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ABSTRACT 

This report describes computer programs developed for the analysis of heated 
beams, plates, and stiffened cylindrical shells.   The matrix displacement approach 
to structural analysis, which forms the theoretical basis of these programs, is 
developed in detail.   Derivation of new relationships employed in these programs is 
also detailed.   The capabilities and limitations of the respective programs are out- 
lined and illustrative applications are presented. 
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CHAPTER I 

INTRODUCTION 

The "Study of Thermal Stress Determination Techniques for Supersonic 
Transport Aircraft Structures" has consisted of three relatively independent efforts, 
directed towards the development of 

(1) An annotated bibliography of literature pertinent to thermal stress 
analysis and related topics. 

(2) Parametrically-presented design data for heated sandwich panels and 
cylinders. 

(3) Three FORTRAN-coded computer programs for the solution of heated 
beam, plate, and cylindrical shell problems. 

Items (1) and (2) are presented in references (1) and (2), respectively.   A portion of 
item (3), in the form of a verbal description of the coded computer programs, is 
presented in this report. 

Each of the three programs described in the present report is based on the 
"matrix displacement" or "stiffness" method for the analysis of structures which 
are idealized as systems of connected discrete elements.   Programs described in 
the present report are available to participants in structural design activities 
related to the Supersonic Transport (SST) and to all others who are designated as 
being eligible by the Flight Dynamics Laboratory, Aeronautical Systems Division, 
USAF.   The programs will be transmitted to eligible recipients by the latter 
agency.   A transmitted program consists of punched cards, listings, detailed 
instructions with respect to input and output, and other information needed to make 
the program operative at a facility that will accept a program coded in conformity 
with the FORTRAN II Monitor System. 

Many references have detailed the basis of the displacement method as it 
applies to the linear analysis of unheated clastic structures.   (See, for example, 
references 3, 4, or 5).   Phenomena which are not often considered in routine 
structural analysis are treated by the subject programs, however, and the approach 
to the analysis of these special phenomena by the matrix displacement method has 
not been described in any single reference.   Hence, in the next chapter, the method 
is developed from fundamental principles and to an extent that includes all pertinent 
special phenomena, such as instability, thermal stress, and inelastic behavior. 

The accuracy and efficiency of any solution performed by use of any computer 
program for matrix structural analysis is largely dependent upon the suitability of 
discrete element force-displacement equations employed.   The techniques used in 
derivation of the element force-displacement equations contained in the subject 

Manuscript released by authors in Jan. 1964 for publication as an ASD 
Technical Documentary Report. 
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programs are not well known and some of these techniques have, in fact, been for- 
mulated specifically for the requirements of this study.   Consequently, in Chapter 
III a complete and detailed development of the techniques is presented.   Chapter in 
also demonstrates how the techniques were applied to the derivation of element 
relationships appearing in the respective computer programs. 

The three coded programs are as follows: 

1. A program for the analysis of one-dimensional structural components. 

2. A program for the analysis of flat plates, 

3. A program for cylinder analysis. 

Program (1) is described in Chapter IV.   The objective of this program is to 
permit analyses of beam-type structures, i.e., structures whose cross-sectional 
dimensions are small with respect to their length and whose behavior is governed 
by the elementary concepts of beam flexure. 

It often proves feasible in the analysis of airframes to isolate portions of 
major components and treat these as one-dimensional elements;   i.e., as beams or 
beam-columns.   The most common examples in modern constructional forms are 
spar caps, stringers, and longerons, but such idealizations may also be admissable 
in connection with trussed internal members (spars, ribs) and control surfaces. 
The objectives of the program described herein pertain to these types of elements. 

With this program it is possible to analyze beams of nonuniform section over 
many supports for thermal stress, inelastic behavior, instability and other types of 
structural behavior.   Chapter IV provides a detailed picture of these capabilities 
and also presents illustrative examples.   Certain of the examples involve simple 
conditions with known solutions; these are performed to demonstrate the accuracy 
of the program.   Another example, for which there is no complete alternative solu- 
tion, is performed to demonstrate the capability of the program to deal with com- 
plex conditions. 

Descriptions of Programs (2) and (3), which are presented in Chapters V and 
VI, are patterned after the description of Program (1).   Program (2) is capable of 
performing analyses of irregularly shaped stiffened plates of nonuniform thicknesses 
for stresses and displacements due to applied loads, temperature gradients, and 
time-independent inelastic behavior, and for the prediction of buckling stresses. 
The use of the discrete element approach, rather than design charts, may be 
necessary even for Isotropie rectangular plates of constant thickness where the 
temperature profile (and therefore the resulting stress distribution) is of a highly 
irregular form.   Also, if the   loadings on the plate have been developed through a 
matrix structural analysis, wherein the plate was employed as a single discrete 
element in a major component of the airframe (e.g., a wing or fuselage), the edge 
loadings will in general be nonuniform and it again may be desirable to utilize the 
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discrete element approach in the prediction of instability.    The program is, of 
course, not limited in applicability to skin panels; it is directly useful for analyses 
of all types of planar structures — stiffened bulkheads, plane trusses, beam grid- 
works, etc. 

Program (3), the cylinder analysis program, can be employed to predict the 
stresses and displacements for heated cylindrical shells.   The structure analyzed 
with this program need not be perfectly cylindrical.   They may possess orthotropic 
skins and can be ring and longitudinally-stiffened.   The temperature dependence of 
material properties can be taken into account. 

i 
1 
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CHAPTER II 

PERTINENT CONCEPTS OF THE MATRIX 
DISPLACEMENT METHOD 

A.        GENERAL THEORY FOR LINEAR ELASTIC UNHEATKD SYSTEMS 

Most treatments of the displacement approach to the analysis of discrete 
element systems make extensive use of matrix notation and the concepts of matrix 
algebra.   Matrices present   an especially concise and convenient means of 
expressing' algebraic procedures and are, in addition, the natural mathematical 
language of the digital computer.   Because of this widespread use of matrix notation 
in the formulation of structural analysis programs, the topic of present interest is 
often referred to as "matrix structural analysis".   For simplicity, the initial por- 
tion of the following development of the displacement method will be presented in 
detailed algebraic form; then, the formulation will be summarized with use of 
matrix algebra. 

As already noted, this report is concerned with applications based on discrete 
element idealizations of the structures to be analyzed.   Such discrete elements are 
usually defined by boundary or corner points which are sufficient in number to 
characterize the stress and deforraational behavior of the element.   A hypotheti- 
cal discrete element, with four boundary points, is sketched below.  For convenience, 
this section deals with relationships in two dimensions; in all cases, however, the 
approach to three-dimensional problems is readily apparent. 

Relationships between the forces acting at the corner points and the dis- 
placements of the corner points are derived in detail in Chapter III.   Generally, 
these relationships are first derived with reference to axes which are most con- 
venient to the element itself.   Then, by use of direction cosines, the relationsips 
are expressed as if the element were arbitrarily oriented in the complete structure. 
When this transformation has been accomplished, the equation for one of the forces 
shown in the sketch below, F      for example, would have the form 

(x3)(v4)  ■* (II-l) 

x2 
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The coefficients kuwn  are functions of the geometry and material properties of 
the element and are known as element stiffness coefficients.   In terms of physical 
meaning, a stiffness coefficient kj: is the force at i necessary to produce a unit 
displacement of the degree of freedom j.   The corner point forces may either be 
actual concentrated forces or the static equivalent of stresses acting upon the area 
subtended by the point; normally, they are the latter. 

A complete set of force-displacement relationships for an element wife  n 
node points in two dimensions will appear as; 

(xl) 

(xn) 

(yi) 

F/      = k <yn) 

All degrees of freedom at the boundary points appear in Equation (11-2), i.e., the 
element is not fixed against displacement as a rigid body. 

Once the element force-displacement relationships (Equation II-2) have been 
numerically evaluated for each element of fee structure, they can be algebraically 
combined in a manner dictated by the requirements of juncture point equilibrium 
and compatibility.   These operations produce a set of force-displacement equations 
for the'element juncture points of the assembled structure.   To illustrate how this 
is accomplished, consider the development of the force-displacement equation at 
point i in the x-direction in the assembled analytical model sketched below. 

U      1   .   .  . (xl)(ul)    1 • k(xl) (un) 
u 

n ik(> .i:i(vi) V2 + . . • * k(xlXvn)Vn 

(xn)(ul) Ul + . k + k +  . . . . k 

u   + . . . 
(yi)(ui)   i 

. k t- k + . • . . k             (II 

(yn)(ul) "i + . k + k + . . . . k 

I 
] 

• 

- 
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The theoretical basis for the establishment of the desired relationships  is 
the explicit requirement of juncture point equilibrium.   This condition states that the 
applied load (P  .) is equal to the sum of the internal forces acting upon the  respec- 
tive elements common to the point 

pxi = FxiA -  FxiB + FxiC I1-® 

where F  .      is the x-direction (internal) force on element A, etc.   The force-dis- 
XI 

placement equations for each of the elements will have been previously evaluated so 
that expressions for F  ,■", etc.   in terms of the displacements are available. 

XI 

Substitution of these into Equation II-3 yields: 
A A 

P  •  ^   (k, •>,  •>>•>■   ' ^   , ,v    ., u, + . . . .) 
xi (xi) (uj)   j (xiUm,   i 

1     (k     ,.,;w..r.    Uf   ' k VK   (xl)(uf)   Uf      'v    (xi)(ui)   U. -<    .. .) 

(kC, . u    *    k0, .w .   ii. +  - . .) (n-3a) 
(xl)(ug)     g (XI) (Ul)     1 ' 

ami, since the displacement   u.    is thesamefor A, B, and C at point i (the condition 

I i 
of compatibility) we have; 

P     =    kA u j  i   . . . . (1<A * kB ! kC )   u   + . . . 
xi (xi)(uj)     ■' V      (xi)(ui) (xi)(ui) (xi)(ui)'      i 

(Il-Sb) 

This is the final form of the desired equation. 

It is important to note that each of the three elements meeting at the indicated 
juncture point possess stiffness coefficients with common subscripts (e.g.k^ 

B (xi)(ui)' 
k   ,.,,.,).     These correspond to the common juncture of certain points on the 

(xi) (ui)' H ^ 
element.   Point i is of course a common juncture of all three elements, but two 
elements also meet at points    h    and 1   .   Some coefficients associated with an ele- 
ment will not have a counterpart coefficient in the relationships for the other ele- 
ments.   These will pertain to points such as g, f, and j which are connected to only 
one of the elements meeting at   i . 

In view of the above reasoning, the following "automatic" approach to calcula- 
ting the applied load-versus-displaeemcnt equations for the complete structure 
suggests itself: 

(1) Each element stiffness coefficient is assigned a double subscript—the 
first is the force to which it is equated and the second is the displace- 
ment it multiplies. 
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(2) Provision is made for an equation for each force in every degree of 
freedom in the complete system, and for the possibility that each force 
will be related to every displacement in the system.   The result is a 
rectangular array of spaces, each designated by two subscripts—the first 
pertains to the force ectuation, the second to the displacement in question. 

(3) The numerical formulation of the equations can begin with point 1 in the 
x-direction.   First, a search is made through the list of elements, which 
are designated by their corner points.   When an element is reached whose 
designation contains a 1, the Fxj  equation is selected and each coefficient 
of the equation is placed in the space reserved for its second subscript 
(each of the first subscripts is, of course, xl). 

(4) The procedure of item (3) is continued for point 1 in the x-direction until 
the list of elements is exhausted.   Each time the stiffness coefficient from 
a subsequent element is placed in a location where a value has already- 
been placed, it is added to that value.   The only locations that will be 
occupied as a result of these operations are those relating to the point in 
question and points that exist on elements meeting at the point in ques- 
tion.   Thus, if the structure is large with many element juncture points, 
there will be many zeros in each equation.   This is an advantageous 
feature in terms of the effort needed to solve the complete set of equa- 
tions . 

(5) The process of steps (3) and (4) is repeated for all other points in the ' 
x-direetion and then for each of the other directions.   The result will be a 
complete set of equations for the entirj structure, but with no recognition 
of support conditions. V. 

(G)    The support conditions are accounted for by first noting which displace- , 
meats are zero and then removing the stiffness coefficients multiplying ! 
these displacements from the equations, resulting in more equations than 
unknowns.   To provide for an equality of equations and unknowns the » 
equations which pertain to the external loads (reactions) at the support il 
points, are removed.   The general solution to the remaining set of equa- 
tions gives the displacement influence coefficients; multiplication of the ,_ 
general solution by specific values for the loadings yields specific values j 
for the displacements. 

(7)    By substituting the displacement values back into the element force-dis- fi 
placement equations the internal forces acting on the element-the comer ' 
point forces - can be determined.   These may require retransformation 
from "system" to "local" coordinates, and finally a transformation into 

I 

stress (  tr ,   cr ,       r    , etc.). 
x      y xy 

I- 
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B.       MATRIX FORMULATION 

The foregoing can now bo reviewed in the interests of obtaining a matrix for- 
mulation and a clearer picture of the computer operations in a practical program. 
First, any complete set of element force-displacement relationships (Equation II-2) 
can be written in matrix notation as 

where    k I i the "element stiffness matrix", is composed entirely of the element 
stiffness coefficients k       . ... etc.   The subscript   e   denotes tliat the indicated 

quantities refer to the node points of the element. 

Once the element relationships have been evaluated, the elements are 
assembled to form the complete analytical model of the structure by joining all ele- 
ments at their respective juncture points and applying in the process the require- 
ments of juncture point equilibrium and compatibility.   Thus, the components of 
internal loads   \ F !•   and external loads \f\   at each point are related by equilib- 
rium requirements; i.e., ZF   = P , etc.   The respective coordinate displace- 

ments of the corner  points of all elements meeting at a point are equal, a require- 
Iment that satisfies compatibility.   It follows that the stiffness matrix    K   for the 
complete structure can be assembled by merely adding element stiffness coeffi- 
cients having identical subscripts.   This results in a set of equations: 

{P} [K]    {A} (n-4a) 

I The matrix    K      will henceforth be referred to as the "master" stiffness matrix. 
Displacement boundary conditions can be readily imposed by assigning the pertinent 

A's their known values (usually zero).   The matrix    K| will be altered in the 
I process, and, taking note of this by utilizing the subscript R, the solution to the 

altered Equation (ll-4a) becomes (if matrix inversion is utilized). 

I 
I 
I 
I 
I 

(n-5) 

/here     I 8        represents the set of displacement influence coefficients. 

The subject computer programs, in their present form, are restricted to the 
use of a matrix inversion procedure for the solution of Equation (11-5).   One 
advantage of the use of matrix inversion is that the analysis for load conditions 
additional to the first is accomplished at small additional expense.   Thus, the 
respective programs each allow the solution for many load conditions in one com- 
putational cycle when linear elastic analyses for applied load are attempted.   It is 
to be recognized, however, that the direct solution of Equation 11-5 (e.g., through 
Gaussian elimination procedures or by iterative techniques) may prove more 
advantageous under many circumstances.   In such cases it is possible to replace 
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I 
the inversion subroutine used in the program with whatever direct solution sub- _ 
routine may be available. ! 

1 
To obtain the stresses from the displacement solution there can first be 

selected, from the total column of displacements, the displacement vectors for the 
respective elements        (|A   1)    .   Then, each vector can be multiplied into the 

stiffness matrix (Equation II-2a) to determine the node point forces     MF   n    and "f 
in an additional step,the node point forces can be transformed into the correspon- U 
ding stresses.   It is believed to be more efficient, however, to form, at the outset, 
direct relationships between the element stresses and the node point displacements, 
as follows 1 

where      \  a-   [   are the stress values which describe the distribution of stress 
r   i ' within an element and S is known as the "element stress matrix". The proce- 

dure followed, therefore, is to establish first the stress matrices at the start of a 
computation.   When the displacement vectors for the respective elements        N A   }■) I 

are evaluated, they are premultiplied by the corresponding element stress matrices 
to obtain the solutions for stress. 

I 

1 
I 
I 
I 
1 
I 
I 

10 
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C.        INITIAL STRAIN PROBLEMS 

Problems associated with thermal and plastic strain can be classed as "initial 
strain" problems since they can exist prior to the imposition (or, in the case of 
plasticity, reimposition) of applied load.   If a discrete element is in the state of 
initial Strain, the element force-displacement relationships take the following form 

I    e j 
r 

LK IK) in} (II-7) 

where  \ FJ ; signifies the system of "initial forces" at the element node points. 
Physically, these values represent the forces required to impose, at the node points, 
displacements which are equal and opposite to those accruing from the initial strains. 
In other words, they are the forces required to suppress the node point displace- 
ments due to initial strain.   A procedure for the derivation of element initial forces 
will be presented in the next chapter. 

Upon assembly of Equations (II-7) to form the master set of stiffness equations, 
and reduction in cognizance of boundary conditions, there is obtained 

{ P} [K]   {A}    "   {pi} (II-8) 

where now the values ■[ Plj are the "net thermal forces at the node points.   The 
solution to (11-8) is given by 

{A}     [K]-'{{PM»'}} (11-9) 

To obtain the solution for stress the adopted approach is to formulate stress- 
displacement equations, i.e. "element stress matrices".   In the presence of initial 
strain these take the form 

K}=   [S  ]       {Ae)    "    K'} W-W 
where    -j  cr      >• represents the stresses required to obviate the initial strains. 

D.        ELASTIC INSTABILITY ANALYSIS 

The concepts of elastic instability pertain to conditions in prismatic or thin 
walled structures, where the behavior across the thickness can be subdivided into 
"flexural" and "midplane" behavior.   By virtue of displacements normal to the mid- 
plane the midplane forces have components which tend to enhance these displace- 
ments. When their magnitude is sufficiently large they produce infinitely large dis- 
placements, whatever the magnitude of the loads applied normal to the midplane. 
The values of midplane load which cause this elastic instability are the "critical loads.' 

In two of the developed computer programs - the one-dimensional and plate 
programs - it is possible to separate completely the midplane and out-of-plane 

11 
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(flexural) behaviors.   When considering elastic instability, the determination of the 
midplane stresses and displacements is unaffected with respect to the procedures 
discussed previously.   However, element stiffness for out-of-plane behavior, \ ker j 
now becomes the sum of two component stiffnesses; 

r                 • r           1 
k e k ["] (11-11) 

where   [ kej- J   is the stiffness for conventional flexural behavior and [ n J   repre- 
sents the effects of the midplane forces throughout the element on the out-of-plane 
behavior.   The terms of [ n J consist of the dimensions of the element and the values 
of midplane force, as determined in the (independent) midplane analysis.   Material 
properties do not appear in the   [ nj   matrix.   Techniques for formulating Equation 
(11-11) for beam and plate elements were delineated in Reference 6 and are discus- 
sed in the next chapter. 

'I 
I 
I 

Due to the segregation of midplane and out-of-plane behavior, two separate 
sets of master stiffness equations would be formed in an instability problem.   The 
midplane equations would appear as (excluding initial strain effects) 

{'\v} [\y]      {A,v} 
while the out-of-plane equations would take the form 

{",.}    [Kl 'Ml   {AJ 

(11-12) 

(11-13) 

To solve Equation (11-13) it is of course first necessary to solve Equation 
(11-12) and determine the associated midplane forces so that the matrix LNj caii be 
formed.   In the form indicated, Equation (11-13) can be solved, under certain condi- 
tions, to obtain an "equilibrium" solution for out-of-plane behavior in the presence 
of given midplane forces.   These conditions dictate that the midplane forces be of 
less than critical value.   When they arc of critical value or greater, the matrix to be 
inverted will be singular. 

In practice, the solution of these equations as an instability problem involves 
the determination of the value of the midplane forces to cause instability.   It is 
assumed that all midplane forces are at a fixed ratio to one another at all levels of 
applied load, from the onset of loading to the achievement of instability.   (Corres- 
pondingly, the shape of a midplane temperature distribution causing midplane forces 
remains constant up through instability).   Thus, the midplane analysis is performed 
for any convenient magnitude of the applied loads and it is assumed that at instability 
the actual intensity is a scalar, X , times such magnitude.   Equation (11-13) can then 
be written as 

W-K] {AJ-MH (AJ (11-14) 

12 
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Also, it has been stated that elastic instability is independent of the value of the 
applied midplane loads.   Hence, setting  / P    | = 0 

«-[■=.] {AJ *X[N]{AJ (ii-is) 

Using matrix iteration, the above can be solved for the eigenvalues    /Xj and the 
associated eigenvectors     {A z|,   .   There will be as many such eigenvalues as there 
are equations in (11-15), but the only eigenvalue of interest is the largest value of 
-JU- representing the smallest  Xj and therefore the lowest magnitude of midplane 
load at which elastic Instability will be experienced. 

13 
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CHAPTER III 

DISCRETE ELEM ENT EOKCE-DISPLACEMENT 
RELATIONSHIPS 

A.        DERIVATION PROCEDURES 

1.      Linear Elastic Stiffness 

The force-displacement properties of discrete elements, of the form 
required for use in matrix displacement analyses, can be formulated by application 
of one of three general approaches.    These approaches are outlined in Reference 7 
and developed in detail in Reference 5 .   In the derivation of relationships for the 
subject group of three matrix displacement computer programs it proved convenient 
and sufficiently accurate to employ only one of these three approaches.   The selected 
approach is based on Castigliano's First Theorem, Part I, and is formulated from 
fundamental principles in this chapter of the report. 

To formulate this approach for the case of linear elastic stiffness alone 
(initial strain and instability effects being temporarily disregarded--these are 
examined in later sections) consider the discrete element free body diagram, 
sketched below (Figure IIl-l).   The element is 

Figure III-l.   Discrete Element 

subjected to the indicated node point loads F^, F«, . . . Fj, . . .   F^l which include 
both applied and leactive forces.   The corresponding node point displacements are 

A^,   Ag, ...   Aj . , .    A„,    An amount of elastic strain energy (U) is stored in 

the structure as a consequence of the loading and displacements. 

If the structure is restrained against displacements at. all points of 
load application   except at and in the direction of the i th load, Fj. an infinitesmal 
increase in the load F^ to F} +     SFj will result in an incremental displacement 

15 



ASD-TDR  63-783 

8Aj.    In accordance with the principle of conservation of energy, the change in 

external work (   SW) done by the infinites mal force change must equal the change 
in the stored elastic strain energy,    8 U.    Hence, 

SW =   8 U (III-l) 

and, since    SW      (Fi +    SFi)     SAj -(Fi  ) f ?> A A, Equation III-l can bo written as: 

fFi )   (SA^      SW       SU (III-2) 

when S A —►- 0 
d W d U 

F, 
aAj aAi 

(111-3) 

\\ 

which is a statement of Castigliano's Theorem, Part I. 

For purposes of later developments, it should be emphasized that the 
strain energy in Equation III-3, although given in terms of displacements, could have 
originally been expressed in terms of the stresses and strains in the clement, 
which are in turn a function of the displacements. 

The condition employed in the derivation of Equation 1II-3 -- restraint of 
all displacement components except the one of interest --is the condition associ- 
ated with the definition of a   stiffness coefficient.   Thus, if the strain energy of a 
discrete element can be expressed in terms of the element node point displace- 
ments, application of Equation 111-3 would result in the direct determination of the 
element stiffnesses. " ■- 

In general, it is not possible or convenient to determine the elastic 
strain energy explicity in terms of the node point displacements, and the approach 
taken is as follows. 
An assumed displacement component for the element can be written in the form 

A ai fi (x, y, z)   i   a2f2 (x, y, zH    aNfN (x, y, z) (III-l) 

Here, attention is restricted to developments where the number (N) of undetermined 
coefficients a-,^ .... a^ , is equal to the total number of node point degrees of 

freedom.   The expressions f^ (x, y, /,), f2 (x, y, z) may be polynomials (e.g., xy2( 

y  , etc.), trigonometric functions (e.g., sinx, cos y, etc.) or may take other forms. 

Once the displacement functions are chosen, or established as will be the 
case when stresses or strains are first assumed and then integrated to obtain the 
corresponding displacements, they can be evaluated at each node point, resulting in 
algebraic relationships between the node point displacements and the constants 
ai, 3-2, ■■ ■ &■$■    The complete set of such relationships for all node points of an 

element can be expressed as 

16 
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r::^ 

{A}=   [B]  {.,} (Ill-5) 

who re 

{A} 
(a) 
(B) 

is a column matrix of N node point displacements, 
is a column matrix of the constants a^, . . . a«;- 
the square matrix of coefficients in the relationships between 
| A I    and   { a } • 

Solving Equation III-5 through inversion of      B    , one obtains 

[a}        [B]  ^{A} (III-6) 

Since relationships between the element node point forces ( -I F i   ) and 
the displacements | A j   are desirtxi, the remaining steps in this development per- 
tain to the establishment of relationships between   \ F [  and ja [   .    For this pur- 
pose consider Equation III-3 which, for a particular node point force Fj, can be 
written as 

r, dV dV       ^± _dU_      d&2 
i        d/S. da, dA. da„ W, 

dU   daN 
da     dA. 

N i 

(III- 7) 

Application of III-7 to all node point forces results in  N relationships; these can be 
summarized in matrix form as 

da 
(III- 8) W J 

L 
dU  ] 
daJi 

and, as shown in Reference 5 

1 
u 

r daj 

I   dA. 
*- 1     J 

[•>] 
1\  T 

(III- 9) 

Also, the strain energy (\j) is a quadratic form in the stresses, strains, or displace- 
ment derivatives and is therefore a quadratic form in the displacements a^, a.2 ■ ■ . 

u g  (a. x a.) (III-10) 

Thus, when the strain energy is differentiated with respect to a particular constant, 
say a ;, the resulting expression is a linear function of the constants a^, . , an, . . 
a^j,  and can be written in matrix form as 

17 
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dU 
[   C,    j    { a } (j     1, . . . N) (III-ll) 

da., 
i 

and for the complete set of derivatives of U, one obtains 

with 

The total value of a strain component at a point can be written in the form 

T sT =      ^e +      e1 (111-16) 

where     erp is the total strain,      e    is the strain due to stress, and     e    is the 

initial strain.   For temperature change 

e1 =       f0    =     aT (III-17) 

and for accumulated inelastic strain 

el =     e (111-18) 

i 
.i 

I 

Now, by combination of Equations II-6, -8, -9, and -12, there results 

{F} = ([B]-
1
)
T
[C][B]-

1
{A} (m-u, | 

{F} [k]        {A} (111-14) 

[k] ([B]"1)T  lc]   W"1 (m-15) n 
where, in recapitulation 

B     =   a matrix relating the node point displacements to the undetermined 
constants of the assumed   displacement functions. 

| C 1  = a square matrix, each row of which contains the coefficients of the 
constants a^, . . . a^, in equations which represent derivatives of the 
strain energy with respect to a^, . . . ajsj. 

Note that the subscript E, used in the previous chapter to designate 
element stiffness, displacements, etc., is discarded in the present chapter. 

2.     Derivation ot Terms Representing Initial Strain Effects 

Initial strains can be defined, for present purposes, as strains that exist 
in a structure prior to the imposition of applied loads.   Only initial strain due to 
temperature change and prior inelastic deformation are of interest to this report. 



I 
I 
I 

! 

: 

ASD-TDR 63-783 

The development of a procedure for deriving terms representing initial 
strain effects requires a re-examination of the expressions for strain energy.   The 
strain energy to be ernployed is the elastic strain energy, but the strains appearing 
in the related formulation must be total strains since it is these which correspond 
to the displacements of the element stiffness equations. 
Thus, the strain energy, U, can be written as 

U crd   V (111-19) 

and by substitution of the expression for elastic strain (Equation HI-16) 

/°V 

U =     2 /      (    eT -      eS     crd V (111-20 ) 

The significance of these factors will be shown in the development to follow. 

If the formulation of element properties is to be based on assumed dis- 
placements, the relationship between the undetermined constants and the displace- 
ments is simply that given by Equations III-4 and 111-5.   The corresponding total 
strains are derived by differentiation of the displacement expression and the 
stresses are obtained by use of llooke's l.aw (Equation IIT-iea). From equation 111-20, 
the strain energy is 

V E] 
2 

,V 
( 

I 2 

or, in expanded form 

U E' 
2 

/oV 
- 2 

)    dV 

T 
)dV 

(III-21) 

(111-22   1 

and, as was noted earlier, this leads to a quadratic expression in the a's when 
the assumed displacement function is substituted and the integration performed 
i.e., 

_2 
U g(a. x a.) + h(a, x 

i        J J 

From Equation III-8 and III-9 

-IN 

O + j ( 

IJHLA 

£*    x. 

{^}  (wv {i^\ 

[111-23 ) 

(III-24) 

B   is unchanged by the presence of initial strain but U is now given by Equation 
(III-10a), rather than by Equation (111-10).   Therefore 

19 
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Therefore    d U 

da. [cjj w + ah 

d ai 
(111-25) 

where   I C . I    results from the indicated differentiation of   g(a. x a . )  and   d h is 

is intended to indicate differentiation of  h(a.j x    e   ). 
For the complete set of derivatives of U ,    one obtains 

m\ - Ki {=} ah 

Thus, by combination of (III-12a! -8a and -5) 

f r*\  i rT^i-^T r -.1 rr.'!-1  r A i    / r«! -INT fahl {F)=([Bj      l    LcJ   [Bj        {A!    .([Bj     )   j-^-j 

(111-26) 

(111-27) 

which can be expressed in a form indenlical to Equation (111-26), except that now 

where 

(111-28) 

(m-29) 

3.     Incremental Stiffness 

When midplane stresses or forces influence the behavior of plates and 
beamr in bending, their effect on the analytical   formulation of flexural stiffness 
relationships is in the form of an "incremental" stiffness, i.e., as an addition to the 
usual flexural stiffness.   The purpose of this section is to extend the proceeding 
formulations to include techniques for incremental stiffness derivation.   This develop- 
ment applies only to beams aad plates in flexure which are subjected to a previously 
applied and equilibrated known axial or midplane force system. 

For beams and plates under the conditions of interest, the following 
relationships exist between the work (W) done by the lateral and midplane loads 
during bending deformation and the strain energy of bending (UJ     (see Reference 10). 

W =  W   +  W. 
v h 

where 

W 

w. 

work done by the lateral loads (F ,F 

(111-30) 

F.   ... F   ) during flexure. 

- work done by the midplane loads during the displacement of the 
structure caused by the lateral loads. 

Furthermore, the change in W    with respect to the displacement  A^ can be obtained 
directly from Equation (111-30) as 
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aw 

dA; 

a(uf-wh 

i 

(111-31) 

Now, if the restraint condition employed in the formulation of Equation III-3 is con- 
sidered, it follows that 

and 

W =  W 

aw 

aA 

d w„ 

aA. 
(111-32) 

Consequently, from Equations III-3, -31 and -32 

<Uf - ^h) 

aA. 
F. 

i 
(III-3 3) 

i 

The transfermalion of Equation 111-33 into a matrix formulation of the 
desired element stiffness matrix could be accomplished rigorously through applica- 
tion of the same procedures that led to Equation 111-15.   For brevity, however, the 
already-developed Equation 111-15 will be vsed as a basis.   First, it must be noted 
that W^ can be expressed in terms of the lateral displacements.   This is also the 
form taken by   U  .    Hence, (Uf-W ) can be defined as an "effective" strain energy. 

U'  , and Equation  III-3 

dU' 

can be written as 

F. = 
i riA, 

(111-34) 

I 

: 

I 

Equation 111-34 is of similar appearance to Equation III-3, which provided 
the basis for the development of Equation 111-15.    To use Equation 111-34 in the same 
way, one must note that of the two matrices making Up Equation 111-15, only the 
matrix [CJ pertains to strain energy.   Each row of [cj represents an equation for 

is composed of two parts the derivative of the strain energy 
one can write 

Since now the strain U 

[c] = rcfHch] (111-35) 

in which   C,   and   C.     result from the required operations on Uj and W, respectively. 

Equation 111-15 therefore becomes 
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It is pertinent to note that for beam segments 
L     , 2 

x 
2 

F 
Wh = 

C     I dw \ 

Jo     ^^ dx 

and, for plates of constant thickness 
2 

W, 1/2 
A 

N 
dw 

+  N 
ay 

I   2Nxy 
/ dw   \ / aw \ 
V   dX     ]\   Ay   ] 

(111-37) 

dA (111-38) 

4,     Stress-Displacement Relationships 

It is possible, in theory, to determine the stresses in a matrix dis- 
placement analysis by utilizing the solved-for displacements and the element stiff- 
ness matrices to evaluate the node point forces.   Then, these forces are transformed 
into stresses,   it is believed more convenient, however, to form directly a set of re- 
lationships between the element stresses and node point displacements,   Suoh 
relationships are termed "stress-displacement" equations in this report and are 
written in the form 

H=   N M (111-39) 

The procedures used to determine these equations take one of two forms, 
dependent on whether the derivation of the element stiffness properties was based on 
assumed stress or assumed displacement behavior.   Consider first the case of 
assumed stress patterns.   Here, the development of element properties begins with 
expressions of the form 

M-M W 
Eliminating the column of constants from 111-40 by use of 111-24 results in 

-I 

where 
[s]      , 

D M'-W   - H Kit -'} 
W -{ "'} 
w -1 

-1 [■>] WM *} 

(111-40) 

(111-41) 

(111-42) 

(111-43) 

(in-44) 

The initial stresses    {  ^   r   correspond to the stresses that occur when the node 
point displacements are zero. 

When the derivation of element properties is based on assumed displace- 
ment behavior, the starting point is 

I 

I 
'I 
■J 

1 

I 
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[a}      [B]   -   {.} I 
(III-6) 

The strains must be derived from the dispSacements through application of the 
strain-displacement derivatives.   When this differentiation is applied to the basic 
assumptions, one obtains 

and, from Hcoke's Law 

{'}■[*] {-} -M 
Hence, by combination of III-6, - 45 and - 46 

W- [^][H][B]-
1
W - F 

thus, in the present case 

[s] . [K]   [H] [B] -1 

(111-45) 

(111-46) 

(111-47) 

(111-48) 

B.        BEAM-AXIAL FORCE ELEMENT 

1.     Basic Considerations 

The beam-axial force element, shown in Figures 111-2 and 111-3, appears 
in each of the three computer programs described in Chapters IV-V1.   It is the only 
major element in the One-Dimensional Structure Program (Chapter IV), where 
detailed attention is given to the variation of temperature, etc., on the cross-section 
of the element; only the gross effects on element cross-sections are treated in the 
other two programs.   In developing the relationships for this element, the expres- 
sions employed in the One-Dimensional Structure Program will be established. 
By introducing the simplifications pertinent to the other two programs, the 
derived relationships can be reduced to the forms of interest. 

This~development is based on the following assumptions: 

(1) Cross-sections originally plane remain plane. 

(2) The geometry and temperatures on a cross-section are symmetric 
about one axis; the bending moments act only in the plane of symmetry. 

(3) The cross-sectional geometry and temperatures do not vary along the 
axis of the element. 

(4) Plastic strains are constant over the length of the element and are 
dependent only on the stress conditions on a cross-section midway 
between the ends of the element. 

(5) Lateral deflections are relatively small. 
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Figure 111-2.   One-Dimensional Element 

Z (Axis of Symmetry) 
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Neutral Axis 

Figure III-3.   Typical Cross-Section of One-Disnensional Element 
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Consider a typical symmetrical cross-section of the element as shown in 
Figure 1U-3.   In accordance with assumption (1), the total axial displacement <uT) of 
an arbitrary point on the cross-section can be written as 

T äT - öT e (ra-4S) 

where C is the distance to the point in the direction of the axis of symmetry measur.Ki 
from an arbitrarily chosen reference line and   $,„ is both the angular displacement. 
of the cross section and the slope of each fiber of the beam at the cross-section under 
study.   "Barred" values for u and e.  represent quantities associated with pure trans- 
lation of the cross-section.   By definition: 

0 
T 

ClW rp 

dx 
(111-50) 

du 
T 

Since the total axial strain,   f v 
XT        dN 

^T     -  £   dWT i -     1 
XT dx ^       dx2 XT ^T 

■ '"-iyw- 51) 

The term  C / p -j- represents the component of the total strain res-ating from the 
relative rotation of the cross-section, where  Pr„ is the total curvature. 

strain 

The total strain,   6 x       is composed of two components: (1) an elastic 

md (2) an initial strain  ex
1.   Replacement of the total strain in 

E 

Equation 111-49 by the sum of its components results in 

I 
I 
! 

I 
I 
I 

CTX i 

E x x 
T 

or 

= E 
T 

1 
P. 

(m-5i) 

It is now necessary to relate the stresses to forces and moments cr 
'^stress-resultants".   The axial stress resultant, F  , and the bending stress resultant, 
M , are related to the stresses on the cross-section through equilibrium as follows 

A (1A 

M 
/' 

cr     £  dA 
x 

(111-53) 
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(The "bar" over M    signifies an internal moment.   See Chap. 11), 

und, by use of Equation 111-52. 

-A 
T   =   €        J        EdA    -   j E£   iiA      -   j 

T 
E   e       dA 

x 

M   =   ?        j        E c dA - J 'jKi.'dA 

' 1 

rA 

j   e K c .1   clA (III-53a) 

' 

These equations, can be simplified by referring the Integrations to the elastic neutral 
axis location, ^ , defined as 

;A AE^dA 

/       E   dA 
(III-54) 

Henee, if the variable £ in Equations (III-53a) is replaced by £        £ - £ (i.e., the 
origin of coordinates is now placed at the neutral axis),  j"      K £ ' dA = 0 and the 
equations reduce to 

F F EÄ   - F  ' 
x X™ x 

M ^1    -M1 
(111-53b) 

F    t  F 
x        x 

EÄ 

F 
 x_ 
EA KA EA 

(M     t  M    ) 

El 

M 

Ei 

M   1 

Ei 
1 

M1 

(HI-53c) 

where 

/' EA =   J      EdA (elastic axial stiffness) 

-    rA        2 
EI = J       E ( £ ' )    dA (elastic flexural stiffness) 

^A 

x 

/A 

dA (initital axial force) 

— i       /      E e      £    ilA (initital moment) M     = J x 

(111-55) 
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Average elastic strain due to the axial stress resultant. 

"e   curvature due to the tending stress resultant. 

Thus, the integrals containing the initial strain terms are In the form of initial 
equivalent stress resultants.   Note that in replacing ^ by £' , the displacement 
UT is now defined as being the displacement at the neutral axis.   Also, 
i                            du 
e       =   e      =   T 

X \ 
T XT dx 

1 

: 

- 

: 

and, (from 111-52) 

"r 

Use of Equations (III-SSc) in Equation (111-52) results in 

cr    = E 
x EA 

(M    + M    ) i- 
L-x _j ^ 

EI 
-   € (III-52a) 

Equations III-52a and 111-53 are the basic equations for this development. 
It is important to note that the location of the neutral axis as defined by Equation 
111-54 is independent of the magnitude or distribution of the initial strains; it depends 
only on the variation of Young's Modulus (E) which in turn is only a function of 
temperature.   Thus, the axial stiffness   EA and the flexural stiffness EI only depend 
on the cross-sectional geometry and the temperature and if E is a constant the 
neutral axis will pass through the centroid of the cross-section.   It should also be 
noted that the axial force Fx is an axial-stress resultant with its point of applica- 
tion at the neutral axis on the axis of symmetry.   Correspondingly, the bending- 
stress resultant (My) acts about the neutral axis.   Thus, externally applied axial 
forces are presumed to act through the neutral axis of the cross-section. 

2.     Axial Behavior 

Since the conditions associated with axial load (see Figure III-2) pro- 
duce a state of constant strain in the axial direction, the axial displacements are a 
linear function of the axial coordinate and points on the neutral axis can be 
expressed as 

uT     nlta2x 

Thus 
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1       O 

1        L H 
The total strain energy is given by 

•L 
U = I - F   dx 

■>       J f  X X 

(111-57) 

(111-58) 

but, from (111-530) 

e e 
X x, 

e r     EA dx 

F1 

x 

EÄ 
(111-59a) 

and 

F        EA   € EA      -H 
x x dx 

e 
(]Il-59b) 

For this element, the initial strains of interest are the thermal and accumulated 
inelastic strains.   Thus, 

where 

F^F3      +     FP 

X X X 

F _       initial force due to temperature strain 

(111-60) 

F P      initial force duo to accumulated plastic stains 

Substitution of (111-59) and (111-60) into (111-58), with 

-I   / 
o 

L Fa , FP 

dw. 

dx 
a    yields 

(al -    X   g^X   ) (EA ai - F°     -.   Fx
P      ) dx (III-58a) 

and expanding the product within the integral 

J      (aj   dx + -j   (a/    ■■ 
o        i z o      1 

U 
2 

)  (Fa + FP   ) dx 
x x 

(HI-58b) 

+ 1^1      C   (Fa     +  FP      ) d.x 2EA o 
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From Equation (III-12a), it follows that 

AH 
da. 

EA 
1    0 
0    0 {:;;} 

and from Equation (111-26) through (111-29) 

1 -1 

["1 
EA 
L 

(■'', FxP    > (111-61) 

(111-62), (111-63) 

Force-Displacement Equations--Flexural Behavior 

[.; 

: 

In the case of flexure (see Figures III-2 and III-4) a distinction must be 
made between the initial displacements associated with thermal and plastic strain 
and the initial displacements produced during" fabrication.   This is necessary be- 
cause the latter are exempt from geometric boundary conditions,  i.e., if it is 
specified that a node point displacement be zero, it is meant that only the displace- 
ment due to applied loads, temperatures and plastic strain is zero—the node point 
displacement clue to fabrication remains.   To retain this distinction, the total 
transverse displacement (w.,,') is considered to be composed of three parts: 

w , '      w     *  w.  »  w, (111-64) 

whe re 
w        the transverse displacement due to elastic strain 

e 
w .      the transverse displacement due to thermal and plastic strain 

w ..  - the fabricational transverse displacement 

I 

1 
1 
I 

Figure 1II-4.   Beam Segment with Fabricational Displacements 
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Generally w'^p   (the total displacement from a reference axis) is employed 
in problems involving initial i'abrieational displacement.   Here, however, it has 
been decided to employ the displacements corresponding to Hie difference between 
the total and I'abrieational displacements In the definition of the force-displace- 
ments relationships in the program.   These displacements, w^, in this case, are 
therefore defined as 

1 

wT      (wL,   - w ..)      (w > <  w.) (Ill-65) 

To derive the equations of interest, the displacements are assumed to 
have the form 

wT=a1 < a2x + a3x    • a4x (III-GG) 

so that 

e 
d\v. 

T       dx 
a    i  2a    x + 3a    x 

« .i 4 
(111-67) 

d w. 
^T -f 2a3  ' 6V (111-68) 

w 
Tl 

> 

B 

By evaluation of 111-06 and -67 at the node points there is obtained 

'o -10        0 

0 ■]       -2L   -3L 

0 0 0 

L T,       L 

ra^ 

s 

a 
i 

BJ  < v (111-69) 

V J 
Consider first the component associated with simple flexure, given in 

this case by 

i     rL    -     i 
J M     ( —   )   dx (111-70) Uf = i 

  — i    — a   y, 
By use of Equations Ill-5äb and 1I1-53C, and with   M     =M       +     M , this 

V V V becomes 
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"rl   C (.7 
M        + M  P \ / El 

y        y — a     — 
EI + M        + M "    dx       (III-70a) 

"T        y        y  / 

Using     as given by (111-68) 

„      EI    rL   /o       ,-       v2^     !   r (2a„ + 6a.x)(Ma   + M   p  ) dx 
o     x    3        4   ' v   y y 

A L       — 01    — n 
^1      f (M    + M '     ) dx 
+2 J        y _y o w^ 

and, by applying ~Ta
l to this expression, for i = 1,; • 4, there results 

(in-7 Ob) 

r dVf\ 
0 0 0 0 

0 0 0 0 

0 0 2L 3L 

0 0 3L2       6L3 

r      \ 

< 

/■ 

-2L 

V ^ 

> 
—a 
(M      + M H ) 

2      _a    _ p 
^  L (M      + M P ) j 

or, symbolically 

d   Uf 

da. 

f y. 'S 

[o.]{'}*m 

(111-71) 

(HI-7 la) 
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From Equations (111-36) and (111-29), and with use of (111-69), it follows that 

[ kf]   =     (   [B]   ■1)T   [cf ]    [B]   '* (iri-36a) 

The resulting matrices (   [kf J   ,   {FZ  }       ,    {F Pj) are shown in Figure HI-5, wher> 
the subscript T lias been dropped from w and Q . 

f — 
M 

M 

< K > [kf] + H] 

9 

9 

-H-H-P} 

N 

k 

2EI 
.3 

2L 

L2 

-3L 

_ 3L 

L      -3L    3L 

2 
2L -3L    3L 

M 
y 

-a 
/  -M 

y 
o 

0 

> 

-3L      6 

3L    -6 

F 

6 J 

M   P 
y 

p 

4     2 
TL 

-L2 

3 

-L 

L 

4
1 2 

3L 

-L 

L 

-L 

-L 

12 

-12 

-12 

12 

•M V 
y 

Ü 

w 0 

v 

I 
1 

j 

I 

Figure III-5.   One Dimensional Element — Out-of-Plane 
Force-Displacement Relationships 

The terms of the force-displacement relationships that arise from the work 
done by the axial force during flexure will now be developed.   Here, the term repre- 
senting work done by inplane forces is (see section III.A.3) 
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W r1' dw' 

dx 
dx (ni-37a) 

where F   is the axial stress resultant, which is a known value prior to the flexural 
analysis.   Note that the slope due to the total displacement from the reference axis 
is employed in the above equation since Equation lll-37a emanates from strictly 
geometric considerations.   This total displacement is assumed to be of the form: 

2 3 
w'T = a,1 + a,

2   x + a'    x   + a'4 x (111-72) 

Together with Equation (111-66), this assumption implies that the initial fabricational 
displacements take the same form as the elastic displacements. 

I 

! 

I 
I 
I 
I 

With use of the derivative of Equation (111-72) in (Ill-37a),  there is obtained: 

5 
W, x 

2 

2        4 2 9 2" 2 
(a»)   L+-(a'  )   L   +-(a'  )  L   + 2a'    a'   L 

3 

+ 2a'   a'   L3 + 3a'   a'   L4 

2     4 3     4 

(III-37b) 

and, by establishing the derivatives of W,  with respect to each of the constants 
a'  , a'    there is obtained, 

1       4 

dw ^ 
 h 
da 

dw, 

dw, 
 h 

^3 

aw 
L 

3L 2L 

3    4      9    5 
2L 5L 

< hKiw 

V 
(111-73) 

Since the stiffness relationships are given by (   l_B J       )     L C, J [BJ        this parti- 
cular   contribution to flexural stiffness (denoted by   [ n 1   ) is given by 
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N-'H-VK] [B] 
-i 

(111-74) 

The postmultipliüi- of the above incremental stiffness matrix is the column 
of displacements W    and 0^.'.   As stated earlier, however, it is desired that all 
relationships be expressed in terms of the difference between w'^ and the fabri- 
cational displacements w^, i.e., in terms of w-p .   This is easily accomplished by 
making the substitutions w'    = w    + w      0- =    9T +   9 f, resulting in 

[*]< 

Br 

9-r 

T, 

WL 

9r 

>   i M 

T 

^ 
Öf 

>   '   ["1   i 
0, 

> (III-74a) 

also, since the fabricational displacements  Ör, wf are known quantities in an 

analysis, the product of the incremental stiffness and the column of fabricational 
displacements (the second term on the right side of Equation III-74a) can be ex- 
pressed as an initital force column   | pf | , i.e. 

U'} [nW 
8, 

W 
(III-75) 

W f 
V      2    / 

The explicit forms for [ njand j F   | appear in Figure (1II-5), where they are 
included in the complete expression for the out-of-plane force-displacement 
equations for the one-dimensional element. 

4.     Stress-Displacement Equations 

In general, the stresses will vary along the length of the element so that 
a presentation of the complete stress distribution would involve a voluminous amount 
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of information.   Thus, only the stresses at the center of the element, which should 
suffice to define the significant stresses within the element and structure as awhole, 
are determined. 

Equation (ni-52a) gives the stress at a point on the cross-section of the 
one-dimensional element in terms of the stress resultants.   The stress-resultants 
have been formulated in terms of the displacements in the preceding two sections. 
By combining these formulations with Equation (III-52a) and effecting an evaluation 
at the central cross-section of the element (i.e., at x = L/2) the following stress- 
displacement equation is obtained 

C. 

> = L/2) 

PLATE ELEMENTS 

Triangular Plate 

1 c ( Ä      -  ö v ) - ( a A T />] 
(111-76) 

A detailed development of all plate element relationships would be beyond 
the scope of this report. Their development is documented elsewhere (Reference 8). 
The present report simply outlines the bases for the derivation of the pertinent stiff- 
ness matrices, thermal forces, etc. 

The stiffness matrix for the triangular plate clement was originally 
derived by Turner, et al (Reference 3).   By use of Castigliano's Theorem (Equation 
III-15) and the assumption of constant strains    ax,   By,   Yy. ., the stiffness relation- 

ships were re-derived for orthotropic behavior.   The element is shown in Figure 
III-6.   Note that the element is arbitrarily oriented in the x-y plane; use is not made 
of one of the element edges as a local coordinate axis.   The x-y axes are intended 
to be the axes of the complete structure.   This is because it is expected that the axes 
of the complete structure will correspond to the principal axes of orthotropy.   The 
inplane thermal and plastic forces were derived from Equation 111-29 under the 
assumption that the thermal and plastic strains were constant throughout the element. 

After extensive investigation, it was decided to base the development of the 
relationships for out-of-plane behavior on the following assumed displacement func- 
tion. 

w 2 2 3 3 2 
a   -tax i ay   +a yia  x  +a„x  +a_y   +a.xy + a„xy 

1       2 .5 4 5 b 7 8 9 (III-7 7) 

It is to be noted that this (unction is geometrically unsymmetric, i.e., the term 
a-x^y which is the counterpart of agxy   Is absent.   Attempts were made to remedy 

this situation but none succeeded.   By operating on Equation (111-77) in the manner 
indicated by Equation 111-36, the desired flexural and incremental stiffnesses were 
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derived.   The thermal and plastic moment terms were obtained by means of a 
prorating of the "edge moments" to the corner points.   Both the thermal and plastic 
moments were assumed constant throughout the plate. 

2.     Quadrilateral Plate 

The quadrilateral plate element is shown in Figure III-7.   The relation- 
ships for plane stress behavior are those adopted by Turner, et al, in Reference 
3, i.e. 

cr    = a   -i a v 
X        1        2. 

ay - a3 i a4x 

Txy "   a5 (111-78) 

There are, in fact, numerous alternatives to these assumptions.   In the extensive 
evaluations of Reference 5, however, it has been found that there are unimportant 
differences in the results for these alternatives when other than a coarse gridwork 
of points is involved.   By use of the above assumptions and Equation III-15, stiffness 
equations were formulated for the case of orthotropic material properties.   With 
respect to thermal and plastic forces, it was decided to formulate the required 
expressions for condition of constant thermal and plastic strain. 

A suitable basis for the derivation of the flexure stiffnesses was not to be 
found elsewhere. The approach adopted was first to assume the following displace- 
ment function: 

3 2 3 2 3 
w  =a x  +a  x  +a x + a y' +ary   +a y + a x y 

+ V y+vy+a10xy ^n^ +a
12 

(111-79) 

Then, by means of Equation (111-30) the appropriate flexural and incremental stiff- 
nesses were derived.   Note that (111-79) is "geometrically symmetric", e.g., cor- 
responding to the agx y term there is an ajjxy6 term.   Also, (111-79) satisfies the 
appropriate differential equation of equilibrium.   To obtain thermal moments, the 
temperature gradient across the thickness was assumed constant at all points on the 
surface and corner thermal moments were defined by prorating the distributed edge 
moments to the corners. 

1 
1 
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Typical Force System Points 1-3 

Figure III-6.   Triangular Plate Element 

uzzzz 111 j! / h n in i zzd 

/ 

t Typical Force System 
Points 1-4 

Figure III-7.   Quadrilateral Plate Element 
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CHAPTER IV 

PROGRAM FOR THE ANALYSIS OF ONE-DIMENSIONAL 
STRUCTURES 

A.       SCOPE 

The computer program described in this chapter provides a means for the 
determination of the stresses, displacements, and instability of structures posses- 
sing, cross-sectional dimensions which are small with respect to the length dimen- 
sion and where the deformaüonal behavior   on all cross-sections is governed by 
elementary beam theory, i.e., the assumption that plane sections remain plane under 
deformation.  In addition to applied loads and thermal gradients, the effects of initial 
displacements and plasticity can be taken into account. 

Figure 1V-1 illustrates typical conditions which can be treated with use of the 
program.  The "real" structure appears in Figure IV-la, while the idealization 
appears beneath in Figure IV-lb.   Each discrete element is a one-dimensional 
segment of constant cross-section (Figure IV-lc).   Comparison of Figures IV-la and 
IV-lb discloses the limitations and capabilities of this type of idealization.   Length- 
wise variations of cross-sectional geometry, as well as temperature conditions, are 
represented in a   stepwise ma.nner.   Distributed loads must be defined in terms of 
statically equivalent concentrated forces at the element juncture points.   Support 
conditions, including flexible support, can be imposed at each node point.   The repre- 
sentation of a  flexible support consists of "flexible support" (or "restraint") ele- 
ments.   To distinguish between such elements and usual elements (pictured in Figure 
IV-lc) whenever confusion is likely to result, the latter will be referred to as 
"conventional" elements. 

The force-displacement behavior of a conventional element is segregated into 
inplane and out-of-plane behavior, respectively.   Formulation of the detailed rela- 
tionships for this element was accomplished in the previous chapter. 

The maximum of fourteen conventional elements and four flexible support ele- 
ments can be employed in the idealization of a structure.  Initial displacements of 
the structure due to fabrication are taken into account by specifying the values of 
these displacements at the element juncture points. 

In order to provide for an arbitrary (but symmetric) geometric and tempera- 
ture condition on the cross-section of each element, provision is made for the cross- 
section of each element to be divided into as many as 30 differential areas  d A. 
(See Section A-A of Figure IV-lc).   A value of temperature can be assigned to each 
differential area, thereby defining the cross-sectional variation of temperature and 
also of material properties, since the latter can be defined as being temperature 
dependent. 
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Figure IV-1.   Conditions for One-Dimensional 
Analysis Program 
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Flexible support elements are described by their axial stiffness (   f.   ), lateral 

stiffness (   Cw). and flexural (or torsional) stiffness {   Cg   )•   These quantities will 
also be referred to as "restraint coefficients".   Each flexible support element is 
associated with two node points and, in general, displacements of the node point of 
the restraint element which is not attached to the structure proper is considered as 
fixed.   Support conditions at the other (attached) node point must be specified in con- 
formity with the conditions of the problem at hand. 

In general, the input must consist of the data for every element, including all 
differential areas and their corresponding temperatures.   However there are many 
practical circumstances in which simplified conditions prevail and for certain of 
these a provision has been made for reduced input.   These options are detailed in 
the report describing input data preparation for the program. 

The capabilities for inelastic analysis permit solutions for either time- 
independent or time-dependent (creep) behavior, or both in combination.   The rela- 
tionships for such analyses are discussed in the next section, where the theoretical 
basis of the program is outlined.   The computational process for inelastic analysis, 
which differs considerably from the process for elastic and instability analysis, is 
treated in a later separate section, however, 

B.        THEORETICAL BASIS 

1.     Elastic Analysis 

The following is a description of the analysis procedure for conditions of 
linear elastic behavior, including thermal stress, initial displacements, and elastic 
instability.   The terms for inelastic analysis are represented since the procedure 
for inelastic analysis is essentially a succession of elastic analyses.   (The proce- 
dures for inelastic analysis are examined in the next section). 

As shown in the preceding chapter (Section m.B) the force displacement 
relationships for the beam-axial force element are 

For inplane behavior 

(IV-1) 

For out-of-plane behavior 

1  9 > w 
t    v 

-] f _ o a "| }+ H > F
Z j 

(MP.F   U  fMf.Ff} 
I   y      z J        (■     y      z J (IV-2) 
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Where 

{FxMrVF
z} 

{u   }.     {    Vw} 

n.iMy
p.Fz

p 

Mf.  Ff 

y     z 

["x] 

are column vectors which list the forces 
acting upon the ends of the element, 

are the respective elastic stiffness 
matrices 

are column vectors which list the dis- 
placements at the ends of the element. 

are forces produced by complete restraint 
of the element against thermal deforma- 
tions. 

are forces produced by complete restraint 
of the element against inelastic deforma- 
tions. 

are equivelent forces dependent on the 
presence of fabricational displacements 
at the ends of the element. 

"Incremental Stiffness" - the influence of 
the axial loads on flexural behavior. 

The detailed form of these matrices was presented in Chapter in.   There, it was 
shown that each matrix on the right side of Equations   (IV-1) and (IV-2) contains a 
scalar multiplier which is an integral to be evaluated over the area of the cross 
section, fk    1 , for example, contains the scalar   / E«dA ,  while. [   k   1 has the 

multiplier     2/^'JE»riA 

/: 

The evaluation of the above integrals is accomplished through a subdivi- 
sion of the cross section of each element into differential areas.  As noted earlier, 
the element cross section can be subdivided into as many as thirty differential 
areas; the temperature variation on the cross section is represented by assigning 
an average temperature to these areas.   Since the material properties are repre- 
sentable as a function of temperature, the computer selects for each differential 
ax'ea those properties which are consistent with the temperature of that differential 
area. 

Based on geometric, load, temperature, and material pi'operty data of 
the problem and the selected analysis options the computer evaluates the pertinent 
portions of Equations (IV-1) and (IV-2) for each element.   The individual element 
relationships are then assembled, in satisfaction of node point equilibrium and com- 
patibility requirements (See Chapter II), and geometric boundary conditions are 
applied to yield a set of equations for the assembled "analytical model". 
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Once the stiffness equations have been formulated the analysis process 
can take one of many forms, dependent upon the exercise of available options, but in 
the following discussion it will be assumed that none of the possible analysis 
operations, except those pertaining to inelastic behavior, are to be eliminated. 
(Analysis for inelastic behavior is discussed in the next section).  In such a case, 
the relationships for the complete structure can be written in matrix form as: 

For axial behavior 

K 

For flexural behavior 

K M , P 
y    z 

0   ,w 
y 

i 

N 

p 
M    ,P 

y    z 

0  , w 
y 

p 

+ ^M     ,P 
y      z 

(IV-3) 

(1V-4) 

L y     a j i y     ^ J 
These equations are presented in general form in Chapter in as Equations (11-12) and 

' In the first step of the solution process the axial displacements,  { u }   , 
are determined by inversion of the   I K   1   matrix in Equation (IV-3). 

Thus: 
r. r K P  - 

x 
Pa-P  P 

X x 
av-5) 

These axial displacements (■{ u I  ) are substituted back into the element relation- 
ships (Equation IV-1) to yield the element node point forces (■< F    i ), from which 
the axial stress resultants are obtained. 

t'x/ 

The influence of the axial forces is accounted for in the flexural analysis. 
The matrix    N      is a function of the axial loads and can be evaluated after the 
inplane analysis is complete.   The solution for the flexural displacements follows 
as: 

IVW1 = K H M   , P   } 
y      zJ 

-|MP. PP 

L    v     z }-{ 

M 

M 

,«\ (IV-6) 

f 1 p r z J 

These flexural displacements and the previously determined axial stress resultants 
are employed in the direct determination of the stresses on each of the differential 
areas of each structural element. 

To accomplish a determination of a critical load it is first necessary to 
specify a Reference Critical Load Value-P^,-.   All element axial loads are nor- 
malized on this value through the relation 
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F =     X P     . n n        ref 

where   F       is the axial stress resultant on the   nth structural element. 

Equation (IV-4) then appears as: 

{ M/PJ =  [ K J   { 9
y-W } ■'  Prei- fN 1    { VW )   ' l< ' P^} 

*-iMP   .PPl  4Mf.Pf I 

(IV-7) 

(IV-8) 

I 

:! 

. i 

N I now contains the x   values, rather than the F     values. II n ' Q 

The condition of elastic instability derived from Equation IV-8 is 

1 

ref 

r "i        r       i  -i r   i    r -. 

iVw} = iKJ    iN! 1VW} (IV-9) 

Application of matrix iteration to this condition yields the minimum   P    - and 
correspondlns mode shape for instability. 

With regard to the selection of the reference axial load,   the program 
allows for two possibilities.  In one, the reference axial load is automatically set 
equal to the axial force computed in a designated element.   Alternatively, the value 
of the reference load can be designated. 

i 

Once the critical reference axial load,  P,.ef lias been computed, the 
distribution of critical axial forces, as obtained from Equation (IV-7), is given by: 

=  X ref 
(IV-10) 

Neither the foregoing discussion nor Chapter III has given explicit con- 
sideration to the treatment of flexible support elements.   Flexible support conditions 
at a node point are simulated by means of this special type of element which, as in 
the case of the conventional element, is associated with two node points and three 
stiffnesses, one each in the direction of the three displacement degrees of freedom. 
These three stiffnesses (or "restraint coefficients"),     Q   ,    i,    , and        t    , are 
defined as follows: 

For axial behavior: 

AF    =   U    )    Au x       v   u 
(IV-11) 
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For latei'al behavior 

AF [i. 
\        A   ... 
I    (Li W 

and, for rotational behavior 

AM    =    (r ) AO 
v 8 

(IV-12) 

aV-13) 

Note that the three restraint coefficients are independent of each other. It is left to 
the analyst to decide upon the values of these coefficients.   By analogy with the stiff- 
ness matrices for a conventional clement, the stiffness matrices for a restraint 
element are: 

For axial behavior: 

k 

and, for flexure. 

I" U 

(IV-14) 

0      s 

0       0 

0 0 (TV-IS) 

0     0    -c c * w -> w 

Effects of initial displacements due to fabricational inaccuracies 

accounted for by the inclusion of a column matrix,      \ Q   , W   /   , composed of 

initial i-otational ( 9  ) and lateral (w ) deflections determined at each node point. 
These initial deflections are measured relative to a straight line which passes 
through the x-axis of the one-dimensional structure.   Total deflections are deter- 
mined as the addition of the fabricational deflections and the deflections computed 
from Equation IV-6. 

2.   Inelastic Analysis 
It is intended that this program be capable of solving inelastic problems 

wherein the  loads and temperatures vary with time, as sketched below.   For analyti- 
cal purposes and to avoid the necessity of listing large quantities of time increments 
that may be required in the computations, points in a given load-temperature history 
are first specified.   These points are illustrated by the heavily dashed lines in the 
sketch below; the distance between points are termed time intervals in this 
report. Each time interval may then be further subdivided into equal time incre- 
ments which may differ for each interval. 

In an earlier development of the matrix displacement method to permit 
inelastic analyses  (Reference  9) the approach suggested< was based on the 
selection of time increments small enough so that a single computation cycle for 

; 
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* 

(or pertaining to) the time increment   would suffice to determine accurately inelas- 
tic strains, both time independent and creep strains.   However, to afford greater 
flexibility and possibly more accuracy under certain conditions, it is proposed here 
that time-independent plastic strains be computed at the ends of each time increment 
(i.e., at specific times in the history) by either an accumulative step-by-step or itera- 
tive process.   Creep strains, on the other hand, are computed within a time incre- 
ment based on the assumption of constant stress and average temperature conditions. 
For creep determinations the stress is taken equal to the stress which prevails at 
the start of a time increment. 

~i 

n 
! 

There are no limits on the number of time intervals and increments which 
can be used in an analysis; the number of accumulative steps or iterations performed 
at a given time in the load-temperature history in an inelastic analysis are limited, 
however, by a specified convergence criterion with regard to the stresses. 

: 

Load 

remp. 

Load, 
Temp. 

Time Time Interval" 
Increment 

Time (t) 
The time-independent plastic strain component of the total strain   e    obtained 

in a conventional uniaxial specimen test is assumed representable by the following 
expression 

/  er  \ 
eep " \~\f ' (IV-16) 

where    n   and   r are temperature dependent material properties, determined, in the 
analysis, from the pertinent material property versus temperature curve. 

There are two options in the analytical procedure for determining plastic 
strains with the aid of Equation IV-16.   These are designated   as Methods A and B, 
respectively.   Method A involves an accumulative step-by-step process and is based 
on the analytical assumption that the change in plastic strain induced at a point in the 
structure subject to the stress    er',  can be approximated as     Ae„n . shown in 

Figure IV-2a.  In general, the plastic strain change determined in this manner will be 
an underestimation of the true plastic strain change and is considered as the first 
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epc Strain    (€ ) 

(a)   Method A 

Strain 

(b)   Method B 

Figure IV-2. Methods of Computation of Time-Independent Plastic 
Strains 
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I 

step toward the computation of the actual plastic strains.   The plastic strain is added 
to the previously determined total plastic strain ( € l   ) to determine new stresses 

O"     for the same temperature and load condition.   Additional plastic strain changes, 

ep 
are computed and new stresses determined.   This accumulative process is 

continued for either a specified number of approximations or until the stresses in 
successive approximations are in agreement to within a certain number of significant 
digits as specified by the analyst. 

Method B is an iterative procedure for determining the plastic strain change. 
and is shown in Figure IV-2b.   As a first approximation, the plastic strain change, 

Ae ^      , is determined for the stress   cr   .   In general, the plastic strain change so _ep o < o 

determined will be an overestimation of the true value in regions of higher stress in a 
given structural stress distribution.   The strain change,     A e ^    , is then employed 

together with the previously determined value (which initially is zero) to compute an 

average strain change,    Ac        , which is used   to obtain the next approximation to 
2 

ep 
the stress,  cr    .   This iterative process is continued until convergence conditions 
specified on the stresses are satisfied.   It will be noted that for Method B the plastic 
changes are replaced by new values with each computational cycle but for Method A, 
they are accumulated after each cycle. 

J 

] 

1 

The preferred method to employ in a particular plastic analysis will depend 
to a large extent on the stress strain curve and the details of the structural con- 
figuration and loading.   For materials which exhibit ideally plastic characteristics 
(I.e. n =   CO      ) Method A must be adopted.   For highly redundant or thermally strained 
structures, Method A is preferable, but for situations in which the stresses are some- 
what linearly related to the external loading. Method B is recommended.   However, it 
should be realized that either method should yield identical results in the limit. 

The computational procedures employed to predict the accumulation of time- 
independent plastic strains will now be briefly outlined.   Consideration is given to the 
ith time t. in the load-temperature history condition under investigation for a given 

structure.   Since, as discussed previously, several approximations are computed at 
time t. a particular approximation to a quantity at time t. will be denoted by the super- 

script j. 

In Method A, the steps are as follows; 

(1)   The increment of plastic strain developed during the (j-1) th approxi- 
mation is added to that previously accumulated to establish a total plastic 

j strain ( e 
epn 

) pertinent to the jth approximation.   Accumulated 
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strains associated with the strain hardening history are also 
evaluated. 

(2) The total plastic strains ( € ) are transformed into the related 
ep-, 

r        "i ' 
clement plastic forces   \ F     /      and    |   M    , F     j-      and solutions 

I y 
tor the associated stresses   (   cr  .' )  and elastic strain components 

(  e   ' ) are effected with use of the matrix method discussed in the 
i 

p rev ious se c tion. 

(3) The signs (tension or compression) of the stresses in the (j-l)th and 
(j)th approximations are compared with each other.  If the sign re- 
verses the accumulated strain due to strain hardening is set equal to 
zero. 

(4) Using Equation IV-16, the accumulated strain due to strain hardening, and 
the elastic strain component, a series of operations is performed which 
leads to the plastic strain change (A 6-    _     ) pertinent to the jth approxi- 
mation, i 

The result of step (1) is employed in step (1) for the (j + 1)01 approximation. 
The process is continued until the stresses of step (2) are in agreement with the stresses 
of the previous approximation in accordance with a specified criterion. 

For Method B, the computational sequence is as follows: 

f 

I 

(1)    The average increment of plastic strain (A«      ) determined in the (l-lVth 

iteration is added to the total plastic strain as computed for the (i-l)th time 
Increment to define a new  approximation to the  total  plastic strain, 

.   j        . 

(2) The new approximation to the total plastic strain is then used in the 
determination of the (j)th iteration stresses, in the same manner as step 
(2) of Method A. 

(3) The magnitude of the plastic strain change for the (j)th iteration is 
developed with use of Equation (IV-16), the stresses determined in (2), 

ePT. 
This procedure for this determination differs from that 

of step (3) of Method A. 

| 
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(4)    The (j)th approximation to the average plastic strain change is computed 
and the process of steps (l)-(3) is repeated.   The iterative sequence is 
continued until the specified convergence criteria on stress is satisfied. 

The creep analysis capabilities of the subject program are based, in part, on 
the following assumptions regarding the mathematical representation of conventional 
uniaxial Constant Stress-Constant Temperature creep properties. 

(1)    The primary stage of the conventional creep curve is represented by the 
following relationship 

e ,      ß   (eB0"  -l)tm (IV-17) 

(where e is the base for natural logarithms) 
whereas, in the secondary stage one has the minimum creep rate 

ti € •         c 
(  € _ )   expressed as 

e ,       CJ (eBOr  -1) (IV-18) 

where ß  , ß, m and a) are temperature dependent properties of the material.   By 
equating the creep rate, as obtained by differentiation of Equation IV-17 with respect 
to time, to the creep rate of Equation IV-18, an expression for the transition time, t , 
between primary and secondary creep is obtained as 

J_ 
m-1 (IV -19) 

1/3 

Intrinsic in Equation IV-19 is the assumption that the transition time is only a function of 
the temperature and not the stress level. 

(2)    There exists a threshold temperature, T , below which there is no 
creep strain, irrespective of the magnitude of the imposed stresses. 

There are various methods available for predicting the accumulation of creep 
strains for the general condition of varying stresses and temperatures of interest here. 
The method adopted for the present program is referred to as the "strain hardening 
rule" which is fully explained in Reference 9.   The ovci'all computational procedure is 
outlined below for the ith time increment. 
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ature 
(1)    Computations are initiated by the determination of the average tempei 

2, T,, for the time increment, from 

T. + T 
T. 

1-] 
(IV-20) 

where T. and T.  , are the temperatures obtained at times t . and t .   ,, respectively, 
ii-l i i-l 

from the initially specified temperature-time curve.   The average temperature is next 
compared with the creep threshold temperature, T   .   If T. > T   and there is no loss c i e 
of creep strain hardening due to a stress reversal, there is a change in creep strain, 
A e      , for the time increment, A t,.   This change is added to the total creep strain 

i 
accumulated prior to the interval to yield a new total accumulated creep strain.   If, on 
the other hand, T.   < T  , the change in creep strain within the interval is zero and the 

i   _     c 
total accumulated creep strain from the previous interval is carried on into the next 
interval. 

emperature t. is computed from Equation IV-19 (2)    Next, the transition te; 

with material properties obtained for the average temperature, T..   The type of creep 

(primary or secondary) induced during the time increment is determined by comparing 
t. with an equivalent creep time parameter t computed from the following ex- 

i-1 
pression derived from Equation IV-17 (See Reference 9). 

i-l 

i-l 

ß B 1 er ,      I 
,    I       i-ll -1 

1 
ill 

(IV-21) 

where    € c is the creep strain accumulated by virtue of strain hardening (also cotn- 
i-l 

puted in step (1)). 

(;i)    1ft        <     1. primary creep prevails and the magnitude of the creep 
i-l 

change,     A e   _   is given by 
i 

A c.        e c. 
i i 

(IV-22) 

i-l 

i 
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where    €       is obtained from Equation IV-17, written as follows 

Ci 

The creep change is then given the same sign as the, stress,   cr       .   If, on the other hand, 

t        > t.     secondary creep is indicated and the change in creep strain is given by 
Ci-1       1 

Ae .        e      At. (IV-23) 
i c. i 

i 

where the creep rate    €      is obtained from Equation 1V-18. 
i 

(f)     Finally, the total creep strain,    e , is determined as thesumof this 
CT. 

i 

change in creep strain and the prior total creep strain and employed in the determination 
of the inelastic node point forces and a stress analysis is performed in the manner de- 
scribed in the previous section. 
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C.       ILLUSTRATIVE EXAMPLES 

1.     Comparison with Alternate Solutions 

The objectives in presenting the following illustrative examples are to 

(1) Outline the various types of results that can be obtained through 
exercise of the respective program options, and 

(2) Demonstrate the level of accuracy of solutions achieved through use 
of the program. 

To achieve the second objective it is necessary to effect comparisons 
with solutions obtained through alternate techniques.   Since these other techniques 
are limited in applicability to relatively simple conditions the following compara- 
tive discrete element solutions are necessarily concerned with simple conditions. 
The capabilities of the program with respect to irregular geometry, nonuniform 
load, etc., are therefore not demonstrated in these analyses but, in the next section, 
a complicated problem for which only limited comparative results are available is 
presented. 

The following analyses are performed in the present section 

(1) Stress and Deflection Analyses 

(ai    Beam-column, elastic 
(b)    Beam-column, inelastic with initial displacements. 

(2) Instability Analyses 

(a) Elastically restrained column-thermal buckling 
(b) Tapered column subjected to a distributed load. 
(c) Column on four supports. 

a.     Stress and Deflection Analyses 

(1)    Beam-Column 

Figure lV-3a illustrates the conditions for the analysis of a 
simple beam-column problem.   The structure shown is loaded by an axial force(P ) 
that is equal in value to three-fourths of the Eulcr critical load, P      , i.e. 

Px = 1- PE    = -|  -^L (IV_24) 

The relationship between transverse applied loads (in tills case a concentrated load 
(P ) at midspan1! and displacement is linear in the presence of a fixed midplane 
force.   Thus, the present results are representablc in nondimensional form. 
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a.   Conditions of Analysis 
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Displacement - 
Solution 

\ vAnalvsi dysls Results 

r=-A-0 ü     I   ft 

®   Maximum Displacement 
A   Maximum Stress 

-1 
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Number of Elements in Semispan 

b.   Comparison of Maximum Stresses and Deflections 

0.8 
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(x/L) 

c.   Comparison of Deflected Shapes 

Figure IV-3.   Analysis of Beam Column 
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Listed below are the values of maximum deflection (deflection at 
midspan) and of maximum bending stress at midspan as calculated for idealizations 
consisting of various numbers of elements.   Due to symmetry it was possible to treat 
only one half the span.   The parameters employed in defining these values were 
chosen in correspondence with the exact solutions, which can be written as follows: 

p           (sin   JL   PK   Hsin    JL.   /T) 
^L\ /*x\ 2  V L   J        _    _x_ 
L / V P„ / .-     . .— 2L 

(IV-25) 
x   sin ir   yx 

x 

E P, 

(sin   ■—■/*■   )(sin IT  X 

L 

where  X 
E 

(IV-2 6) 

(IV-27) 

and   e    is the distance between the neutral axis and the extreme fiber in compres- 
sion. 

Also tabulated below are the percentages of error with respect to 
the exact solution.   Figure lV-3b plots the degree of correspondence of the calculated 
and exact solutions as a function of the number of elements employed.   There is 
extremely close agreement even for the crudest idealization.   There is also excellent 
agreement between the deflected shapes computed using the exact solution and the 
solution based on three elements in the semispan, as illustrated in Figure lll-3c. 

No. of 
Elements 

Per Semispan 

Max. Displacement Max. Stress 

(D (?) 
% Error 

(^)(T)(^) 
2 

% Error 

1 
2 
3 
4 
5 

-0.6006 
-0.6096 
-0.6102 
-0.6103 
-0.6103 

1.72 
0.25 
0.15 
0.13 
0.13 

-3.722 
-5.437 
-5.848 
-6.017 
-5.10 6 

41.55 
14.62 

8.17    \ 
5.51 
4.11 
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Beam-Column, Inelastic, with Initial Displacements 

1 

Sketched below is a simply supported axially loaded beam with initial 
displacements (w0) of the form 

0.005 sin 
20 

The beam is assumed to be heated instantaneously to a uniform temperature of 400°F. 
An axial load of 3750 pounds is then applied and sustained at this value.   For simpli- 
city, the cross-section of the beam is assumed to be composed of two area elements, 
each equal to 0,125 in.*.   Since there is symmetry, it is only necessary to consider 
half the beam, idealized as five elements of equal length.   Numericral values used for 
the material constants are 

n = 12 
w = 0.158 .\ Uf * 
m = 0.72 
E = 9.1 x lO7 psi 

ß= 0.72 x 10"6 in/In 
B = 0.000238 in/psi 
<// = 0.05 x 105 psi 
a - 13.25 x 156 in/in/0F 

These values are representative of 2024-T1 Aluminum (See Reference 9). 

Upon application of the axial load, the beam deflects elastically with 
a total theoretically-predicted deflection at the center (wc.) given by 

^ 
w 

max 
c        1 - P/P Cross-Section 

P - 3750 lb 
__/: 

Deflected Shape .-i 
sm     ~ J     LNV '        ~lm 

20.0' 
0.125 In. - 

2/3 

1 
\ 

where Pp =   TT   —•'$.   For the beam under consideration, with (w0) = 0.005 in.. u h* u max 
the above expression gives a central deflection of wc = 0.012359 in., whereas the 
program yielded a value wc = 0.012540 in. 

The applied load was selected small enough so that upon its initial 
application only elastic strains are experienced.   With the passage of time, however, 
creep strains are sustained.   These Increase the deflections and bending moments 
and, therefore, the stresses.   This eventually results in plastic strain. 

Results of the application of the computer program to this problem 
are presented in Figures IV-4 and IV-5,   Since the optimum time increment. At. 
was not known, computations were performed for decreasing time increments. Method 
B was employed in the computation of time-independent plastic strains and three- 
digit agreement on the corresponding stresses was specified. 
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Computed total lateral deflections at the center of the beam, presented 
as a function of time in Figure IV-4a, are similar to those obtained in various exper- 
iments (see, for example, Reference 11).   Based on the results shown, it appears that 
the column becomes unstable at a critical time of 49 hours.   As shown in Figure IV-4b, 
the cross-sectional area on the convex side of the column experiences a stress rever- 
sal at the critical time.   Immediately prior to the critical time the lateral deflection 
is finite. 

Inelastic strains computed for the center section of the beam are shown 
as a function of time in Figure IV-5.   As indicated, time-independent plastic strains 
are induced only during' the final stages of the deformation process. 

b.      Instability Analysis 

(1)    Elastlcally Restrained 

The analysis condition is shown below in Figure IV-6a. 
The beam is simply supported at the left end but at the right end is elastlcally 
restrained by a torsional spring; transverse and axial deflections at the right 
end are prevented.   The end restraint is assigned the following value. 

c. x 10' 
■i 

ad/lb 

u 
C 

Ö 

u 

3 

-30 

-20 

■10 

20 30 

Time - Hrs 

Figure 1V-4.   Total Lateral Deflection at Center of Beam 
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At      1.0 
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Time - Urs 

(a).   Stresses at Center Section 

Creep Strain Concave Side 
A t =  0.5 Hr   - 

A t 1.0 Hr 

At 2.0 Hr 

At     5.0 Hr 

A t = 1.0 Hr 

If   /— A t = 2.0 Hr 

A t - 5.0 

A t =   0.5 

10 20 30 

Time - Hrs 

Creep Strain 
Convex Side 
At = 1.0 

,:    -A t = 5.0 

Time Independent 
Plastic Strain At = O.a 

(b).   Strains at Center Section 

Figure IV-5.   Axially Loaded Beam - Stress and Sti-ain History 
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au Condition of Analysis 
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b. Structural Idealization 

! 

t 
1 

Figure IV-6.   Elastically Restrained Column 
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The beam is assumed to undergo a   temperature change (AT) from the stress free 
state.   It is required to determine the value of   AT for elastic instability. 

The element spacing chosen for analysis is illustrated in Figure 
IV-6b; tliis spacing was selected in an entirely arbitrary manner.   Based on these 
dimensions, the computations resulted in 

AT 
14-58 I o (IV-28) 

where   a     is coefficient of thermal expansion.   By adapting a solution presented in 
Reference 12 , one can obtain a comparison solution of 

AT       =   U-,ii-1 (IV-29) 
c,r rr L2 

It is seen that the difference between the two solutions is insignificant, despite the 
arbitrary choice of element spacing. 

(2)    Tapered Column Subjected to Distributed Load. 

A problem that represents a measure of complexity but which is 
nevertheless solvable in closed form is that which involves the prediction of the 
instability of a tapered cantilevered column subjected to a   triangular distributed 
load (see Figure IV-Ta).   The moment of inertia varies in accordance with the 
expression. 

I  = 1  (1- 4-) (IV-30) o 1, 

where I0  is the moment of inertia at the support.   The expression for the varia- 
tion of "shear load"   (q) is 

q = q0   (1 " -X" ) (IV-31) 

The idealization for analysis is shown in Figure IV-7b.   The 
distributed loading was replaced by a series of concentrated loads at the node points 
and for convenience the reference critical load (P    ,.)   was chosen as the axial load 

ret in the element adjacent to the support. 

The significance of the approximation of the distributed load by a 
series of concentrated loads can be reduced by developing the relationship between 
q0 and the axial load in the element near the root.   This relationship is 
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a.   Conditions of Analysis 

\ 1 
Pl N-l 

N-l P 

b.   Analytical Idealization 

to &, 

hJ 

1.4 i- 

L.2 

1.0 

0.8 

0.6 

0.4 \- 

0.2 

rf< 

_ _ Z=~0=-     —G— 
■^ \ 

/ <1 
\ 

VK 
1 

xact S olution 
i 

/ VJ -Com jutt'd 3oluti< ,n 

3 4 8 12 16 

Number of Nodes, N 
c.    Results 

Figure IV-7.   Buckling of a Tapered Column Subjected 
to a Triangular Distributed Axial Load 
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%t 
/ 

1 - 
(3N-4) 

where   N    is Die number of node points in the idealization.   Thus, the evaluated 
critical reference loads are divided in the indicated manner to obtain the calcualted 
critical value of distributed load.   For purposes of comparison with the exact solu- 
tion, the results of analyses for various numbers of node points are shown below. 
For purposes of comparison with the exact solution as given in Reference 12 , 
pg 139, the results are presented in the form of the ratio between (^oL/g)       and the 

Euler critical load (Pg 

and moment of inertia 1 

3[_JEIQ  ) of a simply supported beam of the same length 

b- 
The "exact" value of this ratio is 1.317.    Figure IV-7c 

gives a graphical representation of the results.   Note that in contrast with uniform 
load and geometry conditions, the present case requires 10 node points to reduce 
the error below engineering significance. 

Number of 
Node Points 

q0L/         (calculated) 

2/    E 

% Error* 

3 
4 
5 

11 
15 

0.912 
1.117 
1.201 
1.299 
1.308 

<30.7 
+ 15.2 
+   9.7 
+ 1.41 
+  0.7 

*% Error = 
1.317 Wp 

9    '       V. 

1.317 

(3)    Column on Four Supports 

As an example of a more complicated instability problem, the 
case of the uniform section column, supported at four points, has been solved.   The 
conditions of analysis are Illustrated in Figure IV-8.   The outer ends are simply 
supported while the two inner supports are elastically restrained.   Solutions for this 
problem were developed by Klemperer and Gibbons (Reference 13) and described by 
Timoshenko in Reference 10, pg. 107. 

In performing the present analyses, two gridworks were employed: 

a subdivision of each segment between supports into three elements, and also a sub- 
division into four elements.   The rigidity of the supports is defined by the restraint 
coefficient,   t;w-   However, for purposes of data representation it is preferable to 
embody this consideration into a "support rigidity parameter", defined as   CWL 
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a.   Problem Data 
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where P_, is the Eider critical load for a single span, P    ~ —— .   The results, 
E J'- ]/ 

expressed as the ratio between the critical value of the applied load, Pcr, and P   are 

tabulated below for a wide range of support rigidity parameters and are plotted in 
Flffure IV-8b. 

Figure 1V-8I) also shows the results presented in Reference 10 , 
Figure 72.   There is extremely close agreement between the present results and 
those given in Reference 10.   It is noteworthy that three distinct relationships 
between the parameters, P    /V,J , and        C    L/P„, governed by three different 

cr     t w E 
mode shapes, are involved.   These mode shapes, as determined by the output of the 
present analyses, are shown in Figure lV-8e; their regions of occurance, as defined 
inReference 10, are shown in Figure IV-Sc.   It is noteworthy that, for values of 
support rigidity parameters that lie within the center region and near the curve 
intersections it was difficult to obtain convergence to the lowest root.   Support 
rigidity parameter values in excess of 80 required over 150 iterations for conver- 
gence. 

Support 
Rigidity 
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2,     Analysis of Practical Complex Conditions 

As an example of the analysis of a complex indeterminate one-dimensional 
structure for thermal stress and applied load, the conditions illustrated in Figure 
IV-9a are examined.   The conditions shown were analyzed for support reactions in 
Reference 14 .   The present analysis considers not only the equilibrium solution for 
stress and displacement but also solves for one form of elastic instability- 

The discrete element idealization employed appears in Figure IV-9 b and 
c.   The entire length of the structure is divided into nine elements each of which is 
assigned   10 differential  areas.   In addition, there is a flexible axial support at the 

7 — 'S / right end.   The material properties are specified as:    E = 10    psi, and    o  = 10      in./ 
in.   F, while the temperature distribution is 

T  =  2x   !   (ü.4x2 -   2x)f U   <   x   <   10 (IV-33) 

T  =   20  *  20 i 10 <   x  < 20 (IV-34) 

I • (It is assumed that the temperature in the stress-free state, T0, is 0  F).   Thus, the 
temperatures vary both in the axial and depthwise directions.  In the left span, the 
temperatures on each differential area of an element take on the value at the center 
of the element. 

— Resulte are presented in Figure IV-IO.   The support reactions are in close 
correspondence with the results of Reference 14 (see Figure IV-iOa).   The differences 
between the two sets of values arc due to the fact that the Reference 14 results are 
obtained from an essentially "closed form" solution while the present values include 
discretization errors.   The variation of extreme fiber stresses associated with these 
reaction forces is also shown in Figure IV-10a. 

Figure IV-lOb shows the displacement patterns due to temperature alone, 
temperature and applied load combined, and buckling. 
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CHAPTER V 

PLATE ANALYSIS PROGRAM 

A.   SCOPE 

The objective of the plate analysis program is to determine the structural 
behavior (i.e., stresses, displacements, and buckling stress) of flat plates of arbi- 
trary planform and thickness variation subjected to nonuniformly distributed applied 
loads and temperatures.   The plate material can be orthotropic but the principal 
directions of orthotropy and corresponding material properties must be the same at 
all points throughout the plate.   Stiffening members can be accommodated; the pro- 
gram can in fact be used for truss or beam-gridwork analysis.  The temperature 
dependence of material properties as well as inelastic behavior can be taken into 
account. 

Three types of discrete elements are accommodated in the program: 

(1) The beam segment (Fig. 111-2). 

(2) The triangular plate (Fig. Ill- 6). 

(3) The quadrilateral plate  (Fig. Ill-7). 

The behavior of each of these elements is segregated into "inplane" (or axial) be- 
havior and "out-of-plane" (or flexural) behavior.   Relationships were formulated 
in Chapter III for the beam segment.   The bases for the derivation of the properites 
of plate elements are discussed in Chapter III; details are given in Reference 8. 

Figure V-l shows a typical plate structure whose behavior is to be predicted by 
the use of the program.   Assume further that it possesses orthotropic material 
properties with the principal directions of orthotropy being parallel to the x and y 
axes.   The reference axes for analysis must correspond to the principal directions 
of orthotropy. 

Once the system axes have been established, an arrangement of discrete ele- 
ments in idealization of the actual structure must be decided upon. Program capa- 
city limits the scope of the idealization to a maximum of 80 node points. 

If the thickness of the actual structure varies continuously, this variation must 
be represented in a stepped manner.   With regard to the choice between the triangular 
and quadrilateral elements, it is believed that the quadrilateral is sufficiently versa- 
tile for most applications and, in addition, yields a solution for stress that is more 
easily interpreted than the solution for stress in a triangular plate.   The triangular 
plate is indispensable, however, under certain geometric conditions. 
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Figure V-l.   Typical Plate Analysis Problem 
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Applied direct loads can exist in either the x, y, or z directions at each node 
point, and applied moments about the x and y axes can be present at each node. 
Normally, loads will exist only at the node points along the edges of the structure and 
they will likely be initially defined as distributed stresses.   It is the responsibility of 
the analyst to transform the distributed applied stresses into equivalent concentrated 
forces at the affected node points.   Subject to previously cited limitations, as many as 
10 independent applied load conditions can be solved for in a single computational 
sequence. 

The temperature distribution is assumed to be known at the start of the analy- 
sis.  It must be emphasized that only one temperature condition per computational 
sequence is permissible since the stiffness properties of the system are dependent 
upon the material mechanical properties which, in turn, are allowed to be   dependent 
upon temperature.  In general, a change in temperature conditions requires a recal- 
culation of the equations governing the elastic behavior of the structure. 

The temperature state of the idealization for inplane analysis is initially 
defined by the temperatures of the node points.   During the computational process 
each element is assigned a uniform temperature value which is the simple average of 
the temperatures at its corner points. 

In the plate idealization for out-of-plane analysis, the input must define the 
"thermal moments" (M , M° ) at the node points.   These are 

Ey(l +  ^xy) 

'xy ■ yx' 

Ex (1 4   ^yx > 
(1-   ^xy   'V 

Outer Surface 

cTi   d« 

oT« d€ 

(V-T) 

where ^   is a coordinate measured normal to the middle surface.   For the particular 
case of an Isotropie plate of thickness t with a   linear temperature gradient through 
the thickness and constant material properties 

M 
E a   (Ti-T2)h 

12(1- l± ) 
(V-2) 

where T1 and T. are the outer and inner surface temperatures, respectively. During 
the computational process, each plate element is assigned a thermal moment which is 
the simple average of the thermal moments at its corner points. 
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For each flexural clement, the thermal moment at each end (node point) must 
be included with the input.   The formula for computing this value is: 

I clA-| ' L £ Temp. 
.A I      . mi       | 

M. E a T i   d A 

(V-;)) 
'-    Elastic Axis 

or, if the material properties are regarded as constant for the purpose of this deter- 
mination and the cross-section is a solid rectangle, then 

M, E a  (TT~T2) bd 
12 

(V-4) 
 /Temp. 
T, 

The material mechanical properties E  , E ,    u      , x      y xy 
u     , G yx       xy and the 

coefficient of thermal expansion ( a) a re each permitted to sustain an independent 
variation with temperature, as represented by as many as five points on the material 
property versus temperature curve.   This would appear to be a sufficient number of 
points for the common structural materials.   If the true relationship is extremely 
complicated across the full range of temperatures it is likely that the problem 
involves only a restricted portion of this range, which in itself can be represented by 
five points.   When evaluating the material properties for a given element the compu- 
ter first selects the element temperature and then establishes the desired properties 
by linear interpolation of the material property versus temperature data. 

ij 

Capabilities for inelastic analysis included in this program relate only to time 
independent behavior.   The basic terms for inelastic analysis are included in the 
next section, which is a review of the computational process for elastic analysis. 
As in the case of the beam program (Chapter IV) inelastic   analyses are performed 
as a   series of elastic analyses.   The incorporated rules lor material inelastic 
behavior as well as the procedures which govern the series of analyses for such 
behavior are examined in a later section. 

B.        THEORETICAL BASIS 

1.     Elastic Analysis 

The following discussion of the analysis procedure begins with a  treat- 
ment of the inplane analysis sequence since these operations arc always performed 
first by the program.   The relationships between the inplane corner point 
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displacements (u, v) of each element and the corresponding corner point forces are 
expressed in the form: 

K 1   (" xyj       1 v (V-5) 

K        is the element "inplane" stiffness matrix,   ^ F      , F 
xyJ r     n      n1 I-    x J Ir p   pi        l x     y i 

"thermal forces" at the node points and <   F   'F   Sare the node point plastic forces 

(assumed known in this discussion).   The algebraic form of these relationships is 
detailed in Chapter III. 

Based on the pertinent input data — geometry, loads, temperatures, and 
material properties — the computer first evaluates the inplane clement relationships 
and constructs with them the system of equations that represent the analytical model 
of the complete structure for inplane analysis.   These assembled equations are of 
the form 

where ^ „    f are applied loads at the node points,     | K^J    is the "master inplane 

yj \ K ] P 
p 

natrlx", and <     x   >and <    x stiffness matrix",and< >and <     x    >are the "net" thermal and plastic forces 
P PJ 

y 
at the node points.   Although Equation V-6 indicates a single column of applied loads, 
as many as 10 different applied load conditions can be treated in an inplane analysis 
cycle for a given temperature distribution and in the absence of inelastic behavior. 
Only one temperature condition can be treated since the stiffness matrix    K is 

a function of the material properties and these in turn are a function of temperature. 

For each designated support condition a column and the corresponding row are 
eliminated from the    | K,_.|    matrix and the affected rows are removed from the 

column matrices -I  „'   > ,   I      }■  ,   -I     x   >•        .  andJ    x    I      .   Utilizing the sub- 
lPyJ      lv;      lpy

QJ IPyPJ 

script "II" to designate the thusly reduced matrices, one obtains 

xy.    R     _ , R 

xi        _ i      x    L 

P a J 1   P P f 
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Once the solution for the displacements has been achieved, a "listing" is made 
of the displacements associated with the respective elements, so that they can be 
applied to the determination of the element stresses.   Relationships between the 
stresses in the element and the element node point displacements are also stored in 
the program in the following form: 

\vl     C}- 

1 "^ 
r      P     I (V-8) 

L C\- P 

\ a  ,     T    ,    a    !•   is a listing of the stresses at the corner points of the element, L   x        xy        y J 
S is the "element stress matrix", and      \   a   ? 0, r   a \   represents the L  xy J I     x      '     y   J        ^ 

stresses developed on tlie basis of inducing the thermal expansion elastically. 
Equations V-8 are discussed in Chapter III. 

where    n j   is the incremental stiffness, the terms of which are functions of the 
midplane stresses determined through Equation (V-9).   The detailed form of 
Equation (V-9)  is examined    in Chapter III.   Again, tlie individual element stiffness 
matrices are evaluated and summed to form the stiffness matrix for the complete 
structure and the support conditions are applied, resulting in 

■ «, 

ASD-TDR-63-783 T ■ 

r u 1 The basic unknowns in Equation (V-üa) are the displacements   i      K and these are 

solved for as follows: 

R 
K xy 

R 
'1 f 
"J     IP v  J      ^   y 

R 

(V-7) 

T 

The procedure employed for out-of-plane analysis is quite similar to that 
described above except that in tlie presence of instability effects an additional or 
"incremental" stiffness results from the presence of midplane forces.   The element 
equation is now written as 

M _> 
M, W  '[■>] 

9 
— a 
M 

x 

y 

P ^ 
M 

M 
(V-9) 
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M 

M K ["; 
R 

z   -L 

(V-10) 
r«/i   Ki rvi 

R R R 
If the solution for the equilibrium displacements and stresses resulting from 

applied loads and temperature change is sought, one obtains: 

Kl ' H 
R 

>(V-11) 

and, from the appropriate relationships 
1       1 ] a^ P   1 

Mv M' M' e X X 

M" 
X M' a W P 

y 

Mi 9 ,. y y 
M ^ = 

y 
>- < ü > -  < M   p 

xy 
Qx 

\v 
ü 

«H- 

Q.y 
0 

> 

(V-12) 

It is to be noted that moments and shears per linear inch, rather than stresses, are 
employed to define the internal distribution of load.   (Such moments are "primed" 
rather than "barred" to indicate a distinction with the concentrated corner point 
moments). 

If critical stresses are to be determined (i.e., if an elastic instability f i r    o      Q       a 1 
analysis is to be performed)   i M  , M , P    [ and < M , M ,  P     > 1    x      y      z J R t    x       y      z  J  R 

are set equal to zero, the matrix 
V-lOis rearranged as follows 

N      is multiplied by the scalar   X  , and Equation 

\ 

-1 

R KL l"] R 
(V-9) 

The scalar   X   (which is the eigenvalue to be determined) as well as the relative 
magnitude of the displacements      j 0 ,     9 , w|    (the eigenvector, which is the 

buckled shape) are then determined through matrix iteration as described in Chapter 
II.   Note that   X   represents a value by which all applied midplane loads are 
multiplied to achieve instability.   Thus, if X = 1.0, instability is reached and if 

X   > 1.0 the given midplane loads are not sufficient to produce instability. 

The matrix | N I   is dependent upon the values of stress computed in the 
inplane analysis portion of the computational cycle.  If many load conditions are 
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I 
cited, the program will automatically utilize the inplane stresses due to the first 
inplane load condition in the formulation of the   FN 1   matrix. 

An additional capability of the program is its ability to treat "oblique" 
support conditions.  It sometimes occurs that a structure is constrained to displace 
in the direction of axes other than those employed in the definition of the behavior 
of the structure as a whole.   (See sketch).   Such conditions can 

be accommodated simply by specifying for each affected point, the direction of the 
special x' axis by means of node points.   The program will then transform the 
relationships at all these points into equations referenced to the special axes, and 
boundary (support) conditions can be defined with respect to the latter. 

2,     Inelastic Analysis Procedure 

An extension to the above-described plate analysis program permits 
analyses for time-independent plastic behavior under conditions of varying stress 
and temperature.   This extension is limited to the use of the triangular plate element 
and excludes orthotropic behavior, i.e., only Isotropie behavior can be treated. 

| 

r 
{ 
i 

Consider the typical triangular plate element sketched below.   Since the 
stress, and therefore the plastic strain, varies across the thickness of the plate, it 
is necessary for purposes of plastic analysis to divide the thickness into laminae, 
or sub-elements, of thickness A t.   The location of a given sub-element is specified 
by the C   value to the center of the element, as shown.   As many as 10 sub-elements 
can be employed in a given analysis. 
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To define the temperature history of the structure it is necessary to 
specify the initial temperature of the entire plate and a temperature history for each 
lamina at every node point. 

The effective temperature for each sub-element is then computed as the arithmetic 
mean of its three corner temperatures.   These average temperatures are used to 
determine the pertinent material properties aad the temperature differences  A T. 

At each specified time in the load-temperature history, equivalent thermal 
stress resultants for inplane and flexural behavior, as required for construction of 
the comer thermal forces and moments, are computed using the following equations 

Na    =  /TTTTT   Z   E a   A T A h (V-iS) 

M 

(1 -M ) 

a i 

(1-M) 
£    Ea    AT^'Ah (V-14) 

Note that Equation (V-14) is a modification of Equation (V-l).   Note also that in the 
inelastic analysis routine the thermal moments are evaluated by the computer, 

f based on input data, while for elastic analyses these moments must be hand com- 
puted and entered with the Input. 

In addition, the inplane and flexural stiffnesses required in the deter- 
mination of the elastic neutral axis £   and in the construction of the stiffness 
matrices are given by 

Eh     =   ]r E  A h (V-15) 

El      =    ]r E (^   ')2 A h (V-16) 

where 

c = e - e   and r= lE * A h 
Eh 

The various inelastic column force matrices present in the general force 
displacement relationships are composed of the following inelastic stress resultants. 

N^-i-^/.^ /)Ah M^-JL^   P+^ /)C'Ah 
X    (1- H-    ) XT yT X    (1 - h   ) XT yT 

y  (x.^2)        yT       X
T y (i-M2)       ^T       

X
T 

N 
p = i—YE  y    p   A   h M p    =   -  YE y   p ^ •    Ah 

xy     2(1 +AJ- ) -^      ^ x        "    n Mxy 2(1 + M ) ^      ^xy.   ^ A h 

yT T 
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The symbols   €        ,     e and      Y    '        represent the total plastic strains for xT y,r xyT 

the biaxial stress case and are computed with the aid of plastic analysis Method A 
discussed in Chapter IV tor the uniaxial stress case.   By consideration of the 
uniaxial stresses and strains employed in Method A as effective stresses and 
strains, and adopting the biaxial inelastic stress-strain relationships consistent with 
the incremental thcox-y of plastic flow, plastic strain increments     A e     P 

y   p 
T 

A e ,      ' are computed and accumulated for a given load-temperature 
yT XyT 

history.   Details of this portion of the procedure are delineated in Reference 9. 

- 

The extension of the plate program requires the detailed computation of 
the stresses for each area from the following expression ■ 

f -N 

^X 

(1 ">    ) 

-W 

1 M 

H-        1 

0 0 
a* AM 

2 

a AT 

J a A T 

L 

■ T 

P 
yT 

xy. 

(V-18) 

i - » 

The general computational procedure parallels that of the one-dimensional 
program.   First, the load-temperature history is divided into time intervals and 
each of these is in turn subdivided into time increments.   Consider, for example, the 
computation of the stresses at time   t. .   At this time the elements of the plate may 
have experienced prior biaxial plastic straining.   Node point deformations are com- 
puted for the imposed loading and net plastic forces and are then employed in the 
computation of the biaxial stresses from the element stress equations.   These 
stresses are used to evaluate effective stresses which are used to compute the 
change in effective strains required subsequently in the determination of the change 
in biaxial plastic strains.   The latter are added to the prior total plastic strains to 
establish new values for the total plastic strains.   Stresses are then computed and 
the process continued until successive stresses are reproduced in satisfaction of a 
convergence criteria. 

•     ! 
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C.       ILLUSTRATIVE EXAMPLES 

1.     Comparison with Alternate Solutions 

As in the case of the one-dimensional structure program, the objectives 
in presenting the following illustrative examples are to provide an outline of the 
results to be obtained through exercising the various program options and to demon- 
strate the level of accuracy that can be achieved with use of the program.   To 
accomplish the second objective it is again necessary to compare results with solu- 
tions for relatively simple conditions.   For the present program, the comparisons 
are further limited in versatility by the relatively few available alternate solutions 
for orthotropic plate problems.   Although the theoretical formulation of the governine; 
differential equations for orthotropic behavior are well established, there are few 
numerical solutions to such problems.   No significant solutions for thermal stress 
conditions in orthotropic plates have been found by the authors.   Hence, in what 
follows, the thermal stress problems are concerned only with isotropic plates. 

The following types of analyses are performed in this section; 

(a) Stress and Deflection Analyses 

(1) Isotropic Rectangular Plato - Thermal stress analysis 

(2) Orthotropic Rectangular Plate - Plane stress analysis 

(3) Isotropie Triangular  Plate -  Thermal  stress and flexure 

(b) Instability Analyses 

(1) Isotropic Rectangular Plate - Thermal buckling 

(2) Orthotropic Rectangular  Plate -  Flexure and Instability 
Analyses 

The analysis of a problem involving geometric irregularities and more practical 
circumstances than the above problems will be described in the next section. 

a.     Stress and Deflection Analyses 

(1)    Isotropic Rectangular Plate - Thermal Stress Analysis 

The rectangular plate shown in Figure V-2a has a length that is 
twice its width and has a thickness variation in the width direction given by 

r 2 1 o J 
h =    1 - 0.9    . y , h     .      The temperature varies in the width direction, 

2 ° 
T =   (~)     -    's      T  <  producing midplanc elastic thermal stresses.   A solution for 

these thermal stresses was advanced by Mendelson and Hirschberg in Reference 15 . 

7!) 
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a.   Actual Plate 

Figure V-2.   Isotropie Rectangular Plate for Thermal Stress Analysis 
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b.   Idealization of Heated Plate - One Quadrant 

Figure V-2.   (Concl'd) Isotropie Rectangular Plate for Thermal Stress Analysis 
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From symmetry it is only necessary to consider a quadrant of 
the plate.   The idealization for analysis consists in dividing the plate   quadrant into 
54 quadrilateral plate elements as illustrated in Figure V-2b.   Judgement dictates 
the placement of small elements   at the tip and side where stresses change rapidly in 
consequence of edge   effects and the temperature gradient and thickness changes 
are most severe. 

Selected results from the present analysis and from Reference 
15 are plotted in Figure V-3. All results are expressed in nondimensional form. 
The distribution of longitudinal thermal stress (   cr ) is given on a cross-section 

located 0.25c from the end (x = 1.75c), where this component of stress is signifi- 
cantly influenced by "end effects".   The chordwise stress ( a  ), which is entirely 

due to end effects, is plotted for the tip chord (x =  2.00c)   while the chordwise 
variation of shear stress ( V is shown for x = l.GOc.   The dotted lines represent 

the computer program solution; the solution from Reference 15is shown by solid 
lines.   As seen from this figure, there is close agreement between the two solutions. 

(2) Orthotropic Rectangular Plate - Plane Stress Analysis 

For plane stress, one of the most interesting orthotropic plate 
problems to have been solved is illustrated in Figure V-4a. An orthotropic plate, 
E   ,       = 0.17 and G_   =  0.134, of aspect ratio 4.0, is loaded by equal and opposite 

X rjy 

concentrated forces P in the manner indicated.   The plate thickness is h. 

The idealization for discrete element analysis consists of the 36 
rectangular plate elements shown in Figure V-4b (due to symmetry, only a quadrant 
of the plate need be treated).   Again, smaller elements are utilized in the vicinity of 
the concentrated load.   The discrete element analysis results are presented in 
Figure V-4c, where they are compared with the results derived by Conway 
(Reference 1C) by use of a classical type of approach.  It is seen that there is an 
extremely close agreement between the two solutions. 

(3) Isotropie Triangular Plate - Thermal Stress and Flexure 

To illustrate the accuracy of the program in the analysis of plates 
subjected to temperature gradients across the thickness, the equilateral triangular 
plate shown in Figure V-5a has been analyzed.   The linear 450oF temperature 
gradient through the thickness is assumed to be constant throughout the plate.   An 
analytical solution for this type of problem was obtained by Maulbetsch (Reference 
17 )• 

Since the plate is symmetric about the x-axis it was necessary to 
consider only one half of the plate.  The idealization was achieved by means of 21 
quadrilateral plate elements and 7 triangular elements as shown in Figure V-5b. 
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Figure V-3.   Comparison of Results - Isotropie Plate Thermal Stress Analysis 
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(a) Actual Plate 
: 

3 @ 0.5b 0.3b 0.3b 3 @ 0.5b =   1.5b 

(b)  Analytical Idealization — One Quadrant 

> 

ij 

-0.136P 0.241P 0.259P 0.294P 
bh 

y = 3.0b y = 1.5b 

0.370P 
bh 

1.0b y = o 

Stress (   "y) 
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(c)    Comparison of Solutions for Longitudinal Stress 

■ — Discrete Element Idealization Results 
 Alternate Analytical Approach 

0.615P 
bt 

1 

Figure V~4.   Inplane Stress Analysis — Rectangular Orthotropic Plate 

84 



I 
I 
! 

I 

ASD-TDR-63-783 

"^ 
E = 10 x 106 lb/in.2 

fi     0.3 
a      12 x 10~6 in/in.-" K 
Tl _ T2 = 450"F 

Thickness     0.1 in. 
All edges simply supported 

(a)   Equilateral Triangular Plate 
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(b)   Idealization of One-Half of Triangular Plate 

Figure V-5.  Isotropie Triangular Plate for Thermal and Flexural Analysis 
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To satisfy the support conditions along the swept edge, it was convenient to apply 
"oblique" coordinates along this edge. 

The results of the discrete element analysis are compared to the 
results of Reference 17 in Figure V-6.   The deflection of the plate along the x-axis 
is plotted in Figure V-6a.   An almost exact agreement exists between the deflec- 
tions obtained from the program and the analytical results of Reference 17. 

The thermal moments Mx and My (moments about the x-axis 
and y-axis respectively) are independent of the y-coordinale.   The distribution of 
these moments in the x-direction are shown in Figure V-Gb.   The symbolized points 
for the program results correspond to the elements adjacent to the x-axis.   With 
the exception of two elements, the results are in very good agreement. 

I 
I 

Figure V-6c compares the thermal twisting moments MXy by 
plotting their distribution in the y-direction (the twisting moments are independent 
of the x-coordinate).   The discrete element results given in Figure V-6c correspond 
to the elements adjacent to the y-axis.   The results are again in very good agree- 
ment except for the triangular and adjacent rectangular element which are in fair 
agreement. 

b.     Instability Analyses 

(1)   Isotropie Rectangular Plate - Thermal Buckling 
y 

As an illustration of buckling caused by temperature change, 
the problem of a uniformly heated rectangular plate, simply supported along two 
parallel edges and restrained against rotation and normal expansion along the 
other two edges, is analyzed.   The conditions of analysis are as shown in Figure 
V~7 where 4 rectangular elements have been employed in the idealization of a quad- 
rant of the plate. 

The theoretical buckling stress in the x-direction for this plate 
is determined by the expression 

2 
c  1    2 TT   c / b 

V h ; x "x        12(1-    /J^) cr 
12(1- ^t^) \h 

(V-19) 

Using the value of the buckling coefficient k    as 6.65 (from Reference 10), the criti- 
2     c 

cal stress is computed to be 4050 lb/in.  . 

A temperature rise of 15.90F, corresponding to a thermal stress 
of 2000 lb/in.  , was imposed on the plate and an inplane and instability analysis 
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Figure V-6.   Comparison of Results - Isotropie Triangular Plate 
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,     Restrained Against 
/ Rotation and Expansion 
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(Free to Expand in 
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-•"    x 
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Temperature Rise = 15.90F 

(a)   Plate Planform and Support Conditions 
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(b)   Idealization of Plate Quadrant 

Figure V-7.  Isotropie Plate for Thermal Buckling Analysis 
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performed by the subject computational program.   The results of the inplane analy- 
sis indicated a compressive stress of 20Ü3 lb/in.2 in the x-direction and the 
instability analysis showed a critical inplane load factor (-y)  of 1.9015.   The pro- 
gram, therefore, predicted a buckling stress of 1.9015(2003) -   38(50 lb/in.2 which 
agrees within 5 percent of the theoretical value of 4050 lb/in.2.   The accuracy of the 
predicted buckling stress may be improved by utilizing a larger number of elements 
in the idealization. 

(3)   Orthotropic Rectangular Plate - Flexure and Instability Analysis 

Formulas for the deflection of rectangular orthotropic plates 
subjected to a concentrated lateral center load and uniform lateral pressure have 
been published by llearmon (Reference 16),   and formulas for the instability of 
orthotropic plates under various support conditions are presented in Reference 19. 
The following is a comparison of certain of these formulas with results obtained 
by discrete element analysis for the particular conditions illustrated in Figure V-8a. 
Two cases are examined: 

(1) The deflection of the center of the plate under a concentrated 
center load of 35.5 pounds. 

(2) Instability analysis under uniform compression stress in the 
x-direction. 

For the deflection analysis a quadrant of the plate was idealized 
by 36 elements as shown in Figure V-8b.   The discrete element analysis resulted in 
a center deflection of 0.0208 inches corresponding to a center concentrated load of 
35.5 pounds.   From Reference 18 the center deflection is   determined by the formula 

(V-20) w  = / Dxb 
24.8 (—- 

V   a3 

, Dya    . 21^ 

ab b3 

where 
E   t3 

X 
1) 

D 

D 
Q 

D 

12(1- (JL        ii-    ) 
' xy   ' yx 

V  

u.       D    + 2 D 
yx    x xy 

G      h3 xv 
xy 12 

(V-21) 

(V-22) 

(V-23) 

(V-24) 
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Ex = 30 x 10° lb/in.2 

E    = 5 x 106 lb/in.2 
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/i     = 0.3,/i-     - 0.05 •xy ^yx 

Thickness = 0.1 in. 
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All Edges Simply 
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Deflection Analysis 

(a) Conditions of Analysis 
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for Buckling 
Analysis 
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(b) Idealization of Plate Quadrant 

Figure V-8.   Orthotropic Rectangular Plate 
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which results in a deflection of 0.025 inch.   It is noted that the discrete element 
approach gives a suffer solution.   In view of the fact that the Hearmon formula is in 
itself an approximation, the agreement between the two solutions is considered to be 
satisfactory. 

The buckling stress of the orthotropic, simply supported plate 
was determined by the expression 

2 

lv 
D D 

x   y 

From Reference 19 the valve of  c   is given as 
DQ 

(2.0 + 2 

»x^ 

) 

(V-26) 

(V-27) 

which results in a computed buckling stress of     ^x      =  10,160 lb/in.  . 

For the discrete element instability analysis the buckling mode is 
assumed to be a double buckle, i.e., the aspect ratio 2 plate will buckle like two 
square plates.   By considering antisymmetry in the x-direction and symmetry in the 
y-direction it is only necessary to analyze a quadrant of the plate.   The idealization 
is the same as for the deflection analysis (Figure V-8b) and compressive edge 
forces of 1000 lbs/in. are imposed in the x-direction.   Analysis by the subject pro- 
gram resulted in inplane stresses of 10,000 lb/in.2 in the x-direction and a critical 
inplane load factor (1/X) of 1.781.   The predicted buckling stress is therefore 17,810 
lb/in.2 which is considerably larger than the 10,160 lb/in.2 from Reference 19.   This 
difference is consistent with the deflection analysis in that the discrete element 
analysis again gave a stiffer result than the alternate analytical solution. 
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2.     Analysis of Practical Complex Conditions 

The trapezoidal plate shown in Figure V-9 furnishes a more practical 
problem involving geometric irregularities.   The plate contains a centrally located 
reinforced hole and is assumed to be simply supported on all edges. The mechanical 
loading consists of a uniform lateral pressure, inplane loads in both the x and y 
directions, and balancing shear flows along the edges.   The     crx stresses are uni- 
form and the   er    stresses vary linearly as indicated in Figure V-9.   In addition the 
plate is subjected to linear temperature gradients through the thickness which pro- 
duce thermal moments. 

Since the plate and loading conditions are symmetric about the x-axis, 
only a half of the plate is treated in the analysis.   Figure V-10 shows the half-plate 
idealization   consisting of 43 elements and utilizing both quadrilateral and triangu- 
lar plates.   Oblique coordinates (x', y') were used along the tapered edge.   The 
distributed edge loads and shear forces were transformed into equivalent concen- 
trated x and y forces at the edge node points, and the lateral pressure was pro- 
rated as concentrated z forces to the node points.   The thermal moments were 
hand computed from Equation V-2. 

The assumed material properties E and or   as functions of temperature 
are shown in the following table: 

■5 

i 

Temp 
°F 

E 
106 lb/in.2 

a 
10'6 in./in. -0F 

100 10.65 12.6 
200 10.25 12.86 

i     300 9.82 13.09 
!      400 9.35 13.32 

500 8.73 13.54 

Poisson's Ratio was assumed constant at 0.3. 

A complete analysis was performed including inplane, out-of-plane, and 
instability analyses.   The inplane direct stresses are shown in Figure V-ll for 
several   rows of elements.   The stresses for the elements along the x-axis are 
plotted in Figure V-lla and the stresses corresponding to elements along the sides 
parallel to the y-axis are given in Figux-es V-llb and V-llc.   The results show   that 
the direct stresses are tension for all the elements in the reinforcement around the 
hole.   Since the reinforcement is the cooler portion of the plate, the tension stresses 
are reasonable. 

ri 

The out-of-plane displacements along the ordinates y 
inches are plotted in Figure V-12. 

0 (x-axis) and y=7 
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Figure V-9.   Complex Trapezoidal Plate 
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The inplane load factor (1/X)   determined from the instability analysis 
is 1.3 which gives critical stresses of    crx      =  1.3(2000) = 2600 and     cr,,      = 1.3 cr ycr 

(1600) to 1.3(800) = 2080 to 1040 or an average    cr        of 1560 lb/in.  . 

Since no test data or alternate analytical solution for this plate is avail- 
able, it is not possible to make a comparison of the discrete element solutions 
with other results.   Approximate buckling stresses can be obtained, however, 
by assuming a 20 x 22 inch simply supported rectangular plate without a hole and 
loaded bv uniform x and y edge forces.   On this basis the critical cr    and     a x y 
stresses, assuming   er        0.G    cr  , are determined from Reference 20 to be 2420 

2 "^ X 

lb/in.    and 1450 lb/in.    respectively.   These critical stresses are in agreement 
with the results from the discrete element analysis. 
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CHAPTER VI 

CYLINDER ANALYSIS PROGRAM 

A.       SCOPE 

The cylinder program can be used to analyze the structural behavior, i.e., 
displacements and stresses,for heated stiffened and unstiffened fuselage segments 
and cylinders.    The skin material may be either orthotropic or isotropic for an 
untapered structure (a body of revolution with the generatrix parallel to the longi- 
tudinal axis).    For a tapered section, however, the skin material must be isotropic. 
The internal members (stiffeners and frames) are permitted to be composed of an 
isotropic material which need not be the same as the skin material.   The temperature 
dependence of the material properties is taken into account. 

For illustration a simplified fuselage section is shown in Figure Vl-la.    In 
Figure Vl-lb is shown an Idealization scheme which contains most of the per- 
missible elements.    For use in idealizing the structure, the cylinder program ac- 
commodates the following types of elements: 

(1) Axial force elements,  for idealization of longerons or longitudinal 
stiffeners. 

(2) Axial-flcxural element, employed in the representation of frame elements. 

(3) Triangular plate element, used to represent either the skin or the plate 
portions of a stiffened bulkhead. 

(4) Quadrilaterial plate clement,  for idealization of portions of the skin and 
bulkheads. 

The force-displacement relationships for these elements were discussed in 
Chapter III. 

The existing capabilities of the program with respect to the size of the 
problem which can be handled are limited to the inversion of a 150th order stiffness 
matrix.    This limitation cannot be precisely defined in terms of the permissable 
number of node points or elements;  it can only be stated that no more than 150 dis- 
placement degrees of freedom can remain after application of the displacement 
boundary conditions. 
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b.   Idealization of Fuselage Segment 

Figure VI-1.   Fuselage Segment 
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The applied loads consist of concentrated forces in the x, y,  z directions 
and moments about the x, y,  z axes at each reference point.   If a pressure load is 
exerted on the shell then it is necessary for the analyst to redistribute the pressure 
load in the form of concentrated loads at the reference points.   The program can 
accommodate up to 10 applied load conditions per structural problem. 

The relationships for computing the axial, or inplane,  thermal forces are 
coded in the program.    The computation of these thermal forces utilizes the 
elemental geometric, temperature, and material properties which are input quanti- 
ties.   A single average temperature is assigned to the axial and axial-flexural 
elements.    For the skin elements (triangular and quadrilateral plates) the temper- 
atures are specified at each reference point.    The temperature of a given skin 
element is computed as the simple average of its corner point temperatures. 

I 

i 
1 
I 
I 
I 
I 
I 
I 
I 
I 

The out-of-plane thermal moments must be hand computed and entered as 
input to the program.    For the axial-flexural element an average thermal moment 
is entered as part of the element input data.    For the skin elements the hand 
computed distributed thermal moments about the local x and y axes are stated 
at each reference point.    In computing the concentrated corner thermal moments 
for a given element,  the distributed moments along the edges are agsumed to be 
the average of the distributed moments at the corners; 

As in the Plate Analysis Program, the Cylinder Program is capable of 
accommodating "oblique" support conditions.    In some problems the fuselage 
segment may be constrained to displace in the direction of axes other than those 
employed in the definition of the behavior of the structure as a whole.    Such con- 
ditions can be handled simply by specifying the coordinates of three points which 
define the special axes.    The program transforms the elemental relationships 
at all the affected reference points into equations referenced to the special axes, 
and boundary conditions can be defined with respect to the latter. 

In addition to possessing the capabilities described above, the program has 
been designed to accommodate relationships for instability analysis, two additional 
types of elements, and the capability to deal with systems of approximately 480th 

. order.    To a limited extent, these additional capabilities are coded or contained 
in the existing program but were not checked out as to operational correctness as 
of the conclusion of the subject study. 

101 



T 
1 1 

ASD-TDR-e3-783 

The two above-cited elements, which were intended to complement elements 
(l)-(4), are the following! 

(5) Composite plate element of arbitrary planform, used in idealizing skin 
and bulkhead panels. 

(6) Composite axial-flexural element,  representive of longerons, stiffeners, 
and frames. 

These composite elements, are assembled  from more basic elements in the 
Plate Analysis Program and the One-Dimensional Element Analysis Program,  re- 
spectively.    By incorporating into the present program the appropriate parts of 
these two programs,  the elemental matrices for the composite elements are 
computed.    Essentially, this process consists of assembling the complete matrices 
for the composite elements and reducing out. the equations pertaining to the inter- 
mediate points which arc not reference points on the fuselage structure.    This 
produces the element matrices referenced to the attachment points between the 
composite elömont and fuselage structure. 

With regard to planned capabilities for larger order systems,  the program 
has been designed to accommodate a maximum of 80 reference points per idea- 
lization.   Since there can be six degrees of freedom (3 linear and 3 angular dis- 
placements) at each point, a total of 480 degrees of freedom can exist in an idea- 
lization.    An important limitation is that sufficient "displacement" and "force" 
boundary conditions must be applied so that no more than 238 degrees of freedom 
remains in the problem.   A   "displacement" boundary condition represents re- 
straint against a given displacement component,    A "force" boundary condition 
exists when a force component at a given point is known to have zero value under 
all load and temperature conditions.    In either case, the effect of applying such 
a condition is to remove one equation and the corresponding unknown from the 
problem. 

B.        THEORETICAL BASIS 

The theoretical basis of this program parallels,  for the most part, the 
approach taken in the plate program  (Chapter IV).    The differences lie mainly 
in the use of three,   rather than two,  coordinate dimensions for each element and 
the fact that in the cylinder analysis  the  membrane and bending behaviors are 
incorporated in a single computational process. 

It is of interest, however, to describe the analytical procedures involved in the 
reduction of the governing stiffness equations by virture of geometric and force 
boundary conditions.   These procedures provide the theoretical basis for the planned 
extension of the program to accommodate larger order problems .   In accordance 
with   the    displacement approach to matrix structural analysis, the complete set of 
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analysis, the complete set of force displacement equations are in general given by; 

1 

P2> 

P_ 

KutK12l K13 

K 
21 ■>2 

K31 I K32 I K33 

NnlNi2lNu 

21 1     22 '     23 

N    IN    IN 
31i     32 I     33 

A, 

A., 

A. 

> -< (VI.1) 

Equation (VI-1) has been arranged and partitioned as follows: 

The first partition refers to forces and displacements affected by 
force boundary conditions, thus jPjJ     0. 
The second partition refers to forces and displacements unaffected 
by either  force boundary  conditions or displacement boundary 
conditions. 
The third partition contains the forces and displacements affected 
by displacement boundary conditions thus   |A., j-    0 and -iPsl-^ 
the reaction forces at the support points. 

It is possible to reduce Equation (VI-1) so that only the unaffected applied 
fo 
T! 

(VI-2) 

rces and moments    ■! P., > , and displacements (   -j A9 \) appear in the relationship. 
als is accomplished by simply removing the third partition and operating upon the 

remaining      K    and   N   matrices and thermal forces | P   1    as follows;   The      K 
matrix is reduced by; 

""»"     [Rul     [K,ii  '[«n] 

Similar to the  reduction of the  IKI  matrix, the I N     matrix is reduced by 

Mi^Kl-KUvlK] 
The reduction of the thermal force column is accomplished by: 

IP
Q
I     =rpa\ 

l      j    RF     L   2 J KH^llKr 1^} 
The reduced form of Equation (VI-1) can now be written as 

RF 

(VI-3) 

(VI-4) 

(VI-5) 

where  [K]RFT = [K 
RF + L NJ RF 
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The displacements   j^oj' which are unaffected by boundary conditions, can be 
solved for by the expression: 

KI-HBWJW* MRF (VI-6) 

Utilizing the known i A2 j-displacements, the displacements,   {Ajl, associated with 
the force boundary conditions, can be determined by : 

Kh-KrM {NlMvl'K} (VI-7) 

T 

Having determined all the displacements, the displacements of the individual 
elements are established and the elemental stresses, or stress resultant forces, 
are computed. 

If critical stresses are to be determined (i.e., if an elastic instability analysis 
is to be performed) | Pg } and |P    \  RF are set equal to zero, the IK   RF matrix 

is reduced, and an equivalent reduced  |NRp|   matrix is derived.   ThefKl op matrix 
is reduced by partitioning it as follows: L    ■' 

F 

{-J 

M 

M 

M 
<--■■ 

F 

z 

K 
RF 

K 
11 

RF 
12 

K 
RF 

K 
21 

RF 
22 

u 

w 

(Vl-8) 

and, 

[KJRFR=[KRF J   -   [KRF JIVJ   ^     t VJ (Vl-9) 

An equivalent reduced FN     1  matrix is obtained by subtracting [K|        from 

the reduced [KJ matrix which is obtained in a similar manner to [K] . 

That is, first the [K j matrix is partitioned as shown: 
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M 

M 

M 

F 
z 

K. 
RFT 

K. 
11 

RFT 
12 

K 
RFT 

21 
RFT 

22 

v 

(VI-10) 

and then reduced by the expression: 

L K JRFTR  ' LKRFT„„J       LKRFT0, J   L ^FT.J       L KRFT     J 

The equivalent reduced incremental matrix is obtained by 

KFR] WRFTR'WRF 
Eq. 

FR 

(VI-ll) 

(VI-12) 

For the purpose of an elastic stability analysis, Equation (VI-1) may be 
restated in the reduced form as: 

L    J RFR     L    RFRJ 
Eq. 

u 1 

w 
(VI-13) 

Fx Fx- 
r      >   and <       a    > equal to zero, the matrix      NR__ | is 

'z J L    z    J ^- 
multiplied by the scalar  X , and Equation (Vl-13) is rearranged as follows: 

Setting 

u  "! 

X      w 
K
]R

1
FR   fNRFR] 

Eq. 

u 

w 
(VI-14) 

The scalar X , which is the eigenvalue, and the eigenvector, •! j- , (which is 
the relative magnitude of the displacements and thus represents the buckled shape) 
are determined through matrix iteration. 
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I 

C. ILLUSTRATIVE EXAMPLE 

1. Stress Analysis for Unheated Conditions 

Figure VI-2a illustrates the conditions of analysis for a ring-stiffened 
cylinder.   The cylinder is cantilevered and subjected to an applied concentrated load 
at the free end.   The conditions shown were duplicated in a test performed at the 
NACA Structures Laboratory; results of the test were described in Reference 21. 

Due to symmetry, only one half the structure need be considered in 
analysis.   The analytical idealization appears in Figure VI-2a.   Rectangular plates 
in plane stress (Element 4) are employed in representation of the skin; the flexural 
stiffness of these plates has been neglected.   The ring segments are axial-flexural 
elements (Element 2); their behavior is limited to flexure in the plane of the ring, 
shear, and direct axial loading.   The middle line of these elements coincides with 
the middle surface of the skins so that the "eccentricity" is zero. 

Results of the discrete element analysis, the solution obtained from beam 
theory, and the test data appear in Figure VT-2c.   Only the longitudinal stresses in 
the skin arc compared but comparisons of other stress components can be shown 
to follow the same trends and lead to identical conclusions.   The beam theory results 
are grossly in error at all points and, in certain locations, even fail to predict the 
correct sign (tension or compression) of the resulting stress.   The accuracy of the 
discrete element solution, on the other hand, is excellent at all points.   Discrete 
element solutions to this problem have been published by other investigators (see 
References 22 and 23).   Generally, the latter have utilized shear panels in idealiza- 
tion of the skins, but their results agree closely with the discrote element solution 
of Figure VI-2c. 

2. Cylinder Thermal Stress Analysis 

Anderson and Card (Reference 24) have recently described elevated tem- 
perature tests of ring-stiffened cylinders.   One such test specimen is shown in 
Figure VI-3.   Due to the imposition of heat the cylinder skin assumes the longitudinal 
and circumferential temperature profiles shown in Figure \T-4, resulting in a state 
of thermal stress.   Only one-half the length of the specimen is shown since the 
temperatures are symmetric about ring number 5.   Also, there is symmetry about 
the z-axis so that only one-quarter of the complete cylinder need be considered in 
analysis. 

The analytical idealization is shown in Figure VI-5.   As in the previous 
example, the skins are idealized with use of Element 4 while Element 2 is employed 
in idealization of the ring segments.   In the present case, however, there is an 
eccentricity between the middle line of the rings and the middle surface of the skin 
and this was taken into account in the analysis performed.   Pertinent material pro- 
perties, as given in Reference 24, are listed in Figure IV-6. 
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The results of analysis are shown in Figure VI-7.   This figure is a re- 
production of the one shown in Reference 24 with the present results being given by 
the heavily dashed lines.   As indicated the discrete element solution corresponds 
with test data to approximately the same extent as the analytical approach proposed 
in Reference 24.   Elementary theory is seen to be entirely inadequate for prediction 
of the correct results. 
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