UNCLASSIFIED

AD NUMBER

AD432471

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Mar 1964. Other requests shall be referred to Army Biological Lab., Fort Detrick, MD.

AUTHORITY

USABL d/a ltr, 27 Sep 1971

THIS PAGE IS UNCLASSIFIED

unclassified AD 432471

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

TECHNICAL MANUSCRIPT 130

2

24

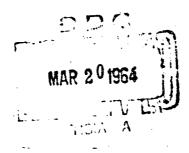
3

4

612

<u>___</u>

in the design


No.

AD

AS

PURIFICATION AND LIPID CONTENT OF VEE VIRUS

MARCH 1964

UNITED STATES ARMY BIOLOGICAL LABORATORIES FORT DETRICK

20050309015 NO OTS

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawi. (s, specifications, or other data is not to be regard 1 by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. U.S. ARMY BIOLOGICAL LABORATORIES Fort Detrick, Frederick, Maryland

TECHNICAL MANUSCRIPT 130

PURIFICATION AND LIPID CONTENT OF VEE VIRUS

Raiph F. Wachter Emil W. Johnson Fred P. Reydrick

Virus and Rickettaia Division DIRECTOR OF BIOLOGICAL RESEARCH

1

Project 10522301A059

ويستعقبهم والمستقرية

March 1964

The information in this document has not been cleared for release to the public.

2

DDC AVAILABILITY NOTICE

Qualified requestors may obtain copies of this document from DDC.

Foreign announcement and dissemination of this document by DDC is limited.

ACKNOWLEDGMENT

3

The invaluable support in electron microscopy received from Mr. John Convey is gratefully acknowledged.

ABSTRACT

The virus of Venezuelan equine encephalitis (VEE) was purified from chick embryo suspensions by two methods, and the total lipid content and RNA content of the purified virus preparations were compared. The lipid content of VEE virus purified by sucrose gradient centrifugation was much lower (24 per cent) than that of VEE virus purified without gradient centrifugation (54 per cent). Virus of lower lipid was still fully infectious, the specific infectivity for purified virus being 10^{14} mouse intracerebral LD₅₀ per gram of protein. With the decrease in lipid content of the virus there was a concomitant increase in RNA content.

Electron microscopic examination of purified VEE virus showed that the virus had an average diameter of 68 millimicrons and possessed a center core about 30 millimicrons in diameter.

I. INTRODUCTION

5

Studies on the chemical composition of the viruses of Eastern (EFE) and Western (WEE) equine encephalitis indicated that these viruses contained about 54 per cent fat-solvent extractable material and 4 per cent RNA when they were purified by ultracentrifugation.^{1,2} Preparations of Venesuelan equine uncephalitis (VEE) virus purified in our laboratory by the same method employed by Taylor <u>et al</u>¹ for EEE virus, or by variations of this method, also contained approximately the same percentages of lipid and RNA as had been reported for EEE and WEE viruses. Olitsky and Casals³ predicted, however, that "the chemical results stated may need revision if mor⁻ jurified preparations become available." With VEE virus such has been the case when vival preparations of higher purity were obtained by including sucrose gradient centrifugation in the purification procedure, yielding virus of much lower lipid content and higher RNA content.

It is the purpose of this report to compare the lipid and kNA contents of VEE virus purified with and without the use of gradient centrifugation and to show that virus of lower lipid content remains fully infectious. A preliminary report of this work was made earlier.

II. MATERIALS AND METHODS

A. VIRUS

.

The Trinidad strain of VES virus de libed by Hardy was used in all . experiments. The working seed for these studies was a ten per cent chick embryo seed.

B. PREPARATION OF VIRUS SUSPENSIONS

VES virus was propagated in 11-day embryonated eggs incubated at 37°C after inoculation by the allantoic route with approximately 500 egg LDm of virus. At the peak time of death (18 to 20 hours after inoculation), decapitated embryos were homogenissd for three minutes in a Waring Blendor with four parts by weight of Ringer-Locke solution. Following the procedure described by Taylor¹ for EEE virus, the 20 per cent embryo suspensions were held at pH 8.3 to 8.5 for four days at 4°C to minimize the effect of a normal embryo component that tended to sediment with the virus in the centrifugation sequence. Suspensions were then stored at a temperature of 45°C until needed for further processing.

INPECTIVITY ASSAY **c**.

5

Infectivity was determined by the inoculation of virus via the amniotic route into 14-day embryonated eggs and by intracerebral inoculation into 12to 14-gram white mice.

PROTEIN DETERMINATION D.

Protein content of virus preparations was determined by the method of Crystalline bovine plasma albumin (Armour) was employed as a Lowry et al. standard.

E. DIALYSIS AND LYOPHILIZATION

Samples of vigus for analysis were prepared by dialyzing suspensions of the parified virus against distilled water, then concentrating them to suallar volume by pervaporation before lyophilization in ampoules or small bottles. Samples were further dried to constant weight over phosphorus pentoxide before extraction of lipids or nucleic acid.

F .- LIFID DETERMINATION

Total lipid was determined as alcohol-ather-soluble lipid by (a) three extractions with a 3:1 mixture of ethanol-ether at 30°C in a closed tube, using a Cahn electro-belance to weigh the virus samples before and after extraction, and (b) by direct weighing of the extracted lipid, using a micro-extraction apparatus similar to that described by Shaffer et 21 and the extraction procedure employed by Thomas with Tipula irridescent virus. In this methody: the lipid extracted by refluxing with a 1:1 mixture of any remethanol-diethyl ether was re-extracted with petroleum ether. The resulting petroleum ather-soluble and -insoluble fractions were then dried to constant weight. No additional lipid was demonstrated in the virus residues on repeated treatment with methanol-ather. 1. Jun 1999

G. NUCLEIC ACID DETERMINATION -1 No. 1

1 .

· 2

+12 + 1

A. .

The ribonucleic acid content of the dry, purified virus samples was determined by the method of Ogur and Rosen. Samples of VEE virus purified with and without gradient centrifugation, from which lipid had been extracted, were washed once with cold two per cent perchloric acid before being thoroughly mixed with cold ten per cent perchloric acid and placed at 4"C. After 44 hours, samples were centrifuged and the absorption spectra at 260 millimicrons of the supernatant fluids were determined in a Beckman DU spectrophotometer. By comparison with standards of purified RNA in perchloric sold solution, the amount of RNA present in the virus was estimated. One preparation of VEE virus purified by gradient centrifugation was analyzed for nucleic acid by the procedure of Ogur and Rosen mentioned above and also by the hot sodium chloride method that Ada and Perry¹⁰ employed to determine the nucleic acid content of influenza virus.

H. ELECTRON MICROSCOPY

Electron micrographs were taken with an RCA EMU-2 electron microscope. A droplet of purified virus, suspended in sucrose-Ringer-Locke, Ringer-Locke, or ammonium acetate solution (0.1M, pH 7.2), was allowed to stand for three to five minutes on a collodion film supported by a specimen screen. Most of the drop was withdrawn, and the specimen was rinsed two or three times with ammonium acetate solution before being allowed to dry in air. The preparations were shadowed with uranium at an angle of 30 degrees.

I. PARTIAL PURIFICATION PROCEDURE

VEE virus was partially purified from infected chick embryo suspensions by a modification of the method employed by Taylor and coworkers¹ for EEE virus. The original method, which consisted of filtration through a layer of Celite followed by three cycles of differential centrifugation, was changed in the following respects: (a) centrifugation speeds and times were modified slightly, and (b) a tryptic digestion step was introduced into the procedure; the sediment of the first high-speed centrifugation was suspended in a solution of ten milligrams per milliliter of trypsin (Difco 1:250) and incubated at 36°C for 10 minutes.

To obtain more highly purified virus for comparative analyses two methods were employed: (a) adsorption and elution of virus from glass filters, and (b) density gradient centrifugation.

J. ADSORPTION-ELUTION FROM GLASS

The partially purified virus was subjected to a modification of a procedure employed by Puck <u>et al</u>¹¹ for the concentration of bacteriophage. The virus suspension was filtered through a series of Pyrex sintered-glass filters of medium porosity that had been prerinsed with cold Ringer-Locke solution of pH 8.3. Virus was eluted with beef heart infusion broth (pH 7.2) that had been previously centrifuged at 105,000g for three hours to eliminate nonviral material that sediments from the broth under these conditions. Combined broth eluates were centrifuged at 105,000g for three hours to sediment the virus in the form of small, translucent, ember-colored pellets. To eliminate traces of broth, sediments were resuspended in five to ten volumes of Ringer-Locke solution and resedimented by centrifugation at 41,190g for one hour.

7

K. DENSITY GRADIENT CENTRIFUGATION

8

1.1.1.1.1.1

an an an Araban an A Araban an A Araban an A

Pollowing the third high-speed centrifugation the partially purified virus was resuspended in ten milliliters of Ringer-Locke - three per cent tryptose solution and then passed through a Millipore filter (pore size 0.45 micron). The filtrate was layered on a sucrose gradient of density 1.072 to 1.220 grams per milliliter that had been prepared by stepwise layering and held at 4°C overnight. After centrifugation at 90,000g for three hours in a Spinco SW-25 swinging bucket rotor, the visible virus sone was removed through the side of the tube with a modified trocarcannula assembly.⁴ The suspension was then dialyzed against Ringer-Locke solution to reduce the sucrose concentration and permit sedimentation of the virus by centrifugation at 105,000g for one hour. The small, clear pellet was resuspended in a minimal volume of ammonium acetate solution.

Highly purified virus suspensions produced by the adsorption-to-glass and the density gradient methods in a series of identical trials were respectively pooled, dislyzed against distilled water, lyophilized, and dried to constant weight.

III. RESULTS

At successive steps in the purification procedures samples were taken for ascay of infectivity and total protein. From these values the specific infectivities (mouse or egg LDm per gram of protein) of the samples were calculated. The average specific infectivities of the final purified viral suspensions obtained in both the glass adsorption and the sucreas gradient matheds were the same: 10^{14} mouse intracerebral LDm per gram of protein. The reduction in protain content and concomitant increase in specific infectivity at several stages of the gradient centrifugation procedure are shown in Table I. There was an over-all increase in specific infectivity from $10^{11.7}$ to $10^{14.9}$ mouse intracerebral LDm per gram of protein. This increase resulted from a reduction in protein from 7.5 to 0.0033 milligram per milliliter (considering all samples on an unconcentrated basis), or a reduction of greater than 99.9 per cent. Although a sharp decrease in the lipid content of the virus occurred during gradient centrifugation (as shown in Table II), note that a gain rather than a loss in specific infectivity was produced at this step.

Average recovery of purified infectious virus in both methods was about 25 per cent. The yield of dry purified virus ranged from 0.014 to 0.021 milligram per gram of starting ambryo.

Fraction	Protein, mg/ml	Mouse ICLD ₅₀ per gram protein
Starting 20% embryo	7.6	- 1014.7
After Celite filtration	3.7	1019.0
After 3 centrifugation cycles	0.012	1014.0
After gradient centrifugation and final sedimentation	0,0033	1014.0

TABLE I. FURIFICATION OF VEE VIRUS FROM THE CHICK EMDAYO

27 C

--

-

TABLE II. EFFECT OF SUCROSE GRADIENT CENTRIFUCATION ON THE LIPID CONTENT OF VE2 VIRUS

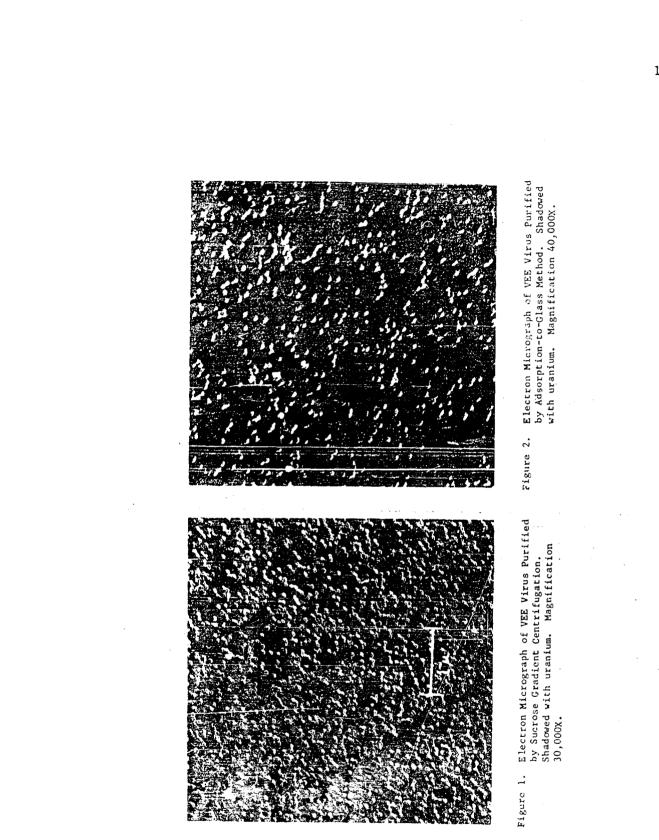
· · · · · · ·	Lipid Content, per cent			Ratio of Pet. Ether-Solubly	
Sample	Total Lipid	Pet. Ether- Soluble	Pet. Ether- Insuluble	Fet. Etner-In- soluble Lipid	
Virus suspension before gradient ceatrifugation	53.1	40.2	12.9	3:1	
Virus auspension after gradient centrifugation	24.9	15.2	9.7	1.6:1	
Upper sona of gradient	58.0	51.5	6.5	8:1	

a. Methanol-ether-solubla.

٠.

2.1

9


AN AND

Sucross gradient centrifugation resulted in a specific separation of VEE virus from contaminating nonviral components. In the gradient derived from virus-infected embryos a narrow, opalescent band was present near the center of the gradient, although no zone was visible at this location in the gradient derived from normal embryos that were processed in parallel with the infected material. Futhermore, if viral infectivity was completely lost in an occasional trial, no band corresponding to the virus band was visible.

An electron micrograph of VEE virus sampled directly from the virus some of the sucrose gradient is shown in Figure 1. The particles have an average diameter of 68 millimicrons, and consist of a center core about 30 millimicrons in diameter, which is surrounded by an outer ring about 15 millimicrons in width, with a depression between core and outer ring. In some electron micrographs numerous coreless particles or "doughnuts" have been seen. For comparison, an electron micrograph of VEE virus purified by the adsorption-to-glass method is shown in Figure 2. These particles also have an average diameter of 68 millimicrons but do not show the center core and ring.

The pronounced difference in the lipid content of the VEE virus purified by (sintered glass) adsorption-elution and by density gradient centrifugation - is shown in Table III. The average content of alcohol-ether soluble lipid of the samples purified by gradient centrifugation was 24.3 per cent, less than half the average value of 53.6 per cent for four preparations obtained without gradient centrifugation. The total lipid of the filtered preparations and first two preparations of virus purified by gradient centrifugation was determined by three extractions with ethanol-ether at 30°C, using the difference in weight before and after extraction for calculation. The lipid contents of the last two preparations were determined both by weight differ-- mce and by direct weighing of the extracted lipid, using micro-extraction method of Thems.

A comparison of the lipid content of virus from the third preparation before and after gradient centrifugation with that of the upper, cloudy some that remained at the top of the gradient is shown in Table II. The total lipid content of the virus suspension was reduced 30 per cent; at the same tize, lipid was concentrated at the top of the gradient, as indicated by the 58 per cant lipid content of the upper zone. Considering the ratio of petroleum ether-soluble to petroleum ather-insoluble lipid in these samples, it appears that more petroleum ether-soluble material is removed from the virus suspension by density gradient centrifugation. Eased on preliminary tests, the petroleum ether-insoluble fraction appears to be largely phospholipid; the petroleum ether-soluble fraction appears to contain all the cholesterol found in the virus.

Treatment	Sample ^a /	Total Lipid, ^b per cent
Purified without	1	55.0
gradient centrifugation	2	55.0
	3	51.5
	4	52.8 Mean 53.6
Purified with gradient centrifugation	1	22.6
	2	25.5
	3	24.9
	4	25.2
		Mean 24.3

TABLE III. LIPID CONTENT OF VEE VIRUS PURIFIED WITH AND WITHOUT DENSITY GRADIENT CENTRIFUGATION

J. Contraction

Each sample consisted of purified wirus pooled from a series of identical trials.

Alcohol-ether-soluble lipid. Ъ.

Table IV lists the RNA contant of samples of VKE virus purified by sucross gradient centrifugation and by adsorption and elution from glass. RRA was determined by a perchloric acid extraction method. The average RMA content of five samples of VEZ virus purified by gradient centrifugation was 6.4 per cent, as compared with 3.2 per cent for two samples purified by adsorption and elution from glass filters.

TABLE IV. RNA CONTENT OF VEE VIRUS

13

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

Type of Preparation	RNA Content, Z of whole viru		
Purified by gradient		5.8	
centrifugation		6.7	
		6.9	
		6.2	
		6.2	
	Mean	6.4	
Purified adsorption	•	2.9	
and elution from glass		3.5	
	Mean	3.2	

One preparation of VEE virus purified by sucrose gradient centrifugation was analyzed for nucleic acid by two methods: the cold perchloric procedure of Ogur and Rosen" and the hot sodium chloride method of Ada and Perry.¹⁰ Approximately equal weights of a lyophilized preparation of VEE virus from which the lipid had not been extracted were analyzed. In the latter method, a 1.53-milligram portion was extracted four times with ten per cent sodium chloride solution at 100°C for 30 minutes. The supermatant liquid of the centrifugation that followed each extraction was examined in a Beckman spectrophotometer for absorption at 260 millimicrons. A 1.58-milligram portion of the virus sample was washed with sold two per cent perchloric acid, then treated overnight at 4°C with ten per cent perchloric acid. With the perchloric acid method extractions were made three times. A bovine serum albumin control for each method was treated in the same manner. Results of the sodium chloride and perchloric acid extractions are compared in Table V. Hot sodium chloride extraction did not remove RNA as rapidly as cold perchloric acid extraction, and in four extractions gave a total of 6.07 per cent RNA. The first extraction with ten per cent perchloric acid yielded 5.7 per cent RNA, with the second and third extractions contributing an additional 0.8 per cant for a total of 6.5 per cant. Since a significant amount of RNA was released by the fourth sodium chloride extraction, further extraction with sodium chloride might have raised the value for total RNA content by this method closer to that given by the perchloric soid method. In any case, results obtained with either method were not significantly different.

- 14

Percentage RNA Extracted Treatment First Third Second Fourth Total Extraction Extraction Extraction Extraction Hot NaC1 (10%) 3.4 1.18 .1.0 6.07 0.49 Cold HC104 (10%) 5.7 0.65 0.19 6.54

TABLE V. COMPARISON OF TWO EXTRACTION METHODS FOR THE DETERMINATION OF NUCLEIC ACID CONTENT OF VEE VIRUS

On the basis of a single comparison, the lipid content of EEE virus purified by gradient centrifugation is lower than that of EEE virus purified without gradient centrifugation. The total lipid content of a small sample of EEE virus purified by sucross gradient centrifugation was 36.0 per cent; that of a preparation purified by the method of Taylor <u>et al</u>¹ was 53.1 per cent.

IV. DISCUSSION

Preparations of VER virus purified by sucrose gradient centrifugation were characterized as having a much lower lipid content then preparations purified without gradient centrifugation. The specific infectivity (LDp per gram of protein), however, remained the same with both methods of purification.

The formation of a virus band localized in the same relative position in many individual density gradient trials suggests that the virus particles that concentrate at this level represent particles with the minimalamount of lipid, i.e., particles from which loosely bound lipids have been removed and that contain only lipids that are an integral part of the viral structure. Sindbis virus, which like VEE virus is a member of the group A arboviruses, has been reported by Pfefferkorn and Hunter¹³ to have a total lipid content quite similar to that of VEE virus. Sindbis virus, derived from the extra-cellular fluid of chick fibroblast monolayers, was purified by a procedure based on adsorption to aluminum phosphate gel and differential centrifugation. Work is in progress to determine the lipid content of VEE virus produces in a tissue culture system and the effect of gradient centrifugation on the lipid content of this type of virus.

Electron microscopic evidence of an average diameter of 68 millimicrons for VEE virus purified by the methods outlined in this report agrees closely with the range of 65 to 75 millimicrons reported by Musagay and Weibel¹⁴ for VEE virus purified by treatment with protamine sulfate and differential centrifugation. The 50-millimicron diameter reported by these authors for virus purified by an alternate method, and their observation of a 45-millimicron core for VEE virus, might be related to inactivation associated with dialysis against demineralized water or resuspension of purified virus in demineralized water preparatory to electron microscopic examination. A diameter of 30 millimicrons for the core of VEE virus, as indicated in this paper, suggests c similarity to the 30-millimicron core reported by Morgan et al.¹⁶ for WEE virus as seen in thin sections.

From the results we have obtained with VEE virus, it seems likely that the application of gradient centrifugation to the purification of EEE and WEE viruses will yield virus of lower lipid content than the 54 per cent originally reported. Our initial data with EEE virus support this hypothesis.

Studies to compare the lipid contents of VEE virus propagated in two hosts, suckling mouse brain and the chick embryo, indicate a similar, if not identical, quantity of lipid present in both that corresponds to the low value reported in this paper. This tends to strengthen the hypothesis that lipid remaining in the VEE virus particle subsequent to gradient centrifugation represents lipid that is an integral part of the viral atructure.

15

LITERATURE CITED

- 1. Taylor, A.R.; Sharp, D.G.; Beard, D.; and Beard, J.W. "Isolation and properties of equine encephalomyelitis virus (eastern strain)," J. Infect. Diseases 72:31-41, 1943.
- 2. Sharp, D.G. "Purification and properties of animal viruses," In: Smith, K.M., and Lauffer, M.A., eds. "Advances in virus research," New York, Academic Press, 1953, Vol. I, pp. 277-313.
- 3. Olitsky, P.K., and Casals, J.C. "Arthropod-borne group A virus infections of man," In: Rivers, T.M., and Horsefall, F.L., eds. "Viral and rickettsial infections of man," Fhiladelphia, J.B. Lippincott, 1959, pp. 286-342.
- 4. Wachter, R.F., and Johnson, E.W. "Lipid content of the equine encephalitis viruses," Federation Proc. 21:461, 1962.
- 5. Hardy, F.M. "The growth of Venezuelan equine encephalomyelitis virus in various tissue cultures," Amer. J. Hyg. 70:21-27, 1959.
- 6. Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; and Randall, R.J. "Protein measurement with the Folin phenol reagent," J. Biol. Chem. 193:265-275, 1951.
- 7. Schaffer, F.L.; Grunbaum, B.W.; and Kirk, P.L. "The composition of saponifiable lipids of cultured tissue cells. A microfractionation study of Earle's strain L," Arch. Biochem. 50:188-198, 1954.
- 8. Thomas, R.S. "The chemical composition and particle weight of <u>Tipula</u> iridescent virus," Virology 14:240-252, 1961.
- Ogur, M., and Rosen, G. "The nucleic acids of plant tissues. I. The extraction and estimation of desoxypentose and pentose nucleic acid," Arch. Biochem. 25:262-276, 1950.
- 10. Ada, G.L., and Perry, B.T. "The nucleic acid content of influenza virus," Australian J. Biol. Med. Sci. 32:453-468, 1954.
- Puck, T.; Garen, A.; and Cline, J. "The mechanism of virus attachment to host cells. I. The role of ions in the primary reaction," J. Exptl. Med. 93:65-88, 1951.
- 12. Heckly, R.J. "A system of fractionating by density gradient procedures," Anal. Biochem. 2:97-102, 1960.

and a second second

18

- 13. Pfefferkorn, E.R., and Hunter, H.S. "Purification and partial chemical analysis of Sindbis virus," Virology 20:433-445, 1953.
- Mussgay, M., and Weibel, J. "Electron microscopic demonstration of purified Venezuelan equine encephalitis virus," Virology 19:109-112, 1963.

Sec. 20

 Morgan, C.; Howe, C.; and Rose, H.M. "Structure and development of viruses as observed in the electron microscope. V. Western equine encephalomyelitis virus," J. Exptl. Med. 113:219-234, 1961.