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PREFACE

Many problems in pure and applied mathematics depend
on properties of matrices of 0O's and 1's, 1.e., rectangular
arrays of numbers, each O or 1. The present Memorandum
shows how a fundamental problem in genetics can be expressed
and solved in terms of such matrices. The problem is to
determine whether data from suitable experiments i1s con—

sistent with the assumption that the subelements of genes

are linked together in linear order.
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SUMMARY

According to present genetic theory, the fine structure
of genes consists of linearly ordered elements. A mutant
gene 1s obtained by alteration of some connected portion
of this structure. By examining data obtained from suitable
experiments, it can be determined whether or not the blem—
ished portions of two mutant genes intersect or not, and
thus intersection data for a large number of mutants can
be represented as an undirected graph. If this graph 1is
an "interval graph," then the observed data is consistent
with a linear model of the gene.

The problem of determining when a graph 1s an interval
graph 1s a special case of the following problem concerning
(O, 1)-matrices: When can the rows of such a matrix be
permuted so as to make the 1's in each column appear con—
secutively? A complete theory is obtained for this latter
problem, culminating in a decomposition theorem which leads
to a rapid algorithm for deciding the question, and for

constructing the desired permutation when one exists.
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INCIDENCE MATRICES AND INTERVAL GRAPHS

1. INTRODUCTION

Let A = (aij) be an m by n matrix whose entries a4
are all either O or 1. The matrix A may be regarded as

the incidence matrix of elements €12 €55 .v., e, Vs. sets
Sl’ 82, ooy Sn; that is, aiJ = 0Qor 1l according as ey is
not or is a member of SJ. For certain applications, one

of which will be discussed below, it is of interest to

know whether or not one can order the elements in such

a way that each set SJ consists of elements that appear
consecutively in the ordering. In terms of the incidence
matrix A, the question is whether there is an m by m
permutation matrix P such that the 1's in each column of

PA occur in consecutive positions. We shall describe a
computationally efficilent method of answering this question,
and of determining such a P when one exists.

Glven a family of sets Sl’ 32, «+e35 S , one can form

n
the intersection graph of the family by associating a

vertex of the graph with each set and Jjoining two distinct
vertices with an edge if their corresponding sets have a
nonempty intersection. Conversely, any finite graph can
of course be viewed as the intersection graph of a family

of sets (in many ways). If each set can be taken as an

interval on the real line, the graph is called an interval

raph. Incerval graphs have been investigated in (3, %, 5].
grapa
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The problem posed above is closely related to that of
determining whether a given graph is an interval graph.
Necessary and sufficient conditions for this are known
[3, 5]. Bat our problem appears to be more general, and
our approach is quite different.

The study of interval graphs was stimulated in part
by a biological application concerning the fine structure
of genes [1, 3]. A basic problem, posed in [1], is to
decide whether or not the subelements of genes are linked
together in a linear order. 4 way of approaching this
problem is also described in [1]. Briefly, it is as
follows. For certain microorganisms, there are a stand—
ard form and mutants, the latter arising from the standard
form by alteration of some connected part of the genetic
structure. Experiments can be devised for determining
whether the blemished parts of two mutant genes intersect
or not. Thus the mathematical problem becomes: Given
a2 large number of mutants together with information as to
when the blemished portions of pairs of mutants intersect,
to decide whether this information is compatible with a
linear model of the géne or not. One example, analyzed
in [1], shows intersection data for 145 mutants of a
certain virus, for which it was found that a linear model

was adequate.
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In attacking the combinatorial problem posed at the
beginning of this section, it does not suffice to consider
Just the intersection graph of the sets sl, 82, ceey Sn.
Instead, we focus attention primarily on a more restricted

graph, the overlap graph (Sec. 3), two sets being said

here to overlap if they have a nonempty intersection which
1s properly included in each. The connected components
of the overlap graph partition the m by n incidence matrix

A Into m—rowed submatrices A A2, eeey A . Thus we can

12 P

take A = (Al’ A2, . Ap), where each A, corresponds to

a component of the overlap graph. Then our main theorem
(Theorem 4.1) asserts that if there are permutations

Pk’ k=1, 2, ..., p, such that PkAk has consecutive 1's

in each column, there 1s a permutaticon P such that PA has
this property also. This somewhat surprising result, coupled
with the fact that one can describe a simple and direct
construction (Sec. 5) for testing whether such P, exists,

provides an answer to the existence question for a general

incidence matrix A.

2. A BASIC THEOREHM

Let A be a (0, 1)-matrix. We say that A has the

consecutive 1's property (for columns) provided there is '
a permutation matrix P such that the 1's in each column
of PA occur consecutively, We note to begin with that

the intersection graph of A does not contain enough in—

formation to decide whether A has the property or not.




For example, the matrices

1 1 1 ] 0O 1 1
Al = ¢ 0 O© s A2 = 1 0 1
¢ 0 O 1 1 O

have the same intersection graph, a triangle, but A2 does
not have the consecutive 1's property. The first question
that naturally comes up, then, is how much information about
A 1is needed to.decide whether it has the property or not.

Do we need to know A itself, or will soniething less suffice?
Theorem 2.1 below provides a partial answer to this question;

it shows that a knowledge of the matrix ATA is enough. Here

AT denotes the transpose of A.

Theorem 2.1. Let A and B be (O, l)-matrices satisfying

(2.1) aTa = BTB .

Then either both A and B have the consecutive 1's property

or neither does. loreover, if A and B have the same number

of rows and A has the consecutive 1l's property, then there

is a permutation P such that B = PA.

Proof. The first part of the theorem follows trivially
from the second. For assume (2.1) and let A be m by n, B
be m' by n, with m > m'. Then we may adjoin m-m' rows of O's

to B, thereby obtaining an m by n matrix C satisfying ATA = CTC.
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The second assertion of the theorem then implies C = PA,
for some permutation P. Consequently both A and C (hence
both A and B) have the property or neither does.

Let A and B be m by n. The second part of the theorem
is obviously valid for n = 1, and we proceed by induction
on n. Suppress the first column vector a of A and the
first column vector b of B, and call the resulting matrices

A

1 and Bl Thus

(?-2) A = (a.v Al) ’
(2.3) B= (b, B) .

Clearly Al has the consecutive 1's property and AlAl BlBl‘
Hence, by the induction hypothesis, we can permute the

rows of B to obtain a matrix B satisfying
(2.4) B = (5, 4)) ,

the column vector 3 being a permutation of b.

We shall finish the proof by showing that, corresponding
to each row vector of Eﬁ there 1s an equal row vector of A.
We begin by noting that if the column vectors a of (2.2)
and b of (2.4) have common 1's (common 0O's), the corresponding
rows of A and B are equal and can be paired off against

each other. Having done this, consider the submatrices
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of Aand B consisting of the remaining rows. Call these

matrices A* and B*. Thus we may write

(2-5) A¥ = (a*: AI) )
(2.6) Bx = (bx, Ai) .

Note that A% inherits the consecutive 1's property from
A, since suppression of rows does not destroy the property,

and hence we can permute the rows of A* to obtain a matrix
(2.7) R = (3, &)

in which the 1's in each column occur consecutively.

Applying the same permutation to B* Yields
(2.8) B = (%, Il) .

Now a and b are complementary (O, l)—vectors, that is, b
is obtained from a by interchanging O's and 1's. We also

have

(2.9) A% - 75,

since X and B are obtained from A and B, respectively,
by suppressing certain equal rows and permuting rows.

In particular, calculating the inner product of 2 with
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1tself and B with itself, we have
|
i

(2.10) 33 = 5.5,

and hence a and b have the same number of 1's (hence also
of 0's), so that the number of 1's in T is equal to the
number of O's in a. Thus A and B have the following

appearance :

[0 A 1 il

| E ‘| E

0 1

1 0

(2.11) A= [ F » B=|!| F .

1 0

0 1

@ e

O ) |1 J

The matrices E and G in (2.11) have together the same
number of rows that F does, and we shall show that the
rows of A corresponding to F (corresponding to E and G)
can be paired with equal rows of B corresponding to E and
G (corresponding to F).
To thls end, let E and G have k and {4 rows, respectively,
and let Rp denote the p by p permutation matrix which

reverses order,




We assert that

(2.13) F = .

For consider an arbitrary column vector c¢ of Il and write

0]

(2.14) c =

corresponding to the partition (2.11) of Kl' From (2.9)

we have

and thus the number of 1's in f is equal to the number

of 1's in e and g. It follows from this and the fact

that the 1's in ¢ occur consecutively that




(2.15) £ = .

This establishes (2.13) and finishes the proof of Theorem 2.1.
We note the following corollary of Theorem 2.1.

Corollary 2.2. ILet A and B be (0, 1)-matrices

satisfying (2.1). If A has the consecutive 1l's property

and has no rows of O's, then there is a permutation P

such that

(2.16) PB

Proof. Let A bem by n and let B be m' by n. Suppose
m' < m. Then we may adjoin m—m' rows of O's to B, obtailning

Ta = ¢cTc. By Theorem 2.1, C is a

a matrix C satisfying A
row permutation of A, violating the assumption that A has
no zero rows. Consequently m' > m. The conclusion now
follows by adjoining m'—m rows of O's to A.

It 1s of course not true in general that equation

(2.1) implies B = PA for m by n (0, 1)-matrices A and B.
A simple example is

1 1 i] 0 1 1

1 0 0 1 0 1
A= , B = ]

0O 1 0o 1 1 o

0 O 0 O O

— = —
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It would be interesting to kmow conditions on ATA

in order that A have the consecutive 1's pProperty. Although
we have not been able to give a complete answer to this
question in the sense of finding some nice set of necessary
and sufficient conditions, we shall establish a theorem in
Sec. 4 which reduces the question to the consideration of
(0, 1)-matrices having connected overlap graphs. Section 5
then provides a simple construction for testing whether or

not such a matrix has the property.

3. THE OVERLAP GRAPH AND COMPONENT GRAPH

We rephrase the definition of "overlap" in terms of
inner products of (0, 1)-vectors. Let a and b be (0, 1)—
vectors having m components. Their inner product a-b

satisfies

(3.1) 0< ab < min (a-a, b-b) .

If strict inequality holds throughout (3.1), that is, 1if

a.b satisfies

(3.2) 0< a-b < min (a.a, b-b) ,

we say that a and b overlap. We also say that a and b are

disjoint 1if

(3.3)
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and that a contains b if
(3.%) ab = b-b .

Now let A be an m by n (0, 1)-matrix having column
vectors al, 8oy ey an. It is convenient, and imposes
no loss of generality in studying the consecutive 1's
property, to assume that ay $0,3=1,2, ..., n, and
that ay $ aJ for 1 # J. Henceforth we frequently make
these assumptions and refer to such an A as proper. |

There are various graphs one can associate with a
(0, 1)-matrix A that are meaningful insofar as the con-
secutive 1l's property is concerned. For instance, we
can take vertices X2 Xps ey X, corresponding to the
columns 815 85, eeo, a, of A, and put in the following
edges, some being directed, others undirected: an edge

[xi, xJ] directed from x, to x, if a, contains ay; an

i J
undirected edge (xi, xJ) Joining Xy and xJ if ay and aJ

overlap. (If we go on to make this a "weighted" grach

by assoclating with each edge (vertex) the appropriate

inner product, then Theorem 2.1 shows that we have included |
sufficient information to decide whether A has the con—

secutive 1's property.) We shall not, however, deal

primarily with this full graph JF = 5 (A), but shall instead

work mostly with two graphs derived from it, one of these

being an undirected graph, the other a directed graph.
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The first of these is the graph obtained from 3 by
including only the undirectegd edges (xi, xJ) corresponding
to overlapping column vectors a, and aJ. We call this the
overlap graph of A and denote 1t by ¥ b(A).

The second of these graphs is obtained from F as
follows: Let Xl’ XQ, ceny Xp be the connected components
of Iy(A), considered as vertices of a graph Yo g lﬁ(A).
Direct an edge [Xi’ XJ] from vertex Xi to vertex XJ irf
there is an x in Xy and a y in XJ such that [x, y] 1s an

edge from x to y in F. We call lfthe component graph

of A. The component graph dd is obtained by condensing
in # the vertices of a connected component of 19 to a
single vertex.

We give an example illustrating these concepts.

Let
1 0 0o 0 0 0 o 4

1 1100 01 0

01 011 0 0 0

1 1100 1 0 1
A=11 1100 0 0 1

© 1 0 01 0 0 0

1 1100 11 0

© 1 010 0 0 0

(1 11 0 0 0 0 g




AT =

[V S IV IV VIR B 0 o B 6
O O O N ON O
©O O O MM K O MM O
H N O OoOMNMMNMPD
O MM OO NMMDMWM

W oowwu o
WMo owu U

Lﬂov—*oowww,

The graphs %, 8, and.d for A are shown in Figs. 3.1,
3.2, and 3.3, respectively.

Notice in the example that the component graph V]
is acyclic (has no &irected cycles) and transitive (if
(X, Y] and [Y, Z] are edges, then [X, Z] is an edge).

We now prove that this is generally so.

Theorem 3.1. The component graph Jj(A) of a proper

(O, 1l)-matrix A is acyclic and transitive.

Proof. We first show that £J 1s transitive. Let
X, Y, Z be components of & (vertices of 17) such that
(X, Y] and [Y, 2] are edges in L. Hence there are vertices
X, ¥, ¥', z of F with x in X, y and y*' in Y, and z in Z,
such that ([x, y] and [y', z] are directed edges of 3.
Moreover, since y and y' are in the same compoaent of ff,
there is a chain (y, yl), (yl, ye), ceey (yk, y') of
undirected edges jJoining y to y' in & (hence in F). Thus

the matrix A has corresponding columns a, b, b', c and




X
L] Xy

Fig. 3.1—The full graph 4(A)

X3

x|/ Xa
‘am I’%
Xe Xy
Fig. 3.2—The overlap graph ((A)

Xu,xz} Xz = x3}
X3=

Vit

xs,x7,x8

- X4,X5}

Fig. 3.3—The component graph D(A)
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bl’ b2, b oI bk such that a contains b, b! contains c,

b and bl overlap, b, and b2 overlap, ..., b, and b! over—
lap. But if a contains b and b overlaps bl’ then either
a contains b, or a overlaps b;. The latter of these
alternatives is impossible, for otherwise x and ¥y would
be in the same component of the overlap graph, contrary
to choice. Thus a contains bl' We may now repeat the
argument with a, bl’ b2 in place of a, b, bl to show that
a contains b2’ and so on, finally deducing that a contains
b'. Since b'! contains ¢, we see that a contains ¢, and
hence [x, z] is a directed edge in ¥. Consequently

[X, 2] 1s a directed edge in J, and . is transitive.

To show that £ 1is acyclic, it suffices, since L
is transitive, to show that both [X, Y] and [Y, X] cannot
be edges of 15. Suppose they were edges of . Then, as
above, the matrix A would have columns 815 8o, eees By
and bl’ b2, ce ey bL with the following relations holding:

a, contains bl; b, contains ay; al overlaps 62’ asely 81

2

overlaps ay; b1 overlaps b2, c.a3 b overlaps bL; and

1~1

no a, overlaps any b It then follows as above that a,

3
contains b,. Similarly we deduce that bL contains a,.
Thus a, = bL' Since a4 and bL are necessarily distinct
columns of A, this violates our assumption that A has no
pair of equal columns. Consequently Jf 1s acyclic. This
completes the proof of Theorem 3.1.

Theorem 3.1 shows that & 1s the graph of a partial

ordering. This partial ordering is special in the sense




-16—

that an element can have at most one immediate predecessor,
as Theorem 3.2 below shows. Conzequently, i1f we omit from
dj every edge whose existence is implied by transitivity,
the resulting graph is slmply a collection of rooted trees.
(For example, 1n Fig. 3.3,omitting the edge [Xl, Xu] produces
a single tree with root Xl.)

Theorem 3.2. Each vertex of the component graph

T (n) of a proper (0, 1)-matrix A has at most one immediate
predecessor.

Proof. It suffices to show that if [X, Z] and [Y, Z]
are edges of «J, then either (X, Y] or [Y, X] 1s an edge.
Thus, let [X, Z] and [Y, 2] be edges of «£J. It follows
that A has columns a, b, Cys Cos «oey Cy with the following
relations holding: a contalns Cqs b contains Cyer and
Successive pairs of c's overlap. Thus a contains Cre
Since b also contains €l and a and b do not overlap, then
elther a contains b or b contains a. Consequently, either
(X, Y] or [¥, X] 1s an edge of 7.

In Sec. 4 we shall use the structure of the component
graph to prove the decomposition theorem mentioned in
Sec. 1. This structure will also be exploited later in
developlng a complete algorithm for arranging the rows
of a matrix A to make its 1's appear consecutively in
each column, when this is possible. For these purposes,
we note here another fact about the full graph F(A) that
has not been stated explicitly, although its proof is
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contained in that of Theorem 3.1.

Theorem 3.3. Let X and Y be components of the overlap

graph ly(A) of a proper (0, l)-matrix A, such that there

is an x in X and y in Y with (x, y] an_edge of F(A).
Then [x, y'] is an edge of #(A) for arbitrary y' in Y.

Theorem 3.3 shows that each column of A corresponding
to Y plays exactly the same role with respect to columns
of A corresponding to X. That is, each "Y—column" will
be contained in certain of the "X—columns" and disjoint
from the others. This pattern is the same for every

Y—column.

4, THE DECOMPOSITION THEOREM

For an arbitrary (0, 1)-matrix A, we can rearrange

columns if necessary and write

(4.1) A= (A, Ay -ees A,

where each submatrix Ak’ k=1, 2, ..., b, corresponds to
a component X, of the overlap graph ly(A). We term (4.1)

an overlap decomposition of A. It is of course unique,

apart from the ordering of the submatrices. We refer to

these submatrices as overlap components of A, or briefly,

components of A. If A has Just one component, we say

that A is connected.
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Theorem 4.1. A (0, 1)-matrix A has the consecutive

1's praverty if and only if each of its components has

the property.

Proof. The necessity is obvious. To prove sufficiency,
we may assume that A is Proper and proceed by induction on
the number p of components of A, the case P = 1 being
trivial.

Before going to the induction step, we first remark
that if a matrix has the consecutive 1!s pProperty and has
equal rows, such rows can be brought together in a pPermuted
form which makes the 1's in each column consecutive. To
see this, it suffices to observe two things. First, if a
row is deleted from a matrix having the consecutive 1's
Property, the resulting matrix has the property. oOn the
other hand, if a deleted row is one of a pair of equal
rows, then it can be reinserted adjacent to its counter—
part in the permuted matrix, and the 1's in each column
are still consecutive.

To establish the induction step, let A be a proper
matrix having p components, each of which has the con—

secutive 1's property, and write

(4'2) A= (Alo A2: sy %),
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where Ap corresponds to a minimal element in the partial
ordering given by JﬂkA). Now delete Ap from-A. By the

induction assumption, the matrix

(4.3) A' = (Ayy Apy eees Ay )

has the consecutive 1's property, and hence, by the above
remark, there 1s a permutation P such that PA' has con—
secutive 1's in each column and like rows of PA' occur

together. Consider

(%.4%) PA = (By, By, == Bp) =5,

We may select a topmost and bottommost 1 in E%, and write

* * o e * 0
(%.5) B=|B B -+ B, K| »
%* * e se ¥ (o]

where the first and last rows of T¥ each contain at least

one 1. Now consider the matrix

(4.6) (Bys» Bps «-es By y) -

We assert that all rows of (4.6) are 1ldentical. To see
this, observe first that slnce xp is a minimal element

in the partial ordering, each Xk, k=1, 2, ..., p—1,
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either dominates Xp (there 1s an edge from X, to Xb in
Jﬂ?A)) or is unrelated to xp (there 1s no edge from X

to Xp or from Xb to Xk). Suppose X, 1s unrelated to Xb.
Then, since the first and last rows of I% contain a 1,

it follows that the first and last rows of I& are all 0's,
for otherwise there would be a column of Ap and a column
of Ak vhich are not disjoint. On the other hand, suppose
X, dominates Xp. It then follows from Theorem 3.3 that the
first and last rows of I& are equal. Hence the first and
last rows of (4.6) are equal, and consequently, by the
Sselection of P, all rows of (%.6) are equal.

We may now pernte the rows of I% to make its 1's
consecutlive in each column. Such a permutation merely
shuffles like rows in (4.5), and thus A has the consecutive
1's property.

Any component of A which has no more than two columns
obviously has the consecutive 1ts property. We may thus

state the following corollary of Theorem 4.1.

Corollary 4.2. 1If each component of a (O, l)—ggtrix

A has at most two columns, then A has the consecutive 1's

property.

2. TESTING A CONNECTED MATRIX FOR THE CONSECUTIVE 1's
PROPERTY

In this section we shall describe a construction for
deciding whether a connected matrix A has the consecutive

1's property. The essential idea is not to search explicitly
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for a permutation P which rearranges A, but rather to
attempt to build up a permuted form of A, column by column,
imposing necessary inner-product requirements on the columns
of the configuration.

Let a, b, ¢ be distinct column vectors of A such that
a overlaps b and b overlaps c. If A has the consecutive
1's property, then there is a row permutation of A which
contains the configuration C, or C, described below (and
illustrated in Figs. 5.1 and 5.2) according, as

(5.1) a.c < min (a-b, b.c)
or
(5.2) asc > min (a+b, b.c)

holds. The configuration C1 is obtained by writing down
a.a 1's consecutively in a column, then b-b consecutive
1's in & second column so that these two strings of 1l's
overlap (at the bottom of the first, say) on a-b 1's,
then a third string of c.c 1l's, overlapping the second
string in the same way that the second overlapped the
first (at its bottom) on be.c 1's. The configuration C,
differs from C1 only by making the third string of 1l's
overlap the second opposite to the manner in which the

second overlapped the first.




a b c
1
1 1
1 1
1 1
1 1 1l
1 1
1 1
1

Flg. 5.1. The Configuration Cl

a b c
1l 1
1 1 1
1l 1 1l
1l 1l 1l
1 1

1

1

Fig. 5.2. The Configuration C2

Note that while we have two choices in placing the
second string of 1l's relative to the first (top or bottom
of the first), 1t is immaterial which of these we select.
Moreover, having selected one, there is no further latitude
in positioning the third string of 1's, since 1its position

relative to the second 1s determined by (5.1) or (5.2)

and the position of the second relative to the first.

After constructing the configuration c1 or C2, we can
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then check the inner product of its first and third columns.
If this is not equal to a.c, we know immediately that A
does not have the consecutive 1's property.

Three column vectors of A which can be ordered so
that the first and second overlap and the second and third
overlap wlll be termed a rigid triple of A. Our con—

struction for a connected A will be based on singling out
a spanning subtree of lf(A) and then positioning strings
of 1's, using riéid triples obtained from this tree.

Instead of describing the computation formally, we
shall consider an example which will make the process clear.
let

©®O0 ®06 6
1 0 0 1 1 0
0 (o] 1 0 0 1

A =11 1 1 1 0 1 .
0 0 0 0 1 0
1 1 1 1 1 0
1 o o o 1 o

A spanning subtree of the overlap graph IQ(A) is shown
in Fig. 5.3 below.

& F

Fig. 5.3. A Spanning Subtree of h(A)
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On the first step, we may position the rigid triple
1, 3, 5 to obtain the configuration of Fig. 5.4 below.

RONC
1

1
1
1

1
1
1

S A -

Fg. 5.4

The inner products of this configuration agree with the
corresponding ones of A, and we proceed to add column 6,
positloning it relative to 1 and 5 (5, 1, 6 form a rigid
triple), to obtailn the configuration shown in Fig. 5.5,

VOB ®

1

1
1
1

I

Fig. 5.5

Checking the inner product of column 6 with all others
in the configuration shows that we have no contradiction yet,

and so we add column 4, positioning it relative to 1 and

3, to obtain the configuration of Fig. 5.6.
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06O ®
1
i 1
1 1 1
1 1 1 1
1 1 1l 1
1 1
Fig. 5.6

Again all inner products of column 4 with preceding
columns of the configuration check out properly. We
then add column 2, positioning it relative to 1 and 6,

obtalning the configuration of Flg. 5.7.

OO OB®OG
1
1 1
1 1 1
1 1 1 1 1
1 1 1 1 1
1 1
Fg. 5.7

Slnce the inner products of column 2 with all preceding

columns 1in the configuration of Fig. 5.7 agree with the

corresponding inner products of columns of A, Corollary 2.2

show that the matrix
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1 2 3 4 5 6
[0 0 0 0 1 o0
1 00 01 0
B=j1 0 0 1 1 of,
11 1°1 1 0
111 1 0 1
0 0 1 0 o 1J

obtailned from Fig. 5.7 by rearranging columns and filling
in O's so that B has no zero rows, is a row permutation
of A.

A complete test for a general matrix A is now clear.
First determine the connected components of A. This can
be easily done in such a way that corresponding spanning
subtrees are automatically obtained. Simply select an
arbitrary column and find all columns it overlaps; then
select one of these and determine any new columns it over—
laps, and so on. When no new columns can be determined,
a spanning subtree for one component has been found. The
configuration buillding process described above can then
be applied to each component. ({In actual computation,
one would build the configuration simultaneously with
the determination of a connected component.)

If one measures the efficiency of this method by
calculating an upper bound on the number of times that
1t 1s necessary to compute (or look up) the inner product
of two (0, 1)~vectors, it is not difficult to see that

Le)
if A has n columns, such a bound is of the order O(n®).
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6. FITTING THE COMPONENTS TOGETHER

If no contradiction in inner products is encountered
in the construction outlined in the preceding section, one
can go on to find the desired row permutation of A by
fitting the various connected submatrices together in an
appropriate way, using the partial ordering of components
given by Jj(A). (We assume that A is proper.) The proof
of Theorem 4.1 indicates how to proceed. Again we shall
not describe the process in detail, but shall illustrate
it with the example of Sec. 3.

The configuration—building procedure of Sec. 5 produces

the matrices

® e ©, ®© ©®®
[1 0 0] [0 O] [0 0 O]
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
Blml1'132.1’133200’131‘-01o'
1 1 1 0 o 110
o 1 1 1 0 1 0 1
0 1 1 11 0 0 1
0 1] 1] [0 1] 0 0 1]

To fit these together, we first determine the maximal l
elements in leA). Here there is Just one, corresponding

to Bi' and we have:




'OOOHHHHHD@
i I TR VRNV C)

|

(If there were more than one maximal element, the determined
part of the configuration at this point would appear as a
direct sum.)

Next suppress the maximal elements in 17?A) and look
for the new maximal elements in the reduced graph. Here
there are two, corresponding to 32 and B3. By Theorem 3.3,
each column of B, (B3) is contained in certain columns of
E& and disjoint from the remaining, and this pattern is the
same for all columns of B2 (B3). Hence it suffices to test
one column of B, (B3) to find this pattern. We can do this
by referring to ATA op F(A). The single column of B, is
contained in both columns of Bl’ whereas columns of B3 are
disjoint from the first column of E& and contained in the
second. We now fit in B2 by sliding its nonzero part
(the part between a topmost and bottommost 1 of Bé) to
the top of the consecutive group of equal rows of B1 con—

sisting of (1, 1)-pairs. Similarly, we fit in By by
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sliding its nonzero part to the top of the consecutive
group of (0, 1l)—rows of Bl' This gives the configuration

@
1

1

1

1
1

1

0
0

0

O+ H OO OOoOoO o
H 2 O OO Oooo

The new reduced component graph consists of the single
element corresponding to By, and we see from J(A) that
each column of B4 is contained in columns 1, 2, 3 and is
disjoint from columns % and 5. Consequently we slide the
nonzero part of 54 to appear at the top of the consecutive
group of (1, 1, 1, 0, O)-rows in the configuration. This
yYields a row permutation of A whose 1's appear consecutively

in each column:
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QPI®OBGO®®
p 0|0]JO0 010 O O]
1 1(1l0 olO0 1 o
1 1/1]0 o0/1 1 o
1 1|1|0 o011 o0 1
1 1{1j0 o|loOo o0 1] .
1 1({1|0 o]l]¢c o0 1
0O 1/0{1 0{0 0 O
0o 1|/0|1 1|/0 0 o
0 1lo0l0 110 0 o0

Note that at each stage in solving the example, we
automatically had equal rows occurring together (see the
proof of Theorem 4.1) and hence did not need to permute
rows of the conflguration before fitting in another piece.
It is not difficult to show inductively that this will
always be the case, provided the prescription of 2liding
the nonzero part of the new plece to the top of the group
of 1like rows which precede it 1is followed. A relevant
fact in making such a proof is that the nonzero part of
the new piece contains no zero rows. This follows from
connectedness and consecutivity of 1's, and justifies our

terminology.

7. APPLICATION TO INTERVAL GRAPHS

The methods developed in preceding sections can be
applied to the problem of determining when a graph 1s an
interval graph. As noted in Sec. 1, various sets of

necessary and sufflcient conditions that a graph be an
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interval graph are known. Moreover, computational methods

based on some of these have been described [3, 5]. The

procedure we shall outline appears to be more efficient.
In addition, a specific representation in terms of intervals

can be easlily produced if desired.

We begin by reviewing certaln concepts and results that
will be relevant. The first of these is that of a rigid
circuit graph [2, 3]. An undirected graph¥* L ois a rigid
circuit graph if every circuit of 19 with more than three

vertices has a chord. Here a chord is an edge not in the
circuit which joins two vertices of the circuit. It is
casy to see that an interval graph must be a rigid circuit
graph {3]. We also recall the following basic result about
rigid circuit graphs (2]: Every rigid circuit graph %
has a simplicial vertex. Here a vertex s of Z? is sim—
plicial if all the neighbors of s in & form a simplex or
clique in !? (i.e., each pair of neighbors of s is Jjoined
by an edge.) Thus s together with its neighbors is also a
clique in 17.

Rigid circuit graphs have been characterized in various

ways {2, 3]. For our purposes, the following procedure

for testing the rigid circuit property will be appropriate:**

All graphs considered in this section are finite and
undirected, and have no multiple edges or loops.

**This simple test has apparently not been noted before.
See [3], where a more complicated test is used.
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Search for a simplicial vertex in ﬁ; if one is found,
supress it and repeat the procedure in the reduced graph.
It follows that & is a rigid circuit graph if and only if
this process terminates in the deletion of all vertices
of &. For if Y 1s a rigld circuit graph, then & con—
tains a simplicial vertex, and deletion of vertices maintains
the rigid circuit property. Conversely, if & has a circuit
with more than three vertices which has no chord, then no
vertex of this circuit can be deleted in the process.
Figures 7.1 and 7.2 show examples of rigid circuit
graphs, the vertices being numbered in such a way that
successively suppressing the next vertex in the numbering

fulfills the test.

Fig. 7.1 Fig. 7.2
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We shall return to rigld circult graphs in a moment,
but at this point we need to introduce a certain incidence
matrix which can be assocliated with an arbitrary graph 19.

We call this matrix the dominant clique vs. vertex matrix.

As will be obvious, it specifiles Jy completely. Let &

be any graph. We can consider the family of all sets of
vertices which form cliques in Zy and partially order these
by set inclusion. The maximal elements in this partial

ordering will be termed the dominant cliques of Iy. Since

two vertices of ﬁ’ are Joined by an edge if and only 1if
they belong to some dominant clique, the domlnant clique
vs. vertex incidence matrix characterizes ,&.

Such incidence matrices for the graphs of Figs. 7.1

and 7.2 are shown in Figs. 7.3 and 7.4, respectively.

1 2 3 4 5 6 7 8 1 2 3 4 5 6
1 01 01 01 O 1 0 01 1 o
01 01 01 1 o0 0O 1 01 01
0O 00 01l 011 0O 01 01 1
O 0 0 0 0 1 1 1 O 0 01 1 1
Flg. 7.3 Flg. 7.4

For rigid circuilt graphs, the determination of the
dominant cliques can be carried out in conjunction with the
test for the rigid circuilt property described above. lpon
deleting a simplicial vertex, simply list it together with
its nelghbors in the reduced graph. If the original graph
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g has n vertices, this yields a set of n cliques. The
dominant ones of these n cliques are the dominant cliques
of &. For these are certainly cliques of &. Moreover,
if € 1s an arbitrary clique in &, consider the first
vertex of @ which is deleted in the process. A%t this
stage we 1list a clique (@’ that includes C.

The theory and methods we have developed for studying
the consecutive 1's property can now be applied to interval

graphs via Theorem 7.1 below.

Theorem 7.1. A graph % is an interval graph if and

only if the dominant clique vs. vertex incidence matrix of

)9 has the consecutive 1's property.

Proof. Let D be the dominant clique vs. vertex incidence
matrix of 19, 80 arranged that the 1's in each column occur
consecutively. Suppose the first and last 1's in the J—th
column of D occur in positions fJ and LJ, respectively.
Then &/ is the intersection graph of the intervals
[£,-1, 3, 3=1,2, ..., n.

Conversely, let 1? be the intersection graph of a
set of n (closed) intervals IJ, J=1,2, ..., n. Let
the distinct endpoints €15 €5, -.., en of these intervals
be ordered so that e, < e, < oeth 1K en* Then the m by n
incidence matrix A = (aij),defined by setting ayy = 1 or
O according as ey is or is not in IJ.has consecutive 1's

in each column. Moreover, D is obtained from A by deleting

rows, Hence D has the consecutive 1's property.
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The incidence matrix of Fig. 7.3 has the consecutive
1's property; that of Fig. 7.4 does not. (A rearranged
form of Fig. 7.3 1s shown in Fig. T7.5.) Consequently the
graph of Fig. 7.1 is an interval graph (its "intervals"
being displayed in Fig. 7.5), but that of Fig. 7.2 is not.

1 2 3 4 5 6 7 8

1 01 01 0 1 0

0 0 001 0 11

0 0 0 0 01 11

01 01 011 0
Fig. 7.5

8. CONSECUTIVE 1's AND TOTAL UNIMODULARITY

A (0, 1)-matrix A is said to be totally unimodular
[6] 1f each of its square submatrices has determinant
11 or 0. It follows from known sufficient conditions for
the total unimodularity property that if A has the consecu—
tive 1's property, then A is totally unimodular [6)}. This
fact can also be proved directly without difficulty by
induction on the number of rows in a square matrix having
the consecutive 1's property. The total unimodularity
property has significant implications in linear inequality
theory. 1In particular, if A 1is totally unimodular, and if
b 1s a vector having integral components, then the convex

polyhedron defined by the linear inequalities
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Au > b,

\%

(8.1)
u>o

has all integral extreme points. That 1s, if u is an
extreme solution of (8.1), then u has integral components.

Consequently, the linesar program

Au

v
-

(8.2)

minimize c-u

always has integral solution vectors u, provided A is totally
unimodular and b is integral. In (8.2), ¢ is a given real
vector.

We can apply these facts and Theorem 7.1 to derive
a certain combinatorial duality theorem for interval graphs
which, though similar in some respects to known results
about rigid circuit graphs [2], [7], does not hold for the
latter. To state this theorem, we first require a defin-—
ition. We shall say that a set of vertices in a graph
£/ represents all dominant cliques of ﬁ provided each
dominant clique contains some vertex of the set. Our
interest 1s in a mininmum representation, that 1is, a set
of vertices which represents all dominant cliques and has

minimum cardinality over all such sets.
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Theorem 8.1. Let & be an interval graph. Then

the minimum number of vertices of 19 required to represent

all dominant cliques is equal to the maximum number of

dominant cliques that are mutually disjoint.

Proof. Let D be the dominant clique vs. vertex incidence
matrix of é9. In view of Theorem 7.1 and the preceding
discussion, the problem o finding a minimum representation
of dominant cliques can be posed as that of solving the

linear program

¥
v

—_1"

(8.3) u>o,

minimize 1.u .

Here 1 is a vector all of whose components are unity.
The dual of (8.3) is

plw <1,

(8.%)
w >0,

maximize 1l.w .

Since D is totally unimodular, so is DT, and thus the
program (8.4) also has (0, 1)-solution vectors Ww. Con—
sequently (8.4) asks for the maximum number of dominant
¢liques that are pairwise disjoint. Thus Theorem 8.1

follows from the duality theorem for linear inequalities.




-38-

It can be seen similarly that if & is an interval
graph, then the maximum number of vertices, no two of which
are in the same dominant clique (i1.e., the maximum number
of vertices, no two of which are joined by an edge) 1is
equal to the minimum number of dominant cliques that cover
all vertices (1.e., the minimum number of cliques that
cover all vertices). This theorem 1s in fact lmown to be
true more generally for rigid circuilt graphs [2], [7]. But
Theorem 8.1 is false for rigid circult graphs. The graph
of Flg. 7.2 is a case in point, since the minimum number
of vertices required to represent all dominant cliques is
two, whereas the maximum number of mutually disjoint

domlinant cliques is one.
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