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THE EVOLUTION OF THE ROTATION OF A
DYNAMICALLY SYMMETRICAL SATELLITE

V. V. Beletskiy

A complete system of equations in osculating
elements for describing the rotational motion of
a dynamically symmetrical satellite is proposed.
The use of averaging with respect to one or two
fast variables reduces the complete system of
equations to simpler equations; in a number of
important cases the averaged system can be inte-
grated to completion in closed form. The theory
thus formulated is used to investigate motion
under the action of various perturbing factors
(moments of gravitational, aerodynamic, and
magnetlc forces and of the forces of 1ight
pressure, aerodynamic dissipation, and Foucault
currents). This article is a deveiopment and
continuation of previous articles by the author

[3, 9l.

Many authors have investigated perturbed motion of artificlal
satellites around a center of mass. The interesting articles by
Naumann [1] and Colombo [2] on the effect of magnetization of the
shell of a satellite (and alsc gravitational moments) should be
noted., Their investigation [1, 2] was limited by its framework of -
application to the specific satellite Explorer XI. Hagihara [3]

considered a large number of perturbing factors and thelr effect
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on the rotation of a satellite. However, some of his hypotheses

and results [3] seem questionable, Por example, his dependence of
the moment of the aerodynamlc forces on the angle of attack is
questionable, His investigation [¥] sometimes leads to results
contradiciing well-known gyroscoplc effects: 1instead of a pfecession
of the axls of a rapidly oswirling body under the action of a restor-
ing momen., Hagihara obtained [3] an asymptotic tending of this

axis to a certaln position. Thé formulation of the problem by
_Naumahn, Colombo, and Hagihara [1-%] 1s somewhat reétricted oy the
assumption tha. uhperthrbed motion of a satellite is.pure rotation

" around’ one gkis (;ngitudinal or transverse). This same assumption
was also used by other'autﬁdrs: Notni and Oleak [#], Warwick [5]'—
Cin investigating the ‘effect of the.étmoéphere; Zonov [6], Rosenstock
[r] —.in iﬁvéstiéating the effect of eddy -currégts. often,
_.a;‘a resuit, the‘éhange in~only.one charactefistic of motion is
considered (for éxample,~w§rwick, Zonov, and R Ter [5-71
cénsideféd:only the angular veloc@t&), and the evolution of the
motion as a whole is not cdnsidéred.u; _

In the author's prévipﬁs articléé [8,. 91 he considered the
cvoluéion of the parameters of rotation andAofiéntétion of a sape;-
liie under'théfactionhof grayitational momen;s andAmoments of the .
forces of aerodynamic préssure (alibwing.fér the elfect of regression
of the orbit), ' | |

.These articles dealt only with secﬁlar perturtations whicﬁ
degcribe the motion in the filrst approximation, but did not conéider
hizher approximations and did not present a closed system'or equa-
tions enabling us to obtain such ﬁpproximations. On the other

hand, the author [8, 9] did not consider the effect of a number of
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external factors on the motion.

Therefore 1c¢ seems necessary to carry out a more detailed
investigation, firstly, in the direction of refining the analysis
of the motion, and secondly, in the direction of allowing for the
effect exerted on the motion by a large number of external factors,
such as electromagnetic effects, the effect of light pressure,
and the effect of moments of dissipative forces.

The main results of this investigation are set foir'th in the
present article. '

The initial basis for a description of the evolution of the
rctational motion of a satellite 1s a system of equations 1n
osculating elements. In the author's previous articles [8, 9]
such a system of equations was not presented completely. A complete
system of equations in osculating elements (for the case of a dynam-
ically symme’»ical satellite) is proposed and investigated in
Section 1 of the present article. These equations allow us to
ascertéin not only the secular perturbations, but to obtain higher
approximations to the solut;on, in some cases in a fairly simple
closed form. The secular perturbations are ascertalned by averag-
ing the equations iﬁ oscu;ating elements over the precession and
orbital periods. The solution of the equations 1n osculating
elements averaged only over the precession period may be calied a
"second agproximation". In Section 1, in particular, it is
‘ sﬁownithat in thé important case where the moments of the external
forces have a force function, motion even in the "second approxima-
tion" is dividéd into a regular precession (with constant and
quaéi-coﬂstanf parameters) around a kinetic-momentum vector of
constant magnitude and the precessional-nutational motion of the

FTD-TT-64-90/1+2+4
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kinetio-mmentum vector itself. As a result, the equations of motion
of the kinetic-mmertum vector in certaln cases can be integrated in
closed form. The problem is even further simplified, if we 1limit
ourselves to just secular motion. It 1s shown that the equaticn

of the secular-motion trajectory of the kinetic-momentum vector iz
obtained by equating the twice-averaged force function to an arbi-
trary constant.

The theory developed in Section 1 1s used in the following
sections to analyze the effect of specific perturbing factoré on
the motion,

In Sectlon 2 gravitational perturbatlions are consildered. 1In
particular, 1t 1is shown that in a circular crbit the motion of the
"second approximation" 1s described in Jacobian elliptical functions.
Motion 1n an elliptical orbit 1s also considered, and a compariscn
of the approximate solutions and solutions obtained by numerical
integration of the exact equations i1s made. This comparison shows
that the "second approximation" describes the motion with a very
high accuracy (to hundredths of a degree in actual cases).

In Section 3 moments cof tThe forces of aerodynamic pressure
and friction are derived, analyzed, and approximated.

The effect of a moment of the forces of aerodynamic pressure
i1s investigated in detaill in Section 4. In particular, the effect
of the rotation of the earth's atmosphere is considered. The
ascertained effect of the "tracking" of the instantanecus velocity
vector of the center of mass of the satellite by the kinetlc-momentun
vector should be noted. This "tracking" cccurs in such a way that,
for example, in a circular orbit the kinetic-momentum vector precesses

around a certain axis stationarily positioned in the plane contain-
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ing the instantaneous velocity vector and the normal to the orbital
plane.

Section 5 deals with the effect of a moment of the forces of
aerodynamic friction, under the action of which, as 18 shown,
the satellite asymptotically tends to establish 1tself in a regime
of maximum aerodynamic resistance..

An analysis of motion under the action of'electromagnetic
factors is made in Sections 6-7. The effect of the intrinsic
magnetic. fleld of the sateliite and of the magnetization of éhe shell
of the satellite in the earth's ﬁ:agnetic field 1s considered in
Section 6;rthe possible sets of motions of the kinetlic-momentum
vector afé analyzed. The asymptotic effects of the motion, caused
by eddy currents in the'shell of the satellite, are considered in
Section 7. It 1s showﬁ that the satellite tips over or else 1s
stabilized relative to ?he kinétic-mzmxnumvector, while this vector
itself seeks to éoincide with a certain intermeclate direction ol
the earth's magnetic fleld. The effect of mohents of the forces
of light pressure on a space vechicle moving in an orbit around
the sun is considered in Section 8. It is shown that the kinetic-
momertum vector describes a closed trajectory around an axis station-
arily positioned in the plane contalning the direction toward the
sun and the normal to the orbital plane.

The main qualitative effects of the motion are systematized
in the concluding table.

The formulas obtained in the present article enable us to
calculate the evolution of the parameters of rotation and orienta-
tion of a satellite sufficiently simply and efficiently in a number

of cases. The maln purpose of the present article 1s to describe
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the method of investigating the evolution of the motion and to
ascertain the qualitative effects, and not to calculate specific
problems; therefore the few numerical calculations described in
‘the article are mainly of methodical nature.

The author thanks D. Ye. Okhotsimskiy for his discussion of

the article.

1. Equations 1in Osculating Elements for a Dynamically
Symmetrical Satellite and a Method

= ' Cof Investigating Them

. We talke as the unperturbéd motion a regular precession described
;:;By the following constant parameters (Fig. 1): L 1s the modulus:
L:pf the kinetic-momentum vector, ¢ and p are spherical coordinates of
,;ﬁthe latter in a coordinate éystem with its origin at the center of
"ﬁass of the satellite and with invariable directions of the axes,
.w3 is the angle of nutation, 6 and ¥ are the angular velocities of

.the proper rotation and the precession.

'in the general case 1t is convenient to take as the osculating
.glements the quantities L, p, 0, and $, which are constant in
unperturbed motion, and the quantities ¥ and ¢, which are linear

-with respect to time. Since the component of the angular veloclity

;zlz-"talong the axls of symmetry n = 6 + cos & - i is constant in unper-

" turbed motion, it is convenlent to also conslder the quantity n

as an osculating element.

If the moments of the perturbing forces do not depend on ¢, we

shall use as the osculating elements the system of elements

L, 0, p, %, n, . (1.1)




If the moments of the perturbing forces
depend on ¢, we shall use as the osculating

elements the system

L, 0, p, &, 0, ¥. (102)

If the differential equations for System

(1.1) are unknown, it 1is, in principle, a

Flg. 1. simple matter to set up still another differen-

tial equation for ¢. Therefore (1.1) 1s the main system for which

J we shall derive the differential equations of perturbed motion.

|.-

RO fo "u. ,b;_ Let I.( Ly L ) be’ the kinetic-momentum vector and
A »® C
S . L "‘-.‘ I'a ) .. |/ 4 ad . . 5 .v‘
c e T L.l . ‘a! (Mx’ My, M ) be the moment of the"external forces,
‘a J o b .'. o o . -"‘"“ gyt S
) Fep bl 0 Then - -.. .. g : B N S
. 5 oy . '. -. e 32 A .; :.“ . . RO L . EAE= N ’-..
R et e S : S
R T R A S h' A
% ‘-3-_,,1;: e .,,:0 '.'.-:_‘§ .ﬁﬂ " x, I‘y My L "h.?' y ‘- ‘ . (1 3)
: RIS g re h R o A o Ry
s .

°
s

.
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- Henceforth we shall always "assume that the axis X is directed

0, %, S o s, a. 2 .{ﬂ_ . m..

RS AT T S parallel to the tangent to a Keplerian orbit at~its pericenter; the

A3

. . x
. . n
v .0 © I e

*ii-}fif;j : c'f;’ axis Y is directed along the normal to the orbital plane; Z 1is
L L directed along the radius vector of the pericenter of the orbit.
':A% ':f. The origin coincides with the center of mass of the satellite.
o Then p is the angular distance between the vector L and the normal
to the orbital plane, o is the angular distance between the radius
vector of the orbit at the pericenter and the projection 1 of the
vector L on the plane XZ.
‘We shall determine the location of the axis of symmetry z'
of the satellite in the coordinate system XYZ by the direction
cosines a", B", Y".

For a dynamically symmetrical body we can obtain

=Ly — L), S =t — Ly, =iy —La. (1.%)

s




Here A 1s the transverse moment of inertia., Taking into

account the notation introduced

a” = sin ¢ sin O cos p sin 0 — cos ¢ siu O cos 0 + coe ¥ sin p sin 0,

p's—sin\psinOsinp-i-mOcosp. (1-5)
v = siny sin O cos p cos 0 + cos ¢ sin 0 sin 0 + cos O sin pcos 0,
L.=Lsinpsing, L, =Lcosp, L;=Lsin pcosa. (1.6)

Let us now require that in perturbed motion the direction
cosines and thelr derivatives, which completely characterize the
motion of the body, have the same form as in unperturbed motion,
i.e., the form of (1.4) and (1.5). This requirement uniquely
determlnes the differential equations of perturbed motion, which,

as 1t turned out, have the form:

L= (M,sins + M,cos G)sinp + Mycosp,
p= -I“—[(M,sinc + M, cos ) cos p — Mysinp],
¢ =ﬁ—p(M,cosa — M, sin o),

| n=g M+ M+ MY, (1.7)

\{:=%+-}‘-{— M, [oot & (cos o sin P + sin o cos p cos ) +
+ cot pcos 0] + Mysinp cotd cosp + M, [cot O (sinosiny —
— €O0S @ €Os p COs ) - cot p sin 0]},

Cn
cos O = -

Here C 1is the longitudinal moment of inertia.

Notes. 1) If M, My, M, do not contain ¢, System (1.7) is
closed., Otherwlse 1t must be supplemented with the kinetlic relation-
ship

n=<§+\§cosﬁ+b(—sin¢sinﬁsinp-E-cosﬁcosp)+

+ p (— cos P sin ©), (1.8)

which determines the projectlon of the total angular veloclity on

the axis of symmetry of the satellite in perturbed motion.
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2) As can be seen, System (1.7) consists of five differential
equations and one finite relationship for determining $. This
kinematic relationship occurs in unperturbed and perturbed motion.
Thus System (1.7) 1s of the fifth order, since M does not depend on
. System (1.7)-(1.8) 1s of the sixth order. ‘

3) Instead of the first three equations in (1. 7), it 1s
sometimes more convenient to use qu. (1 3) directly.- '

The moments of the forces in ’che specific problems considered‘
NQ’

below in the present article do not depend on q»._ Let us analyze

an lmportant particular case, Let“the”*moments of the forces have

¥ ° s 0° . . .
the force function ‘ ,__’h&af.,_; é,.. ,.."';; KX *,*".o L
) L3 . ": " .. . . .
U=y (b75T e 3....' SRR i)
- {?'6‘.:~ 9 .’;? . : Tt
1.e., they depend only on the *1o0 %:'cion ‘of the axis of synmetry of

the satelllte in space. In ‘che casesé}being considered by us U

ce o

depends on time only through the true- anomaly, o‘f the satellite

(LIRSS .

2 . -‘. .'A’- .« 2,
v(5), l.e., N
!t: 4

U(‘U (t),” 1 B"

t4 o o0
-.n.--. 5 e o °
- .

q.o
&2 o* .

Then .'-;' -
M ='—a -Wr 1’"" a:l 4 _—Fq.;‘ .

“Il asl a',_TFB‘.I L : .: o

-1}
L=%.
1 U all
p_Lsins{aTm —E}'
g t U
5=L—-‘1;;-a?, (1-11)
n=0,
ol L W o),
Cn
cosﬂ:—L-.




System (1.11) admits the first integral

From (1.11) we can obtain the relationship

2+ —240)=— 2 241,

If U does not depend explicitly on time, the following energy

L) ‘s
O AR e 'integral occurs
K e;)—' ° . . _
so et . ot e r,a L2 .. 2 (1 123)
K] i ¢ e Leteo % s ‘:.('., .
A g . s Ter eyt
o . .;l . . -. .. . .- o ° - ., ’ . .
““-From the-first two equations in ( S .
1'0'.(‘\0 2 5 “‘ s E . . :..' '..h.. f‘b.' a.u‘ . ) .,- %
it o o.. .- *s el 00 0, 'da:-....‘. S - S
\. R o " % . O aed °d’e .0' .:\ 8 . - .
..::_‘ A RN 6. . e g..,.-a :ET:(L 908 J,’ o, o 2.
o. c,' . .io ':‘ '.'. ...." '.'"{.'-'g.: > ‘O. ..."- -.5".3 ‘,4 e e ".'
4 ¥o 3 .,
ec U depend on-the time £ andatnp coordinate‘Ouonly,thgougﬁ the ot
'y b} o e - °%e
s o._fs & ." .. . et ‘e .9. . "Ce% e :o DRSS L)
.paramet‘er_.‘, Y LS oA iyt .453;_,“._‘ S R
d o, ”' - (] - o\ - .'.. vl .t . v o ..-‘.’
. T " * e ,® 2, o, = et ¥y Rl -ty s
¢ et ‘ . ; . :- oo o, * e K 4 ..‘i. M e.‘:. ode o ‘.,5:";:.‘\ - : : ." #°, \ft '-_0 -&u A
., .'- . *e . ® o ‘P.).:"- 0'..‘; wot P '.. . ey '... -t
'.",. * ’o . . “ "f., .l:.. -‘&-.%‘ & " ..' ¥
8 L 1 ] . [ -.(‘ "'{'J,. ‘,:\: g _?' ol ‘ Lo
Thrs case occurs whenxtpe‘cenpgranamassoo the"satebiite- u .
"'"“"- = I I T R . X T '._'-:-""4" !‘l"-.v “’.?"-7-... A v

es in a-circular orQit with an’ angular.velooity moﬂ-ﬂrhen'u'; i

i
oo .
. [

L2 2AU z 2Ade €05 p.+= const o (i.iéb)

Equations (1.7) or (i 11) enable us to investigate any motion:
'_ .;'fast rotations and oscillations. For example, in (1.11) 1let ng = 0.
i ’ V.lThen cos 3 = 0 and U does not depend on $. We can seek a solution

such that p = 0, ¢ = Co = const, which 1s possible, if the

following condition is fulfilled

1 Ui
sinp W!‘xeﬂ

I&:

-10-
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Then only the following equations remain

A L. a7
*571 L-Wv

from which it is easy to obtain
=S5 =0
This 1s an equation for the osclllations in the orbital plane.
A | However, by the very choice of variables, Eqs. (1.7) or (1.11)

are most suitable for investigating fast perturbed motion. To these

equations it is-convenient to apply various approximate methods,

e
PN

;.;ff for example, the Bogolyubov-Kryldv asymptotic method [10]

.,,_-:-.;.'. ...‘ ’ "-J‘ e z ..._. 5
MRS Note that,.as can‘be{seen from (1 7) and (1 ii)h the angular

. e - o o y o
-, . ; ﬁ., -‘. ." “ -:

150 o

.
£k

2
v
I

N

.o”'. .

v
N
[
5
»

a8 @
ten !
.l
il
o
- oq

o &

velocity of precession*%«may be-expresse& approximately as- o :
: o e

N

.
v
b

.
MU .'.'_-,' “!

o eI
s .
. S

1

‘% .t . . S e ,:"3'.5 2 . .‘ . ': - R B
# ' ° ¥ L @~ . 1‘ v e ~4.-c . i'. s : =

._-1. A . l".:' * N : ::" [ n " S -" - 'o 1 1 ] -‘\i.:‘,
}'{3. .".-.‘/-' ..}.'. ,:.:.;.‘ 3“. . W : i ....:. . e ( 3) _f“':':
oo S O X . O ¢ s i . ) e ] . . . L] o
S “s. ' since the remaining cerms in the. case be- fast rotations, ii e., .o ot

3 ’ . :

.in the case of large L, are'Tairly small These terms introduce

a small quantitative correction into the precession velocity, but : ﬂ

oes’ e
..
RISy

. the qualitative picture of the" motiom éoes not change as- long as' . o=
. the precession veIocity is fairly great‘ Therefore, instead of the | i
equations for ¥ - written in (1 7) and (1. 11), we can limit ourselves
. %o Eq, (1.13). - . - 2, oo . E.- ..
. . Since, according to (1 13), w increases almost linearly and
. 5 fairly fast (in comparison ‘not only with the rate of change 1in

the osculating elements, but even with the angular velocity v of

. - 2

‘,“._i A': the motion of the center of mass of the satellite in orbit), for

o

ascertaining the main.- effects- of the motion it 1s convenlent to
average the right;hand sides of the equation of motion with respect

to the variable y. Carrying out such an averaging, for example,

-11-




in (1.11) and taking into account that U, according to (1.9) and
(1.5), depends on y periodically with a period of 27, we obtain

for the averaged motion

L =0, 1, L=Ly (1.1%)
and, consequently,
cos § = cos $5; ¥ ~ io (1.15)
Moreover,
1 a0
P=—quin;'4 3
B (1.16)
_ 1 a
¢ T ILesiag d4°
where .
T=pt | Udy. :
) (1.17)

In other words, the satellite precesses regularly around a
kinetic-momentum vector of constant magnitude, the direction of
which varies in space, according to Egs. (1.16) and (1.17).

We thus see that the problem of the evolution of motion in
this case reduced to an investigation of System (1.i6), which is
easlly converted to canonical form. Assumption (1.13) i1s not funda-
mental, since an averaging of the exact system (1.11) leads to its
division into System (1.16), which does not depend on ¥, and an

equation for ¥:
V=515 eotp+ e 0}, (1.18)
Note that averaging the right-hand sides of the equations of
motion (1.11) was equivalent to averaging the force function.

Equations (1.16) in the general case are not integrated to
completion, since U depends on time (through the true anomaly v).

-l2a




However, for ascertaining the secular variations in p and o it 1s
permissible to average Eqs. (1,16) again with respect to the true
anomaly, since the variation in p and o occurs fairly slowly in
comparison with the variation in v, Since in an elliptical orbit
v varies nonuniformly in time, while the averaging must be carried
out with respect to uniformly varying variables, in Egs. (1.16)
let us pass from the independent variable t to the néw.iﬁdepén&gnt Lo

variable v. We shall assume that the orbit ofﬁthe ‘satellite .is ‘an

LR

unperturbed elliptical orbit. Then e Tt - § o
S=YE0 s ccosvy, S (4,19) BT

where P 1s a focal parameter, e 1s the eccentricity, and u is the

. .
L4
]

product of the gravitational constant timges tﬁe mass of the central

N

. b . o ."..'-:.: fl

body. Let us introduce the function T t.. .‘q,}i i
m o . . ) i .'. . .‘.;L.; é

UV=Viracemw ctne o (2.20) ‘51‘1

. L . ¢ f":;lf' ¢

and its average value with respect to ¥ * B P

2
o', 303
REL ....'\.3

ko . o
T, =5 | Udy. L e (&)

e v

D L S

Then Eqs. (1.16) can be written in the form

dp 10, a5 | U, 1.22
dv = " Lsinp 3 ' dv  Lesinp dp ° ( )

Note that Eqs. (1.22) are invariant with respect to the

*
o L)
C tami e Past AEV. SE ST A Gew 106 S mumb ol ateedu

transformation p, c— 6, A, where 8, ) are the coordinates of the
kinetic-momentum vector read off analogously to p, o, but relative
to other axes (for example, 6 is the angle between L and the axis ‘
X, while A is read off in the plane ZY from the axis Z).

From the point of view of mechanics, averaging with respect
to y 1s equivalent to neglecting in the solution high-frequency

-13-



osclllations of very small amplitude, which are supérimposed on

the slower oscl) " .tions described by Egs. (1.22). We shall call
the high~freqaiciiny osclllations caused by the effect of ¥ vibration
oscillations,

Equations {1.22) glve the very slow secular and long-period

) . terms of the solution, and also the periodic terms resulting from )
‘ i’_the 2flfect of v, Thé period of these periodlc oscillations is .
Zgommehsurate wlth the orbitai‘periodef the satelltte.v The secular
and long-perlod torms-vzrj Vefy slole ih nomparison With 3Bg A ’ L e
.velocity of mntion of fh@ Eenter of mass o@ uhe saueW i -tn.orii::

‘In order to ascertaln them, 1t iu riecessary Lo aver age Lne o eguatlions

"of movlon not only with reupﬂct td ¢, rut also with recpoct oo V.

~"An 1ndependentu dvnraging Wiuh respect. to each variable vy, v lu
permicslble, 1 the frequencie: of these varlables are L. Lomsroarali,

which 1s what we uhall alwaJu ab;umg.-'Such a.twaold averacloog, ) Ce
o - PR : ) : g . ., o '“ v,
Ter example, of Egs. (1. 11) duces, obviocusly, totavera lro oo,
(1.22) wlch respect Lo v, We cobtaln . ) : .
-\ . o17 . t .. ,J;. 5
Ao 1 v, dy f, 77 . . (L.<2)
U T T Iesmnds ' odav T T Inwnpap. s e T
Whare :
- Camon . :
a, Udvydv., g ok '
(""t S X }1/’ (1 - ecos vy? v . (l' du')
[V Y] . . .
o In (1.23) ﬁ? no longer depends on v; therefore there exlsts
" . -a first integral of Egs. (1.23) .
U, (p, o) = const (12.25)

hich determines the trajectory of the terminus of the klnetlc-

momentum vector (in 1ts secular and long-period motion). Using

(1.25), 1t 1s not difficult to integrate Eqs. (1.23) to completion,

-14-
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thus, also ascertaining the law of change in the kinetic-momentum
vector .

Returning to Eqs. (1.22), let us note that their solution
gives a picture of motion substantially'more accurate than the
solution of Eqs. (1.23). Although in the general case Eqs. (1.22)
are not 1ntegrated, their solution is, in principle, not difficult
to obtaln to any desired degree of accuracy, for example, by the
method of successive approximations,. the Bogolyubov-Krylov asymptotic
method, and finally by numerical integration. Moreover, let us
mention the-interesting particular case,. encountered 1n'praotice,
where even Eqs. (1.22) are integrated in closed form. - Let g&_
depend on ¢ and v only through their difference o f‘ - Vs

T, = | Py #')... o . (1.2.5a-)'

The coordinate 9 1s the angle between the 1nstantaneous'rad1us

., GLo® ¢« ot .

vector of the orpit R and the proJecuion of the vect r L on the -

., -.u.;.

orbital plane._ Thus the angles p,' 9 give the po'sition of the -

."fa ? * e

vector L in a rotating coordinate system n,,r, R,.where n 1s 1

a\rl ¢ \1 ‘\

directed along the normal .to the orbital*plane and T ;s directed

<ot J'i":
> (1 22) assume the

along the transversal to the orbit

Here U, as before, is determined by Formulas (1.21) and (1.20).
Since U& contains only p and ¢ and does not depend on v'explicitly,
Eqs. (1.26) have a first integral which gives the trajectory of the

terminus of the vector L in a rotating coordinate system

-15-
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® = const (1.28)

This integra’ ~:nebles us to integrate Eq. (1.26) to completion,

It can be considezd as a corollary of (1,42b) and (1.14). As
w11l be shown below, we can reduce to form (1.26) equations of

rotav.cnal motion under the action of such important perturbations

as gravitational and aerodynamlc perturbatlons in the cace of a

clrcular orblt of the center of mass of a satelllte and perturba-

tions due to llight pressure 1n the case of an arbiltrary eiliptical
ornlt ol a colar satelllte.
the general case of Egs. (1.7) (in the presence of arblirary

force moments which do not have a force fun:ction) 1t 1o woo. sexpedl

ent Lo use the method of averagling to azcenrtaln the princlpel

effects of “he motlion. This method will be nmzed below, Jor cizmpic

bo invescimate secular perturbations under tne aculon ol ulooiDo-

s~.Torce moments caused by aerodynamlc frictlon ard euu) currento

2. Gravitational Perturbations

Gravitatlional-force moments actlng on a dynamically osymmeiric

cateliltte in a central Newtonlan fleld have, as follows {rom a

o

<
c
)
@
§
<
(ay
joy
o]
H
>
[N

(-

g en ) e
NraVvioUs arvicee

a force functlion, wnich may

U w2 T_ﬁf“ - ccos v) (4 — O) (¢ cos v -+ a” sin V)& (2.1)

Then, uslng the formulas of the preceding sectlon, we obtain:

SRTAT
U, = %il—i (1 4+ ecosv) (4 — C) (7" cos v-+a”sin ¥)2, (2 . 2)

U, == :— }—C“‘ (A —C) {1 - ecosw) [1 — ~?— sin? 0} sin?*p cost (0 — v), (2.3)

‘l;]v == —ff— -l }1 (44 — C) [1 -—-%sin’ﬁ}sin’ p. (2.“’)

-16-
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~ In Pormulas (2.1)-(2.4) the terms not affecting the motion
relative to the center of mass are omitted.
Accarding to (1.25) and (2.4), we see thdt for the trajectory
of the terminus of the kinetic-momentum rector
. P =Pp ‘ (2.5)
Substituting (2.4) in (1.23), we obtain the velocity of the

secular motion of the terminus of the kinetic-momentum vectof

‘Thus, 1n secular motion the kinetic-momentum vector,preceéses

around the normal to the orbital plane at a constant angular distance.‘,,y
L .g\-

(2.5) with an angular velocity proportional (with the proportional-
1ty coefficient in (2.6)) to the angular velocity of motion of the
center of mass in an elliptical orbit. 1In a particular casé we

obtain for a circular orbit a well-known result [8]. In this

2y . o
case v = wot, V;.JP / = Wy where ) is a constapt angular velocity"..., .

of motion of the center of mass.

From (1.22) and (2.3) we obtailn more accurate equations, when

averaging only wilth respect to ¢

:—1]: == Ny (1 -- ecos ¥) cos (5 — ) sin (5 — v) sin p, (2.7 )
Z{—:N“(l+ecosv)cns’(a—v)cosp,
where
n A=C 3 .
N°=3llf"-‘_;‘(_["_)<1_?sinsﬁo)- (2.8)

In solving these equations, periodic oscillations of ¢ and p
with a small (for small values of N,) amplitude and a period compara-
ble to 27 are also superimposed on the secular motion (2.6). Since

v varles comparatively rapidly, while o varies slowly, ¢ - v varies
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rapidly and therefore repeatedly passes through the extremal values,

which are multiples of 7/2.

n ; o In this case on the trajectory
p(c), which is the trace of the
kinetic-momentum vector on a unit

sphere, points of tangency‘to the

. . 5T parallels of the unit aphere alter-
a) Rliptical b) Cireulsr M .
orbit T orbit nate w;th pointa or.- return (Fig 2) .

Fig. 2. - 0 Indeed, 6he angle v bepween the . . .

\

tangent to the trajectory and tﬁe meridian on the, unit sphere As

P

glven by the formula .,,:;3;;;.; e e :
tan V &;inp£=5°t (6 :-\’).O'O‘é‘P. ) .' < ) . (2 9)
dp ~. ® " . '-n * .
When ¢ = v = 0O and 0 -« v = + #, we obtaln tan V = w, and’

consequently the trajectary 1siﬁangent.to the,pargllel, having an .

W

extremum at the point of tangenc?('”ﬁhehfo -V s i.W/Q an@ g -V =

= + 3/27, we obtain tan V= 0, i.e., the’trajectory has a'point -
of return. From (2.9} it also follows that the trhjectory can pass

”,.

through p = 90 only at a right angle to the equator of the unit

.

sphere. From (2.9) i1t follows further xhac when P 9o° the points .

!
.

of return are always minimum points of p, while the points of .

-q‘_ .

tangency are maximum points of P (Fig 2).- When p > 0, the picture
is reversed. Wwhen p < 90°, the trajectory passes 1n ohe direction, .
but when p > 900, it passes in the opposite direc;iqn. It should
also be noted that the oscillation ampliéude of p is all the smaller
and the rate of change in o all the greater, the closer the value

of p 18 to O or m, Since the direction of motion of a trajectory
changes when 1t passes through p = /2, in the neighborhood of

p = 7/2 the trajectories have a specific character: they have loops.

{8
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Theae trajectories are shown in Fig. 3. In the neighborhood of

p = m/2 the rate of change in o, as can be séen from the second
equation in (2.7), is very low; therefore the trajectory loops have
a small width and move very slowly. In particular, there exist
periodic tfaJectories (with a stationary loop). Let us recall that
1nltbe firgt_apﬁroximation, when p = 90°, there_ié no secular motion,
as féllqws frém (2.6). Such are the basic féatureg of the motion.

Let us pass now to an. analytical desdription of 1t.
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" Let us consider the case of a circular orbit (e = 0). Then
Eqs. (2.7) can be reduced to the form (1.26) by the substitution
9 = 0 - v and, according to (1.28), have the first integral
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Lycosp+ L, %_sin’ p coslp = const. (2.10)

Note that
sin p cos'p = cos'F, (2.11)

where ¥ 1s the angle between the kinetic-momentum vector and the
instantaneous radius vector of the orbit. From (2.10) and (2.11)
it follows that the trajectory of the terminus of the kinetic-
momentum vector is closed 1n a coordinate system rigldly connected
to the radius vector of the orblt. An analysis of the trajectory
1s not difficult to carry cut by the method given by the author

[8, 9]. By the nature of the problem, an approximate solution
willl differ falrly 1ittle from the exact solution over an interval
of change 1n v that 1s all the greater, the lower the value of NO‘
When |No| < 1, the trajectorles have the character shown in Fig.

4: elongated along the merid;an n, R at one pole and along the
meridian m, T at the other pole (-n). The trajectory depicted in
Fig. 4 1s shown 1n absolute motion in Fig. 2b. Over a small inter-
val of values of v (of the order of one orbital pass, which 1s of
interest, for example, 1n studying the motion of a solar satellite)
a conslideration of the case No > 1 1s permlssible. Then the family
of trajectories has the form shown in Flg. 5. The appearance of
new slanting poles of motion gravitating toward R reflects the fact
that 1n the case of a low kirnetlc energy of rotation the direction
of the 1nstantaneous radius vector 1s the dilrectlion of stable equl-

librium of the body. Thils effect makes 1tself felt even 1n our analy-

sis, although in the case of low kinetlc energles the method used
gives a cruder result than in the case of high kinetic energles.

Examples of the comparison of the theory and the exact solution
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will be given below. The location p*, 3‘ of the slanting poles
is determined by the formula
cosp’ = I\;';' a' =0, I‘Vol >t
An n Let us return to the basic
case |Ny| < 1. Using Integral
(2.10), we can integrate Egs.
(2.7) to completion in Jacoblan

elliptic functions. For NO > 0

Fig. 4. Fig. 5. the solution has the form
COS p = COS P, -+ Q_}sin2 po sn? (u, k), V (2. 12)
- cn(u, k)
€os ¢ = W ’ (2.13)
1 — N cos po sn? (u, k) — T" 8in3 po snt (u, k)
u=}y1—N,cos pyv, (2’14)
NoSinDo
k= — |
2 V1N, cos po (2_15)
Moreover,
cos ¥ = cos W, cn (u, &), (cos ¥, = sin py). (2.15a)

Here 1t 1s assumed that the coordinate system 1s chosen
in such a way that when v = O, 0 = O and, consequently, @ = O
(on a circular orbit such a coordinate system can always be chosen).
The modulus of the elliptic functlons k < 1, when NO <1, as
follows from (2.15). If, instead of p, we put 1n these formulas
p = 7™ - p and replace Ny by |No|, we obtailn the formulas for the
case Nj < 0.

Let us analyze (2.12)-(2.,15). The oscillatlon amplitude 1is
equal to (N0/2)sin2 po and tends to O, when Po— O, m; cos p varies
from cos py to cos py + (Ny/2) sin® pos the period T, of the
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osclllations of the angle p:

Tp = e ___ | (2.16)

P Y T=Nycos

where

da
Vi=iEsin‘a

'./-l:l:l

(

1s a complete elliptlc integral of the first kind.
Using the smallness of NO’ we have approximately

o
N+

T,zu[i—:—1\.;1cospo+-—§-(3cos'po-!—-,:-sin’po)-i-j...].: - (2.17)
The oscillation period of cos 9 is twice as éreat as'Tp:

~ ' .18
T, sz, | (2.18)

i.e., when the true anomaly v varies by 2Tp’ the angle 9 decreases

by 2m. Durlng thls same time o varies by Ac.
Ao = 2(T) - 7). ' ‘  (2.19)
Approximately, according to (2.17):

1\72
‘A0 = 2n ['—\:—"- cos py -- 8" (3005’ Po +%s‘m’ po)—{- . ] . (2_-20)

The first term in (2.20) corresponds to the secular varlation
determined by Formula (2.6). The more accurate formula (2.20).

shows that a secular variation will occur at Po = W/2'(in constrast

to Formula (2.6)). However, from (2.20) we can-deterﬁiqé a pg = po*

such that Ag = 0, 1.e., there willl be no secu;ér variation: It

turns out that

. 4 SR
cospe’ = =g [1 =Y 1= N~ -5 (2.21)
At the value py = py* the trajectory p(oc) 1s obtalned closed

(periodic). 1In this case po* corresponds exactly to the solution
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of the transacendental equation Tp = T,

Let us consider the case of an elliptical orbit. Then Egs.
(2.7) are not integrated exactly. We obtain their solution by the
method of successive approximations. We take as the zero approxima-

tion an unperturbed motion, 1i.,e.,

P =Pp» 9= 9

Then I1n the first approximation

( "V.') .
P = Py + 7’sin p, {[cos 2 (6 — v) — cos 20,] +

(2.22)
+ e [cos (20, — v) — cos 20,] + % [cos (20, — 3v) — cos 2001} ’
— N, . 1
0 =0, +Tcos po{v —esinwv +7 [sin 20, — sin 2 (0, — V)] +
3 l8in 20, — sin (20, — %]+ [sin 25, — sin (200 — 391 }. (2.23)

The structure of Formulas (2.22)-(2.23) shows that the rotation
1s by nature close to rotation in a circular satellite orblt: the
oscillations 1n p and o are superimposed on the secular variation
of o; the maln difference 1s that the alternatling maxlmum énd
minimum values of p are not equal to each other in the case of an
elliptical orbit (from (2.7)) 1t can be seen that p will have

extrema when sin 2(c - v) = 0):

. i, e ' L
Py = pPo+ N sin po{f_,-mx’ o, + —3—(cos 0y — ©O0S 20,,)}.

Py = Py — No'sixx Po {—i— cos? g, —%(sin o, — cos 200)}, (2.21)

Py = Py + Ny sin p, {%— sin.2 0y— -;—(cos g, + cos 200)}.

P = Py — Ny sin p, {—1,— cos?ay + ;— (sin o, 4+ cos 260)}.

when 0 < % < 900 and No > 0, we obtaln

Pq > Por P2 < P3» Po > Pys Pq <P3
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Fig. 6.

The nature of the dependence p(v,) is shown in Filg. 6. The
trajectory~-trace of the klnetic-momentum vector on a unlt sphere
will have the character shown in Flg. 2a.

In conclusion, let us clite an example which 1llustrates the
accuracy of the approximate method of Iinvestigation that we used.
Flgure 7 giveé the characteristics of the motion, calculated, on
the one hand, according to the formulas of thils section (broken
line), and on the other hand, according to the exact equatlons
in osculating elements without averaglng. We see that the vibra-
tion terms thus added are actually negligibly small. The following
values of the parameters and initial data were taken 1n the example:

2 2

A = 50 kg-m sec”, C = 20 kg-m sec”, Ly = 3,49 kg-m sec, 39 = 70°,

24




which corresponds to an initial precession velocity i = 4 deg/sec
and to a projection of the angular velocity on the axis of symmetry
of the satellite r = 3.4 deg/sec, e = 0,421, P = 9478 km, 1.e.,

for an orbit with a perigee hw = 300 km and an apogee ha = 10,000 km.
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5. Moments of Aerodynamlc Forces and Their

Approximation

When a satellite moves 1n the rarefled layers of the atmosphere,
owing to the 1nteraction between the molecular flux and the shell
of the satelllte, a number of effects arise in the rotational

motion of the satelllte. Let us note some of the possible effects.
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1. The center of pressure does not coincide with the center
of mass., A torque arises. As a result of the rotation of the
earth's atmosphere, the velocity vector of the incident flux does
not 1lie in the orbital plane,

2. The rotation of the satellite gives rise to dissipative
moments, which cause, in particular, a slowlng down of the rotation
of the satellite.

5. The density of the atmosphere varles at different points
of the satellite shell (closer to the earth it 1s denser),'thus
creating an additional small moment [4] (the gradient effect).

4, A small effect related to the presence of the proper
thermal velocities of the molecules.,

Only the effects mentlioned in items 1 and 2 are consldered
below.

The components of an aerodynamic-force moment along axes rigildly
connected to a satelllte 1n the general case depend on the orienta-
tion of these axes relative to the incldent flux and on the compo-
nents p, q, r of the angular velocity of rotation of the satellite
relative to the flux., In view of the smallness of the.linear
velocity of rotation of the satellite shell in comparison with the
veloclity of motion of the center of mass of the satelllte, the
dependence of the force moment on p, ¢, r may be regarded as linear.
Let 1', J', k' be unlt vectors of the principal central axes of ’
inertia of the satellite. Then the aerodynamic-force moment can

be written 1n the form

1
M= T_;p“V,fe., X c"‘+% PV P,
o™=l e+ ek, P = Pyi' 4 P + P,

(continued)
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(formula continued)
P, Iyl 1, [P
(P'-')-(Illlulga [ q |
Py Iyla Iy ]\ -

Here Vb 1s the velocity of the center of mass of the satellite
relative to the flux, oy 1s a unit vector in the direction of this
velocity, p, 1s the density of the flux. The coefficients c'{' and

IJk depend on the locatlion of the satelllte relative to the flux,

In the particular case for a symmetrlcal conflguratlion of the
satellite (the axils of symmetry coilncides with k') we have cT = cg
= 0. The coefficilent c? and the coefficlerts Iy (some of them
may be equal to zero) depend only on the angle of attack &6, the
angle between e, and k'. The explicit dependence of the coeffl-
cilents on the angles 1s determlned by the nature of the céllision
between the molecules of the lncident flux and the surface of the
satellite.

According to prevalling notions, the following mechanlsm of
interactlon between the molecules of the incident flux and the
surface of the satelllte 1s most probable. During a collision the
particle gilves up practically all of 1ts energy and comes into
a temperature equilibrium with the site of impact (somewhat heated
now). When this heating passes through, the pérticle moves cut into
space wlth a thermal veloclty equal to the thermal velocity of the
molecules of the satellite shell. Since thils thermal veloclty 1s
substantially less than the thermal veloclty of the eiternal parti-
cles, we can ldealize thls picture by hypotheslizlng an absolutely

inelastic 1mpact, where the particles completely lose thelr energy

during a collision with the satellite. Let us analyze this case 1n
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detall, assuming that the satellite is axisymmetrical.

The elementary force dF acting on a surface dS will be:

dF=._/.:,.'. /=%cpaV'cos1'dS. (3.1)

Here V¥ 1s the velocity of the surface relative to the incldent
flux, Pa is the density of the flux, ¢ 1s a constant coefficient,
Y 1s the local angle of attack: the angle between the external

normal n to the surface and the vector V. The elementary moment

where r 1s the radius vector of the surface dS, drawn from the
center of mass of the satellite. Substituting (3.1) in (3.2) and

taking into account that

cosT=-]—l£';—R7l—=$!. (3.3)
we obtain

dM =+ cn, (V) V x1,dS, (3.4)
in which

V=V, +axrg, (3.5)

where Vb is the veloclty of the center of mass of the satellite
relative to the incident flux, § 1s the vector of the angular veloc-
ity of rotation of the satellite. (Strictly speaking,  1s the
vector of the angular veloclty of rotation of the satelllte relative
to the flux, but for the case belng considered here, where the
rotations are fairly fast, we can assume that  1s the vector of
the absolute angular velocity, since the translational angular
velocity is small in comparison with |&|).

The quantity \n bd rs| 1s very small in comparison with Vo-

Therefore, substituting (3.5) in (3.4), let us neglect terms of the
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order of ﬂz. Integrating over the part S* of the surface of the
satellite arourd which the flux is flowing, we obtain an expression 1

for the total moment of the aerodynamic forces in the form

M= %%Vg { (ne) e, xr.as +

&

+ '.:-CPaVoS {(n [QX1,]) [e;X1,] + (ne;) [Q%r,]Xr,}dS, (3.6)
where
Vo
eV = % (3-7)

18 the unit vector of the direction of the veloclty of the center
of mass of the satelllte relative to the 1lncident flux. The region ‘
S* of 1ntegration 1s determined by the 1lnequality

(¥n) > O, (3.8)
However, neglecting the small second term in (3.5), we find that

the reglon of integration 1s approximately determined by the

lnequality
(Von) > O. (3.9)
Then for an axisymmetrical satelllte

S* = S*(8). (3.9a)

® (2, 6% =0, =224y (3.10) ‘

be the equatlon of the surface of a satelllte symmetrical with 1
respect to the axis z*, Then the components of the unit vector

n will be:
)

Nge = 34

—_————————— Mo = O'.I.. Ny = O'.y.,
Vol 44" O -
. 20,., Lo 20 (3.11)

Grim= 0 Dy = e Dy = o .
Verswon T w0
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This coordinate system x¥*y#*z#* 1s chosen in such a way that the
x-axls always lies in the plane passing through the axis z* and
the vector V, (Fig. 8). The angle of attack (the angle between
V, and z*) will be denoted by &6, Moreover, the location of the
polint of the surface of the satellite 1n the coordinate system
x*y*z* will be determined by the cylindrical coordinates z¥*, p¥,
¢*, where o* 1s read off in the plane normal to z* from the axls
x¥ 1n such a way that

2= coéw‘, y = p°sing", (3.12)

Then &, n,*, and o* from (3.141) dc not depend on ¢*. The
region of Integration S* depends only on the angle of attack 9,
the integration with respect to ¢* golng from a certain ¢5(6) to

-¢5(6). Let us relate the unit reference polnt 1, J, k to x¥*y*z*,

Then
Yo r=2z'i+y'j+ 'k
f ) z e, Xk = — sin 0§, e, Xi = cos 6+, (3 13)
. e,Xj = sin 0k — cos i, )
z e, Xk = —cot 3 (¢, x1i).
According to the formulas of vector algebra,
we have, in addition,
¥
Fig. 8. 'p q 7 (3.14)
o [QXr] =] ;2 4 |,
Nye Nye Nge
.=_.\--+-- = 7 Tl 5 O L D) . @
[erl]xr T (lp 19+k’)+(1l+y9 T 21") (XI T ]y +l\2), (3.15)

where p, q, r are the components of 8 along 1, J, k. Performing
the integration in (3.6), using Relationships (3.11)-(3.15), and
discarding terms proportional to sin ¢, which give zero during

integration, we obtailn
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Mséquwngk+§%nﬁb5ﬂ+ﬁh+,
+ 3 [_7@] +k [-—71;'*' 7;}_7]}- (5 16)
c@®) =c {(Wicos 8 + W,8iné — W,cos &t &),

The first term in this formula gives the torsional (restoring)
moment of the aerodynamic forces, while the remalning terms glve
the moment of the forces of aerodynamlic dissipation.

In (3.16) W,(1 = 1, 2, 3) and TJ(j =1, 2, 3, 4, 5) depend
only on 6 and are given by the following integrals over the reglon
S*(5) of the surface of the body:

W, = S{z'n,. — o"p" cos?@’} dS,

o 17
W,= B z'0%p° cos @°dS, (5 )

W= Sn,-p‘ cos ¢°dS,

71 = c0s \ n.-n"*dS = sin 6&0'9'3 cosp dS,

I,=cosd \ z'n;.0" cos @ dS +sin GK [6z76 c0s® "= 2" sin? ¢ (n.e — 2727)dS,

2

3= C°55§ [(nes — 0727} 572 sin®@" + n (272 - 52 sin?@")] dS +

-+ sin & \ (= 4+ 5"sing") 070" cos ¢'ds,
T, = siud g 2"a"a"2 cos*p” dS < cos & Qn;-:'p' cos ¢° dS, (3 18)
T, =cosd \ [(2"* + p™cos* @") nr = (n:e — 0°2°) 0" cos? "} dS +

+ sin S [(z7 = 0™ cos*¢7) 07p" cos " — " (n:e — 0°2) p° cos ¢7] dS.

In order to ascertain the principal qualitative and quantitative
effects common to bodles of different shapes, 1t is convenlent to
take, lnstead of the exact values of wi and 'fj, certaln approxi-
mate expresslons,whlch reflect the structure of these integrals,

Let us deal first with the restoring moment, 1.e., with the

approximation of the coefficient T(8). Transforming the first
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integral from (3.6) with the aid of Ostrogradskiy's formula [12],
we find that the coefficient T(6) is determined by the relationship

£(8) =e5(8)z=,0), (3.19)
where S(6) 1s the area of the cross section of the satellite cut

by the flow and zo(é) 1s the distance from the center of gravity
of the cross section S to the center of mass. Obviously,
E(n = 8) = 2 (8). (3.20)

This reflects the properties of an absolutely inelastic colli-
sicn: the force moment depends only on the magnitude and locatilon
of the cross section S(6) relative to the satellite; therefore
T(6) does not change during %thils turn.

From the appearance of W, and w3 (3.17) 1t follows that
WB(O) = w2(o) = 0, slnce the integration then passes over the entire
lateral surface of the body from ¢* = O to ¢* = 2w, Therefore 1t

may be assumed that

We = sin &/, (8),
1y = 0010/5(6), (3.21)

and then ¢(8) from (3.16) will be represented in the form:
€ (8) = c{W1(8) 08 & + /, (8) — /a(0) - - /a(8)] cos? 8]} (3.21a)

We shall seek ¢(6) in the form of a power serles in powers of
cos 8. From (3.20) it follows that (3.21) can be approximated

most slmply as: )
cW 1 (8) cos & + /5 (8) = a5, — c[/2(8) + f3(8)] = a,,

where a, and a, are constants. Then

(3.22)

c(8) = a, - @z cos® 8.
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In this case, according to (3.19), 1t 1s easy to calculate the

coefficlents ay and a, in terms of the constants s(o)zo(o) and
S(W/Q)zo(w/2). In the case of an elongated body, for example,

we can have a, > 0, a, < 0, In the simplest case we can put
a,=0, ¢(8) = a,. (3.23)

From (3.19) it can be seen that when ay > O the center of
pressure lies "in front of" the center of mass (zO > 0), but when
ay < 0 1t 1les "in back of" the center of mass (zg5 < 0), when
6 < /2, If a portion of the molecules is not reflected absolutely
inelastically, Condition (3.20) may be unfulfilled, since it 1s
then not a matter of indifference whether the satellite is flying
"nose forward" or "bottom forward". In thils case we can use an

approximate formula of the type
c(8) = a, — a,cos 6 ~ a,cox 8, (3.24)

which corresponds to the condition

(T —8)5=c(b). (3.25)

From this point on, as in [8-9], we shall operate mainly with
approximate formula (3.22), But, in addition, let us consider
the effects related to Condition (3.25). In this case we shall
use approximate formula (3.24), which, when a, = 0, coincldes with
(3.22).

Let us now deal with the approximation of TJ. Let us limit
ourselves in the approximate formulas to the principal terms of

the quantities I The integrals containing the factor cos ¢* in

3
the 1ntegrand, as was noted above, can be represented in the form
sin 6£(6). Taking this into account, we see that Tl’ IB’ and T5

are positive for any value of &; therefore the principal terms of
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the functions will be positive constants. With reference to Ts
and 15 1t should also be noted that the difference I - I vanishes
during integration over the entire lateral surface (1.e., when 6 =
= 0, m). Therefore the principal terms in T3 and 15, approximated
by the constants, are equal to each other, The quantities 12 and
fk cannot be approximated by constants, since they always depend

on the angle of attack approximately according to a sine law. We

shall therefore assume that

~

I=I,T,=I, Iy=~1I, T,~1I,sinb, T, =I,sin§, (3.26)

where I, = const (k = 1, 2, 3, 4).

From (3.18) it follows that 1n the general case 12 # Ih’ but
this 1s not essential for an investigation of the motion.

The actual calculation of the quantities in (3.26) can be
made according to the same formulas (3.18), setting 6 = O and
6 = m/2 and taking the arithmetic mean of the values of I obtained.
We may also seek other approximate evaluations for I. Their calcu-
lation is simplified substantially for specific bodies (e.g., a

cylinder, a cone, a sphere, etc.).

4, The Effect of a Restoring Aerodynamic Moment

Jet us consider the effect exerted on the evolution of the

rotaticn of a satellite by a restoring aerodynamlc moment

1 a =
M = 5pV, ¢ () eoXk,
2 (4.1)

¢ (8) = a, + a, cos & + a, cos®d.

We have

cos b = %{V?g' + VBt Vi), (4.2)
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where Vg, Vg, V(z) are the components of Vo along the axes of a

coordinate system XYZ:

V:: '/ 7’:—(8 - €0S V) = W°-1+—¢}:m'c°3 icosv,

P PR
V: = "VomTSIH i COS ((.) + V),

_ (4.3)
= Y Esinv =W —L  cosisinv
V= ]/thv ' IVol_rwowcostsm\,

Vo=V (V' + (V)= (Vi)

where WO 1s the angular velocity of rotation of the earth, 1 1s

the 1nclination of the orblt toward the equator, w is the longltude

of the perigee. Since the terms which are proportional to wo

comprise 1-5% of the total velocity Vb, we can neglect them when

analyzing the principal effects. Let us assume first that wo = 0.
From (4.1) we can find the components M, My, M, in the form

(1.10), where
U = — 5043 {7 (cos 8) d cos s, (4.4)

which, with the aid of Approximation (3.24%), 1s converted to the
form

U=——._f-paV3{a(.coso + S cos? +%cos=b}. (%.5)

When Wg = 0, we have

V°=V—";71/'l+c“—r:2ecosv.~ (4.6)
cos & = (¢ — cos v) 2 — sin vy~ )
]/lfe'—'_...ZeCOSv (4.7)

Let us find, in addition, U, from Relationships (1.20) and
(4.5):

U,= ——;-anpx_PE————i+°:+zecasv(ao cos & + S-cos* O +—'§-cos’ 6). (4.8)

(1 -+ ecosv)
Here P 1s the density of the atmosphere at the perigee of

the orbit, while p 1s a dimensionless function determined by the
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relationship:

- Pyl - _
p=—" p(0) =1, (4.9)
where
h= _ P P
iRl prepy-rrrria gl (4,10)
Let us take, for example,
,r-z=exp(— —Z). (4.11)

where H 1s the so-called altitude of the homogeneous atmosphere.

Secular Perturbatlons

In order to investigate the secular perturbations, let us

average U,, as determined by Formula (4.8), with respect to ¢ and

v. Let
o
1 ¢ =V Ize&—2ecosvy
J = A e e AN ! <
! 27 ) P (1 = ecos v)? (e T cos v) dv,
0
_ 1 T o (e ~-cosv)?
2 = 2a S PlisecosvE
- (4.12)
I {3 siny
J ==__S L
3 2x P(l-—ecosv)* !
9
LT (e = cos VP dv
Ji=:—\p svfdy
T : (I tecos vy V1-cFm2ecan v’
|.":" —- O3 V) sint v dv
J-'»=T‘\P (e =- cOs v) sin® v dv )
- 5 (1 —ccosv2VI+e+2evosv .

The quantities J for certain values of h and H are given in

Flg. 9.
The twice-averaged value of the function Uv will be:
7.<0.,+T.. (4.13)
“uP
where U.=— V;‘ pn{cose cos G[a,,.ll + %J‘ sin?d .
+ ayJy (Sir,l;ﬁ-{»— (1 - ésin’ ﬂ)cos’ ).)] -+
ay ; \ . (u.iu)
+‘2-(Js"‘]s)(1—?sinzﬂ)cos’e.é_ (cont.)
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(Eq. 14 cont.) + (1 - %sin’ 0) [%‘-J‘ — a.J, cos? l]co.s’o cos f)} .
— ) . 4,
U., = — —,t‘—pnl/p.l’ a,J, (1 — %sin’ 0) sin? p, ( 15)
where we have used the variables p, 6, A which are related by the

relationships:

€osp = —sin@ sin &, ¢co0s® = sin £tin o, sinpcosd = sin@ cos .

The trajectory 6(A) of the

terminus of the vector L in

secular motion, according to (1.25)

will be

ﬁv = Uvo . (4.16)

f The portion U

5 has the same
2

structure as the secular portion

of the force function of the

200 400 800 400 100G 1260 MO0 50 W30 2000 hy, e gravitational moments (2.4). They
Fig. 9. give a total
U - i(i —:—‘s'ir"'ﬂ\ —3 I—Tl(l —Cy— Y ul e d Taints =/sinte 4
n Y 7N 4 3 P.'_- J = N {1 _-;‘.li_l_.. 1 . (..17)

From (1.23) and (4.17) we obtain an equation determining the
precession of the kinetic-momentum vector around the normal to

the orbital plane
E = oo, (4.18)

Thus the term ﬁvz introduces only a certain correction to the
gravitational effect already considered; in an analysis of the
combined effect of aerodynamic and gravitational perturbations
the term §v2 has no effect on the qualitative picture; therefore

the principal term 1s (4.14).
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For the case a, = O a combined analysis of gravitational and
aerodynamlic secular perturbations is given in another article by
the author [9]. The equations of perturbed motion, in accordance
with the results of Section 1, will have the form:

dA
dv

VP

L

P-
Se

{cos O[a,,./, -+ —’Z—_f—./, sin* = a,J, (%sin’ 0~

i (1 -—%Siu:ﬁ)co,r,’k)],— a, (J, — J,) /4 —%siu’ﬁ)cose .

- . 4.19
+ 3 cos® (1 -%sin’ﬁ/[%’—J‘ — a,J5cos? 7. | cos?0 } { )
} 2 J J
d r V BP 5
7o cosf = i a,Jg cos 0(1 — ?sinzﬁ/ cos @ sin?@ cos % sin 2.

Let us indlcate the basic properties of the perturbations,
caused by EVl’ making simpliflcations 1n passing.

1. Since, when e = O, J1 = J2 - J3 =dy = J5 = 0, in a circular
orbit of a satellite there are no secular perturbations 1in 1its
rotational motion.

2. From Fig. 9 and Relationships (4.12) 1t 1s obvious that
the quantity J5 1s an order lower than the other coefficlents Jj'

Therefore the term proportlional to J. can be neglected. Then from

5
(4.19) we obtaln 6 = 6y, 1.e., the vector L precesses around the
direction of the perigean tangent with a velocity d\/dv determined
by Eq. (4.19), 1in which we have to set 6 = 84> Jg = O. Investiga-
tions show [8, 9] that the effect of the term proportional to J5
causes small osclllations in the angle 9.

5. The quantlty a, # 0, if the followling two conditions are
fulfilled simultaneously: a) the number of molecules reflected
from the satellite according to laws different from absolute
inelastic collision is fairly large, b) the shape of the satellite
differs from bisymmetrical (i.e., the satellite does not possess

a plane of symmetry perpendicular to its axls of symmetry). Since
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Condition "a" 1s most often poorly fulfilled, we can assume that

a1 L aqs a2 and set a1 = O, In the case of bisymmetrical satellites
the equality al = 0 18 fulfilled regardless of whether Condition

"a" 1s fulfilled., Taking items 2 and 3 into account, we can assert
in this approximation that the entlire secular effect of the restor-
ing moment of the aerodynamic forces 1s manifested 1n the precession
of the kinetlic-momentum vector around the directlion of the perigean

tangent at a constant value cf 60 and with an angular veloclty

di. gVl (4.20)

o = o o B[k, — kyeostl ],
where

ky=aJ, ~ ‘77‘:'/4 S0, Iy =1 — %Si“:ﬂ.ﬂn.,‘
2 y 5 JLIZLE

In the simplest case (3.23) we obtain

di. _ 7=V uP
dv 2L,

cos Oa J;. (4.202)

These results are equivalent to previous results obtained by
the author [8, 9]. However, 1n these articles in the formulas
for Jl’ Ju, J5 errors were made, which insignificantly change the
quantitative results, while the qualitative picture remalns unchanged.
: Note that, as follows from (4.20) and (4.20a)
In the case of a satellite rotating 1n a somer-
C:E%—’%' sault regime ($ = 90°) the aerodynamic restoring
moment does not create a secular effect. As is
Fig. 10. obvious from (4.19), this assertion is incorrect,
if a, # O.
For an estimate of the effect of a, let us consider The 1limic-

ing case a, £ 0, ag = a5 = 0, whlch corresponds to the hypothesis
used by Hagihara [3]. Then the trajectory of the terminus of the

-39-




vector L
Oy, + Uyg = const
assumes the form
(J2—J3) cos?0 - J;8in% p = consl.

A family of these trajectories for an elliptical satellite
orbit (e # 0, J, # J5) is shown in Fig. 10. The kinetic-momentum
vector will precess around the normal n to the orbital plane or

around the perigean tangent V. if correspondingly
[cosp,| = ]/J’ ZJ’ cos b,

where p,, 64 are the initial coordinates of the kinetic-momentum

vector, Let us note again that the case |ail <L [aol is much more

1likely.

The Effect of the Rotatlon of the Atmosphere on

Secular Perturbations

In the case wo # O the expression for cos & is determined by
the complete formulas (4.2)-(4.3).

In order to understand the principal effects caused by the
rotation of the atmosphere, let us use for c(6) the simplest
approximate formula (3.23). Then, retaining only terms of the

first order of smallness relative to wo, we obtailn

U, = —%pﬂl/ pP—."'a—°-—,{[(e + cos v) Y1+ 2ecos v + & —

(1 +ecosv)
P/'Wo e+ cosv s .
= CO0S —_ls —
Ve ‘ Vi+e +2ecosv ]a l-ﬁlnv'l/1+e’+2ecosv (4.21)
PhWocos i sinv @
Vi Vizermes) Tt treey X

X {— cos i cos va“ + sin icos (0 + v) B* <- cos isin vT1°}.
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Let
2%

Phw, - ;(e Zocosv)dy
Fo=J, 7 cou-z—n-§ e a7 (4.22)

where J, 1s determined by Formula (4.12), and

2%

Spm= i (p Yl 2oy, (4.23)

2n 3! (1 +— ecosv)?
v

Averaging the function UV with respect to ¥ and v, we obtain

1 ——
U.:-—?pzl/pPaOFncos ?cosg + (4.24%)
1
-+ ?p"T/VoP’a‘,So cos © (cos { cos® = siu /sing sin O sin 7).

Also let
sinisinw
Veosti—simicoso | (}4‘25)

cos i

sin@” =

€0sQ° =
Veosti —sinticost o

1 , ——
k° = -Q-pﬂWo P%a,S, cos & Y cos? i +— sin?i cos? o,

24 =71_l-p.__]/p_PaoFocos 9, (4.26)
cOs% = c0s@°cos® — sinO sin( sin 2.
(4.27)
Then
T, = — I cosp L J%cosn =L, (4,28)

is the equation of the trajectory, which can also be written as:
cos 6 = ¢y - a cos u (4.29)

Since

PWoV costi —sinticosto So __ PV,
VE Ly (%.20)
ya V-

is a small quantity, the trajectory differs very little from

a =

cos 6 = cos 90,
i.e., as was to be expected, the effect of the rotation of the
atmosphere 1s slight in comparison with the principal atmospheric

effect.
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Let us determine the poles of the trajectory.

The equations of motion will be:

d\ 1 U K ke ek, .
v ™ Lsn0 00 — Ig — 75 ¢0s6 + ;s ctgd sin A, 4
do 1 Al O ( '31)

i v 1Ty i et -i,%;sin 6°sin 0 cos A.
From the second equation 1¢ 1s obvious that the pole 1lles on

the meridian A_ = 90° (270°). Then from the first equation we

obtain the coordinate GW of the pole

k°sin 0°

2l = e (4.32)

Since k° <L k', the pole 1s close to Gg = 0, m, The equation

of the trajectory (4.28) can be represented in the form

Vi 172 — 2112 cos 0 cos %y = coust, (4.33)

where ny is the angular distance of the kinetic-momentum vector
from the precession pole kv, 97. Hence 1t follows that the
kinetic-momentum vectcr precesses around Pole (4.32) (and X” = 90O

or 2700) at a constant angular distance ny with a veloclty

N T (4.34)

The Case of a Clrcular Orbit. Effects of the

Second Order.

In the case of a circular crbit, as has been shown, aerodynamic
forces do not cause perturbations (1f we make the highly justified
assumption that a, = 0). Let us see, nevertheless, what kind of
motion 1is described by the vector L in this case, for which purpose
we must turn to more accurate equations, averaged only with respect
to ¥. For simplicity of analysls let us again turn to Approximation

(3.23) and neglect the rotation of the atmosphere. Then the force
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function averaged with respect to ¥y has the form
(7,=——%,ﬁnVp—l‘n,,m-{)siupriu(:—v), (4.25)

1.e., 1s related to Type (1.25a). Therefore, according to {1.27)-
(1.28), the trajectory of the trace of the kinetic-momentum vector

in a rotatling coordinate system has the form

(-osp——lncor A= coust, (4.36)
e Vula,cos

tTTTE T (.27)

Where A 1s the angle between L and the velocity vector of the

center of mass of the satellite
Co%.\ = <inssing. (4#.28)

Using (#.36) and the resulis of Section 1, it 1s not difficulc
to verify that the trajectory of the trace of the vector L on a
unlt sphere 1n a rotating coordinate system 1s a cirecle, the center
of which lles in the meridian passing cthrcugh the trace of the
normal to the orbital plane and the trace of the veloclty vector
of the center of mass (the 1instantaneous tangent tc the oroit);
the center of the circle lles at the angular distance p* Irom
the normal to the oroltal plane and conseqently
tan p* = -n, (#.29)
It also happens that the veloclty of rotation of the kinetic-
momentum vector L around this circle 1is constant and may be written
as
2 e
o == (4.40)
We see that 1f n is very small (1.e., the effect of perturba-
tions is very small), p* =~ O, and the kinetic-momentum vector in

the rotating coordinate system under conslderation rotates around
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the normal to the orbital plane with an angular velocity X'A ~ =1,
l.e., 1t remains stationary in absolute space. If, on the other
hand, n is large, p* 1s close to m/2, and the kinetic-momentum
vector precesses around the direction of the incident flux. Note
that the criterion of applicability of the tkeory 1s, roughly
speaklng, the following: <¢he mction cbtained by averaging should
occur conslderably more slowly than the motion according to which
the averaglng was done. In the given case 1t 1s required that
|ax,/dv| << |d¥/dv|. For example, let ¥ = 1k deg/sec, while the
angular veloclty of metion in orbilt dv/dt = 0.07 deg/sec. Then the
theory will be fairly accurate when ]dxA/dvi << 200, l.e., when

n = 10-20. Twofold averagling occurs here only when n << 1.

5

—e

The Effect of a Moment of the Forces of

Aerodynamic Disslipation

The moment of the forces of aerodymamlc dissipation 1is deter-
mined by the second term in Formula (3.16). For the dissipation
coefficients let us take approximate formulas (3.20).

Let us 1introduce, lnstead of a semlconnected coordinate system,
a system rigidly connected to the satellite. Let the reference
point of this system be 1', J', k', the axls of symmetry of the

satellite being directed along k'. Then

k =k,
j=1J cosgy— i sing, (5.1)
i= —jsing + i COS Gy,

where 1, J, k 1s the reference point of the semiconnected system,
while 9, 1s the angle of rotatlion of the connected system relatlve

to the semiconnected system, It can be shown that

T




cos (0,, i) . cos (¢, §)
COBPe= —mE+ NDR=— —rg (5.2)

Next let p, q, r be the angular-velocity components along the

connected axes, Then

r=r,
;,:—qsin%—i-[lCOS‘Pov (5.3)
q = qCosQ, + p Sin Q.

Let us now substitute in (3.16) (in the dissipative portion)
Expressions (5.1) and (5.3), taking (5.2) into account, and let
us introduce the approximate values (3.26) of PFunctions (3.18).
Then the moment of the dissipative forces willl be written in the

form
Mo = Len Vo li' 1 pl, - ’
x =5 P Vo{i" [— ply + rcos (e, i') I,] +

+ 3§ [—gly+rcos (e, j) I} + (5.4)
+ K [— rI, + (p cos (e., i) — ¢ cos (e §') L1}

Hence 1t 1s obvious what the meaning of the quantilties I1

1s: I1 1s the coefficlent of dissipation along the axis of symmetry,

15 1s the coefficlent of dissipation along the transverse axis.
These terms lead to the attenuation of the velocltles of rotation
of the satelllte., The terms contalning 12 and Iu will cause a
change in the orientation of the satellite. Let the position of
the reference point 1', J', k' relative to the coordinate system

XYZ be given by the table of direction cosines

K
Xl a a a 5.5
YI B p B E
Zirr T

Then, without taking the rotation of the atmosphere into

account, we obtain:
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<08 (o0, 1) = g Ve + Vel cos (e, 1) = Vi + Vir'), (5.6)

Vo=V 4 VT F e F 2ecos v,
=V (5.7)
‘Vx= % (C -~ co8 v)‘ ,I’z == J;—si" v,
P cos (ey, i) + g cos (e, i) = T,I;(V.\- (pa + qa’) + V:(pr+ 97} (5.8)
Since
, L.—Cra* , . L,—Cry*
g’ tpe=—7p—0 o +pr= ,1” , (5.9)

as can be seen from the last component in (5.4%), the equation for

the angular-veloclity component along the axls of symmetry k' can

be written in the form

dr

CTr = — FepVolyr + 302 (Vi (L — Cra’) + V, (L, — Cr ). (5.10)

Now taking (5.%)-(5.9) into account, we can write the components
of the moment of the forces along the axes of the coordinates XYZ:
M.= %CPaVo {— L}(Lx —Cra”) —I,ra"+ I,rVLD Vi (1 —a") + Vo (—a'7)] +
+ ﬁa Vi (Ly — Cra”) + V. (L: — Cry)),
My= g ol {— 5 (Ly— C8") = [y — I, 5o Wo(— B) 4 Vi(— 7)1+
+ B Vel L — Cra’) + V, (L, — ¢}, (5.11)
M= '%"-'PVn{'— F—Crr) =Ly + 1, 7o W—a?)+ V(1 — 7))+

+ T W (b — Cra) + V. (L — Crr)l}

The equations of motion of the vector L will be written in
the form

Lx=-“1x; LU=“1U' L3=1‘1;. (5.12)

We are Interested in the evolution of the motion. In perturbed

motion, as was shown earlier, we can take approximately

v~F . (5.13)
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Moreover, the following kinematic relationship remains valid:

cos § = %? (5.14)

Therefore Eqs. (5.10)-(5.12), together with Relationships
(5.13)-(5.14), enable us to follow the evolution of the motion.
We shall seek only the secular perturbations of the motion, which

are obtained as a result of averaging the equations of motion with

respect to ¥ and v. Before averaging with respect to v, let us

pass from the independent variable t to the variable v.

Let us 1ntroduce

| N —e-——)ecosv
No P )_5 (l-—-no;v; dv,
S (5.15)
1 ¢ — e—cosv
N‘=.'—c°' _»—3 P@ = ecosvy 4V
Q

where p = p /br’ p, 1s the density of the atmosphere at the perigee

of the orbit.
The combinatlons of direction cosines averaged wilth respect

to the precesslon can be wrltten in the form

- L, - L,
= cos 0T,ﬁ'=c050T".7'= cosﬂ%—,
= 1 3 L2 (5.16)
= i o R 1——am O)L ,
— 3 ea L‘L, —_
o« —“—‘(1 —.—_,sm"f}) e AT =Ki ——._,-sin’t‘)) L L,

The bar indicates averaging with respect to ¥. Now averaging

(5.10)-(5.12) and taking (5.15)-(5.16) into account, we obtain the

following equations of secular motion:

B 0 ' L: .
L= — kL, + I:lcosﬁ——ﬁ-f-f" cos® L,
L (5.17)

i= — kL. + LcosG

Cr = —Nl,r—l;:—'ﬂn- OL,.

To these equations we must add (5.14). The prime indicates

the derivative with respect to v, while ké, ki, ké have the values:
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ko (0) = N, ({-;-lin’ 0+ % cos’ﬁ) .
K (9) = {— (1 — Fain*0) + 2. Zeinve),

k() = {f62 (1 — 3 sin0) — 2. Tsinr 0} (5.18)

Note that for a circular orbit N1 = 0, ki = ké = 0, and the
motion will be of very simple nature, Let us discuss this case in
passing. In the general case of an elliptical orbit N1 ¥ 0. Let
us turn now to a study of Egs. (5.17). From the equation for L&
and Lé it follows that

Lply - Iyly = 0
1.8.’

TE = const (5.19)
y
This means that the plane passing through the vector L and
the axls X maintalns 1ts position 1n space, and the vector L can
move only 1in this plane. Then, from the first three equatlons
in (5.17) we have

L' == — i, — cos OL (I} -+ ka). (5.20)

Let 6 be the angle between L and the axis X; then

Le=Lcosl, —Lsint)' =L — L cosO. (5.21)

Substituting L' from (5.20) and L! from (5.17) into the right
hand slde of (5.21), we obtain

0= — k; cos¥sinl,
whence

v

9 v
tan -e,— =tan - exp [— \ L, cos Odv] .

" (5.22)

ké(s) and cos §, generally speaking, vary slowly, by virtue of the

equations of motion (5.17). In the first approximation we can take
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ké(’)GOB 4~ ké(vo)coa Vor However, even when the slow variation
in ké(s)cos $ 1s taken into account, the same asymptotic picture

is maintained as in the case of a constant kécoa $, since for all
falrly large values of v kécos 3 has a completely determined sign.
We see from (5.22) that when kjcos $ > 0 6 0, but when kjcos 3} <
<065 TmT, as v w, Both cases indicate that the kinetic-momentum
vector seeks to colncide with the direction of the tangent to the

orblt at its perigee. We can assume approximately that

0 0, .
tan 5 =tan —cxp {— K, (0,) cos B} (v—v,). (5.23)

For a circular orbit ké = 0, and the direction of the vector

L remains invariable. Returning to (5.20), we have
L = L{'—I;'o—%-cos{}siuzﬁcosON, (%—- %)} .
whence

L = Lyexp S {— K, + cos & siu* § cos 0.V, (IT: + (-”;)}dv, (5. 24)

since ké 1s an essentlally positive quantity and does not vanish
on a clrcular orbit, while N1 = O when e = 0, we must assume that
Nl 1s small in comparison with ké; moreover, 1t wlll be shown below
that $ » O or v— 7/2; therefore at falrly large values of v the
quantity 1n the braces 1s essentlally negative, and L—» O as v — w;
in addition, the angular velocclty of the precession @ = L/A decreases.
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