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ABSTRACT

This report describes computer programs developed for the analysis of heated
beams, plates, and stiffened cylindrical shells. The matrix displacement approach
to structural analysis, which forms the theoretical basis of these programs, is
developed in detail. Derivation of new relationships employed in these programs is
also detailed. 'The capabilities and limitations of the respective programs are out-
lined and illustrative applications are presented.
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CHAPTER I
INTRODUCTION

The "Study of Thermal Stress Determination Techniques for Supersonic
Transport Aircraft Structures' has consisted of three relatively independent efforts,
directed towards the development of

(1) An annotated bibliography of literature pertinent to thermal stress
analysis and related topics.

(2) Parametrically-presented design data for heated sandwich panels and
cylinders.

() Three FORTRAN-coded computer programs for the solution of heated
beam, plate, and cylindrical shell problems.

Items (1) and (2) are presented in references (1) and (2), respectively. A portion of
item (3), in the form of a verbal description of the coded computer programs, is
presented in this report.

Each of the three programs described in the present report is based on the
"matrix displacement” or "stiffness' method for the analysis of structures which
are idealized as systems of comnected discerete elements. Programs described in
the present report are available to participants in structural design activities
related to the Supersonic Transport (3ST) and to all others who are designated as
being eligible by the Flight Dynamics Laboratory, Acronautical Systems Division,
USAF. The programs will be transmitted to eligible recipients by the latter
agency. A transmitted program consists of punched cards, listings, detailed
instructions with respect to input and output, and other information needed to make
the program operative at a facility that will accept a program coded in conformity
with the FORTRAN II Monitor System.

Many references have detailed the basis of the displacement method as it
applies to the linear analysis of unheated elastic structures. (See, for example,
references 3, 4, or 5). Phenomena which are not often considered in routine
structural analysis are trecated by the subject programs, however, and the approach
to the analysis of these special phenomena by the matrix displacement method has
not been described in any single reference. Hence, in the next chapter, the method
is developed from fundamental principles and to an extent that includes all pertinent
special phenomena, such as instability, thermal stress, and inelastic behavior.

The accuracy and efficiency of any solution performed by use of any computer
program for matrix structural analysis is largely dependent upon the suitability of
discrete element force-displacement equations employed. The techniques used in
derivation of the element force-displacement equations contained in the subject

Manuscript released by authors in Jan. 1964 for publication as an ASD
Technical Documentary Report.
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programs are not well known and some of these techniques have, in fact, becn for-
mulated specifically for the requirements of this study. Consequently, in Chapter
III a complete and detailed development of the techniques is presented. Chapter 11
also demonstrates how the techniques were applied to the derivation of element
relationships appearing in the respective computer programs.

The three coded programs are as follows:

1. A program for the analysis of one-dimensional structural components.
2. A program for the analysis of flat plates,

3. A program for cylinder analysis,

Program (1) is described in Chapter IV, The objective of this program is to
permit analyses of beam-type structures, i.e., structures whose cross-sectional
dimensions are small with respect to their length and whose behavior is governed
by the elementary concepts of beam flexure.

It often proves feasible in the analysis of airframes to isolate portions of
major components and treat these as one-dimensional elements; ie., as beams or
beam-columns. The most common examples in modern constructional forms are
spar caps, stringers, and longerons, but such idealizations may also be admissable
in connection with trussed internal members (spars, ribs) and control surfaces.
The objectives of the program described herein pertain to these types of elements.

With this program it is possible to analyze beams of nonuniform section over
many supports for thermal stress, inelastic behavior, instability and other types of
structural behavior. Chapter IV provides a detailed picture of these capabilities
and also presents illustrative examples. Certain of the examples involve simple
conditions with known solutions; these are performed to demonstrate the accuracy
of the program. Another example, for which there is no complete alternative solu-
tion, is performed to demonstrate the capability of the program to deal with com-
plex conditions. '

Descriptions of Programs (2) and (3), which are presented in Chapters V and
VI, are patterned after the description of Program (1). Program (2) is capable of

performing analyses of irregularly shaped stiffened plates of nonuniform thicknesses

for stresses and displacements due to applied loads, temperature gradients, and
time-independent inelastic behavior, and for the prediction of buckling stresses.
The use of the discrete element approach, rather than design charts, may be
necessary even for isotropic rectangular plates of constant thickness where the
temperature profile (and therefore the resulting stress distribution) is of a highly
irregular form. Also, if the loadings on the plate have been developed through a
matrix structural analysis, wherein the plate was employed as a single discrete
element in a major component of the airframe (e.g., a wing or fuselage), the edge
loadings will in general be nonuniform and it again may be desirable to utilize the
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discrete element approach in the prediction of instability. The program is, of
course, not limited in applicability to skin panels; it is directly useful for analyses
of all types of planar structures -- stiffened bulkheads, plane trusses, beam grid-
works, etc. N

Program (3), the cylinder analysis program, can be employed to predict the
stresses and displacements for heated cylindrical shells. The structure analyzed
with this program nced not be perfectly cylindrical. They may possess orthotropic
skins and can be ring and longitudinally-stiffened. The temperature dependence of
material properties can be taken into account.
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CHAPTER 11

PERTINENT CONCEPTS OF THE MATRIX
DISPLACEMENT METHOD

A, GENERAL THEORY FOR LINEAR ELASTIC UNHEATED SYSTEMS

Most treatments of the displacement approach to the analysis of discrete
element systems make extensive use of matrix notation and the concepts of matrix
algebra. Matrices present an especially concise and convenient means of
expressing algebraic procedures and are, in addition, the natural mathematical
language of the digital computer. Gecause of this widespread use of matrix notation
in the formulation of structural analysis programs, the topic of present interest is
often referred to as "matrix structural analysis'. For simplicity, the initial por-
tion of the following development of the displacement method will be presented in
detailed algebraic form; then, the formulation will be summarized with use of
matrix algebra.

As already noted, this report is concerned with applications based on discrete
element idealizations of the structures to be analyzed. Such discrete elements are
usually defined by boundary or corner points which are sufficient in number to
characterize the stress and deformational behavior of the element. A hypotheti-
cal discrete element, with four boundary points, is sketched below, For convenience,
this section deals with relationships in two dimensions; in all cases, however, the
approach to threc-dimensional problems is readily apparent.

Relationships between the forces acting at the corner points and the dis-
placements of the corner points are derived in detail in Chapter III. Generally,
these relationships are first derived with reference to axes which are most con-
venient to the element itself. Then, by use of direction cosines, the relationsips
are expressed as if the element were arbitrarily oriented in the complete structure.
When this transformation has been accomplished, the equation for one of the forces
shown in the sketch below, F\'3 for example, would have the form

Fea ™ Famun Y1 Roarug Yat e Ky vy V4 {-1)

v Tbrd T}yu
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The coefficients k () (i) are functions of the géometry and material properties of
the element and are known as element stiffness coefficients. In terms of physical
meaning, a stiffness coefficient k;; is the force at i necessary to produce a unit
displacement of the degree of freedom j. The corner point forces may either be
actual concentrated forces or the static equivalent of stresses acting upon the area
subtended by the point; normally, they are the latter.

A complete set of force-displacement relationships for an element with n
node points in two dimensions will appear as:

Py = Fapan U170 K @m Ut Ko Y2 T Faaren
Fom = ¥eayy M1 70K +k Faaaok

F(Yl) ) k(\’1‘ (uly ERELEL +k +....k 11-2)
F .ok +k Fooalk

om = “em@n U1t

All degrees of freedom at the boundary points appear in Equation (I-2), i.e., the
element is not fixed against displacement as a rigid body.

Once the element force-displacement relationships (Equation 1I-2) have been
numerically evaluated for cach element of the structure, they can be algebraically
combined in a manner dictated by the requirements of juncture point equilibrium
and compatibility., These operations produce a set of force-displacement equations
for the’ element juncture points of the assembled structure. To illustrate how this
is accomplished, consider the development of the force-displacement equation at
point i in the x-direction in the assembled analytical model sketched below.

b
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The theoretical basis for the establishment of the desired relationships is
the explicit requirement of juncture point equilibrium. This condition states that the
applied load (Pxi) is equal to the sum of the internal forces acting upon the respec-
tive elements common to the point
A B C

xi®Fxi v Fg Y Fy (i-3)

where F\:i is the x-direction (internal) force on element A, etc. The force-dis-

placement equations for cach of the elements will have been previously evaluated so
that expressions for F‘iA, ete. interms of the displacements are available.

Substitution of these into Equation II-3 yields:
A

A
Pxi : (k(.\:i)(uj) uj ............ Ty .)
B B
(3 (i) (uf) Up e k () (i) RENE
€ C
1 (i) ug  coooooocooo k (<) {ui) u, + .. (I1-3a)

and, since the displacement U, is thesame for A, B, and C at point i (the condition
of compatibility) we have: ‘

C A - o B &
xi S (xd) (uj) J&=o 00 o

Yy u, +...

+ Kk .tk
(xi) (ui) (xi) (ui) (xi)(ui)” 1
{11-3b)

This is the final form of the desired equation.

It is impaortant to note that each of the three elements meeting at the indicated

juncture point possess stiffness coefficients with common subscripts (e.g.kA( i) (ui)’
xi) (ui

B . :
< (xi) (ui))' These correspond to the common juncture of certain points on the
clement. Point i is of course a common juncture of all three elements, but two
clements also meet at points h andl . Some coefficients associated with an ele-
ment will not have a counterpart cocfficient in the relationships for the other ele-
ments. These will pertain to points such as g, f, and j which are connected to only
one of the elements mecting at i .

In view of the above reasoning, the following "automatic' approach to calcula-
ting the applied load-versus-displacement equations for the complete structure
suggests itself:

(1) Each clement stiffness coefficient is assigned a double subscript--the
first is the force to which it is equated and the second is the displace-
ment it multiplies.,
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©)

&3

(6)

M

Provision is made for an equation for each force in every degree of
freedom in the complete system, and for the possibility that each force
will be related to every displacement in the system. The result is a
rectangular array of spaces, each designated by two subscripts--the first
pertains to the force equation, the second to the displacement in question.

The numerical formulation of the equations can hegin with point 1 in the
x-direction. First, a search is made through the list of elements, which
are designated by their corner points. When an element is reached whose
designation contains a 1, the F, cquation is selected and each coefficient
of the equation is placed in the space reserved for its second subscript
(each of the first subscripts is, of course, x1).

The procedure of item (3) is continued for point 1 in the x-direction until
the list of elements is exhausted. Each time the stiffness coefficient from
a subsequent element is placed in a location where a value has already
been placed, it is added to that value. The only locations that will be
occupied as a result of these operations are those relating to the point in
question and points that exist on elements meeting at the point in ques-
tion. Thus, if the structure is large with many element juncture points,
there will be many zeros in cach equation. This is an advantageous
feature in terms of the effort needed to solve the complete set of equa-
tions.

The process of steps (3) and (4) is repeated for all other points in the
x-direction and then for each of the other dircctions. The result will be a
complete set of equations for the entire structure, but with no recognition
of support conditions.

The support conditions are accounted for by first noting which displace-
ments are zero and then removing the stiffness coefficients multiplying
these displacements from the equations, resulting in more equations than
unknowns. To provide {or an equality of equations and unknowns the
equations which pertain to the external loads (reactions) at the support
points, are removed. The general solution to the remaining set of equa-
tions gives the displacement influence coefficients; multiplication of the
general solution by specific values for the loadings yields specific values
for the displacements.

By substituting the displacement values back into the element force-dis-
placement equations the internal forces acting on the element - the corner
point forces - can be determined. These may require retransformation
from "system to 'local" coordinates, and finally a transformation into

stress T ete.).
(o aes g c.)
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B. MATRIX FORMULATION

The foregoing can now be reviewed in the interests of obtaining a matrix for-
mulation and a clearer picture of the computer operations in a practical program.
First, any complete set of element force-displacement relationships (Equation 11-2)
can be written in matrix notation as

{r.} = [¥] {2} a1-2a)

wherce [k] , the "element stiffness matrix", is composed entirely of the element

stiffness coefficients k(xl)(ul)’ ctc. The subscript e denotes that the indicated

quantities refer to the node points of the element.

Once the ¢lement relationships have been evaluated, the elements are
assembled to form the complete analytical model of the structure by joining all ele-
ments at their respective juncture points and applying in the process the require-
ments of juncture point equilibrium and compatibility. Thus, the components of
internal loads {F } and external loads { P} at cach point are related by equilib-
rium requirements; i.c., ZF‘ : PX, etce. The respective coordinate displace-

ments of the corner points of all elements meeting at a point are equal, a require-
ment that satisfies compatibility. It follows that the stiffness matrix |K | for the
complete structure can be assembled by merely adding element stiffness coeffi-
cients having identical subscripts. This results in a set of equations:

{p} = [x] {o} @-1ia)

The matrix [}\] will henceforth be referred to as the "master' stiffness matrix.
Displacement boundary conditions can be readily imposed by assigning the pertinent

A's their known values (usually zero). The matrix [K| will be altered in the
process, and, faking notc of this by utilizing the subscript R, the solution to the
altered Equation (II-4a) becomes (if matrix inversion is utilized).

{AR}' [KR] N {PR} [5] {PR} @-5)

where [5] represents the set of displacement influence coefficients.

The subject computer programs, in their present form, are restricted to the
use of a matrix inversion procedure for the solution of Equation (II-5). One
advantage of the use of matrix inversion is that the analysis for load conditions
additional to the first is accomplished at small additional expense. Thus, the
respective programs each allow the solution for many loacd conditions in one com-
putational cycle when lincar elastic analyses for applied load are attempted. It is
to be recognized, however, that the direct solution of Equation 1I-5 (e.g., through
Gaussian elimination procedures or by iterative techniques) may prove more
advantageous under many circumstances. In such cases it is possible to replace
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the inversion subroutine used in the program with whatever direct solution sub-
routine may be available.

To obtain the stresses from the displacement solution there can first be
selected, from the total column of displacements, the displacement vectors for the
respective elements ({Ae }) . Then, each vector can be multiplied into the

stiffness matrix (Equation II-2a) to determine the node point forces {F } and
in an additional step,the node point forces can be transformed into the cor('respon—
ding stresses. It is believed to be more efficient, however, to form, at the outset,
direct relationships between the element stresses and the node point displacements,

as follows
{ae} - [S] {Ae} (1-6)

where { ae} are the stress values which describe the distribution of stress

within an element and {S ] is known as the "element stress matrix''. The proce-
dure followed, therefore, is to establish first the stress matrices at the start of a
computation. When the displacement vectors for the respective elements ( Ae )

are evaluated, they are premultiplied by the corresponding element stress matrices
to obtain the solutions for stress.

10
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C. INITIAL STRAIN PROBLEMS

Problems associated with thermal and plastic strain can be classed as "initial
strain'' problems since they can exist prior to the imposition (or, in the case of
plasticity, reimposition) of applied load. If a discrete element is in the state of
initial strain, the element force-displacement relationships take the following form

{r.}-[x]{ac} - {ri} -7

where { FCl } signifies the sysiem of "initial forces' at the element node points.
Physically, these values represent the forces required to impose, at the node points,
displacements which are equal and opposite to those accruing from the initial strains.
In other words, they are the forces required to suppress the node point displace-
ments due to initial strain. A procedure for the derivation of element initial forces
will be presented in the next chapter.

Upon assembly of Equations (II-7) to form the master sect of stiffness equations,
and reductien in cognizance of boundary conditions, there is obtained

(e} - [x] {e} - {»)

where now the valucs{ Pl} are the '"net thernial forces at the node points. The
solution to (II-8) is given by

(a} - [<]" {{z} ()} @-o

To obtain -the solution for stress the adopted approach is to formulate stress-
displacement equations, i.e. "element stress matrices''. In the presence of initial
strain these take the form

{"e} ' [ S ] {Ae} - {Uei} (IT1-10)

where { o 01} represents the stresses required to obviate the initial strains.
D. ELASTIC INSTABILITY ANALYSIS

The concepts of clastic instability pertain to conditions in prismatic or thin
walled structures, where the behavior across the thickness can be subdivided into
"flexural™ and "midplane' behavior. By virtue of displacements normal to the mid-
plane the midplane forces have components which tend to enhance these displace-
ments., When their magnitude is sufficiently large they produce infinitely large dis-
placements, whatever the magnitude of the loads applied normal to the midplane.

The values of midplane load which cause this elastic instabilityare the "critical loads."

In two of the developed computer programs - the one-dimensional and plate
programs - it is possible to separate completely the midplane and out-of-plane

11
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(flexural) behaviors. When considering elastic instability, the determination of the
midplane stresses and displacements is unaffected with respect to the procedures
discussed previously. However, element stiffness for out-of-plane behavior, [kez] s
now becomes the sum of two component stiffnesses:

[ 1<ez] = [kefJ o— [n] | (I-11)

where [ kcf] is the stiffness for conventional flexural behavior and [ n ] repre-
sents the effects of the midplane forces throughout the element on the out-of-plane
behavior. The terms of [ n ]consist of the dimensions of the element and the values
of midplane force, as determined in the (independent) midplane analysis. Material
properties do not appear in the [ n] matrix. Techniques for formulating Equation
(II-11) for beam and plate elements were delineated in Reference 6 and are discus-
sed in the next chapter.

Due to the segregation of midplane and out-of-plane behavior. two separate
sets of master stiffness equations would be formed in an instability problem. The
midplane equations would appear as (excluding initial strain effects)

{ ny } [ ny ] { A Xy } (II-12)

while the out-of-plane equations would take the form

{7} - [[ K, ]+ [N]} {a,} (11-13)

To solve Equation (II-13) it is of course first necessary to solve Equation
(II-12) and determine the associated midplane forces so that the matrix LNJ can be
formed. In the form indicated, Equation (II-13) can be solved. under certain condi-
tions, to obtain an "equilibrium" solution for out-of-plane behavior in the presence
of given midplane forces. These conditions dictate that the midplane forces be of
less than critical value. When they are of critical value or greater, the matrix to be
inverted will be singular.

In practice, the solution of these equations as an instability problem involves
the determination of the value of the midplane forces to cause instability. 1t is
assumed that all midplane forces are at a fixed ratio to one another at all levels of
applied load, from the onset of loading to the achievement of instability. (Corres-
pondingly, the shape of a midplane temperature distribution causing midplane forces
remains constant up through instability). Thus. the midplane analysis is performed
for any convenient magnitude of the applied loads and it is assumed that at instability
the actual intensity isa scalar, \ , times such magnitude. Equation (II-13) can then

be written as
{PZ}=[KZ] {Az}+/\[N] {AZ} (T-14)

12
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Also, it has been stated that elastic instability is independent of the value of the
applied midplane loads. Hence, setting { P, } =0

o =[5, {8} A [v]{a)
R R LA R LAR GEE

Using matrix iteration, the above can be solved for the eigenvalues 1/)\1 and the
associated eigenvectors Az} . There will be as many such eigenvalues as there
are equations in (II-15), but the only eigenvalue of interest is the largest value of
—kf representing the smallest Xi and therefore the lowest magnitude of midplane
load at which elastic instability will be experienced.

13
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CHAPTER III

DISCRETE ELEMENT FORCE-DISPLACEMENT
RE LATIONSHIPS

A, DERIVATION PROCEDURES
1. Linear Elastic Stiffness

The force-displacement properties of discrete elements, of the form
required for use in matrix displacement analyses, can be formulated by application
of one of three general approaches. These approaches are outlined in Reference 7
and developed in detail in Reference 5. In the derivation of relationships for the
subject group of threc matirix displacement computer programs it proved convenient
and sufficiently accurate to employ only one of these three approaches. The selected
approach is based on Castigliano's First Theorem, Part I, and is formulated from
fundamental principles in this chapter of the report.

To formulate this approach for the case of linear clastic stiffness alone
(initial strain and instability effects being temporarily disregarded--these are
examined in later sections) consider the discrete clement free body diagram,
sketched below (Figure III-1). The element is

Fy { 7\4\ ,f’/l::
\I';’/{ P

[/ /

|r / y F .,
.
/-’é/_(. g /"./ 2 //4\ i
0 S Sy F
N \..:___ e i

i -

Figure III-1. Discrete Element

subjected to the indicated node point loads Iy, F gs o Fiyws Fy» which include
both applied and 1e¢active forces. The corresponding node point displacements are
Bps Doy oo By AN+ An amount of elastic strain energy (U) is stored in

the structure as a consequence of the loading and displacements.

If the structure is restrained against displacements at all points of
load application except at and in the direction of the ith load, Fj, an infinitesmal
increase in the load F; to Fi+ &F; will result in an incremental displacement
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3A;. In accordance with the principle of conservation of energy, the change in

external work ( 3W) done by the infinitesmal force change must equal the change
in the stored elastic strain encrgy, 8 U. Illence,

L )

SW 5 U (I11-1)
and, since 3W = (Fj+ S8TFj) L FAS '“v’( ¥y ) <8Ai),l£quation III-1 can be written as:
(ry) (38;) sw  5U (I11-2)
when S8A—=0
¥y A = Ol (I11-3)
JAW 04

which is a statement of Castigliano's Theorem, Part I,

For purposes of later developments, it should be emphasized that the
strain energy in Equation II1-3, although given in terms of displacements, could have
originally been expressed in terms of the stresses and strains in the element,
which are in turn a function of the displacements.

The condition employed in the derivation of Equation I1I-3 -- restraint of
all displacement components except the one of interest —- is the condition associ-
ated with the definition of a stiffness coefficient. Thus, if the strain energy of a
discrete element can be expressed in terms of the element node point displace-
ments, application of Equation ITI-3 would result in the dircct determination of the
element stiffnesses.

In general, it is not possible or convenient to determine the elastic
strain energy explicity in terms of the node point displacements, and the approach
taken is as follows.

An assumed displacement component for the element can be written in the form

A=apfy(xy, 2 v af(x,y.2) v ... anfy (x,y, 2) (1I1-4)

Here, attention is restricted to developments where the number (N) of undetermined
coefficients ay.89 . . . . AN, is equal to the total number of node point degrees of

freedom. The expressions fj (x, y, z), f2 (x, y, z) may be polynomials (e.g., xyz,
3

y2, etc.), trigonometric functions (e.g., sinx, cos y, etc.) or may take other forms.
Once the displacement functions are chosen, or established as will be the

case when stresses or strains are first assumed and then integrated to obtain the

corresponding displacements, they can be evaluated at each node point, resulting in

algebraic reiationships between the node point displacements and the constants

a1, a9, . . . a)¢ The complete set of such relationships for all node points of an

element can be expressed as

16
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{A} [B] {a} (IT1-5

where
{A] is a column matrix of N node point displacements.
a) is a column matrix of the constants aj, . .. aN-
B} the squarce matrix of coefficients in the relationships between

{A } and {a }
Solving Equation III-5 through inversion of [B] , one obtains
’ -1
{a} [B] { A} (I11-6)

Since relationships between the element node point forces ( [F ) and
the displacements (A} are desired, the remaining steps in this_development per-
tain to the establishmdént of relationships between F i and {a . For this pur-
posc consider Equation ITI-3 which, for a particular node point force Fj, can be
written as

s QU ou % 9y %a gu 92N
i LYW da oA, da an. T da_ dA,
i 1 i 2 i N i

(II- 7)

Application of III-7 to all node point forces results in N relationships; these can be
summarized in matrix form as

da .
3 o oU -
Fy } [ M\i] {daj} (IT1-8)

and, as shown in Reference 5

{ da j } _ ({B] —1) T (I11-9)

A,
i

=

Also, the strain energy (U) is a quadratic form in the stresses, strains, or displace-
ment derivatives and is therefore a quadratic form in the displacements aj, as . ..

a i.e.,

N
U g (ai X aj) (III-10)
Thus, when the strain energy is differentiated with respect to a particular constant,

say a j, the resulting expression is a linear function of the constants ay, . . a
ay;s and can be written in matrix form as

ns * -

17
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= [C,- | {q} G=1,...N) (IT11-11)

and for the complete set of derivatives of U, one obtains

{%JJT} [¢] {=} (111-12)

Now, by combination of FEquations II-6, -8, -9, and -12, there results

r

{r} = ([»] ") " [c] 8] " {a} (IT1-13)
{F} [k] {A} | (I11-14)
[k} ([B] ) B [C] [B] o (IT1-15)

where, in recapitulation

or

with

[ B | = a matrix relating the node point displacements to the undetermined
constants of the assumed displacement functions.

[ C | = a square matrix, each row of which contains the coefficients of the
constants aj, . . . ay in equations which represent derivatives of the
strain energy with respectto ay, . . . an.

Note that the subscript E, used in the previous chapter to designate
element stiffness, displacements, etc., is discarded in the present chapter.

2. Derivation ot Terms Representing Initial Strain Effects
Initial strains can be defined, for present purposes, as strains that exist
in a structure prior to the imposition of applied loads. Only initial strain due to
temperature change and prior inclastic deformation are of interest to this report.
The total value of a strain component at a point can be written in the form
€ = Ei
T= €t (I1I-16)

where eq is the total strain, € I8 the strain due to siress, and ¢ is the

initial strain. For temperature change
€ = e = al (I11-17)
and for accumulated inelastic strain

€ = ¢ (I1I-18)

18
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The development of a procedure for deriving terms representing initial
strain effects requires a re-examination of the expressions for strain energy. The
strain energy to be employed is the elastic strain energy, but the strains appearing
in the related formulation must be total strains since it is these which correspond
to the displacements of the element stiffness equations.

Thus, the strain energy, U, can be written as

f € od V (I11-19)

and by substitution of the expression for elastic strain (Equation III-16)

U

1o |

Vv ,
U= % f ( cq- ) cdV (1T1- 20 )

o

The significance of these factors will be shown in the development to follow.

If the formulation of element properties is to be based on assumed dis-
placements, the relationship between the undetermined constants and the displace-
ments is simply that given by Equations III-4 and III-5. The corresponding total
strains are derived by differentiation of the displacement expression and the
stresses are obtained by use of Hooke's Law (Equation III-16a). From equation III-20,
the strain energy is

- \% -
0] = ( ei- &) dv (I11-21)
2 T -
or, in expanded form
ol : :2
U = '%‘ J ( st -2 e, e+ e )dv (I-22 )

and, as was noted earlier, this leads to a quadratic expression in the a's when
the assumed displacement function is substituted and the integration performed
i.e.,

. 2
U = gla; x 2y + h@, x e+ i oy (II-23 )
From Equation HI-8 and III-9
{Fi} - ([B] _1‘) T { ggj } (1= 24)

[ B] is unchanged by the presence of initial strain but U is now given by Equation
(IT1I-10a), rather than by Equation (III-10). Therefore i

19
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Therefore 23U
U G

)

oh
¢ aj

(I11-25)

where [ CjJ results from the indicated differentiation of g(ai X a). ) and Ohis

is intended to indicate differentiation of h(a, x el ).
For the complete set of derivatives of U, one obtains

e} 1o - 2]
Thus, by combination of (III-12a, -8a and -5) '
()L [0 o) ()
which can be expressed in a form indentical to Equation (III-26), except that now
(v} [] {o} - {*)
() - 1" (2 K

3. Incremental Stiffness

where

When midplane stresses or forces influence the behavior of plates and
beams in bending, their effect on the analytical formulation of flexural stiffness
relationships is in the form of an "incremental” stiffness, i.e., as an addition to the
usual flexural stiffness. The purpose of this section is to extend the preceeding
formulations to include techniques for incremental stiffness derivation. This develop-
ment applies only to beams aad plates in flexure which are subjected to a previously
applied and equilibrated known axial or midplane force system.

For beams and plates under the conditions of interest, the following
relationships exist between the work (W) done by the lateral and midplane loads

during bending deformation and the strain energy of bending (Uf) (see Reference 10,
. U i L
w Wv + Wh £ (IT11-30)
where
Wv - work done by the lateral loads (I"l_.F2 S Fi . FN) during flexure.
Wh - work done by the midplane loads during the displacement of the

structure caused by the lateral loads.

Furthermore, the change in W_ with respect to the displacement A; can be obtained
directly from Equation (III-30) as

20
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oW a(u W )
v . vt h) - (111-31)

04y aai

Now, if the restraint condition employed in the formulation of Equation III-3 is con-
sidered, it follows that

w w
v
and aw ow,, (II1-32)
oA, AN,
1 1

Consequently, from Equations III-3, -31 and -32

(U
F = ___<__f_"1’h_) (III-33)

i
dAi
The transformation of Equation III-33 into a matrix formulation of the

desired element stiffness matrix could be accomplished rigorously through applica-
tion of the same procedures that led to ©guation III-15. For brevity, however, the
already-developed Equation IfI-15 will be used as a basis. First, it must be noted
that Wy, can be expressed in terms of the {ateral displacements. This is also the
form tuken by Uf. Hence, (Uf—wh) can be defined as an "effective' strain energy,

U' , and Equation III-3 can be written as

au"
F, = (IT1-34
i GEW ( )

Equation III-34 is of similar appearance to Equation III-3, which provided
the basis for the development of Equation III-15. To use Equation III-34 in the same
way, one must note that of the two matrices making up_Equation III-15, only the
matrix | C| pertains to strain energy. Each row of | C| represents an equation for
the derivative of the strain energy. Since now the strain U ' is composed of two parts
one can write

[c] = [cf] —[ ch] (II1-35)
in which [ Cf] and [Ch] result from the required operations on Ug and W, respectively.
Equation III-15 therefore becomes

L] =[] =L = () [ (=7 ([ [en) [] awese

21
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It is pertinent to note that for beam segments
F L 2
Tw
W, = - == (————( ) dx (11-37)
h 2 o dx ’ *
and, for plates of constant thickness

2
Wh“’l/zlz [Nx(gw) " Ny(—s;;'—) + 2Nyy (%%’)(33’)]%(1[{38)

4. Stress-Displacement Relationships

It is possible, in theory, to determine the stresses in a matrix dis-
placement analysis by utilizing the solved-for displacements and the element stiff-
ness matrices to evaluate the node point forces. Then, these forces are transformed
into stresses. it is believed more convenient, however, to form directly a set of re-
lationships between the element stresses and node point displacements, Such
relationships are termed "stress-displacement' equations in this report and are
written in the form

{"}“ [S} {A} (ITI-39)

The procedures used to determine these equations take one of two forms,
dependent on whether the derivation of the element stiffness properties was based on
assumed stress or assumed displacement behavior. Consider first the case of
assumed stress patterns. Here, the development of element properties begins with
expressions of the form

{- }: [D] {a} (IT1-40)

Eliminating the column of constants from III-40 by use of III-24 results in
{o}-[) [3) Mo} -[0] [ &) awan
{o}=1[s] {a} -{ cri} (ITI-42)

[ s] [D] [ ] (IT1-43)
{o'} = [o] [3]7 { &)

The initial stresses { o } correspond to the stresses that occur when the node
point displacements are zero.

or

1]

where

#

When the derivation of element properties is based on assumed displace-
ment behavior, the starting point is

22
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(o} - [2] " (o]

The strzins must be derived from the displacements through application of the
strain-displacement derivatives. When this differentiation is applied to the basic
assumptions, one obtains

{ e} [H] {a} (I11-45)

and, from Hooke's Law

{o} [1«:] {<} —-{cri} (LI1-46)

Hence, by combination of III-6, — 45 and - 46

(o} () [m)[o) o) - {o')

thus, in the present case

[s] [E] [u] [B]_l (II1-48)

B. BEAM-AXIAL FORCE ELEMENT
1. Basic Considerations

The beam-axial force element, shown in Figures III-2 and III-3, appears
in each of the three computer programs described in Chapters IV-~VI. It is the only
major element in the One-Dimensional Structure Program (Chapter IV), where
detailed attention is given to the variation of temperature, etc., on the cross-section
of the element; only the gross effects on element cross-sections are treated in the
other two programs. In developing the relationships for this element, the expres-
sions employed in the One-Dimensional Structure Program will be established.

By introducing the simplifications pertinent to the other two programs, the
derived relationships can be reduced to the forms of interest.

This development is based on the following assumptions:

(1) Cross-sections originally plane remain plane.

(2) The geometry and temperatures on a cross-section are symmetric
about one axis; the bending moments act only in the plane of symmetry.

(3) The cross-sectional geometry and temperatures do not vary along the
axis of the element.

(4) Plastic strains are constant over the length of the element and are
dependent only on the stress conditions on a cross-section midway
between the ends of the element.

(5) Lateral deflections are relatively small.

23
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Elastic Neutral Axis

Figure IHI-2. One-Dimensional Element

Z (Axis of Synrietry)
—dA
/
RITH |~ -
Elastic 3
Neutral Axis ———\_
s [ [ oy ¢
JI ‘

Figure III-3. Typical Cross-Section of One-Diinensional Element
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Consider a typical symmetrical cross-section of the ciement as shown in
Figure 11I-3. In accordance with assumption (1), the total axial displacement (uT) of
an arbitrary point on the cross-section can be written as

0= T 10 6 (I11-4€)
where € is the distance to the point in the dixection of the axis of symmetry measur
from an arbitrarily chosen reference line and is both the angular displacement

of the cross section and the slope of cach flbm of the beam at the cross-section under
study. "Barred' values for u and € represent quantities associated with pure trans.-
lation of the cross-section. By definition:

dw
T
BT ~ (IT1-50)
(luT
Since the total axial strain, € N
Nop dx
- 2
e - M g4 . - £ 11 51)
S dx dx 2 T 2 T

The term E / p T represents the component of the total strain resuiting from the
relative rotation ol the cross-section, where P’I‘ is the total curvature

T is composed of two components: (1) an elastic
O o . i
strain —X and (2) an initial strain 6‘1.

Equation II-49 by the sum of its components results in

The total strain, €

eplacement of the total strain in

O« L e i - _ f
E X GXT PT
or
E [ € ~——€ : ] ”" (11I-51)
o, €. - - € -5
X X PT X

It is now necessary to relate the stresses to forces and moments ¢r
"stl ess-resultants’., The axial stress resultant, I‘\, and the bending stress resultant,
y’ are related to the stresses on the cross-section through equilibrium as follows

F fA
X (o2 dA
X

M fAcrfdA
y X

(III-53)
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(Tte "bar'" over My signifies an internal moment. Sece Chap. 11),.
und, by use of Equation III-52.

A A A )

P € J Eda - f € d4A - f E e ' dA

X Xop P B

T
A A 2 A

- i € “ua f N
M ¢ f Eg dA - f == O L JEE 1 aa (11-53a)
vy~ Cxp Py x

These equations can be simplified by referring the integrations to the clastic neutral
axis location, £ , defined as

A

- fA > £ da

N (I11-54)
f7 E aa

g -

Hence, if the variable € in Equations (I11-53a) is replaced by & £ - £ d.e., the
origin of coordinates is now placed at the neutral axis), f" Ee‘dA = 0 and the
cquations reduce to

F e EA -r'!
X X ~
I
— El — i
M - — =M/ (I11-53b)
v P )
or q 5
1 1 1
F +F F F F
= e . -y A
e EA EA EA € A
T e
™M+ MY M M ! Mt
L = - Y Y - —_‘_X‘ = ‘__"_L = - L = “:._‘y.— 113-53
P E1 £l E1 Px ¥ (Iti-53c¢)
T
where

A
EA = f EdA (elastic axial stiffness)
El = f E (£')” dA (elastic flexural stiffness)

. A R -
i i o e fao . )
Fx = f E €y dA (initital axial force) (11I-55)

Myi _ fA E ¢ xl € dA (initital moment)
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€ Average elastic strain due to the axial stress resultant.
X

e

Pe curvature due to the bending stress resultant.

Thus, the integrals containing the initial strain terms are in the form of initial
equivalent stress resultants. Note that in replacing f by f' , the displacement
W is now defined as being the displacement at the neutral axis. Also,
d di
€ € S
'\T IR dx

and, (from III-52)

Use of Equations (I1II-53¢) in Equation (III-52) results in

i = == Wi
(F_+ T ) (M + MY 13 .
R Y y i
o 5 = - € III-
_ EA El X Claea)

Equations III-52a and III-53 are the basic equations for this development.
It is important to note that the location of the neutral axis as defined by Equation
11-54 is independent of the magnitude or distribution of the initial strains; it depends
only on the variation of Young's Modulus (E) which in turn is only a [unction of
temperature. Thus, the axial stiffness EA and the flexural stiffness EI only depend
on the cross-scctional geometiry and the temperature and if E is a constant the
neutral axis will pass through the centroid of the cross-section. It should also be
noted that the axial force Fy is an axial-stress resultant with its point of applica-
tion at the neutral axis on the axis of symmetry. Correspondingly, the bending-
stress resultant (My) acts about the neutral axis. Thus, externally applied axial
forces are presumed to act through the neutral axis of the cross~section.

2. Axial Behavior
Since the conditions associated with axial load (see Figure III-2) pro-
duce a state of constant strain in the axial direction, the axial displacements are a
linear function of the axial coordinate and points on the neutral axis can be

expressed as

u = I3 + X
ks B

Thus
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and

H a
A s 1
. [B] (111-57)

1 L
U= 3 f € Fodx (I11I-58)

o '1 d'ﬁT F !
E‘ E\ - = _ s = (111-59a)
e T EA dx EA
— L dﬁT ;
I EA € EA — [ (111-59b)
X N dx X

For this element, the initial strains of interest are the thermal and accumulated
inelastic strains, Thus,

where

L F\(,] * F (I11-60)

a . .. .
F‘ initial force due to temperature strain

I"\;p initial force due to accumulated plastic stains

dw
Substitution of (II1-59) and (I1I-60) into (11I1-58), with g;— = a1 yields
- a - P ’
y-1 fL a —l—“¥:—1—-“4) EAa. - F2 +FP yax (I1I-58a)
2 o (@ 1 EA (BA ) X x ’ i
and expanding the product within the integral
= L
_ EA f 2. le a P ]
U = > o (:11) dA+20 (al) (Fx 4+ I’x ) dx (II1-58b)
L
1 a p .
" 2EA fo N A
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From Equation (I1I-12a), it fellows that

— ; .a A P
{-%D- } FA {1 0 H j‘1} T ){ (1)} (I-61)
i, 0 0 a, B

and from Equation (I1I-26) through (11-29)

i P
[1'] — S F ! i -r]“\l
: L. -1 1| ) x F a 1 FP E"
x =
(111-63), (11-63)

3. Force-Displacement Equations--YFlexural Behavior

In the case of flexure (see Figures 11I-2 and I11I-4) a distinction must be
made between the initial displacements associated with thermal and plastic strain
and the initial displacements produced during fabrication. This is necessary be-
cause the latter are exempti from geometric boundary conditions, i.e., if it is
specified that a node point displacerment be zero, it is meant that only the displace-
ment due to applied loads, temperatures and plastic strain is zero--the node point
displacement due to fabrication remains. To retain this distinction, the total
transverse displacement (w...") is considered to be composed of three parts:

w.ow 4wi ' \v[ (111-G4)

T &

whe re
W, the transverse displacement due to elastic strain

W the transverse displacement due to thermal and plastic strain

w the fabricational transverse displacement

W o

=
a3

Figure 1I-4. Beam Segment with Fabricational Displacements
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Generally w'p {the total displacement from a reference axisy is employed

in problems involving initial fabricational displacement. Here, however, it has

been decided to employ the displacements corresponding to the difference between

the total and fabricational displacements in the definition of the force-displace-
ments relationships in the program. These displacements. wp in this case, are
therefore defined as

W (w'T

To derive the equations of interest, the displacements are assumed to

(111-65)

have the form

By evaluation of III-66 and -67 at the node points there is

Wt Ay R, Ay X aX
so that
d\\'T
—_— 5 ¥
QT dx By g X ;‘14
2
1 17w
Py R \T 2a 0(534.\
dx?
KWTW "o =] 0o o |
1
WT 0 -1 -2L -3]_,2
<y
9T 1 0 00
1
9. 1 L . L
T
. 2 L i

.

\

(I11- 66)
(I11-67)
(I11-68)
obtained
N
a !
L
112
> (I11-69)
a,
3]
a

Consider first the component associated with simple {lexure, given in

this case by

1
V=3

By use of Equations III-53b and III-53¢, and with M

becomes

fL

o)

y

1
M (—
P

e

} dx
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(=
!
ro |

M v i ¥ El
S y —
Py EI

Using ,B_l_ as given by (I1I-68)

T

+M, 4 M P >dx (I1I-70a)

El fL 2 1fL a p
Uf 2 g (2a3+6a4x) dx+— o (2;13+6a4x)(My + M )y dx

A
and, by applying I a,
1

’ U -
oUrg 5
dlil
au,

L 0
dnz

F

5 P
a Yy

S — 0
da
a

(H]
g Up 5

b :}.; 4

or, symbolically

3 Ug
Oa,
J

2

y
L —al = (III-70b)
N 1 f (My + Myp ) dx
2 o _17'_‘1
to this expression, for i = 1,:+4, there results
1 3 \
0 0 0 a 4 0
1
0 0 0 a2 0
T >
—a —p
0 2L 3L a, M +MP)
2 3
0 3L 6L a 2 —a —p
1 X 4 J B L (M + M ) )
(LII-71)
[ dh
[ f] {a}+ da (II1-71a)

3
o

b R A
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From Equations (III-36) and (III-29), and with use of (lI1I-69), it follows that

[kf] = [B] =L [cf] [B] -1 (II-36a)

a -1. T { 6h @
{FZ } - [B] ) {-5;} (111-29a)
-1 T [OhY P
¥ P}f - [B ] {__ 3
{ z ( ) 132 (111-29b)
The resulting matrices ( [kf] . {Fz J , {]-" p}) are shown in Figure IlI-5, where
the subscript T has been dropped from W and § . “
;_ _
M ) 1 9 A
S il
M
- . a p f
Gl [ )] S -l -1
F ¥3
z
2
) J
[ o3 2 B 4 2 12 ]
2L L™ -3L 3L E-L -3 -L L
_ 2 2 -L2 4 9
[k ] _2E1 L 2L” -3L 3L [n] f‘_x_ = 3L -L L
3 L3 -3L -3L 6 -6 SIS -L -L 12 ~12
- 3L 3L -6 6. _ L L -1z 12
M2 M P (.1
y y 9y1
—a
{F“}: -M , {Fp} -m P ,{Ff} —[n]ﬁ S
z y Z y z 18]
0 0 °2
0 0 wlf
w
L Z

Figure III-5. One Dimensional Element — Out-of-Plane
Force-Displacement Relationships

The terms of the force-displacement relationships that arise from the work
done by the axial force during flexure will now be developed. Here, the term repre-
senting work done by inplane forces is (see section III.A.3)

32
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Fx L dw! 2
W f =T dx (I11-37a)
o

where Fx is the axial stress resultant, which is a known value prior to the flexural
analysis. Note that the slope due to the total displacement from the reference axis
is employed in the above equation since Equation III-37a emanates from strictly
geometric considerations. This total displacement is assumed to be of the form:

2 3
vt gt ' 3 ' ' -
wT_a1+a2>\+a3x tal,x (111-72)

Together with Equation (11I-66), this assumption implies that the initial fabricational
displacements take the same form as the elastic displacements.

With use of the derivative of Equation (I1I-72) in (III-37a), there is obtained:

3 5
¥ 2 4 2 9 2 2
- X o — 1 — ' 1 1
Wh 2\ [(a'z)L43(aa)L+5(a4)L +2a2a3L
(III-37b)

3 4
1] 1 1] 1
+2a2a4L +3a3a4L ]

and, by establishing the derivatives of Wh with respect to each of the constants
a’l, a'4 there is obtained.

h 1]
5 0 0 0 0 a'y
ow
h 2 3 '
da 0 L L L a',
=¥ — !
¢ e ¢ pelali
oW
h 0 i £l §L4 a'
94 3 2 3
3
ow
—h 3 3.4 9.5 | -
L 634) 0 L 5 L 5L La4

- - (II1-73)
1

T [ ch] [B] 1 this parti-
:{ ) is given by

Since the stiffness relationships are given by ( [B] B
cular contribution to flexural stiffness (denoted by [n
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[a]=c[3] 5" [e,] [3]"

The postmultiplier of the above incremental stiffness matrix is the column
of displacements W', and BT'. As stated earlier, however, it is desired that all
relationships be expressed in terms of the difference between w'r and the fabri-
cational displacements wy, i.e., in terms of wa. This is easily accomplished by
making the substitutions w',_ =w_+w, 8, .= 8.+ 8 £ resulting in

)
A

-

T T f’ T T 1
4 7 \ 4 A
O¢ b 6 p
1 1 1 4
9’[‘2 8’1“) 9 1 D ,E.
[ n] ﬁ > [ n]< > + [ n] < > (I11-744) i
w' w, w
T ) h ﬂ
1 7 7
wa) W ,1,2 W
. \ [ 2
also, since the fabricational displacements Gf, wr are known quantities in an
analysis, the product of the incremental stiffness and the column of fabricational
displacements (the second term on the right side of Equation III-74a) can be ex-
pressed as an initital force column { Pl } , i.e.
6
f
i
8¢
f 2
{ FZ} - [ n] < > (I11-75)
w
f1
w
- U
. f . ;
The explicit forms for | njand { K. } appear in Figure (III-5), where they are
included in the complete expression for the out-of-plane force-displacement
equations for the one-dimensional element. g
4. Stress-Displacement Equations ]
In general, the stresses will vary along the length of the element so that J

a presentation of the complete stress distribution would involve a voluminous amount
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of information. Thus, only the stresses at the center of the element, which should
suffice to define the significant stresses within the element and structure as awhole,
are determined.

Equation (III-52a) gives the stress at a point on the cross-section of the
one-dimensional element in terms of the stress resultants. The stress-resultants
have been formulated in terms of the displacements in the preceding two sections.
By combining these formulations with Equation (III-52a) and effecting an evaluation
at the central cross-section of the element (i.e., at x = L/2) the following stress-
displacement equation is obtained

u, - u ‘
o 1;[_%?_1_+_§.(3y —9y)—(aAT+5xp)]
Nx = L/2) & L 1 2

(L1I-76)

C. PLATE ELEMENTS
1. Triangular Plate

A detailed development of all plate element relationships would be beyond
the scope of this report. . Their development is documented elsewhere (Reference 8).
The present report simply outlines the bases for the derivation of the pertinent stiff-
ness matrices, thermal forces, etc.

The stiffness matrix for the triangular plate eclement was originally
derived by Turner, et al (Refevence 3). By use of Castigliano's Theorem (Equation
III-15) and the assumption of constant strains 9_\;, 95,, )’x‘r, the stiffness relation-

ships were re-derived for orthotropic behavior. The element is shown in Tigure
III-6. Note that the element is arbitrarily oriented in the x-y plane; use is not made
of one of the element edges as a local coordinate axis. The x-y axes are intended

to be the axes of the complete structure. This is because it is expected that the axes
of the complete structure will correspond to the principal axes of orthotropy. The
inplane thermal and plastic forces were derived from Equation 11I-29 under the
assumption that the thermal and plastic strains were constant throughout the element.

Aflter extensive investigation, it was decided to base the development of the
relationships for out-of-plane behavior on the following assumed displacement func-
tion.

W =aga_-+a_x+a 2+a £ ¥ \:2+~1 xs-m r3+'1 Xy +a \'2 I1-77
=a,+a, tgy 4) ag S L75 LB‘*) ¢9.'), ( )

It is to be noted that this function is geometrically unsymmetrice, i.e., the term
aixzy which is the counterpart of agxy® is absent. Attempts were made to remedy

this situation but none succeeded. By operating on Equation (III-77) in the manner
indicated by Equation III-36, the desired flexural and incremental stiffnesses were
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derived. The thermal and plastic moment terms were obtained by means of a
prorating of the ""edge moments' to the corner points. Both the thermal and plastic =
moments were assumed constant throughout the plate.

2, Quadrilateral Plate

The quadrilateral plate element is shown in Figure II-7. The relation-
ships for plane stress behavior are those adopted by Turner, et al, in Reference
3, i.e.

U'X = 211 + a2y

=qa,_+a,x
Oy " %37 Yy

el

Ty %5 (L1I- 78) :

There are, in fact, numerous alternatives to these assumptions. In the extensive
evaluations of Reference 5, however, it has been found that there are unimportant
differences in the resuits for these alternatives when other than a coarse gridwork
of points is involved. By use of the above assumptions and Equation III-15, stiffness
equations were formulated for the case of orthotropic material properties. With
respect to thermal and plastic forces, it was decided to formulate the required
expressions for condition of constant thermal and plastic strain.

A suitable basis for the derivation of the flexure stiffnesses was not to be =
found elsewhere. The approach adopted was first to assume the following displace-
ment function:

w = a \’3+a x2+a X+a 3-«»’1 2+'1 +a ‘(3
X 3’ a,y .sy ‘Gy_,z.y

1 2
12
(I11-79) I

Then, by means of Equation (III-36) the appropriate flexural and incremental stiff-
nesses were derived. Note that (III-79) is "geometrically symmetric", e.g., cor-

responding to the asxzy term there is an anxyz term. Also, (III-79) satisfies the e
appropriate differential equation of equilibrium. To obtain thermal moments, the

temperature gradient across the thickness was assumed constant at all points on the {
surface and corner thermal moments were defined by prorating the distributed edge

moments to the corners.

3 2
TAK Yy FAXY A, XY +a, Xy +a

erent
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Typical Force System Poinis 1-3

\ M

‘r'l A
"-u,_\_\_‘ ,..-F‘/ .
— ‘Typical Force System
Points 1-4

Figure III-7. Quadrilateral Plate Element
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CHAPTER IV

PROGRAM FOR THE ANALYSIS OF ONE-DIMENSIONAL
STRUCTURES

A. SCOPE

The computer program described in this chapter provides a means for the
determination of the stresses, displacements, and instability of structures posses-
sing, cross-sectional dimensions which are small with respect to the length dimen-
sion and where the deformational behavior on all cross-sections is governed by
elementary beam theory, i.e., the assumption that plane sections remain plane under
deformation. In addition to applied loads and thermal gradients, the effects of initial
displacements and plasticity can be taken into account.

Figure 1V-1 illustrates typical conditions which can be treated with use of the
program. The '"real' structure appears in Figure 1V-~1a, while the idealization
appears beneath in Figure IV-1b. Each discrete element is a one-dimensional
segment of constant cross-section (Figure 1V-1c¢). Compariscen of Figures IV-1la and
1V-1b discloses the limitations and capabilities of this type of idealization. Length-
wise variations of cross~-sectional geometry, as well as temperature conditions, are
represented in a stepwise manner. Distributed loads must be defined in terms of
statically equivalent concentrated forces at the element juncture points. Support
cenditions, including flexible support, can be imposed at each node point., The repre-
sentation of a flexible support consists of “flexible support” (or "restraint') ele-
ments. To distinguish between such elements and usual elements (pictured in Figure
1V-1c) whenever confusion is likely to result, the latter will be referred to as
"conventional' elements.

The force-displacement behavior of a conventional element is segregated into
inplane and oul-of-plane behavior, respectively. Formulation of the detailed rela-
tionships for this element was accomplished in the previous chapter.

The maxircum of fourteen conventional elements and four {lexible support ele-
ments can be employed in the idealization of a structure. Initial displacements of
the structure due to fabrication are taken into account by specifying the values of
these displacements at the element juncture points.

In order to provide for an arbitrary (but symmetric) geometric and tempera-
ture condition on the cross-section of each element, provision is made for the cross-
section of each element to be divided inte as many as 30 differential areas d A.

(See Section A-A of Figure IV-1c). A value of temperature can be assigned to each
differential area, thereby defining the cross-sectional variation of temperature and

also of material properties, since the latter can be defined as being temperature
dependent. .
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Flexible Support
Conditions

a. Actual Structure

TR

b. Analytical Idealization

VA
M4 A
1 — F_ M,
F %01 - X 2 4.2 ) 2
X
S T
F LA F
Rl o

c¢. Individual Element

Figure IV-1. Conditions for One-Dimensional
Analysis Program
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Flexible support elements are described by their axial stiffness ( (,u), lateral

stiffness ( Qw), and flexural (or torsional) stiffness ( ‘:6 y. These quantities will
also be referred to as "restraint coefficients'. Each flexible support clement is
associated with two node points and, in general, displacements of the node point of
the restraint element which is not attached to the structure proper is considered as
fixed. Support conditions at the other (attached) node point must be specified in con-
formity with the conditions of the problem at hand.

In general, the input must consist of the data for every element, including all
differential areas and their corresponding temperatures. However there are many
practical circumstances in which simplified conditions prevail and for certain of
these a provision has been made for reduced input. These options are detailed in
the report describing input data preparation for the program.

The capabilities for inelastic analysis permit solutions for either time-
independent or time~dependent (creep) behavior, or both in combination. The rela-
tionships for such analyses are discussed in the next scction, where the theoretical
basis of the program is outlined. The computational process for inelastic analysis,
which differs considerably from the process for elastic and instability analysis, is
treated in a later separate section, however,

B. THEORETICAL BASIS
1. Elastic Analysis
The following is a description of the analysis procedure for conditions of
linear elastic behavior, including thermal stress, initial displacements, and elastic
instability. The terms for inelastic analysis are represented since the procedure
for inelastic analysis is essentially a succession of elastic analyses. (The proce-

dures for inelastic analysis are examined in the next section).

As shown in the preceding chapter (Section II.B) the force displacement
relationships for the beam-axial force clement are

For inplane behavior

{Fx} - [kx] {“} * {F\} + {Fxp} av-1)

For out-of-plane behavior

e} ) [n]] {opw}-{m0e0)

* {M§ F, b {Mi Ff} (v-2)
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Where
{ F } . { M , F 1 are column vectors which list the forces
X y' Tz) ,
acting upon the ends of the element,
[ kx] . [ kZ ] are the respective elastic stiffness
matrices
{ u }, { 6 ,w } are column vectors which list the dis-
Y placements at the ends of the element.
{ F\ } { a } are forces produced by complete restraint
z of the element against thermal deforma-
tions.
{ F p} { } are forces produced by complete restraint
b . . R
of the element against inelastic deforma-
tions.
{ i/[— } are equivelent forces dependent on the

presence of fabricational displacements
at the ends of the element.

[ nx ] "Incremental Stiffness" - the influence of
the axial loads on flexural behavior.

The detailed form of these matrices was presented in Chapter III. There, it was
shown that each matrix on the right side of Equations (V-1) and (IV-2) contains a
scalar multiplier which is an integral to be evaluated over the area of the cross
section. [kx ] , for example, contains the scalar J ExdA | while.[ kz ] has the

£
multiplier 2 £ 2E.dA
Z3

The evaluation of the above integrals is accomplished through a subdivi-
sion of the cross section of cach element into differential areas. As noted earlier,
the element cross section can be subdivided into as many as thirty differential
areas; the temperature variation on the cross section is represented by assigning
an average temperature to these areas. Since the material properties are repre-
sentable as a function of temperature, the computer selects for each differential
area those properties which are consistent with the temperature of that differential
area.

Based on geometric, load, temperature, and material property data of
the problem and the selected analysis options the computer evaluates the pertinent
portions of Equations (V-1) and V-2) for each element. The individual element
relationships are then assembled, in satisfaction of node point equilibrium and com-
patibility requirements (Sce Chapter II), and geometric boundary conditions are
applied to yield a set of equations for: the assembled "analytical model".
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Once the stiffness equations have been formulated the analysis process
can take one of many forms, dependent upon the exercise of available options, but in
the following discussion it will be assumed that none of the possible analysis
operations, except those pertaining to inelastic behavior, are to be eliminated.
(Analysis for inelastic behavior is discussed in the next section). In such a case,
the relationships for the complete structure can be written in matrix form as:

For axial behavior
(e =[] {o}-{mct <=}
X X X X

For flexural behavior

(el ogmh o) Lopw)opoym} o
y 2 z y y y 2
+Mp,Pp} + {Mf,Pf
y = gl
These equations are presented in general form in Chapter Il as Equations (I-12) and

qIs1a); In the first step of the solution process the axial displacements, {u } 1

are determined by inversion of the Kx] matrix in Equation IV-3).

{u} =[Kx]_l{px' pxa‘Pxp} av-s

These axial displacements ({ u} } are substituted back into the element relation-
ships (Equation IV-1) to yield the element node point forces ({ Fx } j, from which
the axial stress resultants are obtained.

Thus:

The influence of the axial forces is accounted for in the flexural analysis.
The matrix [N] is a function of the axial loads and can be evaluated after the
inplane analysis is complete. The solution for the flexural displacements follows

Py = [0 ] (g m) - (o v} s

7
{5, )} (o) 2,

These flexural displacements and the previously determined axial stress resultants
are employed in the direct determination of the stresses on each of the differential
areas of each structural element.

To accomplish a determination of a critical load it is first necessary to
specify a Reference Critical Load Value-P All element axial loads are nor-
malized on this value through the relation

ref”
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Fn = A n Pref R,

where Fn is the axial stress resultant on the nth structural element.

Equation (IV-4) then appears as:

{ My’Pz} B [ Kz ] { ey'w} " pref[N ] {By,\}' } HiMya i PZG} @v-8)

+MP, PPl 4{Mf, Pf}
Yy Z . y 2
[ N] now centains the )‘n values, rather than the Fn values.,

The condition of elastic instability derived from Equation IV-8 is

p:‘cf {oy,w} ) [Kz] _I[N] { Oy’w} Av-9)

Application of matrix iteration to this condition yields the minimum Pref and
corresponding mode shape for instability,

With regard to the sclection of the reference axial load, the program
allows for two possibilities. In one, the reference axial load is automatically set
equal to the axial force computed in a designated element. Alternatively, the value
of the reference load can be designated.

Once the critical reference axial load, Prwf has been computed, the
distribution of critical axial forces, as obtained from Equation (V-7), is given by:

F =\ P Av-10)

Neither the foregoing discussion nor Chapter III has given explicit con-
sideration to the treatment of flexible support elements. Flexible support conditions
at a node point are simulated by means of this special type of element which, as in
the case of the conventional element, is associated with two node points and three
stiffnesses, one each in the direction of the threc displacement degrees of {freedom.
These three stiffnesses (or ""restraint cocfficients'), gu, Lo and l;’,; , are
defined as follows:

For axial behavior:

AF = (L) Au av-11)
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For lateral behavior

AF, = (1) 6w av-12)

w

and, for rotational behavior

AMy = (ge) A0 @v-13)

Note that the three restraint coefficients are independent of each other. It is left to
the analyst to decide upon the values of these coefficients., By analogy with the stiff-
ness matrices for a conventional element, the stiffness matrices for a restraint
element are:

For axial bchavior: . ;
[ k. ] : ‘u T Cu AV-14)
X _y L
"u u
- -
and, for flexure. CO -Ce 0 0
[ kz] = =%t 0 o0 @av-15)
U Ew - ;w
iU ek S w ;

Effects of initial displacements due to fabricational inaccuracies
. : f f
accounted for by the inclusion of a column matrix, { 8w } , composed of

initial rotational ( & f) and lateral (wt) deflections determined at each node point.
These initial deflections are measured relative to a straight line which passes
through the x-axis of the one-dimensional structure. Total deflections are deter-
mined as the addition of the fabricational deflections and the deflections computed
from Equation IV-G.

2. Inelastic Analysis

It is intended that this program be capable of solving inelastic problems
wherein the loads and temperatures vary with time, as sketched below. For analyti-
cal purposes and to avoid the necessity of listing large quantities of time increments
that may be required in the computations, points in a given load-temperature history
are first specified. These points are illustrated by the heavily dashed lines in the
sketch below; the distance between points are termed time intervals in this
report. Each time interval may then be further subdivided into equal time incre-
ments which may differ for each interval.

In an earlier development of the matrix displacement method to permit

inelastic analyses (Reference 9) the approach suggested was based on the
selection of time increments small enough so that a single computation cycle for
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(or pertaining to) the time increment would suffice to determine accurately inelas~-
tic strains, both time independent and creep strains. However, to afford greater
flexibility and possibly more accuracy under certain conditions, it is proposed here
that time-independent plastic strains be computed at the ends of each time increment
(i.e., at specific times in the history) by either an accumulative step-by-step or itera-
tive process. Creep strains, on the other hand, are computed within a time incre-
ment based on the assumption of constant stress and average temperature conditions.
For creep determinations the stress is taken equal to the stress which prevails at

the start of a time increment,

There are no limits on the number of time intervals and increments which
can be used in an analysis; the number of accumulative steps or iterations performed
at a given time in the load-temperature history in an inelastic analysis are limited,
however, by a specified convergence criterion with regard to the stresses.

Load

N Zf !

F—h\ —‘—If—"':-{yf\{_;‘— Temp.
Load, | h |
Temp. /47 i
i
|
|

]

| |
i |
i

Time —-—| p— --1 |—-—- ""Time Interval"

Increment

Time (1)
The time-independent plastic strain component of the total strain € 3 obtained

in a conventional uniaxial specimen test is assumed representable by the following
expression

n
o
ep = (-7) av-16)

where n and ¥ are temperature dependent material properties, determined, in the
analysis, fx_“om the pertinent material property versus temperature curve.

There are two options in the analytical precedure for determining plastic
strains with the aid of Equation IV-16. These are designated as Methods A and B,
respectively. Method A involves an accumulative step-by-step process and is based
on the analytical assumption that the change in plastic strain induced at a point in the
structure subject to the stress ', can be approximated as Aeép , shown in

Figure IV-2a. In general, the plastic strain change determined in this manner will be
an underestimation of the irue plastic strain change and is considered as the first

46

- = ==




e

- o e iy

Pk e usel Gl PEGN MM W

ASD-TDR-63-783

Stress (o)

wn
A

Strain (€)

(a) Method A
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(b) Method B

Figure IV-2, Methods of Computation of Time-Independent Plastic
Strains
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step toward the computation of the actual plastic strains. The plastic strain is added
to the previously determined total plastic strain ( € %:p) to determine new stresses

2 k4 . J :
o for the same temperature and load condition. Additional plastic strain changes,
Ne %:p , are computed and new stressés determined. This accumulative process is

continued for either a specified number of approximations or until the stresses in
successive approximations are in agreement to within a certain number of significant
digits as specified by the analyst.

Method B is an iterative procedure for determining the plastic strain change
and is shown in Figure 1V-2b. As a first approximation, the plastic strain change,

. " 1 . .
DNe lpn , is determined for the stress o . In general, the plastic strain change so

determined will be an overestimation of the true value in regions of higher stress in a
given structural stress distribution. The strain change, Ae ép , is then employed

together with the previously determined value (which initially is zero) to compute an

average strain change, Qe (}p , which is used to obtain the next approximation to

the stress, o Z. This iterative process is continued until convergence conditions
specified on the stresses are satisfied. It will be noted that for Method B the plastic
changes are replaced by new values with ecach computational cycle but for Method A,
they are accumulated after each cycle.

The preferred method to employ in a particular plastic analysis will depend
to a large extent on the stress strain curve and the details of the structural con-
figuration and loading. For materials which exhibit ideally plastic characteristics
i.e.n= @ } Method A must be adopted. For highly redundant or thermally strained
structurces, Method A is preferable, but for situations in which the stresses are some-
what linearly related to the external loading, Method B is recommended. However, it
should be realized that either method should yield identical results in the limit.

The computational procedures employed to predict the accumulation of time-
independent plastic strains will now be briefly outlined. Consideration is given to the
ith time ti in the load-temperature history condition under investigation for a given

structure. Since, as discussed previcusly, several approximations are computed at
time ti a particular approximation to a quantity at time ti will be denoted by the super-

script j.
In Method A, the steps are as follows:

(1) The increment of plastic strain developed during the (j-1) th approxi-
mation is added to that previously accumulated to establish a total plastic

)

strain ( € e ) pertinent to the jth approximation. Accumulated

T,
i
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strains associated with the strain hardening history are also

evaluated. j
(2) The total plastic strains ( € ep y are transformed into the related
S5
1
3
clement plastic forces { F‘(l } and { Myp, pr} and solutions

for the associated stresses (o iJ ) and elastic strain components

( € OJ) are effected with use of the matrix method discussed in the
i
previous section.

(3) The signs (tension or compression) of the stresses in the (j-1)th and
()th approximations are compared with cach other. If the sign re-
verses the acceumulated strain due to strain hardening is set equal to
Zero.

(H  Using Equation IV-16, the accumulated strain due to strain hardening, and
the elastic strain component, a series of operations is performed which
leads to the plastic strain change (Ae“ ... ) pertinent to the jth approxi-
mation. CP;

The result of step (1) is employed in step (1) for the ( + 1)th approximation.

The process is continued until the stresses of step (2) are in agreement with the stresses
of the previous approximation in accordance with a specified criterion.

For Method B, the computational sequence is as follows:

() The average increment of plastic strain ( A€ Cp) determined in the (j-1)th

iteration is added to the total plastic strain as computed for the (i-1)th time
increment to define a new approximation to the total plastic strain,

€ o

I T

i

2)  The new approximation to the total plastic strain is then used in the
determination of the (jith iteration stresses, in the same manner as step
(2) of Mcthod A,

(3) The magnitude of the plastic strain change for the (j)th iteration is
developed with use of Equation (IV-106), the stresses determined in (2),

and €’ 5 . This procedurc for this determination differs from that
ot
1
of step (3) of Method A.
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(4) The (j)th approximation to the average plastic strain change is computed
and the process of steps (1)-(3) is repeated. The iterative sequence is
continued until the specified convergence criteria on stress is satisfied.

The creep analysis capabilities of the subject program are bhased, in part, on
the following assumptions regarding the mathematical representation of conventional
uniaxial Constant Stress-Constant Temperature creep properties.

(1) The primary stage of the conventional creep curve is represented by the
following relationship

€ B (P 1™ av-17)

(where e is the base for natural logarithms)
whereas, in the secondary stage one has the minimum crecep rate

. (l E il -
(€,= 4 ) cxpressedas
' Bo
S av-1s)

C

where B , B, m and w are temperature dependent properties of the material. By
equating the creep rate, as obtained by differentiation of Equation IV-17 with respect
to time, to the creep rate of Equation IV-18, an expression for the transition time, t,
between primary and secondary creep is obtained as

1

=, w =
t (;;—B) m-1 v -19)

[r—

Intrinsic in Equation IV-19 is the assumption that the transition time is only a function of

the temperature and not the stress level.

(2) There exists a threshold temperature, T » below which there is no
creep strain, irrespective of the magnitude of the imposed stresses.

There are various methods available for predicting the accumulation of creep
strains for the general condition of varying stresses and temperatures of interest here.
The method adopted for the present program is referred to as the "strain hardening
rule' which is fully explained in Reference 9. The overall computational procedure is
outlined below for the ith time increment.
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(1) Computations are initiated by the determination of the average temper-
ature, Ti’ for the time increment, from

T. + T,
T R i-1 V=20
i 2 a )
where Ti and 'I‘i 1 are the temperatures obtained at times ti and ti 1 respectively,

from the initially specified temperature-time curve. The average temperature is next
compared with the creep threshold temperature, TC. If Ti > Tc and there is no loss

of creep strain hardening due to a stress reversal, there is a change in creep strain,

JANGS A for the time increment, A Li' This change is added to the total creep strain
i

accumulated prior to the interval to yield a new total accumulated creep strain. If, on

the other hand, Ti < :Ec’ the change in creep strain within the interval is zero and the

total accumulated creep strain from the previous interval is carried on into the next

interval.

(2) Next, the transition temperature ti is computed from Equation IV-19
with material properties obtained for the average temperature, Ti' The type of creep
{(primary or sccondary) induced during the time increment is determined by comparing
Li with an equivalent creep time parameter tc computed from the following ex-

i-1
pression derived from kEquation IV-17 (See Reference 9).

1
| e || w
S, m
¢ il av-21)
Cl 1 B B l o i 1|
v = -1
i
where € Cs is the creep strain accumulated by virtue of strain hardening (also com-
i-1

puted in step (1)).

3y If LC < ti primary creep prevails and the magnitude of the creep
i-1
change, AN e o is given by
i

C, [
1 1

JAN €, Ie | v-22)
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where € - is obtained from Equation IV-17, written as follows

B, o . m
-1 L it t.
i l i l _1> (Ci—l ARN av-17a)

=@ Bi (c

The creep change is then given the same sign as the stress, o i If, on the other hand,

-1’
tc > ti secondary creep is indicated and the change in creep strain is given by
i-1

Ae L At Iv-23)
where the creep rate éc is obtained from Equation IV-18,

() Finally, the total creep strain, € o , is determined as thesumof this

T,
i

change in creep strain and the prior total creep strain and employed in the determination
of the ineiastic node pointi forces and a stress analysis is performed in the manner de-
scribed in the previous section.
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C. ILLUSTRATIVE EXAMPLES
1 Comparison with Alternate Solutions
The objectives in presenting the following illustrative examples are to
(1) Outline the various types of results that can be obtained through
exercise of the respective program options, and
(2) Demonstrate the level of accuracy of solutions achieved through use

of the program.

To achieve the second objective it is necessary to effect comparisons
with solutions obtained through alternate techniques. Since these other techniques
are limited in applicability to relatively simple conditions the following compara-
tive discrete element solutions are necessarily concerned with simple conditions.
The capabilitics of the program with respect to irregular geometry, nonuniform
load, etc., are therefore not demonstrated in these analyses but, in the next section,
a complicated problem for which only limited comparative results are available is
presented.

The following analyses are performed in the present section
(1) Stress and Deflection Analyses

(2j Beam-column, clastic
)  Beam-column, inelastic with initial displacements.

(2) Instability Analyses
(1) EKlastically restrained column-thermal buckling
(h) Tapered column subjected to a distributed load,
(c) Column on four supports.

a. Stress and Deflection Analyses

(1) Beam-Column

Figure IV-3a illustrates the conditions for the analysis of a
simple beam~column problem. The structure shown is loaded by an axial force (P‘)

that is equal in value to threc-fourths of the Euler critical load, PE y i.e.
2
3 3 rE
el T o (IV-24)

The relationship between transverse applied loads (in this case a concentrated load
(P_) at midspan) and displacement is linear in the presence of a fixed midplane
force. Thus, the present results arve representable in nondimensional form.
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Listed below are the values of maximum deflection (deflection at
midspan) and of maximum bending stress at midspan as calculated for idealizations
consisting of various numbers of elements. Due to symmetry it was possible to treat
only one half the span. The parameters employed in defining these values were
chosen in correspondence with the exact solutions, which can be written as follows:

v P (sin __';'_)T_ X ¥(sin LITJ— \/—)\—) }
() )2 - ws
L P, L

/N sin T /X 2

(a.)<L>(Px> a /N (sin = X)(5111IL§/T)
E ¢ PZ sin 7 /A

(IV-26)
1)
X
where A =~ (IV-27)
|
and ¢ is the distance between the neutral axis and the extreme fiber in compres-

sion.

Also tabulated below are the percentages of error with respect to
the exact solution. Figure IV-3b plots the degree of correspondence of the calculatec
and exact solutions as a function of the number of elements employed. There is
extremely close agreement even for the crudest idealization. There is also excellent
agreement between the deflected shapes computed using the exact solution and the
solution based on three clements inthe semispan, as illustrated in Figure 11I-3c.

Max. Displacement Max. Siress
O oy pey e O Frror
\N0.0f (\\’ ) ( px> « Error < g\><£>( px ) b Error
. Llcmcflts . L P 5 = )
Per Semispan Z 7
i -0.6006 1.72 -3.722 41.55
2 -0.6096 0.25 -5.4387 14.62
3 -0.6102 0.15 -5.848 8.17
4 -0.6103 0.13 -6.017 5.51
5 -0.6103 0.13 -5.106 4.11

ot
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b. Beam-Column, Inelastic, with Initial Displacements

Sketched below is a simply supported axially loaded beam with initial
displacements (wy) of the form

B ool m X
w5 0.005 sin T

&

The beam is assumed to be heated instantancously to a uniform temperature of 400°F,
An axial load of 3750 pounds is then applied and sustained at this value. For simpli-
city, the cross-section of the beam is assumed to be composed of two area clements,
each equal to 0,125 in.2. Since there is symmetry, it is only necessary to consider
half the beam, idealized as five elements of equatl length, Numerical values used for
the material constants are

| n=12 e B=0.72 x 1070 in/in
f w = 0,158 x 10 B = 0.000238 in/psi
: m = 0.72 ¥ = 0.65 x 105 psi
i E=9.1x10" psi a = 13.25 x 158 in/in/°F

These values are representative of 2024-T4 Aluminum (Sece Reference 9).

Upon application of the axial load. the beam deflects elastically with
a total theoretically-predicted deflection at the center (w,,) given by

(WO)
’ max_
Yo 1~ P/P], Cross-Scetion
‘ N Deflected Shape
1 [ ecrlg l
P = 3750 1b . — - — P

-
x . I
/ e - ’ .
| W Yo 0.125 in.?
20.0" f

El .
where P = 7 —1,_2 For the beam under consideration, with (wo)nn\: - 0.005 in..

the above expression gives a central deflection of w,, = 0.012359 in.. whereas the
program yielded a value w 0.012540 in.

f [d

£ The applied load was selected small enough so that upon its initial
application only elastic strains are experienced. With the passage of time. however,

& creep strains are sustained. These increase the deflections and bending moments

and, therefore, the stresses. This eventually results in plastic strain.

Results of the application of the computer program to this problem
I are presented in Figures IV-4 and IV-5. Since the optimum time increment. A t.
was not known, computations were performed for decreasing time increments. Method
B was employed in the computation of time-independent plastic strains and three-

] digit agreement on the corresponding stresses was specified.
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Computed total lateral deflections at the center of the beam, presented
as a function of time in Figure IV-4a, are similar to those obtained in various exper-
iments (sce, for exampie, Reference 11). Based on the results shown, it appears that
the column becomes unstable at a critical time of 49 hours. As shown in Figure IV-4b,
the cross-sectional arca on the convex side of the column experiences a stress rever-
sal at the critical time. Immediately prior to the critical time the latera! deflection
is finite.

Inelastic strains computed for the center section of the beam are shown
as a function of time in Figure IV-5. As indicated, time-independent plastic strains
are induced only during the final stages of the deformation process.

b. Instability Analysis
(1) Elastically Restrained
The analysis condition is shown below in Figure [V-6a.
The beam is simply supported at the left end but at the right end is clastically
restrained by a torsional spring; transverse and axial deflections at the right

end are prevented. The end restraint is assigned the following value.

Qe 727 X 10.4 rad/1b in.

T

-30

Lateral Deflection - in
\‘\_\\ -
.4

500 60

Time - Hrs

Figure IV-4. Total Lateral Deflection at Center of Beam
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Figure IV-5. Axially Loaded Beam - Stress and Strain History
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Figure 1V-6. Elastically Restrained Column
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The beam is assumed to underpo a temperature change (AT) from the siress free
state. It is required to determine the value of AT for elastic instability,

The element spacing chosen for analysis is illustrated in Figure
IV-6b; this spacing was sclected in an entirely arbitrary manner. Based on these
dimensions, the computations resulted in

1.58
g (IV-28)

where a is coefficient of thermal expansion. By adapting a solution presented in
Reference 12, one can obtain a comparison solution of
14.6 1
AT (IV-29)

)
() I

It is seen that the difference between the two solutions is insignificant, despite the
arbitrary choice of element spacing. )

(2) Tapered Column Subjected to Distributed Load.

A problem that represents a measure of complexity but which is
nevertheless solvable in closed form is that which involves the prediction of the
instability of a tapered cantilevered column subjected to 2 triangular distributed
load (see Figure IV-7a). The moment of inertia varics in accordance with the
expression.

N
= j . as
I IO( L ) (IV-30)
where Ig is the moment of inertia at the support. The expression for the varia-
tion of "shear load" (q) is
X

a=q, (- <) (IV-31)

The idealization for analysis is shown in Figure IV-7b. The
distributed loading was replaced by a series of concentrated loads at the node points
and for convenience the reference critical load (P ) was chosen as the axial load
in the element adjacent to the support. e

The significance of the approximation of the distributed load by a

series of concentrated loads can be reduced by developing the relationship between
qo and the axial load in the element near the root. This relationship is

6O
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Figure IV-7. Buckling of a Tapered Column Subjected
to a Triangular Distributed Axial Load
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Vil ==

q,l pl'cf/ (3N-4)
) i
er / 3(N-1)

(g)
2

where N is the number of node points in the idealization. Thus, the evaluated
critical reference loads are divided in the indicated manner to obtain the calcualted
critical value of distributed load. For purposes of comparison with the exact solu-
tion, the results of analyses for various numbers of node points are shown below.
For purposes of comparison with the exact solution as given in Reference 12,
pg 139, the results are presented in the form of the ratio between (‘:1014/2)cr and the
Euler critical load (P ET T “El, ) of a simply supported beam ef the same length
1.2
and moment of inertia I ;. The "exact" value of this ratio is 1.317. Figure IV-T7c
gives a graphical representation of the results. Note that in contrast with uniform
load and geometry conditions, the present case requires 10 node points to reduce
the error below enginecering significance.

Number of qol/P (calculated) % Error*
Node Points - E

3 0.912 130.7

4 1.117 +15.2

5 1.201 + 9.7

11 1.299 +1.41

156 1.308 + 0.7

L
317 - &L/

*0 Errvor = 131 2 pE

1.317

(3) Column on Four Supports

As an example of 4 more complicated instability problem, the
case of the uniform section column, supported at four points, has been solved. The
conditions of analysis are illustrated in Figure IV-8. The outer ends are simply
supported while the twe inner supports are clastically restrained. Solutions for this
problem were developed by Klemperer and Gibbons (Reference 13) and described by
Timoshenko in Reference 10, pg. 107.

In performing the present analyses, two gridworks were employed:

a subdivision of each segment between supports into three elements, and also a sub-

division into four elements. The rigidity of the supports is defined by the restraint

coefficient, {, . However, for purposes of data representation it is preferable to

embody this consideration into a ''support rigidity parameter", defined as CWL ,
Py
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Figure IV-8. Instability Analysis of a
Column on Four Supports
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where P

E

Figure IV-8b.

| between the parameters, P(_’_/PF/ , and

t L/P
W\

is the Euler eritical load for a single span, Pl‘ P

4 |

expressed as the ratio between the critical value of the applied load, P

E’

. The results,

ey and PI" are

tabulated below for a wide range of support rigidity parameters and arce plotted in

Figure 1V-5b also shows the results presented in Reference 10,
Figure 72. There is extremely close agreement hetween the present results and
those given in Reference 10, It is noteworthy that three distinet relationships
governed by three different

L mode shapes, are involved. These mode shapes, as determined by the output of the

present analyses, are shown in Figure IV-38c¢; their regions of ocenrance, as defined

inReference 10, are shown in Figure 1V-8c. It is noteworthy that, for values of

support rigidity parameters that lic within the center region and near the curve
intersections it was difficult to obtain convergence to the lowest root. Support

‘ rigidity parameter values in excess of 80 required over 150 iterations for conver-
gence.
Support P
S Cr
Rigidity B
Parameter E
L3
gw 3 Elements 4 Elements
< Jevy Sy Doy Sy
TTZEI Per Span Per Span
3 1.910 1.909
9 3.718 3.7179
15 5.506 ——e
30 6.151 6.147
45 7.105
90 9.014 9.005
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2. Analysis of Practical Complex Conditions

As an example of the analysis of a complex indeterminate one-dimensional
structure for thermal stress and applied load, the conditions illustrated in Figure --
IV-9a are examined. The conditions shown were analyzed for support reactions in
Reference 14. The present analysis considers not only the equilibrium solution for
stress and displacement but also solves for one form of elastic instability.

The discrete element idealization employed appears in Figure IV-9 b and
¢. The entire length of the structure is divided into nine clements each of which is
assigned 10 differential areas. In addition, there is a flexible axial support at the
right end. The material propertiecs are specified as: E = 10'7 psi, and a - 10'5 in./
in.°F, while the temperature distribution is

T = 2x + (().~lx'2 - 2)0¢ 0 < x < 10 Iv-33)

T = 20+ 20¢& 10 « x < 20 av-34)

(It is assumed that the temperature in the stress-free state, T, is O°F). Thus, the
temperatures vary bothin the axial and depthwise directions. In the left span, the
temperaturcs on each differential area of an element take on the value at the center
of the element.

~ —Resulls are presented in Figure IV-10. The support reactions are in close
correspondence with the results of Reference 14 (see Figure 1V-10a). The différences
between the two sets of values are due to the fact that the Reference 14 results are
obtained from an essentially "closed form'' solution while the present values include
discretization errors. The variation of extreme fiber stresses associated with these
reaction forces is also shown in Figure IV-10a.

Figure 1V-10b shows the displacement patterns due to temperature alone,
temperature and applied load combined, and buckling.
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Figure IV-9. Illustrative Complex Indeterminate
Beam Problem
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CHAPTER V
PLATE ANALYSIS PROGRAM

A, SCOPE

The objective of the plate analysis program is to determine the structural
behavior (i.c., stresses, displacements, and buckling stress) of flat plates of arbi-
trary planform and thickness variation subjected to nonuniformly distributed applied
loads and temperatures, The plate material can be orthotropic but the principal
dircetions of orthotropy and corresponding material properties must be the same at
all points throughout the plate. Stiffening members can be accommodated; the pro-
gram can in fact be used for truss or beam-gridwork analysis. The temperature
dependence of material propertics as well as inelastic behavior can be taken into
account.

Three types of discrete elements are accommodated in the program:

(1) The beam segment (Fig. 111-2).
(2) The triangular plate (Fig. 111- 6).

3) The quadrilateral plate (Fig. 11I-7).

The behavior of each of these elements is segregated into "inplane' (or axial) be-
havior and ''out-of-plane” (or flexural) behavior. Relationships were formulated

in Chapter III for the beam segment. The bases for the derivation of the properites
of plate elements are discussed in Chapter III; details are given in Reference 8.

Figure V-1 shows a typical plate structure whose behavior is to be predicted by
the usce of the program. Assume further that it possesses orthotropic material
properties with the principal dircctions of orthotropy being parallel to the x and y
axes. The reference axes for analysis must correspond to the principal directions
of orthotropy.

Once the system axes have been established, an arrangement of discrete ele-
ments in idealization of the actual structure must be decided upon. Program capa-
city limits the scope of the idealization to a maximum of 80 node points.

If the thickness of the actual structure varies continuously, this variation must
be represented in a stepped manner. With regard to the choice between the triangular
and quadrilateral elements, it is believed that the quadrilateral is sufficiently versa-
tile for most applications and, in addition, yields a solution for stress that is more
easily interpreted than the solution for stress in a triangular plate. The triangular
plate is indispensable, however, under certain geometric conditions.
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(d) Section A-A — Idealization

Figure V-1, Typical Plate Analysis Problem
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Applied direct loads can exist in either the x, y, or z directions at each node
point, and applied moments about the x and y axes can be present at each node.
Normally, loads will exist only at the node points along the edges of the structure and
they will likely be initially defined as distributed stresses. It is the responsibility of
the analyst to transform the distributed applied stresses into equivalent concentrated
forces at the affected node points. Subject to previously cited limitations, as many as
10 independent applied load conditions can be solved for in a single compulational
sequence.,

The temperature distribution is assumed to be known at the start of the analy-
sis. It must be emphasized that only one temperature condition per computational
sequence is permissible since the stiffness properties of the system are dependent
upon the material mechanical properties which, in turn, are allowed to be dependent
upon temperature. In general, a change in temperature conditions requires a recal-
culation of the equations governing the elastic behavior of the structure.

The temperature state of the idealization for inplane analysis is initially
defined by the temperatures of the node points. During the computational process
each element is assigned a uniform temperature value which is the simple average of
the temperatures at its corner points.

In the plate idealization for out-of-plane hnalysis, the input must define the
"thermal moments'' (Mv Msf ) at the node points. These are

a E__ N 3 .
o Outer Surface
e L oW Ry t
x H - —— aTg dg | -
h (1 I Xy '“yx) ) £ Temp.
T 5 ¥ T O |
g 2k |k
e | = 1+ —i—
M = Ex( "yx ) aT¢ d¢ M
¥ -
_h 1= u Xy H yx) o / _a
¥ M 1 M

(V-1) Axis
where £ is a coordinate measured normal to the middle surface. For the particular
case of an isotropic plate of thickness t with a linear temperature gradient through
the thickness and constant material properties
2
a
= E a (T1-To)h
Mo = C170 (v-2)
12(1- 4 )

where T, and T, are the outer and inner surface temperatures, respectively. During
the computational process, each plate element is assigned a thermal moment which is
the simple average of the thermal moments at its corner points.
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For each flexural clement, the thermal moment at cach end (node point) must
be included with the input. The formula for computing this value is:

l dA ¢

A u'—;:

MAQ =f Ea Te¢dA | - i =t
| |

(V-1

Temp.

I — Elastic Axis

or, if the material properties are vegarded as constant for the purpose of this deter-
mination and the cross-scction is a solid rectangle, then

| ry
i1 '
: )
— G E a (T1-T2) bd = d
MA = 5
© S A /chp.
—— (V-4) ---—'-I b '4— 12
The material mechanical properties E , K, 2 o, G, and the
Xy Xy yx Ny

coefficient of thermal expansion ( @) are cach permitted to sustain an independent
variation with temperature, as represented by as many as five points on the material
property versus temperature curve. This would appecar to be a sufficient number of
points for the common structural materials. If the true relationship is extremely
complicated across the full range of temperatures it is likely that the problem
involves only a restricted portion of this range, which in itself can be represented by
five points. When evaluating the material properties for a given element the compu-
ter first selects the element temperature and then establishes the desired properties
by linear interpolation of the material property versus temperature data.

Capabilities for ineclastic analysis included in this program relate only to time
independent behavior. The basic terms for inelastic analysis are included in the
next section, which is a review of the computational process for elastic analysis.
As in the case of the beam program (Chapter IV) inelastic analyses are performed
as a series of clastic analyses. The incorporated rules 1or material inelastic
behavior as well as the procedures which govern the series of analyses for such
behavior are examined in a later section.

B. THEORETICAL BASIS
1. Elastic Analysis
The following discussion of the analysis procedure begins with a treat-

ment of the inplane analysis sequence since these operations are always performed
first by the program. The relationships between the inplane corner point
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displacements (u, v) of each element and the corresponding corner point forces are
expressed in the form:

- -
F_ jl-‘up
T W { } } « P v-9)
F l F
¥ LY
where [K ] is the element "inplane" stiffness matrix, rF 5 , I N are
Xy 17 x y J

p_p
"thermal forces'" at the node points and Fx'Fy}arc the node point plastic forces

(assumed known in this discussion). The algebraic form of these relationships is
detailed in Chapter III.

Based on the pertinent input data -- geometry, loads, temperatures, and
material properties -~ the computer first evaluates the inplane element relationships
and constructs with them the system of equations that represent the analytical model
of the complete structure for inplane analysis. These assembled equations are of
the form

b g b - j' w0

& P
Y
P
where P“ are applied lgads at the node points, ‘ K w} is the "master inplane
=y P p.P el
stiffness matrix', and xa and X »are the "net' thermal and plastic forces
P}’ Pvp

at the node points. Although Equation V-6 indicates a single column of applied loads,
as many as 10 different applied load conditions can be treated in an inplane analysis
cycle for a given temperature distribution and in the absence of inelastic behavior.

Only one temperature condition can be treated since the stiffness matrix [va] is

a function of the material properties and these in turn are a function of temperature.

For each desu;na.ted support condition a column and the corresponding row are
eliminated from the matrix and the affected 1‘0\vs are removed from the

column matrlces{ } { } { } , and{ X } . Utilizing the sub-
p. P
y

script "R" to designate the thusly reduced matrices, one obtains

' Px u P\:a P‘{p
P - [ ny] { v } - a - p (V=6n)
Ly R R P P
R Yy R Yy 7 R
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u

The basic unknowns in Equation {(V~6a) are the displacements {v

} and these are
solved for as follows:
a 1 ™
-1 P p\_
I {ec} + [kl 29" <1 |
= |K + K. + V-7
3 LRy ] 3 H
{" R [ W]R Pyl n =2 po p.b [
P y
- R 5]

Once the solution for the displacements has been achieved, a "listing' is made
of the displacements associated with the respective elements, so that they can be
applied to the determination of the element stresses. Relationships between the
stresses in the element and the element node point displacements are also stored in
the program in the following form:

”
2 o

[ e ) B
X u X Y x j
TR, - . r P _8
~ [Sxy] { v } Oa Y V-8)
-:rv gy c—‘! P

{g‘(, Ty © ,} is a listing of the stresses at the corner points of the element,

[Swy] is the "element stress matrix", and { c\? 0, nv"'} represents the

stresses developed on the basis of inducing the thermal expansion elastically.
Equations V-8 are discussed in Chapter IIL.

The procedure employed for out-of-plane analysis is quite similar to that
described above except that in the presence of instability effects an additional or
"incremental' stiffness results from the presence of midplane forces. The element
equation is now written as

— . (... « - P
M 8 M M
X X J X X
M L [ 6 _J _ — = X
=g [ kz] * [“] y M. M P V-9
Z w y y
(¢4
: - D
FZ Iz

where | n| is the incremental stiffness, the terms of which are functions of the
midplane stresses determined through Equation (V-9). The detailed form of
Equation (V-9) is examined in Chapter III. Again, the individual element stiffness
matrices are evaluated and summed to form the stiffness matrix for the complete
structure and the support conditions are applied, resulting in
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L e CalE Al
My ) L[ K, | "'[ Nﬂ By ;oM e Mvp (=80
P f R p° p P

Z R W 7z Z

R R~ R

If the solution for the equilibrium displacements and stresses resulting from
applied loads and temperature change is sought, one obtains:

P

g ) -1 " M M “ M )
% | J % X X L
p o R | o o h |
w Lp,J) Lp® P J)
JH { i R -, R l
&
and, from the appropriate relationships
e ) e A - a) e p
My M M!
2 8 X X
M S M @ mr P
Y 8 y d
= y g = —_ P \.
< M } [SZ] 2 : <0 o mg Ml e
4 l)
U 0 Q.
)
Q 0 ¢ I
{ ey J I ' R U
It is to be noted that moments and shears per linear inch, rather than stresses, are
employed to define the internal distribution of load. (Such moments are '"primed"
rather than "barred" to indicate a distinction with the concentrated corner point I

moments).
If critical stresses are to be determined (i.e., if an elastic ix&stability
analysis is to be performed) {M LM, P and {M , M, P
X'y Tzl X y A R
are set equal to zero, the matrix [NJ is multiplied by the scalar X , and Equation
V-10is rearranged as follows

J{ ?hl = —[KZ]: [N] -{{:\ (V-9)

¥

w
¥
The scalar X\ (which is the eigenvaluc to be determined) as well as the relative
magnitude of the displacements {Ox, ey, w} (the eigenvector, which is the

buckled shape) are then determined through matrix iteration as described in Chapter
II. Note that A represents a value by which all applied midplane loads are
multiplied to achieve instability. Thus, if A = 1.0, instability is reached and if

A > 1.0 the given midplane loads are not sufficient to produce instability.

The matrix [N] is dependent upon the values of stress computed in the
inplane analysis portion of the computational cyecle. If many load conditions are
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cited, the program will automatically utilize the inplane stresses due to the first
inplane load condition in the formulation of the [N:] matrix.

An additional capability of the program is its ability to treat "oblique"
support conditions. It sometimes occurs that a structure is constrained to displace
in the direction of axes other than those employed in the definition of the behavior
of the structure as a whole. See sketch)., Such conditions can

v N

) ) \/,— x'

o

be accommodated simply by specifying for cach affected point, the direction of the
special x” axis by means of node points. The program will then transform the
relationships at all these points into equations referenced to the special axes, and
boundary (support) conditions can be defined with respect to the latter.

2. Inelastic Analysis Procedure

An extension to the above-described plate analysis program permits
analyses for time-independent plastic behavior under conditions of varying stress
and temperature. This extension is limited to the use of the triangular plate element
and excludes orthotropic behavior, i.e., only isotropic behavior can be treated.

Consider the typical triangular plate element sketched below. Since the
stress, and therefore the plastic strain, varies across the thickness of the plate, it
is necessary for purposes of plastic analysis to divide the thickness into laminae,
or sub-elements, of thickness A t. The location of a given sub-element is specified
by the £ value to the center of the element, as shown., As many as 10 sub-elements
can be employed in a given analysis.

z | ¥ / /|

TG

o
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To define the temperature history of the structure it is necessary to
specify the initial temperature of the entire plate and a temperature history for each
lamina at every node point.

The effective temperature for each sub-element is then computed as the arithmetic
mean of its three corner temperatures. These average temperatures are used to
determine the pertinent material properties and the temperature differences A T.

At each specified time in the load-temperature history, equivalent thermal
stress resultants for inplane and flexural behavior, as required for construction of
the corner thermal forces and moments, are computed using the following equations

a
N = Ea ATAh V-13
1 -HK) -;L ) Z ( )
= a
M E a -
(1_#) > AT g'An (V-14)
Note that Equation (V-14) is a modification of Equation (V-1). Note also that in the
inelastic analysis routine the thermal moments are evaluated by the computer,
based on input data, while for elastic analyses these moments must be hand com-
puted and entered with the input.

In addition, the inplane and flexural stiffnesses required in the deter-

mination of the elastic neutral axis ,f— and in the construction of the stiffness
matrices are given by

Eh Z E Ah (V-15)

I

E1 - ZE({ 2% A h (V-16)

where

= £ An
Er=&-¢ andf ZE r !

The various inelastic column force matrices present in the general force
displacement relationships are composed of the following inelastic stress resultants.

NP ZF(G + ke Py an MP- L _SE(e P+pe Pre' An
* - Yo X alnb X yp s
p p =p_ 1 P p '
Ny = zE(e +pe Py An My = 2ZE(€y vpe By £ AL
( T a-H5 Iy di
P _ 1 p p p '
Ny "2(1+#)ZE yxy 4 h - 2(1+/¢)ZE7 5 A h
T
(V-17)
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boerod

The symbols ¢ > , € J and Y p represent the total plastic strains for
X y Xy, T
T T r i

the biaxial stress case and are computed with the aid of plastic analysis Method A
discussed in Chapter 1V for the uniaxial stress case. By consideration of the -

uniaxial stresses and strains employed in Mcthod A as effective stresses and

strains, and adopting the biaxial inelastic stress-stirain relationships consistent with
p

the incremental theory of plastic flow, plastic strain increments A € N 8
D ) g
A ev : ) Vw} arce computed and accumulated for a given load-temperature
- T ~T

Foremmnd

history. Details of this portion of the procedure are delineated in Reference 9.

The extension of the plate program requires the detailed computation of s
the stresses for each area from the following expression

r ~N — —_ N 4
o 1 I 4] [¢] A'I‘ € . W
X 3
T
S M A 132 H 1 0 laATh 4< 6\']) \
’ (r- 7 ) T
- M
T xy 0 u———-*z ) 0 “,p
L J L — L J \. ) T)
8 x|
u
+ S_ + ! S 8 , (V-18)
N3 v 3 z y

A\

The general computational procedure parallels that of the one-dimensional
program. TFirst, the load-temperature history is divided into time intervals and
each of these is in turn subdivided into time increments. Consider, for example, the
computation of the stresses at time t. . At this time the elements of the plate may
have experienced prior biaxial plastic straining. Node point deformations are com-
puted for the imposed leading and net plastic forces and are then employed in the
computation of the biaxial stresses from the element stress equations. These
stresses are used to evaluate effective stresses which are used to compute the
change in effective strains required subsequently in the determination of the change
in biaxial plastic strains. The latter are added to the prior total plastic strains to —
establish new values for the total plastic strains. Stresses are then computed and
the process continued until successive stresses arc reproduced in satisfaction of a
convergence criteria.
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C. ILLUSTRATIVE EXAMPLES
1. Comparison with Alternate Solutions

As in the case of the one-dimensional structure program, the objectives
in presenting the following illustrative examples are to provide an outline of the
results to be obtained through exercising the various program options and to demon-~
strate the level of accuracy that can be achieved with use of the program. To
accomplish the second objective it is again necessary to compare results with solu-
tions for relatively simple conditions. For the present program, the comparisons
are further limited in versatility by the relatively few available alternate solutions
for orthotropic plate problems. Although the theoretical formulation of the governing
differential equations for orthotropic behavior are well established, there are few
numerical solutions to such problems. No significant solutions for thermal stress
conditions in orthotropic plates have been found by the authors. Hence, in what
follows, the thermal stress problems are concerned only with isotropic plates.

The following types of analyses arce performed in this section;
(@) Stress and Deflection Analyses
(1) Isotropic Rectangular Plate - Thermal stress analysis

(2) Orthotropic Rectangular Plate - Plane stress analysis

(3) Isotropic Triangular Plate - Thermal stress and flexure
(b) Instability Analyses

(1) Isotropic Rectangular Plate - Thermal buckling
(2) Orthotropic Rectangular Plate - Flexurc and Instability

Analyses

The analyeis of a problem involving geometric irregularities and more practical
circumstances than the above problems will be deseribed in the next section.

a., Stress and Deflection Analyses
(1) Isotropic Rectangular Plate - Thermal Stress Analysis

The rectangular plate shown in Figure V-2a has a length that is
twice its width and has a thickness variation in the width direction given by
h = [1 -0.9 (y ) Z] ho . The temperature varies in the width direction,
(o]

oL = [(-Z-) - —:13—] To’ producing midplane clastic thermal stresses. A solution for

these thermal stresses was advanced by Mendelson and Hirschberg in Reference 15.
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Temperature Distribution:

Thickness:

[1 - 0.9 (%

a. Actual Plate

Figure V-2, Isotropic Rectangular Plate for Thermal Stress Analysis
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b. Idealization of Heated Plate - One Quadrant

Figure V-2. (Concl'd) Isotropic Rectangular Plate for Thermal Stress Analysis
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From symmetry it is only necessary to consider a quadrant of
the plate. The idealization for analysis consists in dividing the plate quadrant into
54 quadrilateral plate elements as illustrated in Figure V-2b. Judgement dictaies
the placement of small elements at the tip and side where stresses change rapidly in
consequence of edge effects and the temperature gradient and thickness changes
are most severe.

Selected results from the present analysis and from Reference
15 are plotted in Figure V-3. All results are expressed in nondimensional form.
The distribution of longitudinal thermal stress ( c'\) is given on a cross-section

located 0.25¢ from the end (x = 1.75¢), where this component of stress is signifi-
cantly influenced by "end effects'. The chordwise stress (ay), which is entirely

due to end effects, is plotted for the tip chord (x = 2.00c) while the chordwise
variation of shear stress ( T\y) is shown for x = 1.60c. The dotted lines represent

the computer program solution; the solution from Reference 15is shown by solid
lines. As seen from this figure, there is close agreement hetween the two solutions.

(2) Orthotropic Rectangular Plate — Plane Stress Analysis

For plane stress, one of the most interesting orthotropic plaie
problems to have been solved is illustrated in Figure V-4a. An orthotropic plate,
Ey/E = 0.17 and G = 0.134, of aspect ratio 4.0, isloaded by equal and opposite

X E
concentrated forces P in the manner indicated. The plate thickness is h.

The idealization for discrete element analysis consists of the 36
rectangular plate elements shown in Figure V-4b (due to symmetry, only a quadrant
of the plate need be treated). Again, smaller elements are utilized in the vicinity of
the concentrated load. The discrete element analysis results are presented in
Figure V-4c, where they are compared with the results derived by Conway
Reference 16) by use of a classical type of approach. It is seen that there is an
extremely close agreement between the two solutions.

(3) Isotropic Triangular Plate - Thermal Stress and Flexure

To illustrate the accuracy of the program in the analysis of plates
subjected to temperature gradients across the thickness, the equilateral triangular
plate shown in Figure V-5a has been analyzed. The lincaxr 450 °F temperature
gradient through the thickness is assumed to be constant throughout the plate. An
analytical solution for this type of problem was obtained by Maulbetsch (Reference
17).

Since the plate is symmetric about the x-axis it was necessary to

consider only one half of the plate. The idealization was achieved by means of 21
quadrilateral plate elements and 7 triangular elements as shown in Figure V-5b.
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Figure V-3. Comparison of Results - Isotropic Plate Thermal Stress Analysis
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Figure V-4. Inplane Stress Analysis — Rectangular Orthotropic Plate
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(b) Idealization of One-Half of Triangular Plate

Figure V-5. Isotropic Triangular Plate for Thermal and Flexural Analysis
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To satisfy the support conditions along the swept edge, it was convenient to apply
"oblique'" coordinates along this edge.

The results of the discrete element analysis are compared to the
results of Reference 17in Figure V-6. The deflection of the plate along the x-axis
is plotted in Figure V-6a. An almost exact agreement exists between the deflec-
tions obtained from the program and the analytical results of Reference 17.

The thermal moments M, and My (moments about the x-axis
and y-axis respectively) are independent of the y-coordinate. The distribution of
these moments in the x-direction are shown in Figure V-6b. The symbolized points
for the program results correspond to the elements adjacent to the x-axis. With
the exception of two elements, the results are in very good agreement.

Figure V-6¢ compares the thermal twisting moments Myy by
plotting their distribution in the y-direction (the twisting moments are independent
of the x-coordinate). The discrete element results given in Figure V-6¢ correspond
to the elements adjacent to the y-axis. The results are again in very good agrece-
ment except {or the triangular and adjacent rectangular element which are in fair
agreement.

b. Instability Analyses
(1) Isotropic Rectangular Plate — Thermal Buckling

As an illustration cf buckling caused by temperature change,
the problem of a uniformly heated rectangular plate, simply supported along two
parallel edges and restrained against rotation and normal expansion along the
other two edges, is analyzed. The conditions of analysis are as shown in Figure
V-7 where 4 rectangular elements have been employed in the idealization of a quad-
rant of the plate.

The theoretical buckling stress in the x-direction for this plate
is determined by the expression
2

k E 2 2
¢ L T _cC b
Tx 2 (5) T o) \w
Xop 12(1- %) b X 12(1- w =) \ h

(V-19)

Using the value of the buckling coefficient kc as 6.65 (from Reference 10), the criti-

cal stress is computed Lo be 4050 lb/in.z.

[}
’

q . |
9 A temperature rise of 15.9°F, corresponding to a thermal stress
of 2000 i1b/in.”, was imposed on the plate and an inplane and instability analysis
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performed by the subject computational program. The results of the inplane analy-
sis indicated a compressive stress of 2003 1b/in.2 in the x-direction and the
instability analysis showed a critical inplane load factor (——:—) of 1.9015. The pro-
gram, thercfore, predicted a buckling stress of 1,9015(2003) = 3860 1b/in.2 which
agrees within 5 percent of the theoretical value of 4050 1b/in.2. The accuracy of the
predicted buckling stress may be improved by utilizing a larger number of elements
in the idealization.

(3) Orthotropic Rectangular Plate - Flexure and Instability Analysis

Formulas for the deflection of rectangular orthotropic plates
subjected to a concentrated lateral center load and uniform lateral pressure have
been published by Hearmon (Reference 18), and formulas for the instability of
orthotropic plates under various support conditions are presented in Reference 19,
The following is a comparison of certain of these formulas with results obtained
by discrete element analysis for the particular conditions illustrated in Figure V-8a.
Two cases are examined:

(1) The deflection of the center of the plate under a concentrated
center load of 35.5 pounds.

(2) Instability analysis under uniform compression stress in the
x~-direction.

For the deflection analysis a quadrant of the plate was idealized
by 36 elements as shown in Figure V-8b. The discrete element analysis resulted in
a center deflection of 0.0208 inches corresponding to a center concentrated load of
35.5 pounds. From Reference 18 the center deflection is determined by the formula

P
w = ST 5 ‘ o0 (V-20)
24.8 (== 0 X2 )Q)
ad b3 ab
where q
Ext‘3
D, = = V-21)
X 121 F'xy /Lyx)
E i
Dy = (V-22)
12(1- /lxy ;I,yx)
DQ = /Lyx Dx + 2ny (V-23)
Gyy h3
Dy " Tz (V-24)
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which results in a deflection of 0.025 inch. It is noted that the discrete element
approach gives a stiffer solution. In view of the fact that the Hearmon formula is in
itself an approximation, the agreement between the two solutions is considered to be

satisfactory.

The buckling stress of the orthotropic, simply supported plate
was determined by the expression

2
mw
o = n 2V Do (V-26)
cr o
From Reference 19 the valve of ¢ is given as
bq
c= (2.0 42— )

(V-27)
DDy

which results in a computed buckling stress of Cfxcr = 10,160 lb/in.z.

For the discrete element instability analysis the buckling mode is
assumed to be a double buckle, i.e., the aspect ratio 2 plate will buckle like two
square plates. By considering antisymmetry in the x-direction and symmetry in the
y-direction it is only necessary to analyze a quadrant of the plate. The idealization
is the same as for the deflection analysis (Figure V-8b) and compressive edge
forces of 1000 lbs/in. are imposed in the x-direction. Analysis by the subject pro-
gram resulted in inplane stresses of 10,000 lb/in.2 in the x-direction and a critical
inplane load factor (1/A) of 1.781, The predicted buckling stress is therefore 17,810
1b/in.2 which is considerably larger than the 10,160 1b/in.2 from Reference 19. This
difference is consistent with the deflection analysis in that the discrete element
analysis again gave a stiffer result than the alternate analytical solution.
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2, Analysis of Practical Complex Conditions

The trapezoidal plate shown in Figure V-9 furnishes a more practical
problem involving geometric irregularities. The plate contains a centrally located
reinforced hole and is assumed to be simply supported on all edges. The mechanical
loading consists of a uniform lateral pressure, inplane loads in both the x and y
directions, and balancing shear flows along the edges. The o, stresses are uni-
form and the o, stresses vary linearly as indicated in Figure V-9. In addition the
plate is subjectéd to linear temperature gradients through the thickness which pro-
duce thermal moments. o

Since the plate and loading conditions are symmetric about the x-axis,
only a half of the plate is treated in the analysis. Figure V-10 shows the half-plate
idealization consisting of 43 elements and utilizing both quadrilateral and triangu-
lar plates. Oblique coordinates (x’, y') were used along the tapered edge. The
distributed edge loads and shear forces were transformed into equivalent concen-
trated x and y forces at the edge node points, and the lateral pressure was pro-
rated as concentrated z forces to the node points. The thermal moments were
hand computed from Equation V-2,

The assumed material properties E and o as functions of temperature
are shown in the following table:

Temp E a

P 106 1b/in.2 1076 in./in.-°F
100 10.65 12.6

200 10.25 12.86

300 9.82 13.09

400 9.35 13.32

500 8.73 13.54

Poisson's Ratio was assumed constant at 0.3,

A complete analysis was performed including inplane, out-of-plane, and
instability analyses. The inplane direct stresses are shown in Figure V-11 for
several rows of elements. The stresses for the elements along the x-axis are
plotted in Figure V-11a and the stresses corresponding to elements along the sides
paraliel to the y-axis are given in Figures V-11b and V-11c. The results show that
the direct stresses are tension for all the elements in the reinforcement around the
hole. Since the reinforcement is the cooler portion of the plate, the tension stresses
are reasonable.

The out-of-plane displacements along the ordinates y = 0 (x-axis) and y=17
inches are plotted in Figure V-12.
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The inplane load factor (1/ X) determined from the instability analysis

is 1.3 which gives critical stresses of Oxer 1.3(2000) = 2600 and oy = 1.3
cr

(1600) to 1.3(800) = 2080 to 1040 or an average a'ycr of 1560 lb/in.z.

Since no test data or alternate analytical solution for this plate is avail-
able, it is not possible to make a comparison of the discrete element solutions
with other results. Approximate buckling stresses can be obtained, however,
by assuming a 20 x 22 inch simply supported rectangular plate without a hole and

loaded by uniform x and y edge forces. On this basis the critical o and cry

stresses, assuming o 0.6 o are determined from Reference 20 to be 2420

2 2 X - .
Ib/in.” and 1450 lb/in.” respectively. These critical stresses are in agreement
with the resuits from the discrete element analysis.
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CHAPTER VI
CYLINDER ANALYSIS PROGRAM

A SCOPE

The cylinder program can be used to analyze the structural behavior, i.e.,
displacements and stresses, for heated stiffened and unstiffened fuselage segments
and cylinders. The skin material may be cither orthotropic or isotropic for an
untapered structure (a body of revolution with the generatrix parallel to the longi-
tudinal axis), For a tapered section, however, the skin material must be isotropic,
The internal members (stiffeners and frames) are permitted to be composed of an
isotropic material which need not be the same as the skin material. The temperature
dependence of the material properties is taken into account.

For illustration a simplified fusclage section is shown in Figure VI-1la. In
Figure VI-1b is shown an idealization scheme which contains most of the per-
missible elements. For usc in idealizing the structure, the cylinder program ac-
commodates the following types of elements:

(1) Axial force elements, for idealization of longerons or longitudinal
stiffeners.

(2) Axial-flexural element, employed in the representation of frame elements.

(3) Triangular plate clement, used to represent cither the skin or the plate
portions of a stiffenced bulkhead.

(1) Quadrilaterial plate clement, for idealization of portions of the skin and
bulkheads.

The force-displacement relationships for these elements were discussed in
Chapter III,

The existing capabilities of the program with respect to the size of the
problem which can be handled are limited to the inversion of a 150th order stiffness
matrix. This limitation cannot be precisely defined in terms of the permissable
number of node points or clements; it can only be stated that no more than 150 dis-
placement degrees of freedom can remain after application of the displacement
boundary conditions.
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The applied loads consist of concentrated forces in the x, y, z directions
and moments about the x, y, z axes at each reference point. If a pressure load is
exerted on the shell then it is necessary for the analyst to redistribute the pressure
load in the form of concentrated loads at the reference points. The program can
accommodate up to 10 applied load conditions per structural problem.

The relationships for computing the axial, or inplane, thermal forces are
coded in the program. The computation of these thermal forces utilizes the
elemental geometric, temperature, and material properties which are input quanti-
ties. A single average temperature is assigned to the axial and axial-flexural
elements. For the skin elements (triangular and quadrilateral plates) the temper-
atures are specified at each reference point. The temperature of a given skin
element is computed as the simple average of its ¢corner point temperatures.

The out-of-plane thermal moments must be hand computed and entered as
input to the program. For the axial-flexural element an average thermal moment
is entered as part of the clement input data. For the skin elements the hand
computed distributed thermal moments about the local x and y axes are stated
at each reference point. In computing the concentrated corner thermal moments
for a given element, the distributed moments along the edges are assumed to be
the average of the distributed moments at the corners:

As in the Plate Analysis Program, the Cylinder Program is capable of
accommodating "oblique'' support conditions. In some problems the fuselage
segment may be constrained to displace in the direction of axes other than those
employed in the definition of the behavior of the structure as a whole. Such con-
ditions can be handled simply by specifying the coordinates of three points which
define the special axes. The program transforms the elemental relationships
at all the affected reference points into equations referenced to the special axes,
and boundary conditions can be defined with respect to the latter,

In addition to possessing the capabilities described above, the program has
been designed to accommodate relationships for instability analysis, two additional
types of elements, and the capability to deal with systems of approximately 480th

_order. To a limited extent, these additional capabilities are coded or contained

in the existing program but were not checked out as to operational correctness as
of the conclusion of the subject study.
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The two above-~-cited elements, which were intended to complement elements
(1)-(4), are the following:

(5) Composite plate element of arbitrary planform, used in idealizing skin
and bulkhead panels,

(6) Composite axial-flexural element, representive of longerons, stiffeners,
and frames.

These composite elements, are assembled from more basic elements in the
Plate Analysis Program and the One-Dimensional Element Analysis Program. re-
spectively. By incorporating into the present program the appropriate parts of
these two programs, the elemental matrices for the composite elements are
computed. Essentially, this process consists of assembling the complete matrices
for the composite elements and reducing out the equations pertaining to the inter-
mediate peints which are not reference points on the fuselage structure. This
produces the clement matrices referenced to the attachment points between the
composite ¢lément and fuselage structure.

With regard to planned capabilities for larger order systems, the program
has been designed to accommeodate a maximum of 80 reference points per idea-
lization. Zince there can be six degrees of freedom (3 linear and 3 angular dis-
placements) at each point, a total of 480 degrees of freedom can exist in an idea-
tization. An important limitation is that sufficient ""displacement’ and "force"
boundary conditions must be applied so that no more than 238 degrees of frecdom
remains in the problem. A "displacement” boundary condition represents re-
straint against a given displacement component. A '"foree boundary condition
exists when a force component at a given point is known to have zero value under
all load and temperature conditions. In either case, the effect of applying such
a condition is to remove one equation and the corresponding unknown from the
problem.

B. THEORETICAL BASIS

The theoretical basis of this program parallels, for the most part, the
approach taken in the plate program (Chapter IV). The differences lie mainly
in the use of three, rather than two, coordinate dimensions for cach element and
the fact that in the cylinder analysis the membrane and bending behaviors are
incorporated in a single computational process.

It is of interest, however, to describe the analytical procedures involved in the
reduction of the governing stiffness equations by virture of gcometric and force
boundary conditions. These proccedures provide the theoretical basis for the planned
extension of the program to accommodate larger order problems . In accordance
with the displacement approach to matrix structurat analysis, the complete set of
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analysis, the complete sct of force displacement equations are in general given by:
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Equation (VI-1) has been arranged and partitioned as follows:

The first paxutlon refers to forces and displacements affected by

force boundary conditions, thus Pl 0.

The sccond partition refers to forces and displacements unaffected

by either force boundary conditions or displacement boundary

conditions.

The third partition contains the forces and displacements affected

by displacement boundary conditions thus A3} 0 and {Pg}

the reaction forces at the support points.

It is possible to reduce Equation (VI-1) so that only the unaffected applied

forces and moments P.2 , and displacements ( { Ay ) appear in the relationship.
This is acconiplished by simply removing the third p(u ition and operating upon the

K a 5
remaining | K | and|N |matrices and thermal forces {P } as follows: The [l\]
matrix is reduced by:

. . . -1 .
[l‘]nF [1\22] B [1‘21] [Ru] [Rlz] (V1-2)
where [Rll] [ ] = [N ]
[Re] - [rpp] +[Me]
Similar to the reduction of the [ \] matrix, the [N] matrix is reduced by:
[N]RF= [sz] - [ H ]
The reduction of the thermal force column is accomplished by:
SRS A I CHRI O N W A E :
N o [1‘21 U Naall B i) VS
The reduced form of Equation (VI-1) can now be written as

{Pz}’ [K]RFT {Az}'{Pa} RF (VI-5)

where [K] RFT [K] rr " L N] RF

i) v
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The displacements Az , which-are unaffected by boundary conditions, can be
solved for by the expression:

{Az} RF {{P 2} Q}RF} (V1-6)

Utilizing the known {Az}displacements, the displacements, {Al}, associated with
the force boundary conditions, can be determined by :

{Al} - '[Ru]—l [R1z] {A2}+ [Ru] N {Pla} V1-7)

Having determined all the displacements, the displacements of the individual
elements are established and the elemental stresses, or stress resultant forces,
are computed.

If critical stresses are to be determined (i.e., if an elastic instability analysis
is to be performed) { P2 } and {P } RF are set equal to zero, the [K] RF matrix

is reduced, and an equivalent reduced [NRF] matrix is derived. The[ ]RF matrix
is reduced by partitioning it as follows:

( F 3\ — l = r . \
I:I KRFH } Knrlz :x
y y
M l o
ORI L.t G R N P
3%, K | K u
F, RE o ‘ RF .o w
\ J L | N .
and,
[K]RFR= [KRFZZ] - [KRFZI] [KI{FH] - [KRFm] (V1-9)

An equivalent reduced [N
the reduced [K]

matrix is obtained by subtracting [K]RFRfrom

RFR’

RF]

RFT matrix which is obtained in a similar manner to [K]
That is, first the [K |

JRFT matrix is partitioned as shown:
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My KRrT Krrr 9%
: 11 12
M l 8
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Z zZ
- - = = - T - - T = - _1
1 7 g KRPT | KRFT 1 [ Vim0
X 21 | 22
Fz I w
LS & L sl . S/
and then reduced by the expression:
-1
K [K . ] - [k ] [K 1 [K ‘ ] (VI-11)
[ ]RFTR RF'122 [ RFTZTL RFTIIJ RrTlZ

The equivalent reduced incremental matrix is obtained by
[NRFR]Eq [x ]RFTR -[x ]RFR (VI-12)

For the purpose of an elastic stability analysis, Equation (VI-1) may be
restated in the reduced form as:

F u ). F?
LI [K] + [N ] - X (VI-13)
F L RFR RFRJ | w F
z Eq. z
P an
S g h c , ix .
etting F:, and F?a equal to zero, the matrix [NRFR]Fq is

multiplied by the scalar \ , and Equation (VI-13) is rearranged as follows:

u u
lx'{w}= B [K]le [NRFR]Eq_ {w} (VI-14)

The scalar ) , which is the eigenvalue, and the eigenvector, {u , (which is
the relative magnitude of the displacements and thus represents the buckled shape)
are determined through matrix iteration.
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C. ILLUSTRATIVE EXAMPLIS
1. Stress Analysis for Unheated Conditions

Figure VI-2a illustrates the conditions of analysis for a ring-stiffened
cylinder. The cylinder is cantilevered and subjected to an applied concentrated load
at the free end. The conditions shown were duplicated in a test performed at the
NACA Structures Laboratory; results of the test were described in Reference 21.

Due to symmetry, only one half the structure need be considered in
analysis. The analytical idealization :ﬁppears in Figure VI-2a. Rectangular plates
in plane stress (Element 4) are employed in representation of the skin; the flexural
stiffness of these plates has been neglected. The ring segments are axial-flexural
elements (Element 2); their behavior is limited to flexure in the plane of the ring,
shear, and direct axial loading. The middle line of these elements coincides with
the middle surface of the skins so that the "eccentricity' is zero.

Results of the discrete element analysis, the solution obtained from beam
theory, and the test data appear in Figure VI-2c¢. Only the longitudinal stresses in
the skin are compared but comparisons of other stress components can be shown ”
to follow the same trends and lead to identical conclusions. The beam theory results
are grossly in error at all points and, in certain locations, even fail to predict the
correct sign (tension or compression) of the resulting stress. The accuracy of the
discrete element solution, on the other hand, is excellent at all points. Discrete
element solutions to this problem have been published by other investigators (see
References 22 and 23). Generally, the latter have utilized shear panels in idealiza-
tion of the skins, but their results agrec closely with the discrete element solution
of Figure VI-2c.

2. Cylinder Thermal Stress Analysis

Anderson and Card (Reference 24) have recently described elevated tem-
perature tests of ring-stiffencd cylinders. One such test specimen is shown in
Figure VI-3. Due to the imposition of heat the cylinder skin assumes the longitudinal
and circumferential temperature profiles shown in Figure VI-4, resulting in a state
of thermal stress. Only one-half the length of the specimen is shown since the
temperatures are symmetric about ring number 5. Also, there is symmetry about
the z-axis so that only one-quarter of the complete cylinder need be considered in
analysis.

The analytical idealization is shown in Figure VI-5. As in the previous
example, the skins are idealized with use of Element 4 while Element 2 is employed
in idealization of the ring segments. In the present case, however, there is an
eccentricity between the middle line of the rings and the middle surface of the skin
and this was taken into account in the analysis performed. Pertinent material pro-
perties, as given in Reference 24, are listed in Figure IV-6.
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Figure VI-2. Analysis of Ring-Stiffened Cylinder
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Figure VI-6. Material Properties for Heated Cylinder
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The results of analysis are shown in Figure VI-7. This figure is a re-
production of the one shown in Reference 24 with the present results being given by
the heavily dashed lines. As indicated the discrete element solution corresponds
with test data to approximately the same extent as the analytical approach proposed
in Reference 24. Elementary theory is seen to be entirely inadequate for prediction
of the correct results.
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