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ABSTRACT

A model is proposed for learning the nature and value of an unknown
parameter, or unknown parameters, in a probability distribution which
forms part of a body of statistics related to some system or process.
The model is Bayesian, involving the assumption of an a priori
probability distribution over the possible values of the unknown
parameters; the performance of experiments to gain information about
the parameters; and the alteration of the a priori probabilities by
Bayes' rule. In the limit, as the number of experiments approaches
infinity, the a posteriori distribution in most cases encountered in
practice approaches a delta function at the true values of the unknown
parameters, so the system learns the values of the parameters exactly.
The learning process developed in the paper is shown to be technically
feasible if the a priori and a posteriori distributions are of the
same form, with the learning accomplished by calculating new parameters
for these distributions. It is shown that a necessary and sufficient
condition for fulfillment of this feasibility criterion is for a
sufficient statistic of fixed dimension to exist. If such a sufficient
statistic exists, the a posteriori distributions may vary in form
initially, but they eventually become of fixed form. The techniques
developed indicate logical methods for choosing a priori probabilities

and are applied in pattern recognition, estimation, and other problems.
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I. INTRODUCTION

A, PURPOSE

The purpose of the study described in this paper is to develop a
model for a learning technique capable of utilizing and evaluating
statistical information relating to a physical system or process. The
model is to be applicable in situations where the form of the probability
distributions describing a process is known, but where the values of some
of the parameters involved in these distributions are unknown. The
model is to be readily adaptable to construction of an actual learning
machine or to simulation of such a machine on a digital computer.

It is expected that the results of the study will be useful in the
design of complex multiple-element systems, including a variety of

different types of communication systems.

B. BACKGROUND

Since the pioneering work of Shannon and Wiener in 1948-49 [Refs.
1-47, a large amount of research has been done on application of statis-
tical techniques to design of communication systems. This research has
been motiveted by the realization that often only an approximate estimate
of the conditions under which a2 communication system will be required to
operate is available. Under these circumstances, designing the system

so that its performance will be the best possible on the average appears

more reasonable than attempting to optimize performance under specific
conditions which may later turn out to be inapplicable.

To achieve the best possible average system performance, statistical
techniques are applied. A specific criterion for judging system perform-
ance is defined; then the techniques of probability theory are utilized
to see how well this criterion may be expected to be satisfied. Stating
the matter in more mathematical language, excellence of system perform-
ance is judged by the statistical expectation of a random variable 2
which represents the selected performance criterion. In some cases 2

is a squared error term, in which case its statistical expectation

-1 - SEL-63-099



EfZ) is the mean squared error; in other cases 2 is the fraction of
the time when a system makes an error, with E[Z] the probability of
error.

Although the mathematics involved are often complex, the applica-
ticn of the statistical criteria is in principle straightforward pro-
vided a body of statistics relating to the problem is available., The
statistics can often be computed through a knowledge of the physical
principles involved, or can be estimated accurately from experience.
In some cases, however, the statistics are not accurately known and
must be further investigated before any criteria or statistical expec-
tations thereof can be established. This fact is responsible for much
of the current emphasis on research in learning techniques.

In connection with a body of statistics, a learning technique may
be defined as a procedure for evaluating experimental observations in
order to gain information about parameters involved in the system or
process to which the statistices apply. Throughout this report the term
leorning will be used in the restricted sense suggested by this defini-
tion, and only in this restricted sense. In view of the large amount
of research currently being done on learning in biological systems, it
should be pointed out that learning in the sense in which the term is
1sed here may bear little resemblance to learning pertormed by

bivlugical systems.

C. MHETHOD OF APPROACH

In this investigation a possible model for the process of learning
the values ot unknown parameters in a body of statistics is developed.
Although the proposed model is not the most general possible, it is
general enough for most practical purposes. One important kind of

a priori information is postulated: it 1s assumed that the forms of

the probability distributions involved in the statistics are known,

although some of the parameters of these distributions are unknown.

This assumption is interpreted to mean that the physical process
involved is known well enough to identify the type of probability
density being dealt with, but not well enough toc permit computation of

SEL-63-099 -2 -



all the parameters for this density. This is a situation often occurring
in practice; for example, it might be known that & probability density
was multivariate Gaussian, but the mean vector or covariance matrix for
this Gaussian density might not be known.

As a basic procedure it is assumed that the symbol 6 represents
some unknown parsmeter or parameters in one of the known probability
densities. In order that the statistical expectation E[Z] can be com-
puted 6 1is treated as a random variable and an a priori probability
density p(6) is assumed over the range of its possible values.® The
expectation E[Z] 1is then determined from the standard statistical

equation

E[Z) =fE[Z]6] p(8) de (1)

The learning model developed in this investigation is based on a
series of modifications of Eq. (1). These modifications will be discussed

in the next chapter.

*This so-called "Bayesian" technique of treating a fixed but unknown
parameter as a random variable is common engineering practice, though
frowned on by many statisticians. Even in statistical circles, however,
the practice appears to be gaining wider acceptance [Refs. 5 and 6].

-3- SEL-63-099



II. THE LEARNING MODEL

A. BASIC EQUATION

It has been shown that, for a body of statistics related to some

physical process or system,

E[Z] =fE[ZI‘eJ p(6) de (1)
where:

6 = an unknown parameter or parameters in the probability
distributions included in the statistics

Z = a random variable representing a selected performance
criterion

E[Z} = the statistical expectation of 2

p(6) = the a priori probability density function of 6

{p(6) or some information which may be utilized in
choosing p(6) 1is assumed to be known a priori¥]

E[Zle] = the conditional expectation of Z given 6
(the expectation of Z is assumed to be known
a priori as a function of 8; for any specific
value of @, E[z|6] is the value that would be
used for E[Z] if 6 were known to have the
postulated value).

In this investigation Eq. (1) is to be used as the basis for a
lecrning model; however, modification of Eq. (1) is suggested by the
fact that, if the value of 6 were known more accurately, more confi-
dence could be placed in the value of E[Z].

B. LEARNING OBSERVATIONS

The obvious way to improve the extent of knowledge about 6 is to
perform an experiment, or a set of experiments, to galn information about
the parameters. Let the set of outcomes of some such set of learning

observations be designated by Al' A, cannot be expected to tell

1

*
One of the results of this investigation is to indicate ways of
choosing p(6) when this density is only approximately known.

SEL-63-099 T



exactly what the value of 86 1s, since it has been assumed that 6
cannot be measured accurately; however, it is assumed that the proba-

bility density function of the learning observations is known as a

funetion of 6. If the probability density function of the learning

observations were not known, or if it were not a function of 6, there
would be little to gain from performing the experiments. The probability
density function of the learning obuervations is denoted by p(Alle).*

In the precent study 1t ic alzd assumed that E[Zle] is indépendent
of Al.
to improve the extent of Xnowledge about 8 and does not influence the

Tais may be interpreted as an assumpiion that Al is used only

value: 0 6. (An exemple of an eguivalent assumption is the assumption
that inserting an ammeter In an electric circuit to measure the current
does not change the magnitude of the current; any cther assumption that
the measurement of a quantity does not influence the magnitude of that

quantity is also equivalent.)

C. MORE ACCURATE VERSION OF STATISTICAL EXPECTATION

The information is now available to compute a more accurate version

*

of E[Z]. First, Beyes' rule™ is applied to obtain

o~ [e) p(9)
p(6]ry) = —2 (2)

/ p(ﬁlle) r(e) do

N

*A quantity of tue form of p(Alle), when treated as a function of
8, 1is often called a "likelihood" rather than a "probability density.”
As a function of Ay, for tixed 6, p(A;]|6) has been defined to be
a probebility density. As 2 function of 6 for rixed Ay, however,
p(21]6) 1is not a true probability density: although it satisfies one
of the requirements for 2 probability density by being non-negative,
it does not normally satisfy the reguirement ol integrating to one,
In the subsequent discuscsion the term "probability density” will be
used when guantities of the form of p(Alle) are considered as func-
tions of observations, while the term "likelihood" will be used when
such guantitiec are considered as functions of 8.

*%
Bayes' rule is the standard equation for computing conditional
probabilities. It may be found in any textbook on probability theory.
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where

Al = the outcomes of a set of learning observations used to
gain information about &

n

probability density function of the learning observations
Ay (when treated as a function of A, for fixed 8)

p(n |6)
= likelihood function of 6 (when treated as a function
of § for fixed Al)‘

(this quantity is assumed to be known as a function of
both Ay and 6; it is used as a likelihood function
in B2 (2))

p(8) = a priori probability density function of @

p(e|n)

a posteriori probability density function of 6
(this function is assumed to be evaluated in the
light of A by Eq. (2))

The new expectation for 2 1is then calculated as

B(zfa ] = | Bizle] p(ela) a0 (3)
where:
E{ZIAl] = the statistical expectation of 2 incorporating the
‘ information geined from the cbservations Al
= the conditional expectation of Z given the observations
F[Zle] = the conditional expectation ¢f 2 given 6, expressed

as a function of 6, and assumed independent of Al.

This calculation completes one stage of the learning process. A
more sccurate version of E[Z] has been obtained, but it may be desired
to obtain a still more accurate version. This even more accurate version
can be obtained by repeating the previcus process. Another set, A2,
of learning observations is taken; p(GlAl,A?) is computed by Bayes'
rule; and this density is used to compute Efzj/i’Ag]' Then a third

set, A of learning observations is taken and the process is

3}
repeated. The progressively developing results of the learning process

can be expressed in terms of the three sequences:

{ . }-——»{ r }-——o-{ A shy }———-etc.; (L4a)
p(6) —=p(6|A ) —=p(6]\,4;) —= ete.; (o)
E[z] —=B[a[A ] —=E[Z[A,A,] —= etc., (4e)

SEL-63-099 -6 -



In the most general case a model for the learning process can become
complex. The computations to be performed at any time may depend on the
entire set of priori observations, as is shown by the genersl form of

Bayes' rule

p(A 180y, oo q) p(BIA, oo A L))

P(elAl) cer A) = e
n \J/ p(AnleJA]_’ e An-l) p(GIAl‘; cee An-l) de
(5)

Equation (5) indicates how the new probability density for 6 can

te computed from the old density; but the computation requires that the

probability of An be known as a function of 6 and of all. the previous

. {n-l)' It is often possible to

simplify this computation, however. If it be assumed that the different

observations, i.e., as p(Anle,Al, ..

sets of learning observations are conditionally independent (of each

other) given 6,* Eq. (5) can be simplified to

(7 ]|6) p(B|Ay, voe A L)
ol o ) =l B o ey (6)

/ p(n l0) p(6fA, «ov A ) do

*
With this assumption of conditional independence, for any two
different sets /\i and Aj’

p(1,0,) = [ p(a,n,10) 2(6) a6 = | p(n]6) p(a, lo) p(e) a0

while

p(8,) 2(1)) = | [ 5(n10) p(6) p(s,|2) 2(8) aseg

Comparing these two equations it is seen that in general

p(a05) # p(2) p(ay)

If p(6) 1is a delta function, however, the inequality becomes an
equality. Thus, this conditional-independence assumption may be inter-
preted as an assumption that, if 6 were known, the A, would be
statistically independent of each other. With 6 unkn%wn, however,
the statistical dependence of each A, on 6 introduces interdepend-
ence among the Ai themselves. This interdependence among the A,
makes the learning process possible; the interdependence insures thHat
statistical information relating to the value of 6 1is available in
the learning observations.

-7~ SEL-63-099



wherein:

p(@l/l, vee fh)

a posteriori probabllity density of 6,
evaluated in the light of the le=arning
observations Al, tes An

p(A f@) = likelihood function on 6 given by the nth
n set of learning observatlons

p(G]Al, . An-l) = probability density 21 68, evaluated in the
light of Al, . An-l

= a posteriorli prcbablility density after n-l
sets of learnin_ cbservations

= o priori probability density just prior to
"

taxing n*0 set of learning observations.

Expending Ea. (3) to lncl.de the improved densiity calculated from
3. (6), results in

. . .
E[Z[Al, . o E[Z]6] p(@]/i, v An) a0 (7N

wherein E[Zl@‘ is assumed independent of Al’ e An.

D. IMPLEMENTATTION OF LIARNING MODEL

The lu:rning process indicated by Eg. (7) can be implemented as
chove: in Pir.re 1.% The process is reiterative, with the same computa-
tions performed alter obtaining each set of learning observations, but
with the probabilivy aencity > 0 updated each time it is used in the

computat Lo,

UNIT £720:1
DELAY (ASSUMED |NDE-
: PENDENT OF \,)
\ (I:OMPUTER MULTIPLIER- |
/ APPLIES INTEGRATOR ElZIA, ... A
| BAYES' RULE, . =B [APPLIES . X -0
Eg. (6)] PEIA, e ) €0. (7)] [FRow EQ. (7)]
[FRomM EQ. (6)]

FIG. 1, MODEL FOR LEARNING PROCESS.

.X.

For a model applicable in the more general case, where the
conditional-independence assumption is not involved, see Chapter V,
Section P.
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The special case covered by Egs. (6) and (7) and Fig. 1, though
subject to limitations because of the assumption of the conditional
independence of the learning observations Al, e Ah’ is an important
one; in fact, it is the case of primary interest in this investigation.
Many of the results of the study are valid for more general cases, how-
ever; hence, in the development of the theory of the learning process the

possibility of more general results is indicated.

E. DISCUSSION OF LEARNING MODEL

Tre learning model proposed herein is only one of many possible
models. Before it is analyzed in detail some of the implications of
the model should be discussed.

In preposing the model a Bayesian approach to the learning problem
is used. This approach is often criticized as relying too much on sub-
jective information, especially in the choice of a priori probability
distributions. A priori informetion is seldom exact, so that the
a priori probability distributions are normally fairly arbitrary.* On
the other hand, Bayesian methods usually allow the use of all available
a priori information, even if some subjective elements are involved.
Such methods are often applied in cases where the information available
is subjective; yet these methods have been found to give reasonable
results. A detailed discussion of the implications of the Bayesian
approach is given by Savage [Ref. 6].

The model analyzed in the present investigation can also be con-
sidered to be a decision-theory model. The methods of statistical de-
cision theory (a theory that has been developed largely on Bayesian
lines) normally involve assuming a priori probability distributions,
performing experiments to obtain additional information, then making the
type of computations indicated in Fig. 1.

If the model illustrated in Fig. 1 is considered as a model of a

statistical-decision-theory computation, the techniques of decision

*One of the most important results of the work reported here is to
indicate reasonable methods for choosing o priori probability func-
tions. The methods, though rational, do not remove the subjective
element from the a priori Judgment, however.
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theory can be used to optimize the performance of a physical or other
system under consideration. At least, the performance will be optimum
if the correct assumptions are made in the analysis. Since, as noted
above, some of these assumptions are almost always subjective, the form
of the "optimum" system found by one person may differ from that obtained
by another. It can be said that, if the assumptions made by a particular
investigator for the analysis are the best that his knowledge allows him
to make, then the system performance is, to the extent of his xnowledge,
wptimum; btut claims strcenger than this are not defensible.*‘ As the
number of learning observations increases, however, the subjective ele-
ments become relatively unimportant, since the a posteriori proba-
bility distributions®* become largely independent of the a priori
distributions [Ref. 5].

A characteristic of the Bayesian approach that distinguishes 1t
from most other approaches to the learning problem is the fact that no
specific value of the unknown parameter 6 is selected at any one time.
Kather, a probability distribution p(6) over the possible values of
6 1s always considered, and the expectation of the performance criterion
is computed based on this distribution [see Egas. (1), (3), and (7)].
Another approach to the problem woull be to estimate a specific value of
€ in some way, then to use the estimate as if it were the true value
of 6. The two approaches are normally equivalent in the limit as the
nomber of learning observations increases without limit. The common
ectimeves of 6 (for example, maximum-likelihood estimates or Bayes
ectimetes) converge in the limit to the true value of the parameter,
thic convergence taking place with probability cne. Similarly, it will
be shown that the probability density function p(elAl, oo An) obtained
in the learning-process model developed in this paper converges with
probability one to a delta function at the true value of 6. Except

for this limiting case, however, specific values of € are not selected,

*
This interpretation is similar to the '"personalistic" interpretation
of probability theory advocated by Savage [Ref. 61].

*%
I.e., the probability distributions obtained at the end of the
entire sequence of computations.
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although the probability densities discussed in connection with the
learning model would probably be useful in arriving at a specific
estimate of 6.

The significance of the use of a probability distribution p(8)
over the possible values of 6 deserves some comment. A number of
interpretations of the significance of this distribution are possible.
For example, 6 could be considered to be chosen from an ensemble of
possible values according to the probability density p(6); or the
assumption might be made that the uncertainty about 6 is caused by
some noise (i.e., irrelevant interference) in the selection process.
Or, without any explanation at all, it may simply be considered that
6 1is & random variable representing available knowledge of the urknown
parameter, The result of the procedure is probably more important than
its justification. The essential point, no matfer how interpreted, is
that the parameter 6 1is basically to be treated as a random variable.
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III. THE LEARNING PROCESS AND PROBABILITY DISTRIBUTIONS

A. FEARLY STUDIES OF THE LEARNING PROCESS

Earlier investigators have analyzed a number of examples and special
cases of the learning process [Refs. T-17]. Some of these earlier in-
vestigations furnished the impetus for developing the more general
learning model proposed in the present paper. Examples of special
interest are those that fall within the special case covered by Eg. (7)
and Fig. 1, wherein the learning observations are assumed conditionally
independent given 6. TImportant examples of the learning process involve
the application of learning techniques to the pattern-recognition prob-
lem. The analysis of the pattern-recognition problem, per se, is only
of peripheral interest at this point, but the problem does present an
interesting challenge to the learning technique. Therefore, enough of
the theory of the pattern-recognition problem will be developed to show
that the learning model illustrated in Fig. 1 is applicable (with minor,

theoretically insignificant, modifications).

B. THE PATTERN RECCGNITION PROBLEM

It is assumed that there exist r possible patterns, designated by
the indices 1, 2, ... r, and that it is desired to classify an observa-
tion X as representing one of these patterns. The criterion of excel-
lence 7 is taken as the fraction of the patterns identified correctly.
Thus, E[Z] is the probability of correct identification.*

Clearly, E[Z] cen be maximized by maximizing its value for any
given observation. That is, for any given X, the conditional expecta-
tion E{Z}X] is to be maximized. But E[ZIX] is the conditional proba-
bility of correct identification given the observation X and hence is
maximized if the pattern with highest probvability of being correct is
chosen. Putting these requirements together, it is found that the

optimum strategy, or the strategy with meximum probability of correct

*

This is the criterion obtained with a statistical-decision-theory
approach and & zero-one loss function (i.e., zerc loss for a correct
decision, loss of one unit for an error).
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identification, is to picx the pattern for which the conditional proba-
bility P(i|X) is meximum. This strategy can be implemented by com-
puting P(i|X) for each 1, or pattern class, then feeding the results
of these computations into a comparator that selects the class for which
P(1|X) is maximum. This leads to the implementation shown in Fig. 2.

A few modifications of the procedure indicated in Fig. 2 are normally
made in implementing such a system. Expanding P(ilX) by Bayes' rule:

Xji) P4 (8)

P(1]X) = =T%

wvhere:

P(i|X) = a pocteriori probability of the ith pattern class given
the observation X [this funection is‘assumed to be
evaluated in the light of X by Eg. (8)]

p(Xli) = conditional probability density of the observation X
given that the ith pattern is being observed (this
density is assumed known as a funection of X for any
pattern class--at least, in the conventional pattern
recognition problem being discussed at this point it is
known)

P(i) = a priori oprobability of the ith pattern class

(this probability is also assumed known for each pattern
class in %the conventional problem)

IST
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FI1G. 2. PATTERN-RECOGNITION SYSTEM.
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p(X) = unconditional probability density of the observation X
(the availability of this density is unimportant as the
discussion below shows that it is not actually needed).
Since p(X) does not depend on 1 it can be discarded as a variable
and attention can be focused on maximizing p(XIi)P(i). It is further
assumed (for simplicity) that all P(i)'s are known and egual, so that
all that remains is merely to maximize p(X|i).
The earlier work on the pattern-recognition problem [Refs. 7-10] has
been bvased on the computation of p(X|i) when some parameter 6, in
this probability-density function is unknown. The basic equations are

slight modifications of Fgs. (1) and (7).%

p(x]1) = | o(x]1,6,)(e,) ae, (9)

p(xll,Ail, e Ain) =¥] p(Xll,Qi)p(GilAil, e hin) as, (10)
The /ﬁj are assumed to be sets of learning observations from the
ith  pattern class.
Uince the procedure for all pattern classes is identicul, the

subseripts 1 are now dropped to simplify notation.

C. OTHER IXAMPLES OF THE LEARNING PROCESS

Abramson and Bravermun [Refs. 7-9] have been primarily concerned

with the case where p(X) is known to be Gaussian, p(X) ~ N(M ,K),*

¥

It would be simple to make the correspondence between Egs. (l) and
(9) and between Egs. (7) and (1D) more exact by defining random variables
with expectations p(X|i) and p(X|1i,Ai1, -+ Ain)-

*Symbols that represent matrices (including vectors) arc in boldface
type. When a symbol ic used to represent a variable that could be either
a real number or a vector or matrix (for example, the penercl purameter
8), ordinary type is used, however. The notation p(X ) ~ N(M ,K )
may be read, "The probability density of the vector X (uactually the
Joint density of the components of X ) 1is normally distributed (or
Gaussian) with mean vector M and covariance matrix K ."
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with the covariance matrix K known but the mean vector M  unknown,
In other words, Abramson and Braverman's unknown parameter 6 1is the
mean vector M of a Gaussian density. They assume & Gaussian a
priori density for M , p( M)~ N(p.o,¢o) and. cbtain an & pos-
teriori density, p(M ]Al), which is also Gaussian, p(M lAl)

~ N( [Ll,¢l) with H, and ¢l easily computed from K, ¢O’

and /1. The densities for X , both a priori and a posteriori,

are also Gaussian, p(x ) ~ N( Ko P + K ) and p(x ]Al)
~N(Fl,¢l+ K ).

The second stage in the learning process under study illustrates
why this particular process is feasible, Since p( M fAl) is of the
same form as p(M ) (i.e., Gaussian), and the second stage involves
the same computations as the first stage with p(M [Al)‘ substituted
for p(M ), Gaussian probability densities are again obtained for

M and X . By induction it is seen that this will happen after

each set or learning observations. Hence, the form of the learning

cystem remains fixed as more learning observations are taken.

After each set of learning observations An, the new mean 7
for the density on M is computed as a weighted average of Fh-l
and the average of the observations in An. In the limit, as the
number of learning observations approaches infinity, B approaches
the average of all the learning observations. It is known, from the
strong law of large numbers [Ref. 18], that with probability one the
averare of the observations approaches the true value M 5 of the
mean. At the same time, the elements of the covariance matrix ¢
approach zero. Thus, the limiting form of p(M lﬁi, . An)‘ is
N{ M O,o). Comparing this with the multivariate Dirac delta function,

it is found that the limiting form of the a posteriori density onM

ic a Dirac delta function at the true value of the mean.

If this delta function is put into the equation for p(X l‘Al, An),
it is found that the density approaches the form for known parameters.

Hence, the entire system converges to the form it would take if the

parameters were known.

The solution for the problem of learning the unknown mean was ob-

tained in a fairly simple manner. The assumption of a Gaussian a priori
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probability density on M is the obvious assumption to make since

M is a parameter in a Gausslan density. Thils assumption gives
Gaussian a posteriori densities on M , and insures that all the
densities required are Gaussian.

Keehn [Ref. 10] has analyzed a similar problem and obtained similar
results., For his problem the assumptions that keep the form of the
learning system fixed are less obvious, however. Keehn has analyzed the
problem of learning the covariance matrix K for a Gaussian density
when the mean vector M 1s known.

The key assumption necessary to solve the unknown covariance problem
is the assumption of a Wishart a priori density over the elements of
the inverse covariance matrix K_l.* The a posteriori density on the
elements of ii' is also Wishart, with new parameters calculated from
the old parameters and the learning observations. The limiting form of
the a posteriori density is again a Jdelta function at the true values
of the unknowvn parameters, in this case the true values of the
components cof the inverse covariance matrix.

The prcbability density for X  turns out, in this case, to be @
Student density instead of the Gaussian density one might expect. As
the number cf learning observations approaches infinity, however, the
limiting form of the Student density becomes Gaussian with the true mean
vector and covariance matrix., Hence, the limiting form of the a pos-
teriori dJdensity on X 1s as desired.

Keehn has analyzed in o similar manner the case where both K  and

M are unknown. He obtained analogous results by assuming a composite
Wishart-Gu.ssian density on the elements of K-l, M.** The a pos-
teriori density is also of this composite form and converges to a delta
function at the true values of the unknoyn parameters. The density on

X is a modified form of the Student density, which approaches the

true Gauscian density.

* .
The form of this density is given in Chapter VI, Table 2, Case v,

*%
The frrm of this density is given in the Appendix, Kq. (A-T).
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D. FEASIBILITY OF THE LEARNING PROCESS AS DETERMINED BY
PROBABILITY DISTRIBUTIONS

The examples cited above illustrate one method of guaranteeing that
the learning process is feasible. If it is possible to pick an a priori
density p(8) for 6 such that the a posteriori density p(elAl, "'An)
is of the same form (e.g., both Gaussian or both Wishart), then the Bayes'
rule computer merely computes new values for the parameters describing
the density on 6 in terms of the old values and the learning observa-
tions. If the form of the density is preserved after one set of learning
~Teervetions, the arguments used for the Gaussian case show that it is
preserved no matter how many learning observations are taken. Hence,
the learning process is feasible in the sense under consideration--i.e.,
in the sense that a fixed form of computations is applicable throughout
the entire process.

The learning process is considered to be feasible if the computations
necessary after taking learning observations are fixed, neither the
number nor the forms of the computations changing. This requirement of
a fixed set of computations is imposed from the point of view of engineer-
ing feasibility. If the system can learn by performing a fixed set of
computations after each observation period, the engineering problems in
designing an actual system may be soluble; if the system has to be repro-
grammed periodically, or if the number of computations necessary grows

without bound, the design problems almost certainly are not soluble.

1. Reproducing-Type Distributions

In the present investigation, probability distributions that

preserve their form under Bayes' rule, i.e., for which the a priori

and a posteriori distributions have the same form, will be designated

gs "reproducing-type distributions."” Besides the investigators mentioned

above, a number of other persons have utilized distributions of this
type. Bellman [Ref. 11] has utilized a beta density for learning the
parameter characterizing a binomial distribution; Mosimann [Ref. 12}
has utilized the "multivariate beta” or Dirichlet distribution for the
parameters of a multinomial distribution; Turin [Ref. 13] has used the

"generalized Rayleigh" or Rician density for learning the amplitude
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and phase characteristics of a radio chennel; and Kailath [Ref. 14) has
utilized & Gaussian distribution for learning the unknown mean of a
Gaussian distribution, obtaining resulis similar to those of Abramson
and Braverman in a different manner. None of these workers give methods
for finding reproducing-type distributions, however. The only general
method of finding reproducing-type distributions that has been found in
the literature is that of Raiffa and Schlaifer [Ref. 15]. These authors
discucss an important class of reproducing-type distributions--a class
that includes all the reproducing distributions mentioned above save the

Rician distribution utilized by Turin.X

2. Nonreprcducing Distributions

Lest the reader gain the impression that reproducing-type distribu-
tions alweys exist, so that the problem is merely one of finding the
appropriate reproducing distribution, attention is called to one example
of a case where no reproducing distributions exist. This example is
taken from a problem studied by Daly [Refs. 16 and 17], which is similar
to the problems studied by Abramson, Braverman, et al. The chief
difference between Daly's problem and the cases hitherto mentioned lies
in the form of the information given to the learning system during the
lewrning process. An important assumption in the analysis of the
examples previously considered has been the assumption that the learning
observations were classified--i.e., the system was told to which pattern
each learning cbservation cerresponded. This assumption made it possible
to state that the A,, in Eg. (L0) consisted of samples from the ith

id

B Daly assumed that the system was not given this

pattern clars

*
The forms of all these densities, including that used by Turin, are
derived in Chapter VI and in the Appendix.

**In a typical application of this theory the system would be given
a selt of classified patterns during a training period, then would be
told to identify unclassified patterns later. In a few cases the correct
classification of patterns might be available with a slight delay, with
a decision needed earlier. The same technigues could be used as in the
first case, but with the added possibility of indefinitely continuing
the training period.
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information, either during the learning process or during the recogni-
tion process. The two problems may be distinguished by calling the
former the "perfect-teacher"” problem and the latter the '"no-teacher"
problem,

A simple example of the "no-teacher" problem would allow for two
alternative hypotheses: either (1) both noise and a one-dimensional
signal of unknown magnitude m are present; or (2) the noise alone is
present. Assuming Gaussian noise distribution with zero mean and
variance J2, and assuming also that the two hypotheses are equally
probable, the conditional probability density of an observation X

given m isv

p(X|m) = % - (exp -(X~m)2/2tr2 + exp -X2/202} 1) <

Vex o

If an & priori probability density p(m) is assumed and if a
set Xl’ oo Xn of measurements chosen according to the density

given by Eq. (l1) are used as learning observations, it is found that

p(Xi, ces Xh]m) p(m)

p(mfx,, ... X ) =
)/.p(Xi, cvo X |m) p(m)dm

igl (exp -(Xi-m)2/2cr2 + exp - Xf/Zcz}p(m)

= — 12)
2,,2 2
/iI_—Il {ex‘p - (Xi-m) /206° + exp -X§/20' }p(m)dm
In each of the earlier examples the a posteriori density
p(elfl, e fh) was expressible in terms of a fixed number of parameters

no matter how many learning observations were taken. Thus, the form of
the density did not change as *the learning observations progressed. In
the cace of learning a Gaussian mean M , only two parameters, Fh
and ¢n’ were necessary. Since the Wishart density is expressed in

terms of a fixed set of parameters, a similar situation was true for
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leaurning the covariance matrix K or for learning both M and
K. Thic i. not the case with the density in Eq. (12), however. In
fact, no nondegenerate form for p(m) has been found that allows
p(lel ’ys Xn) to be expressed in terms of fewer than n parameters
(one for each Xi)' It is shown in Chapter VI, Section D, that expres-
sion in terms of fewer thau 1. parameters is impossible with any non-
degenerate p(m); hence, the form of the density keeps changing as long
as the learning observations are contirued.

The cxample of the "no-teacher” problem clarifies what is meant by
caying that the a priori and a posteriorl densitlies are of the same

form; this reguirement must be interpreted to include cxpression of the

densitiec in terms of o ixed number of parameters. Otherwise, the

density in Eg. (12) might conceivably be considered to be reproducing,
since the expression in the last part of this equation 1s always valid.
The example alco indicates that it cannot automatically be assumed in

any partlicular case that reproducing-type densities exist.

E. PROBLEMS FOR FURTHER INVESTIGATTON

Ixamples of the learning process studied in this chapter have
deseribed three main problems:

1. To find senernl condition: under which the a posteriori
probability density approaches a delta function at the true
value of the unzxnown parameter.

2. To find conditions guarunteeling the existence of reproducing-
type probability distributions.

5. To Iind the form: of any reproducing-type probability
distributions that may exist in a particular case.

These problems are investigated in the following chapters.
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IV. CONDITIONS UNDER WHICH THE A POSTERIORI DISTRIBUTION
APPROACHES A DELTA FUNCTION

This chapter considers the first problem posed at the end of
Chapter III: to find general conditions under which the a posteriori
probability distribution approaches & delta function at the true value

of the unknown parameter.

A. THE CONVERGENCE THEOREM

In each of the cxamples of learning processes Zdiscussed in Chapter IIX
the limiting form of the a posteriori density p(elAl, . Ah) as
n increases is a delta function at the true value of 6. The conditions
needed to insure that this is so are simple: it must be possible to
calculate the true value of 6 from an infinite sequence of observa-
tions, and this true value must not be ruled out by p(6), the a priori

probability distribution on 6. More rigorously:

Theorem I. Assume that the following conditions are satisfied:
1. 60 is the true value of 6
2. The a priori density p(6) >0 in some sphere containing &,

3. The a posteriori densities p(elhl, ces Ah) are calculated by
Bayes' rule

L. There exists a sequence of functions f (Al, «+s A} converging
X o n n
to 60 with probability one.

Then p(el‘Al, An) - 5(6 - 90)‘ with probability one, where &(6 - eo)

is a Dirac delta function (of the same dimension as 6).

Proof: Theorem I is an immediate consequence of the zero-one law
of probability theory as stated by Lodve [Ref. 18, p. 398]. The state-
ment of this law used here is, "The sequence P(BlYl, ces Yn) of
conditional probabilities of a property B of the sequence Yl, Y2, e
given the first n terms of the seguence converges almost surely to
1 or O according as the sequence has or has not this property." If
B 1is a sphere in the range of 6, then the event that
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= 14 *
6, = lim fn(Al’ . An) € B

-0

is an event defined on the Ai and hence satisfies Loeve's definition

of a "property" of the sequence. Therefore,

B(Blapy ve ) = | 6y, oo n) 0—1or 0 (13)

B

according as 6 1is or is not in B. FEquation (13) is equivalent to
the statement that p(elAl, ces An) converges to &(6 - eo).**

3ince Thecrem I and its proof are fairly abstract, the significance
of the assumptions should be pointed out. Assumption (4) guarantees
that the event that 90 € B is a property of the sequence. Assumption
(1) guarantees that this event is true, or that the sequence has the
desired property. Assumption (3) guarantees that the correct forms are
used for the a posteriori probabilities, since these probabilities
are calculated by the standard methods of probability theory. The
other assumption, number (2), is hidden in Loéve's statement of the zero-
one law. In all of the material he treats, Loéve assumes the events
considerad have-positive probability. Assumption (2) insures that
this is true.

From the definition of the Dirac delta function and Eq. (3) there

ig derived the important

Corollary: If the assumptions in Theorem I are satisfied,
E[zlAl, e An]-+ E[zleo] with probability one, where 2 1is a random

variable representing a selected performance criterion.

*
The symbol € in this equation should be read "is in" or "belongs
to."

*ﬁTheorem I is based on Theorem 5.1 of Braverman [Ref. 7, p. 29].
The material just presented comprises a more precise statement of the
theorem and simplifies the proof. The proof is still quite abutract,
however, despite its deceptively simple appearance. Those readers
unable to follow the proof completely mey treat it as a plausibility
argument.
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This corollary indicates that the entire system approaches the form
it would take if eo were known to be the true value of 8.

B. DISCUSSION OF THEOREM

Theorem I is more general in its import than may at first be
apparent. No statements have been made as to whether a "teacher" is
present or not. It has not been required that any type of independ-
ence hold, nor does Loeve require independence for his theorem. It is
merely required that the sequence of functions fn(Al, .o An) exist.
Such a seguence can exist either with or without a teacher, either with
or without independence.

The requirement that this sequence of functions exist is simply a
method of saying that the true value of 6 must, with probability one,
be determinable from an infinite sequence of learning observaticns. If
it be assumed that the sets of learning observations consist of single
oObservations, i.e., Ai = {Xi> » and that the Xi ere conditionally
independent given 6 (the same independence assumption used in Chapter
II), this requirement can be put into a more easily visualized form. In

this case if a function of a single observation, f(Xi), such that
E(£(x;)|0] = 6, (14)

exists, then by the strong law of large numbers,

o
L) s(x)—0, (15)

with probability one, where 90 is the true value of 6.%

*In applying the strong law of large numbers to this case, it is
necessary to recall the earlier interpretation of the requirement that
the Xj; Ybe independent given 6. In Chapter II, this requirement was
interpreted to mean that if 6 were known the Xi would be independent.
The knowledge available about € does not affect the convergence of
Eq. (15); so the strong law is applied as if it were known that 6
equals eo.
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As an example, in the case of the unknown mean of a Gaussian
distribution, the sample average

i=l

converges to the true value of the mean with probability one. Similsrly,
for the case of an unknown covariance metrix, the sample covariance

matrix

n‘
) (X, -m ) (X, - m)

n-
i=1

converges to the true covariance matrix with probability one.

Theorem I can also be applied to the simple example of the "no-
teacher" problem discussed in Chapter III. For the density given by
Eq. (11),

E[X|m] = % m. (16)

Hence, by Egs. (14) and (15)

Biro

i Xi---.mcz (17)

i=1

with probability one, where mO is the true value of m. This result
agrees with Daly's application of limiting arguments [Refs. 16 and 17]
to show that the limiting form of the optimum system is the form it
would teke if m were known.

As the conditions of Theorem I are met for most probability distribu-
tions of practical significance, this theorem provides reasonably general
conditions insuring that the limiting form of the a posteriori density
is a delta function at the true value of 6. Thus, Theorem I affords a
solution to the first of the three problems posed at the end of Chapter
IIT.
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C. ILLUSTRATION OF CONVERGENCE

An illustration of the manner In which the a posterlori density
approaches & delta function is given by Fig. 3. In this figure are
plotted probability densitles for the paremeter P ¢characterizing a
binomial distribution. A uniform a priori density over the interval
from O to 1 has been assumed, and the a posteriorl density
p(P[A‘, ves An) has been plotted under the assumption that equal

numbers (1, 2, 4, 8 and 16) of occurrences of each of the two possible
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cvents have been observed.” The conclusion from the plot is that the
value of P becomes known more and more accurately as more observations
are taken--this 1s illustrated by the continuously decreasing width of
the plots in Fig. 3--with the {true value of P Ybecoming known exactly
after an infinite number of observations, when the density becomes a

delta function at the true value of P, P = 1/2.

*Since the a priori density p{P) 1is uniform and none of the a
posteriori densities are uniform (in this case all of the a posteriori
densities are beta), the a priori density in this example is not
reproducing-type. However, since all the a posteriori densities are
of the same form, the densities may be considered to become reproducing-
type after one observation. It is shown in Chapter V, Section D, that
a posteriori densities often become reproducing-type after a few
observations even when the a priori density is not reproducing-type.
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V. CONDITIONS FOR REPRODUCING-TYPE PROBABILITY DISTRIBUTIONS

This chapter attacks the second and third problems posed at the end
of Chapter III: namely, the problem of finding conditions guaranteeing
the existence of reproducing-type probability distributions, and also the
problem of finding the forms of any such distributions that may exist.

A reproducing-type probability distribution has been defined as one
in which the a posteriori distribution p(GlAl, cee Ah) has the same
form as the distribution p(6) assumed a priori, the two distributions
being related through Bayes' rule applied in the light of a series of
learning observations A, ... A (Egs. (2) and (6)). The first step

in the present study, therefore, is to find a convenient method for

analyzing the form of p(GlAl, - An) in any particular case.

A. FACTORIZATION OF A POSTERIORI DENSITY (ASSUMING LEARNING
OBSERVATIONS ARE CONDITIONALLY INDEPENDENT GIVEN 6)

A principal difficulty in analyzing the form of the a posteriori
probability density p(elAl, cee Ah) as it is given by Bayes' rule
arises from the arbitrary nature of the a priori density p(6). The
only real requirement put on the a priori density is that it be a true
probability density; hence, it must be non-negative and integrate to
one. Since p(8) 1is involved in the computation of each of the a pos-
teriori densities p(elAl, ces An)’ this introduces scme arbitrariness
into each of these a posteriori densities. This may be illustrated by
writing Bayes' rule in terms of the likelihood of the complete sequence

of sets of learning observations, i.e., in terms of p(Al, ‘e Anle):

s eee 6 6
20l v A) = Pty -l @) (18)

-~

J p(Al, s Anle) p(0) do

Fortunately, the expression in Eq. (18) for the a posteriori
density may be factored in a manner that simplifies analysis of its

form,
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Theorem II: Assume the likelihood p(Al, ces Anle) is greater than
zero and is an integrable function of 6. Then p(elAl, oo \n) can be

expressed as

p(O]1s, -v A = B(O]A, oo A) - ﬁ[p(e)};i) — a9
y o xn
where
R p{Ay, ... A_|6)
p(8fA, o n) = 2 - (20)

fp(.«l, Anle) ae

is a probability density on 6 depending only on the observations, and
where ﬁ[p(e)lAl, . An] is the expectation of the a priori density
p(6) taken with respect to the density ﬁ(eIAl, v An). Further, if
p(8) 1is bounded and p(eo) >0, then

p(0]ay, ... n)—e5(6 - 6) (21)
with probability one if and only if
p(e1Al,... An)-.a(e - eo) (22)
Proof: The function ﬁ(al:\l, An) is by its definition in Eq.
(20) = legitimate and well-defined probability density, since it has

been assumed that p(Al, cee Ahle) >0 and is integrable. Rewriting
Eq. (18) in the form

p(.’\l) oo /\nle) P(e)

' (A, --. A1)
fp(Al, .. ale) a8 j ! 2 p(9)de
fp(/\l, AnIG) a8

P(el\"\l: v /\n) =

(18a)
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and incorporating the definition of ﬁ(GIAl, ces An) in Eq. (20) it is
seen that p(9|A1, ... A ) may be written in the form in Eq. (19).

n
To prove the convergence portions of Theorem II, assume
ﬁ(eI\l, . An) -+ 5(8 - eo) as specified in Eq. (22). Then, since
p(eo) >0 by assumption, and ﬁ[p(e)lAl, cee Ah] approaches p(eo)
as p(GIAl, o A)»8(0-6),
e‘
p(8[A, .. A) - 5531; 8(6 - 8,) =5(6 - 6_) (23)

Conversely, if it be assumed that p(elAl, - Ah) -8(6 - 90), then
Eq. (19) indicates that

Blolay, .o A)) = ple]ay, ... a) Elp(8)|A), ... A 1/p(8)

~8(0 - 0,) Elp(8) |A), ... A 1/p(6) (24)
Since ﬁ[p(e)IAl, «++ A] is a constant and p(6) has been assumed to
be bounded, Eq. (24) can be valid only if ﬁ(eIAl, e Ah) -5(6 - 6,).
The density ﬁ(elAl, ces Ah), which might be called the "experi-
mental portion” of the a posteriori density, is simply a normalized
version of the likelihood. It is a function of Al’ cee /\n as well
as of 6, but it is here assumed that the observations have been made
and Al’ ‘e Ah have been replaced by the results of the observations.

Under these conditions, ﬁ(elAl, cee Ah) is a function of the single
variable 6.

The integrability condition on p(Al, o Ahle) in Theorem II is
normally fulfilled for large n, as this density tends to become more

and more concentrated near the true value of 8, so that the effective
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rance of integration is small.,® 1In all cases thus far encountered for
which the technigues of Theorem II are applicable, p(Al, coe Anls)
becomes intesrazble after a few observations (typically one or two) and
remains intesrable as more observations are made. Unless otherwise

stated, it will henceforth be assumed that this integrabllity condition

is satisfied,
A —————————

B. EXPERIMENTAL PORTION OF A POSTERIORI DENSITY

Theorem II indicates that, at least after a large number of learning
cbservations, the behavior of p(GIAl, cee Sh) is primarily determined
by the "experimental portion” ﬁ(e[\l, cee An). Also, the latter density
is less arbitrary and consequently easier to work with than is the basie
function., The conditions that must be satisfied for the "experimental
portion’ of the a posteriorl dJdensity to be reproducing are now to be

investigated.

Definition No. 1: The & priori density p(6) is said to reproduce
itself with respect to the likelihood p(AllG) if p(e) and the

*Lindley fRer. 5] has shown that with any reasonably smooth a priori
density, the limiting form of the a posteriori density is independent
of the a priori density, being Gaussian with means at the maximum
likelihood values and with variances decreasing as 1/n. (Another type
of density, possibly a reproducing-type density, may approximate the
a posteriori density slightly more accuracy, but both this density and
Lindley's Gaussian density approach each other and the delta function
limit of Theorem I.) A general proof that the effective range of
integretion approacnes zero is easily deduced from Lindley's result.

The limiting form Lindley obtains is almost identical to the
limiving form for the probability density of a maximum-likelihood esti-
mate., This latter density can be found in many standard statistics
texts. An alternative approach to proving that the effective range of
integration approuches zero could be based on these maximum-likelihood
analyses.

An illustration of the manner in which the effective range of inte-
gration for p(Ay, ... /,|6) approaches zero may be deduced from Fig.
3. Since in that tigure a uniform a priori density was assumed, the
a posteriori density plotted in the figure is proportional to
p(A1, ... M|6), and the effective range of integration is tke
effective width of the plot.
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8 posteriori density p(GIAl) are members of the same family of
probability densities, differing only in the values of the parameters
characterizing densities in this family.

If p(8) reproduces itself, the result of the Bayes' rule computa~-
tion in the learning process is simply to compute new values for the
parameters characterizing densities in the family, this computation
giving p(e(Al). The next stage of the learning process involves the
same computetions save for replacing p(8) by p(elAl) and using the
set Ae of learning observations instead of Al. If these sets of
learning observations are of the same type, p(elAl) reproduces itself
with respect to the likelihood p(A,|@) if p(@) reproduces itself
with respect to p(Alle). Proceedi;g‘by induction, it is seen that
p(elll, cee An-l) reproduces itself with respect to p(Ahie) it p(e)
reproduces itself with respect to p(Alie).

Thus, under the assumed set of conditions, the fact that p(8)
reproduces itself with respect to the likelihood p(Alle) guarantees
that all the & posteriori densities are members of the same family
of probability densities. At each stage of the learning process the
Bayes' rule computer merely computes new values for the parameters
describing these densities, The remainder of the computations involved
in the learning process, multiplication by E[ZIG] and integration, are
fixed computations (see Fig. 1) and can always be accomplished in the
same manner. Even if the result of this computation cannot be obtained
analytically in closed form, it can be obtained by a fixed procedure of
numerical integration or by electronic integration. Hence, if p(6)

reproduces itself with respect to p(Alle), the computations necessary

for the entire learning process are the same at each stage of the process.

It is assured that the system will not have to be reprogrammed in the
middle of the learning process.

Strictly speaking, the sets of learning observations or the likeli-
hoods p(ALlG) should be included in any statement about densities
reproducing themselves. 1In cases where the meaning is clear, however,
reference will be made to the densities p(8) as being reproducing-type

densities, without specific mention of the learning observations.
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C. DSUFFICIENT STATISTICS

In actial computations of the a posteriori probvabilities, it is
often unnecessary to have available all the individual learning observa-
tions. It otten happens that some functions of the learning observations
will zaffice fur computing the a posteriori probabilities. For
example, the a posteriori probability density for the mean of a Gaussian
distribition given the sample average for the learning observations is the
came as the a posteriori density given all the individual observations.
A funevion of the learning observatlons which, in this sense, contains
all the information in the observations relevant to learning 6 is

called a gufficient statistic for 8. %

In working with sufficient statistics it is considered that they
nre written in the form of & vector with real-valued components. That
ie, if T(Al, cen Ah) is a sufficient statistic for 6, it is assumed

Lhat

T(A wee A) = (tin), ces tglv (25)

where the tgn) are real-valued functions of Al’ cos An' There

follows the obvious

Detinivion No. 2¢ The dimension of a sufficient statistic is the

number of component:s in the vector representation of the statistie.

In the case of learning the unknown meean of & Gaussian density
mentioned above, the sample average is a sufficient statistir~ of
fixed dimensicon (d dimensions if a d-variate Gaussian density is
being eonsidered). In some cases, nowever, the only sufficient statis-

* and no

tle is equivalent to the learning observations themselves™
sufficient statistic of fixed dimension exists. The distinction is of

fundamental lmportance, as indicated by Theorem III below.

*A general treatment of sufficient statistics has been given by
Dynkin [Ref. 19]. Among other things he finds conditions for the
existence of sufficient statistics of the forms needed for this study
and methods for computing such sufficient statisties.

* %
The statistic is equivalent to the observations if the observations
can be computed from the statistic and vice versa.
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It is now possible to state a simple criterion for determining
whether the experimental portion of the a posteriori density is repro-
ducing or not., Since thils density is not defined before observing Al’
the procedure suggested by Definition No. 1 is slightly altered by
checking whether ﬁ(GfAl) reproduces itself with respect to p(A2[9)

or not.

Theorem III: The probability density ﬁ(elAl) reproduces itself
with respect to the likelihood p(Agle) if and only if a sufficient

statistic for 6 of fixed dimension exists.

Proof: To prove this theorem the factorization theorem for suffi-
cient statistics 1s applied [Ref. 20]. The factorization theorem states
that tin), ces tgn)> is a sufficient statistic for @ if and only
if there exict functions f and & such that

(/s -eo A l0) = ¢ <t£n), tin),e)h(/\l, e A) (26)

where f depends on Al’ .o /\n only through tin), cee tgn), and
where h does not depend on 6.

ssume a sufficient statistie of fixed dimension exists and let
(tin), . tgn) ) be such a sufficient statistic. Then, from Eqs. (20)
and 26),

£ <t£“), tin),e)
/ £ (ti“), tén),e)de

plefn, «ov ) = (27)

This is a fixed function of the parameters tin), e tin). Hence, the

ﬁ(GIAl, ces An) differ only in the values ascigned to these parameters
and each reproduces itself with respect to p(A ., [6).

Conversely, assume ﬁ(QIAl) reproduces itself with respect to

p(A2|9). Then there exist r parameters a{n),

g such that

e oﬁn) and a function

Boly, o 0) = & (™ o ogs0) (28)
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since it is known that all of these dencities are ot the same form,
differing only in the values assigned to parameters. From Egs. (20) and
(28),

p(Al, ces AhIG) =g (o{n), cee aﬁ“),e) -L/-p(Al, coe Ahle) ae

(29)

The lact integral 1s not a function of 8, since this parameter is
integrated out of the equation. Hence, by the factorization theorem for
sufficient ctatistics, the o's comprise a sufficient statistic for 6

of fixed dimenclon,

D. REPRODUCING A PRIORI DENSITIES

By combining the results in Theorems II and III, solutions can be
obtained t. the problems of determining when reproducing-type densities
exist and of finding the forms of any that exist.

First, it is noted that the factorization in Eq. (19), Theorem II,
expresses p(elAl, cee Ah) as the product of ﬁ(elAl, ces ‘h) and
another function of 6. Hence, if the densities p(8), p(elAl), cee
are all +, be o the same form, the densities ﬁ(elxi), ﬁ(e|A1,A2), cee
must all be of the same form. Accordiny to Theorem III, this means that
a sufficient ctatistlic of fixed dimension must exist.

Second, it muy be secn that if p(e) is to be a reproducing-type
a priori dencity, 1t must be of the same form as the a pocteriori
denclty p(G[Al, . /h). Hence, p(6) must be a function of tne form
of §(9|A1, . An) multiplied by another function of 6. This condition
is stated by postulating that p(6) must be of the form

p(O]y ee A) 7(0)

\/ p(0n_, o0 A, r(0) A6
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where ﬁ(elA_m, cese AO) is calculated by choosing a sequence of sets

of "a priori observations,” denoted by A-m’ ces AO,* and applying
Eq. (20), and where r(6) is a non-negative, integrable, but otherwise
arbitrary function of 6. **

Conversely, if an a priori p(6) of the form in Eq. (30) be

assumed, there results for the a posteriori density

p(n, «ev ]6) p(6)

p(elAl, o /\n) =

J/rp(Al, Anlie) p(6) d6

p(@l,*_m, e lo,l 3 e L.\n) r(9)

j p(e lA_m, voe Dy Ay e An) r(6) ae

(31)
where use has been made of Eqs. (20) and (30) and of the assumption

that the Ai‘s are conditionally independent given 8. If a suffi-
cient statistic for 6 of fixed dimension exists, the same analysis
used in deriving Theorem III shows that both Eqs. (30) and (3L) are of
the same form, and hence that p(8) is a reproducing-type a priori

density.

*
The "a priori observations" are utilized to represent the available

a priori information. 1In a typical application the sets A_p, ... A9
are sets which are thought a priori to be typical sets of observations,
with the total number of observations in these sets a measure of the
confidence placed in the a priori information (sec Section F).
Actually, of course, only the sufficient statistics for the a priori
observations need be chosen; it is even possible to use sufficient
statistics that do not correspond to physically realizable sets of
observations (for example, a component of the sufficient statistics
corresponding to the number of observations might not be an integer)

if the form of the probability density p(8|/.m, ... A9) 1is unchanged.
If the observations are not physically realizable, the notation of Eq.
(30) may be slightly misleading; it is kept for the aid in visualizing
methods of generating reproducing densities which it provides.

1

**Rather than stating that r(6) itself is integrable, it would be
more accurate to state that the integral in the denominator of Eq. (30)
exists. It will also be assumed that similar integrals, such as those
in the denominator of Eq. (31), exist.
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The following theorem hac now been proved:

Theoremn IVe  Ascume that the sets of observations ;i and Aj’

i # 3, are conditionally independent given 6. Then 2 reproducing-type
a priori density p(6) existc if and only if a sufficient statistic
tor 6 of fixed dimension exists. Any reproducing-type density that
exicts is of the form given in Eg. (30).

Theorem IV is the fundamental theorem in the analysis of reproducing-
type dencities in tii- case where the conditional independence assumption
is catisfied. It ludicates that the learning process can satisfy the
definition of feasibility utilized in this report (see Chapter III,
Section D) if and ouly if a sufficient ctatistic of a simple form exists.
It alr, glves & method for generating any reproducing-type densities that
du exist., ALl those that exlist can be generated by taking a funetion of
8 of the form of the likelihood, p(A_m, oo Aole) of possible sets of
sboervations, multiplying by an arbitrary non-negative function of 6,
and then normalizing. In deriving Eg. (20), this normalization was done
in tw. steps, first normalizing p(A_m, . Ao|9) to obtain
ﬁ(elA_m, cen /b)’ then mdiiplying by r{8) and renormalizing. A
one-step normalization will suffice, as putting the definition of
ﬁ(elA_m, . AO) [Eq. (20)] into Bg. (30) gives

p(A 5, ..o 0 |6) r(8)
= 2 (302)

p(8) = -

/ p(A_m, ces Aole) r(e) de

Similarly, By, (31) may be rewritien as

p(/\ ) eesw ) 3 .../\)‘ I‘(Q)
p(B]A, vee i) = = 0 = (312)

f

! p(A_m, cee Doy Ay oeen /\n) r(6) de

o

The existence of a sufficlent statistic of fixed dimension is more
important than the use of a reproducing-type a priori density as a
criterion for determining the feasibility of the learning process. 1In
fact, the came arguments used to establish Theorem IV can be used to

establich the following:
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Theorem V: Ausume that the sets of learning observations Ai and
AJ’ i1 # 5, are conditionally independent given @, Then, regardless
of the a priori density p(6), the density p(elAl) reproduces itself
with respect to the likelihood p(Aele) if and only if a sufficient
statistic for 6 of fixed dimension exists.

Thus, if there is no objection tc one reprcgramming of the learning
system after the first set of learning observations, it is merely
necessary that there exist a sufficient statistic of fixed dimension.
The form of the learning system will remain fixed after this vne change,
regardless of what a pricri p(8) 1is used. It may not always be
obviius thet tine form is constant, but it will be pussible algebraically
to manipulate the densities intc the form in Eg. (19). Since
ﬁ(elAl, ces An) remains of constant form, the whole density in Eq.

(19) remains of constant form.

Another result similar to that in Theorem V should be pointed out.
Regardless of what a priori density p(e) is used, it is always
possible to write the density in the form of Eq. (30a), i.e., as a
reproducing density. To do this, it is merely necessary to pick an

1

arbitrary sequence A , ... A, of sets of " a priori observations"

and multiply both nume:étor ang denominator of the a priori density
by p(A_m, . AO[G). Rewriting the density in this manner appears
physically meaningless, however. Also, in view of Theorem V, little
appears to be gained by such an approach, Although this possibility
snould be noted, it will normally be neglected in this report. Unless

otherwise stated, it is assumed that the denominator of r{6) contains

no terms of the form of the likelihood function.

E. CONVERGENCE RATES WITH VARIOUS A PRIORI DENSITIES

In view of Theorem V, it appears that the use of nonreproducing
a priori distributions will often give little if any increase in the
complexity of the learning system. If the rate at which the a pos-
teriori density approached a delta function were greater with a non-
reproducing a priori density, the latter type of a priori density

might be preferred despite some small increase in complexity. It is
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easy tu prove that no appreclable increase in rate of convergence can be
obtalned by choosing o different a priori probability density, however;
the preot follows.

Cunclder two a priori densitles po(e) and pl(e) and the
correcrending o posteriori densltlec po(elAl, ves An) and
pl(GIJi, ces Rh). If po(e) and pl(e) are approximately the same
width, then po(elxl, . /h) and pl(elAl, cee [E) are approximately
the came width. To show thls, it is assumed that po(G) and pl(e)
boih have the same mode™ 90 and that for some other point el

p,(6,) »(8)

- (32)
p.(6,) (o))

(where el might be o common 3-db point for the a priori densities).

Then, from Egs. (19) and (32)

po(eolAl, ces An) ﬁ(eolAl, ves Ah) po(eo)

B (8, [, vee i) BlOylA, e a) o (6))

p(gul/\l. “oe l\n) . pl(eo) _ Pl(eoll‘sl; s o0 /\n)

B8, 14, vvv A) py(8) B (6 1igs wur )
(33)

Hence, “he two & posteriori densities narrow down equally fast as

more oboserverions are taken,

F. GENERALIZATION OF THE THEORY TO INCLUDE DEPENDENT LEARNING OBSERVATIONS

The resalts may now be generalized to apply to the case where the
learning observationc are not necessarily independent given 6. The
procedure will be first to give a simple example of finding a reproducing

dencity without the assumption of conditional independence, then to use

*
The mode of the density is the value of 6 for which the density
takes itu maximum value.
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this example to deduce the changes necessary in the theory in order to
cover the general case.

A binery Markov process is & simple exsmple of a case where the
observations are not conditionally independent given the parameters
characterizing the process., If it is assumed there are two possible

states, 1 and 0O, and if Pi is assumed to be the probability of a

J

transition from state 1 to state J, the probability of observing a

1 or QO &t a given time is not a function of the Pi 's alone. It

J

also depends on the previous digits observed. Hence, the theory thus

far developed is not directly applicable.
Reproducing densities for the Pij's can easily be found, however,
If each Ai consists-of a single observation and the sequence

(Al, - X1> contains & total of n, ones, of which r are

1 11

zeroes, r followed by zeros, there

followed by ones, and n 00

0]
results,

r n.-r r n,=-r
\ _ 00 0 %00 11 17
P(Ays -v B [PogsPyg) = P(A )P (1-Pyq) Py (1-Pp,) (34)

where use has been made of the fact that Pi + Pil = 1.

0
A reproducing-type density can be found for this case in the same
manner as before, picking the "a priori observations” {A n %>)

| ones, T, followed by ones, and n,
followed by zeros, and setting

consisting of n zZeros,

Y00

*In this case the learning observations are discrete random
variables, while the theory has been developed assuming the observations
were continuous random variables. There is no difficulty in extending
the theory to allow observations which are discrete random variables,
however. The only change necessary is replacing probability-density
functions by probability-mass functions in the equations; this may be
verified by replacing Eq. (2) by the form of Bayes' rule appliceble
here, and developing the theory in an identical manner.
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p».O(P oo’ F11)

P(n )P OO(l P ) 0 "00 (1-F..) 1711
-m OO 00 11l
— (35)
+ /; r' n.-r. T n.-r!
b o' 00 17711
. P(~ m P (1 Poo (1-7,.) Py, 4Py,
0 0
The parameter \O has been included as an index for the density in

Eq. (33) since the computation to be performed after observing Al

depends on AO. For example, if Al is & one and A, & zero, then

0
D
p,\o(‘OO’PlllAl)
r n'-r' +1 r. nl-r!.
P(A )P OO(l P ) C "00 ll(l P ) 1711
-m’" 00 11l 6
-T1 . N — (36)
e r n r + I‘ n, -
[ 00 0™ 00 171
5 ‘,," P(A_m)POO (1- Py ) (1 Py ) P ,dP, o
00
while if Al is a one and AO also a one
p/\o(POO’Pll‘lAl)
r! nl-r!'  rl .+l n.-r.
0 “00 11 1 11
P(1 P00 o (1- Poo) Py (-Ppy) (37)
=TT . T o — 37
s r n.-r r..+ n.-r
00 0 T00 11 1711 ., .
V/J P(A_p)Bpo (1-Fog) Py (1-Ppy) 403y

O]

The two expressions, Eqs. (36) and (37) differ in the exponent which
is increased to allow for the additional observaetion. The computations
after observing AE will differ similarly according to whether A1 is
a one or & zero. However, the densities will always be of the form in
Eq. (35), so the density reproduces.

In the case of more general types of dependence, a similar procedure
can be used; although the computation to be performed may depend on more
than the immediately-preceding digit. Such a situation is treated by
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introducing a parameter ai’ which indicates the state of the system

after the ith observation. In the most general case 0, may reflect

i
the complete past history of the system. Using this parameter to index

the densities,

pao(Al, Anle)pao(e)
pao(el/\l,\ An) = (38)
] pao(/\l, Anle) pao(e) ae

If the original density is of the form

Py (A_m, ces /ble) r(6)

-

(39)

p, (8) = =
0 j Py (As +en Byl0) r(6)ao
-m

it is found that:

1 (Al, Anl‘e)pa (A_m, Aole) r(9)
P (Bl +v 1) = 2 - (20)
pao(Al, Anle)pa_m(/\_m, oo Nyle)r(e)ae

But since Qb reflects the entire past history of the system, it is

possible to write

pao(Al, An[e) = B, (Al, Anl‘e,A_m, Ao) (41)

By putting this expression in Eq. (4%0), there results

Py, (A_m, ce Aga Ny e Anle) r(8)

pao(el/\l, cor A) = — (k2)

| R Y RN L0

The same type of analysis as used in the case where the observations
were independent given & shows that Eqs. (39) and (42) are of the same
form if and only if a sufficient statistic of fixed dimension exists.
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The proof has now been completed for:
Theorem VI: A reproducing a priori density Py (8) exists if
0]

and only If a sufficient statistic for 6 of fixed dimension exists.
Any reproducing density that exists is of the form shown by Eq. (39).

Even though the densities reproduce, the process may not be feasible
if the ai's can teke on very many different values. There appears to
be nothing in the theory that requires the number of different possible
ai's to be finite, or even countable, in order to have the densities
reproduce. Such guestions are largely academic, however, as different
values of the ai's normally mean different computations to determine
the new density on 6 (as in the binary Markov example) with corres-
ponding changes in the form of the learning system.

It is possible to make a statement similar to Theorem V in this
case also. The a posteriori densities eventually become reproducing
if o2nd only if a sufficient statistic of fixed dimension exists, no
matter what a priori density 1s used. The densities may not begin
reproducing before the system goes through all its possible states, or

distinct ai's, however.

G. DISCUS3ION OF RESULTS

Solutions are now available for the second and third problems posed
at the end of Chapter III: finding conditions that insure that
reproducing-type densities exist, and finding methods for generating any
reproducing-type densities that do exist. It has been shown that the
existence »f g sufficlent statistic of fixed dimension guarantees the
existence of reproducing densities, and that any reproducing densities
that exist can be generated by normalizing a non-negative function of
6 having a factor of the form of the likelihood of a pcssible set of
observations. The existence of a suitable sufficient statistic is more
important then the use of reproducing distributions in insuring the
feasibility of the learning process, as the sequence of a posteriori
distributions eventually becomes reproducing if such a statistlc exists,

regardless of the a priori distribution. No appreciable increase
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in rate of convergence of the & posteriori densities to a delta func-
tion can be obtained by the use of a non-reproducing a priori density,
however.

The results apply either with the learning observations conditionally
independent given 6, or without this independence. Without the inde-
pendence assumption, however, the form of the learning system may depend
on the state of the system determined by previous observations. If
many such states are possible, the learning procedure may be impractical
even when reproducing-type distributions are used.

The class of reproducing-type a priori densities of the form in
Eq. (3u) or (39) is large enough to give considerable freedom in choosing
e priori densities. The a priori observations (or the sufficient
statistics describing these observations) can be chosen almost arbitrarily.
As the examples in the next chapter show, this allows considerable free-
dom in choosing the "experimental portion” of the a priori density.

The function 1r(6) can also be used to incorporate a wide variety
of forms of a pricri information. Although any non-negative function
of 6 can be used for r(8) (assuming the integrability requirements
over 6 are met), most of these forms are physically meaningless. 1In
the next chapter are given a few examples of forms that r(6) may take.
One of the more interesting forms for r(6) is a constant. When r(6)
is constant, the a priori density in Eq. (30) or (39) is identical to
the a posteriori density that would have been obtained after actually
observing the "a priori observations," if a uniform a priori density
had been assumed.*

The a priori knowledge reflected by densities of the forms in
Egs. (30) or (39) may be considered to be of two forms: one form equiva-
lent to knowledge that could have been obtained from observations and
the other form representing knowledge that could not have been obtained

in this manner. Thus, all the knowledge about 6 incorporated in the

*This argument breaks down if 6 1is defined over a set of infinite
Lebesgue measure, since uniform densities over sets of infinite measure
have no meaning in the conventional theory of probability. Such densi-
ties do have meaning in the theory developed by Renyi [Ref. 21],
however.
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"experimental portion" of the & priori density, ﬁ(e[A_m, cee AO),
could have been obtained from actual observations; this is not necessarily
true of the knowledge incorporated in r(8), however,.

A csimple measure of confidence in the a priori knowledge contained
in ﬁ(ela_m, ... A) is available. The confidence placed in the portion

0
of the a priori knowledge reflected in the "experimental portion'" of

the a priori density is considered proportional to the size of the set

of observations necessary to generate this portion of the density. In

each case that has been examined (see Chapter VI), this experimental
portion of the density apprcaches a uniform density as the size of the
set of observations approaches zero, and approaches a delta function
as the size increases without limit., These are the limits that would
be expected as the amount of a priori knowledge approached zero or

apprecached complete knowledge of 9, respectively.

H. USE OF BAYES' RULE COMPUTER

By applying the factorization theorem for sufficient statistiecs,

Ea. (31) can be rewritten as:

f(ti—m’n), - té'm’“),e) r(8)
p(6ligy +on ) = = (43)
| f(ti-m’n), . tg'm’“),e) r(6) do

where the are the components of the sufficient statistic for

tg-m’n)
the combined a priori and a posteriori observations. Since r(6)
is a fixed function of 6, the density in Eq. (43) is a fixed function

t(-m,n), v tg-m,n . Combining this with

of 6 and the rarameters
the previous results gives the schematic diagram drawn in Fig. 4 for
the Bayes' rule computer in Fig. 1. If reproducing a priori densities
are not used, the form of the computer may change initially, but will
eventually become that in Fig. k.

By incorporating the form of the Bayes'rule computer shown in Fig.
L in the model of Fig. 1, a more detailed model for the learning process

is obtained with conditionally independent observations. The chief
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difference in the model if it were designed for the case without
conditional independence would be that the form of the Bayes' rule
computer might depend on the value of oh. If it be assumed that ah
may take on r ©possible values, the learning process can be illustrated
by the model shown in Fig. 5. The computer selector in this model
computes the value of oh and feeds An into the appropriate Bayes'
rule computer. If the learning observations are conditionally inde-
pendent given 6, the model in Fig. 5 reduces to that in Fig. 1, since
in this case oh may be considered to be constant.

Rather than using different Bayes' rule computers for different
states of the learning system, it may well be more practical to use one
computer with a variable program. If this approach is used, the computer
selector in PFig. 5 may be considered to be a computation program selector.
The same model applies with some minor relabeling.

In all the theory that has been developed, it has been assumed that
the equations deal with probability densities only, for the sake of
convenience., Any of the densities can be replaced by probability mass

functions if discrete rather than continuous random variables are
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encountered.® Some of the alternate equations have actually been
ubilized in the example introducing the methods of generalizing to the
case where the learning observations are dependent.

The next chapter is devoted to examples of reproducing-type distribu-
tions. These examples should clarify some of the theory developed in
the investigation.

*
The term "reproducing-type distributions” is used in the title of
this report as being more general than 'reproducing-type densities."
Probability mass functions may reproduce also.
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VI. EXAMPLES OF REPRODUCING-TYPE DISTRIBUTIONS

In this chapter are given a number of examples of probability
listributions that are reproducing. The two criteria that have been
atilized in choosing the examples are the engineering utility of the
probability distributions involved and the possibility of illustrating
different properties of the distributions.

Two different classes of reproducing distributions are considered.

For the first class, called simple reproducing distributions, r(6)

is a constant and hence p(6) equals ﬁ(elA_m, cen AO). For the second

class, called composite reproducing distributions, r(6) is not

constant. Hence, a composite reproducing distribution is the product

of a simple reproducing distribution and another function of 6.

A. A SAMPLE COMPUTATION: THE BINOMIAL DISTRIBUTION

The binomial distribution is probably the most common discrete
probability distribution in engineering applications. It might be
termed, in everyday engineering language, the "go--no go" distribution.
This distribution can describa the probability that a switch is open
or clonsed; or the probability that a signal corresponds to a one or to
a zero; or a myriad of other cases vhere only two events are considered
to be possible. If the probability P characterizing this distribution
is unknown, the learning procedure developed in this paper is applicable.

It is assumed for the sake of definiteness that the two possible
events are the reception of a one and of a zero. If P were known, it
would be the probability of a one. Each Ai is assumed to be the
observation of a single digit.

To find a simple reproducing density, a specific a priori sequence

A-no+l’ .o AO consisting of rO ones and no - ro zeros is assumed.
Making use of Theorem II, Chapter V, and the basic definition given by
Eq. (20), but replacing the symbols p(Ai, s AJIG) for the likeliho d

functions by the discrete random variable analogs P(Ai’ e Ajle)
(since the binomial distribution is & discrete rather than a continucus

distribution), p(P) is chosen to be
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H&nﬂ,“.%h)

,/ P(f_ s oee 8 lP) ap
o]
¢ r n -xr
po(1-p) ° ° I'(n +2) r n_-r
o] o] o 0 .
= P “(1-P) , 0<P<1,
1 r a_-r P(ro+l)F(no-ro+l)
- ! lp°@a-p)° °ap
¢
| 0, othervise. (44)

The dencity given by Fg. (44) may be recognized as a beta density
function. This fact can be used to eneck the normalizing constant
obtained. Alternatively, the normalizing constant can be obtained by
finding & standard probability dencity fuaection that depends on its
arcument in the same way that the function in Eq. (44) depends on P--
relying on the fzct that standard density functions are normalized to
integrate to one. In any even®, determining whecther the density is a
ctandard form is useful, since, if such is the case, the important
properties or the density may have been tabulated.

Ia the equutions for the a posteriori density when a reproducing
a priori density is used, there is no distinction between effects of
a priori and a posteriori observations. Hence, the a posteriori
density after observing a sequence consisting of r, ones and n,-r

1 171
zeros is

p(P[Al, Anl) = ’f;(P],\_no+l, cee Bgy Ny e Anl)

r‘(nO +ny + 2) r 4r n 40, -r -r

P o l(l-P) o 1l o1

,0<P<1
P(ro+rl+l) P(no+n T T+ 1)

1 1

0, othervise
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T'(n + 2)

I'(r+l) I'(n-r+l)

0, othervise, (15)
vhere
A
n=n +n, (46a.)
r& r o+ 7T (46Y)

The mean and variance of Eq. (45) are given by

B(P[A, o )= ; : é (472)

‘ L _(r+1)(n-r+1) "
Var [PA, ... A ) o r2)E a s 3) (47p)

As the total number of a priori and a posteriori observations

approaches zero, the above values approach
E[P|A, ... A ]2 (48a)
Ay n 2

1l
var [PlAy, «o. AT~ T3 (48v)
These are the values of the mean and variance of a uniform density over
the interval from zero to one. Conversely, as the total number of

a priori and a posteriori observations becomes very large,

E[P|A;, «vr A )~ Lim Eé\‘ P, (49a)
T, n®
Var [PlAl, vee AT 0 (49v)

These are ithe values of {he mean and variance of a delta function density
at P ejuals Po’ Moreover, for any finite number of a priori observa-

tions, the limiting ratio in Eg. (49a2) will be the limiting ratio of the
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values for the a posteriori observations, which, according to the
strong law of large numbers, is, with probability one, the true value
of P.

In this case it is easy to show that the limiting forms of the
density, for small and large numbers of observations, are a uniform
density over the interval from zero to one and & delta function at the
true value of P. The results are left in the form of Eqs. (48) and (49)
for easy comparison with other reproducing-type densities obtained,
however.

Sufficient statistics for the sequences of observations arise
naturally from the analysis. The pairs of numbers (no,rb), (nl,rl)
and (n,r) are sufficient for the a priori, a posteriori and

total sequences respectively.

B. ©COME SIMPLE REPRODUCING-TYPE DISTRIBUTIONS

In this section, ten typical examples of simple reproducing-type
distributions are analyzed. The distributions treated, the unknown
parameters, and the form of the learning observations are listed in
Table 1. Table 2 gives the likelihood of the learning obcorvations

and the simple reproducing-type densities.

1. Probability Distributions Considered

Four discrete distributions are treated: +the binomial, the
multinomial, the binary Markov, and the Poisson. In each case parameters
characterizing the probability mass function are unknown. Six examples
of continuous distributions with some of the parameters characterizing
the probability density functions unknown are also treated. These include
three examples of Gaussian dencities, one multidimensional with unknown
mean vector, one multidimensional with unknown covariance matrix, and
one one-dimensional with a complex mean and both magnitude and phase of

the mean unknown.¥ The three other cases are the Rayleigh, the

*In the appendix the case of a multidimensional Gaussian density with
both means and covariances unknown is also treated. The simple reproducing
density in this case is the composite Wishart-Gaussian density used by
Keehn (see Chapter III, Sectiou C).
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TABLE 2.

SIMPLE

REPRODUCING DENSITIES.

No. likelihood of Observations Simple Reproducing Density
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exponential, and the zero-mean rectangular distributions with parameters
characterizing these distributions unknowm.

Each of the ten distributions considered has important engineering
applications, The binomial, multinomial, and binary Markov distribu-
tions are important in such fields as coding, hypothesis testing, and
pattern recognition. Typical applications of the Poisson distribution
are in the study of shot noise and various waiting time and counting
problems. The Gaussian densities occur so often that little comment is
necessary, save for the fact that the form with a complex mean is the
form that would be used when using complex numbers to indicate both
magnitaic and phase information in a single number. The Rayleigh density
is the probability density for the envelope of a narrow-band Gaussian
random process and (among other applications) is used in the study of
the fading of radio signals. The exponential density is the density for
the output of a square-law detector (square-law device followed by a
low-pass filter), with a narrow-band Gaussian input. The final case,
the rectangular density, is useful in such areas as the study of systems
with unknown phases or an unknown time reference, or studies involving

the location of an object confined to a specific interval.

2. Computation Methods

In computing the reproducing densities for Table 2, subseripts
to indicate that the observations are "a priori observations" have been
omitted. The densities may be considered as either a priori or a pos-
teriori forms, since a priori and a posteriori observations are
equivalent in their effects on the densities.

Fach of the densities in Table 2 was obtained in a manner analogous
to the computation for the binomial distribution given in the previous
section. In two cases--the Gaussian with unknown covariances (Case 6)
and the Rayleigh (Case 8)--it was found convenient to define as a new
parameter the inverse of the unknown, and tnen to find a reproducing
density for this inverse parameter. This was done purely for the sake
of convenience; by writing the densities in terms of the inverse
parameters p and K-l standard forms are obtained with the normaliza-

tion constants and important properties tadbulated. 1In each of the
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eight cases where standard probability densities were obtained as the
reproducing densities, the common name for the density obtained is
indicated in Table 2.

3. Analysis of Reproducing Densities

The first case on the list (the binomial distribution) has
already been discussed in some detail. The second case, multinomial
distribution with Pi's unknown, and the third case, binary Markov
with Pii's unknown, are generalizations of the binomial case., It is
found that the reproducing density for the multinomial distribution
(which is equivalent to the (m-l)-dimensional generalization of the
binomial distribution) is the (m-1)-dimensional generalization of the
beta density, i.e., 1t is the Dirichlet density. Similarly, in the
binary Markov case, by assuming that the first digit of the a priori
sequence for learning the unknown POO and Pll is chosen independ-
ently of POO and Pll’ any interaction between these two probabili-
ties 1s removed, so that they can be treated as independent random
variables, each distributed according to a beta density.

The three cases discussed above--binomial, multinomial and binary
Markov--may be encountered in determining thresholds for likelihood
rmitio tests in pattern recognition. It is possible, moreover, to utilize
these learning technigues to obtain the thresholds. This may result in
using variable threcholds. This possibility is discussed in more detail
i the next chapter.

The binary Markov process is an example of a case where a reproducing-
type density can be found without assuming that the Ai are condi-
tionally independent given 6. This 1s the case that was utilized to
introduce the method of generalizing to allow for dependent learning
observations in Chapter V, Section D. It is the only example included
herein in which the learning observations are not conditionally independ-
ent given 6. OCther cases of this type can be treated in an analogous
menner, although most of them will be more complex.

The densities obtained for the multivariate Gaussian process with
unknown mean vector (Case 5) and with unknown covariance matrix (Case

6), and for the case with both mean vector and covariance matrix unknown
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(which is included in the appendix), are the densities that Abramson,
Braverman and Keehn have shown to be of the reproducing type as discussed
in Chapter III. Similarly, the densities given for the binomial and
multinomial cases are those used by Bellman and Mosimann, respectively,
and & number of the densities have been used by Raiffa and Schlaifer.
The only case mentioned in Chapter III for which it has been found that
reproducing~type densities have been used but in which the density used
is not the form in Table 2 is that discussed by Turin [Ref. 13]. The
density given in Table 2 for the unknown amplitude and phase of a com-
plex Gaussian mean is not the Rician density used by Turin, although it
ig similar. The difference is discussed in more detail in later sections
of this chapter.

The density given in Table 2 for the complex Gaussian case (Case T)
is not as complex as it may at first seem. The density is actually
simple save for the normalizing constant. This can be seen by rewriting

the density in either of the forms

p(a,?)
r 1 2 Erd
K, exp {- 272-[21 - 2a[Xn| cos(g - 5n)]} or
n
=( K, e 2 X -a ei¢[2 a>0, -n<g<nx
- ﬂ 2 X \" T3 1%y = -
e
n
L0, otherwise. (50)

with Kl and K2 normalizing constants chosen so that either of the
forms of p(a,?) in Eq. (50) integrates to one.

The final case on the list--rectangular distribution with unknown
mean--is a rather off-beat example. This density violates some of the

1

statistical criteria for "regularity," since it is not continuous. The
reproducing density obtained also has unusual properties. It is the
only case encountered in this study where the density is not defined

after one observation because p(Alle) is not integrable. Some care
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must be exercised in picking "a priori observations" also, since these
must be less than W 1in absolute magnitude. If this condition 1s not
fulfilled, the a priori p(W) will be zero at the true value of W

and the a posteriori dJdensity cannot degenerate at the correct point.
Picking observations less than W in absolute magnitude may be difficult

if nothing is known about W.

4, Sufficient Statistics

Sufficient statistics for each of the various probability dis-
tributions analyzed can easily be obtained from Table 2, since the den-
sities therein are expressed in terms of the sufficient statistics.

For the binomial distribution it is found that n and r (or r and
s) constitute a sufficient stetistic. Similarly, for the multinomial

distribution, Tys oo rm are sufficient; for the binary Markov, T4
1 rOO and no; for the Poisson, T and n; for the multidimensional

Gaussian with unknown mean vector Yq and n; for the multidimensional

n

Gaussian with unknown covariance matrix vn and n; for the complex
Gaussian, Iiﬁl, 5n and n; for the Rayleigh, Kn and n; for the

exponential, Cn and n; and for the rectangular density, M.n and n.

5. Representation of a Priori Knowledge

When nsing simple reproducing densities, such as those in Table
2, the paraneters of these densities can be adjusted to reflect & priori
kaowledge. A priorl observations are selected which, on the basis of
the a priori information available, appear representative »f the ob-
servations to be expected; these observations are then used to generate
the reorcducing density.* For example, in Case 1, if the probability
of obtalning a one for a binomial distribution were expected to be about
%, a beta density for P with r and s approximately equal would
be chosen; or if the mean of a Gaussian distribution (Case 5) were
expected to be near zero, a priori observations with a sample average
near zero would be chosen. The degree of confidence in such a priori

knowledge is reflected in the size of the total set of a priori

%
Normally only the sufficient statistics for these sets of a priori.
observations would be selected, rather than the observations themselves.
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observatlionc, or by the magnitude of such parameters as n, r or T
in the densities in Table 2. If there is reason to be confident that
the & priori xnowledge is approximately correct, the parameters
indicating the size of this a priori set would be large; if little
confidence is reposed in the a priori knowledge, the parameters
selected would be small.

In some cases, the a priori knowledge is not in the form of suffi~
cient statisztiecs such as those in terms of which the densities in Table
2 are defined, but the a priori knowledge 1s better described as con-
sisting of approximately what the value of the unknown parameter is
expected to be, plug the approximate width of the expected a priori
denzity (or the amount of deviation from the expected value that might
reasonably be allowed for). In Table 3 are listed important moments,
i.e., means, variances, and covariances, for the reproducing-type densi-
ties in Table 2. These moments can be utilized to fit a priori

knowledge having the forms designated.

6. Limiting Forms of Densities

The moments in Table 3 are also useful in determining limiting
properties of the densities as the size of the set of a priori observa-
tions (or of the combined set of a priori and a posteriori observa-
tions) becomes very large or very small. Since the size of this set
indicates the degree of confidence reposed in the a priori knowledge
(or the combined = priori and a posteriori knowledge), the limiting
forms would be expected to be a very narrow density approximating a delta
function for a large set of observations, and a very broad density
approximating a uniform density for a small set of observations. Tables
4 and 5 indicate that these are indeed the limiting forms obtained.

Table 4 indicates the limiting forms for the moments obtained with
a large set of observations. In each case the means approach limiting
forms that are possible values for the unknown parameters, while the
variances and covariances approach zero. This indicates that a delta
function is the limiting form of the density for a large set of

observations.
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LARGE SAMPLE LIMITS OF MOMENTS.

TABLE 4,
- Parameter .
No. Limits. Means Variances Covariances
P (1P )
1 lim £ 2 P, [E[P) ~p, Var[P] = —2—— 2 g
limn =@
oo : P, (1.P, ) PP
2 lnm-"—lé"io elpd ~p, Var[p;] ~de—is’ . Covlp;, Pl . dedeag
limn = @ i
| P (1P )
LI . iio iio
3 “"';r:"'é Piio [BIP;1 =Py, Var[p;;] Tt 0 Covlbys, Pyl =0
limn, =@
a
tingla, | thal ~a, Varla] o2~ 0
! dlimT =
‘ k.. ki
tim & Qny [Blnd = Varlm,] = < <0 Covlmg, m;) = =H =0
H lim n =%
;
]
o | tin 2 AK R <l D varli] =3 fadnZe adbhadhl =0 corlkid, k17 = L [adladm +aim o] <o
limn = &
: 2
T vim X 1By | Bl =y Varla] =0l e &0 Cov [a, ¢l = 0o?) =0
1in 8, 8o, | el =g, var [f] = 00D = 0
limne®
X2 ‘
. id.2 —~t
8 | 1im—g02 | el = Varlgl _.%(517)2 -0
o
lim n®*®
; 2
X A
L llm—"—‘elr ED\]"‘)\O Vlr[k]""“—o"‘u
o
limn ®
A LAY
0 LimM W HOEER Var (W] -'(;i’-) ~0
limna®
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Since & priori observations and a posteriori observations are
“reated in identical manners, Table 4 can be used to find the limiting
forms of the a posteriori densities, assuming a finite a priori set
of observations and an increasingly large a posteriori set. The
limiting form is in each case a delta function as before, but the loca-
tion of the delta function can be stated precisely. In the Appendix it
is shown that, in each case, the mean converges with probabllity one to
the true value of the unknown parameter. Hence, the densities approach
delta functions at the true values of the unknown parameters, or the
learning system learns the true values exactly.

T Table 5 the limiting forms of the moments are analyzed as the size
of the set of a priori observations approaches zero. In making this
analysis, parameters indicating the size of the a priori set have not
been confined to integer valuez, since the densities are defined regard-
less of whether these parameters are integer valued or not. The pro-
cedure used to find these limiting forms is simply to let all the
parameters defining the size of the set of a priori observations
approach zero, finding the limiting forms of the means, variances, and
covariances whenever these limiting values are uniquely defined.

In Table 5 the limiting forms obtained for the means, variances, and
covariances are compared with the means, variances, and covariances of
random variables distributed according to a uniform density over the
range of possible values of the unknown parameter. In some cases a
uniferm density is not defined over this range because the range is of
infinite Lebesgue measure.® In these cases the moments tabulated are
the limiting values of the moments of a sequence of random variables
with probability distributions approaching a uniform distribution, if
the limiting values are uniquely defined; if the limits are not
uniquely defined, this is indicated in Table 5. 1In each case, exact
agreement is found between the moments of the reproducing-type densi-
ties and the moments of uniform densities. If the moments of either
are uniquely defined, the moments of the other are also uniquely defined

and take the same values.

*

As noted earlier upiform probability densities over sets of infinite
Lebesgue measure are allowed in the theory developed by Rényi [Ref. 21],
however.
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Details of the computing methods for all the tables are given in
the Appendix.

C. CSOME COMPOSITE REPRODUCING-TYPE DISTRIBUTIONS

As indicated in the previous section, simple reproducing-type
dictributions contain enough adjustable parameters to give considerable
r'reedom in choosing a priori probabilities. A number of types of
a priori Kknowledge can be reflected in these a priori distributions,
including values of the parameters that are felt to be typical and a
measure of the confidence reposed in the a priori knowledge.

Even more freedom in choosing a priori distributions is availabdle
if' composite reproducing-type distributions are considered. As indicated
in Fq. (30), a simple reproducing-type distribution multiplied by an
arbitrary (except for secale factor) non-negative function of 6 is still
a reproducing-type distribution. These more complex reproducing-type
distributions have been defined to be composite reproducing-type
distributions.

In this section no attempt is made to indicate all the possibilities
of choosing composite reproducing distributions. The discussion is

limited to two general clausses of composite reproducing distributions.

1. Restricting the Range of @

Cne class of composite reproducing distributions is useful when
part ot the a priori knowledge is the fact that the true value of 6
is cuntained in some interval I, For example, it might be desired to
detect a cignal of unknown frequency, using a receiver of a known finite
bandwidth. The probability of receiving a signal outside the frequency
band accepted by the receiver would be zero. In such a case r(8) in

Eq. (3C) may be taken as
1, 0 el

r(e) = (51)

, otherwise
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giving

.
B6 Ay, oo M)
Bl L , 6 el

p(6) ={ [ Blolny, ... 4 )0 (52)
I
\9, othervise.

For example, if 6 were the unknown mean m of a one-dimensional
Jaussian distribution with known variance 02, and if it were known
that a <m <b, an a priori density on m might be obtained by
picking an a priori set { X-t+l’ e XO:> of learning observations

(all confined to the interval a < X, < b) and setting

=\ -1

b - X. a -
) = 9 ).¢ = i ot exp {-(m-xo)z/Eo'n} ’
p(m) = n n v en T
a<m<b
0, otherwise (53)
where 0
- 1
T-1) x (54)
i=-t+1l
2 1 2
9 a7 (55)
and ¢(x) is the Gaussian cumulative distribution function
X
’ 2
o(x) = —=— j e X /2 4y (56)
e
V2 -

2. Converting Density to Familiar Form

Alternatively, it may be possible to choose r(8) in such a
way as to convert a probability density into a more familiar form. For
example, if the problem consists of learning both the magnitude and the
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phase of a complex Gaussian mean (Case 7), the simple reproducing
density ls listed 1n Table 2 as:

(1312
fI_l |
o | T2 |
Mn exp ;—L-u?@aﬁ | cos (g-8 )+Ll§l%
2172“372J 252 [_ n n 2 "
n n
p(a’g)—; a:o’ _niﬁsﬂ
LO, othervise. (57)

It r(a,¥) 1Is taken identically equal to a, then from Eq. (30)
(writing the normalizing constant given by the reciprocal of the
denominator in Eq. (30) along with the other constant factors involved

as a constant K):

1 2 -
Ka exp{- == [a“ - 2a|X | cos (-5 )] a>0, -x<@g<n
{ 2 X, | i, } > <#<

P(a:g)

o, otherwise;

a 1 (2, = = |2 .
5 exp {- ~3 [:a -Ea!an cos (ﬂ-&n)+l‘xn|‘ ]}a >0, -ng< w,
Encn acn

0, otherwise. (58)

The normalizing constant K was evaluated in the second expression for
p(a,ﬁ) by a procedure suggested in Section A. It was noted that the
density depended on its arguments in the same manner as one of the
standard densities used in statistical communication theory; in this
cace the dependence is the same as that of the generalized Rayleigh or
Rician density encountered in the study of narrow-band signals in
Gaussian noise. Hence, the normalizing constant for the Rician density

was used.
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3. Other Possibilities

Numerous other reasons for choosing a particular r(6) may
occur. The form may be determined: Dby reasoning about physical princi-

ples, to agree with experimental results, or in numerous other ways.

4, Computation of Density Needed in Chapter VII

One density of the form in Eq. (52) will be needed in the next
chapter. Consider an event E with conditional probability

T, 1
882 1 2

P(E|f) = K) exp | T j x(t)e 2 at (59)
o]
0

with Kl a normalizing constant. Assume that f 1is known to be con-
fined to the interval I for which fo <f< fl. To obtain a reproducing
density, select a function y(t) which is defined for -T0 <t <0 and
let

0 2

2‘
K, exp 8% j (o) B fhyy SISt
1.
p(f) =) 0

0, otherwise. (60)

where K2 is another normalizing constant. (The normalizing constants
are not evaluated in this example since they are complex and are
unnecessary for the later analysis.)

The a posteriori density after observing the event E is then

T 2
-1
‘8B2 ionft f <f<f
K3 exp | z(t)e dt s o=-"="1
(o] _TO
0, otherwise. (61)

where

y(t), Ty <t <0
z(t) =

x(t), 0<t<Ty (62)
since x(t) and y(t) are defined on disjoint time intervals.
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D. COMPARISON WITH RESULTS OBTAINED BY OTHER INVESTIGATORS

Reproducing-type distributions are used in a number of papers sur-
veyed in the literature. Results obtained in this investigation may
be briefly compared with those in a few of the papers in which

reproducing-type distributions are used.

1. Abramson, Braverman, Keehn, Bellman, and Mosimann

As already noted, the densities that Abramson, Braverman, Keehn,
Bellman and Mosimann [Refs. T-12] used are the same densities as the
simple reproducing-type densities developed in this investigation for
the cases considered. The present study has developed methods for
generating these densities rather than finding them by an heuristie,

or trial-and-error, process.

2. Dely

Daly's problem [Refs. 16 and 17] cannot be solved by the
methods developed in the present investigation, since for his densities
no sufficient statistics of fixed dimension exist, with the consequence
that no reproducing a priori density exists. In fact, the density
Eq. (11) that was given in the discussion of a simple case of Daly's

problem is a special case of the density

2 2
P(X Iml’ m2; O-l’ 0'2: P)

e [— 2—13 (X-ml)z] s {LF) expE—g (X-me)E] (63)
7

1
v en Gl Jen 02 202

Dynkin [Ref. 19] shows that for the density in Eq. (63) no suffi-
cient statistic of fixed dimension exists if any one of the parameters

My, My, Gi, cg or P 1is unknown.

3. Raiffa and Schlaifer

Raiffa and Schlaifer [Ref. 15] utilize reproducing densities
in a large portion of their work on statistical decision theory. Their

"natural conjugate" a priori densities are the same form as the simple
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reproducing-type densities in the present investigation. Raiffa and
Schlaifer do not utilize any specific set of a priori observations to
generate the reproducing density, however, merely saying that the den-
sity is generated by the kernel of the sufficient statistic for the
likelihood [the function f(tl, vee ts,e) in Eq. (27)]. The =a priori
observations have been utilized in the present work largely as an aid
to visualizing the process of generating reproducing-type distributions,
and of utilizing the distributions to reflect a priori knowledge.

For small samples at least, a difficulty with the Raiffa-Schlaifer
approach lies in ascertaining the number of observations to which the
a priori knowledge is equivalent--a problem discussed on pages 62-67
of the work cited [Ref. 15], and also discussed in earlier sections of
this report. An example of the difference in methods of interpretation
is the case of learning the probability P characterizing a binomial
distribution. Raiffa and Schlaifer consider the knowledge reflected in
the density Eq. (&4) to be equivalent to n,+2 observations, since
Eq. (44) is a valid probability density for n+2 > 0; while in this
paper the knowledge is considered to be equivalent to o, observations,
As Raiffa and Schlaifer's equivalent number of observations, no+2,
approaches zero, the a priori density degenerates into a probability
mass function with mass divided between zerc and one, a fact that the
authors discuss at some length, No matter how many a posteriori obser-
vations are then made, the density remains degenerate. In contrast, in
the present investigation as the equivalent number of observations n
approaches zerc, Eg. (44) approaches a uniform density (see Table 5)--
a much more reasonable result.

Raiffa and Schlaifer also confine their work entirely to simple
reproducing densities ('"natural conjugate' densities). They make no

mention of any other form of densities which may reproduce.
4. Turin

Tarin [Ref. 13] utilizes a slight modification of the composite
reproducing density Eq. (58) for learning the characteristics of a radio
channel. He assumes that & known signal Y = (yl, ‘oo yn)t is trans-

mitted over a channel with amplification a and phase shift ¢, so
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that the received signal is X =a¥ ng. Assuming additive Gaussian

2
noise with mean zero and variance o :

rle A-—l-—" -8 ‘ei¢2' 6L
) xp[ecezlxi 1 IJ ()

P(x ]‘a,ﬁ,Y) =<

JZro

This equation is the same as the basic equation developed in the
present study for the likelihood of a complex Gaussian process with
unknown mean (Case 7, Table 2), save for replacing the constant a by
the variable ayi. Following the same procedure used in the present
paper in analyzing the complex Gaussian case, and assuming Y is known,

there is obtained for a simple reproducing density on (a,d),

. 2
I'l i‘..
0 2 .
ho 1 [2 1.2
W exp (- 20—2 a =28 Rn cos (ﬁ-ﬁn) + 3 Rn
b1 9 [+
P(a,¢) = g n n
8a>0, -1<@g<n
0, othervise. (65)
\.
with ;* .
VR th!
R & (668)
\ L |2
A
. *
R 4 Z Im (xiyi)
6n = tan - (66b)
Z Re (xiy"i‘)
2
C’i - (66¢)
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This density reduces to that shown in Table 2 if Yy is teken equal
to one for all 1.

On the basis of reasoning about the physical process he is con-
sidering, Turin picks as a priori density on (a,®) the Rician
density

& exp{- < [a? - 2a R cos (@g-5) + R?) ,8 >0, - <@ <x
2 2 2 £Ps
- 200 2o

p(a,ﬂ) =
0, otherwise. (é67)

which corresponds to Eq. (58) in the same way that Eq. (65) corresponds
to the density in Case 7, Table 2. Thus, Turin's density is a composite
reproducing density with r(e,@) equal to a. The analysis developed
in the present study shows why Turin's density reproduces itself, and
also indicates how alternative reproducing densities which may agree
more closely with experiment may be found.

Reproducing distributions are doubtless used elsewhere in the
literature. The treatment described in the present peper is more general
and thorough than any others that have been found in the literature

search, however.
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VII. APPLICATIONS

A, PATTERN RECOGNITION, EXPONENTIAL DENSITIES

In the previous work by Abramson, Braverman, and Keehn discussed in
Chapter III, reproducing distributions were applied to a pattern-
recognition process with learning. Using the methods developed in the
present study, it is easily possible to generate reproducing distribu-
tions for learning a wide variety of parameters, thus obtaining obvious
generalizations of the Abramson, Braverman, and Keehn techniques. One
application similar to (but in some respects more complex than) the
applications discussed by Abramson, Braverman, and Keehn involves
learning the parameters of a non-Gaussian density, and in addition
learning the probability of a pattern and using this to adjust a
threshold.

Consider a wvariation of the pattern-recognition problem discussed in
Chapter III. It is again desired to find a decision rule minimizing the
probability of error in recognition. Equation (8) and the discussion
that accompanies it indicate that the optimum decision rule picks the
pattern for which p(X|1)P(i) is maximum.

For simplicity assume two possible patterns, designated by the

indices 1 and 2. The optimum decision rule is then:

B otherwise

a(x) =

If it be assumed that p(X|i) is an exponential density with

parameter A Eq. (68) becomes

i,
A (N )X ‘
1, if &e 2 ¥ >E2 (69)
Aa - P(1

a(x) =
0, otherwise
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or

1, 1if (A, - A\ )X > fn 232 +mx2 (70)

’ 2" T2 XI

a(x) =
o, otherwise

When neither the 1, nor the P(i) 1is known, the learning procedure
developed in this investigation is employed. To learn the ki, the
simple reproducing density for this case (No. 9 in Table 2) is used. As

an a priori density on \i the gamma density given by

-C A
oi i

Coi Pot
p(N) === (c, \) e (11)

ol
is assumed. This gives

L4

p(X|1) = fp(xii, A) p(\, Jan,

oi . 1
C 1+ x/coi)

noi+2 (12)

It is also desired to learn the probabilities P(i). Letting P(1)
equal P and P(2) equal 1-P, it is seen that P is the parameter
characterizing a binomial distribution. Use is again made of a simple
reproducing density (in this case No. 1 in Table 2). The number of
times each pattern occurs in the "a priori set of observations" is

already known; the parameter n in Eqs. (71) and (72) corresponds

ol
to the number of observations of pattern 1. Substituting nOl and
B2 for the corresponding parameters r and s in Case 1 of Table 2:
M(n_+2) n n
1l o2
(p) = = P % (1-P) (73)
P(n°l+l)r(n°2+l)
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where

nq *n, (T4)

Then, applying the standard statistical procedure for computing
marginal probabilities

1
k/ P(1|P)p(P) aP
0

P(1)

f

n . +1

- (75)

n + 2
o]

since P(1|P) = P, P(2|P) = 1-P. The optimum decision rule then becomes

n02+2
L i (1 +x/c_,) >(n02 +1)/(n +2) . (n_, +1)/C_,
" @ x/col)n°l+2 T (nyy +1)/(n, +2) (n,, +1)/col
a(x) =
2, otherwise (76)

If ny classified learning observations are then taken, with n

from class i, an "a posteriori decision rule" of identical form
3

11

A
g BY Byytmyy = ngg, ng by

A A
n+n) =n, and C_, by C_,+C,, =C., (with C,; the sum of the
XJ that correspond to the ith pattern). The optimum decision rule

after n, observations is:

results except for replacing no

1
n_ . +2
Oc
(1 + = ) ‘
_ Ceo (n,*1)/(n_+2) . (n +1)/C,,
’ —
) f,1+2 (n,+1)/(n+2)  (n,,41)/C,,
< (l+-c—-
‘ tl
a (X) =
. 2, othervise 17
|
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Since <nti+l)/(nt+2) is an ectimate of P(i), it is designated
by P(1). Similarly, (nti+l)/cti is designated by ii since it is
en estimate of the parameter 1\ . Taking logarithms in Eg. (17):

2

,

s () [ 3 () =
t2 t2

2 3 A
. (x) =§ '(nt1+2) [(_:_x_ - %(C—X—) J > In %%% + 4n :g

1 1 tl )\l
L?, otherwise. (18)
The gquantity X/Cti can normally be expected to be of the order
l/nti' Hence, after a few observations, the first term in the expansion

of the logarithm becomes predominant and higher-order terms can be

neglected. After a few observations it is also possible to neglect the
difference between nti+2 and nti+l' After a few observations, then,
the optimum decision rule given by Eq. (77) is closely approximated by

the decision rule

0, otherwise. (19)

This is of the same form as Eq. {70). Hence, it may be concluded

that after a few observations are taken, the optimum decision rule is

closely approximated by a rule that is of the established form for

known statistics, but which utilizes estimates of the parameters in

place of the parameters themselves,

The approximate decision rule derived in Eq. (79) can be implemented
as shown in Fig. 6 by a device of the form which would be applicable
with known parameters, but with variable components.

Since the A, may take on any positive values and the B(1) any

i
values between zero and one, the Bayes' decision rules computed from
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THRESHO 4(x)
DEV| )

/7

FIG. 6. PATTERN CLASSIFIER FOR EXPONENTIAL DENSITIES.

Eq. (79) can assign all X's below any real-number threshold to
class 1 and those above the threshold to class 2; or vice versa. In
other words, any non-randomized decision rule based on a single
threshold is a possible Bayes' rule.

The estimate of each of the parameters used in Eg. (79) converges
with probability one to the true value of the parameter. Hence, the
limiting form of the decision rule given in Eq. (79) is idcatical to
the rule that would be used if all the parameters were known. This
again could be any non-randomized decision rule based on a single
threshold.

B. FINDING £XPECTATION OF A RANDOM VARIARLE

Another class of problems for which reproducing densities are
applicable is that of finding the expectation of a random variable.
More precisely, reproducing densities are useful in cases where a
probability density is required that will adequately represent a priori
information and at the same time allow the expected value of a non-
negative random variable to be expressed in a simple form. This type
of problem may be illustrated by considering the problem of detecting

a cosine of unknown frequency.* Two possible hypotheses are assumed:

*
This example was suggested and first worked out by Professor
Norman Abramson, Stanford University.
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H,: x(t) = 5(t) + Nt)
By X(t) = n(t) (80)
where
5(t) = a cos (wt + &), w = 2xf (81)

and N(t) is white noise, or noise with a flat spectrum Sn(f) 2 Nb/?
(at least over the frequency range £ << fl).

It is assumed that the parameters a, @, and f (or ) are all
unknown, although the following are known: (1) that ¢ is uniformly
distributed over the range O < @ < 2n; (2) that a is Rayleigh-
distributed with parameter A2; and (3) that f 4is restricted to the
frequency range fo <f< fl. It is desired to use a likelihocd ratio
test, comparing

|
sy - 20E) (52)

i p(X[H,)

with some threshold.

If a, &, and f were known, the likelihood of a sample X(t),

0<t< Tl’ would be
T T
28° 2 La / ‘
£(X|a,@,f) = exp (- _ﬁ_x/\ cos® (wt+Z)dt » exp T X(t) cos (wt+g) dt
°' ‘o‘é
Tl ‘
o L,
~ exp -—N—-l}exp ﬁ—f X(t) cos (wt+@) dt (83)
o) o
. O

In writing the last form of the equation it has been assumed that Tl
is large in comparison with l/fo, so that the integral of the cosine-
squared term is approximately % regardless of w or .

It is shown in the Appendix that, with the likelihood given in

Eq. (83) and with the probability densities assumed for ¢ and a,
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T

882 st |2
2(x|£) = B 8l
(x]£) = K, exp Ny 6/- X(t) e (84)

with

1

Ba_[ A2] (85)
B 2A25 +N 2

It is desired to find a probability density p(f) which will give
a reascnably simple form for £(X) and at the same time accurately
reflect any information that is available about f. Such a density is
obtained by following the same process that was used in finding repro-
ducing densities. Although £(X|f) is not a probability density, it is
non-negative. If ﬁ(le) were normalized to integrate to one, it would
satisfy the formal requirements for a probability density. This is the
same procedure used to derive reproducing-type densities from likelihood
functions; this suggests deriving a density for f in the same manner.
Such a density was derived in Chapter VI, Section C, and is given by
Eq. (60). Utilizing the density in Eq. (60) for f gives

£ o} T 2
1 o 1 .
£(X) = K / exp %g_ ‘ /— 2(t) 2% at | ar (86)
s O A%
f -T
o (o]
with
Y(t), -T,<t<0
z(t) =
(t), 0st <ty (87)

and Ku a new constant that may be absorbed into the threshold for the
likelihood-ratio test.

Without specifying X(t) and Y(t) more definitely, the integrals
in Eq. (86) cannot be evaluated. However, the following points may be
noted. If T is small, the frequency information in Eq. (86) is
primarily determined by X(t); if T, is lerge, the information
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is primarily determined by Y(t). Hence, To is a measure of confidence
in the a priori informetion. Also, by proper choice of Y(t), »p(f)
can be caused to peak around any desired frequency band. The density
given by Eq. (60) appears to be the only one yet found with these

properties, which are important for this application.

C., ESTIMATING A PARAMETER WITH NO A PRIORI INFORMATION

1. Bayes Estimates

In order to compute the Bayes estimate of a parameter it is
necessary to specify an a priori probability distribution for the
parameter. If no information about this distribution is available, and
if no reason is known for favoring some values of the parameter, a uni-
form a priori probability distribution is the logical assumption. It
is only possible to assume a uniform distribution if the range of the
parameter is of finite Lebesgue measure, hovever.

The techniques developed in this investigation can be used to
eliminate this difficulty. To illustrate the procedure, assume that it
is desired to estimate & parameter w, and that a squared-error loss

function is involved:
~ N 2
L(w, &) = (0 - &) (88)

where @ is the available estimate of w. It is well known [Ref. 20]
that the Bayes estimate -for this case is the a posteriori expected

value of w, or

8(%) = [ ep(o[x) a (89)
with X the observation that is being utilized to estimate w.
The function p(w|X)is an a posteriori density function, of the

form that has been studied in this investigation. If it is desired to

*
As mentioned earlier, uniform densities over ranges of infinite
measure are allowed in the theory developed by Renyi [Ref. 21].
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approximate the form that the Bayes estimate would take with a uniform
a priori density over w, & reproducing-type & priori density on
can be assumed, then *the size of the set of a priori observations can
be allowed to approach zero. It has been shown that the reproducing
density then approaches a uniform density. At the same time, however,
the a posteriori density p(w|X) approaches BP(w|X), if this latter
density is defined. (This may be seen by examining the form of Eg. (3L)
as the size of the set of a priori observations approaches zero, with
r{6) set equal *o a constant.)

The following result is thus obtained: The limiting form of the

Bayes estimate of w as the a priori density on & approaches

uniformity is given by

2(x) =\/ » D(w|X) dw (90)

where p(w]|X) is an "experimental" probability density of the form

defined in E3. (20).

If the estimate is based on a sequence of measurements {Xl, e %l> y
the same result is obtained, but with p(w|X) replaced by ﬁ(mlxl, ves
Xn)' The Bayes estimates are given by the mean values listed in Table 3
for the cases studied in this investigation; no distinction was made
between & priori and a posteriori observations in msking up this
table.

The derivation given above is based on the assumption of a squared-
error loss function. Bayes estimates with other loss functions, if they
can be evaluated, are also given in terms of a posteriori densities.
Estimates with no a priori knowledge would be obtained in a manner

analogous to that just described.

2., Maximum-Likelihood Estimates

Maximum-likelihood estimates are often used instead of Bayes
estimates if no a priori information is available. The techniques
discussed in this report can also be used to simplify the procedure for
obtaining maximum-likelihood estimates. These estimates correspond to
the mode of the likelihood function, or the value of  for which the
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likelihood function is maximum. This mode is also the mode of the
"experimental portion" of the a posteriori density, since this portion
is simply a normslized version of the likelihood function. If the

1

"experimental portion" of the density is of fixed form, the mode can

normally be expressed as a fixed function of the parameters characterizing

the density. Expressing the parameters characterizing the density in

terms of the sufficient statistics for the observations, and the mode

in terms of these parameters, a recursive method for computing the maxi-

mum likelihood estimates is obtained. The meximum-likelihood estimates

may in this manner be expressed as explicit functions of the observations.
The two methods discussed above for estimating parameters when no

a priori information is avsilable are not equivalent, although the

difference is negligible for large numbers of learning observations.

For example, in estimating the parameter P of a binomial distribution,

the maximum likelihood and Bayes estimates are r/n and (r+l)/(n+2)

respectively, while in estimating the covariance matrix of a Gaussian

density, the corresponding estimates are vn/h and Vh/(n+d+l).
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VIII. SUMMARY AND CONCLUSIONS

A model has been developed for a learning technique capable of

utilizing and evaluating stetistical information relating to a physical

system or process., Characteristics of the technique are as follows:

A.

1.

BASIC ASSUMPTIONS

A body of statistics is available, or can be obtained, about the
system or process under study.

In these statistics there are one or more parameters, denoted by
8, whose values are unknown.

Each unknown parameter 6 can be treated as a random variable
having a probability density p(8) over the range of its possible
values. (The expedient of treating 6 in this manner is typical
of the "Bayesian" approach to probability theory. )

A priori information is available to aid in choosing the
probability density p(6). This a priori information can
invelve information gained from a knowledge of the physical
principles involved in the process, information gained from
experience, or informalion gained in other ways.

It is possible to perform experiments on the system, yielding
sets of learning observations Al, cee An'

The likelihood of each set of learning observations Ai is
knowvn as a funection of 6, and is designated as p(AiIB).

(Wnen viewed as a function of 6 for fixed Ay p(AiIG) is
called & likelihood function; when viewed as a function of Ai
for fixed @, p(Aile) is called a conditional-probability-
density function.)

The learning obgservations Al, ves An are used only to gain
kKnowledge about 6, and do not influence the values of 6.

A random variable Z may be celected to represent some desired
criterion of system performance, such as the fraction of the

time the system makes an error, or some other error function.
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9. The excellence of system performance may be judged by the
statistical expectaetion of Z, E[Z], where

Em]=fEmw]pw)w (1)

10. In the above equation, E[Zle] is the conditional expectation
of Z given 68, expressed as a function of 0, and is
independent of A, ... AL E[Z|6] is assumed to be known

a priori.

B. DEVELOPMENT OF BASIC LEARNING MODEL

1. Apply "Bayes' rule" +to obiain

p(~ [6) p(e)
p(o]n) = - (2)
| »(ry16) »(e) as
vwhere
p(9|Al) = 8 posteriori probability density of 6
= probability density of 6 evaluated in the
the light of the set of learning observations Al,
and also
p(o) = & priori probability density of 6,
p(Alle) = likelihood of the learning observations Al.

2. Then Eg. (1) becomes

E{Z]A ] =k/ E(z]6] p(e]a ) de (3)

where
E[ZlAl] = statistical expection of Z, in the light of the
learning observations Al,
and
E{Z!G] = conditional expectation of Z given 6, expressed

as a function of 6.
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3. An additional set of learning observations A2‘ is obtained

end Bayes' rule, Eq. (2) is agsin applied to obtain:

(as 16,1 )p(e|A))
ool ) - el POl ()

| wtngle,ndeteln) ao

L, The process 1s repeated to yield, eventually,

p(Anle’Al’ cee An-l)p(elAl""An-l)

p(6]A, voo A) = =
/ (A, !‘9,/\1, An_l)p(e ll\l, An_l) ae
(5)
where
p(elAl, cee An) = the a posteriori probability
density of 6 1in the light of the
first n sets of learning
observations;
= s : th
p(AnIG,Al, /\n_l) = the likelihood of the n set of

observations given the first n-l
sets of observations.
5. If it be assumed that the sets of learning observations are

conditionally independent given 6, Eq. (5) may be simplified to:

p(r le)p(olny, oo n 1)

P(elAly e An) = = (6)

d/ p(r_lo)p(lny, «oo ) a0

0. Using Eq. (6) above (or Eq. (5)), Eg. (3) is expanded to give:

ElZ[A, +vv A] =jE[Z|9]p(6|Al, cer b)) 46 (1)

7. Equations (6) and (7) above form the basis for the learning model
illustrated in Fig. 1 of the report.
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c.

CONDITIONS FOR FEASIBILITY OF THE LEARNING PROCESS

1. The learning technique described above may be considered to be a

2.

practical learning process if:

a. The true values of the unknown parameters are eventually
learned, at least in the limit as the number of learning
observations approaches infinity. This condition may be
considered to be met if, as the number of learning observations
approaches infinity, the e posteriori density p(elAl, coe An)
approaches a Dirac delta function at the true values of the
unknown parameters.

b. The form of the learning process does not change as additional
observations are taken. This condition may be considered to
be met If the probability distributions on 6 are reproducing
in nature--i.e,, if the a posteriori and a priori distribu-
tions are of the same form under Bayes' rule, If the distribu-
tions are reproducing, the learning process simply involves
computation of new parameters for the densities at each stage
of the process, neither the number nor the type of computations
changing.

Condition (a) is fulfilled if it is possible to compute the true

value of 6 from an infinite sequence of learning observations;

and this true value is not ruled out by p(6), the a priori
probability distribution essumed for 6. It is shown in the
report that these conditions are met by most probability distribu-
tions of practical significance, even by some distributions of
such form that conditicn (b) cannot be met. Thus, the learning
process developed in this report should be valid for most

practical cases, provided condition (b) is also fulfilled.

. In order to determine whether the a priori p(6) assumed is

reproducing or not [condition (b)] a technique has been developed
vwhereby the expression for the a posteriori density is factorized

as follows:

©1as vor A ) =B(0]A, «ov A) - = p(6) (19)
(ol 2 = el TEe(e) Ay, e A
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wherein

p(Al, ce Anle)

p(elAl, cee An) (20)

/>p(Al, oo nl6) a6

"experimental portion" of & posteriori
density (depends only on the

observations),

ﬁ[p(e)lAl, ces An] = statistical expectation of p(6) taken
with respect to ﬁ(e[ml, vee A
The likelihood function p(Al, AN Anle) used to generate
ﬁ(G‘Al, . Aq) is assumed to be an integrable, non-negative

function of 6; the "experimental portion" of the a posteriori
density 1s a normalized version of the likelihood.

4, Tt is shown in the report that (at least after a large number of
learning observations) the behavior of the a posteriori density
p(GIAl, e An) is primarily determined by the "experimental
portion" ﬁ(GIAl, cee An), see Eq. (19) above. Conditions for
the "experimental portion" to te reproducing are analyzed in the
report. It is shown that the "expeiimental portion" of the
a posteriori density is reproducing if and only if the learning
observations are such that a sufficient statistic for 8 of fixed
dimension exists.

5. It is possible to find an a priori p(6) that is reprcducing if
and only if the "experimental portion"” of the a posteriori density
is reproducing, i.e.,, if and only if a sufficient statistic for @
of rixed dimension exists. Any reproducing p(6) that exists may
be generated by multiplying a function of the form of the likelihood
p(Al, cee Anle) by an arbitrary non-negative function of 6 and
then normalizing.

6. If a sufficient statistic for 6 of fixed dimension exists, the
a posteriori densities p(e]Al), p(elAl,Az), ... Ybecome repro-
ducing after the first observation has been utilized (sceasionally
after the first few observaticns have been utilized). Hence, if

there 1s no objection to one reprogramming of the learning system
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after the first set of learning observations, the learning tech-
niques described herein can be applied regardless of what a priori
density p(6) 1is used, provided a sufficient statistic of fixed

dimension exists.

T. Since this 1s the case, the use of reproducing-type a priori
densities may in many cases afford little if any simplification
in the computations involved. Non-reproducing densities might be
preferred if they resulted in a faster rate of convergence to a
delta function of the a posteriori probability densities. It
is shown, however, that little if any increase in rate of conver-
gence can be obtained by using non-reproducing densities, if the
8 priori densities are approximately the same width.

8. The results can be generalized to apply to the case where the
learning observations Al, . Ah are not conditionally independent
given 6; however, in this case the form of the learning system may
depend on the state of the system derived from the previous

observations.

D. EXAMPLES OF REPRODUCING-TYPE DENSITIES

1. Two classes of reproducing-type densities are considered:

a. Simple reproducing-type densities are densities identical in form
with the "experimental portion" of the a posteriori density.
Such densities may be generated by picking the "a priori
observations"” {/im’ v ()}, then normalizing the likeli-
hood for these observations as in Eq. (20) above.

b. Composite reproducing-type densities are simple reproducing-
type densities multiplied by another function of & and then
normalized; i.e., composite reproducing-type densities are

of the form

8016 - Ag) 7(0)

p(6) = = (30)

B(ofa_ps -vv Ay) x(6) a6

where r(e) is a non-negative, integrable function of 6.
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2. Tables 1 through 5 list a number of simple reproducing Lype
probability densities, with many of their parameters and proper-
ties. Methods of utilizing the densities to represent a priori
knowledge are discussed; the limiting forms of the densities as
the number of observations becomes very small or very lavge are
also given.

3. Two importent classes of composite reproducing-type densities are
discussed, The first class is applicable when the parameter 8
is known to lie within a certain range, but no parts of this range
are to be preferred over others. The second class arises from
the possibility of choosing r(6) to convert an unfamiliar
probability density into a more familiar form. Numerous other

types of composite reproducing-type densities are possible.

E. APPLICATIONS

1. As long as a sufficient statistic of fixed dimension exists, the
techniques herein developed are aprlicable to a wide variety of
problems such as pattern recognition with incomplete knowledge of
the statisiics involved, finding a probability density that simpli-
fies taking the expectation of a non-negative random variable, or
estimating a parameter when no a priori information is available.
The problems include some for which the learning model developed
in this paper is not applicable.

2. The chief requirement for application of the technique 1is the
existence of a sufficient statistic of fixed dimension. Dynkin
[Ref. 19] has made a general study of the conditions under which
sufficient statistics of fixed dimension exist, and of methods for
finding them. OSufficient statistics of fixed dimension appear to
exist for most of the simpler probability laws normally encountered,

and for some of the more complex ones.
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IX. RECOMMENDATIONS FOR FURTHER WORK

Although the results of this investigation give solutions to a
number of problems in the field of machine learning, they open up a
number of new problems. These problems include finding methods for
extending the present theory and finding methods for tying the present
theory in with other results in the machine-learning area. Some of
these problems are indicated below.

A. FROBLEMS SUGGESTED

1. Procedure When Sufficient Statistics do not Exist

Much of the work on the theory of communication systems involves
analyzing complex systems. The probability laws encountered in studying
the more complex systems (and some of the simpler ones) are often of
forms for which no simple, sufficient statistics exist. 1In these cases
the theory developed in this paper is not directly applicable.

One of the chief problems to be investigated is finding how to pro-
ceed when no simple, sufficient statistic exists. A possible approach
would be to use a statistic that is not sufficient, but that is of
fixed dimension and in some sense "efficient." If this approach is to be
used, some method of comparing possible statistics is needed. A cri-
terion might be based on Kullback's information integral or divergence
[Refs. 22, 23], which are maximum if and only if based on a sufficient
statistic.

2. Effect of Taking Expectation of Performance Criterion

The analysis herein has been confined almost exclusively to the
computation of the probability densities p(elAl, oo A). In actual
applications, these probability densities would normally be used to
take the expectation of some random variable (see the final stage in
Fig. 1). The forms that this final stage of the computation might take
and the effects of these forms on the learning process should be
investigated. The chief result along these lines in this investigation
is the proof that the limiting form for the total computation is the
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form that would have been obtained if the unknown parameters had been
known (Corollary, Theorem I, Chapter IV).

3. Rate of Convergence

Little work has been done on investigating the rate at which the
probability densities converge to their limiting (delta function) form.
Since 1t has been shown that the convergence properties are determined
largely by the "experimental portion" of the a posteriori density,
and since this portion of the density is a normelized likelihood, some
of the techniques employed in the study of maximum likelihood estimates

may be useful here.

4. Applications

The material presented in this paper has only begun to scratch
the surface of the possible applications of the techniques that have
been developed. The problem has been formulated in a general enough
manner to indicate that there is a wide variety of possible epplications;
however, a great desl of work on specific applications remains to be

done.

5. Information-Theory Properties

The probability densities examined in this paper appear to have
some interesting information-theory properties. These aspects have not
been investigeted as yet. It may be possible to tie the theory
developed in this paper in with some models for learning processes that

are based on such information-theory concepts as entropy [Refs. 24, 25].

6. Effects of Errors

If an error is made in the type of likelihood function, p(Alle)
assumed, the results are unpredictable. (This does not contradict the
proof that the limiting form of the a posteriori density is independ-
ent of the a priori density, as in this case p(Alle) was not in
error.) The form that the a posteriori density will take in the
limit can be predicted in any particular case. For example, if it were
assumed that the observations were generated by a one-dimensionsal

Gaussian process with the density having known variance and unknown
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mean, whereas the input observations were actually generated by an
exponential process, the sample average would be used as an estimate
of the mean while this sample average was actually converging to

l/?\o (see Tables 2 and 4). How accurately the resulting probability
distribution would fit the data is not clear. This question would be
worth investigating, as would a more general analysis of the effects

of errors.

T. Several Possible Likelihood Functions

In certain cases it might be known that the likelihood function
tock one of several possible forms, such as Gaussian, Rayleigh, or
exponential, but the precise one of these forms applicable might not be
known. In such cases an approach assuming a number of possible forms
for the likelihood function is possible, weighting each of these
hypotheses by a factor similar to Watanabe's credibility measure ([Ref.
26), and adjusting the weights as observations are taken may be feasible.
A similar problem has been investigated by Magill [Ref. 27] in developing
techniques to predict which of a known set of possible Gaussian signals
is being observed, and at the same time predict the value of the signal.

B. SUMMARY

In summary, & fairly general theory has been developed, which appears
to have wide applicability; however, much additional work on extending
the theory, tying it in with other theories, and applying it to specific

cases remains to be done.
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APPENDIX
DETAILED COMPUTING PROCEDURES

This eppendix describes the detailed procedures used in computing
the densities, limits, and so on in Tables 1 through 5: it includes
also a special computation for the expectation of a cosine of unknown

frequency for Chapter VII.

A. COMPUTATION OF REPRODUCING DENSITIES

It is desired to compute the forms of the simple reproducing densi-
ties listed in Table 2, plus the simple reproducing density for the
Gaussian case with both M and K unknown.

The first density, the beta density for learning P for a binomial
distribution, was computed in the main text. The computation simply
involves normalizing the likelihood function in the first column of
Table 2. This can be done either by integration or by comparing with
standard densities as discussed in the text. A similar procedure is
followed in all the cases in Table 2.

The second and third densities in Table 2 are generalizations of
the first end need no discussion. The derivation of the fourth, a gamma
density for learning the parameter «a for a Poisson distribution, is
also streightforward. It is simplified slightly if the likelihood is
revritten as

Qar

p(n,7|a) = K(n, 1) P e (A.1)

and only the part depending on & 1is considered in normalizing.
The fifth density, Gaussian for learning a Gaussian mean, is derived

in a similar menner. The computation is simplified by completing the
square in the exponent of the likelihood, using

Z( X~ M), KT X;-M ) =n(R -m ), KN (Xpm )
+Z(xi-xn)tx‘l(xi-7n). (A.2)
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The likelihood is then rewritten as

p(Xy, o X (M) =X(Xy, oo x)) exp [ SR - M) KX - ):|

(a.3)

proceeding thereafter as in the Poisson case.
The Wishart density for learning an unknown covariance matrix
(Case 6) is derived in a similar manner, utilizing the identity

n
v, K =) (X M )k Hxg- m) (A.4)
i=1

to show that the two forms of the likelihood in the fifth and sixth
cases of Table 2 are equivalent. In this case, comparing the manner in
which the likelihood depends on K-l with the manner in which the
Wishart density depends on vn is much simpler than integration as
a method of obtaining the normalizing constant. Sec Chapter VI, Section
A for a discussion of this procedure.

If both M and K.l are unknown, p(xl, ...XnIM , K-

is rewritten as

1y

p( Xy oo X [ M, k1) = 1em)? |k I‘]-(n-l)/ixp L %— tr v: K'l]

K e [ R w0 R w0
(A.5)
with

Ve (xR X Ky (4.6)
i=1

and the other terms defined as before.
The second factor in Eq. (A.5) depends on its parameter in the
manner in vwhich a Geussian density depends on its argument, while the
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first factor depends on its parameter in the manner of a Wishart density.

This suggests as & normalized density*

» ~(n+d)/2  -(n-1)/2 . -
1 v, k| exp[- 3 trv K]
B, KX, LX) vy i -
Fain+ y n+d-0¢

(el |} e { = (M =X K (M -X l)} (a.7)

n‘t ' n

The normalization in Eg. (A.7) can be checked by integrating first
over M , then over K-l. The first integration gives a Wishart
density as a marginal density; the integral of this Wishart density is
then unity as it should be.

v : is the only parameter that has been encountered in a simple
reproducing-type density for which a recurrence relation for computing
the new value of the parameter from its 0ld value and the learning
observations is not obvious. A simple recurrence relation exists,

however, as follows:
n-1 - -
Vo=Vt k- x  )0x, - x_ ;)] (.8)

To derive the density for learning the magnitude and phase of a
complex Gaussian mean (Case T), the portion of the exponent in the
likelihood depending on a and @ is first rewritten as follows:

-2, zilxi{ cos (¢ +ai) +-2:a2 = -2na]§h| cos (g + 5n) + na° (4.9)

with |X | and ® ~defined in Table 2. The normelization is then
accomplished by computing

*

The density in Eq. (A.7) is not included in Table 2, It is the
simple reproducing-type density for learning both M and g1
and is the density utilized by Keehn for this purpose [Ref. 10].
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» 5
/ [ exp { - ;iﬁ [ae - 2al§h| cos (@ + Sn{J (A.10)

-

J
0 -x

utilizing some of the properties of Bessel functions [Ref. 28].

The final three cases in Table 2 are straightforward. The densities
for the exponential and Rayleigh cases may be normalized by comparing
with the gamma density; but the density for the rectangular distribution

must be normalized by integration.

B. COMPUTATION OF MOMENTS

The moments given in Table 3 were arrived at as follows: beta,
Dirichlet, gamme, Gaussian, and Wishart densities are standard forms
with moments already tabulated [Refs. 29 - 31]. Hence, in this appendix
it is merely necessary to compute the means and the variances for the
two cases (Cases 7 and 10) where the simple reproducing-type densities
are not standard forms.

The expectation of a, the magnitude of the complex mean of a
Geussian density (Case 7), is given by

' / a exp (- -ié F - 2a|in[ cos (g - 5n)] ag da (A.11)
0 ch ‘

It is known that the integral of the Rician density is unity, or

exp[ IXI/ZG J]fae;@

2n a

__1_5[- -2a|xlcos(¢-5)J if da = 1
2
n

-x 0 (A.12)
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Compering Egs. (A.12) and (A.1l) it is found that:

)1/2 o, exp [linle/ucﬂ i [‘T‘nle/“"i] (A.13)

afmn

Ela] =(

To obtain the variance, the same procedure is followed, using the
fact [Ref. 32] that the first moment of the Rician density is given by

n o
[f a? exp { - ia- %2 - 2al-inl cos (f - sn) + IT(nng ag da
n

20 20
=2 - 2
1/2 x| X |
[z 3 (2,2 ‘ n n
_(2) o, exp Elxnl /hcnj 1+ -l I, =
n n
2 = (2
Ix | x|
1 n2 (A.1h4)
20 Lo ‘
n
to obtain _ -
% |°
I n
E(a®] 1§n|;2 1+ Tl e (.15)
a = ——— + T .
2 I’IX 12 n
1 n
0 Llw 2
L N

Subtracting E2[a] gives the tabulated variance.

Integrating the expression for p(a,g) over a gives

(exp {f_- linle/uoi:] [l - 2 cos® (@ - Sn)] ) Leers l‘an cos (¢-5n)
oo | %l
T e
p(¢)=§ 0 l“’i m<Ben
o, othervise, (A.16)

\
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with erf(x) = the error function. No closed-form expressions exist for
the moments of this density, so efforts are confined to finding large-
and small-sample equations. First, however, the mean and variance must
be computed for the final simple reproducing-type density, the density
for learning W for a rectangular distribution (Case 10).
E[W] 4is found by straightforward integration
n~1

E{W] f”(n-l) ( ;—E) aw, n>1
M
n

n-1
T3 Mn, n>a2,
o, l<n<2 (A.17)
Similarly
) n-2
Mﬁ
E[WQ] = \/ (n-1) M ( ——) aw, n>1
n W
M
n
n-1 .
a3 M, n>3,
) 1<n<3 (a.18)

Subtracting Ea[w] gives Var [W] except for the case 1< n <2,
which is of the form o - o and hence undefined.

C. LARGE-SAMPLE LIMITS OF MOMENTS

The limiting forms of many of the parameters in Table 4 may be ob-
tained by the simple algebraic process of letting the size of the set
of observations grow without bound, then computing the limits obtained.
This process gives all of the values tabulated as zero in Table 4.

The limiting forms of most of the remainder of the parameters follow
directly from application of the strong law of large numbers if the limits

-9 - SEL-63-099



are determined by actual observetions. For the binomial distribution,

Case 1:

E [ﬁlp = Po] =P (A.19)

Hence, by the strong law of large numbers

== P (A.20)

with probability one.
Similar reasoning applies in most of the other cases studied. 1In

case of the multinomial distribution, Case 2:

E [-rﬁ e, = Pio} Py, (A.21)

n

For the binary Markov Process, Case 3:

r,.
11l
E [H:" Py = Pno] = Piio (a.22)

For the Poisson process, Case L:

la = ao] = o, (A.23)

=
|4ID

For the Gaussian process with unknown mean vector, Case 5:

El( in)ilmi = mio] = m'ic> (A.24)

or with unknown covariance matrix, Case 6:

E [(gv—‘l‘)lj |kt = n;l} kld (a.25)

For the complex Gaussian process, Case T:

a=a]=a (A.26)

E[X,| o .
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and

Efs, |# =41

n | o} o

1]
=

(A.27)

For the Rayleigh process, Case &:

X2
E [Z 1142 - 0'2] = g2 (A.28)

2n o)

hence, the reciprocal parameter o converges to l/cg. For the

exponential process, Case 9:

=X, |
E[—l
n

with the same type of reciprocal relationship as found in the corresponding

\ = )\O] = 1/, (~£.29)

case, Case 9, in Table 3.
In each of these cases, the strong law of large numbers applies in
the same manner as in the binomial case. The only case differing is
Case 10, the rectangular distribution. Convergence can be proved in
this case also, but the proof differs from that for the other cases.
Since in Case 10 the sequence of Mh's is bounded and monotone,
it must have a limit, with probability one. This limit must be Wo
if the latter is the true value of W, since if the limit were not
wo it would have to be less than wo. Then the Borel-Cantelli lemmas
[Ref. 18] would state that values between the limit and wo‘ occurred
infinitely often in an infinite sequence of observations, a contradic-
tion. Hence, Mn must converge to WO with probability one.
The limiting forms for means and variances in all cases save the
complex Gaussian, Case T, then follow immediately from Table 3. For
the complex Gaussian density the limiting forms of the moments for a
follow from expansion of the Bessel function terms, using the usual
asymptotic expansions valid for large arguments [Ref. 23]. The moments
of @ follow from the limiting form of p(g):
%, | - 2 23

p(F) » —2—nu exp{[—lxnl sin 2(¢-6n)1 /2 o }, -x<g<nx (A.30)
Jen o - |

n

- 97 - SEL-63-099



Since Gi - 0, Expression (A.30) approaches zero except for ¢ = 5,
Hence, R[Z] -» 5, The order of magnitude of the variance can be esti-
mated from the width of the pulse given by Expression (A.SO). This is
obviously of the order of ci. The variance is a measure of the width
of the pulse and must be of the same order of magnitude. The limiting

form of the covariance is at most of the maximum order of the variances.

D. SMALL-SAMPLE LIMITS OF MOMENTS

The values of all limits in Table 5, save for the complex Gaussian
case, phase variations, are obtained immediately from taking limits in
Table 3. The moments for uniform densities may be found tabulated in
the cases where the parameter range is finite. If the parameter range
is infinite, and a function of 6 1s unbounded and non-negative, the
limiting value of the expectation of the funetion, as the density on
6 approaches uniformity, is infinite; while if the function can be
both positive and negative, the limiting expectatiocn is undefined.
This gives all values in Table 5 save for the moments of @ in the
seventh case.

For these moments of @ it is merely necessary to evaluate the
expression for p(g) in Eq. (A.16) as n approaches zerc and cﬁ
approaches infinity. The limit is a uniform density over the range

- < g <7

E. LIKELIHOOD FOR COSINE OF UNKNOWN FREQUENCY

Section B of Chapter VII applied the learning technique to finding
the expectation of a random variable--specifically a likelihood ratio
involving a cosine of unknown frequency. It was necessary to integrate
Eq. (83) twice to obtain Eq. (84). Since p(@d) is uniform over the

ran~e [0,2x]:

Ty
exp gﬂ L/ X(t) cos (wt + 0) dt ag
0 °1o

2 2
exp [-aT)/N ] "
2x ‘

£(X|a,f) =

A.31)
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Expanding the cosine term,
'I’l Tl 'I‘l
[ X(t) cos (wt+g)dt

[ [
cos ;ZIJ/ X(t) cos atdt - sin @ | X(t) sin wtdt
]

0 0 0
(4.32)
Hence
2 A 1
-8, ) :
rho_ |4, iwt .. |
ix|a,£) = e I - f x(t) e at | (A.33)
o] !
0
Then, since by hypothesis, a 1s Rayleigh-distributed with
parameter A2:
T
o 2 2 ‘ 1
-a“/2N B 1
4(x|£) =‘f a—ae ° I, az-uj x(t) e**®at |82 | aa
0 A NoB 0
T
2 1
N B 2 2|
=—°rexp %-B— f Xx(t) e1%ay, (A.34)
A o 0

vherein use is made of the fact that the integral of the Rician density

is unity in a manner analogous to Section B of this Appendix.
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