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PREFACE 

Many problems In pure and applied mathematics depend 

on properties of matrices of O's and I's, I.e., rectangular 

arrays of numbers, each 0 or 1. The  present Memorandum 

shows how a fundamental problem In genetics can be expressed 

and solved in terms of such matrices.  The problem Is to 

determine whether data from suitable experiments Is con- 

sistent with the assumption that the subelements of genes 

are linked together in linear order. 



SUMMARY 

According to present genetic theory, the fine structure 

of genes consists of linearly ordered elements.  A mutant 

gene Is obtained by alteration of some connected portion 

of this structure,  ^y examining data obtained from suitable 

experiments. It can be determined whether or not the blem- 

ished portions of two mutant genes Intersect or not, and 

thus Intersection data for a large number of mutants can 

be represented as an undirected graph.  If this graph Is 

an "Interval graph," then the observed data Is consistent 

with a linear model of the gene. 

The problem of determining when a graph Is an Interval 

graph is a special case of the following problem concerning 

(0, l)-matrlce3:  When can the rows of such a matrix be 

permuted so as to make the 1's In each column appear con- 

secutively?  A complete theory is obtained for this latter 

problem, culminating In a decomposition theorem which leads 

to a rapid algorithm for deciding the question, and for 

constructing the desired permutation when one exists. 
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INCIDENCE MATRICES AND INTERVAL GRAPHS 

1.  INTRODUCTION 

Let A » (a1J) be an m by n matrix whose entries a 

are all either 0 or 1.  The matrix A may be regarded as 

the incidence matrix of elements e^ e2, ..., em vs. sets 

S-L, S2J ..., snj that Is, a^  = o or 1 according as e1  Is 

not or Is a member of Sy     For  certain applications, one 

of which will be discussed below. It Is of Interest to 

know whether or not one can order the elements In such 

a way that each set Sj consists of elements that appear 

consecutively In the ordering.  In terms of the Incidence 

matrix A, the question Is whether there Is an m by m 

permutation matrix P such that the 1-s In each column of 

PA occur in consecutive positions.  We shall describe a 

computationally efficient method of answering this question, 

and of determining such a P when one exists. 

Given a family of sets S^ S2, ..., Sn, one can fom 

the intersection ffraph of the family by associating a 

vertex of the graph with each set and Joining two distinct 

vertices with an edge if their corresponding sets have a 

nonempty intersection.  Conversely, any finite graph can 

of course be viewed as the intersection graph of a family 

of sets (in many ways).  If each set can be taken as an 

interval on the real line, the graph is called an Interval 

£ra£h.  Interval graphs have been Investigated in [3, 4, 5]. 



-2- 

The  problem posed above Is closely related to that of 

deteirolnlng whether a given graph Is an Interval graph. 

Necessary and sufficient conditions for this are known 

[3, 5J.  Hit our problem appears to be more general, and 

our approach is quite different. 

The  study of Interval graphs was stimulated In part 

by a biological application concerning the fine structure 

of genes [l, 3].  A basic problem, posed In [l], is to 

decide whether or not the subelements of genes are linked 

together In a linear order.  A way of approaching this 

problem Is also described in [l].  Briefly, it is as 

follows.  For certain microorganisms, there are a stand- 

ard form and mutants, the latter arising from the standard 

form by alteration of some connected part of the genetic 

structure.  Experiments can be devised for determining 

whether the blemished parts of two mutant genes Intersect 

or not.  Ihus the mathematical problem becomes:  Given 

a large number of mutants together with information as to 

when the blemished portions of pairs of mutants intersect, 

to decide whether this information Is compatible with a 

linear model of the gene or not.  One example, analyzed 

in [1], shows Intersection data for 145 mutants of a 

certain virus, for which it was found that a linear model 

was adequate. 
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In attacking the combinatorial problem posed at the 

beginning of this section, it doss not suffice to consider 

Just the Intersection graph of the sets S-,, S , ..., s . 

Instead, we focus attention primarily on a more restricted 

graph, the overlap graph (Sec. 3), two sets being said 

here to overlap if they have a nonempty intersection which 

is properly included in each.  The connected components 

of the overlap graph partition the m by n Incidence matrix 

A into m-rowed submatrlces A^ Ag, ..., A .  Thus we can 

take A = (A1, Ag, ..., A ), where each A. corresponds to 

a component of the overlap graph.  Then our main theorem 

(Theorem 4.1) asserts that if there are permutations 

Pj^ k = !* 2, ..., p, such that PkAk has consecutive I's 

in each column, there Is a permutation P such that PA has 

this property also.  This somewhat surprising result, coupled 

with the fact that one can describe a simple and direct 

construction (Sec. 5) for testing whether such P, exists, 

provides an answer to the existence question for a general 

incidence matrix A. 

2.  A BASIC THEOREM 

Let A be a (0, l)-matrix.  We say that A has the 

consecutive I's property (for columns) provided there is 

a permutation matrix P such that the 1's in each column 

of PA occur consecutively. We note to begin with that 

the Intersection graph of A does not contain enough In- 

formation to decide whether A has the property or not. 



For example, the matrices 

1 1 1 ■ " 0 1 1 " 

Al - 0 0 0 ,        A2  = 1 0 1 

L   0 0 0 _ _ 1 1 0 . 

have the same intersection graph, a triangle, but A does 

not have the consecutive I's property.  The first question 

that naturally comes up, then. Is how much Information about 

A is needed to decide whether it has the property or not. 

Do we need to know A Itself, or will something less suffice? 

Iheorem 2.1 below provides a partial answer to this question; 

it shows that a knowledge of the matrix ATA Is enough.  Here 
T 

A denotes the transpose of A. 

Theorem 2.1. Let A and B be (0, l)-matrices satisfying 

(2.1) 
T     T A-'-A = B^B . 

Then either both A and B have the consecutive 1's property 

or neither does.  Moreover, if A and B have the same number 

of rows and A has the consecutive I's property, then there 

is a permutation P such that B = PA. 

Proof.  The first part of the theorem follows trivially 

from the second.  For assume (2.1) and let A be m by n, B 

be ra' by n, with a  > m'.  Then we may adjoin m-m» rows of O's 

to B, thereby obtaining an m by n matrix C satisfying ATA = CTC. 



The second assertion of the theorem then Implies C - PA, 

for some permutation P.  Consequently both A and C (hence 

both A and B) have the property or neither does. 

Let A and B be ra by n.  Hie second part of the theorem 

Is obviously valid for n = 1, and we proceed by Induction 

on n.  Suppress the first column vector a of A and the 

first column vector b of B, and call the resulting matrices 

A, and  B,.  Ttius 

(2.2) A = (a, A^ , 

(2.3) B - (b, B^) . 

T      T Clearly A., has the consecutive I's property and A^-A, ■ 6,6,. 

Hence, by the Induction hypothesis, we can permute the 

rows of B to obtain a matrix 15 satisfying 

(2.4) B = (b, A1) , 

the column vector b being a permutation of b. 

We shall finish the proof by showing that, corresponding 

to each row vector of B, there is an equal row vector of A. 

We begin by noting that if the column vectors a of (2.2) 

and b of (2.4) have common I's (common O's), the corresponding 

rows of A and B are equal and can be paired off against 

each other.  Having done this, consider the submatrices 



of A and B consisting of the remaining rows.  Call these 

matrices A* and B».  Thus we may write 

(2.5)    A*  = (a*. A*) , 

{2.6) B*  =   (b*. A*) . 

Note that A* inherits the consecutive I's property from 

A, since suppression of rows does not destroy the property, 

and hence we can permute the rows of A* to obtain a matrix 

(2.7) 1 = (ä, X^ 

in which the 1's in each column occur consecutively. 

Applying the same permutation to B* yields 

(2.8) E = CB, \)   . 

Now ä and Tj are complementary (0, l)-vectors, that is, li 

is obtained from a by interchanging O's and I's.  We also 

have 

(2.9) l^R = BT"B, 

since "Ä and "B are obtained from A and B, respectively, 

by suppressing certain equal rows and permuting rows. 

In particular, calculating the inner product of ä with 
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itself and b with Itself, we have 

a-a = Tij."E , 

and hpnce ä and b have the same number of l's (hence also 

of O's), so that the number of l's In a is equal to the 

number of O's In a.  Ihus 1 and B have the following 

appearance: 

(2.11) A = 

"o 
• • • 
0 

E 

1 
• 

i 
F 

0 
• G 

,  B 

1 
• E • 
1 

0 

• F 

0 

1 
• G • 

[l 

The matrices E and G in (2.11) have together the same 

number of rows that F does, and we shall show that the 

rows of 1  corresponding to P (corresponding to E and G) 

can be paired with equal rows of "B corresponding to E and 

G (corresponding to F). 

To this end, let E and 0 have k and i  rows, respectively, 

and let R^ denote the p by p permutation matrix which 

reverses order. 
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(2.12) RP = 
0 

0 

We assert that 

(2.13) P = 

R.a 

For consider an arbitrary column vector c of X, and write 

(2.14) 

corresponding to the partition (2.11) of "ff,.  Prom (2.9) 

we have 

a.c ■ ^«c . 

and thus the number of l's in f is equal to the number 

of l's in e and g.  It follows from this and the fact 

that the l's in c occur consecutively that 
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(2.15) 
'**< 

h* 

Ihls establishes (2.13) and finishes the proof of Iheorera 2.1. 

We note the following corollary of Theorem 2.1. 

Corollary 2.2.  Let A and  B be (0, l)-matrlces 

satisfying (2.1).  If A has the consecutive I's property 

and has no rows of O's, then there is a permutation P 

such that 

1 

(2.16) PB = 

Proof.     Let A be m by n  and  let B be m'   by n.     Suppose 

m1  < m.     Then we may adjoin m-m1   rows of  O's  to  B,  obtaining 

a matrix C satisfying ATA = CTC.     By Theorem 2.1,   C is a 

row permutation of  A,  violating the assumption that  A has 

no  zero  rows.     Consequently m'   > m.     The  conclusion now 

follows  by adjoining m'-m rows  of  O's  to  A. 

It  is  of  course not  true  In general  that  equation 

(2.1)   implies   B = PA for m by n   (0,   l)-niatrlces  A and  B. 

A simple  example is 

' 1 1 1 0    ol 

0 10 

.0 o   x 

B 

Oil 

10 1 

110 

0     0     0 
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It would be interesting to know conditions on ATA 

in order that A have the consecutive I's property.  Although 

we have not been able to give a complete answer to this 

question in the sense of finding some nice set of necessary 

and sufficient conditions, we shall establish a theorem in 

Sec. 4 which reduces the question to the consideration of 

(0, l)-matrices having connected overlap graphs.  Section 5 

then provides a simple construction for testing whether or 

not such a matrix has the property. 

3.  THE OVERLAP GRAPH AND COMPONENT GRAPH 

We rephrase the definition of "overlap" in terms of 

inner products of (0, l)-vectors.  Let a and b be (0, 1)- 

vectors having m components.  Iheir inner product a-b 

satisfies 

(3.1) 0 < a-b < min (a«a, b«b) . 

If strict Inequality holds throughout (3.1), that is, if 

a.b satisfies 

(3.2) 0 < a.b < min (a-a, b-b) , 

we say that a and b overlap.  We also say that a and b are 

disjoint if 

(3.3) a-b = 0 , 
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and that a contains b If 

O.iO a-b = b-b 

Now let A be an m by n (0, l)-matrlx having column 

vectors a1, a2, ..., an.  It Is convenient, and Imposes 

no loss of generality In studying the consecutive I's 

property, to assume that a. + 0, J - 1, 2, ..., n, and 

that a1 4 aj for 1 + J.  Henceforth we frequently make 

these assumptions and refer to such an A as proper. 

There are various graphs one can associate with a 

(0, l)-matrlx A that are meaningful Insofar as the con- 

secutive I's property Is concerned.  For Instance, we 

can take vertices x1,  x2, ...,  x^  corresponding to the 

columns a^ a2, ,.., an of A, and put In the following 

edges, some being directed, others undirected: an edge 

[x^,  Xj] directed from x1 to x.  If a1 contains a.; an 

undirected edge (x^ Xj) Joining x1 and x. If a^^ and a. 

overlap.  (if we go on to make this a "weighted" graph 

by associating with each edge (vertex) the appropriate 

Inner product, then Theorem 2.1 shows that we have Included 

sufficient Information to decide whether A has the con- 

secutive I's property.)  We shall not, however, deal 

primarily with this full graph &m 2 {k\  but shall Instead 

work mostly with two graphs derived from It, one of these 

being an undirected graph, the other a directed graph. 
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!BM first of these Is the graph obtained from 3 by 

Including only the undirected edges (x^ xj corresponding 

to overlapping column vectors ^  and a^.  We call this the 

overlap graph of A and denote it by ^ = j&(A). 

Die second of these graphs Is obtained from $  as 

follows:  Let X1, Xg, ..., Xp be the connected components 

of if(A),  considered as vertices of a graph ^ = <0{k). 

Direct an edge [X^ Xj] from vertex Xi to vertex X if 

there is an x in X1 and a y in Xj such that [x, y] is an 

edge from x to y In ^ .  We call ^the component graph 

of A.  The component graph c6  is obtained by condensing 

in &   the vertices of a connected component of ^ to a 

single vertex. 

We give an example illustrating these concepts. 

Let 

A = 

1 0 0 0 0 0 Ü 0 
1 1 1 0 0 0 1 0 
0 1 0 1 1 0 0 0 
1 1 1 0 0 1 0 1 

1 1 1 0 0 0 0 1 
0 1 0 0 1 0 0 0 
1 1 1 0 0 1 1 0 
0 1 0 1 0 0 0 0 

Li 1 1 0 0 0 0 1 
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Uius 

ATA 

"6 
5 
5 
0 

0 

2 

2 

3 

5 
8 
5 
2 

2 

2 

2 

3 

5 
5 
5 
0 

0 

2 

2 

3 

0 

2 

0 

2 

1 

0 

0 

0 

0 

2 

0 

1 

2 

0 

0 

0 

2 

2 

2 
0 

0 

2 

1 

1 

2 

2 

2 
0 

0 

1 

2 

0 

3 

3 

3 

0 

0 

1 

0 

3 

The graphs 3^ h,  and J^i  for A are shown In Pigs. 3.1, 

3.2, and 3.3, respectively. 

Notice In the example that the component graph & 

is acyclic (has no directed cycles) and transitive (If 

[X, Y] and [Y, Z] are edges, then [X, Z] is an edge). 

We now prove that this is generally so. 

Theorem 3.1.  Ihe component graph «^(A) of a proper 

(0, l)-matrlx A is acyclic and transitive. 

Proof.  We first show that j3  is transitive.  Let 

X, Y, Z be components of ^ (vertices of jf)   such that 

[X, Y] and [Y, Z] are edges in oO.  Hence there are vertices 

x, y, y', z of i* with x in X, y and y' in Y, and z in Z, 

such that [x, y] and [y1, z] are directed edges of 3». 

Moreover, since y and y1 are In the same compoaent of #, 

there is a chain (y, y^, (y1, y2), ..., (yk, y') of 

undirected edges Joining y to y1 in £f   (hence in 31).  Thus 

the matrix A has corresponding columns a, b, b', c and 
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Fig. 3.1—The full graph    ^(A) 

X2 

I 
X4 

»5 

Fig. 3.2—The  overlap graph  ^/(A) 

I 

Xt»{x,,X2} X2={x3} 

X3=   {X4>   X5} 

X4 s  {x6,  X7, X8} 

Fig. 3.3—The   component  graph  ^(A) 
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b^, bg, ..., bk such that a contains b, b' contains c, 

b and b1 overlap, b-j^ and bg overlap, ..., bk and b
1 ovei»- 

lap.  But If a contains b and b overlaps b,, then either 

a contains ^ or a overlaps b-, .  The latter of these 

alternatives is impossible, for otherwise x and y, would 

be In the same component of the overlap graph, contrary 

to choice.  Thus a contains b-,.  We may now repeat the 

argument with a, b,, b2 in place of a, b, b, to show that 

a contains b2, and so on, finally deducing that a contains 

b'.  Since b1 contains c, we see that a contains c, and 

hence [x, z] is a directed edge in 5'.  Consequently 

[X, z] is a directed edge in oö', and JJ  is transitive. 

To show that ^ is acyclic. It suffices, since «^ 

is transitive, to show that both [X, Y] and [Y, X] cannot 

be edges of /J.     Suppose they were edges of ^.  Then, as 

above, the matrix A would have columns a,, ap, ..., a. 

and b1, b2, ..., b^ with the following relations holding: 

a^^ contains b^j b contains ak; a, overlaps a^, ...; ak_1 

overlaps ak; b1 overlaps b2, ...; b, , overlaps b.; and 

no a^^ overlaps any b..  It then follows as above that a, 

contains b..  Similarly we deduce that b. contains a,. 

Ihus a1 = b .  Since a^ and b. are necessarily distinct 

columns of A, this violates our assumption that A has no 

pali' of equal columns.  Consequently •C' is acyclic.  Tills 

completes the proof of Theorem 3.1. 

Theorem 3.1 shows that *o Is the graph of a partial 

ordering.  This partial ordering Is special in the sense 
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that an element can have at most one Immediate predecessor, 

as Oieorem 3.2 below shows.  Consequently, If we omit from 

•ö every edge whose existence is Implied by transitivity, 

the resulting graph Is simply a collection of rooted trees. 

{For  example, in Fig. 3.3, omitting the edge [X1, X^]  produces 

a single tree with root X,.) 

Iheorem 3.2.  Each vertex of the component graph 

^(A) of a proper (0, l)-matrix A has at most one immediate 

predecessor. 

Proof.  It suffices to show that if [X, Z] and [Y, Z] 

are edges of ^ then either [X, Y] or [Y, X] IS an edge. 

Thus, let [X, Z] and [Y, Z] be edges of J&.     it follows 

that A has columns a, b, c1, c2, ..., ck with the following 

relations holding:  a contains c1,  b contains c,, and 

successive pairs of c's overlap,  ihus a contains o,,. 

Since b also contains ck and a and b do not overlap, then 

either a contains b or b contains a.  Consequently, either 

[X, Y] or [Y, X] Is an edge of £f. 

In Sec. 4 we shall use the structure of the component 

graph to prove the deconposltion theorem mentioned In 

Sec. 1.  This structure will also be exploited later In 

developing a complete algorithm for arranging the rows 

of a matrix A to make Its I's appear consecutively in 

each column, when this Is possible.  For these purposes, 

we note here another fact about the full graph 5?(A) that 

has not been stated explicitly, although its proof Is 
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contalned in that of Theorem 3.1. 

Iheorem 3.3.  Let X and Y be components of the overlap 

graph Jo{k)  of a proper (0, 1)—matrix A, such that there 

is an x In X and y In Y with [x, y] an edge of Jfr(A). 

Then [x, y'] Is an edge of J^(A) for arbitrary y1 in Y. 

Theorem 3.3 shows that each column of A corresponding 

to Y plays exactly the same role with respect to columns 

of A corresponding to X.  That is, each "Y—column" will 

be contained in certain of the "X-columna" and disjoint 

from the others.  This pattern is the same for every 

Y—column. 

4.  THE DECOMPOSITION THEOREM 

For an arbitrary (0, l)-matrix A, we can rearrange 

columns if necessary and write 

(*.l) A = (A.^ Ag, V 

where each submatrix Ak, k - 1, 2, ..., p, corresponds to 

a component X. of the overlap graph >cf(A).  We term (4.1) 

an overlap decomposition of A.  It is of course unique, 

apart from the ordering of the submatrices.  We refer to 

these submatrices as overlap components of A, or briefly, 

components of A.  If A has Just one component, we say 

that A is connected. 
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Theorem 4.1.  A (o, l)-matrlx A has the consecutive 

l's property If and gg^ jg ^^  ^  1ts componenta hflg 

the property. 

Proof,  ihe necessity Is obvious.  To prove sufficiency, 

we may assume that A is proper and proceed by Induction on 

the number p of components of A, the case p = j   being 

trivial. 

Before going to the Induction step, we first remark 

that If a matrix has the consecutive l's property and has 

equal rows, such rows can be brought together In a permuted 

form which makes the 1-s In each column consecutive.  To 

see this. It suffices to observe two things.  First, If a 

row is deleted from a matrix having the consecutive l's 

property, the resulting matrix has the property.  On the 

other hand. If a deleted row Is one of a pair of equal 

rows, then It can be reinserted adjacent to Its counter- 

part In the permuted matrix, and the l's In each column 

are still consecutive. 

To establish the Induction step, let A be a proper 

matrix having p components, each of which has the con- 

secutive l's property, and write 

(4.2) (A1' *2' '•'   V' 
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where A- corresponds to a minimal element In the partial 

ordering given by ^(A).  Now delete Ap from A. By  the 

Induction assumption, the matrix 

(^.3) A' - (A^ Ag, ..., Ap_1) 

has the consecutive I's property, and hence, by the above 

remark, there Is a permutation P such that PA' has con- 

secutive I's In each column and like rows of PA" occur 

together.  Consider 

(4.4) PA - (Bj^, B2, ..., Bp)   - B 

We may select a topmost and bottommost 1 In Rj, and  write 

(4.5) B 

*  •  • • • « 

^1^2 '•• Vl^ 

where the first and last rows of TL each contain at least 

one 1.  Now consider the matrix 

(4.6) ^1' B2» * *' * T>—1' 

We assert that all rows of (4.6) are identical.  To see 

this., observe first that since Jt is a minimal element 

In the partial ordering, each X^, k =» 1, 2, ..., p—1, 
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elther dominates ^ (there is an edge from 3^ to ^ m 

^(A)) or Is unrelated to X^ (there in no edge from 3^ 

to Xp or from ^ to Xk). suppose ^ is unrelated to t. 

Ihen, since the first and last rows of * contain a 1, 

It follows that the first and last rows of \  are all o's, 

for otherwise there would be a column of ^ and a column 

of ^ vhich are not disjoint.  On the other hand, suppose 

\  dominates ^.  it then follows from Iheorem 3.3 that the 

first and last rows of \  are equal. Hence the first and 

last rows of (4.6) are equal,and consequently, by the 

selection of P, all rows of (4.6) are equal. 

We may now permute the rows of ^ to make its l's 

consecutive in each column.  Such a permutation merely 

shuffles like rows in (4.5), and thus A has the consecutive 

l's property. 

Any component of A which has no more than two columns 

obviously has the consecutive 1-s property.  We may thus 

state the following corollary of Iheorem 4.1. 

Corollary 4.?.  If each component of a (o, l)-matrix 

A haa  at niost two SglMBgj fitea A has the SfflBMgHttM l's 
property. 

5'  gSSgr C0NNECTED B^Sa PO« THE CONSECUTIVE l«a 

In this section we shall describe a construction for 

deciding whether a connected matrix A has the consecutive 

l's property.  The essential idea is not to search explicitly 
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for a permutation P which rearranges A, but rather to 

attempt to build up a permuted form of A, column by column, 

imposing necessary Inner-product requirements on the columns 

of the configuration. 

Let a, b, c be distinct column vectors of A such that 

a overlaps b and b overlaps c.  If A has the consecutive 

I's property, then there is a row permutation of A which 

contains the configuration C^ or C2 described below (and 

Illustrated in Figs. 5.1 and 5.2) according, as 

(5-1) 

or 

(5-2) 

L.C < rain (a-b, b.c) 

a.c > mln (a.b, b.c) 

holds.  The configuration C^ is obtained by writing down 

a.a I's consecutively in a column, then bb consecutive 

I's in a second column so that these two strings of I's 

overlap (at the bottom of the first, say) on a.b I's, 

then a third string of c.c I's, overlapping the second 

string in the same way that the second overlapped the 

first (at its bottom) on b.c I's.  The configuration C2 

differs from C-j^ only by making the third string of I's 

overlap the second opposite to the manner in which the 

second overlapped the first. 
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a       b      c 
1 
1       1 
1       1 
1       1 
111 

1       1 
1       1 

1 

Fig.  5.1.     The  Configuration C, 

a b c 
1 1 
111 
111 
111 
1       1 

1 
1 

Fig. 5.2.  The Configuration C2 

Note that while we have two choices In placing the 

second string of I's relative to the first (top or bottom 

of the first), it is immaterial which of these we select. 

Moreover, having selected one, there is no further latitude 

in positioning the third string of i's, since its position 

relative to the second is determined by (5.1) or (5.2) 

and the position of the second relative to the first. 

After constructing the configuration C, or C2, we can 
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then check the inner product of Its first and third columns. 

If this Is not equal to a.c, we know Immediately that A 

does not have the consecutive l's property. 

Three column vectors of A which can be ordered so 

that the first and second overlap and the second and third 

overlap will be termed a rigid triple of A.  Our con- 

struction for a connected A will be based on singling out 

a spanning subtree of iO(A) and then positioning strings 

of l's, using rigid triples obtained from this tree. 

Instead of describing the computation formally, we 

shall consider an example which will make the process clear. 

Let 

A = 

® © (D © (D © 
1 0 0 1 1 0 

0 0 1 0 0 1 

1 1 1 1 0 1 

0 0 0 0 1 0 

1 1 1 1 1 0 

1 0 0 0 1 0 

A spanning subtree of the overlap graph /f(A) Is shown 

In Fig. 5.3 below. 

Pig. 5-3.  A Spanning Subtree of b{k) 

I 
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On.  the first step, we may position the rigid triple 

1, 3, 5 to obtain the configuration of Pig. 5A below. 

® (D (D 
1 

1 1 

1 1 

111 
1    1 

1 

Fig. 5.4 

The Inner products of this configuration agree with the 

corresponding ones of A, and  we proceed to add column 6, 

positioning it relative to 1 and 5 (5, 1, 6 form a rigid 

triple), to obtain the configuration shown in Pig. 5.5. 

(D(D(D(D 
1 

1      1 

I 1 
111 
II 1 

1      1 

Fig. 5-5 

Checking the inner product of column 6 with all others 

in the configuration shows that we have no contradiction yet, 

and so we add column 4, positioning it relative to 1 and 

3, to obtain the configuration of Fig. 5.6. 
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Q(D(D(D® 
i 

i      i 

i      ii 
iii      i 
ii      ii 

i      i 

Pig. 5-6 

Again all inner products of column 4 with preceding 

columns of the configuration check out properly.  We 

then add column 2,  positioning it relative to 1 and 6, 

obtaining the configuration of Fig. 5.7. 

©CD© ©®(D 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Fig. 5.7 

Since the inner products of column 2 with all preceding 

columns in the configuration of Pig. 5.7 agree with the 

corresponding inner products of columns of A, Corollary 2.2 

show that the matrix 
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B = 

3  4  5  6 

0 0 0 0 1 0 

1 0 0 0 1 0 

1 0 0 1 1 0 

1 1 1 '1 1 0 

1 1 1 1 0 1 

0 0 1 0 0 1 

obtained from Fig. 5.7 by rearranging columns and filling 

In O's so that B has no zero rows. Is a row permutation 

of A. 

A complete test for a general matrix A Is now clear= 

First determine the connected components of A.  This can 

be easily done in such a way that corresponding spanning 

subtrees are automatically obtained.  Simply select an 

arbitrary column and find all columns It overlaps; then 

select one of these and determine any new columns it over- 

laps, and so on.  When no new columns can be determined, 

a spanning subtree for one component has been found.  Ilae 

configuration building process described above can then 

be applied to each component.  (In actual computation, 

one would build the configuration simultaneously with 

the determination of a connected component.) 

If one measures the efficiency of this method by 

calculating an upper bound on the number of times that 

It Is necessary to compute (or look up) the Inner product 

of two (0, l)-vectors, it Is not difficult to see that 

if A has n columns, such a bound Is of the order 0(n'?). 
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6.  FITTINQ THE COMPONENTS TOGETHER 

If no contradiction In Inner products Is encountered 

In the construction outlined In the preceding section, one 

can go on to find the desired row permutation of A by 

fitting the various connected submatrlces together In an 

appropriate way, using the partial ordering of components 

given by ^(A).  (We assume that A Is proper.)  The proof 

of Theorem 4.1 Indicates how to proceed.  Again we shall 

not describe the process In detail, but shall Illustrate 

It with the example of Sec. 3. 

The conflguratlon-bulldlng procedure of Sec. 5 produces 

the matrices 

h 

®(D CD ®(D ®®(S; 
1     0 0 0     0 0     0     0 
1   1 0 0    0 0     0     0 
1   1 0 0     0 0     0     0 
1   1 

1   1 ' *> - 
0 

1 
, B3 - 0     0 

0     0 
*   B^   - 0     0     0 

0     10 
1   1 1 0     0 110 
0     1 1 1     0 10     1 
0     1 1 1   1 0     0     1 
0     1 1 0     1 0     0     1 

To fit these together, we first determine the maximal 

elements in JJ{k).     Here there is Just one, corresponding 

to B^, and we have: 
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(D (D (D ® (D © (z) (D 
"l  0 

1 
1 
1 
1 
1 
1 
1 
1 

(If there were more than one maximal element, the determined 

part of the configuration at this point would appear as a 

direct sum.) 

Next suppress the maximal elements In /J(k)  and look 

for the new maximal elements In the reduced graph.  Here 

there are two, corresponding to B2 and B3.  By Theorem 3.3, 

each column of %   (B3) is contained In certain columns of 

\  and disjoint from the remaining, and this pattern is the 

same for all columns of B2 (B3).  Hence it suffices to test 

one column of B2 (B3) to find this pattern.  We can do this 

by referring to ATA or *(A).  The single column of ^  is 

contained in both columns of B^ whereas columns of B^ are 

disjoint from the first column of B1 and contained in the 

second,  we now fit in B2 by sliding its nonzero part 

(the part between a topmost and bottommost 1 of B^) to 

the top of the consecutive group of equal rows of B. con- 

sisting of (1, ^-pairs.  Similarly, we fit in 33 by 
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slldlng Its nonzero part to the top of the consecutive 

group of (0, l)-rows of J^.  This gives the configuration 

(D © (D ® © © @ (3) 
1 0 0 0 0 
1 1 1 0 0 
1 1 1 0 0 
1 1 1 0 0 
1 1 1 0 0 * 

1 1 1 0 0 
0 1 0 1 0 
0 1 0 1 1 
p 1 0 0 1 

I 

The new reduced component graph consists of the single 

element corresponding to 3^, and we see from ^(A) that 

each column of B^ Is contained In columns 1, 2, 3 and Is 

disjoint from columns k  and 5.  Consequently we slide the 

nonzero part of B^ to appear at the top of the consecutive 

group of (1, 1, i, o, 0)-rows In the configuration.  Ihls 

yields a row permutation of A whose I's appear consecutively 

In each column: 
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(DCDCD® 0 (D(z)(D 
1 0 0 0 0 0 0 0 

1 1 1 0 0 0 1 0 

1 1 1 0 0 1 1 0 

1 1 1 0 0 1 0 1 

1 1 1 0 0 0 0 1 

1 1 1 0 0 0 0 1 

0 1 0 1 0 0 0 0 

0 1 0 1 1 0 0 0 

0 1 0 0 1 0 0 0 

Note that at each stage In solving the example, we 

automatically had equal rows occurring together (see the 

proof of Theorem 4.1) and hence did not need to permute 

rows of the configuration before fitting In another piece. 

It Is not difficult to show Inductively that this will 

always be the case, provided the prescription of sliding 

the nonzero part of the new piece to the top of the group 

of like rows which precede it Is followed.  A relevant 

fact In making such a proof Is that the nonzero part of 

the new piece contains no zero rows.  This follows from 

connectedness and consecutlvlty of l's, and Justifies our 

terminology. 

7.  APPLICATION TO INTERVAL GRAPHS 

Hie methods developed in preceding sections can be 

applied to the problem of determining when a graph is an 

interval graph.  As noted in Sec. 1, various sets of 

necessary and sufficient conditions that a graph be an 
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Interval graph are known.  Moreover, computational methods 

based on some of these have been described [3, 5X«  Ihe 

procedure we shall outline appears to be more efficient. 

In addition, a specific representation in terms of intervals 

can be easily produced if desired. 

We begin by reviewing certain concepts and results that 

will be relevant.  The first of these is that of a rigid 

circuit graph [2, 3].  An undirected graph* >£'' is a rigid 

circuit graph if every circuit of if   with more than three 

vertices has a chord.  Here a chord is an edge not in the 

circuit which Joins two vertices of the circuit.  It is 

easy to see that ein interval graph must be a rigid circuit 

graph [3]. We also recall the following basic result about 

rigid circuit graphs [2]: Every rigid circuit graph if 

has a simplicial vertex.  Here a vertex s of <a is sim- 

pliclal if all the neighbors of s In ^ form a sin?)lex or 

clique in if   (i.e., each pair of neighbors of s is Joined 

by an edge.)  Thus s together with its neighbors is also a 

clique in jg  . 

Rigid circuit graphs have been characterized in various 

ways [2, 3].  For our purposes, the following procedure 

for testing the rigid circuit property will be appropriate:*1 

All graphs considered in this section are finite and 
undirected, and have no multiple edges or loops. 

This simple test has apparently not been noted before. 
See [3], where a more complicated test is used. 
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Search for a slmpllclal vertex In ^; if one Is found, 

supress It and repeat the procedure In the reduced graph. 

It follows that # Is a rigid circuit graph If and only If 

this process terminates In the deletion of all vertices 

of ^.  For If ir is a rigid circuit graph, then b  con- 

tains a slmpllclal vertex, and deletion of vertices maintains 

the rigid circuit property.  Conversely, if A   has a circuit 

with more than three vertices which has no chord, then no 

vertex of this circuit can be deleted in the process. 

Figures 7-1 and 7.2 show examples of rigid circuit 

graphs, the vertices being numbered in such a way that 

successively suppressing the next vertex in the numbering 

fulfills the test. 

Fig. 7.1 
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We shall return to rigid circuit graphs In a moment, 

but at this point we need to Introduce a certain Incidence 

matrix which can be associated with an arbitrary graph & . 

We call this matrix the dominant clique vs. vertex matrix. 

As will be obvious. It specifies -jo   completely.  Let •& 

be any graph.  We can consider the family of all sets of 

vertices which form cliques In if  and partially order these 

by set Inclusion.  The maximal elements In this partial 

ordering will be termed the dominant cliques of if .     Since 

two vertices of if  are Joined by an edge If and only If 

they belong to some dominant clique, the dominant clique 

vs. vertex incidence matrix characterizes Sf. 

Such incidence matrices for the graphs of Pigs. 7.1 

and 7.2 are shown in Pigs. 7.3 and 7.4, respectively. 

1 2 3456 7 8 1 2     3     i»     5 6 
"1 0 10     10 1 0" "1 0    0     11 0" 

0 1 0     10     1 1 0 0 10     10 1 

0 0 0     0     10 1 1 0 0     10    1 1 

_p 0 0     0     0     1 

Pig.   7.3 

1 1 _0 0     0     11 

Pig.   7-4 

1 

Por rigid circuit graphs, the determination of the 

dominant cliques can be carried out in conjunction with the 

test for the rigid circuit property described above.  Upon 

deleting a simplicial vertex, sinply list It together with 

Its neighbors in the reduced graph.  If the original graph 
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a  has n vertices, this yields a set of n cliques. The 

dominant ones of these n cliques are the dominant cliques 

of a.     For  these are certainly cliques of &.    Moreover, 

if (? Is an arbitrary clique In ^, consider the first 

vertex of (f which is deleted in the process.  At this 

stage we list a clique (f that includes (?, 

Ilie theory and methods we have developed for studying 

the consecutive l"s property can now be applied to interval 

graphs via Theorem 7.1 below. 

Theorem 7.1.  A graph &  is an interval graph if and 

only if the dominant clique vs. vertex incidence matrix of 

xa  has the consecutive I's property. 

Proof.  Let D be the dominant clique vs. vertex incidence 

matrix of ^ so arranged that the I's in each column occur 

consecutively.  Suppose the first and last I's in the J-th 

column of D occur in positions f. and I.,  respectively. 

Ihen »^ is the intersection graph of the intervals 

t^j-l» -t-jL J - 1, 2, ..., n. 

Conversely, let ^ be the intersection graph of a 

set of n (closed) intervals Ij, J - 1, 2, ..., n.  Let 

the distinct endpoints e1,   e2, ..., em of these Intervals 

be ordered so that «! < e2 < ... < em.  ttien the m by n 

incidence matrix A - (a^), defined by setting a^ - 1 or 

0 according as e^^ is or is not in I-, has consecutive I's 

in each column.  Moreover, D is obtained from A by deleting 

rows.  Hence D has the consecutive I's property. 
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The Incidence matrix of Pig. 7.3 has the consecutive 

I's property; that of Pig. 7.4 does not.  (A rearranged 

form of Pig. 7.3 Is shown In Pig. 7.5.) Consequently the 

graph of Pig. 7.1 is an Interval graph (Its "Intervals" 

being displayed In Pig. 7.5), but that of Pig. 7.2 Is not. 

12345678 

1 0 1 0 1 0 1 0 
00001011 

00000111 

01010110 

Pig. 7.5 

8.  CONSECUTIVE I's AND TOTAL UNIMODULARITY 

A (0, l)-matrlx A Is said to be totally unlmodular 

[6] If each of Its square submatrlces has determinant 

i 1 or 0.  It follows from known sufficient conditions for 

the total unlmodularlty property that If A has the consecu- 

tive i's property, then A Is totally unlmodular [6].  Ihls 

fact can also be proved directly without difficulty by 

induction on the number of rows In a square matrix having 

the consecutive I's property.  The total unlmodularlty 

property has significant implications In linear inequality 

theory.  In particular, if A is totally unlmodular, and if 

b is a vector having Integral components, then the convex 

polyhedron defined by the linear Inequalities 
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(8.1) 
Au > b  , 

u > O 

has all Integral extreme points.    That Is,  if u Is an 

extreme solution of   (8.1),  thai u has integral conponents. 

Consequently,   the linear program 

(8.2) 
Au > b , 

u > O , 

minimize c*u 

always has Integral solution vectors u, provided A is totally 

unimodular and b is Integral.  In (8.2), c is a given real 

vector. 

We can apply these facts and Iheorem 7.1 to derive 

a certain combinatorial duality theorem for interval graphs 

which, though similar in some respects to known results 

about rigid circuit graphs [2], [?], does not hold for the 

latter.  To state this theorem, we first require a defin- 

ition.  We shall say that a set of vertices in a graph 

jy represents all dominant cliques of j?/ provided each 

dominant clique contains some vertex of the set.  Our 

Interest is in a minimum representation, that is, a set 

of vertices which represents all dominant cliques and has 

minimum cardinality over all such sets. 
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Iheorem 8.1.  Let fy  be an Interval graph.  Then 

the minimum number of vertices of ^ required to represent 

all dominant cliques is equal to the maximum number of 

dominant cliques that are mutually disjoint. 

Proof.  Let D be the dominant clique vs. vertex incidence 

matrix of ^.  m view of Theorem 7.1 and the preceding 

discussion, the problem of finding a minimum representation 

of dominant cliques can be posed as that of solving the 

linear program 

(8.3) 
Du > 1 , 

u > 0 , 

minimize Lu 

Here 1 is a vector all of whose components are unity. 

The dual of (8.3) is 

(8.if) 
D w < 1 , 

w > 0 , 

maximize l»w 

Since D is totally unimodular, so is DT, and thus the 

program (8.4) also has (0, l)-solutlon vectors w.  Con- 

sequently (8.4) asks for the maximum number of dominant 

cliques that are palrwise disjoint.  Thus Theorem 8.1 

follows from the duality theorem for linear inequalities, 
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It can be seen similarly that If Ä Is an interval 

graph, then the maximum number of vertices, no two of which 

are in the same dominant clique (i.e., the maximum number 

of vertices, no two of which are Joined by an edge) is 

equal to the minimum number of dominant cliques that cover 

all vertices (i.e., the minimum number of cliques that 

cover all vertices).  Ihis theorem is in fact known to be 

true more generally for rigid circuit graphs [2], [7]. But 

Theorem 8.1 is false for rigid circuit graphs.  The graph 

of Fig. 7.2 is a case in point, since the minimum number 

of vertices required to represent all dominant cliques is 

two, whereas the maximum number of mutually disjoint 

dominant cliques is one. 
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