
UNCLASSIFIED 

AD 432005 

DEFENSE DOCUMENTATION CENTER 
FOR 

SCIENTIFIC AND TECHNICAL INFORMATION 

CAMERON STATION. ALEXANDRIA. VIRGINIA 

UNCLASSIFIED 





·•· 

THIS DOCUMENT IS BEST 
QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLYo 



></-'6 

FTO'-TT- 64-9ü 

irt 
o 
o 

•- 
■>* 

CO 
•* 

■^ 

QC 

O ' 

CD o 
s 
s 

TRANSLATION 

COSMIC   RESEARCH 

Volume Nr. 1    -     Issue Nr.  3     -     1963 

FOREIGN TECHNOLOGY 
DIVISION 

CEX2CGX3 
AIR FORCE SYSTEMS COMMAND 

WRIGHT-PATTERSON AIR FORCE  BASE 

OHIO 

432005 
»^ 

v6\<3&* 



FTD-TT-   64-90/1+2+4 

UNEDITED ROUGH DRAFT TRANSITION 

COSMIC RESEARCH 

English Pages:    217 

THIS TRANSLATION IS A RENDITION OF THE ORIGl- 
HAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR 
EDITORIAL COMMENT. STATEMENTS OR THEORIES 
ADVOCATED OR IMPLIED ARE THOSE OP THE SOURCE 
AHO DO HOT NECESSARILY REFLECT THE POSITION 
OR OPINION OP THE FOREIOH TECHNOLOGY DI- 
VISION. 

PREPARED BYt 

TRANSLATION DIVISION 
FOREIGN   TECHNOLOGY DIVISION 
WP.AFB, OHIO. 

FTD-TT-     64-90/1+2+4 



Akademiya Nauk SSSK 

KOSMICHESKIYE ISSLEDOVANIYA 

Tom I -Vypusk 3 

Noyabr' - Dekabr' 

Izdatel'stvo Akademii Nauk SSSR 

Moskva 1963 

pages 339—430 

FTD-TT-64-90/1+2+4 



TABLE OF CONTENTS 

Pa £e 

The Evolution of the Rotation of a Dynamically Symmetrical 
Satellite, by V. V. Beletskiy    1 

On the Adiabatic Invariants of Motion of a Charged Particle in a 
Stationary Heterogeneous Magnetic Field, by V. D. Plemnex 
and G. A. Skuridin 3C 

On the Density Distribution and Intensity of Charged Particles 
Without Taking Into Account Interaction in a Stationary 
Geomagnetic Field, by V. D. Pletnev 11 

Motion of Charged Particles in a Magnetic Dipole Field with 
Allowance for Dissipation of Energy, by V. M. Vakhnin, G. A. 
Skuridin, and I. N. Shvachunov 12': 

Investigations of Cosmic Radiation Beyond the Atmosphere, by 
N. L. Grigorov, D. A. Zhuravlev, M. A. Kondratfeva, I. D. 
Rapoport, and I. A. Savenko Ic3 

Outgoing Radiant Fluxes onto Variously Oriented Surfaces at a 
Height of 300 km, by K. Ya. Kondrat'yev and M. N, Fedorova . 177 

Balloon Investigations of the Radiation Balance of the Earth's 
Surface-Atmosphere System, by K. Ya. Kondrat'yev, G. N. 
Gavvskaya, and G. A. Nikol'skiy 185 

The Value of Geographic-Geological Methods of Studying the Moon, 
by Yu. A. Khodak, V. V. Kozlov, I. N. Tomson, and L. V. 
Khoroshilov 204 

Main Structural Elements of the Moon, by Yu. A. Khodak ?lc 

Chronicle ' • ?28 

-I- 



THE EVOLUTION OF THE ROTATION OF A 

DYNAMICALLY SYMMETRICAL SATELLITE 

V. V. Beletskiy 

A complete system of equations In osculating 
elements for describing the rotational motion of 
a dynamically symmetrical satellite is proposed. 
The use of averaging with respect to one or two 
fast variables reduces the complete system of 
equations to simpler equations; in a number of 
important cases the averaged system can be Inte- 
grated to completion in closed form.  The theory 
thus formulated is used to investigate motion 
under the action of various perturbing factors 
(moments of gravitational, aerodynamic, and 
magnetic forces and of the forces of light 
pressure, aerodynamic dissipation, and Foucault 
currents).  This article is a development and 
continuation of previous articles by the author 
[a, 9]. 

Many authors have investigated perturbed motion of artificial 

satellites around a center of mass.  The interesting articles by 

Naumann [l] and Colombo [2] on the effect of magnetization of the 

shell of a satellite (and also gravitational moments) should be 

noted.  Their investigation [l, 2] was limited by its framework of 

application to the specific satellite Explorer XI. Hagihara [3] 

considered a large number of perturbing factors and their effect 
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on the rotation of a satellite. However, some of his hypotheses 

and results [2] seem questionable. For example, his dependence of 

the moment of the aerodynamic forces on the angle of attack is 

questionable. His investigation ['A  sometimes leads to results 

contradicting well-known gyroscopic effects: instead of a precession 

of the axis of a rapidly swirling body under the action of a restor- 

ing moment, Hagihara obtained DJ an asymptotic tending of this 

axis to a certain position. The formulation of the problem by 

Naumann, Colombo, and Hagihara [1-2] is somewhat restricted b-j  the 

assumption., tha* unperturbed motion of a satellite is pure rotation 

around one axis' (longitudinal or transverse). This same assumption 

was also used by other authors: Notni and Oleak [4], Warwick [$] — 

in investigating the-effect of the atmosphere; Zonov [6], Rosenstock 

[/] —..in investigating the effect of eddy  currents. Often, 

as a result, the change in only one characteristic of motion is 

considered (for example, Warwick, Zonov, and Rosenstock [5-7] 

considered only the angular velocity), and the evolution of the 

motion as a whole is not considered. 

In the author^ previous articles [8,. 9] he considered the 

evolution of the parameters of rotation and. orientation of a satel- 

lite under the action of gravitational moments and moments of the . 

forces of aerodynamic pressure (allowing for the effect of regression 

of the orbit). 

These articles dealt only with secular perturbations which 

describe the motion in the first approximation, but did not consider 

higher approximations and did not present a closed system of equa- 

tions enabling us to obtain such approximations.  On the other 

hand, the author [8, 9]  did not consider the effect of a number of 
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external factors on the motion. 

Therefore ic seems necessary to carry out a more detailed 

investigation, firstly, in the direction of refining the analysis 

of the motion, and secondly, in the direction of allowing for the 

effect exerted on the motion by a large number of external factors, 

such as electromagnetic effects, the effect of light pressure, 

and the effect of moments of dissipative forces. 

The main results of this investigation are set forth in the 

present article. 

The initial basis for a description of the evolution of the 

rotational motion of a satellite is a system of equations in 

osculating elements. In the author1s previous articles [8, 9] 

such a system of equations was not presented completely.  A complete 

system of equations in osculating elements (for the case of a dynam- 

ically symmetrical satellite) is proposed and investigated in 

Section 1 of the present article. These equations allow us to 

ascertain not only the secular perturbations, but to obtain higher 

approximations to the solution, in some cases in a fairly simple 

closed form. The secular perturbations are ascertained by averag- 

ing the equations in osculating elements over the precession and 

orbital periods. The solution of the equations in osculating 

elements averaged only over the precession period may be called a 

"second approximation".  in Section 1, in particular, it is 

shown that in the important case where the moments of the external 

forces have a force function, motion even in the "second approxima- 

tion" is divided into a regular precession (with constant and 

quasi-constant parameters) around a kinetic-momenturn vector of 

constant magnitude and the precessional-nutational motion of the 

FTD-TT-64-90/H-2+4 
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kinetic-nxmentum vector itself.  As a result, the equations of motion 

of the kinetiCHinnenfcum vector in certain cases can be integrated in 

closed form. The problem is even further simplified, if we limit 

ourselves to just secular motion. It is shown that the equation 

of the secular-motion trajectory of the kinetic-momentum vector is 

obtained by equating the twice-averaged force function to an arbi- 

trary constant. 

The theory developed in Section 1 is used in the following 

sections to analyze the effect of specific perturbing factors on 

the motion. 

In Section 2 gravitational perturbations are considered.  In 

particular, it is shown that in a circular crbit the motion of the 

"second approximation" is described in Jacobian elliptical functions. 

Motion in an elliptical orbit Is also considered, and a comparison 

of the approximate solutions and solutions obtained oy  numerical 

integration of the exact equations is made. This comparison shows 

that the "second approximation" describes the motion with a very 

high accuracy (to hundredths of a degree in actual cases). 

In Section 3 moments of the forces of aerodynamic pressure 

and friction are derived, analyzed, and approximated. 

The effect of a moment of the forces of aerodynamic pressure 

is investigated in detail in Section 4.  in particular, zhe  effect 

of the rotation of the earth's atmosphere is considered. The 

ascertained effect of the "tracking" of the instantaneous velocity 

vector of the center of mass of the satellite by the kinetic-momentum 

vector should be noted. This "tracking" occurs in such a way that, 

for example, in a circular orbit the kinetäc-mcaentum vector precesses 

around a certain axis stationarily positioned in the plane contain- 
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ing the instantaneous velocity vector and the normal to the orbital 

plane. 

Section 5 deals with the effect of a moment of the forces of 

aerodynamic friction, under the action of which, as is shown, 

the satellite asymptotically tends to establish itself in a regime 

of maximum aerodynamic resistance. 

An analysis of motion under the action of electromagnetic 

factors is made in Sections 6-7. The effect of the intrinsic 

magnetic- field of the satellite and of the magnetization of the shell 

of the satellite in the earth1 s magnetic field is considered in 

Section 6; the possible sets of motions of the kinetic-momentum 

vector are analyzed. The asymptotic effects of the motion, caused 

by eddy currents in the shell of the satellite, are considered in 

Section 7. It is shown that the satellite tips over or else is 

stabilized relative to the kinetic-momentumvector, while this vector 

itself seeks to coincide with a certain intermediate direction of 

the earth's magnetic field. The effect of moments of the forces 

of light pressure on a space vechicle moving in an orbit around 

the sun is considered in Section 8.  It is shown that the kinetlc- 

momeriun vector describes a closed trajectory around an axis station- 

är ily positioned in the plane containing the direction toward the 

sun and the normal to the orbital plane. 

The main qualitative effects of the motion are systematized 

in the concluding table. 

The formulas obtained in the present article enable us to 

calculate the evolution of the parameters of rotation and orienta- 

tion of a satellite sufficiently simply and efficiently in a number 

of cases. The main purpose of the present article is to describe 
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the method of investigating the evolution of the motion and to 

ascertain the qualitative effects, and not to calculate specific 

problems; therefore the few numerical calculations described in 

the article are mainly of methodical nature. 

The author thanks D. Ye. Okhotsimskiy for his discussion of 

the article. 

1. Equations in Osculating Elements for a Dynamically 

Symmetrical Satellite and a Method 

w of Investigating Them 

We take as the unperturbed motion a regular precession described 

>o by the following constant parameters (Pig. 1):  L is the modulus 

° of the kinetic-momentum vector, a and p are spherical coordinates of 

o the latter in a coordinate system with its origin at the center of 

" mass of the satellite and with invariable directions of the axes, 

3- is the angle of nutation, q> and ^ are the angular velocities of 

,the proper rotation and the precession. 

In the general case it is convenient to take as the osculating 

elements the quantities L, p, a, and £, which are constant in 

unperturbed motion, and the quantities y and q>, which are linear 

with respect GO time.  Since the component of the angular velocity 

_along the axis of symmetry n = i + cos $ • if  is constant in unper- 

turbed motion, It is convenient to also consider the quantity n 

as an osculating element. 

If the moments of the perturbing forces do not depend on 9, we 

shall use as the osculating elements the system of elements 

L, a, p, *, n, ii. (1.1) 
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If the moments of the perturbing forces 

depend on 9, we shall use as the osculating 

elements the system 

L, a, p, $,  9, f. (1.2) 

If the differential equations for System 

(l.l) are unknown, It Is, In principle, a 

ß*  *      simple matter to set up still another differen- 

tial equation for 9. Therefore (l.l) is the main system for which 

.<:, we-shall-derive the differential equations of perturbed motion. 

- \\.\ 1t'*.,lLet'*L (Lx, Ly* .1*2«) be the kinetic-momentum vector and 

•■'"»M^tlL-, H__, M,T).be the moment of the;.external forces, 

Then • «V;»* 
•* *••. 

w» •»;• 

(1.3) 

*•' ..   Henceforth'*we;'sha'll.-always"'assume that-the^axis X is directed 

, ' parallel to the ,tangent,*to a Keplerian-orbit at/its pericenter; the 
.••*...     *:  ••  .:• '+£ '• "".   .«•", •••' „ /,/..-;;; "'' %".^ 
i;;- axis y'is directed along'the normal' tTcT the-orbital plane; Z is 

directed along the radius«'vector-of the pericenter of the orbit. 

j.  The origin coincides with „the center of mass'-of the satellite. 

Then p is the angular distance between the vector L and the normal 

to the orbital plane, a  is the angular distance between the radius 

vector of the orbit at the pericenter and the projection I of the 

vector L on the plane XZ. 

We shall determine the location of the axis of symmetry z1 

of the satellite in the coordinate system XYZ by the direction 

cosines a", 0", 7". 

For a dynamically symnetrlcal body we can obtain 
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Here A is the transverse moment of Inertia.    Taking Into 

account the notation introduced 

a" — sin ^ »in $ cos p tin a — cos $ »in 0 cos a + eoe ♦ sin p sin *r 
ß' « — sin * sin 0 sin p +cos 0 cos p. (*«5i 

T* — sin^ sin 0 cos p cos a -f cos* sin 0 sin o + cos ♦ sin p cos a, 
L, « Z. sin p sin *, Z,„«Z,cosp, L, - L sin p cos a.       (1.6) 

Let us now require that in perturbed motion the direction 

cosines and their derivatives, which completely characterize the 

motion of the body, have the same form as in unperturbed motion, 

i.e., the form of (1.4) and (1.5). This requirement uniquely 

determines the differential equations of perturbed motion, which, 

as it turned out, have the form: 

L = (A/x sin 3 4- Ms cos s) sin p -J- Mv cos pt 

p* j- [(Mx sin o + Mz cos a) cos p — Mv sin p], 

* = ms^ w*cos a — Mx sin a)' 
n = -±- [M#r+ MJP + Ifrffl, (1.7) 

^ — -^j- -f >- {— Mx [ ost 0 (cos a sin i{> -j- sin a cos p cos if) + 

-f- cot p cos a] + Mv sin p eotO cos t|? + Mz [eat ö (sin a sin ^ — 
— cos a cos p cos \f) 4- cot p sin a]}, 

ft C« 
COS V = -y- . 

Here C is the longitudinal moment of inertia. 

Notes,  l) If Mx, My, Mz do not contain <p, System (1.7) is 

closed.  Otherwise it must be supplemented with the kinetic relation- 

ship 

n = <p -f- y cos d + o (— £»n >f sin 0 sin p -f cos d cos p) + 
4- p (— cos tjj sin 0), (1.6) 

which determines the projection of the total angular velocity on 

the axis of symmetry of the satellite in perturbed motion. 
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2) Aa can be seen, System (1*7) consists of five differential 

equations and one finite relationship for determining *• This 

kinematic relationship occurs in unperturbed and perturbed motion. 

Thus System (1.7) is of the fifth order, since II does not depend on 

9. System (i.7)-(i.8) is of the sixth order. 

3) Instead of the first three equations in (.1.7)# it is 

sometimes more convenient to use Eq». (1.3) directly. 

The moments of the forces in the specific problems considered 

below in the present article do not depend on qp. Let us analyze 

an important particular case. Let"the^moments-.Qf?*the forces have 

the force function /.V-/:".. t%''•$>./<"* * •  •." :-'- .-'• 

u^u(t/^^:-v,);r /•' •■ .-. (1:9) 

i.e., they depend only on the*loca?tiori'*of; the" axist'of symmetry "of 

the satellite in space. In the casesM>e#ing .considered by us U 
***•**.*•?** • •   ' * "   •    • ••. « depends on time only through the.tr.ue» a'n'ömaly/ oT.the satellite 

* '*•/'•' i  '•"* ""      *  ■ 

v(t)'1,e" •.• ^->^ /•»■'••   •:• 

D = u(v (t),;^/V-,;V")K- •   ". 1 • 
Then ,  . .-;' * /*? V • « 

M  =9U a'       hU V * '*   *X"XU' 

and the system of equations (1.7) assumes the form 

f      dU 

■ i [dU au\ 
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System (i.ll) admits the first Integral 

n « n0. (1.12) 

Prom (1*11) we can obtain the relationship 

'If U does not depend explicitly on time, the following energy 

.^integral occurs 

2   '—    — (1.12a) 

;, V 

: 

• * .< . e * 

.^iäiic^&'H'»**71^!1 c-os p)*we obtain an energy.'Integral o^.Jacoblan type•"•"-. 

. '^MJilSf *l^'-'f''T.:r V . IT - 2AU - 2ACD0-L .co.s p.«=? const •  ■     (i.l2b) 

;';?•.%.*.!.;...''•'.*'?:•..':'/•»•• •' Equations (1.7) or (1.11) enable us to Investigate any motion: 

..''^ •••;:;';■•;;•'•'• "•'. fast rotations and oscillations. For example, in (1.11) let nQ = 0. 

',      •" Then cos * = 0 and U does not depend on *. We can seek a solution 

such that p = 0, o = OQ -  const, which is possible, if the 

following condition is fulfilled 

sin f, dp y^ 
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Then only the following equations remain 

from which it is easy to obtain 

This is an equation for the oscillations in the orbital plane. 

. * *  '.: ■'        However, by the very choice of variables, Eqs. (1.7) or (1.11) 

J *• Vi ;      are most suitable for investigating fast perturbed motion. To these 
■•.^.-!j 

equations it is •corivenie.nt«t6 apply various approximate methods, 

in-the.case of-fast rotations, lie., ••   ;.' j 
».!•*. 

• in the case of' large L,' are*'fairly^small.. 'These*terms introduce# 

a small quantitative porrec.tion.into-fhe precession velocity, but 
.  * .       . '    ' ' • •'    .' '  • *' 

the qualitative" picture of the'motion does not change as-long as 
•        * • *       \ •   *•' 

instead of the . r \ti->/ÄX*f3i *:.>V--V     the .precession velocity is fairly «great „ Therefore, in 

[ :K*^\^^.:^\i -\^A -  ' equations for ^»written in (.1.7) and (i.ll), we can* lim 

• 'i?&}£'i. SI" :*M    ■ •Xo'E(l- (1>15)- '.- •'".• .'•'.;.  •.'..•' 

'limit ourselves 

a •  • 
• *  • • • • 

* '*!    *'.. < •  .     '.*'•' jv«.  •♦         '»^ 3 . *< 

. r 

r 

. Since, according to (1.13), f  increases almost linearly and 

fairly fast (in comparison not only with the rate of change in 

the osculating elements, but even with the angular velocity v  of 

the motion of the center of mass of the satellite in orbit), for 

ascertaining the main effects of the motion it is convenient to 

average the right-hand sides of the equation of motion with respect 

to the variable ^. Carrying out such an averaging, for example, 
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in (1*11) and taking into account that U, according to (i.9) and 

(1.5), depends on f periodically with a period of 2ir,  we obtain 

for the averaged motion 

t « 0, i.e., L - LQ, (i.i*) 

and, consequently, 

cos * = cos *0; if  - iQ (1.15) 

Moreover, 

•      1 dU 
P = 

(1.16) 

Lü illl U   d'i  ' 

where 

* I (1.17) 

In other words, the satellite precesses regularly around a 

3d.netic-momentum vector of constant magnitude, the direction of 

which varies in space, according to Eqs. (1.16) and (i.17). 

We thus see that the problem of the evolution of motion in 

this case reduced to an investigation of System (l.l6), which is 

easily converted to canonical form. Assumption (1.13) is not funda- 

mental, since an averaging of the exact system (l.ll) leads to its 

division into System (1.16), which does not depend on if,  and an 

equation for if. 

L ♦-s-j$-^s-«}. ^i8> 
Note that averaging the right-hand sides of the equations of 

motion (l.ll) was equivalent to averaging the force function. 

Equations (1.16) in the general case are not Integrated to 

completion, since U depends on time (through the true anomaly v). 
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However, for ascertaining the secular variations in p and a it is 

permissible to average Eqs. (I.i6) again with respect to the true 

anomaly, since the variation in p and a occurs fairly slowly In 

comparison with the variation in v. Since in an elliptical orbit 

v varies nonuniformly In time, while the averaging must be carried 

out with respect to uniformly varying variables, in Eqs. (1.16) 

let us pass from the independent variable t to the neir independent 
• •   •       ■ . i 

variable v.    We shall assume that the orbit of'the satellite-is an 
• • • 

unperturbed elliptical orbit.    Then .   .    * .        •, •'  ' tfwljj 

g-^(l+«co.v)', •    * -  1?"  , (i/i9)-.   &J 

where P is a focal parameter, £ is the eccentricity, and* p. is the    *$-*%* 

product of the gravitational constant times the mass of the central y.  I 

body.  Let us introduce the function 
V; • 

•* . r        y*' i • 

and its average value with respect to 1/ St~*a 

F-^JO* •.'"'.     • (1.21) 
6 

Then Eqs.   (1.16)  can be written in the form 

u 
s - 

ÜP^ L_£?r    f*. !_£^ (1.22) 1 
rfv losinp  dz   *    rfv        £«$inp  dp  * «4 

\ 
Note that Eqs. (1.22) are invariant with respect to the .• j 

transformation p, a-» 0,  X,  where 6,  X  are the coordinates of the 

kinetic-momentum vector read off analogously to p, a, but relative 

to other axes (for example, 6  is the angle between L and the axis 

X, while X is read off in the plane ZY from the axis z). 

Prom the point of view of mechanics, averaging with respect 

to f  is equivalent to neglecting in the solution high-frequency 
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.. ,, 
··.:·. .· .. ': ~·.: . •; ....... 

oscillations of very small amplitude, which are superimposed on 

the slower osci.1 
'. \tiona described by Eqs. (1. 22). We shall call 

the high-freqJ~J:~y oscillations caused by the effect of ~ vibration 

ow:~illations. 

Equations (L 22) give the very slow secular and long-period 

te~·m:J of the solution, and also the periodic terms resulting from 

the .:-ffect of' v. The period of these periodic oscillationn 13 
•. 

1
• 1 . '~ I : ~.- • ;• • 

{:.'5:<.>~:=:: c omrnensura tc with the orbital- period·: of the satelli-te. The 3CCt.;lar 

};;v:_;;;d,},:::::.'O.nd 1onr-~-periocl t.erms ·va;y .. v·e;~ nlowiy ih compar·i;o~ ·.wit;h ~:he 

t~[~;;;,~::·=;:l:;::: :: ::::::a:: ·~::m:e:~:~s 0 :e::::a:: .::e a::::::i :~. ::.q::,:::;;c 
. . . 

. - i,"',_~:;y:·; of motion :tct only with 'r·e'::;pect tc5 7j;, r:•.<t al::w wt'th· rr.::;v:·;·, . J :;, • 

·· .... 

; ... 

.. ,, 

.. ·:. -. 

·'.v 

independen"t; a veragi'ng wi'th resr-e (; t. to . . . each ?ariari::..e . ·. 
perm1~31ble, if the freq~encte: of t~ese variable;~· a.rr:: ' 

'>lh_:_c:< is what we s_hail alway::o ai:l.sumc. · ·~~uch a .::wof'olcl a:.:c~,;~:~.:.: .. _, . . . . . . .. . . . 

r · r-,0) ,,, .•. · ., respect to v. He o·btain \~'-~LL r1 ...... v~ .. 

1 uV. 
~iV -- - l..o sin-; a ~- • . '• .· 

: 
' 2':"'1: ~"t 

0, = -, . L-d'fl dv. = 1 ~· . ['l • 

(l,:t) ~ lr Jlf' (! .:. e cos v)' 
0 u ' 

. ('1-. 24) 

In (1.23) Uv no longer depends on v; therefore there exists 

in',,egra1 of Eqs. (1. 23) · 

( 1. 25) 

which determines the trajectory of the terminus of the kinetic­

m8menturn vector (in i-cs secular and long-period motion). Using 

(1.25), it is not difficult to integrate Eqs. (1.23) to completion, 
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V- ;* ..,v.>.•?.;»•.•:' I    *  : :. 
• ,v« *.*:•  .v 5   . /.« 

thus, also ascertaining the law of change In the kinetic-momentum 

vector. 

Returning to Eqs. (1.22), let us note that their solution 

gives a picture of motion substantially more accurate than the 

solution of Eqs. (1.23). Although In the general case Eqs. (1.22) 

are not Integrated, their solution Is, In principle, not difficult 

to obtain to any desired degree of accuracy, for example, by the 

method of successive approximations,.the Bogolyubov-Krylov asymptotic 

method, and finally by numerical Integration. Moreover, let us 

mention the-Interesting particular case,, .encountered In* praotice, 

where even Eqs. (1.22) are Integrated .In .closed form. -Let jtfy 

depend on o  and v only through their difference q> = -a  - v: 

\ -tf„(p# ▼)•■ (1.25a)' 

■jfl 

The. coordinate <p  is the angle between the instantaneous -radius 

vector of.the orfcit R and:the projection of-the"'vector i; on the. 

77* t$; 

along the 

form 

he .transversal' to the orjJitv'.'• Equations •(.lv22J a'ssume the   •• 

(i.-26) • 

- « 

V 
2 

-V 

Where . 

<1> = /.0COsp-r I
7*'. 

v  • 

(1.27) 

Here Vv,  as before, Is determined by Formulas (1.21) and (1.20). 

Since U contains only p and 9 and does not depend on v  explicitly, 

Eqs. (1.26) have a first Integral which gives the trajectory of the 

terminus of the vector Lina rotating coordinate system 
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<:l = const (1.28) 

This integra, ·~ne.bles us to integrate Eq., (1. 26) to completion. 

It can be conr . .id·.:····:::d ae a corollary of (1.12b) and (1.14). As 

;dll he shown below, we can reduce to form (1.26) equations of 

rota:. ~c:nal motion under the action of such important perturbations 

as gravitational and aerodynamic perturbations in the case of a 

cJrcular orbit of the center of mass of a satellite and per~urba-

tions due to light pressure in the case of an arbitrary ellip:ical 

orb:Ls of a :~nlar natel1ite. 

In the general case of Eqs. (1.7) (in the presence cf ~rbltrary 

;or~a moments which do not have a force fun:tion) it 1~ .~ .. 0z~0d:-

2. Gravitational Per0urbation~ 

Gravitatio:l.~".:.-f'orce moments acting on a dynamicall:, .~}::;:-::c:~1·l::;2.::. 

~~a~;c:L~:Lt.c :l.l, 2. :::e:t\.r•::J.l Newtonian field Lc.v2, .J.:c; follow:.: :.'r;):-:1 a 

pr·~vlo~~ article bJ the author [11], a force function, which may 

be expre~~ed approximately as: 

U ,_, f -J~;- ( l ...;- c co~ v)'' (A - C) (·( co,; v + a" ~in ·v)~. (2.1) 

'rllc:n, usin,-:o; L:he formulas of the preceding section, we obtain: 

r­
U. =o 2_]_\: (1 ...!.. e cos v) ( 4 -C) (y" cos v + a• sin v)%, " .:! pJ/a I ' 
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(2.2) 

(2.3) 

(2.4) 



In Formulas (2.i)-(2.4) the terns not affecting the motion 

relative to the center of mass are omitted. 

According to (1.25) and (2.4), we see that for the trajectory 

of the terminus of the kinetic-momentum /ector 

P - Po- (2'5> 

Substituting (2.4) in (1.22), we obtain the velocity of the 

secular motion of the terminus of the kinetic-momentum vector       '%;**•• 

-A'A"- 
.    ■ v" ** ■ 

Thus, in secular motion the kinetic-momentum vector ..precesses   ?&*]i 

around the normal to the orbital plane at a constant angular distance.tV/Ü 

(2.5) with an angular velocity proportional (with the proportional- 
ity " 

ity coefficient in (2.6)) to the angular velocity of motion* of the   .£&*,'•■* 

center of mass in an elliptical orbit. In a particular case we     jf-Al) 
__  __ -^jr' 

obtain for a circular orbit a well-known result [oj. In this       *."Vi*> 
r—T-V2 • <:r';\ 

case v  as o)Qt, yw?        - <oQ, where o)Q is a constant angular velocity " ••• ; J> 

of motion of the center of mass. .     •.'•.'- I*i 
. .» i.A 

Prom (1.22) and (2.3) we obtain more accurate equations, when    •• •»•* 

averaging only with respect to V 

where 

».'* •* .- 

-jy, ~ A"o (1 -!■« cos v) oo» (3 — v) si ii (3 — v) si ii p, (2.7). . «• JV 11' 

JK - ^
V

ü (* + e cos v)cos* (c — v) cos P. •      *i*:J v 
'•HI 
•..1 

In solving these equations, periodic oscillations of c and p 

with a small (for small values of NQ) amplitude and a period compara- 

ble to 2TT are also superimposed on the secular motion (2.6). Since 

v  varies comparatively rapidly, while a varies slowly, a  - v varies 
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rapidl7 and therefore repeatedly paaaes through the extremal valuee, 

which are multiples ot T/2. 

a) llUpttcal b) CiJ'IIul&l' 
orbit orbit 

Fig. 2. 

In this case on the.trajectory 

p(a), which is the trace of the 

kinetic-momentum vector on a unit 

sphere, points or tangency to the . . 
paral~els of the unit sphere alter-

.. nate ~i,th 'points o'f,_return (Fig. 2). ··.. . . . . . .. 

·, irideed~· the ansle v·bet;ween the 
~ . '~·:'· . ......... : ... 

tangent to the trajectory and tne·m~~i~ian on the. unit sP.here .iB 
. . . 

' ... :- .. ~ .~: f ·.~ .. . · 
given by the formula . .. .· .. . . . · . 

tan V =sin p ~ = 00t (a =-v) bo~·p.. ~.· 
dp ~ •• .. : 

(a. g) 
: • 't ~ • • • • • ' • 

When a - v "" 0 and o - v .;, .;··11;, ~e obtain tan v = co, ·and· - ·. . 
. :· I • t ~ • * 

consequently the trajectory 1s~tange~t.to the,parallel, having .. 
~.v ~ ± ~12 and a-

an 
• • .. .:.:l'. • 

extremum at the point of tangency .~ .. :When: a 
,·. 

11 = 

= + 3/2~ 1 we obtain tan v = o,· ·1.~:, 'the 'trajectory has a·point · - ·. .· . . 
of return. From (2.g) it also follows that· the trijectory"can pass .. . .. .. . . .. 
through p = 90° only at a righ·t a~le :to ·:ttie 'equator of t·he un1 t 

sphere. From (2. 9) it follows i'l¥'th~~ .. ~~at.:whe~· p < go0 the p~ints · 
• ••• • • • • r ·• •• • •• 

of return are always minimum points of p ,·'while ~he point~ ·of 
' .. . . . . . .. . . . . 

tangency are maximum points of p ('Fig. g) •. When 'p > 0, the p1~ture' . . ,,.. . 
is reversed. When p < 90°, the trajectory passes in one direction,· 

but when p > go0
, it passes in the op~osite direciio?. It should 

also be noted that the oscillation amplitude of p is all the smaller 

and the rate or change in ~ all the greater, the closer the value 

ot p is to 0 or .,.. Since the direction of motion of a trajectory 

changes when it passes through p = 1r/2, in the neighborhood of 

p • ~/2 the trajectories have a specific character: they have loops. 
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These trajectories are shown in Pig. 3. In the neighborhood of 

p - TT/2 the rate of change in a, as can be seen from the second 

equation in (2.7)» is very low; therefore the trajectory loops have 

a small width and move very slowly. In particular, there exist 

periodic trajectories (with a stationary loop). Let us recall that 

in the first approximation, when p ■ 90°, there is no secular motion, 

as follows from (2.6). Such are the basic features of the motion. 

Let us pass now to an analytical description of it. 

fid»S* 

<d«g. 

rPig. 3. . 

• .»•   . 

Let us consider the case of a circular orbit (e = 0). Then 

Eqs. (2.7) can be reduced to the form (1.26) by the substitution 

9 - a - v and, according to (1.28), have the first integral 

•5.-. 
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LQ cos p -f L0 Y sin* p cosfy =» const. (2.10) 

Note that 

sinpcos\p = cosxK, (2 H) 

where Y is the angle between the kinetic-momentum vector and the 

Instantaneous radius vector of the orbit.  From (2.10) and (2.11) 

it follows that the trajectory of the terminus of the kinetic- 

momentum vector is closed In a coordinate system rigidly connected 

to the radius vector of the orbit.  An analysis of the trajectory 

Is not difficult to carry out by the method given by the author 

[8, 9].  By the nature of the problem, an approximate solution 

will differ fairly little from the exact solution over an interval 

of change In v  that is all the greater, the lower the value of NQ. 

When |NQ| < 1, the trajectories have the character shown in Fig. 

4:  elongated along the meridian n, R at one pole and along the 

meridian n, T at the other pole (-n).  The trajectory depicted in 

Fig. 4 is shown in absolute motion In Fig. 2b.  Over a small inter- 

val of values of v   (of the order of one orbital pass, which is of 

interest, for example, in studying the motion of a solar satellite) 

!'*'*;>' .•;k%;":v •       a consideration of the case NQ > 1 is permissible. Then the family 

'<*•"'.•--.•:.■•'•'•.■■ •   •     of trajectories has the form shown in Fig. 5. The appearance of 

new slanting poles of motion gravitating toward R reflects the fact 

that In the case of a low kinetic energy of rotation the direction 

of the instantaneous radius vector is the direction of stable equi- 

ILürium of the body. This effect makes itself felt even In our analy- 

sis, although in the case of low kinetic energies the method used 

gives a cruder result than in the case of high kinetic energies. 

Examples of the comparison of the theory and the exact solution 
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will be given below. The location p*, qp* of the slanting poles 

is determined by the formula 

co8p' = :v7, <p - 0. |iVJ > 1. 

Let us return to the basic 

case  |NQ| < 1. Using Integral 

(2.10), we can integrate Eqs. 

(2.7) to completion in Jacobian 

elliptic functions. For NQ > 0 

Pig. 4. Fig. 5. the solution has the form 

No 

COS Cp sss 

cos p = cos p0 -f- -7- sin2 p0 sn2 (u, A), 

en (u, k)      
/#2 

1 — A'o cos po sn2 (u, k) — _JL sin* po sn* (u, k) 

u = V 1 — N0 cos p0v, 

Nn sin oo k = 
2 ^1 — N0 cos po 

Moreover, 

cos ¥ = cos XF0 en (a, A:), (cos Y0 = sin p0). 

(2.12) 

(2.15) 

(2.14) 

(2.15) 

(2.15a) 

Here it is assumed thai; the coordinate system is chosen 

in such a way that when v =  0, o = 0 and, consequently, "9=0 

(on a circular orbit such a coordinate system can always be chosen), 

The modulus of the elliptic functions k < 1, when NQ < 1, as 

follows from (2.15).  If, instead of p, we put in these formulas 

p" = fr - p and replace NQ by JNQ|, we obtain the formulas for the 

case NQ < 0. 

Let us analyze (2.12)-(2.15).  The oscillation amplitude is 

equal to (No/2)sin PQ and tends to 0, when PQ-* 0, ir;   cos p varies 

from cos pQ to cos pQ + (NQ/2) sin pQ; the period T of the 
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oscillations of the angle p: 

T 2K{k) (2.16) 

where 
r. 
T 

K{h)~ \ 
.1   /i — ^siira" 
i) 

Is a complete elliptic integral of the first kind. 

Using the smallness of NQ, we have approximately 

rp^n[l-r-
VfcosPo+^(3cos*p04-|8in»Po)-l-...j. '.     '     C2'1?) 

The oscillation, period of cos "y  is twice as great as'T : 

T(p = 2Tp, (2.18) 

i.e., when the true anomaly v  varies by 2T , the angle y  decreases 

by 2TT.  During this same time o varies by Ac. 

Ac = 2(T - TT). (2.19) 

Approximately,   according to   (2.17): 

• Ac Ä 2n [^-cos Po +^(3cos« Po +lsin« Po)+ . . .] . (2.20) 

The first term in (2.20) corresponds to the secular variation 

determined by Formula (2.6). The more accurate formula (2.20). 

shows that a secular variation will occur at pQ = TT/2 (in constrast 

to Formula (2.6)).  However, from (2.20) we can-determine a pQ = pQ* 

such that Aa = 0, i.e., there will be no secular variation*. .-It 

turns out that 

cosp«' — sIlhVl-B«!]-^ (2.21) 

At the value pQ = pQ* the trajectory p(o) is obtained closed 

(periodic). In this case pQ* corresponds exactly to the solution 
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of the transcendental equation T ■ ir. 

Let us consider the case of an elliptical orbit. Then Eqs. 

(2.7) are not integrated exactly.  We obtain their solution by the 

method of successive approximations.  We take as the zero approxima- 

tion an unperturbed motion, i.e., 

P = P0> o = a0. 

Then in the first approximation 

P = Po -r -r'-sin p0 {[cos 2 (ar0 — v) — cos 2a0) + 
1 (2.22) 

+ e [cos (2or0 - v) - cos 2cr0] + -1 [cos (2o0 - 3v) - cos 2o0l}, 

o = o0 + -j-cos p0|v - ß sin v + j [sin 2o0 - sin 2 (a0 - v)] + 

+ 4 fsin 2<r0 - sin (2o0 - v)] + ± [sin 2o0 - sin (2o0 - 3v)] J . (2  23) 

The structure of Formulas (2.22)-(2.23) shows that the rotation 

is by nature close to rotation in a circular satellite orbit:  the 

oscillations in p and a are superimposed on the secular variation 

of o;   the main difference is that the alternating maximum and 

minimum values of p are not equal to each other in the case of an 

elliptical orbit (from (2.7)) it can be seen that p will have 

extrema when sin 2(a - v) = 0); 

Pi = Po -f NQ sin p01— sin2 a0 + j (cos a0 — cos 2cr0)|. 

Pi = Po — ^0 si» Po {7 c°s2 °*o — y (sin <*o — cos 2o0)J, 

Pa = Po + No »in Po {y sin2a0— y (cos <r0 + cos 2a0)|, 

P4 = Po — #0 sin Po [~2 c°s2 0*0 + -3- (sin °"o + c<>s 2s0)|, 

(2.24) 

when 0 <  aQ <  90° and NQ >  0,  we obtain 

Pi > ?2'  ?2 < ?y  ?2 > P4*   Pi < p3 
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tf,dn»Adeg 

' 99     140     166     W     214    251 XVSOvjtoe, 
333 \ 

Fig. 6. 

The nature of the dependence p(v4) is sho?:n in Fig. 6.  The 

trajectory-trace of the kinetic-momentum vector on a unit sphere 

will have the character shown in Fig. 2a. 

In conclusion, let us cite an example which illustrates the 

accuracy of the approximate method of investigation that we used. 

Figure 7 gives the characteristics of the motion, calculated, on 

the one hand, according to the formulas of this section (broken 

line), and on the other hand, according to the exact equations 

in osculating elements without averaging. We see that the vibra- 

tion terms thus added are actually negligibly small. The following 

values of the parameters and initial data were taken in the example: 

A = 50 kg-m sec , C - 20 kg-m sec , LQ = ?A9  kg-m sec, *0 = 70°, 
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which corresponds to an initial precession velocity f - 4 deg/sec 

and to a projection of the angular velocity on the axis of symmetry 

of the satellite r ■ J>A  deg/sec, e - 0.421, P - 9^70 km, i.e., 

for an orbit with a perigee h, 
IT 

300 km and an apogee h = 10,000 km. 

6, dtf^dcg 

5 I« Ss S| $ k !* ig 3} h 2 § at fe fe fe § 3     v> deg 

Fig. 7. 

3. Moments of Aerodynamic Forces and Their 

Approximation 

When a satellite moves In the rarefied layers of the atmosphere, 

owing to the interaction between the molecular flux and the shell 

of the satellite, a number of effects arise in the rotational 

motion of the satellite. Let us note some of the possible effects. 
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1. The center of pressure does not coincide with the center 

of mass.  A torque arises. As a result of the rotation of the 

earth's atmosphere, the velocity vector of the incident flux does 

not lie in the orbital plane. 

2. The rotation of the satellite gives rise to dissipative 

moments, which cause, in particular, a slowing down of the rotation 

of the satellite. 

3. The density of the atmosphere varies at different points 

of the satellite shell (closer to the earth it is denser), thus 

creating an additional small moment [4] (the gradient effect). 

4. A small effect related to the presence of the proper 

thermal velocities of the molecules. 

Only the effects mentioned in items 1 and 2 are considered 

below. 

The components of an aerodynamic-force moment along axes rigidly 

connected to a satellite in the general case depend on the orienta- 

tion of these axes relative to the incident flux and on the compo- 

nents p, q, r of the angular velocity of rotation of the satellite 

relative to the flux.  In view of the smallness of the linear 

velocity of rotation of the satellite shell in comparison with the 

velocity of motion of the center of mass of the satellite, the 

dependence of the force moment on p, q, r may be regarded as linear. 

Let i', j', k' be unit vectors of the principal central axes of 

inertia of the satellite. Then the aerodynamic-force moment can 

be written in the form 

M = jPuVlo, x c" + 4-PaF0P, 

(continued) 
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(formula continued) 

"M llu'it'i9\/Pl 

r* U[lnlmin]{ q 

Here VQ Is the velocity of the center of mass of the satellite 

relative to the flux, c Is a unit vector in the direction of this 

velocity, p is the density of the flux.  The coefficients cm and 

I., depend on the location of the satellite relative to the flux. 

In the particular case for a symmetrical configuration of the 

satellite (the axis of symmetry coincides with kf) we have c" = c^ = 

= 0. The coefficient c™ and the coefficients I., (some of them 

may be equal to zero) depend only on the angle of attack <5, the 

angle between e and k'. The explicit dependence of the coeffi- 

cients on the angles is determined by the nature of the collision 

between the molecules of the Incident flux and the surface of the 

satellite. 

According to prevailing notions, the following mechanism of 

interaction between the molecules of the incident flux and the 

surface of the satellite Is most probable.  During a collision the 

particle gives up practically all of its energy and comes into 

a temperature equilibrium with the site of impact (somewhat heated 

now). When this heating passes through,the particle moves out into 

space with a thermal velocity equal to the thermal velocity of the 

molecules of the satellite shell.  Since this thermal velocity is 

substantially less than the thermal velocity of the external parti- 

cles, we can idealize this picture by hypothesizing an absolutely 

Inelastic impact, where the particles completely lose their energy 

during a collision with the satellite. Let us analyze this case in 
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detail, assuming that the satellite is axisymmetrical. 

The elementary force dF acting on a surface dS will be: 

*F=-/p. / = ±cPaV*co»idS. (3>.i) 

Here V is the velocity of the surface relative to the incident 

flux, p is the density of the flux, £ is a constant coefficient, 

7 is the local angle of attack:  the angle between the external 

normal n to the surface and the vector V. The elementary moment 

dM = Ps X dP, (3.2) 

where r is the radius vector of the surface dS, drawn from the s 

center of mass of the satellite.  Substituting (5.1) in (5.2) and 

taking into account that 

(nV)     (nV) C0ST = ~7rv7==V. (3.5) 

we obtain 

M = 1 c?a (nV) V X vJS, ( 3 . 4 ) 

in which 

V=V0 + flxrs, (3.5) 

where VQ is the velocity of the center of mass of the satellite 

relative to the incident flux, ß is the vector of the angular veloc- 

ity of rotation of the satellite.  (Strictly speaking, ß is the 

vector of the angular velocity of rotation of the satellite relative 

to the flux, but for the case being considered here, where the 

rotations are fairly fast, we can assume that ft is the vector of 

the absolute angular velocity, since the translational angular 

velocity is small in comparison with |ß|). 

The quantity |ß x rs| is very small in comparison with VQ. 

Therefore, substituting (3.5) in (3A), let us neglect terms of the 
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order of fr*    Integrating over the part S* of the surface of the 

satellite around which the flux is flowing, we obtain an expression 

for the total moment of the aerodynamic forces in the form 

M - YWaVl [ (ne„) evXr.dS -f 
4* 

+ T<#aV0 jj {(n [ßx rj) [e, X r.) + (nc.) [QXr,]xrt}dS, ^*6' 
&' 

where 
▼o 

•v-vö (3-7) 

is the unit vector of the direction of the velocity of the center 

of mass of the satellite relative to the incident flux. The region 

S* of integration is determined by the inequality 

(Vh) > 0, (5.8) 

However, neglecting the small second term in (5.5)* we find that 

the region of integration is approximately determined by the 

Inequality 

(YQn)  > 0. (3.9) 

Then for an axisymmetrical satellite 

S* = S*(6). (3.9a) 

Let 

0> (2\ p*i) = 0, p'2 = /2-i-y'2 (3.10) 

be the equation of the surface of a satellite symmetrical with 

respect to the axis z*. Then the components of the unit vector 

a will be: 

*»>■    0 _ ac      a»        (5.11) 
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This coordinate system x*y*z* is chosen in such a way that the 

x-axis always lies in the plane passing through the axis z* and 

the vector VQ (Pig. 8). The angle of attack (the angle between 

V0 and z*) will be denoted by 6f Moreover, the location of the 

point of the surface of the satellite in the coordinate system 

x*y*z* will be determined by the cylindrical coordinates z*, p*, 

9*, where qp* is read off in the plane normal to z* from the axis 

x* in such a way that 

x' = p* coscp*, y* = p* sin (p\ (3»i2) 

Then $, nz*, and a* from (3.11) do not depend on <p*. The 

region of integration S* depends only on the angle of attack 6, 

the integration with respect to q>* going from a certain <p*(6) to 

-<pg(ö).  Let us relate the unit reference point i, j, k to x*y*z*. 

Then 

r = x*i -r 2/*j + z*k, 

erxk = — sin 6j,    d,x i = cos 6-j, 

eDXj = sin 6k — cos 6i, 

e„Xk = -cot   5 (e,xi). 

(3.13) 

According to the formulas of vector algebra, 

we have, in addition, 

Fig. 8. 
n [ßxrj = 

p    q    T 

x   y   z 
nx- nu» nz» 

(3.14) 

[QXr8]Xu=-r.%(ip + lq+Vr)+{xf+yq + z?) (ix' + \y" + kz'), /, ^\ 

where p, q,   r are the components of ft along i, J, k. Performing 

the integration in (3.6), using Relationships (3.11)-(3.15)> and 

discarding terms proportional to sin cp, which give zero during 

integration, we obtain 
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M«y Pyl   * ») *vXk + y epaV0 {i [-JT, + Pf4] + 

«(Ö) — c {Wx cos 6 + Ws sin 6 - W2 cos 6»t   6). 
(3.16) 

The first term in this formula gives the torsional (restoring) 

moment of the aerodynamic forces, while the remaining terms give 

the moment of the forces of aerodynamic dissipation. 

In (3.16) W±(i - 1, 2,   3)  and Ij(j = 1, 2, 3, 4, 5) depend 

only on 6 and are given by the following integrals over the region 

S*(6) of the surface of the body: 

Wx = [ {znz. — 0-y2 cosV) dS, 

O. IT) 
W2 = \ zVp* cos <p*dS, 

Ws 3— \nz.p*cos y'dS, 

Ix = cos 6 \ n-.o'3 dS — sin d[o'o'~ co<ym dS, 

7j = cos 6 \ z'n-y/ cos cp'dS -4-sin 6 \ [o-Vp^cos2^*— p*2sin8<p*(«s '*z')}dS, 

73= cos6 \ [{nz* — o'z') o'2 sin-cp* -f nz. (z*2 — 0*2 sin2?")] dS + 

4- sin ö \ (z"2 -f p'*sin*<p*) o'o' cos cp*d?, 

74 = sin 8 ^ z*rTy2cos2cp" dS -f cos 6 \ nz>z*p' cos 9* dS, /^   *o \ 

Ib = cos 6 \ [(z'2 — p*2cos2tp*) rc,. — (nz- — aV) p*2cos3cp*I <£S -f 

+ sin ö V [(z*2 -- o*2cos29*) a"p" cos cp* — z* («.1 — o'z*) p* cos 9*] dS. 

In order to ascertain the principal qualitative and quantitative 

effects common to bodies of different shapes, it is convenient to 

take, Instead of the exact values of W, and I,, certain approxi- 

mate expressions,which reflect the structure of these integrals. 

Let us deal first with the restoring moment, i.e., with the 

approximation of the coefficient *c(ö). Transforming the first 

-31- 



integral from (3.6) with the aid of Ostrogradskiy's formula [12], 

we find that the coefficient c"(6) is determined by the relationship 

? (6)-**(«)*, (6), (3.19) 

where s(6) is the area of the cross section of the satellite cut 

by the flow and zQ(6) is the distance from the center of gravity 

of the cross section S to the center of mass.  Obviously, 

c(«-ö) = c(6). (3.20) 

This reflects the properties of an absolutely inelastic colli- 

sion:  the force moment depends only on the magnitude and location 

of the cross section S(6) relative to the satellite; therefore 

c"(6) does not change during this turn. 

From the appearance of Wp and W, (3.17) it follows that 

w\,(0) = wp(°) = °> since the integration then passes over the entire 

lateral surface of the body from qp* = 0 to <p* = 2TT.  Therefore it 

may be assumed that 

iK8 = sin Ö/., (6), 
ir3«Miiö/3(6), (3.21) 

and then c"(ö) from (3.16) will be represented in the form: 

c (Ö) = c{Wx{6) cosö - /, (6) - [;2(6) -- /3(ö)] cos2 6]}. (3. 21a) 

We shall seek c"(6) in the form of a power series in powers of 

cos 6.  From (3.20) it follows that (3.21) can be approximated 

most simply as: 
cWx (6) cos 6 + A (6) = fl0, - c [/2 (6) + /3 (6)] = ati 

where aQ and a2 are constants.    Then 

c (6) = a0-rc2 cos2 6. (3.22) 
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In this case, according to (3.19)* It is easy to calculate the 

coefficients aQ and a2 in terms of the constants S(0)z0(0) and 

S(7r/2)z0(Tr/2). In the case of an elongated body, for example, 

we can have aQ > 0, a2 < 0. In the simplest case we can put 

a, = 0, ;((>)-a,. (3.23) 

Prom (5.19) it can be seen that when aQ > 0 the center of 

pressure lies "in front of" the center of mass (zQ > 0), but when 

aQ < 0 it lies "in back of" the center of mass (ZQ < 0), when 

6 < TT/2.  If a portion of the molecules is not reflected absolutely 

lnelastically, Condition (3.20) may be unfulfilled, since it is 

then not a matter of indifference whether the satellite is flying 

"nose forward" or "bottom forward".  In this case we can use an 

approximate formula of the type 

c (6) - au - at cos 6 -f a, cos8 6, ( J>. 24 ) 

which corresponds to the condition 

c(a-ö)^c(ö). (3.25) 

From this point on, as in [8-9], we shall operate mainly with 

approximate formula (3.22).  But, in addition, let us consider 

the effects related to Condition (3.25).  In this case we shall 

use approximate formula (3.24), which, when a. = 0, coincides with 

(3.22). 

Let us now deal with the approximation of I,.  Let us limit 

ourselves in the approximate formulas to the principal terms of 

the quantities I.. The integrals containing the factor cos <p* in 

the integrand, as was noted above, can be represented in the form 

sin öf(ö). Taking this into account, we see that L, ?,, and 5L 

are positive for any value of 6; therefore the principal terms of 
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the functions will be positive constants. With reference to I, 

and Ic it should also be noted that the difference I, - 1^ vanishes 

during integration over the entire lateral surface (i.e., when 6 » 

= 0, TT). Therefore the principal terms in I- and 1^,  approximated 

by the constants, are equal to each other. The quantities I2 and 

1^ cannot be approximated by constants, since they always depend 

on the angle of attack approximately according to a sine law. We 

shall therefore assume that 

Tkasllf 73«/3, /,«/», 72^/2sinö, 7< = /4sin6, (3.26) 

where  I,   =  const   (k =  1,   2,  5,   4). 

From (3.18) it follows that in the general case I2 4 T^>  but 

this Is not essential for an investigation of the motion. 

The actual calculation of the quantities in (5.26) can be 

made according to the same formulas (3.l8)> setting 6=0 and 

Ö = TT/2 and taking the arithmetic mean of the values of I obtained. 

We may also seek other approximate evaluations for I.  Their calcu- 

lation is simplified substantially for specific bodies (e.g., a 

cylinder, a cone, a sphere, etc.). 

4.  The Effect of a Restoring Aerodynamic Moment 

Let us consider the effect exerted on the evolution of the 

rotation of a satellite by a restoring aerodynamic moment 

M = iPav; c(6)e„Xk, 

We have 

c (6) = a0 -f al cos 6 + <h cos*6. 

cos Ö = J- {Via' + VJF+ Vtrh ( ^ '2 ^ 
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where v£, V?, v£ are the components of VQ along the axes of a 

coordinate system XYZ: 

Vj«/}(< + cos v) - W,-1 + />
cMvco8 i cosv, 

^ = VyoH.gcosv sni i cos (ü> + v), 

V I = - ]/-{-»In v + t^_iL^co-s / sin v, 

v0 m k'l^+KM^, 

(*.3) 

where WQ is the angular velocity of rotation of the earth, 1_  is 

the inclination of the orbit toward the equator, CJO is the longitude 

of the perigee.  Since the terms which are proportional to WQ 

comprise l-5# of the total velocity VQ, we can neglect them when 

analyzing the principal effects.  Let us assume first that WQ - 0. 

From (4.1) we can find the components M , M , M in the form x  y   z 

(1.10), where 

u = - y PJ'« \ c (cos 6) dcosb, ( 4 . 4) 

which, with the aid of Approximation (3.24), Is converted to the 

form 

U = — — PaVl la0 cos ö -f 4r cos2° ~ ■§■ COi>3 *} . / 4   c \ 

When WQ =  0,  we have 

70 = ]/ -£- Kl + ? -r 2« cos v. (4.6) 

. (^ — cosv) a" — sin VT* 
cos 0 = -r — . 

Y 1 — e- — 2e cos v (47) 

Let us  find,   in addition,   U    from Relationships  (1.20)  and 

(*.5): 

V,- -fr.flg?«+*+>~'(a,cos» + ^-cos' t + j.«* ft).        (4.8) 

Here p^ is the density of the atmosphere at the perigee of 

the orbit, while p is a dimenslonless function determined by the 
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relationship: 

P = —.  p(0) -1, (4#9) 

where 
, _ P P 
h- r- ^-iT7^V"TZ7- (^.10) 

Let us take, for example, 

P-«p(--J-), (^.11) 

where H is the so-called altitude of the homogeneous atmosphere. 

Secular Perturbations 

In order to investigate the secular perturbations, let us 

average U , as determined by Formula (^.8), with respect to f  and 

v.     Let 
2* .  

1    i' - V l -r e- — 'le. cos v r 1      i    -^   lTf--( COS V    ,        , .      , 

(*.12) 

T   —    l    V   - (g — <*os v)1   .„ 

o 

r If«        >in-v , 
'3 = or \ P

M -dv. 2.1   J      (I -r e cos v)- 
u 

/   = -L \* Q  (e — COS v)3 <lx 
4      pi   • '   (1 -fe cos v)- V1 -:. <* -l- f/ct* v ' 

T   _    _J_ i" -  (f — cos v) sin* v r/v  

-:i   .- '   (1 — e cos v)2 Vl — e=--2e .-os v ". 

The quantities J for certain values of h and H are given in 

Fig. 9. 

The twice-averaged value of the function Uv will be: 

' n' 

where fr% . _ J^, {cos e cos * [Vi + *,,„„.», 

+ ^-(/s - /,) (l - 4.sin»«)«»«e + "(cont.) 
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(EQ. l4cont.) +(i_|sin^)[^y4-fl;Acosu]cos'ocoSd}. 

^v, = — \ p» VpP *vJ% (l — 4 si'»* ö) *'n* P. 
(4.15) 

where we have used the variables p, 6,  X which are related by the 

relationships: 

cos p = — sin 6 sin A,    COS 0 = sin ? sin a,    sin p cos a = sin 6 cos X. 

The trajectory 0(X) of the 

terminus of the vector L in 

secular motion, according to (1.25) 

will be 

U = U v        v0 
(4.16) 

M 460   SQO 600 100C 1200 MOO I SCO IS DO WOh^,«* 

Fig. 9. 

The portion XL. has the same 
2 

structure as the secular portion 

of the force function of the 

gravitational moments (2.4). They 

give a total 

1 /,  :i . l'u 
6'n- j(l-ysin20 3^(-l — C)-o, >V«^rJM"5? = /^iirp.   (4.17) 

Prom (1.25) and (4.17) we obtain an equation determining the 

precession of the kinetic-momentum vector around the normal to 

the orbital plane 

2k 
(4.18) 

Thus the term Vv    introduces only a certain correction to ühe 

gravitational effect already considered; in an analysis of the 

combined effect of aerodynamic and gravitational perturbations 

the term Uv has no effect on the qualitative picture; therefore 

the principal term is (4.14). 
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For the case a„ = 0 a combined analysis of gravitational and 

aerodynamic secular perturbations is given in another article by 

the author [9]. The equations of perturbed motion, in accordance 

with the results of Section 1, will have the form: 

7?£ " ~f -£T" {cos d [a^i + ~r Ji >' "5 <> - aJj (1 sin* # - 

+ (l -|sin2tf)cos2x)]- Ql(A -y3)(l -ysm*d)cose - 

+ 3cos0fl -Jfsin'ft, [-£-/, - ^cosUlcos^e}, 

— cosG = —^—a2/s cos 0(1 __sin
20y cos0 sin2 6 cos /.sin /.. 

(*.19) 

Let us indicate the basic properties of the perturbations, 

caused by UVl, making simplifications in passing. 

1. Since, when e = 0, J. = Jp - j, ■ J^ = Jr - 0, in a circular 

orbit of a satellite there are no secular perturbations in its 

rotational motion. 

2. From Fig. 9 and Relationships (4.12) it is obvious that 

the quantity JV is an order lower than the other coefficients J.. 

Therefore the term proportional to JV can be neglected.  Then from 

(4.19) we obtain 6 **  0Q, i.e., the vector L precesses around the 

direction of the perigean tangent with a velocity dX/dv determined 

by Eq. (4.19), in which we have to set 6  « 6Q,  J- = 0.  Investiga- 

tions show [8, 9] that the effect of the term proportional to JV 

causes small oscillations in the angle 0. 

5. The quantity a. /  0, if the following two conditions are 

fulfilled simultaneously:  a) the number of molecules reflected 

from the satellite according to laws different from absolute 

inelastic collision is fairly large, b) the shape of the satellite 

differs from bisymmetrica] (i.e., the satellite does not possess 

a plane of symmetry perpendicular to its axis of symmetry). Since 
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Condition "a" is most often poorly fulfilled, we can assume that 

ai ^ a0' a2 anc* set ai m  °* *n the case °^ bisymmetrical satellites 

the equality a^ = 0 is fulfilled regardless of whether Condition 

"a" is fulfilled. Taking items 2 and 3 into account, we can assert 

in this approximation that the entire secular effect of the restor- 

ing moment of the aerodynamic forces is manifested in the precession 

of the kinetic-momentum vector around the direction of the perigean 

tangent at a constant value of 0Q and with an angular velocity 

d>.     p.i/iT/'   ... .,   .,.. (4.20) 

where 

*o - aJi -r f A M"8 <►, /■; - (l - £gh,t 0 ,ß2./4> 

In the simplest case (3.23) we obtain 

£-*£?«"♦«/.. (it-20a) 

These results are equivalent to previous results obtained by 

the author [8, 9],  However, in these articles in the formulas 

for J., J^, Jr errors were made, which insignificantly change the 

quantitative results, while the qualitative picture remains unchanged. 

Note that, as follows from (4.20) and (4.20a) 

in the case of a satellite rotating in a somer- 

sault regime (£ = 90°) the aerodynamic restoring 

moment does not create a secular effect.  As is 

„.  A fs obvious from (4.19), this assertion is incorrect, Fig. 10. \       si> > 

if SL± 4  0. 

For an estimate of the effect of a. let us consider the limit- 

ing case a. / 0, aQ = a^ = 0, which corresponds to the hypothesis 

used by Haglhara [jj. Then the trajectory of the terminus of the 
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vector L 

assumes the form 

U\M  + fy/p *  const 

{J2 — Jz) cos50 4- J3 sin2 p = consl. 

A family of these trajectories for an elliptical satellite 

orbit (e / 0, J2 ^ J^) is shown in Fig. 10.  The kinetic-momentum 

vector will precess around the normal n to the orbital plane or 

around the perigean tangent V^, if correspondingly 

fcosp0!^|/^=-^cos601 

where pQ, 0Q are the initial coordinates of the kinetic-momentum 

vector.  Let us note again that the case |a.| « \SLQ\   is much more 

likely. 

The Effect of the Rotation of the Atmosphere on 

Secular Perturbations 

In the case WQ ^  0 the expression for cos 6 is determined by 

the complete formulas (4.2)-(4.3). 

In order to understand the principal effects caused by the 

rotation of the atmosphere, let us use for c(ö) the simplest 

approximate formula (3.23).     Then, retaining only terms of the 

first order of smallness relative to WQ, we obtain 

U9 = -yPBKi^(1^fc^v)S{[(g + cos v) l/i+2ecosv-He»- 

- ^-°cos i ' + "7 la" - | sin v |/l + e* + 2e cos v - 
VV- /l + d>-r2«cosv   J L (4.21) 

P''*W0cosi sinv i     >       t - op 
/£       /l + *» + 2«cosvJT }      TPn        oP  1+ecosv   x 

X {— cos i cos v o" -f sin i cos (o> ■+■ v) ß' -f- cos i sin v 7*}. 
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Let 

where J1 is determined by Formula (4.12), and 

2*  ,  
o   1 r - y 1 -i- 2* cos v + e*  , /i, ~~ \ J»-g)> (i + .co.v)T rfv. (4.23) 

Ü 

Averaging the function U with respect to # and v, we obtain 

Z7„ = — - Pr "|/nPa0f 0 cos ii cos 8 4- (4.24) 

+ TP,^Wo cos ft (cos i cos8 — sin / sine, sin 0 sin /.). 

Also  let 

Slne  " Tr    ■■      ——~ . (4.25) I' cos-1 — sin31 cosJ co \    •    ** i 

cos e * = 
K cos* i ~ sia-i cos* (i) 

k° " jKWo P%£i cos ft yWi-r siu*icos*<D, 

/;' =lpsl^a0FocosdI (4.26) 

cos x = cos 8 * cos 8 — si n 6" sin 0 sin >.. 

Then 

Z7v = — /.•' cos 8 - /:° cos v.  = rv 

(4.27) 

(4.28) 

is the equation of the trajectory, which can also be written as: 

cos 9  = cQ - a cos H (4.29) 

Since 

PWn V ros2 i — sin* / rftcSr.i    ^ 

XÄr7T (*.30) 
_   ^^o "^ros2 i — si»2 i cos2 u   S0 ^    P\Vr, 

is a small quantity, the trajectory differs very little from 

cos 0 = cos 9Q, 

i.e., as was to be expected, the effect of the rotation of the 

atmosphere is slight in comparison with the principal atmospheric 

effect. 

-41- 



Let us determine the poles of the trajectory. 

The equations of motion will be: 

dX 1  dU        k'        k'        n.  ,   k' 

rfe l du k* .... 
"57*" "Z^nre"jT= -^sinS sinO cosX. 

(4.51) 

From the second equation ic is obvious that the pole lies on 

the meridian X^ = 90° (270°).  Then from the first equation we 

obtain the coordinate 6    of the pole 

*-*-CT=V-- (4.32) 

Since k° « k', the pole is close to 6^  = 0, w.    The equation 

of the trajectory (4.28) can be represented in the form 

V /j'*-r if* - W cos 0 " cos xl - const, (4.35) 

where K. is the angular distance of the kinetic-momenturn vector 

from the precession pole X , 9   .  Hence it follows that the 

kinetic-momentum vector precesses around Pole (4.32) (and X = 90° 

or 270°) at a constant angular distance H* with a velocity 

£ - -.,1 |/*s+WLWÄT: (4-^) 

The Case of a Circular Orbit.  Effects of the 

Second Order. 

In the case of a circular orbit, as has been shown, aerodynamic 

forces do not cause perturbations (if we make the highly justified 

assumption that a. * 0).  Let us see, nevertheless, what kind of 

motion is described by the vector L in this case, for which purpose 

we must turn to more accurate equations, averaged only with respect 

to ipt     For simplicity of analysis let us again turn to Approximation 

(3.23) and neglect the rotation of the atmosphere. Then the force 
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function averaged with respect to 1/  has the form 

i.e., is related to Type (1.25a). Therefore, according to (1.27)- 

(1.28), the trajectory of the trace of the kinetic-momentum vector 

in a rotating coordinate system has the form 

co> p — n co.- A - co».»l, ( k   ~*f>) 
I   - — 

" •-—K ' (4.37) 

Where A is the angle between L and the velocity vector or  the 

center of mass of the satellite 

cos A -sin.iaiiuf. (4.33) 

Using (4.36) and the results of Section 1, it is not difficult 

to verify that the trajectory of the trace of the vector L on a 

unit sphere in a rotating coordinate system is a circle, the center 

of which lies in the meridian passing through the trace of  the 

normal to the orbital plane and the trace of the velocity vector 

of the center of mass (the instantaneous tangent to the orbit); 

the center of the circle lies at the angular distance p* from 

the normal to the orbital plane and consequently 

tan p* = -n. (^.39) 

It also happens that the velocity of rotation of the kinetic- 

momentum vector L around this circle is constant and may be written 

as 

We see that if n is very small (i.e., the effect of perturba- 

tions is very small), p* «* 0, and the kinetic-momentum vector in 

the rotating coordinate system under consideration rotates around 
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the normal to the orbital plane with an angular velocity X'^ * -1, 

i.e., it remains stationary in absolute space. If, on the other 

hand, n is large, p* is close to TT/2, and the kinetic-momentum 

vector precesses around the direction of the incident flux.  Note 

that the criterion of applicability of the the ory is, roughly 

speaking, the following:  the motion obtained by averaging should 

occur considerably more slowly than the motion according to which 

the averaging was done.  In the given case it is required that 

|dXA/dv| « |dVdv|.  For example, let ¥ = l4 deg/sec, while the 

angular velocity of motion in orbit dv/dt =0.07 deg/sec.  Then the 

theory will be fairly accurate when |dX./dv| « 200, i.e., when 

n » 10-20.  Twofold averaging occurs here only when n « 1. 

5.  The Effect of a Moment of the Forces of 

Aerodynamic Dissipation 

The moment of the forces of aerodymamic dissipation is deter- 

mined by the second term in Formula (3«l6).  For the dissipation 

coefficients let us take approximate formulas (3.26). 

Let us introduce, instead of a semiconnected coordinate system, 

a system rigidly connected to the satellite.  Let the reference 

point of this system be i', J', kf, the axis of symmetry of the 

satellite being directed along k'.  Then 

k = k\ 

j = j' coscp0 - i' sin<f0, (5-1) 
i = — j' sincfo — i' coscf0, 

where i, J, k is the reference point of the semiconnected system, 

while cpQ is the angle of rotation of the connected system relative 

to the semiconnected system. It can be shown that 

-H- 



■»*--anr- ilD* üHT- (5.2) 

Next let p, q, r be the angular-velocity components along the 

connected axes. Then 

r = r, 

~P = — <7«in<p0-r /> cos cp0, (5.3) 

<7 = ?cos<p0 -f //sin<pft. 

Let us now substitute In (3.16) (in the dissipatlve portion) 

Expressions (5.1) and (5.3), taking (5.2) into account, and let 

us introduce the approximate values (3.26) of Functions (3.l8). 

Then the moment of the dissipatlve forces will be written in the 

form 
M* " T^aM»' f- pit + r cos (er, i') /41 + 

+r [-«/«+' cos (en /j-h (5.^) 
-f- k' f— r/x + (p cos (cc, i') — q cos (cc. j') /,]}. 

Hence it is obvious what the meaning of the quantities I, 

is:  I. is the coefficient of dissipation along the axis of symmetry, 

I-, is the coefficient of dissipation along the transverse axis. 

These terms lead to the attenuation of the velocities of rotation 

of the satellite.  The terms containing I~ and 1^ will cause a 

change in the orientation of the satellite.  Let the position of 

the reference point l1, J1, k1 relative to the coordinate system 

XYZ be given by the table of direction cosines 

i' j' k' 

X 
Y 
2 

a   a'    a (5.5) 
p r r 
T Y    T* 

Then, without taking the rotation of the atmosphere into 

account, we obtain: 
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Since 

<*• (•.. i') - y; iV* + V,r),   cos  (e„, j') - £ IK^o' + V,tl (5.6) 

^•-l/T/l + ^ + toMtv, 
_r                                _ (5.7) 

-K,= ]/ £ (e -r cos v),   Fz = -\ -£-"» v, 

pcos (c, i') 4- 7 cos (c„, j') = — {K, (;>a + qa') + M/>T+ 9T')}- (5-8) 

p^-ÄZ^,    ^„.V^l. (5.9) 

as can be seen from the last component in (5.1*-), the equation for 

the angular-velocity component along the axis of symmetry k' can 

be written in the form 

Clft ycpaVir + 7cp«4 &* &* ~ Cra") + v> V" - Cr f)}. (5.10) 

Now taking (5.^)-(5.9) into account, we can write the components 

of the moment of the forces along the axes of the coordinates XYZ: 

M*= jCpaV0 {- ■^-(Lx-Cra") -Ixra-r/4r-i- [FA (1 -O +7z(-a'r*)]-r 

+ T£T 
a" ^ &* ~ Cr«) + ^ (£* - CnT)l. 

+ -PSTP" ^^ - °*a") + ^ (^ - oni}. (5.11) 

Mz=,±cpV0{- l±.{Lt-Cr?)-Ixrf -r /4 ■£ [7,(-aV) + V,(l - f)l+ 

The equations of motion of the vector L will be written in 

the form 

Lx = MX}  Lv = Mv, L2 = A/f. ( 5.12 ) 

We are interested in the evolution of the motion.  In perturbed 

motion, as was shown earlier, we can take approximately 

***• (5.15) 
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Moreover, the following kinematic relationship remains valid: 

COB » - £ (5.1*) 

Therefore Eqi. (5.10)-(5.12), together with Relationships 

(5.13)-(5.1-0* enable us to follow the evolution of the motion. 

We shall seek only the secular perturbations of the motion, which 

are obtained as a result of averaging the equations of motion with 

respect to f  and v. Before averaging with respect to v, let us 

pass from the independent variable £ to the variable v. 

Let us introduce 

where p" = p^/p^f  p^  is the density of the atmosphere at the perigee 

of the orbit. 

The combinations of direction cosines averaged with respect 

to the precession can be written in the form 

a' « cos *£, ß- = cos di* , r"= cos $-£., 

The bar indicates averaging with respect to f. Now averaging 

(5.10)-(5.12) and taking (5.15)-(5.l6) into account, we obtain the 

following equations of secular motion: 

Lr. 
Lx — — K ^x + ki cos 0 -^ — kt cos ft L, 

Ly = - *U„ 4- k[cos^^j^, Lz =  - klL; -r ^cos G—^. (5.17) 

Cr' = - A^r - ^ sin*- dIA. 

To these equations we must add (5.1**). The prime indicates 

the derivative with respect to v, while kX, k£, k£ have the values: 
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A-i(O) ^ {^(l -^rtn^-Äp.^^}. (5.18) 

Note that for a circular orbit N, »0, k| » k£ - 0, and the 

motion will be of very simple nature.  Let us discuss this case in 

passing.  In the general case of an elliptical orbit N^ 4  0.  Let 

us turn now to a study of Eqs. (5.17).  From the equation for I,» 

and L' it follows that 

L„Id - LyL» = 0 z~y  "Tz 
i.e., 

L 
•5, = const (5.19) 
Ly 

This means that the plane passing through the vector L and 

the axis X maintains its position in space, and the vector L can 

move only in this plane.  Then, from the first three equations 

in (5.I7) we have 

U = - kjs -- cos i*Lx (/.•; 4. *£)• ( 5. 20) 

Let 0 be the angle between L and the axis X; then 

Lx = LcosQ,        — Z, sin 00'= Z/— Z/rosO. (5.21) 

Substituting Lf from (5.20) and L» from (5.17) into the right- 

hand side of (5.21), we obtain 

6' = — k\ cos $ sin 0, 
whence 

tan -7 =tan ~ cxp | — \ k[, cos Wv , 
"   L '. "    J (5.22) 

kA($) and cos $, generally speaking, vary slowly, by virtue of the 

equations of motion (5.17).  In the first approximation we can take 
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k£(*)cos * * k£(v0)co8 
V
O
#
 However, even when the slow variation 

In k£(*)cos $  Is taken Into account, the same asymptotic picture 

Is maintained as in the case of a constant klcos *, since for all 

fairly large values of v  klcos %  has a completely determined sign. 

We see from (5.22) that when kicos * > 0 6 -> 0, but when k£cos * < 

< 0 0 -> w,  as v-» oo. Both cases indicate that the kinetic-momentum 

vector seeks to coincide with the direction of the tangent to the 

orbit at its perigee. We can assume approximately that 
8 (i 

tan T=tan ^ exp {— K (00) cos fru} (v-v„). (5.23) 

For a circular orbit kA - 0, and the direction of the vector 

L remains invariable. Returning to (5.20), we have 

V «« L| — k'Q + cosfl sin2 0 cos 0 A', \ll - £tt, 

whence 

L = VXP \ {— K +cos d siuS ° cos °*V» (.T + £)} dv' ( 5. 24) 

since kl is an essentially positive quantity and does not vanish 

on  a circular orbit, while N* = 0 when e = 0, we must assume that 

N^ is small in comparison with kA; moreover, it will be shown below 

that £-» 0 or v-> ir/2;   therefore at fairly large values of v  the 

quantity in the braces is essentially negative, and L-) 0 as v-^»j 

in addition, the angular velocity of the precession f  = i/A decreases. 

We can take approximately kl = const and neglect N* in (5.24). 

Then 

L = LQ cxP'{ - *;(v-*.)}. (5.25 ) 

With the same degree of accuracy we can obtain from the last 

equation in (5.17) the projection of the angular velocity on the 

axis of symmetry of the satellite 
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>«p{-^r(«-*i>}. (5.26) 

Let us consider the behavior of the angle 5. We have 

A d cos d     Cr   i    .    C  ' 
cos 0 « Cr/Lt  whence   —— ■■ — -jjL + j-r. 

Substituting the values of L and t, we obtain 

ii«j>. _ £:{_ ^ + cos * (*i + *i) £ cose} + 

+ A\ cos 6 sin2 0 {£ sin2 * - £ cos* d}. 

By virtue of (5.i8), we have 

Again neglecting N^ (on a circular orbit 1L = 0, while NQ ^ 0), 

we obtain the equation 

the integration of which gives 

ton 0=*an ^ cxp {£ - £l.V0(v-.v0). (5-27) 

Hence * -> 0 when I^/c - I,/A < 0 and * -» TT/2 when I^C - I3/A > 

> 0.  If we assume that the dissipation coefficients are approxi- 

mately the same I1 * I,, then $• -» 0 when A < C and $-» TT/2 when A > C. 

In other words, a dynamically compressed satellite Is stabilized 

around the axis of symmetry ($•-> 0), while a dynamically elongated 

satellite tips over ($-> TT/2). Taking into account the asymptotic 

behavior of the kinetic-momentum vector (see (5.22)-(5.23)), we can 

formulate the following general law: under the action of the forces 

of aerodynamic dissipation the satellite seeks to establish itself 

in a regime of maximum aerodynamic resistance. Actually, the vector 
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L seeks to establish Itself along the line of maximum aerodynamic 

pressure (the tangent to the perigee of the orbit), while the angle 

$ varies In such a way that the maximum surface area of the satellite 

Is facing the Incident flux at the perigee of the orbit. 

Note 1. At low angular velocities the above consideration Is 

incorrect, since the method of averaging is correct only for fairly 

large angular velocities of rotation. Therefore we cannot consider 

the asymptotics all the way to the end. However, the asymptotics 

correctly describe the tendencies of the motion. 

Note 2.  Attenuation of the rotation will occur more rapidly 

than the motion of the vector L toward the tangent of the orbit, 

since the first velocities are determined by the parameter NQ, 

while the second velocity is determined by the parameter N^, the 

order of which is ~eN0. 

6.  The Effect of the Interaction Between the 

Magnetic Field of the Satellite and the 

Earth's Magnetic Field 

As is known [13], the moment M of the forces arising as a 

result of the interaction between an external magnetic field with 

a strength H and the intrinsic magnetic field of a body possessing 

a magnetic moment I is given by the vector product 

M = H x I (6.1) 

Of the factors causing the appearance of the magnetic moment 

I let us note the following: 

a) The presence of current systems on the satellite and permanent 

magnets in the instruments. For simplicity, we shall assume that 

these factors cause a constant magnetic moment IQ directed along the 
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axis of symmetry of the satellites 

*o - k,Io (6.2) 

Here k' is a unit vector of the axis of symmetry. 

b) The magnetization of the satellite shell in the earth's 

magnetic field. In the case of fairly elongated bodies the magnetic 

moment 1^ thus arising may be as3umed to be directed along the 

axis of symmetry of the body, while its magnitude may be regarded 

as being proportional to the component of the external field along 

this axis: 

Il = !V^Hk/)k'- (6.5) 

Here n0 is the permeability, v is the volume of the satellite 

shell. Thus the total magnetic moment will be written in the form 

According to (6.4), the magnetic-moment is 

directed along the longitudinal axis of the 

satellite.  Consequently, in this case we can 

neglect the transverse component 1^ of the vector 

I. Naumann and Colombo [1, 2] considered secular 

effects in the presence of a moment of type (6A) 

as applied to the satellite Explorer XI in the 

assumption that the satellite is moving in a somersault regime 

($ = 90°). In this section we are considering the main properties 

of motion under the action of a moment determined by Formulas (6.1) 

and (6.4) In the general case.  We shall take the vector H of the 

earth's magnetic strength In the form 

n-5ff<fc-3ft*>t!». (6-5) 

Pig. 11. 
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where kQ is the direction of the axis of the earth's magnetic 

dipole, eR is a unit vector of the direction of the radius vector 

R of an orbital satellite, ug is the magnitude of the magnetic moment 

of the earth's dipole.  For simplicity, let us assume that ICQ 

coincides with the earth!s axis. Let us introduce a stationary 

coordinate system T&Z  (Pig. 11), the axis Y of which coincides with 

the earth's axis, the axis "z is directed into the node of the orbit. 

Let _i be the inclination of the orbit toward the equator, u = a) + v 

is the argument of the latitude, ou is the longitude of the perigee. 

Then the components of H will be: 

S- = — jsj • 3 sin i sin u cos u, 

H- = — — 3 sin i cos i sin2u, ( D • D / 

H- = -jp [1 — 3 sin2 u sin */J. 

We can write the force function U characterizing the action 

of the magnetic moment under consideration.  It turns out that 

U - - J0 {H-Xat + JSTjP, + //lTl + 1 *0 (H& + j?^ + ^-Tl) ■ }, (6.7) 

where a., ß., 7. are the direction cosines of the axis of symmetry 

of a satellite with the axes XYZ; 

*-*£*£. (6.8) 

Prom there on the theory set forth in Section 1 is again 

completely applicable for studying the motion.  Let us introduce 

the function Uv (1.20) and average it twice, as in (1.24); then 

we can easily write the secular-motion equations (1.23) of the 

kinetic-momentum vector and the trajectory of its terminus (1.25). 

We have 

+ TMff;°. + #ißi + tf!T,)«}. (6,9) 
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Let us introduce the angular coordinates p^, o^, which are 

similar to the coordinates p, a (the angle p. is the angle between 

J, and the axis Y). The direction cosines a^, ß*, y^ will have the 

same form as a", ßM, 7" in (1.5)* except that in the right-hand 

sides of the equations, instead of p and a, we must write p., 0^. 

Averaging (6.9) with respect to V a^d discarding in the average 
pop o 

values oL , JL , 7. the term l/2 sin $ (which has no effect on 

the motion of the kinetic-momenturn vector), we obtain the averaged 

value Jv in the form 

+ ^(l-4rtBi«)(H5a! +ir7M +H-T?)
2}. 

Here a., 31, 7>, are the direction cosines of a kinetic-momentum 

vector with the axes XYZ, i.e., 

aj = sin p! sin a,, ß? = cos pv f» = sin Pi cos °i- (6.11) 

The equations of rotational motion will now have the form 

(1.22) with p replaced by p" and a by a.), where TTV is determined 

by Formulas (6.10), (6.11), and (6.6). From (6.10), in particular, 

it follows that if the satellite shell is not magnetized (TcQ = 0), 

there will nevertheless occur a perturbed motion of the vector L 

caused by the intrinsic magnetic field of a satellite with a moment 

IQ.  Only in the particular case * = TT/2,   i.e., when the satellite 

rotates around the transverse axis, does IQ not cause perturbations 

in the motion. However, when * ■ TT/2, there remain perturbations 

as a result of magnetization of the satellite shell TcQ ^ 0. 

Let us consider the secular perturbations in p., a.. For this 

purpose, let us average (6.10) with respect to the true anomaly v. 
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Let 

0 "ja? (1 + <? cos v)» 

/,* - 2j J -5 —     (« - *, y, 2, ä - x, y, x). 
•^rd+fcosv)» 

(6.12) 

Then 

3 / 3 \ 
/j — — y sin i cos i, /- = (l — y sin2 i), I- = 0, 

/- - 9 sin3 i cos2 i 1X (e, »), /- =  (l + 36* + j e4) - 

— C sin2 if2 (<?, ü)) + 9 sin4 t /x (c, ©)» 

Jr, = 9 sin2 i [f2 - hi 

/;- - - 3 sin / cos n/, - 3 sin2 J/J, /-- = 0, /- = 0, (6.15 ) 

A (*, »)-■!+ 6c2 [1 cos4 © + j|cos2 <o sin2 <o + ^sin*o>] + 

"^ ** fl28COs4 W ~*~ 128COSa tt Sin* ö "*"  128Sin< ®] * 

h ('. <■>) = y -f1- e2 [cos2© + 3 sin2 to] + ^ [ 3 cos2© + 5 sin2 © ]. 

Since the eccentricity figures in these expressions in a power 

higher than the first, for orbits with a small eccentricity the 

motion is practically independent of e_ and, consequently, of a>. 

2     4 In this case, neglecting terms containing e and e , we obtain 

27 27 
7« =   8"sin2' cos2'» Jm = * ~~ 3 si"2' + Tsin*if (6.14 ) 

/n =  Tsi"2 '• ^£5 = ~~ 3 sinicos f Ty — ysin2 JJ. 

The twice-averaged value of Uv can now be written in the form: 

^a-l^{CM*^tt: + ^) + 4-*o(l-|sin2<>)x 

X 5f-(/a (a?)2-f /-(ß?)2 + /n(r!)2 + 2/-- aS ß!)}. ^'^ 

According to the general theory of Section 1, the equation 

Uv = const (6.16) 
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gives the trajectory of the trace of the kinetic-momentum vector, 

while Eqs. (1.23) give the law of motion. 

Taking into account that (7?)2 * i - (a£) - (ß1) , we can write 

X 5f K/a - /n)(«?)2 + (Js - /Fi) »V + 2/-a! ßj ]} - const. 

Then Eqs. (1.25), with (6.11) taken into account, give 

X T§- [(/s - /?;) -cos Pj sin2 ax - (/-- - /n) cos pt + 7^ sin o*l X 

XrÄ]}, (6.18) 

* - jmüh ws «■«,+M1 - ism«») x 
X pr U^s "~ ^ n)sin Pisin fficos ai+ hucos Picos aiH • 

Particular Cases 

1.  i = 0 (equatorial orbit). The vector L precesses around 

the normal to the orbital plane at a constant angular distance 

Pi = P° (6-19) 

with a constant angular velocity 

2.  The shell is not magnetized (EQ = 0). The motion occurs 

only as a result of the constant magnetic moment IQ of the satellite« 

Then the kinetic-momentum vector L precesses at a constant angular 

distance 

n = n0 (6.21) 

from the pole, the coordinates of which a*, p* are determined by 

the formulas 
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oot   Pi Ä 77 
1 — -j sin2 / 

Y sin i cos J 
Oi ■±ir (6.22) 

(i.e., the pole lies in the plane X7, which is normal to the nodal 

line "z and passes through the earthfs axis Y). The rate of preces- 

sion of the vector L is constant and is given by the expression 

*» = ^'/ilLo0050^1 + 3 COS2/. (6.23) 

~~x -*x 

Fig. 12. 

3.  IQ = 0, i.e., the original 

magnetic field of the satellite 

can be neglected; we take into 

account only the magnetization of 

the shell (TEQIQ / 0).  Let aj = 

= cos <&, 0. = cos p.; thus <& is 

the angle between the vector L 

and the axis X; from (6.17) it 

follows that the trajectories are symmetrical relative to the plane 

YX,   i.e., to the plane which is normal to the nodal line of the 

orbit.  Solving Eq. (6.17) for cos 0, we obtain: 

(6.24) cos <D = - X cos p ± Vc0 + I cos2 p. 

Here CQ is a constant of integration,  while 

X = 
/- 

/— - /~ 
XX    z z 

. c- 
/r_ I— — I- 

H'l Z Z 

XV     * *       -Y.1C     2 2 

(6.25) 

Depending on the values ofthe orbital parameters (the angle 

i_), we can have X > 0 and £ y  0. Taking into account that 

cos O = sin pj sin crt1 I.e., — sin Pj < cos 4> < sin px, 

with the aid of (6.2^) we can plot in the usual manner [9] the 
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trajectories of the trace of the vector L on a unit sphere. These 

trajectories are shown in Pig. 12 for the case X < 0; for the 

case X > 0 the picture will be symmetrically reversed with respect 

to the axis Y. The family of trajectories contains two pairs of 

poles on the meridian of symmetry (i.e., on the meridian ^JC) and one 

more pair of poles, which constitute the trace of the axis 1? (+Z and 

-Z);   one of these pairs represents the unstable poles. When £ < 0, 

the unstable poles are the poles which are traces of the axis "Z 

(i.e., <Jj = °> ""■; Pi - F/2)j when £ > 0, the unstable poles are 

one of the pairs on the meridian of symmetry. The location of the 

poles a. on the meridian of symmetry can be determined most easily 

from the equations of motion (6.18) by equating the right-hand 

sides to zero.  We obtain 

a;= ±i,t»2p;- ^7^73. (6.26) 

Hence, in particular, it follows that for a polar orbit 

(i = 90°) p* = 0, F/2, IT;   but since for 1 = 90° £ > 0, depending 

on the initial data, the precession will occur either around the 

line X or around the axis Y.  Naturally, the precession occurs 

nonuniformly:  a precessional-nutational motion with variable 

velocities occurs, according to (6.l8).  Using (6.17), we can 

reduce the problem to quadratures. 

4.  When IQ ^ 0, the qualitative picture shown in Fig. 12 is 

distorted:  the poles shift (although the plane Y5Ü remains the plane 

of symmetry), the regions of motion around each pole of one pair 

are not equal to each other (one region expands, the other contracts); 

the location of the poles will depend not only on the parameters of 

the orbit, but also on the parameters of the satellite. 
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Notes, i) In this case we did not take into account that 

the axis of the earth1s magnetic dipole does not coincide with 

the axis of rotation. This fact was taken into account by Colombo 

[2], who introduced one more averaging, an averaging with respect 

to the earth's period of rotation. 

2) A study of the effect of the transverse component I of 

the magnetic moment I of the satellite shows [15] that under certain 

conditions a qualitative change in the motion relative to the 

vector L is possible: instead of a continuous rotation around the 

axis of symmetry of the satellite, oscillations relative to this 

axis may appear. 

7. The Effect of Eddy Currents 

When a satellite rotates around a center of mass in the earth's 

magnetic field, eddy currents (Poucault currents) will arise in the 

metal shell of the satellite; the interaction between these currents 

and the earth's magnetic field creates a force moment applied to 

the satellite. This moment will slow down the rotation of the 

satellite, as a result of the dissipation of energy. 

Concerning the moment of these forces, we can make the follow- 

ing assumptions from obvious physical premises. 

a) When a body rotates around a line of force of an external 

magnetic field, eddy currents do not arise in the shell of the body; 

they arise only during rotation across the lines of force.  Let o> 

be a certain component of the angular velocity of rotation of the 

body, while H is the external magnetic field strength vector; then 

eddy currents arise as a result of ü>. (that component of o> which 

is normal to H and lies in the plane of the vectors cu and H. 
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may be assumed, proportional to to., ,w. j 

b) Eddy currents lead to dissipation of energy, and, 

consequently to a decrease in the angular velocity co, namely, 

to a decrease in its component co,, This means that there appears 

a force moment M directed contrariwise to the vector to, and, as 

co, | - |CD sin 6 | (Fig. 15). 

c) Since the force moment should have the 

form (6.1), while the magnitude of the moment I 

resulting from eddy currents is governed by the 

magnitude of the external magnetic field strength 

H, assuming I proportional to H, we find, accord- 

ing to (6.1), that M is proportional to IT.  By 

virtue of the above-said, the moment resulting 

CJL f 

Ml 

< 
"11 

Fig.   13 

from eddy currents has the form 

M sä — k"IJ- CD si n ö cla, (7.1) 

where ö is the angle between 5 and H, c,„ is a unit vector of the 

direction a>., kM is a dissipation coefficient depending on the 

parameters of the shell of the body, and also on the orientation 

of the body. For the sake of generality, let us assume that the 

dissipation coefficients are different along the longitudinal and 

transverse axes of the satellite. Let x1, y', z1 be a coordinate 

system rigidly connected to a satellite which has a symmetrical 

shell and possesses dynamic symmetry with respect to the axis z1. 

Then the components of the moment of the forces under consideration 

along axes which are normal to x', y1, z? and lie, respectively, 

in the planes x'H, y'H, z'H will be written in the form: 

MH»' - - k'QH*r sin 01) eBg., 

M/j^-^/fysin^O/)^, (7.2) 

ÄW - - k[ H*q sin ipH)eH^ 
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Here p, q, r are the components of the angular velocity of 

the body along the axes x1, y», z'; «HZM 
eHxf' eHy! are unlt 

vectors of the directions p., q., p., which are determined analo- 
"L  x A 

gously to the direction«, in Pig. 13. Let 6 = z'H; correspondingly, 

6^ - xfH, 62  = y*H. Then the table of direction cosines of the 

axes x'y'z» and e^,, «^ , e„z, has the form 

 ejT*'      eg/ ±H± 

X' 

V' 
sin 6x — cos 6xoat   62 

— cos öaoot   Ö i sin 63 

— cos feot   öj     — cos 5»t    62 

— COSÖfOt    ö 

— cos öfot £ 
sin o 

(7.3) 

Let us introduce another right-handed coordinate system XYZ, 

the axis Y being directed along H, while X and Z are, for the time 

being, arbitrary. Let the position of x'y'z' relative to XYZ be 

given by the table of direction cosines: 

(7.4) *' ?/'   * 
X 
Y 
Z 

a 
ß 
r 

a'   a" 
ß'    ß" 
r'  r* 

The total moment 

M - M7/, + Ifa* + MWt (7.5) 

made up of the components of (7.2), can now be broken down along 

the axes x'y'z1 by using Tables (7.3) and (7.^) and.taking into 

2        2 account that sin 6=1-0, etc.  We then obtain the components 

of M along the axes x'y'z': 

Ma = - IP {kip - Ifo ftp + ß'g) - Avß ß*r}, 
M^ = - //» {A^ _ Ärlfi' (ßp + ß'?) - /.'ß'ßV}, 
M^ = - //' {V - Alß" (ß/, + ß'?) - A0'ß'V}. 

(7.6) 

The dissipation coefficients k~ and k![ depend on the orientation 

of the satelLite relative to H. An accurate determination of the 

coefficients k£, k!^ is related to the actual specification of the 
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shape of the satellite. For example, In the case of a spherical 

shell kQ - k^ - const and are given by a simple formula [6, 7J. 

The coefficients k£, kj are essentially positive. We shall regard 

them as certain known constants, which are Independent of the 

orientation and have the following structure: 

*;«<%././*!   (*-0, 1), 

where IQ, I. are the longitudinal and transverse moments of Inertia 

of the surface of the satellite, h Is the thickness of the satellite 

shell, JZ  Is the specific volume resistance of the shell material. 

If H and «/S are determined in electromagnetic units, aQ, a^ are 

dimensionless coefficients. For example, for a spherical shell 

of radius a we have [6] 

In the assumption that k" - const, let us consider the 

principal effects of the motion. For simplicity, we shall assume 

that the external field is plane-parallel and has a constant 

strength, i.e., 

H - const (7.7) 

Condition (7.7) is approximately fulfilled in the case of 

equatorial earth satellites. Projecting (7.6) on the axes XYZ, 

we obtain the components of M along these axes: 

*--*,{<*+(<-<*H}. ,_81 Mv = 0, (7.8) 

M. 

Averaging with respect to the precession f  and taking into 

account that cos * « Cr/L, we obtain 
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We have the following equations of motion: 

It'-JtfT Lv = My,   L* = MU (7.10) 

substituting (7.9) in which and assuming in the first approximation 

that $ = *0, after integration we obtain 

Ly  «= Ly, 

IÄ»Ix°exp{-/r»(|cos2d0 + |-sin^0)} (#-*), (7#il) 

Thus the plane passing through L (the axis Y) and H remains 

stationary: 
Lv 
— = const. (7.12) 
Lz 

When t -» 00, the magnitude of the vector 

L-VL' + Li+Ll-H, (7.13) 

i.e., the vector L seeks to coincide in direction with H, while 

its magnitude tends to a constant value.  At the same time the 

precession velocity 

**^—J- (7.1*) 
also tends to a constant value. 

Now averaging M_, from (7.6), we obtain: z 

*-"1,VW1-*)+T*,*(»'*-*)[<-<4]}-  (7'15) 
But since 
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we obtain, now taking into account that r/L - cos */Ci 

4c-*--j5r.eo.<y.in.«{4(4 + i)(^-4)},    (7.16) 

i.e., 

♦-^ *>♦"• *{T (-3-+0 (#-?)}■        (7.17) 
Integrating, we obtain 

-•-t-».«pJP${4(4 + ,)(£_4)}Ä..     (7.18) 

Since, according to (7.12), L * 1^., 

****^,.xp[*.(4-4)(,_4 (7-W) 

i.e., *-» 0, if 

and *-> TT/2, if 

*°_J[i<0   (A < C when k£ * k"), 
C        A 

'-£>°   (A > C when k£ * k![) 77* ~~T 

Since cos * ■ Cr/L, we obtain Cr ~> L-* 1^. = const or Cr -» 0. In 

other words, a dynamically compressed satellite is stabilized In 

such a way that its rotation tends toward uniform rotation around 

the axis of symmetry, which seeks to coincide with Hj a dynamically 

elongated satellite, on the other hand, tips over and seeks to put 

itself into uniform rotation (7.1^) around the transverse axis, 

which seeks to coincide with H. However, an equatorial orbit 

(H = const) is an exceptional case. In the general case of an 

arbitrary orbit, owing to the rotation of the vector H, we must 

expect that all the components of the angular velocity will be 
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f* 

attenuated to zero, while the magnitude of the vector L will tend 

to zero (and not to a constant value, as In the case H ■ const). 

This follows from the fact that In such a case there will not be 

any fixed direction relative to which the force moment Is equal 

to zero« 

Let us consider, for example, the case of a polar orbit (l = 

= 90°), for the sake of simplicity taking e = 0 (a circular orbit). 

Then the axis 7 of the stationary system 1¥Z  (Fig. 11) is directed 

along the normal to the orbital plane: 

J7s—0, Hi = 2-^sinucosu,    ^-^[l-SilaU]. (7.20) 

Projecting the moment in (7.8) onto the axes XYZ and averaging 

with respect to f  and v, we obtain: 

7%- «. _ 7/*{^ cos» {> + Jlsin'fl}/-, 

IV; - - Hi[^cos20 + -^sin* ojLr, 

Jfc - - S| {-^W 0 + A sin2 a} Lr, 
(7.21) 

where 

jl.iiJi    HV^lik  7?«-'20 •** (7 pp} 

Prom 

L-u = M-x1L; = *M-,L-x=Tl-l (7.23) 

we have approximately (taking * * $Q): 

i^ = Z|exp {-^[^corfdo+i»**"^] (*-<«)}. (7.24) 

£- -4 exp {- SJ [-£ cos* *o + 4 sint *•] (' ~ *■>} • 

Lj-^exp {-^[^cos'tfo + -xsin*d0] («-«}• 
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That la, mil the component» of L tend to zero «hen t-» •• 

Hence we find that when t-* +» 

Let X be the angle between the axis 1 and the projection of 

the vector ion the orbital plane. Then from (7.24) 

I.e., 

K^-X.    when *-oo. (7.27) 

If 6  is the angle between the vector L and the axis Y, then 

from (7.24) and (7.25) we have 

cose- 4 «P {-»»-« 
)/"j£ exp2{-Ä,aa-<o))+X?exp2{^«(l-<p))+Z.fcxp2{-Ä|«(/-<o)>   (7.28) 

a - -^ cos* d0 + -^- sin*0o. 

Since H2 > H£ and E2 > 1$, from (7.28) it follows that when 
z j 

t -> 00 

cos e-> o. (7.29) 

Relationships (7.27) and (7.29) Indicate that the kinetic- 

momentum vector seeks to make itself parallel to the axis of the 

magnetic dipole. Finally, writing out for the case under consider- 

ation the twice-averaged value of the projection of the moment on 

the axis of symmetry of the satellite, we obtain 

.17,=_77v{A:(l_i:)-l6i«'»(/,:-t;£)(3^-l)},      (7.50) 

"-^S + lJ (7.51) 
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Using (7.15a), (7.50), and (7*21), we obtain an equation for 

the angle of nutation *, analogous to (7.17)* the Integration of 

which gives 

- »—*.«pl{i[BS(i + ^TBj(i>ä)](^-5)}*.  (7.32) 

in which case a formula analogous to (7*19) and the corollaries 

deriving from this formula will be asymptotically correct. Finally, 

since 

Cr » L cos *, 

while L-> 0, according to (7.25), the axial component of the 

angular velocity r also tends to zero. In contrast to the case 

of an equatorial satellite, the rotation seeks to extinguish itself 

completely.  A more detailed investigation of the effect of eddy 

currents on the rotation and orientation of a satellite is given 

by Yegorov [l6]. 

8.  The Effect of Moments of Light-Pressure Forces 

on a Solar Satellite 

If a space vehicle is moving in an orbit around the sun, 

frequently, of the moments of external forces the moments of the 

forces of light pressure have the most significant effect on the 

rotational motion of the vehicle.  An accurate calculation of the 

moments of light-pressure forces involves the same difficulties 

as the calculation of the moments of aerodynamic forces. In this 

case we cannot give preference to any one character of the reflection 

of light from the surface of a body, since it is determined by the 

properties of the surface of the body. The general Integral formulas 

for the moments of light-pressure forces are given by A. A. Karymov 
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[12], For studying tha motion we can use the following approximate 

formula for the moment of light-pre a sure forces: 

M.!«£Uxk\ (8.1) 

Here • Is a unit vector of the radius vector of the satellite, 

k' is a unit vector of the axis of the satellite, e is the angle 

between these vectors, so that |e x k1| = sin e, R is the helio- 

centric radius vector of the center of mass of the satellite, RQ 

is a fixed value of R (for example, at the initial moment), a(e) 

is a coefficient of the moment of light-pressure forces. The 

dimensionality of a coincides with the dimensionality of M. We 

shall assume that a is expressed explicitly in terms of cos e: 

a = a(cos e). (8.2) 

Then the following line of force corresponds to force moment 

(8.1) 

i/(cose) = -.^Ja(cose)d(cose)j (8.3) 

i.e., according to (1.20), for an arbitrary elliptical orbit 

U, (cos e) = - ~-4=-^a (cos e) d (cos e). (8.4) 

Let us consider two cases: a ■ aQ and a = a^cos e. 

1. a = aQ. Then 

rr a°Rl (8.5) 

cose = T* cos v + a* sin v, (8.5a) 

where 7" and a" are determined by Formulas (1.5). We find the 

average value with respect to? of the function Uv with the aid 

of (8.5): 

ÜvaB"~7p'CO8*8inpC0,(a-v)' (8.6) 
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i.e., it has the form (i.25a)> therefore, according to (i.28), 

the trajectory of the trace of the vector L is given by the formulas 

<D - L0 cos P--4Ä- cos 0 cos V - const, (8.7) 

(8.8) 

KjZ? 

cos T = sin p cos (p,    ^so — v. 

Trajectory (8.7) is closed in a coordinate system rotating 

together with the radius vector R.  Substituting (8.7)-(8.8) in 

(1.26), we can obtain the rates of change in the coordinates in 

the rotating system; however, the motion in Trajectory (8.7) allows 

a simpler interpretation.  Let 

nn = r= cos 0, LoVfP 
tan p- = -_« . 

(8.9) 

(8.10) 

Then it turns out that Trajectory (8.7) on a unit sphere is 

a family of concentric circles 

with the poles 

cos x = const 

a) <Pi = 0 Pl = p\ 

(8.11) 

(8.12) 

Fig. 14. 

where p* is determined from (8.10).  In Formula 

(8.11) x denotes the angular distance from the 

first of the poles in (8.12) to the vector L. 

The trajectories for nQ > 0 are shown in Fig. 1^.  Let X denote 

the angle of rotation of the vector L around the pole. Then the 

velocity of rotation of the vector L is given by the formula 

d'K 
TKr~-KTT^. d\ (8.13) 
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From  (8.10) and (8.13) It can be seen that If the moments of 

light-pressure forces are small (TIQ • 0), the direction toward the 

pole is almost perpendicular to the orbital plane, and the velocity 

of motion dXVdv of the kinetic-momentum vector In the rotating 

coordinate system Is close to -1, I.e., In a stationary coordinate 

system the vector L remains almost invariable. On the other hand, 

at high values of nQ the stabilizing effect of light pressure is 

felt, and Poles (8.12) shift in the direction of the instantaneous 

radius vector (p*-* T/2), while Velocity (8.13) increases. Similar 

results were reported to the author by D. Ye. Okhotsimskiy.  Let us 

now consider Case 2. 

2.  a = a^cos e. Then 

n "*S   , (8.1*0 

«i*2 

(0.15; 

The function Uv again has the form (1.25a); therefore, accord- 

ing to (1.27), the trajectory of the vector L in a rotating coordi- 

nate system will be 

L°cos p " TTTP I1"~ tsin* *)cos* 'F = const' (8.16) 

where ¥ is determined from (8.8). 

The equations of motion in the coordinates p, a,  according 

to (8.15) and (1.22), have the form: 

% = — uV+P (* ~~ "2 sitt* d)Sin pCOS (g "~ v) Sin (° "" V)> 

rfs «i^o   /i     3  . 1A\ .,        . (8.17) 
^ " ""ZTTJSl1 "sm*) c<>sPcos»(o -v). 

Equations (8.17) completely coincide with the equations of 

motion (2.7) under the action of gravitational moments, if in (2.7) 
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we merely put e ■ 0 and choose NQ appropriately. Therefore all 

the results of Section 2 for a circular orbit carry over to the 

given case of the effect of light pressure on the elliptical orbit 

of a solar satellite, If NQ « H, where x Is determined by the 

formulas 

—-xT^1-*»1»*»)- (8.18) 

The main results of Section 2 refer to the case |x| < 1, for 

which the trajectories are shown in Pig. ^. In this case the 

stabilizing action of the light pressure is felt very slightly. 

For |H| > 1 the trajectories are ajioyn in Fig. 5. Here the stabiliz- 

ing action of the light pressure is already felt substantially, 

and there are regions in which the vector L "tracks" the radius 

vector of the orbit. 

The poles of these regions are given by the formulas: 

9* = 0, *, cosp'=-L. (8.19) 

Let us consider the case H > 0, to which the case H < 0 can 

be reduced without difficulty. The trajectories of the vector L 

are given in Fig. 5. The first of Eqs. (8.18) can be written in 

the form 

ft» 
~ = xsin pcoscpsinq), (8.20) 

where, according to (8,l6): 

cos« Y + \ cos o=C0. (8.21) 

Hence, taking (8.8) into account: 

l/co--!-cosp l/l—coB*.o-.C„ + 4-e*p        (8.22) 
«** SGTp . «lnV—E ^ 5 . 
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Substituting in (8.20), we obtain 

Talcing into account that, according to (8,21) and (8.8); 

Co - cos^o »in* Po + -^oo« Po (8.24) 

and choosing the initial value of v in such a way that when 

v = v0lcp0 = 0, (8.25) 

we find that the polynomial under the radical^aign in (8.23) has 

the roots 

*i = cos p0 + -y sin2 p0, z2 = -1 — cos p0, x, = cos p0. (8.26) 

The following three cases are possible: 

•)  ** > *i > *3 «he"     -1 < COS p0 < ~ ~ i, 

**) ari > *2 > Xz when    -£- - 1 < COS p0 < JL , 

•') xi > *3 > x« when   ±. < COS Po < 1. 

(8.27) 

In case "a"  Integration of Eq.   (8.23) gives 

cos p = cos o0 -f -~- sin2po sir (u, A), 

U mm Yi — xCOSpo (v — V0),   Ä = ■ 
xsin po (8.28) 

2/1 — xcospo   " 

This case corresponds to rotation around the normal to the 

orbital plane  (Pig.   5).     Instead of the second coordinate q),  it 

is more convenient to write out,  according to  (8.21),   the angular 

distance Y from the radius vector of the orbit.     We obtain 

cos Y *= cos Y0 en (u, A),    cos Y0 - sin pr (8.29) 

The total period of rotation of the vector L will be 

r = 4*OT/Kl-xcosp0. (8.30) 
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In case Hb" the motion will occur in the neighborhood of the 

instantaneous radius vector of the orbit (Pig. 5)# and integration 

of Eq.  (8.25) gives 

eotp = cosp0+ 2(~— cosftjsnM«. k)t 

u-|.inp.(v-vj.fe-in^5.. 

The total period of rotation of the vector L: 

(8.51) 

(8.32) 

while the angle f is determined from the formula 

cos V = cos M'0 dn (u, /:), cos ¥0 = ± sin p0. ' (8.33) 

Case "c" gives the same trajectories as case "b", but they 

are read off from the other extremum. However, for these trajectories 

it is convenient to write independent formulas: 

cos p = cos o0 — 2 (cos p0 —Jsn' (u, A), 

u = V ■—- sin2 p0 -f cos p0 (x — 1) (v — vj, 

A»   ,     2/xcos>~1 (8.34) 
/xs ^u* j>u - i cos >„ (x - i) v    • ^    ' 

y= 
/'A-(fcg) 

yrx- »lii2 :.„ -;- 'J cos PO (x — l) 

cos ¥ = cos ¥0 dn (u. A),   cos ¥0 = ± sin p8. 

Narurally, when we substitute cos p0-> 2/x - cos p0 and vary 

the oscillation phase by T/2, Formulas (8,^4) become Formulas 

(8.29)-(8.33). 

Up to this time we have considered the case n > 0. If, on 

the other hand, H < 0, the substitution of p* = IT - p instead of 

p and |H| instead of H in the above formulas gives the solution 

for this case. 
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In conclusion, let ua note that the above results are also 

applicable to a satellite with three unequal principal central 

moments of inertia, if the force moment has the form (8.1), where 

k,f is a unit vector along one of the principal central axes of 

inertia (major or minor). The angle of nutation * in this case 

should be averaged when introduced into the formulas. For the 

case of pure unperturbed rotation ($• -  0) the results are completely 

applicable. A similar generalization is permissible with the 

above reservations for these same moments of other forces not 

depending on the moments of inertia of the body. The formulation 

of a theory of perturbed motion of a triaxial satellite under the 

action of gravitational moments, and also under the action of moments 

of forces of any nature requires a more rigorous analysis and formu- 

lation of the equations in osculating elements for the triaxial 

case, as was done, for example, in the article by F. L. Chernous'ko 

[17]•  In this article the effect of gravitational moments on a 

triaxial satellite is considered, and the equations of motion for 

this case are reduced to the same form (2.7) as in the case of a 

biaxial satellite, except that the constant coefficient NQ has a 

more complex structure and depends on the three moments of inertia 

A, B, C of the satellite. 

Conclusion 

The analysis carried out shows that the general equations In 

osculating elements (Section 1) are an effective apparatus for 

studying perturbed motion of a satellite The main qualitative 

effects of motion studied in the present article are systematized 

in the table. The perturbing factors investigated are listed in 
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the first column; In the other columns the effects caused by these 

factors are described. The table Is divided Into two parts: effects 

of the Is approximation are considered In the first part; additional 

effects revealed during an analysis of the 2n approximation are 

Indicated In the second part of the table; an analysis of the solu- 

tion in the second approximation also enabled us to disclose certain 

"stabilizing" effects in an orbital (rotating) coordinate system; 

some of these effects are indicated in a special column in the 

second part of the table. 

In the table the following notations are used: 

L,   |x| = the kinetic-momentum vector and its absolute value, 

n = the vector of the normal to the orbital plane, 

T = the vector of the transversal of the orbit, 

r =  a vector along the direction of the instantaneous 
radius of the orbit, 

H, Hav, H'  = the vector of the earth's magnetic field strength 
and some of its "average" values, 

T = a vector in the direction of the perigean tangen. 
to the orbit, 

i = the inclination of the orbit toward the equator, 

X5z = a right-handed coordinate system connected to ühe 
earth and the orbit, 

¥  is parallel to the earth's axis, 

Z      is parallel to the nodal line of zhe  orbit, 

e s= the eccentricity of the orbit, 

W"Q * the angular velocity of rotation of the atmosphere 
(together with the earth), 

A,C ■ the transverse and longitudinal moments of inertia 
of the satellite, 

I-,, I1 = the coefficients of aerodynamic dissipation along 
the transverse and longitudinal axes, 
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i'  kÖ " thö coefficients of electromagnetic dissipation (from 
eddy currents) along the transverse and longitudinal 
axes, 

*, V,  n * elements of the regular precession relative to the 
vector L: the angle of nutation, the angular velocity 
of precession, the axial component of the angular 
velocity (in Sections 2-8, instead of n, we used the 
notation r). 

Within the framework of this table the most significant direction 

for further theoretical studies is a more accurate analysis of the 

role of dissipative effects.  It seems probable that an analysis 

of the second approximation should reveal, for example, an asymptotic 

tending of the vector L toward certain moving directions (connected, 

for example, to the instantaneous vectors of velocity or magnetic 

strength). 

More important, apparently, Is an analysis of the combined 

effect of various factors and a comparison of the theoretical 

analysis and the observations of the actual motion of satellites 

relative to the center of mass.  A number of studies have already 

been  carried out in these directions.  A theoretical analysis of 

the combined effect of aerodynamic and gravitational perturbations 

is given in an article by the author [9].  A number of effects 

in the rotation of the third Soviet artificial earth satellite [18] 

agreed with the theory.  In the articles by Colombo and Naumann 

[1, 2, 19] the results of a numerical analysis of the combined 

effect of secular gravitational and magnetic perturbations are 

brought into good agreement with the results of observations of the 

rotation of certain American satellites. These studies will 

definitely be continued and developed. 
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TABLE 

Main Effects of Perturbed Rotation of a Syewetrical 
Satellite 

Perturbation« 

1st approximation (secular BOtIon) _ 2nd approximation 

Motion of tha kinetio-j 
■caontum vector L Notion of L 

tior. relativ 
to I 

1 Effects ofjHetion In 
fupplemnt-jjho rotat- 
Inf the lstl1"*' •*«•■ 
«pprearlmtijc   "• *■ r 

Gravi- 
tational 

Preoeasion 
relative 1 None 

!Mutation 
relative 
to • 

When e • 0, 
a dosed 
trajectory 
around a 

Aerodynando 
preeeure preoeasion ^fiativ« *■ 

around *„     ijj.|^ ftf 

the preces- 
•lon pole 
due to W0 
3. Possible 
preclusion 
!(and nuta- 
ftlon) rela- " 
Jtive to ft 

Nutation 
relative 

to T, 

When e ■ 0,: 
a closed 
trajectory 
Iwith its 
pole on the 
meridian 

C)a- 
None 

1. Possible 
precession 
relative to 

S 

i 

r 

§ Constant sym- Precession 

i KtÖ%ff1 SSÄ,*» i   *"" 

Magnetlta- ; Preoessional-nutational 
tion of the motion 
satellite a) around t'-e -y>le 
shell I on the meridian 

b)  around t e axis 7 
Y5C 

PreeessionaJ-       _ 
nutatlonal   , 
motion of the 
-veotor L 
completely   ,      
described     ,  
by Eqs. _ 
(1.22), 
(6.6), 
(6.1C> 
(6.11) 

A closed 
trajectory 
with its 
pole on the 
c* rid Ian I 

2 

I 

9 o 

! 

Eddy 
currents 

l«. i <* o 1 L | -^ o: 
; *-^ 

i"av 

- *° 
*"   k       < 

o. T'-T<° 
- *    *      1 
-. -' • >0 ! 

V. i - 0 | L | - o; 

'   a_o:   v-»0 

*"     ** 

*-»*V0 
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Finally, one more direction for further study should be noted: 

an analysis of the perturbing factors not considered (or considered 

very cursorily) until now, the ascertaining of new perturbing 

factors, and an analysis of their effect on the rotation of a 

satellite. 

Received on 
July 1, 1963 
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ON THE ADIABATIC INVARIANTS OP MOTION OP A CHARGED PARTICLE 

IN A STATIONARY HETEROGENEOUS MAGNETIC FIELD 

V. D. Plemnex and G. A. Skuridin 

On the basis of the classical theory of adiabatic in- 
variants, we examined the conditions of retaining conser- 
vation the first, second, and third invariants of the 
motion of a charged particle in a spatial magnetic system. 
Since such a motion of a particle in a magnetic field is 
not strictly conditionally periodic, theoretically there 
can be a divergence of the adiabatic approximation re- 
lated to the inseparability of variables in the Hamilton- 
Jacobi equation. 

The problem is raised concerning estimation of the 
accuracies of conserving the second and third invariants 
in a stationary magnetic field. 

I.  FORMULATION OP THE PROBLQ* 

1. Method of Averaging 

As is known, motion of a charged particle in a stationary 

heterogeneous magnetic field is described by equations: 

where P » e^m is the force acting on the particle in an electrical 

field, T is the velocity of the particle, and H is the magnetic 
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field. The rigorous solution of system (i.l) has considerable 

mathematic difficulties. Therefore, a number of methods for 

approximate solution of system (I.l) has been presently developed. 

One of the methods which is widely used is the so-called method 

of averaging, whose principles were previously established [1]. 

This method was subsequently developed [2, 3], while fundamental 

consideration was given to the theory of adiabatic invariants of 

the motion of a particle (or system of particles) [J]. 

Actually, the averaging method is one of the methods of the 

classical theory of perturbations. The theory of perturbations 

is in a less complete mathematical form, but was previously 

applied with greater clarity to the motion of a charged particle 

in stationary heterogeneous electrical and magnetic fields [^-6]. 

The physical sense of the method of averaging is as follows. 

In a zero approximation the true field is the actual heterogeneous 

magnetic field, averaged with respect to the volume of one Larmor 

rotation of a particle.  Thus, the averaged heterogeneous magnetic 

field is replaced by the homogeneous field corresponding to it 

within one Larmor rotation of a particle. 

Hence, the true motion of a particle In a zero approximation 

can be substituted by the motion of its center of rotation around 

magnetic lines of force or the so-called guiding center of the 

particle.  Such averaging results in the regular heterogeneity 

associated with the constant gradient of a magnetic field perpen- 

dicular to the axis of the magnetic tube of force, which should be 

regarded in the first approximation. The effect of the remaining 

heterogeneities, causing deviations in the motion of a particle 

from the averaged motion, is mutually compensated owing to 
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symmetric rotation of the particle around a magnetic line of force. 

The presence of the constant gradient of the magnetic field perpen- 

dicular to this field causes the particle to drift perpendicular 

to the magnetic line of force. Drift of a particle due to distor- 

tion of the magnetic line of force is also added to this drift. 

Therefore, the equations of motion of a particle in a first approxi- 

mation are called the drift approximation. 

On the basis of these considerations, the solution of system 

of (I.l) is sought [l] as 

00 i 
r*«<x*>-r VSB(<a>.<*i>.....<A». (1.2) 

where x. is the generalized coordinate of motion, a is the angle 

of rotation of a particle around a line of force in a plane perpen- 

dicular to this line, ci\   is the Larmor frequency.  The mark < ... > 

denotes averaging over TL, which is the period of Larmor rotation 

of a particle in a magnetic field.  Here it is important to assume 

that a^ » 1*. 

One of the results of using the method of averaging is the 

approximate conservation of the magnetic moment of a charged parti- 

cle |i = mv 1 2/2H, which in this case is an adiabatic invariant. 

The conditions of the conservation of u. as well as the degree of 

accuracy of this conservation follow directly from the classical 

mechanics of the motion of conditionally periodic systems and 

systems close to conditionally periodic. 

Therefore, within the limits of the applicability of the 

method of averaging, it is expedient to study the character of the 

♦We can show that the method of averaging is essentially an 
asymptotic method which is at present widely used for solving many 
problems of mathematical physics. 
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motion of charged particles in a heterogeneous magnetic field based 

on the theory of adiabatic invariants which was developed in classi- 

cal mechanics» 

This examination as applied to the motion of a charged particle 

in an electromagnetic field has been carried out [7* 8]. 

This work examines the motion of a charged particle in a 

heterogeneous magnetic field based on a study of the conservation 

of all adiabatic invariants corresponding to the spatial symmetry 

of a magnetic system. 

2. Elements of the Classical Theory of Adiabatic Invariants 

as Applied to the Motion of a Charged Particle in a Magnetic Field 

The theory of adiabatic invariants in its most complete form 

was first developed by Yu. A. Krutkov, based on the methods of 

classical mechanics [9]» 

Yu. A. Krutkov examined the adiabatic invariants of condition- 

ally periodic, cyclic, and erogodic systems, as well as the appli- 

cation of the theory of adiabatic invariants to quantum mechanics. 

Previously, the value of the separability of variables in the 

Hamilton-Jacobi equation for adiabatic invariance was especially 

emphasized [9]. 

As is known [9* 10], if there is a system performing a homo- 

geneous finite motion with period T in a field characterized by 

some parameter X, and provided that 

T%<K (1.3) 

then there is a combination of the energy of system £ and parameter 

X, which remains approximately constant. The degree of accuracy of 
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/ * 

the approximation is limited by fulfillment of condition (!•?). 

This relationship between £ and X is an adiabatic invariant of a 

mechanical system. This adiabatic invariant for the system being 

examined in the most general case is a generalized impulse in the 

system of angle — action variables 

where integration is carried out along the closed trajectory on the 

phase plane of the generalized coordinates and of impulses Q  and £. 

Condition (1.3) is actually a condition of linear change in time of 

energy £ and parameter X.  Indeed, owing to (1.3) we can approxi- 

mately assume that the complete energy of the system completing 

the motion changes with a velocity proportional to the velocity of 

change X, i.e., dl/dt ■» dX/dt [10]. 

Thus, we disregrad the energy Vdlue for time T and approxi- 

mately assume that the averaged values <g>m and <X>_ are constant 

for time T and equal the effective values $  and X. When there is 

a system with many degrees of freedom which completes the periodic 

motion along each coordinate (so-called conditionally periodic 

system) , expressions 

**=±jtodq* (I-5) 

can also be adiabatic invariants.  However, in this case it is 

insufficient to only fulfill condition (1.3) for an approximate 

conservation of magnitudes I. .  For the adiabatic invariance of 

magnitudes I.  it is also necessary to fulfill the condition of 

complete separation of variables in the Hamilton-Jacob! motion 

equation [9, 11]. Mathematically, this condition is formulated as 

-84- 



the theorum of Stackler [9,  12], and physically It designates the 

complete Independence of periodic motions on each other along each 

generalized coordinate. 

Thus, under the condition of complete separation of variables 

and fulfillment of condition (1.3) >  Ii. Is an adlabatlc Invariant. 

An exception Is the so-called case of degenerate systems where the 

frequencies of periodic motions along the generalized coordinates 

are commensurable I.e., 
n 

Ih^'-O, (I#6) 

where J. are the integrals, and ox are the oscillation frequencies 

along each generalized coordinate q.. A special case of disturb- 

ance of the invariance in a case of a two-dimensional oscillator 

during resonance of oscillations along each of the two coordinates 

was previously examined [8, 13]. 

As an illustration or  an adiabatic homogeneous motion in 

mechanics we usually examine a one-dimensional oscillator whose 

Hamiltonian function is 

f~>  _       /''      ■     lnu,'-'j- 

J.HL (1.7) 

where CD is the normal mode of the oscillator.  The equation of the 

phase trajectory here is found by the law of the conservation of 

energy 

c(p-rj)   ar-cnsi. (1,8) 

Thus, the phase trajectory of a one-dimensional oscillator is 

an ellipse with semiaxes / 2mg and / 21/mo2, and the area in this 

ellipse determine the magnitude of the adiabatic invariant 
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1    k\i,(1<i   'EÖrfM«£. (1.9) 

Hence, with slow changes of the parameters of a one-dimensional 

oscillator (for instance, if CD changes adiabatically) the total 

energy of the system changes proportional to the frequency. 

In the case of the motion of a charged particle in a slowly 

changing magnetic field (when parameter X is the magnetic field 

strength H), a two-dimensional oscillator can be examined as the 

mechanical model. Motion along the azimuth here can be excluded, 

since it is not significant*.  This examination was previously 

carried out [7* 8],  The corresponding mechanical system previously 

examined [7,  8] is a two-dimensional oscillator in which the 

material particle moves along a tube with plastic walls and reflects 

from these walls. 

Let the coefficient of elasticity vary along the tube, in- 

creasing towards its ends.  Then the kinetic energy of the longi- 

tudinal motion of the particle changes to energy of transverse 

motion, and the particle reflects from the ends of the tube, com- 

pleting the periodic oscillations along the tube.  The Hamiltonian 

of such a system is 

r,    jl_z:_irf (i.io) 

where x is the coordinate along, and £ is the coordinate across, 

the tube or magnetic field. Hence, the equations of motion of a 

particle in a tube are 

*In zero approximation, as was pointed out above, the drift 
motion is generally disregarded. 
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'-Hrsf. f—■*        (i.ii) 

Theoretically, we can substitute an examination of this two- 

dimensional oscillator by an examination of one-dimensional 

oscillations between the walls of a tube when the coefficient of 

elasticity varies as a function of time. The Hamiltonian of this 

new system will be 

C   .«£±™£<ä£t (1.12) 

In accordance with (1.9)* during an adiabatic change of a), 

and hence H, we arrive at the expression 

z »<y- ± »«&!/ (1.13) 

which is an adiabatic invariant.  Changing from the motion of a 

mechanical system to the motion of a charged particle in magnetic 

field H, and accounting for the relationship 

x- — V }.   ys + «V <i (1.14) 

we obtain [7] 

/^--■'---^u, (1.15) 

where p. - mv2l/2H. 

An analogy of the coefficient of elasticity mca2 for a magnetic 

fie3d is the expression e2H2/mc2. 

Similarly, we can obtain two other adiabatic invariants of 

motion of charged particles in a magnetic field for a spatial case. 

Here, to obtain the second adiabatic invariant it is necessary to 

examine the motion of a charged particle averaged with respect to 
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T0. If the conditions of this averaging are fulfilled, we can 

examine the oscillatory motion of a particle along a line of force 

and the drift motion as independent of the Larmor rotation of a 

particle (vibration).  A one-dimensional oscillator can be examined 

as a mechanical analog of motion in an axiosymmetric magnetic field, 

since rotation about the axis of a magnetic system can be excluded 

owing to symmetry of the field.  If the intensity of a magnetic 

field in the direction of drift changes sufficiently slowly, the 

motion has its own adiabatic invariant.  The expression for this 

invariant is found especially simply if the problem is reduced to 

a one-dimensional oscillator with parameter H changing slowly in 

time.  Then, according to (1.9), we obtain 

/,_££». (1.16) 

Here the sign < ... >T^o designates averaging with respect o sc 

to the period of oscillations along a magnetic line of force. 

T   and Cl  are the period and frequency of these oscillations, 

respectively.  Thus 

/ — ."' '>T°30 - /•"  -   r \  "u" (!i' 
-     Q        - ^c ' ' ose'l 08« ~*   \ ~T T 

or 

(1.17) 

Invariant I2 is usually called the longitudinal adiabatic 

invariant or invariant of longitudinal action and is designated J. 

To obtain the third adiabatic invariant let us examine the 

averaged motion of a particle with respect to the period of oscil- 

lations along the magnetic line of force.  If the conditions of the 
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possibility of this averaging are fulfilled, then in this case the 

particle drifts in a stationary magnetic field over one and the 

same magnetic surface [1^]. The magnetic surface over which the 

particle drifts (during absence of electric fields) is determined 

by €f  M-> and J. Since the magnetic flux across the transverse 

section of the drift surface does not change, conservation of J in 

the stationary field determines conservation of the so-called 

invariant of total flux 

^§,WS- (1.18) 

This invariant of the drift motion of charged particles in a 

magnetic field is usually designated by $.  If there is a temporal 

change in the magnetic field, only a one-dimensional oscillator 

with a purely temporal change of parameters can be examined as the 

mechanical analog of drift motion. Based on (1.9), the adiabatic 

invariant here will be 

/a      \ ud r/1      \]jouri»d '/s- (1.19) 

Since the drift velocity of particles u, with an accuracy up 

to a constant is determined by the vector potential of the magnetic 

field, we finally arrive at expression (l.l8), i.e., the third 

adiabatic invariant.  Approximation of the third adiabatic invari- 

ant in this case corresponds to averaging of the motion of a 

charged particle with respect to the period of its drift rotation 

( see Section II) .  Obtainment of these invariants is possible only 

on fulfillment of condition (1.3) and the approximated separations 

of motions as independent of each other with respect to each of the 

three coordinates. This separation of motions is accomplished in 
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Systeme close to the conditionally periodic.  In particular, in a 

stationary heterogeneous magnetic field the possibility of this 

separation is related to the symmetry of the magnetic system. 

II.  CONDITIONS OF CONSERVATION OF ADIABATIC INVARIANTS 

IN A HETEROGENEOUS MAGNETIC FIELD 

1.  Conservation of the First Adiabatic Invariant 

The condition of the approximated conservation of p, in a general 

case will be (1.3) , where parameter X  is expressed by the magnetic 

field strength H, i.e., 

Ti\%'<»- (ii.i) 

For a stationary magnetic field condition, (II.l) assumes the 

form 

71 (w, n«c,r (II<2) 

or 

where (6H) L is the change of field strength resulting from the 

motion of a charged particle over a trajectory along a magnetic 

line of force during time TL.  Condition (II.3) can be transformed 

to 

v i. 

-90- 



p£ is the Larmor radius. 

Previously [2, 6], a special form of condition (II.4), cor- 

responding to the case where v^ ~ vii was used. Then (II.4) can 

reduce to condition 

The causes, due to which an additional condition of applica- 

bility of an adiabatic approximation becomes necessary in the form 

(II. 5) 

will be explained below. 

On examination of the mechanical models of motion of a charged 

particle in a heterogeneous magnetic field, we assume that we are 

dealing with a conditionally periodic system.  However, this is 

not entirely correct. The system of a charged particle in a 

strong magnetic field can be arbitrarily close to conditionally 

periodic, but nevertheless differs from the latter in that the 

total separation of variables in the Hamilton-Jacobi equation for 

such a system can be carried out only approximately. The funda- 

mental purpose of the method of averaging, by which we obtain in 

an axiosymmetric magnetic field three periodic motions of a charged 

particle, is to separate the Larmor rotation (so-called "vibrations" 

of a charged particle) from drift about the axis of symmetry of the 

field and the oscillations of the particle along a magnetic line 

of force. The method of averaging allows us to carry out a cor- 

responding separation of variables correct to any degree of 

expansion with respect to lAv» However, the character of expansion 

itself requires here some additional conditions of the applicability 
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of approximation. 

Let us examine some examples. Let the velocity vector of a 

charged particle at the initial time of motion be directed tangenti- 

ally to a magnetic line of force. Then v.. - 0 and \L,  - 0, (i - 

initial). Since a line of force of a heterogeneous magnetic field 

is distorted, during some subsequent instant, as is obvious from 

the simple mechanics of motion, u- ^ 0, i.e., the magnetic moment 

of a charged particle changes, although its energy can be arbitrari- 

ly low, and the field arbitrarily strong.  Condition (II.k)   when 

vli Ä ^ leads to an indeterminate form, since p., * 0. 

As another example, let us examine the case where v,i ■ 0. 

Here the amplitude of oscillations of a particle along a magnetic 

line of force is of one order of  magnitude with "vibrations" of 

the particle around a magnetic line of force.  As was previously 

shown [2], as a result of "vibrations" within TL the magnetic moment 

of a charged particle will not be a constant magnitude, but 

averaged over TT it is constant.  Hence, within TT the amplitude of 

oscillations changes along a line of force.  However, if the initial 

amplitude of oscillations Is equal to zero, we cannot disregard the 

relation between oscillations along a line of force and "vibrations", 

since the contribution of "vibrations" to oscillations along a 

magnetic line of force will not be infinitesimal, In comparison 

with the amplitude of oscillations of the particle.  Thus, when 

v I i  = 0, \i  is not an adiabatic invariant, since the motion of a 

particle along a magnetic line of force and its "vibrations" 

around the line of force will not be independent.  It is easy to 

verify the above through a mathematical examination of a first- 

order expansion with respect to l/<\  [2].  This expansion has the 
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following form 

r — <"r> + (p^ (e, cos <a> — e, sin <o», 

-<">-^^^.H^(^+^-'<«>-      (II'6) 

^■e,^.8in2<a>, (II. 7) ^re,^-8in2<a> 

_J_ „^ Sln <a> + _J__^ (e, £ _ ,,.*) si„ 2 <a>. 

Here r Is the radius vector of the point where the charged 

particle is located, v^ and VM are velocity components perpendic- 

ular and parallel respectively to the magnetic field strength 

vector, a is the angle of rotation of a particle in a plane which 

is perpendicular to H, and ei, e2, e3 and Xi, x2, x3 are the unit 

vectors and coordinates, respectively, in a system of coordinates 

which is congruent with the magnetic line of force, i.e., ei coin- 

cides at each point with a direction tangential to the magnetic 

line of force, and e2 and e3 are determined by the relationships 

c-i = fca; PJI <*:■ = fOi; e-1, o, =• [o.;, e.,1. (II.9) 

In Eqs. (II.6)-(II.8) the systematic motion, defined by the 

terms <r>, <v,>, and <VII>, is separated from vibrations of a 

particle defined by the terms containing sin <a> and cos <a> 

correct to the terms of expansion of order of smallness l/ca£. 

In addition, from (II.6) -(II.8) it is apparent that the terms 

which correspond to "vibration" are terms of a higher order of 
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smallness than those of systematic motion. Thus, in Eq. (II.6) the 

term <x>, which describes the motion of the guiding center of a 

particle, is much larger than the term describing the Larmor 

rotation of a particle ("vibration") averaged over Ty.  Actually, 

if o>L » l,  then <i£ » p., since <pj> - <vi>/o)L. Therefore, the 

equations of motion of a particle obtained by the method of 

averaging, describe the motion of the guiding center of a particle, 

and in equalities (II.6) - (II.8) in a zero approximation we can 

obtain 

vi = <yi>. »a = <Ootfr - <r>. 

However, if <vi i> ■ 0 at any instant of time, then it follows 

from (II.7) that 

•i-^to*5 + *^>CM^*>-^*Wm2<B>'    (11.10) 

Hence, vii ^ 0, and as a result of "vibrations" related to a 

perpendicular motion of a particle <vi i> ^ 0 can appear at some 

subsequent moment and lead to the nonconservation of the adiabatic 

invariant.  Therefore, when <vii> = 0, the term of "vibrations" 

and the possible temporal divergence of the discarded terms of ex- 

pansion, relating "vibrations" and systematic motion, are not 

negligible. 

When <Vj> = 0, from (II.8) we obtain 

^^e*Ssiu<a>- (ii.ii) 

As is obvious from (il.ll), the impossibility of an approximate 

separation of systematic motion and "vibrations" here is related to 

the parallel motion of the magnetic line of force of a charged 
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particle« which after a certain time leads to the appearance of 

<Vj> t  0 and nonconservation of the adiaba,tic Invariant, Our 

purpose Is not an investigation of the noneonBervation of \i when 

condition (II.5) is not fulfilled. However, as follows from above, 

this disturbance is theoretically possible and the results which 

were previously obtained [2, 4-6] are clearly valid for condition 

(II.5)* although this condition is possibly too strong in special 

cases. 

In addition, it is obvious that a more general condition 

relating v, and vii should exist which broaches all cases of con- 

serving the first invariant. 

2.  Conservation of the Second and Third Adiabatic Invariants 

The condition of the conservation of the second Invariant for 

a magnetic field will be the condition 

y
oao inr\<J/- (ii. i2) 

In the case of a stationary magnetic field, condition (II.12) 

has the form 

Here di is the element of arc of the drift motion of a particle. 

Prom (II.lj) it is obvious that if vi1 ■ 0, we obtain the same 

indeterminate form as in condition (11.14) when v^ » 0.  This in- 

determinate form was characterized above. It should be remembered 

that conditions (IIA)   and (II.13) are actually integral conditions. 

For instance, during oscillations of a particle between magnetic 

mirrors, the field can change by a considerable magnitude, but due 
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to the symmetry of motion relative to the equatorial plane, we have 

§%TDT*<*. (H.14) 

where ds ■ viidt. Condition (II.4) also has an integral character, 

since it implies that in a stationary magnetic field 

?^T7*<"' (H-15) 

For ideal axial symmetry of a magnetic system 

v H (It o«o  u 

and J is conserved within the "vibrations" of a charged particle in 

a drift approximation. 

Condition (II.13) means that in the approximation J ■ const 

the displacement of a particle form the magnetic line of force for 

time T   is negligible. 

As was already indicated, in a stationary magnetic field the 

conditions of conserving J determine the conservation of invariant 

0.  For a field changing in time, the condition of conservation 0 

will be 

'< ~:<". (II. 16) 

where T, is period of rotation of a particle around the axis of a 

magnetic system.  Condition (ll.l6) results from condition (1.3) 

when X  ■ \( t) . 

The canonical equations of motion of a particle in an approxi- 

mation of the average for T   were previously obtained [15].  It 

was shown that on averaging equations of drift approximation in a 

stationary magnetic field for T  , J will be an adiabatic invariant. 
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A more general case of conserving J in a magnetic field which la 

temporally changing was previously examined [14]. The canonical 

equations of motion of a charged particle in an approximation of 

averaging for T- were also obtained, and it was shown that here 

the adlabatic invariant will be *. In addition to the conditions 

of slowness in the change of the magnetic field within time inter- 

val T   or T,, it was also assumed [14, 15] that approximations 

J » const and ♦ ■ const are possible only if ox.  » ft » Z, where 2 

is the frequency of drift rotation of a charged particle. The 

equations of motion of a particle which were averaged for Tand 

T, were previously obtained [l4, 15] in a zero approximation. 

However, the conditions of the conservation of the second and 

third adiabatic invariants in the form of (11.12), (11.13)* and 

(II.16) in these works was not examined. 

III.  ACCURACY OP CONSERVING THE SECOND AND THIRD INVARIANTS 

IN A STATIONARY MAGNETIC FIELD 

When examining the question about conserving adiabatic invari- 

ants in a stationary heterogeneous magnetic field, the problem 

arises concerning the degree of accuracy of their conservation. 

This problem has fundamental interest, not only theoretical, but 

practical. Therefore, we must state some preliminary considera- 

tions concerning this problem, disregarding, for the time being, 

its complete mathematical solution*. 

♦The complete solution of this problem will be published in 
the next issues of this Journal. 
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Adiabatic approximations of the second and third invariants 

are possible only when oscillatory motion along a magnetic line 

of force and the drift motion of a particle are completely 

(accurately and approximately) independent of each other.  However, 

it is not completely obvious that on averaging equations of motion 

of a particle in approximation |± * const for T  , we will obtain 

approximation J = const, in which the drift motion was separated 

from the oscillatory motion with the same degree of accuracy with 

which averaging equations of motion for T separates the Larmor 

"vibrations" of a particle from oscillations along a magnetic line 

of force and from drift. 

Actually, the component of the field gradient y  H perpendicu- 

lar to the magnetic line of force and the component of field gradi- 

ent v |1 H parallel to the magnetic line of force are interrelated 

by equation div H = 0.  This relation can be eliminated with some 

degree of accuracy within time interval TV when conditions (II.4) 

and (II.5) are valid, while the difference between the actual 

values v i H and 7 I I H and those averaged for TV will be of the 

same order of smallness. 

Therefore, the motion of a particle about a magnetic line of 

force during TL can be considered almost a symmetric rotation. 

Symmetry of Larmor rotation^ In turn, results In the corrections of 

the actual motion toward <y j_ H> and <y i i J£> being mutually com- 

pensated within TL with a high degree of accuracy since they are 

of the same order of smallness .  Thus, motions of a particle per- 

pendicular to Larmor rotation and parallel to the magnetic field 

become independent during a time much greater than T,.. 

The examined symmetry of motion, related to corrections of an 
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Identical order of Bmallness toward v , H and 7 11 Hin expansion 

by l/<^$  is not inherent to oscillatory and drift motions of a 

particle in an approximation of averaging for T___.  If (II.13) 

implies a slow change of the magnetic field in a direction perpen- 

dicular to the magnetic line of force, then, as was previously 

pointed out, motion along a line of ^orce results in large changes 

of field strength within T  .  Therefore, motion of a particle in 

an approximation of averaging for T   will not have complete 

symmetry and will be symmetric only relative to some plane (for 

instance, relative to the equatorial plane of an axiosymmetric 

magnetic field) .  Actually, in an axiosymmetric magnetic field the 

assignment of specific \L,  J, and £ uniquely determines the surface 

of the motion of a particle, while this surface is completely sym- 

metric relative to the axis of the magnetic system. Thus, a shift 

of the particle from this surface with respect to height, changes 

its longitudinal invariant J. 

With a completely axiosymmetric magnetic field the left side of 

inequality (II.13) becomes zero, since the particle is not shifted 

from the invariant surface and the intensity of the magnetic field 

does not vary from drift.  Here the symmetry of the magnetic system 

compensates the asymmetry of approximation J = const. The oscilla- 

tory and drift motions here will be approximately independent, and 

the terms responsible for the relation of these motions will be 

small magnitudes nondivergent in time. Theoretically, J in an 

axiosymmetric magnetic system will be a constant of the motion with 

the same accuracy as when \i  - const. However, even with a small 

asymmetry of a magnetic system, the asymmetry of approximation J ■ 

const relative to the radial shifts of the particle can result in 
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a temporal increase of the terms of expansion relating the motion 

of a particle along a magnetic line of force to the drift motion, 

even if these terms are small magnitudes of a high order at each 

moment of time. 

Let us estimate the magnitude of disturbance J due to the drift 

motion of a particle in a field which is not ideally axiosymmetric. 

As will be shown, the cumulative effect of disturbances J is 

caused by the temporal divergence of the term which was related 

to distortion of the magnetic tube of force along which the charged 

particle moves.  Due to distortion, a relation arises between the 

velocities of drift of a particle and oscillatory motion, i.e., 

a term appears connecting both motions.  Although this term is of 

the first or even higher order of smailness, the presence of small 

deviations from an ideal symmetry nevertheless causes its temporal 

divergence and cumulative effect of disturbances J. For this 

purpose, let us examine a case where conditions (II.4), (II. 5) > 

and (II.13)* are fulfilled. 

To estimate divergence J, let us introduce some auxiliary 

expressions for u, and curl H in system of coordinates ej e^;   e3. 

For u, we have 
d 

^T0lXK W7l-T7iVnr (ULI) 

Expression (Ill.l) was previously obtained in a general form 

[2],  By transforming (ill.l) we obtain 

♦This work does not examine the case of large disturbances of 
axial symmetry, or, what is identical, the case where condition 
(11.13) is not fulfilled. 
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*—4«*+fl}+A±*)* Cm.« 
where pi is the curvature of a magnetic line of force. 

For curl H, according to previous works [16], we will have: 

MB =(HPl- i£)c3-'r ^e*- H (x, + i3)ev (HI. 3) 

where T2 and T» are secondary torsion coefficients corresponding 

to partial derivatives de/dx2 and de/dx3 [16]. Prom (III.3) is 

follows that if curl H - 0, 

13//  w =   T j.T .„ (HI.*) 

and the magnetic system is axial symmetric. If curl H ^ 0, from 

(III.2) and (III.3) we have 

Thus, term 

—' feurl]; — o, ü-.ourlll)} 

corresponds to the correlation between the curvature of the 

magnetic line of force, along which the particle oscillates at 

velocity VM, and distortion of the magnetic surface of drift 

motion related to the deviation from axial symmetry. 

We will average expression (III.5) for T   and will find how 

the magnetic field strength   H changes due to the drift of a 

particle at velocity <ud>T. Let us note that terms .» /y'' •te1xv//i 

in (III.5) and -^ [e.xVff]    in (ill.l) do not change H on the drift 

surface. Thus, the magnetic invariant surface J - const will be 

determined by conditions 
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<-$n** w- •! (e.««rtii)}>0i- = o        (III#6) 

or 

/ *"• \ -, 0. 

Really, 

X wi ro.p (III.7) 

r OiO ., 

since v2i i>0, ox. >0, and pi does not change sign in time interval 

Tosc lf ÖHj/H « x> wnich ls analogous to fulfillment of condi- 

tion (11.15).  If condition (11.13) is valid, a change of the 

magnetic field along the drift trajectory is negligible for time 

T._ .  Actually from (11.13) and (III.2) we obtain osc 

7osc 

rosc ., TOSC (III. 8) 
\   il—i-±.'21L >t      \   

dJL ui   ' ay7 //. 
0 

'•^oso   ., 
f" p. /"( 

0 L VJ L 

However,   it does not  follow from (ill.8)   that 

r a//  ?;">i   ,        ,, 
}573~f ^^y/.    "     ':.     '«so- 
ii 

t, 
As was already pointed out, integral / vs pi/ai-dt directly 

0   ||   ^ 

increases with an increase of parameter t»$  while the sign of the 

component of gradient ViH does not change.  This can be similarly 

confirmed relative to integral 
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Let us show that disturbance of lnvarlance J is related to 

Inequality 

xJrfäLiäii + Q. (III.9) 

From (1.17) it follows that 

7 = ««•„.-2a J JTA. (III. 10) 

since 

v2*=v\ -rv'-_-   const and \i  = const. 

Hence 

7T = <«* -zr-^ifnh + T^-IKtJ] (iii.il) 

and 

.Ar. 

(III. 12) 
-^«^„.-<^>TW)1. 

* A change of Tosc for oscillation time, as well as a change in 
the length of an arc of a line of force can be negligible with 
respect to Tosc and the total length of arc. Thus, a change of v.. 
is most significant since it corresponds to a change of H during 
drift. 
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where TQBC is a change of TQBC for one oscillation along the 

magnetic line of force, <H>T   1B the average value of H(t + T  ) 
osc 

for T0BC, and <H
!>T   Is an analogous average value of H( t) . Let 

osc 

us recall that If the magnetic field strength changes 

along the drift trajectory, 

11 (' + r0BC) + H «>  and <tf>rosc - <ir>T0MC 

If we take into account that H  H1 + T0sc ^dlr T   then from 
osc 

(III. 12)   we  obtain* 

roa«  T OSC     l 080 

T T 
080 080 

2|x       f     r  f     / dll all ,   all      \   ,~\ n 
T 

0M     o 
Tose Tos« 

71 
f r P> §£ /     \ i r,ji dn v~    ü

JI 
dJi  • ^» 

osc      •'     LJ «i J     \      ««8 «J -^^ 

Togo 
2 ^ i   OSC    J   080 

J    »i a,3    J r05c   M J     <^    a*,    / (III. 13) 

From (ill.13) it follows that nonconservation of J is propor- 

tional to a change of H along the drift trajectory of the particle 

for time I"  . osc 

* Expression (ill.13) can also be obtained directly from the 
general theory of adiabatic invariants if in the expression for the 
averaged derivative of an adiabatic invariant of one-dimensional 
motion ,dJK      fadm/OK  + »P /dk\ \ da    (see [10]), we set I - J, 

mV 2«i 

* Ä «II " 2* ' p " p|| Ä mvll' T = Tosc and X  = H- 
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Expression (ill. 13) can be transformed to 

(HI. i4) 

•M u a 

From (XII. 14) It follows, particularly, that if pt *» l/H • dH/dx2, 

O«0     Off«  0     ^(o) 

■tws ^*.j*-4- s (r s*)*- (iiia5) 
•■«  0    x,<0> W  o    x,(0) 

From (III.15) it is apparent that If the magnetic field' 

strength along the drift trajectory   increases for period T  , 
osc 

then <dJ/dt>T   decreases and vice versa. This dependence has a 
osc 

simple physical sense. If H increases as a result of drift, M- 

does not change.  Conservation of p. means that as a result of dis- 

torting the magnetic lines of force in the region of field anomalies, 

part of the kinetic energy of the particle parallel to the field 

changes into perpendicular energy so that v|/H does not change, and 

<vfj> Tosc decreases- 

From (III.13) it is apparent that the rate of a systematic 

(unaverageable) nonconservation of the second invariant through a 

term temporally diverging will be determined by expression 

dj - Vi 
*-Ä-i£r ) -^r^dt- (in. 16) 
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We will find the velocity of a T  -unaverageable displacement 

of a particle from an invariant surface when this displacement 

increases directly in time. It is clear from above that this 

velocity will be that part of the drift velocity which leads to a 

T__ -unaverageable change of the field strength  H along the osc 

trajectory of the particle. Let us show more rigorously that 6H^, 

which corresponds to the drift of a particle with velocity vf.PiAv 

does not change in T  • Actually 

' ON o ' 010 

61/.=    \    "lluZ-a,,   \   ±<vi->)Pl*"dt 

T08C '^OiO 

,-.J2?L  \   r™dt-^  C   9l
aJidt. 

U 0 

When condition (11.13) is valid, curvature pi = l/R does not 

change sign within T^e . since distortions of the field through osc 

anomalies are small as compared to the magnitudes of the field. 

Under this same condition, dfl/dx3 also does not change sign within 

T  .  Actually, a change of the sign of the anomaly gradient when 

the particle shifts perpendicular to the magnetic line of force and 

along the line is at variance with condition (11.13). With such a 

change of sign, the problem becomes nonlinear and disturbance of 

the second invariant, obviously, will have not a cumulative, but a 

resonant character. 

Let us examine the effect of anomalies with gradients of dif- 

ferent sign on the drift surface for particles postively and 

negatively charged. For this we use expression (III.2) . Let 

dH/dx2 < 0 and dH/dx3 > 0. This means that during motion from the 

center of the magnetic system the field decreases, and during motion 

in direction *3 the field increases. Let us note that in the 
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asrth'a magnetic field, which corresponds to a dipole with snail 

deriations from axial symmetry (anomalies), •« is directed from 

earth and es is directed eastward. Hence, dH/dxs < 0 corresponds 

to an increase of strength H in the anomaly region in an easterly 

direction. Protons moving in a field with gradient dH/dx8 < 0 will 

drift westward and the field strength due to this drift will 

decrease. The drift due to dH/dxa here will be earthward and will 

basically compensate the decrease of H and Increase of J. However, 

a partial change of H which corresponds to drift in direction -S3 

with velocity v^pl/oDL. remains uncompensated. Thus, when 

dH/dx3 > 0 and dH/dx2 < 0, protons shift from the invariant surface 

away from earth. Due to the dependence of u. on the sign of the 

particle charge, electrons will shift from surface J - const to the 

opposite side, i.e., earthward. 

When v* =0, expression (III.2) yields the total mutual com- 

pensation of changes of field strength during drift shift along 

02 and ea. However, here,, as was pointed out above, condition (II.5) 

is disturbed and the approximation becomes inapplicable. 

Presently, the so-called Mcllwain system of coordinates is 

widely used to estimate the density distribution and intensity of 

particles in an actual geomagnetic field [17]. This system of 

coordinates is based on the conservation of the second invariant, 

through which it is assumed that a particle moves continuously 

along the same magnetic surface. As was already pointed out, the 

invariant surface of motion of a charged particle is uniquely 

determined by specific values |x, J>..and g. The significance of 

introducing Mcllwain coordinates is that the invariant surface of 
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the motion of a particle In an actual geomagnetic field is replaced 

by the corresponding dipole invariant surface which has the same \i 

and J as the actual. This substitution does not complicate the 

equation of motion of a particle by taking into account the devia- 

tions of the geomagnetic field from the dipole, and also makes it 

possible to estimate the effect of these deviations on the 

distribution of particles in the field. 

From what was pointed out above concerning the accuracy of the 

conservation of the second invariant, it seems to us that this 

system of coordinates has limited applicability.  Its applicability 

is determined by the time intervals during which particles do not 

shift significant distances from the invariant surfaces. 

In conclusion, let us point out that the drift displacement of 

charged particles examined above from invariant surfaces can lead 

to radial "shifting" of particles in the earth1s radiation belts. 

Here, the densities and intensities of the flows of charged parti- 

cles at each point of space will change as a function of time even 

in a stationary magnetic field.  The cause of the change of 

densities, as was already pointed out, is the transfer of the 

energy component of the particle which is parallel to the field 

to perpendicular or vice versa.  Here, the second invariant J 

is not conserved, and the first invariant |± remains constant. 

REFERENCES 

1. N. M. Krylov and N. N. Bogolyubov. Vvedeniye v nelineynuyu 

mekhaniku. Kiyev, 1937. 

2. N. N. Bogolyubov and Yu. A. Mitropol!skiy.  Asimptotlcheskiye 

-108- 



metody v teorii neleneykh kolebaniy. Fizmatglz, Moscow, 1955. 

3«  M. Kruskal.  Adiadatlcheskiye lnvarlanty.  IL, Moscow, 1962. 

4. Ya. P. Terletskly.  Vestn. Mosk. Gos. un-ta, No. 1, 75, 19^8. 

5. Ya. P. Terletskiy.  Vestn. Mosk. Gos. un-ta, No. 11, 53,  19^9. 

6«  Kh. Al'fven. Kosmicheskaya elektrodinamlka, IL., Moscow, 1952. 

7. 0. B. Firsov.  Fizika plazmy I problema unprablyayemykh 

permoyadernykh reaktsiy, Vol. 3, Izd-vo AN SSSR, pg. 259, 1958. 

8. B. V. Chirlkov.  Atomnaya energiya, 6, Vol. 6, 1959. 

9. Yu. A. Krutkov.  Adiabatlcheskiye lnvarlanty 1 ikh promeneniye 

v teroetlcheskoy flzike,  Tr. Gos. optichesk. in-ta, 2, No. 12, 

1922. 

10. L. D. Landau and Ye. M. Llfshits.  Mekhanlka.  Fizmatglz, 1958. 

11. G. Goldsteyn.  Klassijheskaya Mikhanika.  Fizmatglz, 1957- 

12. L. I. Lur'ye.  Analiticheskaya mekhanlka.  Fizmatglz, 1952. 

13. V. D. Fedorchenko, B. N. Rutkevlch, and B. M. Chernyy.  Zh. 

tekhn. fiziki, 29, Vol. 10, 1212, 1959. 

14. T. Nortr-op and others.  Sb. "Solnechnyye korpuskulyarnyye 

potokl 1 ikh fzamioveystviye s. magnitnym polmen Zemli." IL, Moscow, 

page 99, 1962. 

1[>.  B. B. Kadomtsyev.  Fizika plazmy 1 problema upravlyayemykh 

termoyadermykh rektsiy, Vol. 3, Izd-vo AN SSSR pg. 285. 

16. S. Chandrasekar, A. Kaufman, and K. Vatson.  Problemy sovremen- 

noy fiziki, No. 2, 111, 1959. 

17. C. E. Mellwaln.  J. Geophys. Res., 66, No. 11, 3681, 1961. 

-109- 



ON THE DENSITY DISTRIBUTION AND INTENSITY OF CHARGED 

PARTICLES WITHOUT TAKING INTO ACCOUNT INTERACTION 

IN A STATIONARY GEOMAGNETIC FIELD 

V. D. Pletnev 

An asymptotic method of solving the Boltzmann 
equation for a low-density ionized gas in a strong 
stationary magnetic field is used to estimate the 
density distribution and intensity of charged par- 
ticles in the Van Allen radiation belts.  This 
method, which was previously developed [l] and 
which is based on expansion of the distribution 
function of charged particles with respect to the 
inverse powers of the Larmor frequency, is appli- 
cable when conserving the invariant of the longi- 
tudinal effect of a particle in a magnetic field. 
For this, additional averaging of the distribution 
function is carried out for the period of vibra- 
tions of a particle between magnetic mirrors. This 
work examines the different possible forms of the 
distribution function in these approximations and 
their corresponding density distributions and in- 
tensity of charged particles in the field. 

i.  METHOD OF SOLVING THE BOLTZMANN EQUATION 

The method of solving a Boltzmann equation for stationary con- 

ditions of a low-density ionized gas in a strong magnetic field was 

examined previously [l].  The Boltzmann equation for this gas is 

■»ft+^+a^ft"»*'-«. 
(i.i) 
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* 

where f is the distribution function, v1 is velocity component of a 

charged particle, H^ is the intensity component of a magnetic field, 

mAj is the component of the external force acting on a charged par- 

ticle. The action of a constant electric field can be examined as 

this force. 

The essence of the method of solving Eq. (l.i) in an approxima- 

tion of the first adiabatic invariant of the motion of a particle 

u. = mvf/2H = const lies in the asymptotic expansion of distribution 

function f with respect to the inverse powers of the frequency of 

Larmor rotation o\,  so that /~2 »iV» providing cu^ » 1, and in the 

successive determination of solutions for f0, fi, etc.  The possibil- 

ity of finding a series of such solutions is related to operator 

L = «ij*»y^- — const df/dy,        where <p is the azimuth angle in the velocity 

space in a plane perpendicular to the magnetic field, i.e., in the 

plane of symmetric rotation of a particle.  Therefore, with conditions 

R.IÄI-P« (1-2) 

and 

■51-»i, (1-3) 

where v. and vii are the particle velocity components perpendicular 

and parallel to the magnetic field (see [2]), we can average operator 

L for period TL and assume that the effect of this averaging of the 

operator on f is approximately equal to zero. This results in a 

system of successive equations for determining fo, fi, fß, •••, fn, 

viz., 

L/f-0f<O/.>Tt =0, 
*>/. +^/i = 0,   </>/1>TL=O. (1.4) 

/>/.*! + XLfn = 0, (D/OT,, - 0, 
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where operator 

D~'%+*'*;> (1.5) 

and the magnetic field is 

H = <H>TrX(zi)n. (1-6) 

Index <...> TL designates averaging of the period of Larmor 

rotation of a charged particle TT.  Vector n is a unit vector directed 

along the magnetic field and < H > TL X (x,) = H. 

The purpose of this work is to obtain a series of solutions for 

the distribution function in approximation J = const, where J = £v\ ids 

is the second adiabatic invariant of the motion of a charged particle 

in a magnetic field.  These solutions will be compared with solutions 

in approximation u. = const.  Therefore, subsequent results correspond- 

ing to approximation J = const will be examined along with the pre- 

viously obtained [l] results of approximation u. = const.  These results 

will be simultaneously applied to a geomagnetic field.  The case 

examined in this work lacks electric fields and other external forces. 

The interaction of charged particles is negligible. 

2.  DISTRIBUTION FUNCTION OF CHARGED PARTICLES IN ZERO 

APPROXIMATION OF EXPANSION IN i/ox^ 

In a zero approximation, drift of a particle can be negligible, 

since civ is a very large magnitude.  Therefore, we can assume that 

the particle moves along the same magnetic line of force. Mathemat- 

ically, disregard of drift due to magnetic heterogeneity in zero 

approximation follows from condition 

£/. = 0. (2-1) 

-lie- 



dxi J 

dt = n ;» 

~7T 
a// 

'dx, 
dv\ 
~dT 

. ts 
dii 

Condition 

</>/,>rt-0 (2.2) 

yields here an equation for determining f0, viz., 

where n, is the unit vector component of magnetic field n for x,. 

The solution of this homogeneous equation of the first order in partial 

derivatives will be an arbitrary function of the integrals of a system 

of characteristic equations, to wit, equations [l]: 

(2.4) 

Hence, in zero approximation of expansion in l/c»r * the solution 

will be 

/../.(Cmfwrx-i).. {25) 

where G = m(vf + vfi )/2 is the kinetic energy of a particle, r is 

the vector radius of the point in which the moving charged particle 

is found.  Since G - const in a stationary magnetic field, u = const 

in this approximation (see [3>]) and \ [drxn]     a const provided the 
r, 

particle moves only along the magnetic line of force, then 

^ = 0, (2.6) 
as 

where ds is the element of arc of a magnetic line of force.  This 

result corresponds to the Louisville theorem. 

If we assume that 
d d 

"' di" * dl ' 
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and select as the parameter of the characteristic system the Independ- 

ent variable s or (what is more suitable for subsequent calculations) 

the intensity of magnetic field H, which is a function determined 

only from s, we obtain 

/o = /.(G,Jl). (2.7) 

Let us define the form of function f0 as a function of independent 

variables Xi = v, x2 ■ a, x3 = H, where v is the velocity modulus of 

a particle, a is the angle between vectors T and H. The variables 

Xi, x2, and x3 are related through integrals of motion 

*,« Kg,*,« arcing. (2.8) 

After assigning a specific form of distribution function at a 

point of the magnetic field of force where the field intensity is 

minimal,* 

we obtain by (2.7) and (2.8) 

/# (*n **» *a) — <P   *• «resin ly -JJ sin oil. (2. 9) 

Any values of variables v and a at point H0 = ^.j- will be desig- 

nated as vo and ao.  For a monoenergetic flow of particles we obtain 

/ti«.=£*(«*-*•)/; to. (2.10) 

* We can show that the value of the starting form of a distribu- 
tion function at any other point of the magnetic line of force does 
not completely determine the form of this function at other points 
of the line of force, since the trajectories of all particles moving 
along this line of force pass only through the point in which H0 - 

-«min. 
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Then due to (2.9), at any other point of this line of force 

f. ~Cb{* - v) U[ «eün (j/"5 «in •)] • <2'llJ 

Prom f0 in a stationary magnetic field it is easy to change to 

the density distribution of particles along the magnetic line of 

force, as well as to the distribution of intensity of the Van Allen 

radiation belt.  Actually, the density of charged particles is defined 

by the distribution function as 

N=\t.4V, (2-12) 

where dU is the element of volume in velocity space. 

In this space let us introduce the spherical system of coordinates 

in which T is the vector radius, longitude is some angle <J>, and a 

corresponds to latitude, i.e., we assume that axis OZ of the corre- 

sponding Cartesian system of coordinates directionally coincides with 

vector H.  Then 

dU = r* dv dß, (2.13) 

where the solid angle element in velocity space 

dQ = sin o da <W>. 

Hence, the density distribution of particles of a monoenergetic 

flow along a magnetic line of force is 

AT = C X J bitf- v) /i[ ire sin [}/^ sin o)]*sinadvdad<t> = 

-ftiCi^J/iraresindASsinajJsinoda1. (2.14) 

*    From the theory of 6-functions it is known that 
Jo(x»   - x)  f (x) dx « f(x'). 
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The intensity of a directed flow of radiation of some energy 

if defined as 

J-tf<SW, (2.i5) 

where a is the fixed value of a, which corresponds to the specific 

direction of flow relative to the magnetic line of force. For total 

(integral) intensity of a particle flux of some energy moving at 

different angles to the magnetic line of force, we have 

i-jv. (2-16) 

where I has dimensionality  [cm"2 sec"1].     Hence,   analogous to  (2.14) 

we obtain 
K 

/-aw^j /;[arc8in(/f sin <*)]sinada. {2rj) 

Let us determine the density of ray J[ from equality 

*/» 
/ = jj / (a) sin a da. (2.18) 

o' 

Then from (2.9)  and (1.17) 

/ (a) = Sncv"fo [arc sin (^jfSin aM = const. (2.19) 

along a magnetic line of force. Although J(a0) = j(a) along a line of 

force (where Jo is the intensity of a ray at point Ho - HJ^JJ), never- 

theless, the form of function jo(So) does not correspond to the form 

of function j(a) at any other point. Her:e, the anisotropic character 

of radiation with respect to angles with a line of force in the gen- 

eral case changes along the trajectory of particle motion with this 
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So (i*e*j along the magnetic line of force from some reflection point 

to another). An exception la when dj0/da0 * 0, I.e., the distribution 

function at point Ho « %in is Isotropie relative to oto. Prom (2.17) 

It follows that for an Isotropie distribution with respect to angles 

cto, I - Io along the entire line of force, since Jo ■ const and 

I, = J/.sinS.«^ (2.20) 

From above it Is clear that In a general case (for an anisotropic 

distribution function) I / I0. 

Different cases of angular anisoptropic Van Allen belt radiation 

in a stationary geomagnetic field in a dipole approximation (when 

Ho = Hmin corresponds to the geomagnetic equator) and their corre- 

sponding intensity distributions along a magnetic line of force were 

previously examined [k].    This study will additionally examine the 

angular anisotropy of radiation of particles of different energies in 

a zero approximation. 

If folHjnin = Ci, i.e., the distribution function is Isotropie on 

the equator relative to particle energies and angles a, then from 

(2.7) and (2.9) we obtain 

* 
°ma*r 

8» 
JV-faCtJ   (*■)&••>*->^-Ct04*;-ifaj (2.21) 

•mln • 

and from (2.17) 

•aax 

/j =   J    ■¥«>-£, (An — Ate) (Aw — Ala). (222) 
»mln 

where Ii is the total intensity of particles of all energies and direc- 

tions and has dimensionality  [erg/cm2 sec] and C2 ■ 4/^vCx* Prom 
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(2.21) and (2.22) it follows that Ii and N are constant along a mag- 

netic line of force. Here it is assumed that vn_ and ▼B^n are also 

constant along a line of force, i.e., the distribution is examined 

in the same energy range. When dfo/dv ^ 0, but the spectral distribu- 

tion of charged particles is not a function of angle a0 or a, N and 

Ii will also be constant along a magnetic line of force. The only 

change will be the character of functional dependence of Ii on vwQ<r 

and v *n as compared with (2.21) and (2.22). 

Fundamentally new will be the case where the character of the 

energy spectrum changes along a magnetic line of force or, what is 

the same thing, when the spectral distribution changes its character 

at any point of the magnetic line of force (for instance, on the 

equator) as a function of angle a.  Here, the distribution function 

cannot be the product of two functions, one of which is a function 

only of v, and the other a function only of a. Therefore, the expres- 

sion for Ii must be sought in a most general form: 

rm*x "max     (  rm»\ s   * _ 

/,-   J   »Mr-S»   J  ,j     jj   j9r,; «csiB(|/fsiii«)]. 
'min "mln       I   'mm    0       u Vc • ^JI 

• sinai>2dr da dv. 

These examples apply to zero approximation of expansion in 

I/ax..  However, as we shall see later, the results do not fundamentally 

change if we transfer to a drift approximation in a magnetic system 

having axial symmetry. As follows from the equations of motion of a 

separate particle in the drift approximation, the particle in this 

approximation without an electric field and with axial symmetry of 

a magnetic system will strictly move along the same surface which is 

being formed by identical magnetic lines of force. Therefore, instead 
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of drift motion, we can examine here only vibrations of a charged 

particle along the same magnetic line of force and apply these results 

to a case of, for instance, a magnetic field, such as an ideal dipole 

field. 

The equation for the distribution function in approximation J » 

■ const is obtained by further averaging of Eq. (2.2). Here 

<DU>TLT      = 0, (2-24) 
I«  ON 

where < ..* > T_n designates averaging for T   for the vibration vBC OSC 

period of a charged particle between magnetic mirrors. Let us desig- 

nate the distribution function in this approximation as f0o- Then 

<*SrPl^^l^~i*]\« (2.25) 

or, since 

then from (2.25) we obtain 

0-8>wa (2'26) 

Hence it follows that 

»,^- = 0. (2.27) 

and foo does not change during motion along a magnetic line of force. 

The result obtained is trivial.  Its physical significance is that 

foo is fo averaged or tha period or for the amplitude of vibrations 

of a particle along a magnetic line of force. 
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However, fron this result we can make some conclusions which are 

Important for subsequent investigation. First, from (2.26) it follows 

that the equation for foo does not have an L-type correction operator 

in approximation u ■ const. Therefore, all subsequent approximations 

of averaging for TQgc will equal foo: 

/„-/„«/„»... (2.28) 

Equality (2.28) results from the conservation of J in a station- 

ary magnetic field with that degree of accuracy with which a change 

of the field Intensity due to shifting of a charged particle from a 

given line of force for period Tnar%  Is negligible (see [2]).  In zero osc 

approximation of expansion In l/cv> this condition is fulfilled with 

absolute accuracy, since it is assumed that CD^ -* «.  Second, in a 

first approximation of expansion in l/ov when changing to approxima- 

tion J = const in a field where there is no axial symmetry* the drift 

shift of a charged particle for time T__. must be disregarded, since osc 

this shift changes the intensity of the magnetic field in which the 

particle moves.  Therefore, function f10 provided conservation of J 

will be a superposition of the distribution functions f0o which are 

constant along each magnetic line of force.  Thus, in approximation 

J ■ const the character of the distribution function along the mag- 

netic line of force does not change when passing from zero approxima- 

tion of expansion in l/ox- to first approximation.  Mathematically, 

this fact is expressed as follows.  Let the general solution of Eq. 

(l.l) in a first approximation of expansion in l/ox be 

(2.29) 
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where L. ■ 0.  Then, according to (1.4), we obtain 

q>i is the partial solution of Eq. (2.3O) for a distribution function 

in a first (drift) approximation taking into account (in the first 

order of smallness of expansion in l/uv ) the effect of the hetero- 

geneity of the magnetic field averaged over T-r. 

The effect of heterogeneity is calculated by correction operator 

L.  However, it is obvious that there is no type L correction opera- 

tor in the drift approximation for fio.  Actually, in approximation 

j = const we have 

<^.>Tt = <Dft>h - </>/„>,. =0. ( 2 51) 

Thus, the unique equation which determines fi0 will be 

<Z>/'>^o.e=°- (2.;2) 

3-  DRIFT APPROXIMATION 

According to (1.4), the equations for distribution function fi 

in a drift approximation will be 

UA = <Z>/.>TL-^/. (3.1) 

and 

<0/i>rL = O. (3.2) 

After presenting the general solution as (2.29), we find the 

following equations for determining <px and fo: 

L 
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and 

<*WrL+ i<U?,>rt+ <f./>(!)>,t- 0. (3#4) 

As was previously point out, the partial solution of Eq. (2.30) 

in a drift approximation allows us to take Into account the effect of 

the heterogeneity of a magnetic field in a Larmor circle. Substitu- 

tion of the solution for 91 into (3.h)  leads to a solution for the 

distribution function taking into account the drift in a heterogeneous 

magnetic field caused by the gradient component of the field perpen- 

dicular to the magnetic line of force [3]. 

The partial solution of Eq. (2.31') is (see [l]) 

fi-«o(Ol+y «»U »ll) »i»#, (3-5) 

where 

®'~^ + 2*'*^i^-^), (3.6) 

"«     ^   *iH*j' *•/• (3.7) 

Calculation of term l/X  * cpi in a general solution leads to a 

calculation of the "vibrations" of a particle and, therefore, does 

not introduce significant changes in the distribution of charged par- 

ticles in a magnetic field.  When averaging equations of motion of a 

charged particle over T  , the "vibrations" are generally negligible. 
OS c 

Therefore, when interpreting the solution of system of Eqs. (2.30) 

and (3.4) we will be basically interested in the solution for function 

fx»     Equation (3*^) in vector form is 

L , 
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where 

V4 -;£•* fa-& + £*•»*)• (3-9) 

and coordinate xx corresponds to the direction along the magnetic 

line of force. 

We will examine an axiosymmetric magnetic field.  Here, as pre- 

viously pointed out [l], Eq. (3.8) takes the form 

where r is the distance from the axiß of the system to the point at 

which the particle is found, 9  is the azimuth angle, yj = -L („%   , °±) d  «ötri +ay- 

Averaging (3.10) over T  , we obtain 

^7Wi-^-T7 = 0' (3.11) 

since _ . 
const C dty j n 

Since vdr/r = d0/dt, then from (3-il) it follows that 

If <d0/dt>T   / 0, then df^dö = 0, i.e., the distribution 
osc 

function does not depend on 6  and does not change along the surface 

of magnetic lines of force on which the particle drifts.  Since v, 

also does not change here, the distribution of particles with respect 

to de.i. ^~>. *nd intensity along each magnetic surface remains the same. 

Thus, for an axiosymmetric magnetic pole, foo = fio-  We can arrive 

at this result directly without averaging; over T^0„ if we take into osc 

account the remark made in the preceding section concerning the 
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identity of distribution functions of the zeroth and first approxima- 

tions of expansion in 1/ox for an axlosymmetric magnetic field. 

Assuming ^i - to,  we obtain 

A3-* (3.13) 

Prom (3»13) it follows that in this case fi ■ fo. 
Let us now examine a case where axial symmetry is absent. Here, 

Eq. (3.8) is converted by introducing some parameter determining the 

magnetic surface along which the charged particle moves.  In a sta- 

tionary magnetic field such a parameter can be second invariant J 

(see [5]). 

Actually, 

Substituting (3.14) into (3.8) and averaging the obtained equa- 

tion over T08C, we obtain the following equation for fio* 

<£>,^-<r^<*V>>,J»£-°-        (3.15) 

Since in the approximation of averaging over T   we have (see 

[2]) 

^TJ*
0

' (3.16) 

and 

then in this approximation the distribution function is an arbitrary 

function of a, p.* and J, i.e., 
/„»/„ (0,1»; /). (3.18) 
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We will show that (3-17) is fulfilled with the same degree of 

accuracy as J = const.  For an axiosymmetric magnetic field, the 

velocity drift is determined as 

mZV+pLinim. (3.19) 2*// 

Hence 

¥V1(//vd) = ^Vff+V,yd=s0, (3'2°) 

since 
^- Vj.// = const- [II; Vj.iT] Vj/f = 0. 

Vx const- [II; Vjffl = 0, 

if curl H = 0, i.e., if the field is axiosymmetric.  If the magnetic 

system is not completely axiosymmetric, curl H/ 0.  Nevertheless, 

when fulfilling the condition of conserving the second Invariant (see 

[2]) we obtain 

Actually, if we assume |v,| = dl/dt, then d1 

^Vjtf H   dt   dl  ~ H   dt 
and 

' ose 
1   dH 

ceo       ose 

A change in v, in the direction of drift also is negligible 

within a time interval equal to T  .  This is obvious since a cal- 

culation of the change of vd for T   is equivalent to calculating the 

change of H in the direction of drift over TÄ„„ which contradicts the ^ ose 

condition of conserving J.  Hence, 

<vi*d>iW^°- (3-22) 
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Thus, condition (3»i7) is fulfilled with the sane accuracy with 

which J is conserved in our approximation. 

Strictly speaking, in an approximation of averaging over TQ8C 

we should have excluded the dependence of density distribution of 

particles and total intensity on xi, the coordinates along the line 

of force of a magnetic field, and should have examined the motion with 

values vii and v„ averaged over Trtcs. However, we cannot make such ||      V osc * 

an exception of the dependence of the distribution of particles on xi 

without basic errors. At the same time, the distribution of particles 

with respect to density and Intensity remains constant on this drift 

magnetic surface of an asymmetric magnetic field. The last conclusion 

is not trivial.  Actually, condition (5-22) does not mean that in 

approximation J = const the change of v, for any period of time is 

negligible.  Conditions (3-21) and (3.22) actually reduce all changes 

of H in a direction perpendicular to H for T   to changes of H in 

the plane of the same magnetic line of force.  Here, changes v ,H in 

the direction of drift can be approximately examined as changes 

|v  Hi where the unit vector e2 is perpendicular to the drift sur- 

face.  For instance, let the particle enter the area of positive 

heterogeneity of the field during drift motion along the surface of 

magnetic lines of force.* Then |y  H| increases and hence, v- 

increases (see (3-19))-  In the region of negative heterogeneity 

|v  H| and v. decrease. Nevertheless, in the regions of positive 

and negative heterogeneity the total particle flux, and hence, the 

* By the positive heterogeneity of a magnetic field we mean the 
region on the drift surface in which the intensity of the magnetic 
field is greater than the mean intensity on the magnetic surface. By 
a negative heterogeneity we mean the region where the intensity is 
less than mean. 
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total intensity of radiation, does not change. The appearance of 

positive heterogeneity Is related to contraction of the magnetic 

lines of force, and the appearance of negative heterogeneity Is re- 

lated to expansion of the lines of force. Thus, as previously pointed 

out [5], the total particle flux moving In this magnetic tube of force 

does not change during drift motion along the same magnetic surface, 

J =s const.  This means, particularly, that if the "distorted11 lines 

of force in the region of the magnetic anomaly are replaced by their 

corresponding lines of force of an axiosymraetric field with the same 

J, then the intensity of Van Allen belt radiation will be constant 

on the drift surface along a line equal to the intensity of the mag- 

netic field.  This examination of the distribution of charged particles 

in a real geomagnetic field was previously carried out [6]. Here, 

naturally, it was assumed that J is conserved with absolute accuracy. 

The author expresses his gratitude to G. A. Skuridin and B. A. 

Tverskiy for their valuable instructions and observations during this 

work. 
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MOTION OF CHARGED PARTICLES IN A MAGNETIC DIPOLE FIELD 

WITH ALLOWANCE FOR DISSIPATION OF ENERGY* 

V. M. Vakhnin, G. A. Skuridin, 
and I. N. Shvachunov 

In this article we consider the problem of 
the motion of charged particles in a magnetic 
field in a conservative approximation while 
also making an allowance for dissipative per- 
turbation for the following three idealized 
systems:  a) a magnetic dipole field in the 
absence of an outer magnetic field, b) a mag- 
netic dipole In a space having a homogeneous 
magnetic field parallel to the magnetic dipole 
field strength vector in its equatorial plane, 
and c) a magnetic dipole in a space with a 
homogenous magnetic field antiparallel to the 
magnetic dipole field strength vector in its 
equatorial plane. 

We examined the problem at the equatorial 
dipole plane.  The motion of charged particles 
in a magnetic field was analyzed by using the 
phase plane method in a conservative approxi- 
mation, which made It possible to detect a 
number of critical trajectories and to obtain 
a qualitative picture of the effect of kinetic 
energy loss on the shape of the trajectory. 
These losses were taken into account as small 
dissipative perturbations of the conservative 
approximat ion. 

* These results were reported at the XIII International Astro- 
naut ic Congress (Varna, 1962) and at the annual gathering of the 
COSPAR (Warsaw, 1963). 
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At present the problem of the motion of charged particles in a 

magnetic field has taken on great importance in conjunction with the 

theory of the origin of the earthTs radiation belts.  We know that 

a calculation of the motion of charged particles, in a conservative 

approximation, i.e., without allowance for the energy loss by par- 

ticles, for example, in Storniert [l] and Bogus lavs kiyfs [2] theories, 

leads us to infer the impossibility of particle capture by the mag- 

netic field, since any "conservative" solution should be reversible 

with respect to time. 

A conservative solution, however, is not completely rigorous 

since, according to the classical radiation theory,any curvature 

in the trajectory of a charged particle entails a certain radiation 

energy loss [5].  Other possible causes for energy losses exist, 

e.g., magnetic scattering, losses due to collisions, ionization 

losses, etc. 

Previous works on investigations into particle trajectories in 

a magnetic dipole field generally disregard these causes of energy 

losses [4]. 

In this article we analyze the motion of charged particles in a 

magnetic dipole field by using the phase plane method both in a con- 

servative approximation [5] and by taking into account their kinetic 

energy loss to radiation, thus making it possible to obtain a quali- 

tative picture of the effect of kinetic energy loss on the trajectory 

shape.  These losses were taken into account as small dissipative 

perturbations of the conservative approximation.  We also showed the 

existence of critical trajectories for which particle capture by the 

magnetic field are effected with the smallest energy losses desired 

[6].  Particle capture can apparently take place in the presence of 
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■mall, though finite losses, even for other trajectories close to 

critical. 

The phase plane method proved to be especially convenient in 

considering the particle motion in a composite field having both 

dipole and homogeneous constituents. 

In this work conservative approximations and their dissipative 

perturbation are considered for three idealized systems: a) a mag- 

netic dipole in the absence of an outer magnetic field, b) a magnetic 

dipole in a space with a homogeneous field parallel to the magnetic 

dipole field strength vector In its equatorial plane, and c) a mag- 

netic dipole in a space with homogeneous field antiparallel to the 

magnetic dipole field strength vector on its equatorial plane.  These 

systems were analyzed at the equatorial plane of the dipole. 

I.  Motion of a Charged Particle in a Magnetic Dipole 

Field in the Absence an Outer Magnetic Field 

1.  Differential Equation of the "Phase Trajectory" of 

Charged Particle Motion 

The differential equation for the motion of a charged particle 

in equatorial plane of a magnetic dipole can be conveniently repre- 

sented in polar coordinates p, cp.  The magnetic vector H. is per- 

pendicular to this plane and equal in value to 

7S=V. (1.1) 

where M is the magnetic dipole moment. 

The trajectory curvature of a freely moving charged particle in 

a magnetic field equals 

eHi 
*Ä^' (1.2) 
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where m is the particle mass, e Is the charge, v Is the velocity, 

and c Is the electrodynamic constant. 

On the other hand, curvature in polar coordinates is expressed 

as 

K W + pTf*  ' (1.3) 

Using (l.l) and (l.j), the differential equation for the motion 

of the charged particle at the equatorial plane in a magnetic dipole 

field has the form 

p» -f. 2p' — pp    a* 

(p»-fp'»)W» * P" (1.4) 

where a = -/eM/mvc is Störmer's characteristic coefficient. 

In a conservative approximation, as stated above, the kinetic 

energy and velocity of the particle are regarded as fixed, i.e., 

they do not change even with respect to the value of the character- 

istic coefficient a.  For an electron, in absolute gaussian units, 

we have 
a*« 1,75-10'•£, 

and for the proton 

a* -0,05.10«—. 
V 

By changing in (1.4) to phase coordinates 

■ -£i. (1-5) 

we obtain the equation for the "phase trajectory" of the electron 

particle 

d- _* -i 2u T ti + («/«,),r/« (i«6) 
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where the minus sign in the right «hand aide corresponds to trajec- 

tory segments of positive curvature, i.e., convex from the origin. 

The plus sign corresponds to the trajectory segments of negative 

curvature. 

We can analyze Eq. (1.6) by the isocline method and by construe-* 

ting the graph of the direction field, and by inspection of the 

asymplotic formulas for the vicinity of singular points and at 

infinitely large and infinitely small values of the phase coordinates 

u, w.  This enables us to determine the characteristic features of 

all possible phase trajectories, and consequently (by changing from 

the variables w, u, to p, and cp) to determine the motion of charged 

particles in the magnetic dipole field. 

2.  Plotting the "Isoclines" and the"Direction Fields" on 

the Phase Plane in the Conservative \\ -x-oxlmation 

To construct the isoclines of Eq. (1.6), we set du/dw = x = 

= const. The equation of the isoclines which directly relates u and 

w, is an equation of the sixth order and has the form 

. 2u_    n + e/wA =x=conat, (1.7) 

When we set u/w = £,   (1.7) becomes 

ur-± i+2&»-Sx • U-o; 

Figure 1 shows the family of curves w2 = f(£,n) in the plane 

(w2,{) for different values of H. 

From Eq. (1.8) for any n  when £ -* », we obtain the asymptotic 

value w2 « §/2 shown in Fig. 1 as the sloping dashed line, and when 

§ — 0, w* -? 1. 
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Fig.   6. 

Fig.   7. 

Fig.   8. 
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Let us develop this indeterminacy: 

7w ■ "nr 
or "3sr«*+» 

/ du \* 2» 

When w ^ 1, and u -► 0, we get 

Thus, the point (u = 0, w = 1) is singular for (.16). It is 

readily seen that this singular point is unique and acts somewhat 

as a Saddle point. 

Suppose now that w -► 0, u ^ 0, then w/u -•» 0 and Eq. (1.6) takes 

the form of Bernoulli's equation 

£--*-[*<*£]. (LID 

the solution of which has the form 

u   - 7C. (1.12) Cw±i ' 

Here the phase trajectories will have, when C / 0, vertical 

asymptotes at the points w = 1/C.  With an increase in C, the phase 

trajectories are rectified, which when C -► » degenerate into the 

asymptote w = 0. 

Let us consider the behavior of phase trajectories at large 

values of u and w« 

Suppose w -+ « and u/w -► 0, then (1.6) gives 

du w e % 

rfSÄV» (1.13) 

i.e., du/dw -* « from which it follows that there are no asymptotes 

parallel to the axis of the abscissa. 
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On the other hand, by integrating (1.13) we obtain u2 - w2 = 

* C2, i.e., the phase curves at large values of w are in the form of 

an equilateral hyperbola. 

We will now consider the case where u -» » and w/u -* 0.  As a 

result, Eq. (1.6) is again transformed into the Bernoulli equation 

whose solution has form (1.12).  The phase curves here will have 

vertical asymptotes for w = + 1/C and C 4  0. 

Unlike the aforementioned case for w -► 0 and C = 0, we obtain 

u = + w3.  The phase trajectories take the form of a cubic parabola 

lacking a vertical asymptote. 

It follows from the above cases of w -+ » or u -* », that the 

phase trajectories separate on the plane (w,u) into equilateral hyper- 

bolas (w -* ») or cubic parabolas (u -+• »), respectively. 

This is easily detected if we consider the nature of the phase 

curves at w -»• « and u —► ». In this case, Eq. (1.6) transforms into 

the two equations 

du w . s , ^     J . » 

£-3i(—). (1.15) 

From (1.14) we derive u2 - w2 = C2, and from (1.15), u = + Cw3. 

The curves separating the corresponding branches of the hyper- 

bolas and parabolas on the (w,u) plane are the separatrixes which 

pass through the singular point (u = 0, w = l). 

4.  Phase Trajectories and the Trajectories of Charged 

Particles in a Magnetic Field 

Figures 5 and 6 show the phase trajectories plotted according 

to the previously cited "direction fields" and also from an analysis 

of Eq. (1.6).  The instantaneous state of the charged particle is 
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characterized by the coordinates w0, u0 of the representative point. 

The motion of the particle along the trajectory corresponds to the 

motion of the representative point along the phase trajectory.  The 

direction of the representative point is easily determined, if we 

take into account the fact that positive values of u correspond to 

an increase in u with an increase in the polar angle <p, since u * 

■ dw/dq>. 

It is apparent from Figs. 5 and 6 that the set of phase trajec- 

tories can be grouped into several types designated by Roman numerals 

I-VTII. 

To elicit what segments of the particle trajectories correspond 

to the indicated kinds of phase trajectories, we will examine the 

relation between the simplest lines and points of the phase plane 

and the trajectories defined by them in the equatorial plane of the 

dipole. 

1. The points distributed along the w-axis correspond to cir- 

cular trajectories about the dipole with radius p = aw = const. 

2. The lines u = const ^ 0 correspond to the spiral of 

Archimedes, p = acp. 

2.  The branch tending asymptotically to the vertical line 

corresponds to a trajectory tangent to a radius coming from the 

origin, since in this case du/dw = pf/p" -^ M or p = 0.  The point of 

tangency is at p0 = aw . where w_ is the asymototic value of w. a    a       a — 

Figure 7a shows a trajectory corresponding to tr~ phase trajec- 

tory approaching w from the direction of large values of w, and 

Fig. 7b shows the same trajectory approaching w from small values of 

w. 

4.  The branch approaching infinite values of w corresponds to 
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the particle trajectory going off to infinity (or the trajectory 

coming from infinity). 

With the above we have sufficient information to determine the 

nature of the trajectories depicted in the phase curves shown in 

Pigs. 5 and 6. Type I phase curves which have two branches going off 

to infinity (to infinite w values) and which correspond to positive 

curvature determined the enveloping trajectory (Fig. 8). 

Types II and III phase trajectories correspond to the separate 

trajectory segments which with the Va type phase trajectory determine 

the "nonenvoloping loop" type of trajectory having branches going 

off to infinity. 

Type IV phase trajectories combined with Va type trajectories 

to form a "captured" trajectory. 

Type Vb phase trajectories and the type VTI boundary trajectory 

determine the hyperbolic enveloping trajectories. 

Lastly, VTa,b, VTIa,b, and VIII phase trajectories are the 

boundary trajectories (separatrixes) dividing the trajectory as of 

the enveloping, loop, and captured types, whereas the singular point 

A defines the unstable circular trajectory of radius p = a = const 

enveloping the dipole. 

5.  Phase Trajectories and Corresponding Trajectories of a 

Charged Particle With Allowance 

for Energy Dissipation 

In accordance with classical, radiation theory, any curvature in 

the trajectory of a charged particle is assoicated with a certain 

radiation energy loss. We know [j]  that a particle with charge e 

and which is accelerating radiates in unit time an energy of 

c  2 e*'r* 
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The relative losses to radiation on a small arc dq> of the tra- 

jectory of the moving particle will be 

These relative energy losses involve a change ia the velocity 

of the particle, and consequently a change in the characteristic 

coefficient a.  For small energy losses a valid approximation is 

Ar _ 1 A&, _  0 A<i (l.l6) 
r    2    So a 

Let us consider the image of a change in the kinetic energy on 

the phase plane.  An Instantaneous change by a value ASo without a 

discontinuity and "break in the trajectory particle results in a change 

of the coefficient a while keeping the previous values for p and 

dp/dqp- 

We shall find Au and Aw of the representative point character- 

izing the instantaneous state of the particle on the phase plane 

Au = -^— An r= - -— Aa 
or 

da "' °V 

A                        An u = — u . 
a 

In accordance with (j.l6) we obtain 

"- 4 U   S0 2 U   v   ' (1.17) 

Similarly for Aw 

K i      AS0 \      Av 

*>w~Tw-s7=2wT- (1.18) 

Thus, with energy losses AS0 < 0 and, consequently, the repre- 

sentative point shift toward the origin.  For uninterrupted energy 

losses, the movement of the representative point on the phase curve 

will proceed in such a manner that it will always be displaced 
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toward the origin, with respect to the conservative phase curves 

which is readily confirmed if we represent the continuous energy 

loss in terms of the sum of infinitely small discrete loss and use 

expressions (l.i?) and (l.l8). 

Figures 5> 6 and 8 (dashed arrors) give a systematic representa- 

tion of the direction of movement of the representative point during 

a loss in kinetic energy.  If the phase curve for a particle moving 

over the envoloplng trajectory, is, in a conservative approximation, 

close enough to the separatrix, the energy losses will cause the 

phase curve to intersect the separatrix VTb,a and, consequently, the 

particle will change from an enveloping trajector to a "loop" tra- 

jectory.  Furthermore, when the representative point moves along the 

left branch of the type III phase curve (Fig. 5)> the extended energy 

losses can effect an intersection of the representative point and 

the second separatrix Vllb, resulting in the particle changing to a 

capture trajectory defined by the phase curves IV and Va.  Figure ' 

gives a systematic representation of this process in a phase trajec- 

tory, and Fig. 8 (the dashed line) shows this process on the equatorial 

plane of the dipole. 

Motion of a Charged Particle in a Magnetic Dipole Field In 

an Outer Homogeneous Magnetic Field Parallel to the Magnetic 

Dipole Vector at its Equatorial Plane 

1.  Differential Equation for the Phase Trajectory of a 

Charged Particle 

In the case under consideration the value of the resulting mag- 

netic field will be 
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where Ho if the outer magnetic field itrength. 

The trajectory curvature of a freely moving charged particle In 

thle case will be 

Using (2,1) and (2.2) we obtain the differential equation for 

the motion of a charged particle in polar coordinates In a magnetic 

field 

pi + 2p-»-pp'   a» , . 

& + ?")'<- "F + ** (2.3) 

where k * eH0/mvc is a supplementary term talcing.into account the 

effect of the homogeneous magnetic field Ho. 

When we transfer to phase coordinates w,u, we obtain the dif- 

ferential equation for the phase trajectories of the charged par- 

ticle 

^-"T^2^* US tl + *»■). (2.4) 

where A - «* _^(*W «*). 

The minus sign in front of the third tenn in the right-hand side, 

as before, represents a trajectory with positive curvature, whereas 

the plus sign corresponds to a negative curvature. 

2. Behavior of Phase Trajectories for 
Small and Large Values of u and w 

At small and large values of u and w the behavior of phase tra- 

jectories can be studies by an inspection of Eq. (1.14). Let u -* 0 

and w ^ 0. By letting u/w -+ 0, from (2.4) we get 
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In this case the derivative du/dw will be either finite or 

infinite depending on whether the expression in brackets in (2.5) 

has positive real roots for w at different values of the parameter 

h.  With this in mind, we first consider the equation 

for K > 0: 

a) at 0 < h < 2/~5 Jj  this equation has two positive real roots 

^=^{1+2^^ + ^-^111])]}, (2.7) 

■*-Tr{i+ae»tS- -2MtfME=!L]}. (2.8) 

b) at h ss 2/jLß  the equation has one positive real root 

c) at h > 2/3-/J there are no positive real roots. 

At the points w (7 = 0, 1, 2) as u -+ 0, (2.5) becomes the 

indeterminate form 0/0.  When we evaluate this indeterminate form, 

we obtain 

du 
du. = ±yi-dhuy. (2.10) 

It follows from (2.7) that 3hwi < 2, and hence Eq. (2.10) has a 

real value, and w^ is the singular type of saddle.  Analogously, from 

(2.8) it follows that 2hw2 > 2, thus Eq. (2.10) is Imaginary and the 

point w2 is a singular type of saddle. 

At point wo -Jl>,  we have 

£ = 0. (2.11) 
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In this case the singular points wi and w* merge Into one* 

wo -^/5- It is easily shown that these singular points are the only 

ones for K > 0. 

We consider Eq. (2.5) for K < 0 and for any other values of 

w ^ 0, as u -♦ 0. 

Itw* + w» + l =*0. (2.12) 

For all values of the parameter h(0 < h < «), Eq. (2.12) does not 

have even one positive real root, and consequently the quantity in 

brackets in (2.5) for K < 0 for any values of h and w do not vanish. 

Consequently as u -* 0, du/dw -► 0, i.e., all phase trajectories 

at the points of intersection of the w-axis have vertical tangents. 

Thus when K < 0, and as u -*- 0, Eq. (2.4) has no singular points. 

When w -► 0, and u ^ 0, w/u -* 0 and (2.4) takes the form of the 

Bernoulli equation 

Equation (2.13) does not depend on the parameter h and coincides 

with (l.ll).  As indicated in paragraph J>,  Section 1, the phase curves 

will have vertical asymptotes at the points w = l/C when c ^ 0. With 

an increase in C, there is a rectification in the phase curves which 

as C -♦ w degenerate into the asymptote w = 0. 

We will now consider the behavior of phase trajectories at large 

values of u and w. 

If w -* » and u/w -* 0, then 

fe-?[***»]-«». (2.14) div 

-146- 



It follows that at all values of the parameter h(0 < h < •) the 

phase trajectories have no asymptotes parallel to the w-axis. 

To determine whether the phase curves have vertical asymptotes 

parallel to the u-axis, we consider the case where u -► » and w/u -► 0 

Fig. 9. 

Fig. 10. Fig. 11. 

In this case (2.14) becomes the Bernoulli equation 

du  _0 u -ru*(l+h**) 
uf* 

(2.15) 

the solution of which has the form 

/  1 k\C   • (2.16) 
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The phase curves will have vertical asymptotes at those values 

of w where the denominator In (2.16) becomes zero. 

We Investigate this equation first for K > 0 

Aw»-f 2Cw — 2*0. (2*17) 

The graphs of the equation hw3/2 » -Cw
3 + 1 at w > 0 are shown 

in Fig. 10. We see that for all h and for all 0 ^ 0 there will 

always be one real positive root wi of Eq. (2.17), i.e., when w = wi 

in Eq. (2.16), u -* «.  This indicates that for all h all the phase 

trajectories for K > 0 have vertical asymptotes parallel to the u-axls. 

We now inspect Eq. (2.16) for negative curvature (K < 0) 

Z«*3 — 2Cw — 2 = 0. (2.18) 

The graph of (h/2)w = Cw + 1 for w > 0 is shown in Pig. 11.  This 

figure shows that at all values of the parameter h and for all C < 0 

there will always be one positive root wi satisfying Eq. (2.18) at 

which u -* <» in Eq. (2.16).  Hence all the phase trajectories have 

vertical asymptotes parallel to the u-axis. 

3.  Phase Trajectories and the Associated Trajectories of 
Charged Particles in a Magnetic Field 

We shall consider the phase trajectories and the corresponding 

trajectories of charged particles in the magnetic field H = Hd + Ho 

for various values of the parameter h in a conservative approximation 

based on our analysis of Eq. (2.4). 

a) For 0 < h < 2/3^/5 the phase trajectories have the shape 

shown in Figs. 12 and 13« 

The trajectories of charged particles in an equatorial plane 

corresponding to the different values of the phase trajectories are 
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shown in Pig, 14. The closed phase trajectory I (Pig. 12) corresponds 

to the "loopless" type trajectory enveloping the dipole which at 

sufficient distances p »JVl/Ko  from the dipole can be as close as 

possible to a simple circular trajectory of radius r = mvc/eHo, 

whereas, at even closer distances from the dipole the trajectory 

noticeably diverges from a circular trajectory owing to a linear 

change in the magnetic dipole vector with increasing distance from 

the dipole. 

n ?*   I 

Fig. 12. Pig. 13- 

Phase trajectories II and V simultaneously define the loop tra- 

jectory enveloping the dipole. This trajectory is similar to tra- 

jectory I with the only difference being that it forms loop V when 

near the dipole. 

It is essential to point out that as a result of the nonlinear 

change in H, the entire motion cycle of the representative point along 

the phase trajectories I and II-V corresponds to rotation of particles 

about the dipole at an angle exceeding 360°, since the trajectories 

of the charged particles are open during one revolution. Therefore, 

they will rotate relative to the dipole center and in infinite time 
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they will fill the entire ring between the two boundaries of the cir- 

cles whose radii are at maximum and minimum distances from the center 

of the dlpole [7]. 

Dirootio» of 
rotation of 

«lootroi orbit* 

Fig. 14. 

Pig. 15. Fig. 16. 

Phase trajectories III and V simultaneously define the loop tra- 

jectory at P »-/VLfiio  from the dipole center, while phase trajector- 

ies IV and V also correspond to the loop trajectory but are p «-Mfltö 

-159- 



from the center of the dlpole. These loop trajectories are open for 

the same reason as trajectories I and II-v, and in a "drift" approxi- 

mation they can be represented [8] as the movement of a charged 

particle about circles of radii r - mvc/eH0 (trajectories III-V) and 

r = mvc/eH^ (trajectories IV-V) with a homogeneous drift of their 

leading centers about the dipole center owing to the presence of 

VHd. 

The singular point A corresponds to the unstable circular tra- 

jectory of radius p = awL(h) = const, while the singular point B 

corresponds to the stable periodic trajectory of radius p = aw2(h) = 

= const.  Phase trajectories VI, Via, and VTb which pass through A 

are the separatrixes dividing the phase trajectories into their 

respective types. 

b) h > 2/^^/J.  The phase trajectories for his case are shown 

in Figs. 13 and 15-  Figure 15 shows that the region of t;ype I phase 

trajectories and the separatrixes bounding it vanish, so that loop- 

less enveloping trajectories are not present.  The remaining picture 

of motion is the same as that for case a). 

c) h = 2/5-/J.  This is the transitional case between a) and 

b).  In the first case when h(k > 0) increased, both singular points 

A and B drav; nearer and for h ■ 2/3^/J, merged forming the one sin- 

gular point C at w =-/5 (Fig. l6). 

4.  Phase Trajectories and Their Associated Trajectories of 

a Charged Particle with an Allowance 

for Energy Dissipation 

In this case the motion of charged particles in qualitatively 

differs in many ways from the case of a magnetic dipole lacking an 

outer field. When we have an outer magnetic field, H0, and lines of 
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force of the resultant magnetic field, H « Hd + Ho, normal to the 

equatorial dipole plane, all charged particles whose trajectories 

lie in this plane are already captured by the outer magnetic field 

Ho. The magnetic dipole will exite the homogeneous field by the 

magnitude of Hd, as a result of which, as stated above, the leading 

centers of all trajectories drift relative to the center of the 

dipole.  If in this case the dipole lacks an outer field we can 

speak of the capture (IV-V) and noncapture (I, II-V) of particles 

by the magnetic dipole field, where as in the presence cf an outer 

magnetic field Ho there is no principal difference between the tra- 

jectories of particles proceeding at extremely large (II-V, III-V) 

and relatively small (IV-V) distances from the center of the dipole. 

For a dipole lacking an outer magnetic field the transition of 

a charged particle trajectory from a remote to a near-lying trajec- 

tory (with respect to the center of the dipole) in the presence of 

dissipative perturbations occurs at a well-defined distance p  where 

the nature of its movement qualitatively changes: this particle is 

captured by the magnetic dipole field, i.e., a transition from a 

"noncaptured" to a "captured" trajectory.  In the phase plane the 

capture process corresponds to the intersection between the repre- 

sentative point and the separatrix VTIb (Fig. 9).  In the presence, 

however, of an outer magnetic field Ho, the transistion from a suf- 

ficiently remote to closer trajectories in the presence dissipative 

perturbations, according to Formulas (1.17) and (l.l8) occurs con- 

tinuously without qualtitative changes in the motion of this particle. 

The intersection of the representative point and the separatrix Via 

or VTb in the phase plane (Fig. 12) does not change the nature of the 

movement, since, as indicated above, there is fundamental difference 
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between trajectories II-V, III-V, and IV-V. 

The charged particle moving over the loopless trajectory and 

losing kinetic energy to radiation finally changes from the loopless 

enveloping trajectory I to the loop trajectory IV-V, 

Actually, the representative point, corresponding to a charged 

particle moving over the loopless enveloping trajectory I and losing 

kinetic energy to radiation will in the phase plane proceed along a 

twisting spiral in accordance with Formulas (1.17) and (l.l8), while 

approaching singular point B.  With an energy loss AS0 (velocity Av) 

the characteristic coefficient a, and consequently the parameter h, 

will increase. 

£-»£. (2.19) 

We see from (2.7) and (2.8) that with an increase in h, the 

singular points A(wi) and B(w2) (Pig. 12) approach along the w-axis 

and at h = 2/3^5 wil1 merge into point w0 ^J3  (Fig- 16); the closed 

region of the phase trajectories I (Fig. 12) bounded by the separatrix 

VI draw together to this point (Fig. 16). 

Furthermore, in the presence of the smallest possible loss in 

kinetic energy of the particle, i.e., the smallest possible increase 

in h, this particle hits the loop trajectory IV-V, since h > 2/3 > J5 

and the separatrixes VTa and VTb vanish (Fig. 15). 

III. Motion of a Charged Particle in a Magnetic Dipole Field 

in an Outer Homogeneous Magnetic Field Antiparallel to 

the Magnetic Field Strength of a Dipole 

in its Equatorial Plane 

1.  Differential Equation for the Phase Trajectory of a 

Charged Particle 

In the case under consideration the resultant magnetic field 
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equals 

*-£-*.• (J.I) 

The trajectory curvature of a freely moving charged particle is 

As before, on the basis of Eqs. (3.1) and (3.2) 

p«-h2p^-pp'_a' _k . . 
(P«+P'«)V.  P" 

a* C2o; 

By converting to the phase coordinates w, u, we obtain the dif- 

ferential equation for the phase trajectories conforming to Eq. (2.3) 

in the form 

The minus sign In front of the fraction corresponds to the pre- 

vious positive curvature (K > 0) and the plus sign corresponds to the 

negative curvature (K < 0) on all regions where the magnetic dipole 

field vector of the resulting magnetic field coincides with the mag- 
3 

netic dipole field vector, i.e., at w <-^l/h.  In those regions where 

the field vector reverses the direction (w >-/l/h), the relationship 

between the sign in front of the fraction and the trajectory curva- 

ture changes. 

2. Behavior of Phase Trajectories at Large and Small 

Values of u and w 

As before, we can study the behavior of phase trajectories by 

an inspection of Eq. (j>.k). 

When w -* 0 and u ^ 0, w/u -♦ 0, and the equation takes the form 

of the Bernoulli equation 
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*-*[** g- (3.5) 

This equation does not depend on the parameter h and is identical 

to Eqs. (1.11) and (2.12).  Consequently, here also the phase curves 

will have vertical asymptotes at w - l/c when C ^ 0.  When C increases, 

there is a rectification in the phase curves which, as C -*■ », degen- 

erates into the asymptote w = 0. 

If u -* 0, and w ^ 0, u/w -♦ 0, and Eq. (3.4) has the reduced form 

aw u L     w    J 
(3-6) 

In this case the derivative du/dw will be finite or infinite 

depending on whether the expression in brackets has positive real 

roots of w at different values of h. 

We will analyze this expression first for K > 0 when hw3 < 1, 

and for K < 0 when hw3 > 1. 

We get 

hw* + w* - 1 - 0. (3.7) 

For any h, Eq. (3-7) will always have one positive real root. 

For different values of h, this root can be represented as 

(3-8) 

3/3' 

It is easily seen that this root varies in the interval 0 < wi £ 

£ 1. At point wi as u •* 0, Eq. (3.6) becomes the indeterminate form 
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0/0.    Evaluating this, we obtain 

£-=FyTT3ä£T (5.9) 

Equation (3^9) always has one real value, i.e., the point wi 

is the only singular "saddle" point of Eq. (3.^). 

We now inspect the quantity in brackets in (3.6) when there is 

a plus sign in front of the fraction. This corresponds to K < 0 

when hw3 < 1, and to K > 0 when hw3 > 1. 

hut — w' —1=0. (3-10) 

For all h, Eq. (3.10) has one positive real root 

^-i{i-r3*[4afflj»±JL]f. D>11) 

The analysis of Eq. (3.10) shows that the value of w2 as a func- 

tion of the parameter h takes values from 0 < w2 < °°. 

At point w2, when u -* 0, Eq. (3-6) becomes the indeterminate 

form 0/0.  Evaluating it, we obtain 

du 
dS = ±y2 — aiuot. (3.12) 

Let us now examine the behavior of phase trajectories at large 

values of w and u. 

If w -*- <» and u/w -»• 0, then 

dw     u (3« 13) 

Hence, it all values of the parameter h for phase trajectories 

there are no assymptotes parallel to the w-axis. 

To determine whether the phase trajectories have vertical asymp- 

totes parallel to the u-axis, we consider the case where u -* « and 

w/u -► 0.  Equation (3*^) then becomes the Bernoulli type differential 
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equation 

the solution of which has the form 

The phase curves will have vertical asymptotes for those w at 

which the denominator in (5.5) becomes zero. 

We will investigate this equation first for K > 0 when hw3 < 1, 

and then for K < 0 when hw3 > 1. 

We get 

W — 2Cw + 2 = 0. (3.16) 

Equation (3.I6) has positive real roots only for C > 3/2 fJK. 

Thus only in this case do the corresponding phase trajectories have 

branches going off to infinity with vertical asymptotes parallel to 

the u-axis. 

We will now consider Eq. (3.15) for K < 0 when hw3 < 1,  and for 

K > 0 when hw3 > 1 

hxt? + 2Cw + 2 = 0. (3.17) 

Equation (3»17) has positive real roots only for C < 3/2 i/^, 

and the corresponding trajectories have branches with vertical asymp- 

totes parallel to the u-axis going off to infinity. 

3.  Phase Trajectories and the Corresponding Trajectories 

Of Charged Particles in a Magnetic Field 

We shall consider the phase trajectories and their corresponding 

trajectories of charge particles in the magnetic field H = H, - H0 

in a conservative approximation based on an analysis of Eq. (3.4). 

In this case the shape of the phase plane does not vary quali- 

tatively for any value of the parameter h, and the phase trajectories 
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have the shape shown in Figs. 17 and 18. 

Figure 19 shows the trajectory of charged particles in the equa- 

torial plane corresponding to the various phase trajectories. 

The point w0 - \l^7^ on the phase plane (Figs. 17 and 18) 

represents a circle of radius p0 - aw0 - J^|M/HO| (Fig. 19) on which 

numerically Hd - M/p
3 - Ho, i.e., the resulting magnetic field H ■ 0. 

Apparently, in the region interior to the exterior to the neutral 

circle, the resulting field H has opposite signs and consequently, 

when it is intersected by the charged particle the curvature of the 

trajectory of the latter changes its sign. 

Phase trajectory I (Fig. 17) corresponds to the loopless type 

trajectory enveloping the dipole (Fig. 19).  Phase trajectories II, 

III, and V simultaneously define the loopless trajectory enveloping 

the dipole. 

Trajectories I, II, and III, intersecting the neutral circle of 

radius p0 = awo = const, change the sign of their curvature (K > 

> O^K < 0) and change to curvilinear trajectory VI, which at suf- 

ficiently large distances p »  ^/M/Ho from the center of the dipole 

can be as close as possible to the circular trajectory of radius 

r = mvc/eHo. 

Phase trajectories XV and V simultaneously defind the loop tra- 

jectory at p « 5/ty/Ho  from the center of the dipole, while the phase 

trajectories V-Vl also correspond to the loop trajectory though at 

p » ^M/Ho from the dipole center.  These loop trajectories, Just 

as loop trajectories IV-V and III-V in paragraph J>  Section 2, in a 

drift approximation can be regarded as the movement of a charged 

particle along a circle of radius ri - mvc/eH, (trajectories IV-V) 

and r2 ■ mvc/eHo (trajectories V-VI) with homogeneous drift of their 
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leading centers around the center of the dlpole resulting from Hd* 

Obviously, the motion of the charged particles (having similar charge 

signs) along the circles ri and r* and also the drift of the leading 

centers of these circles will proceed In the opposite direction. 

The closed phase trajectory VTI (Fig. 18) corresponds to an 

undulating trajectory of the charged particle about a stable circular 

trajectory of radius p ■ aw2 ■ const (Pig. 19). This circle In the 

plane Is determined by the singular point B. The singular saddle 

type point A corresponds to an unstable circular trajectory of 

radius p = awi ■ const, and the phase trajectories VTa, b, and Vila, 

b which pass through a are the separatrlxes dividing the phase tra- 

jectories into their different types. 

ff» K<0 *>0 
*>0 K<0 

Pig. 17. Fig. 18. 
4. Phase Trajectories and Corresponding Trajectories of 

a Charged Particle with an Allowance 

for Dissipation of Energy 

In this case, as In that of the dlpole In an outer homogeneous 

field parallel to the magnetic dlpole field vector at its equatorial 

plane (par. 2), due to the presence of the outer magnetic field all 

the charged particles whose trajectories lie in the equatorial plane 

have already been captured by this outer field. All that was said 
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above In par. 4, Section 2 with respect to the nature of the motion 

of charged particle» along the loop trajectories IV-V and III-V also 

hold In this case (trajectories III-V In par. 4, Section 2 here 

correspond to the trajectory VI-V, and trajectories IV-V are com- 

pletely analogous) with the only difference being that (as stated In 

par. 3, Section 3) the charged particles with identical charges will 

move along trajectories IV-V and VI-V in the opposite direction. 

Just as in the case of a dipole with a parallel outer magnetic 

field, the change of the charged particle from a remote to a nearby 

trajectory in the presence of dissipative perturbations, in agreement 

with (1.17) and (l.l8), occurs continuously without any qualitative 

changes in the nature of motion of this particle. The intersection 

between the representative point and separatrix VTb and Vila, and 

also Via and Vllb in the phase plane (Fig. 17) does not qualitatively 

change the character of the movement. 

Unlike the dipole with a parallel outer magnetic field, in this 

case the particle capture by the magnetic dipole field can be effected 

in a stable circular trajectory.  We shall consider this capture in 

greater detail. The representative point corresponding to the charged 

particle moving along trajectory VII enveloping the dipole (Figs. 18 

and 19) and osing kinetic energy to radiation, will proceed along the 

twisting spiral of Formulas (1.17) and (l.l8), while approaching the 

singular point B. And as shown in par. K,  Section 2, the parameter 

h increases according to (2.19), which results in the midpoint B(w2) 

being displaced along the w-axis.  For sufficiently large h (or suf- 

ficient small v), from (3«H) we get 

„,= 1{1 + 2ch [ArCb(13f+ 1)]}«V^ = ^. <5-l8> 
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Fig. 19. 

Hence as h increases, the singular point B(w2) approaches the 

neutral point w0, and at sufficiently large h they merge. 

In the equatorial dipole plane the movement of the charged par- 

ticle corresponding to the previously described motion of the repre- 

sentative point in a phase plane will proceed over an undulating 

trajectory with constantly decreasing amplitude of oscillations about 

a circle of radius p0 ■ aw0 = const.  At sufficiently large h, the 

particle is practically in a neutral circle when the kinetic energy 

approaches zero. 
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INVESTIGATIONS OP COSMIC RADIATION 

BEYOND THE ATMOSPHERE 

N. L. Grigorov, D. A. Zhuravlev, M. A. Kondrat'eva, 

I. D. Rapoport, and I. A. Savenko 

Measurements of the tracks of charged particles in an 
emulsion irradiated at a height of 306-339 km showed 
that the intensity of the recorded radiation is three 
times greater than the intensity of primary cosmic radia- 
tion.  Nearly 50# of the excess particles were nonnuclear 
active particles with minimum ionization (electrons are 
the fastest).  The remaining 50# are strongly ionized 
particles which are nuclear fission products. 

Measurements made on rockets and earth satelites have shown 

that at heights of 200-300 km the radiation flux is several times 

greater than that of primary cosmic rays, even though the radiation 

belts are well-defined at high altitudes. 

This excess of radiation over primary cosmic radiation was 

recorded by instruments mounted on the second spaceship (Aug. 19, 

i960) whose orbit was 306-309 km above the earth!s surface within 

the latitudes + 650. 

Figure 1 shows the results of measurements made with counters 

on the second spaceship, and also the intensity of primary cosmic 
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radiation measured by A. N. Charakhch'yan and T. N. Charakhch'yan 

[51. 

Curve 1 shows the results of the measurements made by means of 

a single gas-discharge counter mounted inside the spaceship [1], 

The higher count in the gas-discharge counter over that expected 

from primary cosmic radiation in Savenkofs et al.work [1] is ex- 

plained by secondary charged particles (with near minimum ioniza- 

tion) generated by primary cosmic radiation.  Curve 2 shows the 

results of measurements obtained by a telescope consisting of two 

gas-discharge counters [2], These same authors also obtained a 

similar value of charged particle intensity during the third cosmic 

space flight.  The authors consider that the increase In the num- 

ber of telescope readings as compared to those expected from 

primary cosmic radiation most probably results from protons of 

energies E > 60 Mev, which as a result of diffusion drop-out from 

the inner belt to heights of 200-300 km. 

The existence of excess radiation as charged particles has 

been noted in a number of works devoted to the investigation of 

radiation at heights of 200-300 km, although the nature of this 

radiation at the present time is vague. 

An explanation of this radiation and its mechanism of formation 

is of definite interest.  If the "excess" particles are protons of 

the inner radiation belt, a study of their distribution in space 

at low heights of 200-300 km can yield valuable information on the 

mechanism causing particle drop-out from the belt. In this case 

the varying radiation effects primarily involve the dynamics of 

the inner radiation belt and not variations in primary cosmic radia- 

tion.  If, however, the "excess" particles are genetically 
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associated with primary cosmic radiations, as some authors hold [l], 

then despite their great intensity, they will not hamper a study of 

variations in cosmic rays at these low heights. 

The second cosmic spaceship contained a photoemulsion section 

of 489 NUCFI"RM photoemulsion layers, 10 x 10 cm square and 400 \i 

thick (the shielding of the outer emulsion edge was 6-8 g/cm2) . 

Since the emulsion registers all particles integrally without 

distinguishing them with respect to time, then to compare the 

emulsion data with the data registered by the counters, the latter 

must be averaged for the entire flight time by taking into account 

the different times the devices were at different latitudes and the 

dependence of the radiation intensity on the latitude at which the 

recordings were observed. 

This averaging for the flight time of the second cosmic space- 

ship, according to Savenkofs data [l], gives an average radiation 

Intensity (2.19 + 0.06) particles/cm2 sec; according to Ginzburg's 

data [2], an average intensity of 2.52 + 0.11 particles/cm2 sec; 

and for primary cosmic radiation according to Charakhch'yan's 

data [3],  an average intensity of O.65 particles/cm2 sec.  Thus 

according to the data recorded by the counters, the intensity of 

the recorded radiation is approximately three times greater than 

that of primary cosmic radiation. 

At the time of the development of the film pile, the sensitiv- 

ity of emulsion was high enough to ensure reliable recording of 

minimum-ionized particles (the sensitivity was determined with 

respect to electrons resulting from ir-, \L-S  and e- disintegrations) . 

In 37 of 38 cases the electrons had an average track density of 

gmln = (27 + 0.5) grains/100 n. 
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Pig. 1.  Radiation intensity 
recorded during flight of the 
second cosmic spaceship 

The x-axis represents the geo- 
magnetic latitude; the y-axis 
represents the number of parti- 
cles per cm2 per sec.  Curve 1 
is the radiation intensity 
recorded by a single-stage gas- 
discharge counter; curve 2 is 
the radiation intensity record- 
ed by the telescope of the two- 
series counters; curve 3 is the 
intensity of the primary cosmic 
radiation 
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Pig. 2.  Angular distribution 
of the recorded particles 

The x-axis represents the 
angle which the particle makes 
with the emulsion plane; the 
y-axis shows the number of 
particles in angle intervals 
of 10° 
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If all the particles recordable by counters are recorded In 

the photoemulsion, we can analyze the nature of "excess" particles 

by means of photoeraulslon data. To ascertain whether all the 

particles are recorded In the photoeraulslon, we determined the 

absolute Intensity of the particles. 

To accomplish this, in all layers of emulsion Nos. 51 and 3^7* 

on areas 1 mm from the outer edge of the emulsion, at a magnifica- 

tion of 1350, we made sketches of all recorded particles intersect- 

ing the surface of the emulsion layer. Two observers examined 

every field of view.  On an area of 0.18 mm2, 196 tracks were 

sketched. For all tracks we measured the angle &  (the angle at the 

emulsion plane) , and ß, the angle formed by a perpendicular to the 

emulsion plane.  The distribution with respect to &  is Isotropie 

and therefore we shall consider the distribution of particles with 

respect to the angles ß as also Isotropie.  Figure 2 also shows the 

particle distributions with respect to ß.  The curve is drawn on 

the assumption of an isotropic distribution. The curve was normal- 

ized with respect to the number of particles in the interval of 

ß from 30 to 60°, since for small and especially large angles of ß 

there is a chance of miscalculation.  Half of the particles should 

occur in the interval from 30 to 60°.  In our calculations, as a 

result of a miscalculation, there are more than half (119 out of 

196) and we consider the total number recorded in this area from 

the time of preparing the emulsion to be 119 x 2 = (238 + 22.C) 

particles. 

To obtain the number of particles recorded in the emulsion 

during the flight time, on the control layers which were kept on 

earth and which were developed together with the film plates, we 
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measured the background|which over an area 0.18 mm* consisted of 

(40 ♦ 4.6) particles. Thus, during a 27-hour flight we recorded 

(110.0 + 12.0) x 10s particles/cm2. 

From the average global Intensity of particles measured by 

counters, (2.19 ± 0.06) particles/cms sec, we should expect a 

particle flux through the emulsion surface of (106 + 5) x 103 

particles/cm2, which agrees nicely with the flux observed in the 

emulsion. Therefore, we can assert that all those "excess" parti- 

cles present in the cabin of the second spaceship which we 

recorded by a single counter [1], were also recorded by the emul- 

sion. 

We measured the density of the grains £ and calculated their 

ratio g/gmin on 175 of the 196 tracks. Twenty one tracks had a 

small angle ß and it was difficult to make measurements. 

The same measurements were made on the background tracks. 

Figure shows the particle distribution by ionization.  Figure k 

gives the same distributions after allowances for the background. 

We see that over 60# of the particles in the emulsion record- 

ings had minimum ionization; k0&  had an ionization of g/g-^ > 1*4. 

Among these particles with heightened Ionization capacity there 

can be particles, the nuclear disintegration products, occurring 

In the material surrounding the emulsion or in the emulsion itself. 

To reveal what fraction of the recorded heavily ionizing particles 

resulted from nuclear fission, we proceed in the following manner. 

Grigorv's work [k]   showed that at different atmospheric heights 

(9 and 20 km) the heavily ionizing particle fluxes were the same 

under different filters (graphite, parafln, and lead) and in air, 

and were proportional to the star-producing component at this height, 
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i.e., proportional to the number of "stars" formed per cm3 per unit 

time. 

Therefore, the heavily ionizing particle flux resulting from 

nuclear disintegration during the flight of the second 

spaceship should be proportional to the number of "stars" per cm3 

of the emulsion. 

For determining the number of stars we examined a volume, 

0.072 cm3, of the emulsion at a magnification of 450X.  Stars with 

a number of gray and black tracks N, > 3 were recorded.  To dimin- 

ish star omission, the same area was examined by three observers. 

The contribution of the second observer was 10-15# of the total 

number of stars found by the first observer, the contribution of 

the third observer was no mere than 5#. 

We found (183 ± 13-5) stars of Nh > 3, which is (2260 + 170) 

stars/cm3 per day. 

N. L. Grigorov [4] recorded (2350 + 120) stars/cm3 a day with 

Nh > 3 and (2.5 + O.l) particles/cm2/min/sterad with 20 Mev < E < 

l80 Mev, which is (0.26 + 0.01) particles/cm2/sec of the global 

flux.  According to the literature [5]* particles (protons) with 

this energy have 7.8 > g/gj^ > 2.4.  We recorded (2260 + 170) 

stars/cm3/day with N, > 3* i.e., the fraction of nuclear disinte- 

grations that can be anticipated (0.25 + 0.04) particles/cm2/sec. 

Figure 4 shows that in the lonization range 2.4 < &/&^*n < 7-8, 

(15.0 + 3.2)# of all the particles were recorded.  Hence, the global 

flux of heavily ionizing particles recorded by emulsion in this 

lonization range was (0.31 + 0.06) particles/cm2/sec. 
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Fig. 3. Emulsion recording of particle 
distribution by ionization 

The x-axis represents the density ratio 

of the grains seen in the tracks, g/g-^ I 

the y-axis represents the number of 

particles in the given ionization inter- 

val; the solid line shows the particles 

recorded (inclusive of the background) 

during the flight; the dotted line repre- 

sents the control layer background on the 

same area. 

Since these figures are within our accuracy limits, we can 

regard all particles with g/g,^ > 2.4 observed in the emulsion to 

be due to nuclear disintegration. If, however, we base our calcu- 

lations on absolute values, we must note a certain excess in the 
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heavily Ionizing particle* (O.06 + 0.08) particles/cm*/»ec which 

can be attributed to the protons in the inner belt, as the "belt" 

protons mainly fall within this range (if we assume that their 

energy spectrum at the height of 200-300 km is the same as in the 

center of the belt [6]). Thus, the inner radiation belt protons 

with 2.4 < g/gjüin < 7.8 after passing through the spaceship wall 

can comprise (3 + 4)# of all particles recordable by counters. 

It is theoretically possible that high-energy protons falling 

within the range z/zmAn < 2.4 are  diffused most intensely out of 

the inner belt. Figure 4 shows that particles with g/gj-jn < 2.4 

amount to (85 ± 3.2)# of all particles, i.e., their global flux 

equals (1.74 + 0.l6) particles/cm2/sec. The particle fluxes with 

lA < &/&m^n < 2.4 equal (0.46 + 0.08) particles/cm
2/sec, and those 

with &/&mln < 1.4 equal (1.28 + 0.12) particles/cm
2/sec; the last 

value includes the primary cosmic particles with a global flux of 

O.65 particles/cm2/sec.  If all the particles were protons, there 

should have been a large number of stars in the emulsion. 

Having compared the observed number of stars with those that 

should be expected, assuming that the excess particles are protons 

or other nuclear-active particles generated by the primary cosmic 

radiation in the substance surrounding the emulsion, we can obtain 

definite knowledge concerning the excess particles. 

We shall consider the part played by particles with g/g-^ < 

1.4 in the formation of the stars. They comprise 45# of the 

excess particles. The stars generated by these particles should 

contain at least one relativistic particle, i.e., with n > 1. s *~ 
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Pig. 4. Emulsion recordings of particle 
distribution by ionization (exclusive of 
background) 

All stars found with N, C  3 were examined with magnification 

of a 6^0 x or 900 x and the number of tracks with &/&mln < 1«* 

in each star was determined.  There were (74 + 8.6) stars with 

N.> 3 and n > 1, which comprise (915 + HO) stars/cm3/clay. To n ^m s ^™ "™ 
introduce a correction for stars with N, < 3,  we used the distri- n 
butions with respect to N, of the stars which were produced by 

protons with an energy of 6.2 Bev [7] and found by following the 

proton tracks in tie emulsion.  The correction coefficient was 

N
n > °/

N
n ^3=1.^6+0.13.  Applying this value to stars with 

n > 1, we obtained the number of stars with R > 0 (1250 + 150) 

stars/cm3/day. 

The primary protons having an emulsion interaction path of 

37 cm yields 1500 stars/cm3/day, thus the excess particle flux with 

g/a . £ 1.4 was (O.63 + 0.13) particles/cm2/sec; no stars were 
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formed within the error limits of our measurements. 

Consequently these particles are neither relativistic protons 

nor 7T— mesons generated by the primary cosmic particles« 

Based on this analysis we consider the relativistic excess 

particles as sufficiently energetic electrons. 

Protcns with 1.4 £ &/&m±n < 
1#® have an interaction path X in 

the emulsion of about 50 cm [8], and for protons with 1.8 < z/&nAn 

< 2.4, an interaction path \  of approximately 80 cm [9]. Hence, 

protons with 1.4 < g/gm±n < 2.4 would yield (700 + 120) stars/cm3/ 

day. The stars resulting from these protons will not have a 

relativistic track. We have almost twice as many stars with a 

number of rays N. > 3( 1340 + 130) stars/cm3/day than could be ex- 

pected from protons with ionlzation of 1.4 < g/gj-j^ < 2.4. It is 

possible that these stars were produced by secondary neutrons. 

For estimates we use previous data [10] on the distribution of 

stars by the number of rays and by the nature of the particles 

producing stars at 54° N and 29 km.  The distribution of these 

stars by number of rays coincides nicely with the distributions 

shown by J. J. Lord [10] (Fig. 5.).  The ratio of the number of 

stars produced by neutrons to the number of stars produced by 

protons (in agreement with Lord's data [10]) is 1.6. Our ratio 

was 1.3.  Since the shielding thickness behind which the emulsions 

were kept is less than that of the atmosphere at 29 km, and as this 

ratio diminishes with height, we can consider that our data does 

not contradict the fact that the excess of stars with n » 0 over s 

that which should be expected from protons with 1.4 < g/gmin < 2.4 

is explained by the interaction between the neutrons resulting from 

nuclear disintegration produced by primary cosmic particles in the 
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substance surrounding the emulsion« 

Pig. 5.  Distribution of stars by number 
of rays 

The x-axis shows the number of rays N, the 
y-axis shows the number of stars with the 
number of rays greater than that given in 
1 cm3 per day, n(> N); the solid line gives 
the data cited by J. J. Lord [10] for lati- 
tude 5^° N and height of 29 km; the points 
show our obtained distribution 

Conclusions 

1. Excess particles at heights of 200-300 km can be divided 

by specific ionization into two groups:  relativistic particles 

(s/gjain i 1.4) and "gray" particles (ß/gmln > 1.*) •  The rela- 

tivistic particles make up 45# of all particles, and the "gray", 

2. The relativistic excess particles are not nuclear active. 

They are most probably electrons. The "gray tracks are nuclear 
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fission products (mostly proton products) and not protons of the 

inner radiation belt. 

3. The inner radiation belt protons, if they are present 

among the excess particles within the spaceship>do not comprise 

more than 4 + 60 of all excess particles. 

4. The bulk, and possibly all excess particles are genetically 

associated with primary cosmic radiation at the point of observa- 

tion. 

5. In conclusion the authors thank V. V. Bobrovskaya and 

E. A. Orlova for carrying out the measurements. 
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OUTGOING RADIANT FLUXES ONTO VARIOUSLY ORIENTED 

SURFACES AT A HEIGHT OF 300 km 

K. Ya. Kondrat'yev and M. N. Fedorova 

This article gives the results of calculating 
outgoing long-wave and short-wave radiant fluxes 
onto variously oriented plane surfaces at a 
height of 300 km.  The calculations were made 
from the angular distribution of the intensity 
of the outgoing radiation.  Conclusions were 
reached on the feasibility of using an Isotropie 
approximation for calculating the outgoing long- 
wave radiation. 

The problem of the arrival of terrestrial radiation onto var- 

iously oriented surfaces at a given height is extremely important 

for resolving problems of the thermal balance of artificial earth 

satellites, for interpreting data on the measurements of outgoing 

radiation by means of weather satellites, and for considering other 

problems.  Authors in earlier works [l] found that outgoing long- 

wave radiant fluxes diminish rather smoothly with an increase in the 

angle of inclination of a surface.  In this article we will mainly 

use relative values of the radiant fluxes (the values were determined 

by the flux on a horizontal surface). 
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The relative values of the outgoing long-wave radiant fluxes 

P/Pn, calculated from the angular distribution of the intensity of 

outgoing radiation at the equator and 6 5° latitude in a cloudless 

sky and in the presence of a total sky cover with an upper boundary 

of the layers and 9 km^are represented by circles in Pig. 1. An 

examination of this figure shows that the dependence of the relative 

radiation fluxes on the inclination angle is practically universal. 

The relative magnitudes calculated from this outgoing radiation inten- 

sity distribution [l] is very close to the relative values calculated 

by an "Isotropie" approximation.  Hence, isotropic approximation can 

be used for approximate calculations of the relative outgoing long- 

wave radiation fluxes onto variously oriented surfaces in the atmos- 

phere.  We must stipulate, however, that the case of a partial, 

horizontally inhomogeneously distributed cloud cover must be inves- 

tigated further. 

On the basis of calculations of outgoing long-wave radiation 

fluxes we can estimate the magnitude of the angle at the apex of a 

cone on which 90$ of the flux striking the given surface falls. 

Calculations show that for all the differently selected surface 

orientations, the magnitude of this angle (or the so-called "effec- 

tive zone") is approximately 60°.  Only for surfaces with inclination 

angle a > 70° does the effective zone reach 70°. 

The magnitude of the effective zone within which 50# of the 

outgoing long-wave radiation falls is approximately J>0°  for surfaces 

with an inclination angle a < 70 and 45-50 for surfaces with a > 

>70°. 

We will now consider the results of the calculations of outgoing 

short-wave radiation onto variously oriented surfaces. 
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Fig. 1.  The dependence of 
the relative values of the 
outgoing long-wave radiant 
fluxes on the inclination 
angle of the surface cir- 
cles P/Fn for the equator 
and 65# Ne for cloudless 
sky and total sky cover. 
The solid curve is the 
dependence of relative 
fluxes on the inclination 
angle for outgoing radia- 
tion. 

The outgoing short-wave radiant 

fluxes were calculated from the 

angular distribution of the inten- 

sity of the outgoing radiation 

obtained by theoretical calculations 

in Ye. M. Feygel'son's work [2]. 

We must bear in mind that the 

calculations of the angular dis- 

tribution of the intensity of out- 

going short-wave radiation were 

carried out in this earlier work 

[2] for the case of a plane-parallel, 

horizontally stratified atmosphere 

onto whose outer boundary a parallel 

beam of solar rays impinged.  We 

assume that the earth's surface 

reflects the impinging radiation 

according to Lambert's law.  The scattering coefficient and the scat- 

tering indicatrix are considered assigned.  The polarization of light 

is not taken into account. We measure the change in scattering coef- 

ficient with height by using an extremely simple method: the atmos- 

phere was divided into two layers with respect to height, and in each 

the indicatrix was assumed constant. 

The angular distribution of the intensity of the outgoing short- 

wave radiation can be rather involved depending on the distribution 

of cloudiness over the area of the earth's surface under considera- 

tion, on the albedo of the underlying surface, and on the illumination 

conditions of the area by direct solar radiation. Calculations of 
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the intensity of the outgoing short-wave radiation made earlier [2] 

for a fully lighted illuminated area of the earth with a homogeneous 

albedo showed that at small zenith angles of a visible point (up to 

45°)* the intensity of the outgoing radiation for real and Isotropie 

scattering is close in order of magnitude at all azimuths. At large 

zenith angles the radiant intensities differ markedly, the differences 

increasing with decrease of azimuth of the point in question (the 

azimuth is reckoned from the direction to the sun).  We must emphasize 

that these results were obtained for a plane-parallel atmosphere 

under the simplest optical conditions.  Hence, in reality, we may 

consider the field of outgoing short-wave radiations to be essentially 

anisotropic. 

Consequently, accurate values of the outgoing short-wave radiant 

fluxes onto variously oriented surfaces can only be calculated by 

numerical integration from the given angular distribution of the 

intensity of the outgoing radiation. 

In this work we calculate the outgoing short-wave radiation 

fluxes onto variously oriented surfaces at a height of 300 km.  All 

the calculations in Feygel1son's work [2] were made in relative units. 

Since in this article we are studying the variability of outgoing 

radiation scattering on inclined surfaces as functions of their 

orientations and fluxes on inclined surfaces, we can compare them 

with fluxes on a horizontal surface and can also determine the fluxes 

in relative units. 

We calculate the short-wave outgoing radiant fluxes for surfaces 

with inclination angles relative to the horizontal plane, a = 0, 10, 

30, 50, 70, and 90°, oriented along the azimuth angle # = 90° and 

l80° relative to the sun's direction; we also calculated these fluxes 
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TABLE 1 
Outgoing Short-Wave Radiation Fluxes (in Relative unite) 
Onto Variously Oriented Plane Surfaces j T* - 0.8, q « 0.1 

80 , m 
c.# *l\ tm 

«.• • 180 0 m nSSSES»* 
r    n*l, % P      F;PK % P      F.1^% *   "V* 

0 
10 
30 
TO 
70 
90 

1,117   100 
1.077     96,4 
0,963    86,2 
0,816    73 
0,625    56 
0,413    37 

1,117    100 
1,083     97 
0,952    85,3 
0,901     80,6 
0,698     62,5 
0,437     39,1 

0,570   100 
0,546     95,8 
0.544     95,6 
0,494     86,8 
0,416     73,1 
0,307     54 

0,570   100 
0,547     96,1 
0.484     85 
0,418    73,4 
0,361     63.4 
0,239    41,9    j 

100 
98.5 
87,8 
72 
53,8 
35.2 

TABLE 2 

Outgoing Short-Wave Radiation Fluxes (In Relative Units) 

Onto Variously-Oriented Plane Surfaces; r* = 0.2, q = 0.8 

*&•* 
30 

1 
r. 

<>,• *i\ tm «.• 
0 180 0 1»           | USSSSm, t 

F      F,^ % F      F1F^% 1         F FJFh % 9      F/F^ % 

0 
10 
30 
so 
-o 
90 

3,733   100 
3,874   103,8 
3,461     92,7 
2,847     76,3 
2,130     57 
1,339     35,9 

3,733   löf) 
3.880   103,0 
3,480     93,2 
2,768     74,2 
2,156     57,8 
1,358     36,4 

1,127 
' 1.118 

1,019 
0,86-4 
0,675 

;   0,453 

100 
90,2 
90,4 
76.7 
59,9 
40.2    ! 

1,127   100 
1,102     97,8 1 
0,984     87,4 
0,823     73 
0,631     56 
0,411     36,4 

100 
98,5 
87,8 
72 
53,8 
35,2 

TABLE 3 

Outgoing Short-Wave Radiation Fluxes (in Relative Units) 

Onto Variously Oriented Plane Surfaces; T* = 0.2, q = 0.8 

IT.' 

30 6Ü 

"> 

90 90 

1100 
98,21 
87,4 
78,9 
67 

i',577 j 34,8| 

1,656 
1,626 
1,418 
!,:u« 
1,100 

1,656 
1,631 
1,646 
1,214 
0,917 
0,582 

F/F*. '*• F/&- > 

ISO 

PIP* 

FIF% tm 
lMtnpl* 
radUttlM^ ft 

100 1,656' Ifln |l,05o|l00 1,055 100 
' 08,7il,03iH 98, 

89.5jO,936 88, 
76,3 0,785! 74,41 
50 '0,601 57 
10,7 :0,388| 36, 

98,5|1.6:50'  *.»S,S;i,042! 
88,4|1,4S2   89,4 0.9451 

73,3 
55,3 
35,2 

l,2'.0. 74,9 0,805 
1,1131 63,4-0,633: 

|0,Ülü;   36,8:0,429; 

1,055100 
,037 
,9361 

10,795 
W.621 

,414 

51 

7k> 

98,2 
88,6 
75,3 
58,8 
39,3 

100 
98,5 
87,8 
72 
53,8 
35,2 
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for the following optical parameters: optical thickness of the entire 

atmosphere T* - 0.2, 0.4, and 0.8; zenith distances from the sun z^ 

30, 60, and 75°; and the values of the albedo of the subjacent layer 

q - 0.1, 0.3, and 0.8. The results are given in Tables 1-3* 

An analysis of the obtained results shows that the variability 

in the outgoing short-wave radiant fluxes as a function of the inclina- 

tion angle of the surface is approximately the same as in the case of 

long-wave radiation (see [l]). The magnitudes of the outgoing radi- 

ant fluxes, calculated in relative units, vary markedly depending on 

the sunfs zenith distance, the optical atmospheric thickness, and the 

albedo of the subjacent surface. A comparison of the different values 

of the outgoing radiant fluxes showed that at large albedos (q - 0.1) 

for a given zenith distance of the sun, the outgoing radiant fluxes 

on variously oriented plane surfaces increased as the optical thick- 

ness of the atmosphere increased.  At large values of albedo (q = 0.8) 

the magnitudes of outgoing short-wave radiation decrease with increase 

of atmospheric thickness at a constant zenith distance. These results 

are apparently explained by atmospheric haze, which increases the 

albedo of the earth's surface-atmosphere system for a small albedo 

of the subjacent surface and decreases it at a large albedo. For 

constant values of r* and z^,  the outgoing short-wave radiant fluxes 

increase with increase in the albedo of the surface from 0.1 to 0.8 

by 3 to 5-fold. 

The dependence of the relative values of the short-wave radiant 

fluxes (with respect to the flux on a horizontal surface P/Ph) on 

the steepness and azimuth of the surface is shown graphically in 

Figs. 2-4. 
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Fig. 2.  The dependence of the 
relative outgoing short-wave 
radiant fluxes on the inclina- 
tion angle to the surface for 
z0 - 75 > T* = 0.2,   and q = 0.1. 

no 
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Fig. 5.  The dependence of the 
relative outgoing short-wave 
radiant fluxes on the inclina- 
tion angle to the surface for 

- -*no z© = 5° > T* = 0.8,  and q ■ 0.8. 
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Fig. 4.  The dependence of the 
relative outgoing short-wave 
radiant fluxes on the surface 
inclination angle for zQ = 75 , 

r* = 0.8 and q = 0.8. 

The broken curve was calculated for the relative values of isotropic 

short-wave radiant fluxes. The graphs show that for large albedo, 

the relative radiant fluxes calculated from an angular distribution 

of the intensity of the outgoing short-wave radiation differed little 
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from the corresponding values calculated for an Isotropie radiation 

field. Marked differences were observed for small albedo values 

(Fig. 2; q ■ 0.1) and large zenith distances. As already noted [2], 

this Is caused by the fact that with decrease In the albedo of the 

underlying surface, there Is an Increase In the effect of «nlsotroplc 

scattering. 

The relative values of the outgoing short-wave radiant fluxes 

for small zenith distances (z0 - J>0°) proved to be fairly close to 

the various combinations of the optical characteristics T* and £. 

The dependence of the relative flux magnitudes on the azimuth 

are insignificant for small zenith distances and more substantial 

for larger zenith distances. 

Hence, we consider that under the simple atmospheric conditions 

which we chose, the angular dependence of the relative values of the 

outgoing short-wave radiant fluxes in general are practically iden- 

tical and closely correspond to the dependence for an Isotropie 

radiation field. 

For more involved cases, where an area of the earth's atmosphere 

in the instruments field of vision is partially illuminated by the 

sun and where partial cloudiness is present, it becomes necessary to 

determine the values of the outgoing radiant fluxes for each specific 

case. Therefore, in the future, it will be necessary to calculate 

the outgoing radiant fluxes for more complicated cases and for con- 

ditions of partial cloudiness in order to obtain sufficient data for 

statistical generalizations. 
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BALLOON INVESTIGATIONS OP THE RADIATION BALANCE OP THE 

EARTH'S SURFACE-ATMOSPHERE SYSTEM 

K. Ya. Kondrat'yev, Q. N. Gawskaya, and 

G. A. Nikol«skiy 

This article considers the vertical profiles 
of the radiation balance and its components dur- 
ing the summer and fall measured by standard 
actinometric devices mounted on free balloons. 

The launching of several American weather satellites (the Tiros 

series) has resulted in securing abundant experimental data on the 

earth1s radiation balance (in an earth's surface-atmosphere system). 

Although there is great promise in using satellites for this type of 

investigation (primarily from the standpoint of the "global" nature 

of information), the inadequate reliability of existing data (see, 

for example, [l]) point up the need for developing and using addi- 

tional methods of investigation. 

In this connection the ascent of actinometric devices on auto- 

matic balloons to heights of 25-30 km has the following virtues:  i) 

the possibility of obtaining highly accurate measurements; 2) the 

possibility of obtaining comprehensive information on the radiant 
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fluxes and the major factors governing them; 3) the possibility of 

obtaining Information not only on the outgoing radiation and radia- 

tion balance, but also on the vertical profiles on the radiant fluxes 

In a free atmosphere (the latter is extremely essential for resolving 

problems of Interpretation of the results gathered by antlnometrlc 

measurements on satellites). 

Therefore, several years ago the authors to begin to fabricate 

and test a series of balloon instruments designed to measure the 

radiation balance, its components, and the major meteorological char- 

acteristics determining the radiation field. An earlier work [2] 

gave a description of the equipment and also presented the first results 

obtained in this direction from the data of two ascents. The table 

below gives the results of an analysis of nine ascents made in 1962 

under differing weather conditions.  The flight dates are given below. 

Flight 
motor 

l 

Dot«               i 
1 mnF Dcta 

1 7. VI 1961 7 22. VI 1962 
2 14. XI 8 4.VII 
3 25. V 1062 0 7.VII 
4 30. V 10 12.VII 

•    5 5.VI 11 22.XI 
6 12. VI 

These data include information on the vertical profiles of direct 

solar, global, and reflected short-wave radiant fluxes, and also 

information on the vertical profiles of short-wave and total radia- 

tion balances. We calculate the values of the albedo from the measured 

values of the global and reflected short-wave radiation. 

In addition to the radiant fluxes we also measured: l) the air 

temperature (by a platinum resistance thermometer), 2) the tempera- 

ture of all the radiation sensors (using thermistors), J>)  the air 

pressure (by a radiosonde atmospheric pressure sensor). 

-187- 



All the Instruments were calibrated before the flight under 

laboratory and natural conditions. 

Since the actlnometric Instruments on the supporting frame were 

relative instruments, we determined the conversion factors under both 

laboratory (on a photometric bench) and field conditions. 

Since the radiant fluxes were continuously recorded on a N-70 

loop oscillograph, it was possible to construct the vertical profiles 

of the measured values. To do this, a time signal was recorded on 

the oscillograph tape during the flight.  Every other minute the 

recording line broke off. Then, since we knew the starting time, we 

were able to figure out the total flight time and thus find the height 

of ascent. 

Since each element to be measured will have a zero recording 

every J>6  seconds (by opening the sensor circuit), if we measure the 

distance from the zero recording on the line to the corresponding 

measured value, and if we know the conversion factor of the two loop- 

instruments, we can obtain absolute values of the radiant fluxes per 

cal/cm2 min. 

The declination of the supporting stage from the horizontal 

resulted in a wave-like curve recording. To obtain reliable data, 

while processing the measured values for 1961, we averaged 10-12 

points for every minute.  By using the recording curve, we plotted 

all the experimental points observed per minute.  In processing the 

measurement data of the 1962 radiant fluxes, the averaging was done 

directly on the tape, for which purpose we drew an average curve which 

smoothed out the fluctuations of the flux to be recorded. 

In processing the measurement values of the radiation balance 

and its components, we introduced a correction factor for the height 

-188- 



of the sun and for the Instrument temperature and pressure. 

We will now discuss the results of the different conditions 

observed, bearing in mind that we are primarily concerned with stand- 

ard conditions. 

1. One instrument set was launched on a clear day, May 25, 1962, 

at 1013 hr local time (mean solar time) with approximately a 10 km 

visibility at the time of launch. The height of the sun varied 

between 55°6I and 58° 45f. 

As a result of the flight we obtained vertical distribution of 

direct solar, global and reflected short-wave radiant fluxes, short- 

wave and total radiation balances, and also the albedo. . 

The direct solar radiation S (Pig. l) increased with distance 

from the earth's surface, where it was 1.2 cal/cm2 min, and where at 

16 km It reached 1.83 cal/cm2 min.  From 16 km to the sounding celling, 

the direct solar radiation flux remained practically constant (within 

the limits of accuracy of the measurements).  The appreciable increase 

in direct solar radiation at 16 km was determined by severe turbidity 

of the lower atmospheric layers and by attenuation of solar radiation 

by haze. 

The global radiation increases in the lower 2-km layer from 1.29 

cal/cm2 min at the earth's surface to 1.42 cal/cm2 min.  From 8 to 

16 km, the global radiation was constant, and then increased prac- 

tically linearly to I.63 cal/cm2 min at the outer sounding point. 

The rather large increase in the lower 2-km layer and insignificant 

variation in the 2 to 4-km layer was determined by attenuation of the 

radiant fluxes owing to severe turbidity in the lower atmosphere by 

aerosols. 
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Fig. 1. Vertical profiles of the radiation 
balance and its components (flight 3, May 25, 
1962)  S) direct solar radiation; R) reflected 
short-wave radiation; Q-R) short-wave balance; 
B) radiation balance. 

The reflected radiation had a weakly defined maximum of 0.25 

cal/cm2 min at 2.5 km produced by increased reflection from the forma- 

tion of dense light-gray haze. At about 9-5 km, the reflected radia- 

tion was 0.22 cal/cm2 min, and at greater heights, up to 28 km, a 

linear increase to 0.25 cal/cm2 min was observed.  The change in the 

reflected radiation from 9-5 to 28 km was only 0.03 cal/cm2 min.  As 

a result of the increase in the reflected radiation at 3.5 tan, a weak 

minimum at 1.18 cal/cm2 min is observed in the radiation of the short- 

wave balance.  At about 10.5 km, due to the decrease in the reflected 

radiation at this height, a small maximum appears (1.35 cal/cm2 min). 

At the outer sounding point, the short-wave balance reaches 1.4 cal/cm2 

min. 

The total radiation balance increases up to 6 km where it is 

1.03 cal/cm2 min; from 6 km to the sounding ceiling, it decreases 

linearly, finally becoming O.98 cal/cm2 min owing to the increase in 
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reflected radiation In the upper sounding layers. 

Figure 2 shows the change in the albedo of the subjacent surface 

and the underlying air layer with height. We see that the maximum 

albedo at approximately 3 Ion is 18#. Above 7 km, the albedo is prac- 

tically constant, being about 15$. 

2.  The sixth flight obtained vertical profiles of the radiation 

balance and its components up to 27 km. The measurements were made 

June 12, 1962 at 1057 hr local time. The horizontal visibility at 

flight time was 10 km.  Individual cumuliform clouds, which developed 

into a heavy cumuliform cloud cover, were noted at the flight start. 

There was an over-all cloudiness of 8 scale units in the middle of 

the flight.  The instrument package could be clearly seen through 

the cloud gaps.  A heavy haze was observed near the ground. 

The presence of a severely turbid layer near the earth's surface 

and cloudiness were reflected in the abnormal course of the reflected 

short-wave radiation and the short-wave and total radiation balances. 

(Fig. 3). 

As a result of attenuation by the thick aerosol layer, the direct 

solar radiation varied in the lower 10-km layer from 1.18 to 1.80 

cal/cm2 min, whereas from 11-27 km it was practically constant. 

The global radiation at the 4-km layer increased from 1.2 to 

1. 5 cal/cm2 min.  At greater heights the increase in global radiant 

flux became considerably slower.  At 27 km, the global radiant flux 

reached its maximum, I.58 cal/cm2 min. 

The maximum values of the reflected short-wave radiation was 

0.6l cal/cm2 min at 11 km, and then fell to O.54 cal/cm2 min at the 

maximum sounding point. The pronounced increase in reflected radia- 

tion beginning from 4 km upwards is caused by the rapidly developing 
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The part played by reflected radiations In changing the vertical 

profiles of the short-wave balance shows up graphically In a vertical 

distribution of the short-wave balance. 

AVI. 
9        l      &       6      8      W     12     Ii      IS      IB     Iff      *' 

j. 2. Albedo distribution by I 
flight No. J>,  May 25, 1962; b) flight 
Fig. 2. Albedo distribution by height, a) 

May 25, 1962; t) flight No. 6, 
June 12, 19§2; c) flight No. 7, June 22, 1962. 

The short-wave balance of O.96 cal/cm2 min near the earth reaches 

a maximum of 1.26 cal/cm2 min at 4.5 km«  At 11 km, a second maximum 

is observed.  Above 11 km, the short-wave balance increases linearly 

as result of a drop in reflected radiation and increase in the global 

radiant flux. 

Just as in the short-wave balance, the total radiation balance 

varies substantially owing to reflected radiation in the entire sound- 

ing layer. 

As in the short-wave balance, a maximum of O.95 cal/cm2 min was 

first observed at 4 km which then fell to 0.62 cal/cm2 min near 11 km. 

Above 11 km, the vertical profile of the radiation balance was dis- 

tinguished by an increase in the balance resulting from a decrease of 
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Fig. 35.  Vertical profiles on the radiation 
balance and its components (Flight No. 6, 
June 12, 1962). 

Fig. 4.  Vertical profiles of the radiation 
balance and its components (Flight No. 7, 
June 22, 1962). 
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Fig. 5- Vertical profiles of direct solar 
radiation. The numbers on the curves cor- 
respond to the flights. 
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the reflected radiant flux In the 11 to 27-km layer. The sharp 

decrease in the vertical profile of the albedo (Fig. 2) in the lower 

12-km layer is caused by a considerable horizontal nonhomogeneous 

atmosphere. We see that there is a minimum near the earth's surface 

(l6-l8#) and a maximum {kl%)  near 11 km, which falls to y*t% in the 

vicinity of the sounding ceiling. 

3. The seventh instrument set was sent aloft on June 22, 1962 

at 1035 hr local time. Unlike the earlier flight, we observed a 

cirrus and stratocumulous cloudiness of 8/7 scale units at the start 

of flight, which by the end of the flight rose to 9/8.  Owing to the 

presence of dense cloudiness with some gaps, the radiation^balance 

components varied sharply in the lower 6-km layer, and there was no 

continuous recording of solar radiation (Fig. 4).  The cloudiness 

strongly attenuated the direct solar radiation up to 13 km.  The con- 

stancy of the direct solar radiation in the layer 9«5 to 10.5 km 

revealed the presence of a cloudless interlayer here. The rapid rise 

in direct solar radiation above 10 km is due to the passage of the 

balloon through semitransparent clouds.  From 7.5 to 17 km, direct 

solar radiation varies from O.96 to I.76 cal/cm2 min, and above this 

the radiation rises slowly to 1.8l cal/cm2 min at the outermost sound- 

ing point.  At 7 km, the minimum global radiation (1.28 cal/cm2 min) 

was replaced first by a rather rapid and then a gradual increase in 

the global radiant flux.  At the outermost sounding, the global radia- 

tion nearly reached 1.57 cal/cm2 min. 

The reflected radiation was minimum (0.17 cal/cm2 min) at 2.5 km. 

The second weakly defined minimum was observed at 16 km, after which 

the reflected radiant flux rose rapidly to O.56 cal/cm2 min at 27 km. 

This rapid rise in reflected radiation was produced by increasing 
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cloudiness under the balloon. 

The maximum values of the short-wave balance (i.l and 1.3 cal/cms 

min) were at 10 and 17 km respectively.  The minima  in the short- 

wave balance were produced either by an increase in the reflected 

radiant flux, for example at heights of 1J>  and 27 km, or by a decrease 

in the downcoming flux in the lower 8-km layer. 

The total radiation flux in the 10 to 19-km layer was almost con- 

stant (0.70 cal/cm2 min).  Above this, it decreases owing to a marked 

increase of the reflected radiation in the 18 to 27-km layer. 

It is apparent that despite the substantial variability with 

height of the direct solar global radiation, the outer troposphere 

and stratosphere are close to radiant equilibrium.  A comparison of 

curves S, Q, and B illustrate how erroneous can be the calculations 

of the radiant thermal influx based on a calculation of only the 

absorbed direct radiation and radiant heat exchange resulting from 

long-wave radiation.  Figure 4 clearly indicates the major role played 

by the absorption of scattered and reflected radiation.  The vertical 

profile of the albedo (Fig. 2) shows the horizontal nonhomogeneity of 

the subjacent surface and mainly of the atmosphere.  The albedo varies 

from 18$ at the earthfs surface up to 35$ at 27 km.  The rather wide 

scatterings of points in these graphs (Figs. 1-4) was caused by the 

rotation and oscillations of the supporting stage, which resulted in 

a declination of the instrument surfaces from the horizontal. 

4.  Figure 5 shows the vertical distributions of the direct solar 

radiant fluxes during the entire probe. 

As expected the most marked variations in the direct solar radia- 

tion occurred in the lower atmosphere.  The radiant flux impinging here 

was substantially attenuated owing to the high concentration of 
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aerosols and the presence of cloudiness.  Above 12 km, variations In 

the direct solar radiant flux were Insignificant.  In the summer 

(curves 1, 3, 5-10 In Fig. 5) In the 12 to 29-km layer, the measure- 

ments of the direct solar radiant flux varied from flight to flight 

(from 1.79 to I.83 cal/cmp min).  Discrepancies In the values of the 

direct solar radiant flux in different flights are explained by the 

change in the solar constant represented as a function of the distance 

between the earth and the sun, by the stratification characteristics 

of the troposphere, and by random measurement errors. 

In the autumn months (November, curve 11) the variation of direct 

solar radiation with height was more uniform than in the summer.  At 

29 km, it reached 1.94 cal/cm2 min.  This increase over that measured 

in the summer results from the decreasing distance between the earth 

and the sun. 

The global radiation, just as the direct solar radiation, under- 

goes the greatest changes in the lower atmosphere (Fig. 6).  Above, 

12 km, the global radiant flux continues to increase up to the sound- 

ing ceiling,  This is partly ii^ to the change in height of the sun 

during flight.  A considerably important part is also played here by 

the "illumination" resulting from the radiation scattering off the 

balloon.  Figure 6 shows clearly two series of curves, one of which 

(curves 3-10) denotes the summer measurements and the second (curves 

2, 11) the fall measurements.  In the fall, the global radiant flux 

is almost one-third that of summer.  Both autumn flights were made in 

November 1961 and 1962. The autumn soundings yielded similar values 

for the global radiant fluxes. 

The vertical profiles of reflected radiation for all 11 flights 

highlight either the horizontal homogeneity or nonhomogeneity of the 
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underlying surface and of the atmosphere (Fig. 7). 

The reflected radiant flux rose sharply when the instrument set 

passed above dense cloud strata (Pig. 7,  curves 6 and 7). 

The maximum reflected radiation was 0.6l cal/cm2 min.  The pres- 

ence of a snow cover during the November 11, 1961 launch resulted in 

a threefold increase in the short-wave radiant flux over that measured 

in the November 2, 1962 flight (no snow cover) in the 10 to 22-km 

layer (curves 2,11).  Near 3 km, the differences in the reflected 

radiant fluxes in these two cases diminished; the difference was only 

0.l6 cal/cm2 min.  This decrease was the result of a decreasing 

albedo when the balloon passed over an unfrozen river (curve 2, Fig. j). 

The diminished reflected radiant flux observed on the 11-th 

flight compared to the flux in the other flights was produced by a 

decrease in the albedo of the moist underlying surface. 

Figure 8 shows the variations of the short-wave balance with 

height.  The values of the short-wave balance differ considerably 

from flight to flight owing either to a rather substantial variation 

of the short-wave radiant flux or the effect of the aerosol layer in 

attenuating the downcoming radiant flux. 

The decrease in the short-wave balance in the autumn below that 

in the summer is explained by the slower arrival of global radiation 

and an increase in the reflected radiant flux. 

The differences in the values of the short-wave balance in the 

fall (Fig. 8) are also associated with differing values of albedo. 

The presence of the snow cover on Nov. 14, 1961 strongly decreased the 

short-wave balance. 

The horizontal nonhomogeneity of the underlying surface also 

affects the distributions of the total radiation balance with respect 
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to height (Pig. 9). 

In the summer the radiation balance differs from day to day by 

0.60 cal/cm2 rain.  In the fall, this difference diminishes, becoming 

approximately 0.05 cal/cm2 min.  We see from Pig. 9 that the radia- 

tion balance markedly changes in the 0 to 12-km layer, whereas above 

this it is either practically constant which characterizes atmospheric 

conditions near to radiation equilibrium, or diminishes slightly owing 

to the increase in the reflected radiant flux from the dense cloud 

cover. 

On cloudy days the values of the total radiation balance in the 

12 to 29-km layer were similar (curves 7,  8, Fig. 9) 

Figure 10 represents the variations of the albedo with height as 

a function of the season.  A horizontal nonhomogeneity of the under- 

lying surface or of the atmosphere appears in the path of the albedo. 

In clear weather the albedo either varies negligibly with height or 

remains constant.  In clear summer weather, the albedo varies from 

flight to flight from 18 to 21$.  On cloudy days, the albedo varies 

markedly throughout the entire sounding layer.  If there are cumulus 

clouds (curves 6, 7) the albedo may increase to 35-40#. 

The albedo increases sharply when a snow cover is present.  For 

example, the flight of Nov. 14, 1961 passed over the surface of a level 

snow cover, while the flight of Nov. 22, 1962 was over the dark moist 

earth surface. This difference strongly affected the albedo values 

In the first flight, the albedo reached 65-70^ and in the second, 

20-22#. 

The following table summarizes the measured values of the radia- 

tion balance and its components in the upper sounding layers. The 

blank spaces in the table refer to cases where no recordings were 
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made due to technical difficulties. An examination of the table shows 

that the direct solar radiant flux at the outermost sounding point 

varies from 1.79 to 1.94-cal/cm* min. The value of the direct solar 

radiant flux reduced to the mean distance between the earth and the 

sun varies for the sounding ceiling from flight to flight between 1.85 

and I.89 cal/cm2 min. 

Radiation Balance and its Components at the Outermost 

Sounding Points 

' Tim la 
Onto 1 far and 

M&3U 
U.  KM s Q «1 R Q-H 11 A. % 

14. XI1961 1   11 48 22 0,64 1.91 0,40 0,24 O.l« 62 
25 V 1962 11 47 i    26 1,83 1,64 i   1,92 0,25 1,39 0,99 15,3 

11 50 i    27 1,83 1,64 1,92 0,25 1,39 0,98 15,5 
30.V [   11 44 26 1,57 1,84 0,14 1,23 0,74 21 

11 47 27 1,57 1.84 0,V* 1,23 0,74 21,3 
11 50 1    28 1,57 1,85 0,35 1,22 0,73 22 

5. VI 11 15 26 1,81 0,24 0,85 
11 18 27 1,81 0,24 0,85 
11 22 28 1,81 0,24 0,85 

12.VI 12 00 25 1,80 1,58 1,81 0,54 1,04 0,74 34 
12 03 26 1,80 1,58 1,81 0,54 1,04 0,74 34 
12 06 27 1,80 1,58 1,81 0,53 1,05 0,75 34 

22.VI 11 42 25 1,81 1, 55 1,77 0,51 1,04 0,66 33 
It 46 26 1,81 1,56 1,78 0,54 1,02 0,65 34 
11 53 27 1,81 1,57 1,80 0,56 1,01 0,64 35 

4.VII 11 46 26 1,81 1,54 1,77 0,68 
11 50 27 1,81 1,54 1,77 0,68 
11 54 28 1,81 1,55 1,78 0,68 
12 00 29 1,81 1,55 1,78 0,68 

7.VII 10 00 26 1,82 1,43 1,79 0,29 1,14 0,60 19 
10 03 27 1,82 1,44 1,80 0,30 1,14 0,60 19 
10 06 28 1,82 1,44 1,80 0,30 1,14 0,60 19 

12.VII   . 9 40 25 1,79 1,34 1,74 0,28 1,06 0,71 20,5 
9 42 26 1,79 1,35 1,74 0,28 1,07 0,71 20,3 
9 45 27 1,79 1,36 1,75 0,29 1,07 0,71 20,2 

22. XI           | 11 39 26 1,92 0,56 1,87 0,13 0,43 21 
11 41 27     ! 1,92 0,56 1,88  1 0,13 0,43 21 
11 43 28 1,925 0,57 1.89 0,13 0,44 21 
11 45   | 29 1,94   i 0,57   | 1,89  | 0,13 | 0,44 j 21 

The sixth column of the table shows the values of the global 

radiant flux calculated from the formula Q. = Q/sin h^, where h- is 

the height of the sun.  With the exception of two flights, this value 

is somewhat less than that of the direct solar radiant flux, varying 

from 1,74 to 1.92 cal/cm2 min. The inequality Q± < S can only be 

explained by systematic errors in the global radiation measurements. 
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The reflected radiant flux R in the summer months varies from 

0.24 to O.36 cal/cm2 mln at the outermost sounding point. 

The sharp Increase in the reflected radiation on the June 12 and 

22, 1962 flights Is due to the presence of cloudiness under the balloon, 

The value of the short-wave balance (column 8) varies from flight 

to flight from 0.24 - 1.39 cal/cm2 mln; the total radiation balance 

(column 9) varies from 0.145 to 0.99 cal/cm2 mln.  In the summer the 

albedo at the outermost sounding point varies between 15 and 35#« 

An analysis of the measurement results shows that the most pro- 

nounced variations In the radiation balance and Its components occur 

in the lower atmosphere where there is a more marked effect of the 

aerosol haze, nonhomogenity of the underlying surface, and cloudiness. 

In the summer this layer extends to a height of 11-12 tan and in the 

fall, to 8-9 tan.  Above these levels, the changes of the radiation 

balance and its components generally remain within the accuracy limits 

of our measurements. 

The authors express their thanks to I. V. Andreev, N. M. 

Yevdokimova and S. V. Maryuskin for their help in launching the instru- 

ments and in processing the obtained data. 
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THE VALUE OP GEOGRAPHIC-GEOLOGICAL METHODS 

OF STUDYING THE MOON 

Yu. A. Khodak, V. V. Kozlov, I. N. Tomson, L. V. Khoroshilov 

The value of geographic-geophysical methods of study- 
ing the moon, especially structural-geomorphological and 
structural and historical-geological methods is substan- 
tiated.  It is proposed that there is a close connection 
between geographic-geological (with regard to material 
comparable to the earth) and astronomical methods in the 
study of the moon.  An evaluation is made of the 
geographic-geological studies already completed in the 
USSR (by A. V. Khabakov and Yu. A. Khodak) and in other 
countries and also of the meteroritic approach to explain- 
ing the development of the relief and structure of the 
moon. 

The origin and history of development of the relief and struc- 

ture of the moon is attracting ever more attention from geologists, 

astronomers and geographers.  An attempt to clarify the structure 

of the visible side of the moon from the geological aspect was 

first undertaken by the Soviet scientist A. V. Khabakov [1-3]* who 

explained the basic formations of the relief of the moon in an age 

sequence of their formation.  A detailed "geomorphological" study 

of the form of the relief of the visible side of the moon was made 

by the American geologist Spurr [4], 
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Geological and tectonic schemes for a number of regions on the 

visible side of the moon have been presented In numerous works by 

BUlov [5-8], Benes [9-13], Hedevarl [14, 15], Mason, Hackman and 

Shoemaker [16-19], Miyamoto [20, 21], Fielder [22-31], Warner [32- 

35], McDonald [36], Cameron and O'Keefe [37]> Compte [38], Mohacsl 

[39]>  Schllchta [40], and other Investigators. 

From the photos made In October 1959 from aboard the Soviet 

space rocket, mankind received Its first Information about the far 

side of the moon [4l, 42]. 

The tectonic scheme of the moon as a whole (near and far sides) 

Is based on analysis of the character and arrangement of mountain- 

ous formations (walled plains, craters, walled-plaln and crater 

chains and ridges), lunar seas, valleys, and clefts by Yu. A. 

Khodak [43], who singled out the most important structural elements, 

dividing them into blocks of a deep rill zone (cf. article in this 

issue) . 

It is very clear that at this stage of investigation when man 

has yet to set foot on the surface of the moon, it is impossible to 

understand the nature and history of the development of the interior, 

crust, and surface of the moon and the processes of its formation 

and development as a planetary body without a "geographic-geological" 

approach.  Astronomers alone, without the participation of geolo- 

gists, are in no position to formulate, not to mention solve, the 

problem of studying the structural elements of the moon.  Close 

cooperation in a joint effort using geographic-geological (taking 

into account material comparable to the earth) and astronomical 

methods must be the start of a qualitatively new stage in the study 

of the moon. 
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At present the use of the results from astronomical observa- 

tions alone is characteristic in the geographic-geological study 

of the moon by geographers and geologists. First the geologist 

must use the most accurate photographs, such as those in the atlas 

edited by Kuiper [44] and the photos and drawings from Wilkinfs 

atlas [45], of the lunar surface to study separate areas and 

regions of the moon and to obtain a complete picture of both the 

near and far sides of the moon,  Of absolute necessity is direct 

visual observation by geologists of the surface of the moon through 

a telescope, with correction of available photos (including those 

taken in the invisible .po-rtiGftflTdf the spectrum) by sketching from 

them the ("most minute" within the limits of telescope resolution) 

details of the form of lunar relief and of the correlations between 

them. 

To make a structural-geographical and a structural-geological 

study it is extremely important to obtain the most accurate topo- 

graphic schematic map possible (schematic maps of the differences 

of elevation between the forms of lunar relief) of the individual 

areas, seas, and regions of the entire visible side of the moon. 

Structural-geomorphological and structural-geological deciphering 

and correction must be carried out jointly by geologists and 

astronomers during visual observation and when compiling topographic 

schematic maps. 

Of great importance are geomorphological studies, using photo- 

graphic methods (including the invisible regions of the spectrum), 

of the character of individual walled plains, large and small 

craters, the nature of clefts, the superposition of walled plains 

and craters of different size, of the form and structure of the 
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steepness, freshness, the interrelationship of clefts with certain 

types of walled plains and craters, the interrelationship of 

various types and systems of clefts and with series of chains, with 

chains, and with types of plains craters, etc. (even within seas) . 

The assembly and classification of these details must be made with 

concomitant topographical corrections. 

Of great importance is an understanding of the structure of 

the moon is the structurai-geomorphological, structural-geological 

deciphering and correcting of data on the physical characteristics 

of the surface and interior of the moon (albedo, color, temperature, 

polarization properties, magnetic, spectroscopic, radioastronomical 

and other kinds of data), on individual characteristics, and on 

complexes of characteristics by revealing the changes in their 

relations in Individual sections and regions, seas, and over the 

entire visible surface of the moon as a whole and changes in these 

relations relative to the character of the topography, geomorphology, 

and structure, cleft networks, individual walled plains and craters 

and their series, etc.  Of great interest is the comparison of 

schematic maps of these constants with topographical and structural- 

geologioal schematics such as the radar topographical map of the 

moon by Pettengill [46]. 

Since geologists cannot presently conduct a direct study of the 

composition of lunar rock (primarily a mineral-petrographic study), 

it is necessary to use data on the physical characteristics of the 

moon for preliminary interpretation of the character and properties 

of the rock making up the surface (and, perhaps, the interior also) 

and for revealing the possible areas of their distribution.  It is 

desirable to correlate these "petrographic" [1, 47, 48], 
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topographical, geomorphologicai, and structural-geological data 

for the various areas and regions, seas, and for the entire visible 

side, as well as for individual walled-plain and crater chains, 

for cleft networks, centers of walled plains, craters, fracture 

zones, etc., (as well as inside of individual seas). 

To reveal the genesis of the polygonal-ring structures (walled 

plains and craters) , it is necessary to make a detailed structural- 

geological study of individual plains and craters of the moon by 

means of visual and other kinds of observations and by comparing 

them with analogous polygonal-ring structures of ancient strata of 

the earth. The basic problems concerned with the moon are as 

follows:  study of the character, form, and relation with clefts or 

cleft networks of separate walled plains and craters, the character 

of the shape of chains of walled plains and craters, of the direc- 

tion of their long axes* along the chains, clefts or network of 

clefts, valleys, mountain ridges, etc., (inside of seas as well); 

the development of the polygonal-ring character of the structure 

of the walled plains and craters, of the structural and other 

relationships of individual plains and craters, of individual paral- 

lel or intersecting networks of walled plains and craters, different 

degrees and stages of superposition, of the proximity of individual 

plains and craters inside and outside of the chains; the development 

of a connection between polygonal-ring structures of walled plains 

and craters, which apparently appear as unique grabenlike forms 

* In this connection we note the works of M. M. Shemyakin [^9], 
Fielder and Jordan [30]. 
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(with polygonal-ring blecke, downthrown along faults) with topo- 

graphical and other data ("petrographic," physical, etc.). Data 

and conclusions on the formation of polygonal-ring structures of 

the moon would be of great value for revealing the concealed 

geological history of analogous structures of the ancient strata of 

the earth. 

On the basis of the studies listed above, structural-geological 

and historical-geological analysis is carried out with separation 

of the main structural elements of "continental" masses, belts of 

belts of sea depressions, individual large blocks of these masses 

and depressions and deep fault zones separating them, with an 

elucidation of the differentiation of the inheritance and super- 

position of their development from ancient times to the present, 

with a revelation of the pattern of development of various regions 

and of general patterns  in the development of the lunar crust 

and of the moon as a planetary body. 

In Soviet literature may be found two attempts at a structural- 

geological and historical-geological analysis of the moon: 

A. V. Khabakov [1-3] for the near side of the moon and Yu. A. 

Khodak [43] for the near and far sides of the moon.  Both studies 

tend toward a general conclusion concerning the block structure 

of the moon and the polygonality of its massive structural elements 

of "continents" and "seas."  The polygonal outlines of lunar seas 

was noted by V. G. Pesenkov [50] and a number of other astronomers. 

Yu. A. Khodak [43] emphasized the important role in the geological 

development of the moon and the formation of its crust of the 

system of deep fault zones which appear to be the most tectonically 

active portions along which occurred the most intense formation of 
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polygonal-ring structures, differentiated uplifting anc" subsiding 

of blocks of various character and dimension, the formation of 

grabens and horsts, rills, valleys, etc. 

The block structure of the lunar crust, which If found on 

Mars [52] as well as on the earth [51], evidences a general regu- 

larity In the development of the solid crust of planets belonging 

to the earth group.  Study of the block structure of the lunar 

crust with the abundance of polygonal-ring structures would be of 

Importance for an interpretation of a number of regularities of 

the earth's crust, especially its lower (older) portions and in 

the water-filled oceanic and marine basins, which to a considerable 

degree are concealed from our observations. 

The above-described approach to the study of the moon, i.e., 

an explanation of the causes for the formation of its relief and 

the geomorphological and structural forms of its crust and 

interior, appears to be diametrically opposed to the so-called 

meteoritic approach which explains the formation of all forms of 

the lunar relief by meteoritic bombardment [53, 5^]«  For the 

present, before a preliminary structural geographic-geological 

study of the moon, we will not enter into a fruitless discussion, 

and will use everything valuable and useful contained in the 

remarks of B. Yu. Levin [53, 5^] and other supporters of the 

meteoritic hypothysis concerning the role of intensive cosmic bom- 

bardments of the already formed (as a planetary body) moon.  We 

will note only briefly our main comments concerning the "meteoritic 

hypothysis." 

From the principles of B. Yu. Levin [53, 51*] it follows that 

after the formation of the moon as a planetary body, when the moon, 
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as all planets of the earth group, absorbed practically all of the 

solid objects present In the region of Its orbit, that "meteoritic" 

relief of the moon began to form, which, we now see In form which 

took hundreds of millions, if not billions of (up to 4 billions) of 

years to solidify. According to Levin, the intensive meteoritic 

bombardment of the moon which formed the relief now visible to us, 

continued even after the disappearance of that cluster of particles 

from which the moon must have been formed. 

The supporters of the "meteoritic" hypothesis, without analyz- 

ing the accumulated material concerning the regular arA  inherited 

distribution of the main forms of the relief and structural 

elements of the moon, deny all that is now being done by many 

specialist (geologists, astronomers, geographers, geophysicists) 

of the most diverse opinions in the USSR, Czechoslovakia, Hungary, 

USA, England, Japan, and other countries on the study of the 

problem of the formation of the lunar relief. 

Such a one-sided approach to an explanation of the development 

of the relief and structure of the moon might lead this problem to 

an impasse and cannot methodically further its solution.  Only con- 

structing the various schematic maps proposed above on the same 

data and by analyzing and examining them, is it possible to approach 

a solution of the questions posed. 

One of the important and interesting aspects of the proposed 

problems is the explanation of the effect of the rotational and 

orbital motion of the moon on the formation of its structures, 

(of course, the relief is their reflection in a surface sejtion) 

and systems of deep fault zones during its development.  Similar 

unsystematic studies concerning the earth have already been 
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described [55-58]. 

In conclusion it must be emphasized that without enlisting 

geologists it would be impossible to solve the problem of the 

origin of the relief and structure of the moon, their regular 

distribution, or to draw up topographical, geographical, geological 

(selenological) schematics and maps corresponding to the present 

level of science. 

The authors express gratitude to Doctor of Physical-Mathemati- 

cal Sciences A. G. Masevich for his assistance in the study. 
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MAIN STRUCTURAL ELEMENTS OP THE MOON 

Yu. A. Khodak 

A description is given of the main structural 
elements of the near and far sides of the moon and 
a series of deep-fracture zones in four directions 
which segment the lunar crust into huge blocks is 
noted. 

In connection with the growing study of outer space, Including 

the region of the moon, it has become necessary to elicit the struc- 

tural elements of the moon. 

In i960 the compilation of geological moon maps began simultani- 

ously both in the USSR and USA [1].  The U,S. Geological Survey, under 

the direction of R. J. Hackman, compiled a generalized photogeologlcal 

map of the visible side of the moon (l:3> 800, 000), on which are 

distinguished three differently developed complexes of lunar rock, 

and a preliminary photogeologlcal map of the region of the crater 

Copernicus (1:1, 000, 000^ on which are distinguished five differently 

developed complexes of lunar rock. This map also shows anticlines, 

synclines and monoclines, and areas of eruption of various rocks 

[2-5.1. 

On the basis of an analysis cf the nature and distribution of 

mountain formations (cirques, craters, cirque and crater chains and 

ridges), marla, clefts and rills, the author has attempted in this 
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paper to note the moat Important structural elements of the moon as 

a whole, both visible and far sides. For this purpose the following 

information concerning the relief of the moon was used: A. V, 

Khabakov's map of the relief formations of the visible portion of the 

moon [6], the latest atlases of photos and drawings of the visible 

side of the moon (the atlas of photographs edited by Kuiper [7] and 

Wilkin»s atlas of photos and drawings [8]), a map of the reverse 

side of the moon compiled from photos obtained from the Soviet 

automatic interplanetary station in 1959  [9-11], as well a3 other 

material. 

From what we can see of the moon, there are three major struc- 

tural elements (Fig. l): 1) a meriaionaliy elongated ancient massif 

embracing the southern portion of the reverse side (more than half) 

and the southern part of the visible side;  2) the Great Belt of deep 

depressions (seas) within the massif and extending as a semi-ring 

convex northward from Mare Australe to Mare Humorum; J>)   a meridional 

belt of deep depressions on the reverse side of the moon at the edge 

of the yet-unphotographed region of the moon. The Junctions of these 

elements are linear, angular, and similar to the deep fractures of 

the earth as represented by  A. V. Peyve [12, 13],  V. M. Sinitsyn [lk]t 

and other geologists [15, 16]. For example, the Junction zone of the 

ancient massif with the Great Beit of large lunar depressions (seas) 

extends westward along a submeridional angular fracture from Mare 

Humboldtianum to the Joliot-Curie Montes, the western edge of Mare 

Marginis and Mare Smythii, the Skodowska-Curie Montes, the western 

edge of Mare Australe. Another somewhat more easterly zone of the 

meridional Jointing of the western segment of the Great Belt of 

depressions extends along an angular fracture over the eastern edge of 

Mare Nectaris and Mare Tranquillitatus and northward to Mare Frigoris. 
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In the eastern segments of the Great Belt of lunar depressions, 

the Junction zone with the ancient massif extends along a sharply 

defined meridional cirque chain Llcetus-Walter-Ptolemeaus. This 

fracture zone Is traced farther north along the Caucusus Mts., delimit- 

ing Mare Serenltatls and Mare Imbrlum. 

Within the limits of the chief structural elements noted, which 

were, In our opinion, formed in the ancient period of development 

(ca. 300 million years ago), it is possible to note structural elements 

of subsequent periods which appear as blocks delimited by a system of 

global, deep fractures of four directions, viz., meridional, sub- 

meridional, latitudinal, and sublatitudinal, traced for thousands 

of kilometers. The fracture zones bound lunar seas whose polygonal 

outlines were noted by B. G. Pesenkov [17]. 

The meridional and submeridional fractures separate the massifs 

from the belts of large depressions and extend coincident with the 

main directions of mountainous structures and internal uplifts within 

the depressions. Latitudinal and sublatitudinal fractures separate 

the chief blocks of the massif and zones of large depressions at the 

intersection of the course of mountainous structures and uplifts. 

The oldest systems of fractures are comprised of the following zones 

(Fig. 2a):  a) meridional and submeridional fracture zones: 1) central 

zone, from the region of the southern zone approximately from the 

Zach cirque through the cirque chain of Llcetus-Walter-Ptolemeaus, 

the region of the Fresnel promlnance and farther to the north pole; 

2) western zone along the estern boundary of Mare Nectaris and Mare 

Tranquillitatus, the western boundary of Mare Serenitati3, and north- 

ward to Mare Prigoris; J>)   eastern zone along the eastern margin of 

Oceanus Procellarum and Mare Imbrlum; 4) on the reverse side of the 
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Figo 2. Diagrams of main structural elements: 

a) ancient and Ptolemaic periods of the visible side 
of the moon:  la) ancient massif, b) boundary of 
massif; 2) depressions; J>)   deep fractures (direction 
of subsidence of blocks given); 4) course of ancient 
mountainous structures and upheavals; 5) chief 
cirques and craters of the Ptolemaic period; 6) 
mountainous structures and zones of major upheavals 
of the Ptolemaic period; 7) direction of stress. 
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Fig.  2  (continued) 
b) Copernican and Recent periods of the visible side 
of the moon: la) ancient massif; b) boundary of massif; 
2) depressions; 3) deep fractures (direction of 
subsidence of blocks given).; 4) course of ancient 
mountainous structures and upheavals; 5) major cirques 
and craters of the Copernican and Recent periods; 
6) Bountaniousstructures and zones of major up- 
heavals in the Copernican and Hecent periods; 7) 
direction of stress. 
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ss. a 
Fig. 2 (concluded) 

c) reverse side of the moon:  la) ancient massif, 
b) boundary of massif; 2) depressions; 3) deep 
fractures (direction of subsidence of blocks given); 
4) course of mountainous structures and upheavals; 
5) major cirques and craters, a) young; 6) major 
mountainous structures and zones of upheaval; 
7) direction of stress. 
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moon are traced two zones of meridional and submeridional fractures:' 

a) eastern boundary of Mare Bomniorum and the seas located north of 

it, and b) in the middle part of the massif, from the mountainous 

structures located near Giordano Bruno along the edge of the Sovietici 

Montes and farther to the western edge of Mare Australe. 

b) Latitudinal and sublatitudinal fracture zones: 1) southern 

zone along the sourthern limit of Mare Smythii, Mare Fecunditatus, 

and Mare Nectaris to the sourthern edge of Mare Nubium and Mare 

Humorum, delimiting a large block of massif Jutting out northward as 

a wedge; 2) northern zone, along the northern edge of Mare Crisium 

and Mare Serenitatis, one branch of this fracture zone is traced 

eastward as far as the region of Flammarion, another branch of this 

deviates northward and extends along the southern limit of Mare 

Serenitatis and Mare Imbrium, separating them from the northern, less 

mountainous part of the massif.  On the reverse 3ide of the moon the 

northern sublatitudinal fracture zone terminates along the northern 

border of Mare Smythii and Mare Fecunditatis, intersects the Sovietici 

Mts. [11] at their angular bend, and is traced to the region of 

Mendeleev (Fig. 2c) . 

The most elevated portion of the massifs in the ancient period, 

it seemed to us, is its northern projection on the visible side of 

the moon:  the region around Mare Vaporum, separated from the core 

of the massif by a northern sublatitudinal fracture. The portion of 

the massif on the reverse side of the moon was stable, especially its 

central areas which abut the Sovietici Mts. 

During the Ptolemaic period (about 100-150 million years ago as 

defined by Khabakov [6, 18]) the moon in many respects inherited its 

early structural plan. The most active zone in this development 
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period was the central meridional fracture zone of the southern 

hemisphere, in which emerged the vast meridional mountain chain 

consisting of the Licetus-Ptolemaeus chain. The mobility of the 

zone diminishes north of Ptolemaeus where it may be traced along 

gradual, fault-block fractures between Mare Serenitatis and Mare 

Imbrium. Less mobile meridional and submeridional zones are distin- 

guished along the border of Mare Nectaris and Mare Tranqulllitatis, 

onward to the region of the western limit of Mare Frigorls and also 

within the Great Belt of depressions:  1) along the western border of 

Mare Nectaris and Mare Tranquillitatis and north to Mare Frigorls; 

2) in the eastern portion of Oceanus Procellarum and Mare Imbrium, 

from the region of the D'örfel Mts. in the south to the region of 

Plato in the north. 

The reverse side of the moon during the Ptolemaic period was 

relatively stable. In all probability the most mobile zones were 

the meridional and submeridional junction zones of the massif with 

the zones of large depressions situated further west and east, as 

well as the middle portion of the massif separated from the north 

pole by the Giodano Bruno Mts., and Sovietici Mts. into two large- 

scale block segments, western and eastern. 

The activities of the zones of latitudinal and sublatitudinal 

directions of the Ptolemaic period are rather weakly detected. 

During the Copernican and Recent periods (according to Khabakov 

[6, 18]) further differentiation of the structural elements took 

place along the zones of deep fractures which occurred in preceding 

periods, breaking them up into huge blocks (Fig. 2b). The linked 

system of zones of meridional and sublatitudinal (NW) directions, 

which may be traced from the Leibnitz Mts. in the south to the large 
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craters of Tycho, Bullialdus, and Copernicus and northwestward to 

the crater Aristoteles, which separates the most subsided northern 

portion of Oceanus Procellarum and Mare Imbrium from the uplifted 

massif of the southern hemisphere and near-equatorial region, appears 

to be the most mobile [19-25]. Less uplifted meridional zones are 

noted:  l) along the ancient central meridional zone, 2) along the 

border of Mare Australe, Mare Fecunditatis and Mare Crisium and north- 

ward to Mare Frigoris, where the zone Joins with the most mobile belt 

of the Leibnitz Mts. and the creaters Copernicus and Aristoteles; 

both of these zones girdle the most uplifted section of the moon,3) 

along the northeast border of Mare Imbrium, the east border of Oceanus 

Procellaruity and southward along the Sirsalis Rille in the region of 

the crater BIrgius. 

On the reverse side of the moon the most mobile zone is the 

meridional fracture zone which is traced in the northern portion of 

the massif along the Giordano Bruno Mts., the Sovietici Mts. and 

farther to the mountains close to the edge of Mare Australe.  It is 

possible to divide the sublatitudinal zone of fractures: l) from the 

northern edge of Mare Serenitatis to the Apennines and northward to 

the mountains of Aristarchus:  2) from the mountains of Giordano 

Bruno and Joliot-Curie to the reverse side of the moon along the north 

border of Mare Crisius, Mare Tranquillitatis, Mare Nubium (bisecting 

the massif) to the junction of Mare Humorum, Oceanus Procellarum, 

and the southwestern portion of the massif in the region of Letronne, 

3) in addition, two extensive fracture zones overlapping at the point 

of the angular bend in the Sovietici Montes are noted on the reverse 

side of the moon. The southwestern fracture extends from the angular 

bend in the Sovietici Montes (more northeasterly it proceeds along 
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this ridge) to the northern border of Mare Somnlorum; the northwestern 

fracture extends from the northern border of Mare Australe and 

Sklodowska-Curie to the northeastern border of Mare Mosquense. 

Prom what has been stated, one may conclude a block structure of 

the moon, and an Inheritance of development from the chief structural 

elements and from their differential movements along the zones of 

deep fractures from the ancient period to the Recent. The block 

structure of the lunar crust, which exists also on the earth [13]  and 

on Mars [26], evidences the general pattern of development of the 

solid crust of these planets, which make it possible to continue a 

planetological Investigation in a comparative historical aspect. 

The author expresses his thanks to Doctor of Physical-Mathemati- 

cal Sciences, A. G. Masevich for assistance in organizing the study. 
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CHRONICLE 

DISCUSSION OF SPACE RESEARCH PROBLEMS 

AT THE XIV GENERAL ASSEMBLY OF THE URSI 

The XIV General Assembly of the International Scientific Radio 

Union (URSl) was held in Tokyo from Sept. 9 through Sept. 20, 1963. 

Participating in the conferences were delegates from 26 countries 

who are carrying on investigations in various fields of radio 

engineering and radiophysics.  On the whole, over 1000 scientists 

(approximately 600 Japanese delegates) participated in the proceedings» 

V. I. Siforov headed a 21 man delegation from the Soviet Academy of 

Sciences. 

URSI is made up of seven commissions whose work encompasses all 

scientific investigations in the field of radio.  Three commissions 

are directly associated with space research (Commission III deals 

with the ionosphere, IV with the magnetosphere, and V with radio- 

astronomy); a Committee of Space Research coordinates the activity 

pertaining to space investigation performed by URSI with the works 

in this field carried out by other scientific unions and organizations^ 

particularly by COSPAR. 

An appreciable place in the work of the XIV General Assembly 

of the URSI was devoted to problems involving space research: 
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ionospheric investigation by satellites and rockets, radiation 

investigations of planets and planetary atmospheres by their milli- 

metrlc and infracted radiations, and the use of radio-communication 

satellite systems, etc. 

This article aims only at a preliminary and partial presentation 

of the proceedings of the assembly which dealt with space research. 

The most comprehensive information is given for Commission III 

(ionospheric investigation) since this author participated mainly 

in the work of this commission. 

The day following the opening of the General Assembly there 

was a joint gathering of commissions, i.e., in essence a plenary 

gathering. 

The first paper read was, "ionospheric Investigation By Means 

Of Rockets And Satellites." This paper, the work of the American 

delegate Bourdeau, the Canadian, Chapman, and the Japanese, 

K. Mayeda, was divided into the three following categories: 

1) results of scientific investigations using rocket probes; 

2) results of ionospheric investigations based on satellite- 

gathered data; 

5) investigation procedures and rocket and satellite to be used. 

This report is the most comprehensive in its field to date. 

In brief, it considers the following wide range of problems: 

satellites and rocket investigations of ionospheric structure 

including the D and E regions both in the presence and absence of 

disturbances; solar radiation intensity in the lower ionosphere; 

electron and ion concentration measurements above the main ionization 

maximum; measurements of the electron temperature; determination of 
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ion composition, and upper ionospheric radiosoundings (above the 

ionization maximum). 

Under the first category dealing with rocket and satellite 

ionospheric measurements, data was presented on instruments to be 

used for satellite ionospheric radiosoundings, data on Langmuir 

probes, reasonance probes, and impedance probes. Data were also 

presented on the Doppler shift, the Farraday effect, and rocket and 

satellite findings. The article1s conclusion summarizes the work 

and investigations to be carried out by research rockets* and 

satellites in the International Year of the Quiet Sun (I9b4-i965). 

A shortcoming of the report is that the authors limit their 

considerations only to 1000-1500 km and, so to speak, disregard the 

higher ionized regions of the ionosphere, the groundlessness of 

which was shown by the Soviet investigations with ".unar rockets and 

"Mars-I." 

The next paper read, dealing with the means of investigating 

millimeter and infrared radiation waves, was the work of two 

Americans, Weaver, director of the Radioastronomy Laboratory at 

Berkeley, and Silver, director of the Space Research Laboratory 

also at Berkeley. The paper dealt with solving the problems of the 

structure of the atmosphere and surfaces of planets by studying 

their radiation spectra in specific frequency ranges. The authors 

showed that polarized radiation could be used for determining the 

dielectric constant of both the surface layer and certain other 

details of surface structure. 

In this article, the authors considered the problems of radia- 

tion sources in millimeter and infrared frequency ranges of waves 

observed in space (solar radiation, planet radiation, nonthermal 
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radiation, and atmospheric radiation ), of receiving the radiation of 

planets in these frequency ranges (planet temperature, problems of 

antennas and receivers), and of observation methods tobe used in 

studying the planets. This article also summarized the work dealing 

with the moon, Venus, Jupiter, and also considers briefly the 

problems involved in the experiemtnal instruments mounted on 

balloons and space rockets, and those associated with radiometers 

and receivers. 

The report of 0!Neil, the Bell Laboratory (USA) representative, 

was titled "Space Communication Systems — Results and Problems." 

After briefly outlining the history of American communication 

satellites ("Score" -1958, "Courier" - i960, "Echo" I - i960, 

"Telstar" - I962, "Relay" - I962), the author went into greater 

detail on the Telstar satellite on which he had worked.  He 

presented data on satellite temperature, its rotational velocity 

change, its rotational axis, and the effect of the radiation belts 

on its solar-operated battery output.  O'Neil pointed out that the 

causes of the satellite's operation failure were apparently the 

ionization effects falling onto the transistor surfaces of the 

instrument decoding the incoming signal.  To avoid them in the 

future, these effects were simulated in the laboratory.  (A more 

detailed account of this is given in "Bell System Technology 

Journal," Vol. 42, January, I965 .) The author also gave a brief 

summary of the ground stations operating in conjunction with the 

American communication satellites, and pointed out that large 

antenna stations are currently being constructed in West Germany and 

Japan (a number of the Soviet delegates had visited the Japanese 

station near Takahasi on Sept. 15, 1963). The author also presented 
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information on the communication satellite ground station at Andover 

(Maine, USA). This station has a 175-foot horn antenna; the mobile 

horn mounting stand weighed 370 tons; the antenna gain at 6390 Mc 

was 61 db, at 4179, 58 db. A 210-ft diameter and 165-ft high shell 

protected the antenna, thus making it possible to orient the antenna 

under all weather conditions.  The over-all temperature of the 

receiver system was 50° K at a 5° angle of elevation, and 32 K at 

the zenith (in dry weather).  When it rains, a temperature of 80 to 

100 K is observed, and under unusual conditions temperatures from , 

130 to 150° K have been recorded (this temperature increase is 

mostly due to the wet shell).  The report stressed the prime import- 

ance of accuracy in satellite ground tracking stations.  The author 

pointed out that even an error in antenna orientation of several 

hundredths of a degree could pronouncedly decrease the attainable 

signal-to-noise ratio. 

The article then considers the problems associated with the 

powers emitted from the satellites and the use of frequency modula- 

tions.  For the further development of efficiently operating 

satellite communication systems, the authors contended that there 

must be progress in the following areas: 

1) satellites should be designed which can operate continuously 

for longer periods and which can generate greater power than the 

previous satellites; 

2) the average satellite service life should be increased by 

several years while the cost of setting it in, or if need be, removing 

it from orbit should be minimized; 

3) problems involving the delay of signals and the suppression 

of reflected signals should play a much greater role than they do 
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In ground systems. Much greater attention should be given to the 

major role (especially In low orbiting satellites) played by doppler 

shifts; 

4) the problems of simultaneous signal transmission between 

several different pairs of ground stations by means of a signal 

satellite should be the object of greater study. The methods for 

both achieving and determining the feasibility of creating such 

systems should be thoroughly analyzed. 

In conclusion the authors cite the Importance of Increasing 

the power generated by the satellite, and In this connection, 

increasing the volume of information relayed by the satellite. 

Therefore, the use of directional antennas on the satellite and the 

appropriate orientation are of major importance.  The authors dis- 

cussed these problems briefly.  On the question of the reliable 

operation of the instruments, the authors pointed out that the causes 

of the malfunctioning in the "Relay I", the "Syncom I", and "Telstar 

II" which was (launched May J,   1963,  and stopped operating June 16, 

I963) had not yet been determined.  He noted however that the 

experimental satellites were much more intricate than those which 

will be used for operation and accordingly the latter will be much 

more reliable. 

In the last article read at the plenary session by Golomb (of 

the California Jet Propulsion Laboratory (USA)), the author presented 

different approaches to the problem of coding the information trans- 

mitted from outer space (for example from Mars).  One such approach 

is to use a code where each information unit is protected in the 

best possible manner from distortions coming from the noise of the 

transmission canal; another possible approach is to evaluate the 
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information from the standpoint of its importance, and then to 

furnish the best possible conditions for transmission of the most 

pertinent information.  In pointing out the fact that in experiments 

conducted in space rockets it was more advantageous to process 

complicated information on earth rather than process the experimental 

data on board the spaceship, the author indicated possibilites where 

the re/erse was true (for example, if the distribution of the 

magnitudes to be measured are known as priori). 

The work of the Ionospheric Commission was under the directorship 

of its recently elected representativeRatcliffe (England), one of 

the foremost specialists in the field of the physics of the iono- 

sphere and the ionospheric distribution of radio waves.  Participating 

in this conference were the leading experts in this area from many 

different countries:  from the USA, Bourdeau, Bowhill, Boyles, Bauer, 

Dessler, F. Johnson, Garriott, Carpenter, Pfister, Friedman, 

Hinteregger, Evans, Nisbet, Farley, Schmerling; from England, Baynon; 

from Canada, Chapman; from France, Vassy; from East Germany, Lauter; 

from West Germany, Dimminger; from Italy, Pancci; and also the 

president of the International Association of Geomagnetism and 

Aeronomy, Nicolet, and the former president of URSI, Berkner. 

An extremely large group of Japanese research scientists worked 

on Commission III (K. Mayeda, Aono, Obayashi, Takayama). This group 

made the work of Commission III one of the most representative and 

serious discussions on the structure of the ionosphere and the 

ionospheric distribution of radio waves held in recent years. 

The characteristic feature of the work of Commission III was 

the major importance granted to the discussion on the methods of 

rocket and artificial satellite study of the Ionosphere. Two meetings 
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of the Commission were devoted to the themes, "The Ionososphere and 

Space Research11 and rtThe Electron Profile of the Ionosphere." In 

addition to these, Commission III sessions discussed the following 

problems: Ionizing radiation and atmospheric compositions, wave- 

guide propagation of radio waves In the Ionosphere and troposphere 

(jointly with Commlssslons II and IV), questions associated with the 

International Year of the Quiet Sun, and problems of the nonhomo- 

geneous structure of the Ionosphere. 

The work of Commission III began with a summary of the most 

Important results obtained in ionospheric research since the preceding 

meeting of URSI (I96O-I965). This summary was given by the commission 

representative Ratcliffe. 

Ratcllffe noted the major successes achieved in the study of the 

D layer, the electron distribution from 50 to 90 km, and the 

behavior of the D layer in the polar regions and of the ionizing 

agents creating the D layer. 

According to the author, no significant results were obtained 

in studying the normal E layer, whereas certain valuable data were 

obtained on the sporadic E layer; in particular, a number of independ- 

ent rocket measurements showed the reality of the existence of 

layers with greater than 1 to 2-km thick electron concentrations. 

The upper ionosphere above the maximum layer was studied by 

the following methods 1 

1) by ionospheric radio soundings "from above" by means of 

various ionospheric sounding stations mounted on satellites; 

b) by incoherent scattering.  In this method the energy of a 

powerful, upward incoherently scattered radiation is used for 

determining the electron concentrations at different heights; 
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c) by direct study of the electron concentration and the Ion 

masses by using probes installed In artificial earth satellites« 

Naturally, a certain fraction pt  the large volume of the latest 

information gathered in these probes requires additional corrections. 

The author cited as two of the most important results gathered 

in ionospheric research, the detection of layers where helium and 

hydrogen were the predominant elements and the establishment that 

these boundaries change with time. The effective temperature of the 

ionosopheric electrons T can apparently be higher than the tempera-. 

ture of the ions T* (especially during the day); this relationship 

can reach two. The factors causing this are yet to be explained. 

The data for determining the total electron concentration by 

means of observing radio signal "beacons" mounted on the satellites, 

and for determining the Faraday effect in the radiolocation of the 

moon indicate that during ionospheric storms, there is a decrease 

not only in the electron content in the "lower" ionosphere (a fact 

long known), but also a decrease in the electron content above the 

F layer. The observation of whistlers shows that a similar decrease 

in electrons occurs at heights of the order of one to two earth 

radii. 

The causes of ionospheric heating continue to remain unknown. 

Ultraviolet radiation, corpuscular solar fluxes, Joule heating, and 

(during storms) hydromagnetic waves are being considered as possible 

causes. 

Attempts to formulate a theory which would describe the behavior 

of antennas in the ionosphere operating on a frequency close to 

the plasma frequency near the antenna have had only partial successes. 

Experiments with probes supplied by a voltage with an alternating 
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frequency, carried out In laboratory plasma and In the Ionosphere, 

showed that a rectified current across the probe attains a maximum 

at a voltage frequency close to the plasma frequency. Attempts to 

explain this phenomenon have not been entirely successful. 

The recently developed theory of Incoherent scattering of radio 

waves in the Ionosphere indicates that the study of the spectrum 

shape of the echo-signal broadened as a result of the Doppler effect 

enables us to determine the ratio of the electron to ion temperature. 

The author also showed that in any case a detailed study of the 

spectrum should result in determining the ion masses. 

In Ratcliffe1 s summary, as well as in Bourdeaufs, Chapman's, 

and Mayeda's reports, insufficient attention was given to the upper 

ionosphere (heights greater than approximately 1500 km) and to the 

question of its upper boundary. 

Friedman's report was concerned with the role played by the 

different region of the solar radiation spectrum in the formation 

of the ionosphere at different heights. His report used measurement 

data of solar radiation obtained by American satellites and rockets. 

Friedman's major conclusions may be summarized as follows. 

Ionospheric behavior depends on the solar radiation flux in 

the X-ray and ultraviolet frequency ranges.  In each ionospheric 

region the specific length of wavelengths play the major role. 

Under quiet solar conditions Lyman-a (1216 A) is the chief ionization 

source of the D layer. When the sun is active its increase in 

ionic activity is proportional to the X-radiation from i to 10 A. 

At heights greater than the E layer (100-150 km), ionization is 

created by X-radiation in the wide range from 10 to 100 A; the 

Iyman-ß (1025.7 A) radiation can define the shape of the base of 

-237- 



the E region, whereas C III (977 A) and the Iyman continuum 

(9iO-800 A) are the most important ionization sources in the higher 

areas of the E region. The major contribution in the ionization of 

the P layer is made by the ultraviolet radiation in the range from 

i75 to 400 A, which includes the resonance line of He II (J04 A). 

The report of the Belgian, Nicolet, was devoted to a theoretical 

substantiation of the chemical composition of the ionosphere, by 

considering the different variants of elementary processes which 

yield results close to those observed in rockets and satellites by 

ion mass-spectroscopes. 

Chapman1s (Canada) report dealt with a summary of the results 

gathered by the "Alouette" satellite developed and manufactured in 

Canada and launched Sept. 29, 1962 In the USA.  The satellite is an 

ionospheric station completing a near circular orbit at approximately 

1000 km inclined to the equator at 80.5 . The orbital plane rotated 

relative to the earth at a rate of approximately 2° per day. The 

measurement results were transmitted by a telemetric system. 

The basic characteristics of the station are as follows: the 

frequency varies from 0.5 to 11.5 Mc; the rate of frequency change 

is 1 Mc/sec; there are three frequency swings per minute; the 

duration of the pulse lasts 100 u.sec; the recurrent frequency is 

67 cps, and the pulse power is 10 w.  The antenna is made up of two 

adjacent dipoles, one 150 ft long (the total sweep) and other, 75 ft 

long. 

The satellites are guided by transmitting stations in North and 

South America, Europe and Australia. 

The results of the measurements made by the satellite are of 

major value. Large volumes of data were obtained on the global 
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nature of the upper atmosphere; Included in these data were facts on 

the anomalous concentration of high electron concentrations within 

the magnetic equator and facts on diurnal variations. Chapman 

Indicated that ionospheric stations Installed on satellites are 

especially valuable for representing ground and space data measure- 

ments as functions of latitude and height. To explain certain 

results obtained by the "Alouette" satellite, it is necessary to 

assume that the energy imparted to the ionosphere by the charged 

particle fluxes is greater than we had considered earlier, especially 

in high latitudes. 

In the future, ionospheric satellite radiosoundings should be 

combined with measurements of the ion and electron temperatures and 

energy particle fluxes. The satellite-gathered ionograms will be 

transmitted to World Data Collection Center A (in the USA), from 

where all stations desiring either to process the ionograms independ- 

ently or to clarify some detail will be able to obtain them. 

Gringauz's report (USSR) summarized the results of certain 

1961-62 experiments which were part of the Soviet research program 

of satellite and rocket investigations of the upper atmosphere and 

outer space. 

The report primarily presented ionospheric data gathered by 

Soviet geophysical rockets.  These experiments were used, first, for 

determining the electron concentration from measurements of the radio 

wave scattering from rockets and, second, for determining the 

electron concentration from the Faraday effect. A comparison of 

these measurements (1962-63) with analogous measurements made in 

1958-59 indicated that the height distribution of the electrons 

above the major ionization maximum varies with a decrease in solar 
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activity (the electron concentration drop-off with height is 

accelerated). A comparison between the on-board measured data and 

simultaneous ground measurements made by the ionospheric station 

at launch time showed that, by using the ground ionospheric station 

measured data it is possible to determine with sufficient accuracy 

the true distribution of electron concentration below the major 

ionizatlon maxium (using the method of solving the integral equation 

with the Shinn-Kelso coefficients). 

The second group of ionosphere experiments elucidated in the 

works of Gdalevich, Imyanitov, and Schwarts dealt with measuring 

the electrical fields by using electrostatic fluxmeters adapted to 

operate in plasma. These experiments demcstrated the existence of 

outer electrical fields in the ionosphere during the measurements. 

These fields at 3OO-5OO km were estimated to be of the order of 10~3 

w/cm. 

The report then gave certain results of the ion trap experiments 

conducted April, I962 with the "Kosmos-2" satellite.  A comparison 

of these results with experimental data gathered b^ the ion traps 

on the third Soviet artificial earth satellite (May, I962) showed 

that with a decrease in solar activity not only does the height 

distribution of the charged particles vary substantially, but even 

the chemical composition of the ions varies markedly.  The region 

where atomic oxygen predominates, which in 1958 extended above 1000 km, 

In 1962 terminated at heights of 6OO-7OO km, and above this a region 

began where helium ions predominate.  These results are in good 

agreement with Soviet geophysical rocket experiemtnal data, and 

apprently are the result of the over-all cooling of the upper 

atmosphere as minimum solar activity is approached. 
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The article concludes with the results of the measurements 

pertaining to that part of the atmosphere Investigated with the 

"Mars-1" ion traps in 1962. These results confirm that the earth1 s 

ionized gaseous envelop extends to heights of the order of 20,000 km. 

The "Mars-i" experiments were the first to successfully observe at 

these high geomagnetic latitudes the intersection of the earth's 

gaseous envelop with the outermost charged particle belt composed 

of comparatively low-energy electrons, 

Ratcllffe, chairman of Commission III, noted that certain 

important and interesting results were presented in the Soviet 

report. He especially emphasized the experiments on the direct 

detection of the ionospheric electrical fields, having stressed 

the fundamental importance of the problems of ionospheric electrical 

fields for a thorough comprehension of a number of processes, 

particularly the motion of ionospheric inhomogeneities. 

The American scientists, Carpenter, reported at the Joint 

session of Commissions III and IV devoted to the height distribution 

of ionospheric electron concentrations. He outlined a method for 

determining the electron concentration distribution in the equatorial 

regions by observing whistlers.  Comparison of several different 

investigations indicated good agreement with respect to the shape of 

the distributions. The distribution obtained coincides with the 

experimental data on the incoherent radio wave scattering research 

made up to heights of 500 km in the neighborhood of the geomagnetic 

equator.  In the electron concentration distribution curve for the 

equatorial region, Carpenter noted a region where the curve bent, 

which he termed a "knee." This "knee" is distinguished by a rapid 

electron concentration drop-off n (sixfold and more). Carpenter 
e 
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considers that this MkneeM is a constant phenomenon and its height 

does not vary with magnetic activity. Carpenter noted that his 

results pertaining to the Mknee" in the curve agree with the results 

made with the charged particle traps on the Soviet "Lunar-2" station. 

In considering this report we must note that the agreement 

between Carpenter's results pertaining to the region of rapid drop- 

off n at heights of 3-4 Earth radii and the Soviet (i959) results 

had heretofore not been confirmed by any other independent method 

or by any other scientists. 

In his notes on Carpenter's report, Gringauz indicated that 

actually the effect of a relatively rapid drop-off of the charged 

particle concentration above 15,000 km was first observed not on 

the second Soviet rocket, as stated in the report, but on the first 

lunar rocket.  To confirm this, Gringauz exhibited a graph published 

In i960. 

The reports of the two American, Bauer and Jackson, were of 

great Interest.  Their reports cited results of near simultaneous 

measurements of the high-altitutde distribution of electrons and 

Ions in the outer ionosphere made directly over Wallops Island in 

the USA July 2, I963.  The electron concentration distribution was 

measured by an ionospheric radiosounding from an "Alouette" satellite 

and by measuring incoherent radio wave scattering, using a device 

developed by the Lincoln Laboratories (designed by Evans) and by 

scattering measurements of coherent signals emitted by a two- 

frequency transmitter installed on the vertically launched "NASA" 

rocket.  This rocket contained an ion trap for measuring the ion 

concentration. 

All four measurements gave practically similar results (less 
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than 100 divergence)« 

Boyle In his report devoted to the problems of Ionospheric 

Investigation by the Incoherent scattering method pointed out that 

the rapid development In the use of Incoherent scattering methods 

for measuring the Ionospheric electron concentration and temperature 

profiles entails a number of difficulties.  Perhaps the only possible 

way to obtain the electron profile of the ionosphere will be to 

measure the Faraday effect of the polarization plane of radio waves 

scattered at different heights. 

A number of reports were devoted to questions of the Inhomogeneous 

structure of the ionosphere. 

Parley1s (USA) theoretical reports, and Teuda1s (Japan) dealt 

with the mechanism causing the formation of inhomegeneities. 

Getmantsev and Densisov (USSR) presented the following results 

of the investigation of small-scale and large-scale ionospheric 

inhomogeneities by radioastronomy, vertical sounding, and artificial 

earth satellite methods: 

1. Data on small-scale inhomogeneities were gathered by 

observing the radiation fluctuations of discrete sources. 

2. Data on the size and movement of ionospheric inhomogeneitles 

were obtained by spatially diverse reception of reflected ionospheric 

signals. 

3. Data on the height and scope of the Inhomogeneities were 

obtained by using space diverse reception of artificial earth 

satellite (AES) signals. 

4. Investigation results of the large-scale inhomogeneities 

in the F layer were obtained by measuring the phase difference of 

signal, of the coherent frequencies of the AES. 
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5. Results of the theoretical calculation of the statistical 

parameters of the field occurring at the earth's surface owing to 

diffraction of waves on an lnhomogenous screen (on the Ionospheric 

layer). 

PfIster (USA) reported on the results of the direct measurements 

of electron concentration by artificial earth satellites. Observa- 

tions demonstrated the existence of ionospheric inhomogene!ties with 

only a 10# deviation for the charged particle concentration, having 

dimensions of the order of 700 km. 

Certain reports concerning space research were also given in 

the sessions of Commission VII. 

P. Lust (West Germany) read a paper on plasma on geophysical 

and astrophysical scales. He noted the the prime impetus to the 

development of plasma physics was furnished by geophysical and 

astrophysical problems, and that this field is still of major 

interest since the greater part of the universe exists in the form 

of plasma (the only exceptions are celestial bodies similar to the 

earth and planets which comprise only a minor fraction of the entire 

mass of the universe).  The author goes on to note that one of the 

most interesting aspects of plasma physics is the interaction 

between interstellar, interplanetary, stellar, and planetary matter 

and the cosmic magnetic fields.  The author briefly reviews certain 

properties of plasma in different regions of the universe.  The 

report concludes by giving a useful resume of the different parameters 

of plasma (plasma frequencies, Debye radii, proton and electron 

Also cosmic dust and neutral hydrogen. 
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hydrostatics, the collision frequencies required for charged and 

neutral particles, the free path, the velocity of sound, etc.) 

present in the ionosphere, in the Interplanetary medium, the corona, 

the sun's photosphere, and in the interstellar medium. 

Sonnet (USA) reported on the structure of the interplanetary 

magnetic field both during quiescent periods and during disturbances, 

using measurement data gathered by the "Mariner-2." 

Even this rather incomplete treatment of the scientific 

research discussions at the XIV General Assembly of URSI indicates 

that it was one of the major scientific gatherings in the field of 

space research (especially ionospheric research) and that its 

findings merit serious attention. 

K. I. Gringauz 
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