),  and the cross-correlation function between   y(t)   and 

z(t)   at negative values of the lag,   or equivalently values of the cross- 

correlation function between   z(t)   and   y(t)   at positive values of the lag. 

For this problem the end objective is not an extrapolation of the vibration 

time series,   but rather to predict the vibration as a linear function of the 

pressure transducer readings. 
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7.    STATISTICAL TESTS AND ERRORS 

After the coefficients in the regression equation have been obtained, 
I it is desirable to apply a statistical test to see if the coefficients ar'\ signifi- 

cantly different from zero.     This is equivalent to testing if the variable 

associated with the given coefficient contributes a statistically significant 

amount to the prediction of the time series.     For classical regression 

analysis,   the variables are assumed to be normally distributed and the 

deviations from the predicted values used in the regression equations are 

assumed to be normally distributed and independent from one prediction to 

the next.    However,   in the application of regression techniques to time 

series,   the problem is more difficult.    Even when the process may be 

assumed to be a Gaussian or normal process,   it will still have a non-zero 

autocorrelation function.    Hence,   the residuals from the prediction will not 

necessarily be independent from prediction to prediction,   but will themselves 

be correlated.    Fortunately,   for large sample sizes,   it is pointed out, Ref.    2  , 

that the classical formulas hold approximately true.   This means that classical 

formulas for the standard errors and the sampling distributions of the 

regression coefficients are asymptotically valid even if the residuals are 

correlated. 

An approximate test for significance on the sample regression 

coefficients may be performed in the following way.    See  Reference    3   for 

more details.    Let   F  represent the (k+ 1) by (k+ 1) matrix of correlation 

coefficients. 

1      r(i) . .."r(k) 

i   ...  r(k-i) r 

i     J 

(37) 

regression coefficient   b.   may be computed from 
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Then,   if   C.    is the cofactor of   i-jth element in the matrix  F,   the sample 



( 

I 

b. 
i 

li 

11 

(38) 

The sample variance of -.-esidual errors in the regression,   i. e. ,   the 

variance of the distribution of the deviations of the predicted values from 

the true values,   is obtained from the formula 

R(0) 
in 

0.12. . .k C ( 
11 

where   III    is the determinant of the matrix   T.      The standard errors of the 

regression coefficients are given by the formula 

1 CiiC- + Ci- 11    ii li 

i-1 11 
N (40) 

This is derived from manipulation of formulas 

2 

and 

b. 
i 

Oi.34. . .k 

I 
N 

s 
0. 23. . .k 

Si.34. . .k 

(1 Oi.23. 

1, i+1 

CllCi+l, i+1 

(41) 

(42) 

which may be found in Chapter 27 of Reference I 5 I . 

The meaning of the above terms is as follows.     The term s 0 0,. 12. . . k 

in Eq.   (39)   is the sample variance of   x     when the best linear estimates 

of   x   ,   x   , . . . , x.     have been subtracted out.    This is the reason for the 

form of the notation.      The term   p 
Oi.23. . .k 

in Eq.   (42)    is the partial 

correlation coefficient between   x„   and   x..     The partial correlation 
  0 i '■ 

coefficient is the correlation coefficient between the variables   x„   and   x. 
0 i 
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after the best linear estimate of the other variables involved have been sub- 

tracted from   x„   and   x.. 
0 i 

Since the   t   distribution approaches the normal distribution for a 

large number of degrees-of-freedom,   the normal distribution may be sub- 

stituted for   t   in the above tests if   (N - k)    is larger than,   say,   30.     This 

should be the case in most practical situations.     Chapter 3,   Reference   4   , 

gives correction factors for the standard errors of the regression coefficients 

but have the disadvantage of being quite complicated and requiring a large 

amount of additional computations. 

It may then be  shown,   Ref.     3    ,   that the statistic 

t = (b.  - P. ) ^_£J  (43) 
sb, 

1 

has a   t-distribution with   (N - k) degrees-of-freedom {d.f. ).     Thus,   one 

computes    t   from Eq.   (43),   and if 

Itl^t.       ,,(N-k) (44) 
1 -07 2 

where    t,       ,-(N-k)    is obtsiined from tables of the  student    t   distribution, 
1 -a/ 2 

then the hypothesis   b. = ß.    is rejected at the   a   level of significance.  Note 

this is a "two-tailed" test.     The most usual test would be for   b. = 0 and 
i 

Eq.   (43) would be modified accordingly by setting   ß. = 0. 
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8.    DIGITAL COMPUTING CONSIDERATIONS 

Some basic computing procedures for regression analysis are indicated 

in Section 5. 6 of Reference    1 . An outline will now be given here of suggested 

computations to implement the preceding discussions which encompass those 

techniques discussed in Reference I iJ •    No distinction need usually be made 

between the auto or cross-correlation cases since the computational pro- 

cedures are basically the same. 

A convenient way of handling the set of   (N + k) observations of   x.    is to 

arrange them in a   (k+ 1) by N matrix as indicated below. 

Xk + 1 "Vf-z- 

^ 

N+l 

XN+k 

(45) 

The product of this matrix   X   with its transpose    X1    gives a (k+ 1) by 

(k+ 1) matrix whose elements are the discrete points of the sample  correlation 

function.     Thus 

R    = XX' 
x 

5>f 

I>iXi+l 

>  x.x.   , 
^   i  i+l 

1*1 

Fx.x. 
i   i+k 

y x.x. t-' 11 

■ E 

+k 

i   i+k-1 

u 
(46) 

The top row of the matrix then gives the    k+ 1    discrete points of the auto- 

correlation function   R(0))   R(l),   . . . , R(k).     In actual computational practice 

29 



for the autocorrelation case,   one only needs to compute the first row of the 

, matrix (46) and then shift this row to the right to obtain the additional portions 

of the   (k - 1) rows necessary to fill in the upper right half of this symmetric 

matrix.    However,   in some cases where computing time is not important, 

one might perform the complete matrix multiplication to simplify programming. 

The values of the correlation function   R     (i)   would then be inspected 

to determine what values of   x.   to utilize in the regression equation.     The 

rows and columns corresponding to the unwanted points ■would then be 

deleted from the general matrix equation. 

For example,   to obtain Eqs.  (32) of Section 6. 2,   one eliminates as 

indicated below. 

- 

R(2) R(|3) R(4) R(l5) . 

RH-) —RfJ) —R{*) -—R-A) T 

R(0)       R(ll)       R(2)      R(p) . 

RfH- —Rm- -R(l)— Rfl2)-.- 

R(2)      RL1)      R(0)      R^l) . 

R(0)      R^l) 

ROf- Rf>) 

R(2) R^l) 

ftf3)— R42) 

R(4) R^S) 

Rf5)— Rfar) — RfS-)   ~R^) — HfH — RW 

f^ R(i) 

^2>- 

R(3) 

R(5) 

Äf6f 

(47) 

I 

The set of linear equations remaining after the appropriate deletions then 

would correspond to Eqs.   (32) in Section 2.     The reduced system of equations 

indicated by Eq.   (47) may now be solved directly for the   b.    coefficients or 

in some cases it is desirable to obtain the explicit form of the inverse of the 

matrix of correlation function values.     To avoid the necessity of introducing 

new symbols,   let   R      represent the matrix of correlation function values 

whether or not deletions have been made. 
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For digital computing purposes,   it is usually desirable to work with 

the matrix of correlation coefficients defined Dy 

r(i) R(i) 
R(0) 

R{i) 
(48) 

for the autocorrelation case and by 

(i) = 
R     (i) 

EL 
xy        VR   (0)R   (0) xx yy 

R     (i) xy 
er   cr 

x y 
(49) 

for the cross-correlation case.     This normalization requires divisions to 

be performed in the autocorrelation case and square roots and divisions in 

the cross-correlation case.    However,   the final quantities are then in the 

range    -1 to +1    which provides advantages in the general handling of the 

numbers in the matrix inversion process.      Let   F      represent the matrix 

of correlation coefficients and let   A   represent the inverse of   T   ,    that is 
-1 ^ x 

A = r     . 
The system of equations to be solved directly for the coefficients is 

then 

1 

r(i) 

r(k-1) 

r(i) 

i 

r(k-2) 

rck-if rv "nif 
r(k - 2) b2 

= 

r(2) 

i 
^ 

r(k) 

(50) 

Note that the matrix on the left is a   k by k   matrix corresponding to that of 

Eq.  (37)   with the first row and column deleted.    If the computations are 

being performed in a real time control system and computational speed is 

important,   one would solve for the   b, directly without obtaining the inverse 
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matrix explicitly.    However,   in other situations,   it is desirable to obtain  

the inverse of the   {k+ 1) by (k+ 1) matrix explicitly since certain quantities 

of statistical interest may be conveniently obtained from the elements of A. 

For the solution of the equations,   a reasonable elimination and back 

substitution method which takes advantage of symmetry is termed the 

"Banachiewiez-Cholesky-Crout Method."   A description of this method, Ref. ( s], 

is presentedhere. For the computational procedure below,   let   d..    represent 

the elements of the   k by k   matrix of Eq.   (50).     The computational steps 

are as follows: 

: :   : 

(a) Define Y      = d Yil        il 

'Ij " ~lj 

1,2. 

2,3, 

.k 

.k 

(b) Compute 

Yij 
d.. -I 

n=l 
V.   &   ■ m  nj 

i. j = 2, 3, (51) 

(c) Compute Yää 

y        Y: 
i < j (52) 

(d) Compute 
"j = r(i) 

r(i) 
i-l 

n=l 
in  n 

1=2. 3. (53) 

(e) Finally,   the coefficients   b,   are given by 

bk = COk 

,  = «, -      )      «.   b        ,     i = 
i i '-T'. ,   m n 

n=i+l 
}£. ""   i.    j      iS. "i-Jftittji. (54) 
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If the elements   a.,   of the inverse matrix   A   are desired,   the same 

basic procedure given above applies with minor modifications,   except now 

one starts with the full (k+ 1) by {k+ 1) matrix of correlation coefficients. 

In Step (d) above,   the   r(i)   are replaced with unit row vectors   e .   where 

c .    represents a unit vector with a one in the ith position.      For example, 

«     = (li 0, . . . , 0) replaces   r{l),   etc.    Steps (d) and (e)   are modified as 

follows: 

(d1) Compute 
01 = £1 

i-1 

n=l 
in  n i=2, 3, . . .,k+l (55) 

■i    : 

Note that the   OJ.    are now row vectors instead of scalars. 
i 

(e') Compute the rows   a.    of the inverse matrix   A 

k+1 k+1 

I a.   = ".  -     / a.  CJ .      i=k,k-l 1 (56) i i        '-^        m  n 
n=i+l 

(f) The regression coefficients are given by 

/ \ / \ 

b. 
li 

'11 

1 

\ si 
i =  1, 2, . . . , k (57) 

In Eq.   (57),   s.    is the sample standard deviation of the ith variable under 

consideration.    In the strict autocorrelation case  s, = s   = . . . = s,  ,   but in 12 k 
the cross-correlation case they are in general different. 
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(g) The sample variance of the residual errors defined in 

Section 7 by Eq.  (39) is given by 

(h) 

(i) 

s 
0. 12. . .k 

S(Q) 
all 

The standard errors of the regression coefficients are 

computed from 

bi-l        all 

a, ,a.. + a.. 
11   ii        ij 

N 

1/2 

j -  1,2,.... k 

The   t    statistic to test the regression coefficients for 

significance may then be computed from 

(58) 

(59) 

: 

t= (b   - PJ (N-k) 
1/2 

(60) 

where the   (3.   may be arbitrary hypothesized values,   but 

usually are chosen as zero. 

This concludes the computational procedure except,   of course,   for the 

evaluation of the regression equation which is a straightforward calculation. 
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