
UNCLASSIFIED

AD NUMBER

AD431994

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; NOV 1963.
Other requests shall be referred to Office
of Naval Research, Arlington, VA.

AUTHORITY

ONR ltr, 28 Jul 1977

THIS PAGE IS UNCLASSIFIED



I/
UNCLASSI FlED

A D

DEFENSE DOCUMENTATION CENTER
FOl

SCIENTIFIC AND TECHNI1CAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

i4 iiE

UNCLASS]IFIED



NOTICE: When $overnment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formilated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



SEL-63-099

C 1

"•i" Reproducing Distributions for Machine Learning

by
A• • J. D. Spragins, Jr.

' • November 1963

Technical Report No. 6103-7
Prepared under

Office of Naval Research ContractQ ) Nonr-225(24), NR 373 360

Jointly supported by the U.S. Army Signal Corps, the
U.S. Air Force, and the U.S. Navy

S (Office of Naval Research)

CY SYSTEMS THEORY LABORATORY

STAnFORD ELECTROnI[S LABORATORIES
STAflFORD UnlUERSITY • STANIFORD, CALIFORnIA

NO. O



Best
Avai~lable

copy



DDC AVAILABILITY NOTICE

Qlualified requesters may obtain copies of this
report from DDC. Foreign announcement and
dissemination of this report by DDC is limited.



SEL-63-099

REPRODUCING DISTRIBUTIONS FOR MACHINE LEARNING

by

J. D, Spragins, Jr.

November 1963

Reproduction in whole or in part
is permitted for any purpose of
the United States Government.

Technical Report No. 6103-7

Prepared under
Office of Naval Research Contract

Nonr-.225(24), NR 373 360
Jointly supported by the U.S. Army Signal Corps, the U.S. Air Force, and

the U.S. Navy (Office of Naval Research)

Systems Theory Laboratory

Stanford Electronics Laboratories

Stanford University Stanford, California



ABSTRACT

A model is proposed for learning the nature and value of an unknown

parameter, or unknown parameters, in a probability distribution which

forms part of a body of statistics related to some system or process.

The model is Bayesian, involving the assumption of an a priori

probability distribution over the possible values of the unknown

parameters; the performance of experiments to gain information about

the parameters; and the alteration of the a priori probabilities by

Bayes' rule. In the limit, as the number of experiments approaches

infinity, the a posteriori distribution in most cases encountered in

practice approaches a delta function at the true values of the unknown

parameters, so the system learns the values of the parameters exactly.

The learning process developed in the paper is shown to be technically

feasible if the a priori and a posteriori distributions are of the

same form, with the learning accomplished by calculating new parameters

for these distributions. It is shown that a necessary and sufficient

condition for fulfillment of this feasibility criterion is for a

sufficient statistic of fixed dimension to exist. If such a sufficient

statistic exists, the a posteriori distributions may vary in form

initially, but they eventually become of fixed form. The techniques

developed indicate logical methods for choosing a priori probabilities

and are applied in pattern recognition, estimation, and other problems.
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I. INTRODUCTION

A. PURPOSE

The purpose of the study described in this paper is to develop a

model for a learning technique capable of utilizing and evaluating

statistical information relating to a physical system or process. The

model is to be applicable in situations where the form of the probability

distributions describing a process is known, but where the values of some

of the parameters involved in these distributions are unknown. The

miodel is to be readily adaptable to construction of an actual learning

machine or to simulation of such a machine on a digital computer.

It is expected that the results of the study will be useful in the

design of complex multiple-element systems, including a variety of

different types of communication systems.

B. BACKGROUND

Since the pioneering work of Shannon and Wiener in 1948-49 [Refs.

1-41, a large amount of research has been done on application of statis-

tical techniques to design of communication systems. This research has

been motivated by the realization that often only an approximate estimate

of the conditions under which a communication system will be required to

operate is available. Under these circumstances, designing the system

so that its performance will be the best possible on the average appears

more reasonable than attempting to optimize performance under specific

conditions which may later turn out to be inapplicable.

To achieve the best possible average system performance, statistical

techniques are applied. A specific criterion for judging system perform-

ance is defined; then the techniques of probability theory are utilized

to see how well this criterion may be expected to be satisfied. Stating

the matter in more mathematical language, excellence of system perform-

ance is judged by the statistical expectation of a random variable Z

which represents the selected performance criterion. In some cases Z

is a squared error term, in which case its statistical expectation

- 1 - SEL-63-099



ErZ] is the mean squared error; in other cases Z is the fraction of

the time when a system makes an error, with E[Z] the probability of

error.

Although the mathematics involved are often complex, the applica-

tion of the statistical criteria is in principle straightforward pro-

vided a body of statistics relating to the problem is available. The

statistics can often be computed through a knowledge of the physical

principles involved, or can be estimated accurately from experience.

In some cases, however, the statistics are not accurately known and

must be further investigated before any criteria or statistical expec-

tations thereof can be established. This fact is responsible for much

of the current emphasis on research in learning techniques.

In connection with a body of statistics, a learning technique may

be defined as a procedure for evaluating experimental observations in

order to gain information about parameters involved in the system or

process to which the statistics apply. Throughout this report the term

learning will be used in the restricted sense suggested by this defini-

tion, and only in this restricted sense. In view of the large amount

of research currently being done on learning in biological systems, it

should be pointed out that learning in the sense in which the term is

ised here may bear little resemblance to learning performed by

biological systems.

C. MHOD OF APPROACH

In thi.s investigation a possible model for the process of learning

the values of unknown parameters in a body of statistics is developed.

Although the proposed model. is not the most general possible, it is

general enough for most practical purposes. One important kind of

a priori information is postulated: it is assumed that the forms of

the probability distributions involved in the statistics are known,

although some of the parameters of these distributions are unknown.

This assumption is interpreted to mean that the physical process

involved is known well enough to identify the type of probability

density being dealt with, but not well enough to permit computation of

sEL-63-099 - 2-



all the parameters for this density. This is a situation often occurring

in practice; for example, it might be known that a probability density

was multivariate Gaussian, but the mean vector or covariance matrix for

this Gaussian density might not be known.

As a basic procedure it is assumed that the symbol e represents

some unknown parameter or parameters in one of the known probability

densities. In order that the statistical expectation E[Z] can be com-

puted e is treated as a random variable and an a priori probability

density p(e) is assumed over the range of its possible values.* The

expectation E[Z] is then determined from the standard statistical

equation

E[Z] -- Efzle] p(e) de (1)

The learning model developed in this investigation is based on a

series of modifications of Eq. (1). These modifications will be discussed

in the next chapter.

,
This so-called "Bayesian" technique of treating a fixed but unknown

parameter as a random variable is common engineering practice, though
frowned on by many statisticians. Even in statistical circles, however,
the practice appears to be gaining wider acceptance [Refs. 5 and 6].

- 3 - sEL-63-099



II. THE LEARNING MODEL

A. BASIC EQUATION

It has been shown that, for a body of statistics related to some

physical process or system,

EfZ] = E[Zle] p(e)d6 (d)

where:

0 = an unknown parameter or parameters in the probability
distributions included in the statistics

Z = a random variable representing a selected performance
criterion

E[Z] = the statistical expectation of Z

p(e) = the a priori probability density function of 6
[p(e) or some information which may be utilized in
choosing p(e) is assumed to be known a priori*]

E[Zle] = the conditional expectation of Z given 6
(the expectation of Z is assumed to be known
a priori as a function of e; for any specific
value of e, E[Zle] is the value that would be
used for E[Z] if e were known to have the
postulated value).

In this investigation Eq. (1) is to be used as the basis for a

learnin,; model; however, modification of Eq. (1) is suggested by the

fact t hat, if the value of e were known more accurately, more confi-

dence could be placed in the value of E[Z].

B. LEARNING OBSERVATIONS

The obvious way to improve the extent of knowledge about 6 is to

perform an experiment, or a set of experiments, to gain information about

the parameters. Let the set of outcomes of some such set of learning

observations be designated by A,. A, cannot be expected to tell

One of the results of this investigation is to indicate ways of
choosing p(9) when this density is only approximately known.

sEL-63-099 - 4-



exactly what the value of e is, since it has been assumed that S

cannot be measured accurately; however, it is assumed that the proba-

bility density function of the learning observations is known as a

function of 0. If the probability density function of the learning

observations were not know, or if it were not a function of 0, there

would be little to gain from performing the experiments. The probability

density fsriction of the learning observations is denoted by p(4.10).*

In the present study it is also assumed that 2[ZI9] is independent

of t, This may be interpreted as an assumption that A1  is used only

to improve the extent of knowledge about 0 and does not influence the

value,ý of 0. (Ani example of an equivalent assumption is the assumption

that inserting an ammeter in an electric circuit to measure the current

does not change the magnitude of the current; any other assumption that

"the measurement of a quantity does not influence the magnitude of that

quantity is also equivalent.)

C. MORE ACCURATE VERSION OF STATISTICAL EXPECTATION

The information is now available to compute a more accurate version

of E[Z]. First, Bayes' rule** is applied to obtain

p(01A1  U pi 1 je1) p(e)()

p PulCe) p(G) de

A quantity of the form of p(Alle), when treated as a function of
0, is often called a "likelihood" rather Uhan a "probability density."
As a function of A1 , for fixed 0, p(Alle) has been defined to be
a probability density. As a function of 6 for fixed A1 , however,

p(A 1 1e) is not a true probability d(.nsity. although it satisfieLs one
of the requirements for a probability density by being non-negative,
it does not normally satisfy the requirement of integrating to one.

In the subsequent discussion the term "probability density" will be
used when quantities of the form of p(AlIe) are considered as func-
tions of observations, while -the term "likelihood" will be used when
such quantities are considered as functions of 0.

Bayes' rule is the standard equation for computing conditional
probabilities. It may be found in any textbook on probability theory.

- 5 - SEL-63-099



where

% = the outcomes of a set of learning observations used to

gain information about 9

p(A 1•e) = probability density function of the learning observations
A1  (when treated as a function of A, for fixed e)

= likelihood function of e (when treated as a function
of 9 for fixed A,)

(this quantity is assumed to be known as a function of
both A and e; it is used as a likelihood function
in Eq. J2))

p(e) = a priori probability density function of e

pel)= a posteriori probability density function of e
(this function is assumed to be evaluated in the
light of ,, by Eq. (2))

The new expectation for Z is then calculated as

E = AI I E:[zlei p(ejA1) de (3)

where:

E[ZIA1] = the statistical expectation of Z incorporating the
information gained from the observations A,

= the conditional expectation of Z given the observations
A

E[ZIO] = the conditional expectation of Z given 6, expressed
as a f mnctiorn of e, and assumed independent of AI.

This calculation completes one stage of the learning process. A

more accurate version of E[Z] has been obtained, but it may be desired

to obtain a still more accurate version. This even more accurate version

can be obtained by repeating the previous process. Another set, A2 ,

of learning observations is taken: p(&lAI,A 2) is computed by Bayes'

rule; and this density is used to compute EfZjI/,A,]. Then a third

set, A3 , of learning observations is taken and the process is

repeated. The progressively developing results of the learning process

can be expressed in terms of the three sequences:

( .)--( P -- (A,A, )----etc.,(a
p( ) --.- .p(0 1/\_ )..-- p (e 1' ,'"2) - etc. ; (4b)

E[ZSEL-6E[,Z3A- 0[ZIA1,A2 99etc., (4c)

SEL-63-099 6 -



In the most general case a model for the learning process can become

complex. The computations to be performed at any time may depend on the

entire set of priori observations, as is shown by the general form of

Bayes' rule

p(Anle,Al, ... An_) p(ejA., A n _)
p(eIA1,.. A n) n= n-I -

p(Ano,AJ, ... An_) p(ejA1, An.l) de

(5)

Equation (5) indicates how the new probability density for e can

be computed from the old density; but the computation requires that the

probability of A be known as a function of e and of all. the previousn

observations, i.e., as p(An1e,A 1 , ... n.l). It is often possible to

simplify this computation, however. If it be assumed that the different

sets of learning observations are conditionally independent (of each

other) given e,* Eq. (5) can be simplified to

An) p(An) p(OeAl, ... A 1 )p~el•l, ... A n) = - _--(6)
p(AnO) p(Ojl, ... A._1 dO

*

With this assumption of conditional independence, for any two
different sets A. and A.,

S- j p(A.,Ajo) p(e) dO =J P(Aj1) p(A le) p(e) dO

while

p(A) p(Aj) J[p(Aje1) p(e) p(A 1I0) p(0) ded0

Comparing these two equations it is seen that in general

p (Ai,,A i) j P(A i) p(A i)

If p(O) is a delta function, however, the inequality becomes an
equality. Thus, this conditional-independence assumption may be inter-
preted as an assumption that, if e were known, the A. would be
statistically independent of each other. With e unknown, however,
the statistical dependence of each Ai on 0 introduces interdepend-
ence among the A. themselves. This interdependence among the A.
makes the learning process possible; the interdependence insures that
statistical information relating to the value of e is available in
the learning observations.
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wherein:

, ....) =a posteriori probability density of e,
evaluated in the light of the learning
observations A1 , ... A

p(AnI1) = likelihood function on G given by the nth

jet of learning observations

p(Gl V . . .  n... . .  = probability density of e, evaluated in the
light of "1, ... A 1n.

= a posteriori probability density after n-i
sets of learnin_ observations

= a priori probability density just prior to
taking nth set of learning observations.

Expanding Eq. (3) to incl.de the improved density calculated from

!q. (6), results in

E(jlý, ... Ai = /E[ZJGJ p(ej 1,l, . i.. A) dO (7)

wherein E[Zele is assumed independent of A .  n

D. IDDLEflHNTATION OF LEARNING MODEL

The lu':rnrLýLg Irocess indicated by Eq. (7) can be implemented as

2ho•D: in Fi,-.ro 1. * The process is reiterative, with the same computa-

tions performed after obtaining each set of learning observations, but

wi-ol the pribabiliry ._-nsity )1, 0 updated each time it is used in the

compitat ion.

(ASSUMED INDE-

I I I PENDENT OF An)

__ AIn INTEGRATOR EfzlA, . . .-BAYES UE [APPLIES-

EQ. (6)] P( ".. . .) EQ. (7)] [FROM EQ. (7)]

I [FROM EQ. (6)]

FITG. 1. MOI)EIL FOR I.EARNING PROCESS.

.x.
For a model applicable in the more general case, where the

conditional-iidependence assumption is not involved, see Chapter V,
section F.

SEL-63-099 - 8 -



The special case covered by Eqs. (6) and (7) and Fig. 1, though

subject to limitations because of the assumption of the conditional

independence of the learning observations A,, ... An, is an important

one; in fact, it is the case of primary interest in this investigation.

Many of the results of the study are valid for more general cases, how-

ever; hence, in the development of the theory of the learning process the

possibility of more general results is indicated.

E. DISCUSSION OF LEARNING MODEL

The learning model proposed herein is only one of many possible

models. Before it is analyzed in detail some of the implications of

the model should be discussed.

In proposing the model a Bayesian approach to the learning problem

is used. This approach is often criticized as relying too much on sub-

jective information, especially in the choice of a priori probability

distributions. A priori information is seldom exact, so that the

a priori probability distributions are normally fairly arbitrary.* On

the other hand, Bayesian methods usually allow the use of all available

a priori information, even if some subjective elements are involved.

Such methods are often applied in cases where the information available

is subjective; yet these methods have been found to give reasonable

results. A detailed discussion of the implications of the Bayesian

approach is given by Savage [Ref. 6].

The model analyzed in the present investigation can also be con-

sidered to be a decision-theory model. The methods of statistical de-

cision theory (a theory that has been developed largely on Bayesian

lines) normally involve assuming a priori probability distributions,

performing experiments to obtain additional information, then making the

type of computations indicated in Fig. 1.

If the model illustrated in Fig. 1 is considered as a model of a

statistical-decision-theory computation, the techniques of decision

.

One of the most important results of the work reported here is to
indicate reasonable methods for choosing a priori probability func-
tions. The methods, though rational, do not remove the subjective
element from the a priori judgment, however.
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theory can be used to optimize the performance of a physical or other

system under consideration. At least, the performance will be optimum

if the correct assumptions are made in the analysis. Since, as noted

above, some of these assumptions are almost always subjective, the form

of zhe "optimum" system found by one person may differ from that obtained

by another. It can be said that, if the assumptions made by a particular

investigator for the analysis are the best that his knowledge allows him

to make, then the system performance is, to the extent of his knowledge,

u)ptimum; but claims strcnger than this are not defensible. As the

number of learning observations increases, however, the subjective ele-

ments become relatively unimportant, since the a posteriori proba-

bility distributions** become largely independent of the a priori

distributions [Ref. 5].

A characteristic of the Bayesian approach that distinguishes it

from most other approaches to the learning problem is the fact that no

specific value of the unknown parameter e is selected at any one time.

Rather, a probability distribution p(O) over the possible values of

0 is always considered, and the expectation of the performance criterion

is computed based on this distribution [see Eqs. (1), (3), and (7)].

Another approach to the problem would be to estimate a specific value of

C in some way, then to use the estimate as if it were the true value

of 0. The two approaches are normally equivalent in the limit as the

nonber of learning observations increases without limit. The common

et_ýimaes of e (for example, maximum-likelihood estimates or Bayes

e-ti=.tes) converge in the limit to the true value of the parameter,

thhc convergence taking place with probability one. Similarly, it will

be shown that the probability density function p(e IAI, ... An) obtained

in the learning-process model developed in this paper converges with

probability one to a delta function at the true value of 0. Except

for this limiting case, however, specific values of 0 are not selected,

This interpretation is similar to the "personalistic" interpretation
of probability theory advocated by Savage [Ref. 6].

I.e., the probability distributions obtained at the end of the
entire oequence of computations.

SEL-63-099 - 10 -



although the probability densities discussed in connection with the

learning model would probably be useful in arriving at a specific

estimate of 0.

The significance of the use of a probability distribution p(e)
over the possible values of e deserves some comment. A number of

interpretations of the significance of this distribution are possible.

For example, e could be considered to be chosen from an ensemble of

possible values according to the probability density p(e); or the

assumption might be made that the uncertainty about 0 is caused by

some noise (i.e., irrelevant interference) in the selection process.

Or, without any explanation at all, it may simply be considered that

e is a random variable representing available knowledge of the ur.known

parameter. The result of the procedure is probably more important than

its justification. The essential point, no matter how interpreted, is

that the parameter 6 is basically to be treated as a random variable.
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III. THE LEARNING PROCESS AND PROBABILITY DISTRIBUTIONS

A. EARLY STUDIES OF THE LEARNING PROCESS

Earlier investigators have analyzed a number of examples and special

cases of the learning process [Refs. 7-17]. Some of these earlier in-

vestigations furnished the impetus for developing the more general

learning model proposed in the present paper. Examples of special

interest are those that fall within the special case covered by Eq. (7)

and Fig. 1, wherein the learning observations are assumed conditionally

independent given e. Important examples of the learning process involve

the application of learning techniques to the pattern-recognition prob-

lem. The analysis of the pattern-recognition problem, per se, is only

of peripheral interest at this point, but the problem does present an

interesting challenge to the learning technique. Therefore, enough of

the theory of the pattern-recognition problem will be developed to show

that the learning model illustrated in Fig. 1 is applicable (with minor,

theoretically insignificant, modifications).

B. THE PATTERN RECOGNITION PROBLEM

It is assumed that there exist r possible patterns, designated by

the indices 1, 2, ... r, and that it is desired to classify an observa-

tion X as representing one of these patterns. The criterion of excel-

lence Z is taken as the fraction of the patterns identified correctly.

Thus, E[Z] is the probability of correct identification.*

Clearly, E[Z] can be maximized by maximizing its value for any

given observation. That is, for any given X, the conditional expecta-

tion E[ZIX] is to be maximized. But E[ZjX] is the conditional proba-

bility of correct identification given the observation X and hence is

maximized if the pattern with highest probability of being correct is

chosen. Putting these requirements together, it is found that the

optimum strategy, or the strategy with maximum probability of correct

*
This is the criterion obtained with a statistical-decision-theory

approach and a zero-one loss function (i.e., zero loss for a correct
decision, loss of one unit for an error).
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identification, is to pick the pattern for which the conditional proba-

bility P(ijX) is maximum. This strategy can be implemented by com-

puting P(ijX) for each i, or pattern class, then feeding the results

of these computations into a comparator that selects the class for which

P(ilX) is maximum. This leads to the implementation shown in Fig. 2.

A few modifications of the procedure indicated in Fig. 2 are normally

made in implementing such a system. Expanding P(ilX) by Bayes' rule:

P(ilX) = p(Xi) Pi (8)

where:

P(ilX) = a pos2teriori probability of the ith pattern class given
the observation X [this function is assumed to be
evaluated in the light of X by Eq. (8)]

p(Xli) = conditional probability density of the observation X
given that the it! pattern is being observed (this
density is assumed known as a function of X for any
pattern class--at least, in the conventional pattern
recognition problem being discussed at this point it is
known)

P(i) = a priori probability of the ith pattern class
(this probability io also assumed known for each pattern
class in the conventional problem)

I ST

PROBABILITY P(IX)

COMPUTER

S2NO lx
PROBABILITY P(210) COMPARATOR dX

SCOMPUTER

r TH

PROBABILITY Pý1

COMPUTER _

FIG. 2. PATTEBN-iECOGNITION SYSTEM.
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p(X) unconditional probability density of the observation X
(the availability of this density is unimportant as the
discussion below shows that it is not actually needed).

Since p(X) does not depend on i it can be discarded as a variable

and attention can be focused on maximizing p(Xli)P(i). It is further

assumed (for simplicity) that all P(i)'s are known and equal, so that

all that remains is merely to maximize p(Xii).

The earlier work on the pattern-recognition problem [Refs. 7-10] has

been based on the computation of p(XJi) when some parameter e. in

this probability-density function is unknown. The basic equations are

slight modifications of Eqs. (1) and (7).*

p(Xli) =Jp(Xli,OilP(Oi) dei (9)

p(Xli,Ail, ... Ain) = p(Xli,.)p(eil"il, ..... > in) dei (10)

The A.. are assumed to be sets of learning observations from the

ith pattern class.

Cince thie procedure for all pattern classes is identic,ýl, the

subscripts i are now dropped to simplify notation.

C. OTHER EXAMPLES OF THE LEARNING PROCESS

Abramson and Braverman [Refs. 7-9] have been primarily concerned

with the case where p(X ) is known to be Gaussian, p(X ) N(M ,K ),**

It would be simple to make the correspondence between Eqs. (1) and
(9) and between Eqs. (7) and (10) more exact by defining random variables
with expectations p(Xli) and p(XJi,Ail, ... Ain).

Symbols that represent matrices (including vectors) are in boldface
type. When a symbol is used to represent a variable that could be either
a real number or a vector or matrix (for example, the general p:irameter
e), ordinary type is used, however. The notation p(X ) -, N(M , K )
may be read, "The probability density of the vector X (actually the
joint density of the components of X ) is normally distributed (or
Gaussian) with mean vector M and covariance matrix K
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with the covariance matrix K known but the mean vector M unknown.

In other words, Abramson and Braverman's unknown parameter e is the

mean vector M of a Gaussian density. They assume a Gaussian a

priori density for M , p( M ) - N(, 0 , 0 .) and. obtain an a pos-

teriori density, p( M JAI), which is also Gaussian, p(M IAI)

- N( l, 0 1) with A, and 1 easily computed from /A0' #01

and I " The densities for X , both a priori and a posteriori,

are also Gaussian, P(X ) N( ;0 , 00 + K ) and p(X JA1 )

N(1IL, *1 + K ).

The second stage in the learning process under study illustrates

why this particular process is feasible. Since p( M JA1 ) is of the

same form as p( M ) (i.e., Gaussian), and the second stage involves

the same computations as the first stage with p( M IAI) substituted

for p( M ), Gaussian probability densities are again obtained for

M and X By induction it is seen that this will happen after

each set of learning observations. Hence, the form of the learning

_ystem remains fixed as more learning observations are taken.

After each set of learning observations An, the new mean An

for thle density on M is computed as a weighted average of In-1

and the average of the observations in A . In the limit, as thea

number of learning observations approaches infinity, ILn approaches

the average of all the learning observations. It is known, from the

strong law of large ntumbers [Ref. 18], that with probability one the

average of the observations approaches the true value M of the0

mean. At the same time, the elements of the covariance matrix On

approach zero. Thus, the limiting form of p( M IA,, ... An) is

N( M 0,0). Comparing this with the multivariate Dirac delta function,

it is found that the limiting form of the a posteriori density on M

is a Dirac delta function at the true value of the mean.

If this delta function is put into the equation for p(X IA1, ... An),

it is found that the density approaches the form for known parameters.

Hence, the entire system converges to the form it would take if the

parameters were known.

The solution for the problem of learning the unknown mean was ob-

tained in a fairly simple manner. The assumption of a Gaussian a priori
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probability density 3n M is the obvious assumption to make since

M is a parameter in a Gaussian density. This assumption gives

Gaussian a posteriori densities on M , and insures that all the

densities required are Gaussian.

Keehn [Ref. 10] has analyzed a similar problem and obtained similar

results. For his problem the assumptions that keep the form of the

leavning system fixed are less obvious, however. Keehn has analyzed the

problem of learning the covariance matrix K for a Gaussian density

when the mean vector M is known.

The key assuýmption necessary to solve the unknown covariance problem

is the assumption of a Wishart a priori density over the elements of

the inverse covariance matrix K-l.* The a posteriori density on the

elements of K1 is also Wishart, with new parameters calculated from

the old parameters and the learning observations. The limiting form of

the a posteriori density is again a delta function at the true values

of the unknown parameters, in this case the true values of the

components of the inverse covariance matrix.

The probability density for X turns out, in this case, to be a

Student density instead of the Gaussian density one might expect. As

the number cf learning observations approaches infinity, however, the

limiting form of the Student density becomes Gaussian with the true mean

vector and covariance matrix. Hence, the limiting form of the a pos-

teriori lensity on X is as desired.

Keehn has analyze] in a similar manner the case where both K and

M are unknown. He obtained analogous results by assuming a composite

Wishart-Gat ssian density on the elements of K- , M.** The a pos-

teoriri density is also of this composite form and converges to a delta

function at the true values of the unknoyn parameters. The density on

X is a modified form of the Student density, which approaches the

true Gaussian density.

The form of this density is given in Chapter VI, Table 2, Case u.

The f)rm of this density is given in the Appendix, Eq. (A-7).
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D. FEASIBILITY OF THE LEARNING PROCESS AS DETERMINED BY

PROBABILITY DISTRIBUTIONS

The examples cited above illustrate one method of guaranteeing that

the learning process is feasible. If it is possible to pick an a priori

density p(e) for e such that the a posteriori density p(ejAl, ... An)

is of the same form (e.g., both Gaussian or both Wishart), then the Bayes'

rule computer merely computes new values for the parameters describing

the density on 9 in terms of the old values and the learning observa-

tions. If the form of the density is preserved after one set of learning

?~erw~tions, the arguments used for the Gaussian case show that it is

preserved no matter how many learning observations are taken. Hence,

the learning process is feasible in the sense under consideration--i.e.,

in the sense that a fixed form of computations is applicable throughout

the entire process.

The learning process is considered to be feasible if the computations

necessary after taking learning observations are fixed, neither the

number nor the forms of the computations changing. This requirement of

a fixed set of computations is imposed from the point of view of engineer-

ing feasibility. If the system can learn by performing a fixed set of

computations after each observation period, the engineering problems in

designing an actual system may be soluble; if the system has to be repro-

grammed periodically, or if the number of computations necessary grows

without bound, the design problems almost certainly are not soluble.

1. Reproducing-Type Distributions

In the present investigation, probability distributions that

preserve their form under Bayes' rule, i.e., for which the a priori

and a posteriori distributions have the same form, will be designated

5s 'reproducing-type distributions." Besides the investigators mentioned

above, a number of other persbns have utilized distributions of this

type. Bellman [Ref. I11 has utilized a beta density for learning the

parameter characterizing a binomial distribution; Mosimann [Ref. 12]

has utilized the "multivariate beta" or Dirichlet distribution for the

parameters of a multinomial distribution; Turin [Ref. 13] has used the

"generalized Rayleigh" or Rician density for learning the amplitude
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and phase characteristics of a radio channel; and Kailath [Ref. 141 has

utilized a Gaussian distribution for learning the unknown mean of a

Gaussian distribution, obtaining results similar to those of Abramson

and Braverman in a different manner. None of these workers give methods

for finding reproducing-type distributions, however. The only general

method of finding reproducing-type distributions that has been found in

the literature is that of Raiffa and Schlaifer [Ref. 15]. These authors

siscuss an important class of reproducing-type distributions--a class

that includcs all the reproducing distributions mentioned above save the

Rician distribution utilized by Turin.*

2. Nonreproducing Distributions

Lest the reader gain the impression that reproducing-type distribu-

tions always exist, so that the problem is merely one of finding the

appropriate reproducing distribution, attention is called to one example

of a case where no reproducing distributions exist. This example is

taken from a problem studied by Daly [Refs. 16 and 17], which is similar

to the problems studied by Abramson, Braverman, et al. The chief

difference between Daly's problem and the cases hitherto mentioned lies

in the form of the information given to the learning system during the

leirning process. An important assumption in the analysis of the

examples previously considered has been the assumption that the learning

observations were classified--i.e., the system was told to which pattern

eech learning observation corresponded. This assumption made it possible

to state that the A in Eq. (10) consisted of samples from the ith

pattern clacls.** Daly assumed that the system was not given this

.

The forms of all these densities, including that used by Turin, are
derived in Chapter VI and in the Appendix.

In a typical application of this theory the system would be given
a set of classified patterns during a training period, then would be
told to identify unclassified patterns later. In a few cases the correct
classification of patterns might be available with a slight delay, with
a decision needed earlier. The same techniques could be used as in the
first case, but with the added possibility of indefinitely continuing
the training period.

SEL-63-099 - 18 -



information, either during the learning process or during the recogni-

tion process. The two problems may be distinguished by calling the

former the "perfect-teacher" problem and the latter the "no-teacher"

problem.

A simple example of the "no-teacher" problem would allow for two

alternative hypotheses: either (1) both noise and a one-dimensional

signal of unknown magnitude m are present; or (2) the noise alone is

present. Assuming Gaussian noise distribution with zero mean and
2

variance 2 , and assuming also that the two hypotheses are equally

probable, the conditional probability density of an observation X

given m is:

p(xlm) 1 .e.(X.m).12 2+ -X2/2 2 ) (11)

If an a priori probability density p(m) is assumed and if a

set X1 , ... X of measurements chosen according to the density

given by Eq. (11) are used as learning observations, it is found that

= p(X 1 , ... Xlm) p(m)

n 2 2

H, (exp -(X.-m) /2o* + exp - X2/2o}m) (2i= 1 (12)

fTi (exp - x-)/29' + exp -X2/2a ) p(m)dm
t= n

In each of the earlier examples the a posteriori density

p( 1i, ... i.) was expressible in terms of a fixed number of parameters

no matter how many learning observations were taken. Thus, the form of

the denoity did not change as the learning observations progressed. In

the caoe of learning a Gaussian mean M , only two parameters, "n

and On' were necessary. Since the Wishart density is expressed in

terms of a fixed set of parameters, a similar situation was true for
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learning the covariance matrix K or for learning both M and

K. Thik i. not the case with the density in Eq. (12), however. In

fact, no nandegenerate form for p(m) has been found that allows

p(M I X,,, Xn) to be expressed in terms of fewer than n parameters

(one for each Xi). It is shown in Chapter VI, Section D, that expres-

sion in terms of fewer thai i. parameters is impossible with any non-

degenerate p(m); hence, the form of the density keeps changing as long

as the learning observations are contirsed.

The example of the "no-teacher" problem clarifies what is meant by

saying that the a priori and a pooteriori densities are of the same

form; this requirement must be interpreted to include expression of the

lensities in terms of a fixed number of parameters. Otherwise, the

density in Eq. (12) might conceivably be considered to be reproducing,

since the expression in the last part of this equation is always valid.

The exa•mple also indicates that it cannot automatically be assumed in

any particular case that reproducing-type densities exist.

E. PROBLEMS FOR FURTH4lR INVESTIGATION

Examples of the learning process studied in this chapter have

described three main problems:

1. To find general conditions uwider which the a posteriori
probability density approaches a delta function at the true
value of the unknown parameter.

2. To find conditions guaranteeing the existence of reproducing-
type probability distributions.

3. To find the forms of any reproducing-type probability
distributions that may exist in a particular case.

These problems are investigated in the following chapters.
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IV. CONDITIONS UNDER WHICH THE A POSTERIORI DISTRIBUTION

APPROACHES A DELTA FUNCTION

This chapter considers the first problem posed at the end of

Chapter III: to find general conditions under which the a posteriori

probability distribution approaches a delta function at the true value

of the unknown parameter.

A. THE CONVERGENCE THEOREM

In each of the examples of learning processes discussed in Chapter III

the limiting form of the a posteriori density p(ejA1 , ... An) as

n increases is a delta function at the true value of 0. The conditions

needed to insure that this is so are simple: it must be possible to

calculate the true value of e from an infinite sequence of observa-

tions, and this true value must not be ruled out by p(e), the a priori

probability distribution on e. More rigorously:

Theorem I. Assume that the following conditions are satisfied:

1. e is the true value of e
0

2. The a priori density p(e) > 0 in some sphere containing e
o

3. The a posteriori densities p(ejLi/, ... A ) are calculated by
Bayes' rule An

4. There exists a sequence of functions fn(A1 , ... An) converging
to e with probability one.0

Then p(elAl, ... An) - 5(e - e.) with probability one, where 6(e - e0)
is a Dirac delta function (of the same dimension as e).

Proof: Theorem I is an immediate consequence of the zero-one law

of probability theory as stated by Loeve [Ref. 18, p. 3981. The state-

ment of this law used here is, "The sequence P(BjY 1 , ... Yn) of

conditional probabilities of a property B of the sequence Y1 ' Y2 ' "'"

given the first n terms of the sequence converges almost surely to

1 or 0 according as the sequence has or has not this property." If

B is a sphere in the range of e, then the event that
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e -lira fn(A,, An) C Bno

is an event defined on the A. and hence satisfies Loeve's definition

of a "property" of the sequence. Therefore,

P(BIAJ, ... An) =n p(elAl , ... A ) d -•el or 0 (13)

according as e is or is not in B. Equation (13) is equivalent to
0the statement that p(jiA1 , .. An) converges to 5( o)*

Since Theorem I and its proof are fairly abstract, the significance

of the assumptions should be pointed out. Assumption (4) guarantees

that the event that e E B is a property of the sequence. Assumptiono

(1) guarantees that this event is true, or that the sequence has the

desired property. Assumption (3) guarantees that the correct forms are

used for the a posteriori probabilities, since these probabilities

are calculated by the standard methods of probability theory. The

other assumption, number (2), is hidden in Loe've's statement of the zero-

one law. In all of the material he treats, Loeve assumes the events

considered have. positive probability. Assumption (2) insures that

this is true.

From the definition of the Dirac delta function and Eq. (3) there

is derive~d the important

Corollary: If the assumptions in Theorem I are satisfied,

EtZIlA, ... A] *n E[zljo] with probability one, where Z is a random

variable representing a selected performance criterion.

The symbol C in this equation should be read "is in" or "belongs
to. "

Theorem I is based on Theorem 5.1 of Braverman [Ref. 7, p. 29].
The material just presented comprises a more precise statement of the
theorem and simplifies the proof. The proof is still quite abeýtract,
however, despite its deceptively simple appearance. Those readers
unable to follow the proof completely may treat it as a plausibility
argument.
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This corollary indicates that the entire system approaches the form

it would take if e were known to be the true value of e.

B. DISCUSSION OF THEOREM

Theorem I is more general in its import than may at first be

apparent. No statements have been made as to whether a "teacher" is

present or not. It has not been required that any type of independ-

ence hold, nor does Loeve require independence for his theorem. It is

merely required that the sequence of functions fn(A1, ... An) exist.

3uch a sequence can exist either with or without a teacher, either with

or without independence.

The requirement that this sequence of functions exist is simply a

method of saying that the true value of 0 must, with probability one,

be determinable from an infinite sequence of learning observations. If

it be assumed that the sets of learning observations consist of single

observations, i.e., Ai = ýXi) , and that the Xi are conditionally

independent given e (the same independence assumption used in Chapter

II), this requirement can be put into a more easily visualized form. In

this case if a function of a single observation, f(Xi), such that

E(f(Xi)0 =] -, (14)

exists, then by the strong law of large numbers,

nf(xi)-eo (15)
i=l

with probability one, where 6 is the true value of e.*0

*

In applying the strong law of large numbers to this case, it is
necessary to recall the earlier interpretation of the requirement that
the Xi be independent given e. In Chapter II, this requirement was
interpreted to mean that if e were known the Xi would be independent.
The knowledge available about e does not affect the convergence of
Eq. (15); so the strong law is applied as if it were known that e
equals 6 .

O
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As an example, in the case of the unknown mean of a Gaussian

distribution, the sample average

n

n i

converges to the true value of the mean with probability one. Similarly,

for the case of an unknown covariance matrix, the sample covariance

matrix

n

S(x - M )t (x 1 - M )
i=l

converges to the true covariance matrix with probability one.

Theorem I can also be applied to the simple example of the "no-

teacher" problem discussed in Chapter III. Fbr the density given by

Eq. (11),

E[Xjm] - m. (16)

Hence, by Eqs. (14) and (15)

n
2_ x--M (17)n•_ 1 0

i=l

with probability one, where m is the true value of m. This result0

agrees with Daly's application of limiting arguments [Refs. 16 and 17]

to show that the limiting form of the optimum system is the form it

would take if m were known.

As the conditions of Theorem I are met for most probability distribu-

tions of practical significance, this theorem provides reasonably general

conditions insuring that the limiting form of the a posteriori density

is a delta function at the true value of 0. Thus, Theorem I affords a

solution to the first of the three problems posed at the end of Chapter

III.
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C. ILLUSTRATION OF CONVERGENCE

An illustration of the manner in which the a posteriori density

approaches a delta function is given by Fig. 3. In this figure are

plotted probability densities for the parameter P dharacterizing a

binomial distribution. A uniform a priori density over the interval

from 0 to 1 has been assumed, and the a posteriori density

p(P'I , .... :n ) has been plotted under the assumption that equal

numbers (1, 2, 4, 8 and 16) of occurrences of each of the two possible

(DELTA
FUNCTION) THERE ARETWO POSSIBLE

n ý 16 EVENTS WITH

PROBABILITIES
- ,. P AND I- P

n=8

3 n 4

I-
n 2

2
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A PRIORI

S0 DENSITY

0

P

F TG. 3. PROHARTII, ITY DENSITIES FOR THE PARAMETER P
(IIARACTERIZING A IINOMIAL, DISTRIBI'TION.
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events have been observed.* The conclusion from the plot is that the

value of P becomes known more and more accurately as more observations

are taken--this is illustrated by the continuously decreasing width of

the plots in Fig. 3--with the true value of P becoming known exactly

after an infinite number of observations, when the density becomes a

delta function at the true value of P, P = 1/2.

Since the a priori density p(P) is uniform and none of the a
posteriori densities are uniform (in this case all of the a posteriori
densities are beta), the a priori density in this example is not
reproducing-type. However, since all the a posteriori densities are
of the same form, the densities may be considered to become reproducing-
type after one observation. It is shown in Chapter V, Section D, that
a posteriori densities often become reproducing-type after a few
observations even when the a priori density is not reproducing-type.
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V. CONDITIONS FOR REPRODUCING-TYPE PROBABILITY DISTRIBUTIONS

This chapter attacks the second and third problems posed at the end

of Chapter III: namely, the problem of finding conditions guaranteeing

the existence of reproducing-type probability distributions, and also the

problem of finding the forms of any such distributions that may exist.

A reproducing-type probability distribution has been defined as one

in which the a posteriori distribution p( jAl, ... An) has the same

form as the distribution p(9) assumed a priori, the two distributions

being related through Bayes' rule applied in the light of a series of

learning observations A,, ... An (Eqs. (2) and (6)). The first step

in the present study, therefore, is to find a convenient method for

analyzing the form of p(elAl, ... An) in any particular case.

A. FACTORIZATION OF A POSTERIORI DENSITY (ASSUMING LEAR•ING

OBSERVATIONS ARE CONDITIONALLY INDEPENDENT GIVEN e)

A principal difficulty in analyzing the form of the a posteriori

probability density p(elA, ... An) as it is given by Bayes' rule

arises from the arbitrary nature of the a priori density p(e). The

only real requirement put on the a priori density is that it be a true

probability density; hence, it must be non-negative and integrate to

one. Since p(e) is involved in the computation of each of the a pos-

teriori densities p(elO , ... A), this introduces some arbitrariness

into each of these a posteriori densities. This may be illustrated by

writing Bayes' rule in terms of the likelihood of the complete sequence

of sets of learning observations, i.e., in terms of p(Al, ... Anle):

p(= , ... Anl) p(O)p (0 Al .. .n ) = . (18)
j p(A,_, A. Anle) p(e) de

Fortunately, the expression in Eq. (18) for the a posteriori

density may be factored in a manner that simplifies analysis of its

form.
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Theorem II: Assume the likelihood P(Al, ... A"ile) is greater than

zero and is an integrable function of e. Then p(eIAl, ... n) can be

expressed as

-e9I\ .An A . p(e) (19)p~e~l .. •) =p~l~l ... % E[p(e)lA_, .... An)

where

•(e l _, . . .• ) = P('ýI' .. .%n le) ( O

p(Al, .An le) de

is a probability density on e depending only on the observations, and

where E[p(e)jAl, ... AnI is the expectation of the a priori density

p(e) taken with respect to the density p(eIA1, ... An). Further, if

p(e) is bounded and p(eo) > 0, then

p(ejAl, ... An)--b-(e - eo) (21)

with probability one if and only if

P(e~lA, ... An ) --a(0 - eo) (22)

Proof: The function g(8jA1 , ... An) is by its definition in Eq.

(20) a legitimate and well-defined probability density, since it has

been assumed that p(A,, ... Anle) > 0 and is integrable. Rewriting

Eq. (18) in the form

p(0j\ A p (A1, ... n le) p(e)
P ' n* A[ r A le)

SFP(%, ... [jle) de p(e.)de
p(A_, ... A nle) de

(18a)
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and incorporating the definition of '(eil1, ... An) in Eq. (20) it is

seen that p(eIAl, ... A n) may be written in the form in Eq. (19).

To prove the convergence portions of Theorem II, assume

p(eljl, ... A) - 5(e - eo) as specified in Eq. (22). Then, since

P(eo) > 0 by assumption, and E[p(e)jA1 , ... A.] approaches p(e 0 )
as ^(ejA1 , ... An) * 5(e - eo),

p(e~l•, ... A) p • 5(e - eo) r, (e - eo) (23)
0

Conversely, if it be assumed that p(elAl, ... Ad) - 6(e - eo), then

Eq. (19) indicates that

p(el, ... An) = p(elA, ... An) E[p(e)IA, ... An] /p(e)

b(e - eo) itp(e)jA,, ... An]/p(e) (24)

Since 2[p(e)jA1 , An] is a constant and p(e) has been assumed to

be bounded, Eq. (24) can be valid only if •(e A1 , ... An) - 5(e - eo),
The density ý(ejA1 , ... An), which might be called the "experi-

mental portion" of the a posteriori density, is simply a normalized

version of the likelihood. It is a function of A1 , ... An as well

as of e, but it is here assumed that the observations have been made

and Al, ... An have been replaced by the results of the observations.

Under these conditions, ý(eIAl, ... An) is a function of the single

variable e.

The integrability condition on P(Al, ... Anle) in Theorem II is

normally fulfilled for large n, as this density tends to become more

and more concentrated near the true value of e, so that the effective
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range of integration is small.* In all cases thus far encountered for

which the techniques of Theorem II are applicable, ... A le)
becomes inte,!rable after a few observations (typically one or two) and

remains integrable as more observations are made. Unless otherwise

stated, it will henceforth be assumed that this integrability condition

is satisfied.

B. E-)T1ERIMENTAL PORTION OF A POSTERIORI DENSITY

Theorem II indicates that, at least after a large number of learning

observatiLns, the behavior of p(ell, .... A .) is primarily determined

by the "experimental pý,rtion" ý(eI, "I' •N). Also, the latter density

is less arbitrary and consequently easier to work with than is the basic

function. The conditions that must be satisfied for the "experimental

porti 'n" of the a posteriori density to be reproducing are now to be

invest !. gated.

Definition No. 1: The a priori density p(e) is said to reproduce

itself with respect to the likelihood p(A 1 1j) if p(e) and the

Lindley [Ref. 51 has shown that with any reasonably smooth a priori
density, the limiting form of the a posteriori density is independent
Qf the a priori density, being Gaussian with means at the maximum
likelihood values and with variances decreasing as 1/n. (Another type
of density, possibly a reproducing-type density, may approximate the
a posteriori density slightly more accuracy, but both this density and
Lindley's Gaussian density approach each other and the delta function
limit of Theorem I.) A general proof that the effective range of
integration approaches zero is easily deduced from Lindley's result.

The limiting form Lindley obtains is almost identical to the
limiting form for the probability density of a maximum-likelihood esti-
mate. This latter density can be found in many standard statistics
texts. An alternative approach to proving that the effective range of
integration approaches zero could be based on these maximum-likelihood
analyses.

An illustration of the manner in which the effective range of inte-
gration for p(Al, ... Ahie) approaches zero may be deduced from Fig.
3. Since in that figure a uniform a priori density was assumed, the
a posteriori density plotted in the figure is proportional to
p(Al, ... e), and the effective range of integration is the
effective width of the plot.
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a p,-steriori density p(G A1 ) are members of the same family of

probability densities, differing only in the values of the parameters

characterizing densities in this family.

If p(O) reproduces itself, the result of the Bayes' rule computa-

tion in the learning process is simply to compute new values for the

parameters characterizing densities in the family, this computation

giving p(O1A 1 ). The next stage of the learning process involves the

same computations save for replacing p(e) by p(e1Al) and using the

set 2 of learning observations instead of A1. If these sets of

learning observations are of the same type, p(eJA1 ) reproduces itself

with respect to the likelihood p(A2j0) if p(e) reproduces itself

with respect to p(.%lej). Proceeding by induction, it is seen that

p(G6A]. , ... An-1) reproduces itself with respect to p(An1) if p(e)

reproduces itself with respect to p(A9e).

Thus, under the assumed set of conditions, the fact that p(e)

reproduces itself with respect to the likelihood p(i•le) guarantees

that all the a posteriori densities are members of the same family

of probability densities. At each stage of the learning process the

Bayes' rule computer merely computes new values for the parameters

describing these densities. The remainder of the computations involved

in the learning process, multiplication by E[Zjei and integration, are

fixed computations (see Fig. 1) and can always be accomplished in the

same manner. Even if the result of this computation cannot be obtained

analytically in closed form, it can be obtained by a fixed procedure of

numerical integration or by electronic integration. Hence, if p(G)

reproduces itself with respect to p(t 1 Je), the computations necessary

for the entire learning process are the same at each stage of the process.

It is assured that the system will not have to be reprogrammed in the

middle of the learning process.

Strictly speaking, the sets of learning observations or the likeli-

hoods p(Aj1e) should be included in any statement about densities

reproducing themselves. In cases where the meaning is clear, however,

reference will be made to the densities p(e) as being reproducing-type

densities, without specific mention of the learning observations.
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C. SUFFICIENT STATISTICS

In actina! compitations of the a posteriori probabilities, it is

often unnecessary to have available all the individual learning observa-

tions. It often happens that some functions of the learning observations

will :ifflce ftr computing the a posteriori probabilities. For

example, the a posteriori probability density for the mean of a Gaussian

distribution given the sample average for the learning observations is the

same as the a posteriori density given all the individual observations.

A functiou of' the learning observations which, in this sense, contains

all the information in the observations relevant to learning e is

called n sufficient statistic for 9.*

In working with sufficient statistics it is considered that they

are written in the form of a vector with real-valued components. That

is, if T(A,1 ... An) is a sufficient statistic for e, it is assumed

"that

A) =, (tn), t. (n) (25)

where the t( are real-valued functions of A, ... An. There

follows the obvious

Definit•ion No. 2: The dimension of a sufficient statistic is the

number of components in the vector representation of the statistic.

In the case of learning the unknown mean of a Gaussian density

mentioned above, the sample average is a sufficient statisti, of

fixed dimension (d dimensions if a d-variate Gaussian density is

being ccnsiaered). In some cases, however, the only sufficient statis-

tic is equivalent to the learning observations themselves** and no

sufficient statistic of fixed dimension exists. The distinction is of

fundamental importance, as indicated by Theorem III below.

.
A general treatment of sufficient statistics has been given by

Dynkin [Ref. 191. Among other things he finds conditions for the
existence of sufficient statistics of the forms needed for this study
and methods for computing such sufficient statistics.

**

The statistic is equivalent to the observations if the observations
can be computed from the statistic and vice versa.
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It is now possible to state a simple criterion for determining

whether the experimental portion of the a posteriori density is repro-

ducing or not. Since this density is not defined before observing A,

the procedure suggested by Definition No. 1 is slightly altered by

checking whether 3(ejA 1) reproduces itself with respect to p(A 2 le)
or not.

Theorem III: The probability density '(e IA1) reproduces itself

with respect to the likelihood p(A 2 10) if and only if a sufficient

statistic for 0 of fixed dimension exists.

Proof: To prove this theorem the factorization theorem for suffi-

cient statistics is applied [Ref. 20]. The factorization theorem states

that (t~n), ... t(n) is a sufficient statistic for e if and only

if there exist functions f and h such that

P(/y .. A n 1) = f '(n)1, . t )ye ) h(Aly...... n (26)

where f depends on ... A only through t (n) . (n) and
wsn t1  " s t

where h does not depend on 0.

Assume a sufficient statistic of fixed dimension exists and let

(tn), ... t(n) ) be such a sufficient statistic. Then, from Eqs. (20)

and 26),

'(enA=, ... (n) (n)) (27)

/f ( t{) . t n)09 ) dOif~tn) (n) (n)d

This is a fixed function of the parameters t1n), ... t n). Hence, the

(e IAI, ... An) differ only in the values assigned to these parameters

and each reproduces itself with respect to p(Ar+l 1).

Conversely, assume (OjIA) reproduces itself with respect to

P(A 2 1O). Then there exist r parameters n) .. 1 (n) and a function

g such that

A) = gl(,n) .. (n g rn),e) (
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since II. is known that all of these densities are of the same form,

differing only in the values assigned to parameters. From Eqs. (20) and

p(A1, l. ne) = g (cn) a (nr) e) . p(Al, ... Ale) de

(29)

Thu last integral is not a function of e, since this parameter is

integrated out of the equation. Hence, by the factorization theorem for

sufficient statistics, the a's comprise a sufficient statistic for e

of fixed dimension.

D. REPRODUCING A PRIORI DENSITIES

By combining the results in Theorems II and III, solutions can be

obtained t,ý the problems of determining when reproducing-type densities

exist and of finding the forms of any that exist.

First, it is noted that the factorization in Eq. (19), Theorem II,

expres6es p(e IA, ... A) as the product of f(elj, ... -) and

another function of e. Hence, if the densities p(e), p(eOIA 1), ...

are all t, be :,f the same form, the densities •(eIA9), w (eIVA2 ),

mu.st all be of the same form. Accordiiý,, to Theorem III, this means that

a sufficiont stat¼stic of fixed dimension must exist.

Second, it may be seen that if p(e) is to be a repruducing-type

a priori density, it must be of the same form as the a posteriori

density p(eIA, .... .). Hence, p(e) must be a function of tue form

of 9(ejxA, ... A ) multiplied by another function of e. This condition

is stated by postulating that p(e) must be of the form

^P(e) p(eI.,_m, "" A0 ) r(e) (30)

J p(oA., ... A0 r(O) de
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where ý(eIAm, ... A0 ) is calculated by choosing a sequence of sets

of "a priori observations," denoted by A~m, ... AO,* and applying

Eq. (20), and where r(e) is a non-negative, integrable, but otherwise

arbitrary function of e.**

Conversely, if an a priori p(e) of the form in Eq. (30) be

assumed, there results for the a posteriori density

n FP(Al, A nle) p(e)p(elA,, ... n) = r

J p(A,, ... Ane) p(e) de

(.) r(e)

J p(ejAm, ... A0 , A1 , ... A) r(e) d6

(31)

where use has been made of Eqs. (20) and (30) and of the assumption

that the A. 's are conditionally independent given e. If a suffi-

cient statistic for e of fixed dimension exists, the same analysis

used in deriving Theorem III shows that both Eqs. (30) and (31) are of

the same form, and hence that p(e) is a reproducing-type a priori

density.
*

The "a priori observations" are utilized to represent the available
a priori information. In a typical application the sets A-m, ... AO
are sets which are thought a priori to be typical sets of observations,
with the total number of observations in these sets a measure of the
confidence placed in the a priori information (see Section F).
Actually, of course, only the sufficient statistics for the a priori
observations need be chosen; it is even possible to use sufficient
statistics that do not correspond to physically realizable sets of
observations (for example, a component of the sufficient statistics
corresponding to the number of observations might not be an integer)
if the form of the probability density ý(ejIim, ... AO0) is unchanged.
If the observations are not physically realizable, the notation of Eq.
(30) may be slightly misleading; it is kept for the aid in visualizing
methods of generating reproducing densities which it provides.

Rather than stating that r(e) itself is integrable, it would be
more accurate to state that the integral in the denominator of Eq. (30)
exists. It will also be assumed that similar integrals, such as those
in the denominator of Eq. (31), exist.
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The folJlowing theorem ha. now been proved:

Tho-;,reýa IV: Assomzo that the sets of observations A. and A.,

i j 3, are conditionally independent given e. Then a reproducing-type

a priori density p(e) exists if and ,nly if a sufficient statistic

for e of fixed dimension exist:,. Any reproducing-type density that

existj is of' the form given in Eq. (30).

Theorem IV is the fundamental theorem in the analysis of reproducing-

type deniitiez in ti, - case where the conditional independence assumption

is satisfied. It indicates that the learning process can satisfy the

definition of feasibility utilized in this report (see Chapter III,

Section D) if and oily if a sufficient .tatistic of a simple form exists.

It al;,, gives a method for generating any reproducing-type densities that

du •-xiot. All those that exist can be generated by taking a function of

o if the form of the likelihood, p("d ... A0 1l) of possible sets of

:observations, multiplying by an arbitrary non-negative function of e,

and then normalizing. In deriving Eq. (30), this normalization was done

in two ..teps, first normalizing p(A_., ... A0 l) to obtain

(0 1A r, ... AD), fren mrnltiplying by r(e) and renormalizing. A

one-step normalization will suffice, as putting the definition of

ý(eJAm, ... A0 ) [Eq. (20)] intu Eq. (30) gives

p(A_ , ... A0 e) r(e) (30a)

/ p(Am "'" A010) r(e) dO

Similarly, Eq. (31) may be rewritten as

p(Am, .".. A0, A_,, A) r(e)p(e L,, ., . .. . .) = ,(31a)

/ pA ' .. AO ].. . An) r(e) dO

The existence of a sufficient statistic of fixed dimension is more

important than the use of a reproducing-type a priori density as a

criterion for determining the feasibility of the learning process. In

fact, the same arguments used to establish Theorem IV can be used to

establish the following:
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Theorem V: Aosume that the sets of learnin4 observations A. and
1

Aj, i J j, are conditionally independent given e. Then, regardless

of the a priori density p(e), the density p(eIAl) reproduces itself

with respect to the likelihood p(A 2 1e) if and only if a sufficient

statistic for e of fixed dimension exists.

Thus, if there is no objection to one reprogramming of the learning

system after the first set of learning observations, it is merely

necessary that there exist a sufficient statistic of fixed dimension.

The form of the learning system will remain fixed after this one change,

regardless of what a priori p(e) is used. It may not always be

obv' u• .. t tiie forni is constant, but it will be possible algebraically

to manipulate the densities into: the form in Eq. (19). Since

^(0fAt, ... An) remains of constant form, the whole density in Eq.

(19) remains of constant form.

Another result similar to that in Theorem V should be pointed out.

Regardless of what a priori density p(e) is used, it is always

possible to write the density in the form of Eq. (30a), i.e., as a

reproducing density. To do this, it is merely necessary to pick an

arbitrary sequence AM, ... A0 of sets of " a priori observations"

and multiply both numerator and denominator of the a priori density

by p(A , ... A0 1). Rewriting the density in this manner appears

physically meaningless, however. Also, in view of Theorem V, little

appears to be gained by such an approach. Although this possibility

snould be noted, it will normally be neglected in this report. Unless

otherwise stated, it is assumed that the denominator of r(e) contains

no terms of the form of the likelihood function.

E. CONVERGENCE RATES WITH VARIOUS A PRIORI DENSITIES

In view of Theorem V, it appears that the use of nonreproducing

a priori distributions will often give little if any increase in the

complexity of the learning system. If the rate at which the a pos-

teriori density approached a delta function were greater with a non-

reproducing a priori density, the latter type of a priori density

might be preferred despite some small increase in complexity. It is
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easy to prove that no appreciable increase in rate of convergence can be

.btahneif by choosing a different a priori probability density, however;

the izroof follows.

Coo.ider twD a priori densities po(0) and p.1 (0) and the

c rreopt oding a posteriori densities p ( (e A1 ... An) and

(0). If po(G) and pl(O) are approximately the same

width, the p (el,, and p1(ejtl, ... An) are approximately

:ta mue width. To show this, it is assumed that po(e) and p1 (e)

both havc. the same mode* e0 and that for some other point el

Po0 (90 ) p(e0) (32)

po(el) P1(01)

(where 01 might be a common 3-db point for the a priori densities).

Then, fr.st Eqs. (19) and (32)

Po( •, . ) d (eGo1ý,. An) po(e)
p, (o jl., ... .,) •( zl ... .A ) po(01 )

\(Ii ... ,) p1(0) l( ,• - A n)
(e ... l) p(e 1) pl(e0llj, "' " A)

(33)

Hence, the two a posteriori densities narrow down equally fast as

srrore oborvaions are taken.

F. GENERALIZATION OF THE THEORY TO INCLUDE DEPENDENT LEARNING OBSERVATIONS

The results may now be generalized to apply to the case where the

learning observations are not necessarily independent given e. The

procedure will be first to give a simple example of finding a reproducing

density without the assumption of conditional independence, then to use

The mode of the density is the value of 9 for which the density
takes it, maximum value.
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this example to deduce the changes necessary in the theory in order to

cover the general case.

A binary Markov process is a simple example of a case where the

observations are not conditionally independent given the parameters

characterizing the process. If it is assumed there are two possible

states, 1 and 0, and if P is assumed to be the probability of a

transition from state i to state J, the probability of observing a

1 or 0 at a given time is not a function of the P. 's alone. It

also depends on the previous digits observed. Hence, the theory thus

far developed is not directly applicable.

'Reproducing densities for the PJs can easily be found, however.*

If each A. consists of a single observation and the sequence
I/, ".. X contains a total of n, ones, of which rl, are

followed by ones, and n zeroes, r00  followed by zeros, there

results,

P('.' AnPooPll) P(nI)Po O(1-Po0n-rO0 r n-l "nl'rll
P(\l -n 0,11 1 00 00 0 1 111
A .... 11  = ( 1 p 0 (- ) P11 (1'F11) (31k)

where use has been made of the fact that Pio + P = 1.

A reproducing-type density can be found for this case in the same

manner as before, picking the "a priori observations" (Am, ... %0)

consisting of n' ones, rl followed by ones, and n' zeros,

ro0 followed by zeros, and setting

In this case the learning observations are discrete random
variables, while the theory has been developed assuming the observations
were continuous random variables. There is no difficulty in extending
the theory to allow observations which are discrete random variables,
however. The only change necessary is replacing probability-density
functions by probability-mass functions in the equations; this may be
verified by replacing Eq. (2) by the form of Bayes' rule applicable
here, and developing the theory in an identical manner.
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P C (POO F 11)
I I

r? nýr0 r n)'rn -r
F(/'- )Po (ip )10 P 11 (1P ) 1 11

1 (3)
F r ( n0 -ro r ni-ril(A PlF 00(F (l'Pl dFo dFl

m 00l-"0 1 1100 11
0 0

The parameter ,0 has been included as an index for the density in

Eq. (35) since the computation to be performed after observing A,

depends 3n A0. For example, if A, is a one and A0 a zero, then

PA b(P°°P 1 'q l )

r n'-r' +1r' n'-rto00 (1_o)0 00 n- 11 ) 1 1
P(A-m) 0 0  P00 1 1 (l1 (36)

r' n-ro +1 r' nl-rl
IF (A- )P00 (1'00) 0 00 p1

1('-p ) 10 1 1 dP00dP11

00

while if Al is a one and A0 also a one

r(0(lPo0)no'ro0 r li +l(lPl)nl-rll

1m 00 ' P o111 (37 )
c00

nz-r' r'+1 nl-r?
P(A )POOl-PO)0 00 Pl 1' P 1 11 lodl

The two expressions, Eqs. (36) and (37) differ in the exponent which

is increased to allow for the additional observation. The computations

after observing A2 will differ similarly according to whether A, is

a one or a zero. However, the densities will always be of the form in

Eq. (35), so the density reproduces.

In the case of more general types of dependence, a similar procedure

can be used; although the computation to be performed may depend on more
than the immediately-preceding digit. Such a situation is treated by

SEL-63-099 - 4o -



introducing a parameter a•i' which indicates the state of the system

after the ith observation. In the most general case a i may reflect

the complete past history of the system. Using this parameter to index

the densities,

a CIOe(, ... A n O() (38)
J p po( ... Ale) pa (e) de

If the original density is of the form

Pa (A-mrn 1"01e) r(e)p(e) : -m (39)
JPa (Ae "" A0 1e) r(e)de

-m

it is found that:

paC(All ... Anje)pa (A~m .. A0 je) r(e)
A)= 0-m C40o

Pa, 0.(A ... AnIe)PC-m(A'm' . A01e)r(e)dm

But since a0 reflects the entire past history of the system, it is

possible to write

pA(A,, A le) -pt (A,, .... A je,Am, ... A) (41)

By putting this expression in Eq. (40), there results

Pa• (A-re "'" A~0 ,Aj' "'" Anje) r(G)pa (A2

pa0 (ejA, ... An) = C(4)r(e)(
I a~~' A0,A1 , A. nAje)r~e)de

The same type of analysis as used in the case where the observations

were independent given e shows that Eqs. (39) and (42) are of the same

form if and only if a sufficient statistic of fixed dimension exists.
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The proof has now been completed for:

Theorem VI: A reproducing a priori density pCO(e) exists if

and only if a sufficient statistic for e of fixed dimension exists.

Any reproducing density that exists is of the form shown by Eq. (39).

Even though the densities reproduce, the process may not be feasible

if the ai's can take on very many different values. There appears to

be nothing in the theory that requires the number of different possible

a.'s to be finite, or even countable, in order to have the densities
1

reproduce. Such questions are largely academic, however, as different

values of the a.'s normally mean different computations to determine1

the new density on e (as in the binary Markov example) with corres-

ponding changes in the form of the learning system.

It is possible to make a statement similar to Theorem V in this

case also. The a posteriori densities eventually become reproducing

if and only if a sufficient statistic of fixed dimension exists, no

matter what a priori density is used. The densities may not begin

reproducing before the system goes through all its possible states, or

distinct a 's, however.

G. DISCUSSION OF RFSTJLTS

Solutions are now available for the seconl. and third problems posed

at the end of Chapter III: finding conditions that insure that

reproducing-zype densities exist, and finding methods for generating any

reprodljcing-type densities that do exist. It has been shown that the

existence nf a sufficient statistic of fixed dimension guarantees the

existence of reproducing densities, and that any reproducing densities

that exist can be generated by normalizing a non-negative function of

O having a factor of the form of the likelihood of a possible set of

observations. The existence of a suitable sufficient statistic is more

important than the use of reproducing distributions in insuring the

feasibility of the learning process, as the sequence of a posteriori

distributions eventually becomes reproducing if such a statistic exists,

regardless of the a priori distribution. No appreciable increase
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in rate of convergence of the a posteriori densities to a delta func-

tion can be obtained by the use of a non-reproducing a priori density,

however.

The results apply either with the learning observations conditionally

independent given e, or without this independence. Without the inde-

pendence assumption, however, the form of the learning system may depend

on the state of the system determined by previous observations. If

many such states are possible, the learning procedure may be impractical

even when reproducing-type distributions are used.

The class of reproducing-type a priori densities of the form in

Eq. (3u) or (I5) is large enough to give considerable freedom in choosing

a priori densities. The a priori observations (or the sufficient

statistics describing these observations) can be chosen almost arbitrarily.

As the examoles in the next chapter show, this allows considerable free-

dom in choosing the "experimental portion" of the a priori density.

The function r(e) can also be used to incorporate a wide variety

of forms of a priori information. Although any non-negative function

of e can be used for r(e) (assuming the integrability requirements

over e are met), most of these forms are physically meaningless. In

the next chapter are given a few examples of forms that r(e) may take.

One of the more interesting forms for r(e) is a constant. When r(e)

is constant, the a priori density in Eq. (30) or (39) is identical to

the a posteriori density that would have been obtained after actually

observing the "a priori observations," if a uniform a priori density

had been assumed.*

The a priori knowledge reflected by densities of the forms in

Eqs. (30) or (39) may be considered to be of two forms: one form equiva-

lent to knowledge that could have been obtained from observations and

the other form representing knowledge that could not have been obtained

in this manner. Thus, all the knowledge about 0 incorporated in the

.

This argument breaks down if 0 is defined over a set of infinite
Lebesgue measure, since uniform densities over sets of infinite measure
have no meaning in the conventional theory of probability. Such densi-
ties do have meaning in the theory developed by Renyi (Ref. 21],
however.
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"experimental portion" of the a priori density, p(6 A m, ... A0 ),

could have been obtained from actual observations; this is not necessarily

true of the knowledge incorporated in r(e), however.

A simple measure of confidence in the a priori knowledge contained

in ,(eI , ... ) is available. The confidence placed in the portion

of the a priori knowledge reflected in the "experimental portion" of

the a priori density is considered proportional to the size of the set

of observations necessary to generate this portion of the density. In

each case that has been examined (see Chapter VI), this experimental

portion of the density approaches a uniform density as the size of the

set of observations approaches zero, and approaches a delta function

as the size increases without limit. These are the limits that would

be expected as the amount of a priori knowledge approached zero or

approached complete knowledge of 0, respectively.

H. USE OF BAYES' RULE COMPUTER

By applying the factorization theorem for sufficient statistics,

Ea. (31) can be rewritten as:

f(t-en),... t(-m'n),) r(e)p(61,',l, ... A )= - Is (43)

IF f(t(-m,n), ... t(mn),e) r(e) de

where the t('mn) are the components of the sufficient statistic for
i

the combined a priori and a posteriori observations. Since r(e)

is a fixed function of e, the density in Eq. (43) is a fixed function

of e and the parameters t n), . t(smn) Combining this with

the previous results gives the schematic diagram drawn in Fig. 4 for

the Bayes' rule computer in Fig. 1. If reproducing a priori densities

are not used, the form of the computer may change initially, but will

eventually become that in Fig. 4.

By incorporating the form of the Bayes'rule computer shown in Fig.

4 in the model of Fig. 1, a more detailed model for the learning process

is obtained with conditionally independent observations. The chief
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difference in the model if it were designed for the case without
conditional independence would be that the form of the Bayes' rule

computer might depend on the value of e . If it be assumed that a

nn

may take on r possible values, the learning process can be illustrated

by the model shoan in Fig. 5. The computer selector in this model
computes the value of a and feeds A ninto the appropriate Bayes'

rule computer. If the learning observations are conditionally inde-

pendent given e, the model in Fig. 5 reduces to that in Fig. 1, since

in this case a may be considered to be constant.

Rather than using different Bayes' rule computers for different

states of the learning system, it may well be more practical to use one

computer with a variable program. If this approach is used, the computer

selector in Fig. 5 may be considered to be a computation program selector.

The same model applies with some minor relabeling.

In all the theory that has been developed, it has been assumed that

the equations deal with probability densities only, for the sake of

convenience. Any of the densities can be replaced by probability mass

functions if discrete rather than continuous random variables are
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encountered.* Some of the alternate equations have actually been

utilized in the example introducing the methods of generalizing to the

case where the learning observations are dependent.

The next chapter is devoted to exmples of reproducing-type distribu-

tions. These examples should clarify some of the theory developed in

the investigation.

The term "reproducing-type distributions" is used in the title of
this report as being more general than "reproducing-type densities."
Probability mass functions may reproduce also.
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VI. EXAMPLES OF REPRODUCING-TYPE DISTRIBUTIONS

In this chapter are given a number of examples of probability

listributions that are reproducing. The two criteria that have been

,itilized in choosing the examples are the engineering utility of the

probability distributions involved and the possibility of illustrating

different properties of the distributions.

Two different classes of reproducing distributions are considered.

For the first class, called simple reproducing distributions, r(e)

is a constant and hence p(e) equals ^(elA_ , ... A 0). For the second

class, called composite reproducing distributions, r(e) is not

constant. Hence, a composite reproducing distribution is the product

of a simple reproducing distribution and another function of e.

A. A SAMPLE COMIPTATION: THE BINOMIAL DISTRIBUTION

The binomial distribution is probably the most common discrete

probability distribution in engineering applications. It might be

termed, in everyday engineering language, the "go--no go" distribution.

This distribution can describe the probability that a switch is open

or classed; or the probability that a signal corresponds to a one or to

a zero; or a myriad of other cases where only two events are considered

to be possible. If the probability P characterizing this distribution

is unknown, the learning procedure developed in this paper is applicable.

It is assumed for the sake of definiteness that the two possible

events are the reception of a one and of a zero. If P were known, it

would be the probability of a one. Each A. is assumed to be the

observation of a single digit.

To find a simple reproducing density, a specific a priori sequence

A-n +1 ' "'' A0 consisting of r ones and n - r zeros is assumed.0ooo
0Making use of Theorem II, Chapter V, and the basic definition given by

Eq. (20), but replacing the symbols p(Ai, ... A 1 1) for the likeliho d

functions by the discrete random variable analogs P(Ai, ... Aile)

(since the binomial distribution is a discrete rather than a continuous

distribution), p(P) is chosen to be
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P(A • .. )
'-n +V

P(P) P(Pl-'ý-n -+1' ... ý0) =--° 0(- +V' ... 0 JP) dP
0

r n -r
p 0(1_P) 0 0 (n 0 +2) r n , -r ,

P 1r O n-r t'(r+lr 0 + nr+nor

0, otherwise. (44)

The density given by Eq. (44) may be recognized as a beta density

function. This fact can be used to check the normalizing constant

obtained. Alternatively, the normalizing constant can be obtained by

finding a standard probability dencity fuinction that depends on its

argument in the same way that the function in Eq. (44) depends on P--

relying on the fact that standard density functions are normalized to

integrate to one. In any event, determining whether the density is a

ctandard form is useful, since, if such is the case, the important

properties of the density may have been tabulated.

In ;_he equations for the a posteriori density when a reproducing

"a priori density is used,, there is no distinction between effects of

"a priori and a pisteriori observations. Hence, the a posteriori

density after observing a sequence consisting of rI ones and n.-r

zeros is

P(PA1 . .'. An) = P(IA-nO+1' " A0 ' A, An)

( P(n + n + 2) ro+r n1p +nlr-r
0 , 1 <oP <o o

P(ro+rl+l) P(no+nl-ro-ri +I) -1--

S, otherwise
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rP(n +2) pr (1 - p)n-r, 0 < P< 1

r(r+l) r(n-r+l)

0, otherwise. (45)

where

n a +ni, (46a)

o + rI' (46b)

The mean and variance of Eq. (45) are given by

E[PJAI, ... A] = r +__ (47a)
n n+2

Var [P1 A, ... A] (r + i) (n - r + ) (4)
(n +2) 2(n + 3)

As the total number of a priori and a posteriori observations

approaches zero, the above values approach

E[PJA., An]-* 1 (48a)

Var [PJAI, ... A] - I- (48b)

These are the values of the mean and variance of a uniform density over

the interval from zero to one. Conversely, as the total number of

a priori and a posteriori observations becomes very large,

E[PJAI, ... A] - lim r-- Po (49a)
nn r, n-o

Var (PIA1 , -... A 0 (49b)

These are the values of ihe mean and variance of a delta function density

at P equals P . Moreover, for any finite number of a priori observa-

tions, the limiting ratio in Eq. (49a) will be the limiting ratio of the
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values for the a posteriori observations, which, according to the

strong law of large numbers, is, with probability one, the true value

of P.

In this case it is easy to show that the limiting forms of the

density, for small and large numbers of observations, are a uniform

density over the interval from zero to one and a delta function at the

true value of P. The results are left in the form of Eqs. (48) and (49)

for easy comparison with other reproducing-type densities obtained,

however.

Sufficient statistics for the sequences of observations arise

naturally from the analysis. The pairs of numbers (no0 r.), (nlr l )

and (n,r) are sufficient for the a priori, a posteriori and

total sequences respectively.

B. SOME SIMPLE REPRODUCING-TYPE DISTRIBUTIONS

In this section, ten typical examples of simple reproducing-type

distributions are analyzed. The distributions treated, the unknown

parameters, and the form of the learning observations are listed in

Table 1. Table 2 gives the likelihood of the learning observations

and the simple reproducing-type densities.

1. Probability Distributions Considered

Four discrete distributions are treated: the binomial, the

multinomial, the binary Markov, and the Poisson. In each case parameters

characterizing the probability mass function are unknown. Six examples

of continuous distributions with some of the parameters characterizing

the probability density functions unknown are also treated. These include

three examples of Gaussian densities, one multidimensional with unknown

mean vector, one multidimensional with unknown covariance matrix, and

one one-dimensional with a complex mean and both magnitude and phase of

the mean unknown. * The three other cases are the Rayleigh, the

In the appendix the case of a multidimensional Gaussian density with
both means and covariances unknown is also treated. The simple reproducing
density in this case is the composite Wishart-Gaussian density used by
Keehn (see Chapter III, Sectioni C).
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TABL.E 2. SIMPLE REPRODUCING DENSITIES.
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exponential, and the zero-mean rectangular distributions with parameters

characterizing these distributions unknown.

Each of the ten distributions considered has important engineering

applications. The binomial, multinomial, and binary Markov distribu-

tions are important in such fields as coding, hypothesis testing, and

pattern recognition. Typical applications of the Poisson distribution

are in the study of shot noise and various waiting time and counting

problems. The Gaussian densities occur so often that little comment is

necessary, save for the fact that the form with a complex mean is the

form that would be used when using complex numbers to indicate both

magniLJc aud. phase information in a single number. The Rayleigh density

is the Probability density for the envelope of a narrow-band Gaussian

random process and (among other applications) is used in the study of

the fading of radio signals. The exponential density is the density for

the output of a square-law detector (square-law device followed by a

low-pass filter), with a narrow-band Gaussian input. The final case,

the rectangular density, is useful in such areas as the study of systems

with unknown phases or an unknown time reference, or studies involving

the location of an object confined to a specific interval.

2. Computation Methods

In computing the reproducing densities for Table 2, subscripts

to indicate that the observations are "a priori observations" have been

omitted. The densities may be considered as either a priori or a pos-

teriori forms, since a priori and a posteriori observations are

equivalent in their effects on the densities.

Each of the densities in Table 2 was obtained in a manner analogous

to the computation for the binomial distribution given in the previous

section. In two cases--the Gaussian with unknown covariances (Case 6)

and the Rayleigh (Case 8)--it was found convenient to define as a new

parameter the inverse of the unknown, and tnen to find a reproducing

density for this inverse parameter. This was done purely for the sake

of convenience; by writing the densities in terms of the inverse

parameters p and Kl standard forms are obtained with the normaliza-

tion constants and important properties tabulated. In each of the
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eight cases where standard probability densities were obtained as the

reproducing densities, the common name for the density obtained is

indicated in Table 2.

3. Analysis of Reproducing Densities

The first case on the list (the binomial distribution) has

already been discussed in some detail. The second case, multinomial

distribution with P.'s unknown, and the third case, binary Markov
1.

with P.. 's unknown, are generalizations of the binomial case. It is

found that the reproducing density for the multinomial distribution

(which is equivalent to the (m-l)-dimensional generalization of the

binomial distribution) is the (m-l)-dimensional generalization of the

beta density, i.e., it is the Dirichlet density. Similarly, in the

binary Markov case, by assuming that the first digit of the a priori

sequence for learning the unknown P00 and P11  is chosen independ-

ently of P0 0 and Pill any interaction between these two probabili-

ties is removed, so that they can be treated as independent random

variables, each distributed according to a beta density.

The three cases discussed above--binomial, multinomial and binary

Markov--may be encountered in determining thresholds for likelihood

Lrtio tests in pattern recognition. It is possible, moreover, to utilize

these learning techniques to obtain the thresholds. This may result in

using variable thresholds. This possibility is discussed in more detail

Žn the next chapter.

The binary Markov process is an example of a case where a reproducing-

type density can be found without assuming that the A. are condi-

tionally independent given e. This is the case that was utilized to

introduce the method of generalizing to allow for dependent learning

observations in Chapter V, Section D. It is the only example included

herein in which the learning observations are not conditionally independ-

ent given e. Other cases of this type can be treated in an analogous

manner, although most of them will be more complex.

The densities obtained for the multivariate Gaussian process with

unknown mean vector (Case 5) and with unknown covariance matrix (Case

6), and for the case with both mean vector and covariance matrix unknown
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(which is included in the appendix), are the densities that Abramson,

Braverman and Keehn have shown to be of the reproducing type as discussed

in Chapter III. Similarly, the densities given for the binomial and

multinomial cases are those used by Bellman and Mosimann, respectively,

and a number of the densities have been used by Raiffa and Schlaifer.

The only case mentioned in Chapter III for which it has been found that

reproducing-type densities have been used but in which the density used

is not the form in Table 2 is that discussed by Turin [Ref. 131. The

density given in Table 2 for the unknown amplitude and phase of a com-

plex Gaussian mean is not the Rician density used by Turin, although it

is simllar. The difference is discussed in more detail in later sections

of this chapter.

The density given in Table 2 for the complex Gaussian case (Case 7)

is not as complex as it may at first seem. The density is actually

simple save for the normalizing constant. This can be seen by rewriting

the density in either of the forms

p(a,O)

K1 exp $ .- i[a 2 - 2a17 cos(0 - b or
2a. 2a nn

n

K2 exp $- 1 - a ei'02} a >0, -g < < n
2 2. 2 n

n

'0, otherwise. (30)

with K, and K normalizing constants chosen so that either of the
-L2

forms of p(a,O) in Eq. (50) integrates to one.

The final case on the list--rectangular distribution with unknown

mean--is a rather off-beat example. This density violates some of the

statistical criteria for "regularity," since it is not continuous. The

reproducing density obtained also has unusual properties. It is the

only case encountered in this study where the density is not defined

after one observation because p(Alle) is not integrable. Some care
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must be exercised in picking "a priori observations" also, since these

must be less than W in absolute magnitude. If this condition is not

fulfilled, the a priori p(W) will be zero at the true value of W

and the a posteriori density cannot degenerate at.the correct point.

Picking observations less than W in absolute magnitude may be difficult

if nothing is known about W.

4. Sufficient Statistics

Sufficient statistics for each of the various probability dis-

tributions analyzed can easily be obtained from Table 2, since the den-

sities therein are expressed in terms of the sufficient statistics.

For the binomial distribution it is found that n and r (or r and

s) constitu:,e a sufficient statistic. Similarly, for the multinomial

distribution, rl, ... r are sufficient; for the binary Markov, rll,m
nl, r00 and n0 ; for the Poisson, T and n; for the multidimensional

Gaussian with unknown mean vector V and n; for the multidimensionaln

Gaussian with unknown covariance matrix V and n; for the complexa
Gaussian, 17nl, ýn and n; for the Rayleigh, Kn and n; for the

exponential, C and n; and for the rectangular density, M and n.n n

5. Representation of a Priori Knowledge

When using simple reproducing densities, such as those in Table

2, the paranieters of these densities can be adjusted to reflect a priori

kaia1edge. A priorZ observations are selected which, on the basis of

the a priori information available, appear representative of the ob-

servation.z to be expected; these observations are then used to generate

the reproduciiqýJ density.* For example, in Case 1, if the probability

of obtaining a one for a binomial distribution were expected to be about

2D a beta density for P with r and s approximately equal would

be chosen; or if the mean of a Gaussian distribution (Case 5) were

expected to be near zero, a priori observations with a sample average

near zero would be chosen. The degree of confidence in such a priori

knowledge is reflected in the size of the total set of a priori

-..
Normally only the sufficient statistics for these sets of a priori.

observations would be selected, rather than the observations themselves.
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observations, or by the magnitude of such parameters as n, r or T

in the densities in Table 2. If there is reason to be confident that

the a priori knowledge is approximately correct, the parameters

indicating the size of this a priori set would be large; if little

confidence is reposed in the a priori knowledge, the parameters

selected would be small.

In some cases, the a priori knowledge is not in the form of suffi-

cient statistics such as those in terms of which the densities in Table

2 are defined, but the a priori knowledge is better described as con-

sisting of approximately what the value of the unknown parameter is

expected to be, plus the approximate width of the expected a priori

density (or the amount of deviation from the expected value that might

reasonably be allowed for). In Table 3 are listed important moments,

i.e., means, variances, and covariances, for the reproducing-type densi-

ties in Table 2. These moments can be utilized to fit a priori

knowledge having the forms designated.

o. Limiting Forms of Densities

The moments in Table 3 are also useful in determining limiting

properties of the densities as the size of the set of a priori observa-

tions (or of the combined set of a priori and a posteriori observa-

tions) becomes very large or very small. Since the size of this set

indicates the degree of confidence reposed in the a priori knowledge

(or the combined a priori and a posteriori knowledge), the limiting

forms would be expected to be a very narrow density approximating a delta

function for a large set of observations, and a very broad density

approximating a uniform density for a small set of observations. Tables

4 and 5 indicate that these are indeed the limiting forms obtained.

Table 4 indicates the limiting forms for the moments obtained with

a large set of observations. In each case the means approach limiting

forms that are possible values for the unknown parameters, while the

variances and covariances approach zero. This indicates that a delta

fumction is the limiting form of the density for a large set of

observations.
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TABLE 4. LARGE SAMPLE LIMITS OF MOMENTS.
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Since a priori observations and a posteriori observations are

treated in identical manners, Table 4 can be used to find the limiting

forms of the a posteriori densities, assuming a finite a priori set

of observations and an increasingly large a posteriori set. The

limiting form is in each case a delta function as before, but the loca-

tion of the delta function can be stated precisely. In the Appendix it

is shown that, in each case, the mean converges with probability one to

the true value of the unknown parameter. Hence, the densities approach

delta functions at the true values of the unknown parameters, or the

learning system learns the true values exactly.

Tn Table 5 the limiting forms of the moments are analyzed as the size

of the set of a priori observations approaches zero. In making this

analysis, parameters indicating the size of the a priori set have not

been confined to integer value-, since the densities are defined regard-

less of whether these parameters are integer valued or not. The pro-

cedure used to find these limiting forms is simply to let all the

parameters defining the size of the set of a priori observations

approach zero, finding the limiting forms of the means, variances, and

covariances whenever these limiting values are uniquely defined.

In Table 5 the limiting forms obtained for the means, variances, and

covariances are compared with the means, variances, and covariances of

random variables distributed according to a uniform density over the

range of possible values of the unknown parameter. In some cases a

uniform density is not defined over this range because the range is of

infinite Lebesgue measure.* In these cases the moments tabulated are

the limiting values of the moments of a sequence of random variables

with probability distributiono approaching a uniform distribution, if

the limiting values are uniquely defined; if the limits are not

uniquely defined, this is indicated in Table 5. In each case, exact

agreement is found between the moments of the reproducing-type densi-

ties and the moments of uniform densities. If the moments of either

are uniquely defined, the moments of the other are also uniquely defined

and take the same values.

As noted earlier uniform probability densities over sets of infinite
Lebesgue measure are allowed in the theory developed by Renyi [Ref. 21],
however.
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Details of the computing methods for all the tables are given in

the Appendix.

C. SOW' COIPSITE REPRODUCING-TYPE DISTRIBUTIONS

As indicated in the previous section, simple reproducing-type

distributions contain enough adjustable parameters to give considerable

freedom in choosing a priori probabilities. A number of types of

a priori knowledge can be reflected in these a priori distributions,

including values of the parameters that are felt to be typical and a

measure of the confidence reposed in the a priori knowledge.

Even more freedom in choosing a priori distributions is available

if composite reproducing-type distributions are considered. As indicated

in Eq. (30), a simple reproducing-type distribution multiplied by an

arbitrary (except for scale factor) non-negative function of e is still

a reproducing-type distribution. These more complex reproducing-type

distributions have been defined to be composite reproducing-type

distributions.

In this section no attempt is made to indicate all the possibilities

of choosing composite reproducing distributions. The discussion is

].imited to t-wo genural classes of composite reproducirg distributions.

1. Restricting the Range of e

Cne class of composite reproducing distributions is useful when

part of the a priori knowledge is the fact that the true value of 0

is cuntained in some interval I. For example, it might be desired to

detect a cigsnal of unknown frequency, using a receiver of a known finite

bandwidth. The probability of receiving a signal outside the frequency

band accepted by the receiver would be zero. In such a case r(e) in

Eq. (30) may be taken as

1 e c I
r ,e) otherwise
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giving

A)

p(e) = J(eI(Aol, ... An)de (52)

0, otherwise.

For example, if e were the unknown mean m of a one-dimensional
2

laussian distribution with known variance o 2 and if it were known

that a < m < b, an a priori density on m might be obtained by

picking an a priori set ( X{t+l, ... X 01 of learning observations

(all confined to the interval a < Xi < b) and setting

P(M) b T )=- ý2 r a'n exp (M(r-) 2 /2c)
n

a<m<b

0, otherwise (53)

whereT-
x0 t x. (54)

i=-t+l

2 1 2 (55)
n n

and O(x) is the Gaussian cumulative distribution function

0(x) W I- 7 e-x /2 dx (56)

2. Converting Density to Familiar Form

Alternatively, it may be possible to choose r(e) in such a

way as to convert a probability density into a more familiar form. For

example, if the problem consists of learning both the magnitude and the
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phase of a complex Gaussian mean (Case 7), the simple reproducing

density is listed in Table 2 as:

nn

4j 2
{1/2LI3/2 ex ~2 La2aj n co n) + 1:1 *2 n

p a,0) a -, 0, -it <. < K

otherwise. (57)

If r(a,0) is iaken identically equal to a, then from Eq. (30)

(writing the normalizing constant given by the reciprocal of the

denominator in Eq. (30) along with the other constant factors involved

as a constant K):

pKa exp( -1 [a2- 2a7 h I cos (0-3n)]) a >0, -7_ < < g
p(a, O) = 2a n2

0, otherwise;

2xp 2 La-2a17 nI CS(0-6n)+,R h 2 a 0

= exp nrcos n'2a,0,n-I )

otherwise. (58)

The normalizing constant K was evaluated in the second expression for

p(a,O) by a procedure suggested in Section A. It was noted that the

density depended on its arguments in the same manner as one of the

standard densities used in statistical communication theory; in this

case the dependence is the same as that of the generalized Rayleigh or

Rician density encountered in the study of narrow-band signals in

Gaussian noise. Hence, the normalizing constant for the Rician density

was used.
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3. Other Possibilities

Numerous other reasons for choosing a particular r(e) may

occur. The form may be determined: by reasoning about physical princi-

ples, to agree with experimental results, or in numerous other ways.

4. Computation of Density Needed in Chapter VII

One density of the form in Eq. (52) will be needed in the next

chapter. Consider an event E with conditional probability

P(EIf) = K exp 8T 2 x(t)ei 2 itftdt 2(59)

with KI a normalizing constant. Assume that f is known to 'be con-

fined to the interval I for which f o f < f , To obtain a reproducing

density, select a function y(t) which is defined for -T0 _< t < 0 and

let

0 2dt , o f -1

K2 exp J Y(t) ei2ftdt fo f -f
2 N

pAf) To 0

0, otherwise. (60)

where K2 is another normalizing constant. (The normalizing constants

are not evaluated in this example since they are complex and are

unnecessary for the later analysis.)

The a posteriori density after observing the event E is then

K2 ~ T 12 ]8B fx z 1~e2nft t fo < f-

p(fIE) = K ep N TOzte

0, otherwise. (61)

where

=/'y(t), -To < t < 0

z lx(t), 0 < t < T1  (62)

since x(t) and y(t) are defined on disjoint time intervals.
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D. COMPARISON WITH RESULTS OBTAINED BY OTHER INVESTIGATORS

Reproducing-type distributions are used in a number of papers sur-

veyed in the literature. Results obtained in this investigation may

be briefly compared with those in a few of the papers in which

reproducing-type distributions are used.

1. Abramson, Braverman, Keehn, Bellman, and Mosimann

As already noted, the densities that Abramson, Braverman, Keehn,

Bellman and Mosimann [Refs. 7-12] used are the same densities as the

simple reproducing-type densities developed in this investigation for

the cases considered. The present study has developed methods for

generating these densities rather than finding them by an heuristic,

or trial-and-error, process.

2. Daly

Daly's problem [Refs. 16 and 17] cannot be solved by the

methods developed in the present investigation, since for his densities

no sufficient statistics of fixed dimension exist, with the consequence

that no reproducing a priori density exists. In fact, the density

Eq. (11) that was given in the discussion of a simple case of Daly's

problem is a special case of the density

p(X~ a'2 2
pxmI, m2 , i' a2'p )

- exp 1 2 (X-m,) + (l-P) exp 1-2• (XJm2)21 (63)
ý2,T I- Lo 1 + -2n a 2  12a- 2 J

Dynkin [Ref. 19] shows that for the density in Eq. (63) no suffi-

cient statistic of fixed dimension exists if any one of the parameters
2 2

'1 i 2 ' 1 2' a2 or P is unknown.

3. Raiffa and Schlaifer

Raiffa and Schlaifer [Ref. 15] utilize reproducing densities

in a large portion of their work on statistical decision theory. Their

"natural conjugate" a priori densities are the same form as the simple
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reproducing-type densities in the present investigation. Raiffa and

Schlaifer do not utilize any specific set of a priori observations to

generate the reproducing density, however, merely saying that the den-

sity is generated by the kernel of the sufficient statistic for the

likelihood [the function f(tl, ... ts,e) in Eq. (27)]. The a priori

observations have been utilized in the present work largely as an aid

to visualizing the process of generating reproducing-type distributions,

and of utilizing the distributions to reflect a priori knowledge.

For small samples at least, a difficulty with the Raiffa-Schlaifer

approach lies in ascertaining the number of observations to which the

a priori knowledge is equivalent--a problem discussed on pages 62-67

of the work cited [Ref. 151, and also discussed in earlier sections of

this report. An example of the difference in methods of interpretation

is the case of learning the probability P characterizing a binomial

distribution. Raiffa and Schlaifer consider the knowledge reflected in

the density Eq. (44) to be equivalent to n +2 observations, since

Eq. (44) is a valid probability density for n +2 > 0; while in this0 -

paper the knowledge is considered to be equivalent to n observations.0

As Raiffa and Schlaifer's equivalent number of observations, no +2,

approaches zero, the a priori density degenerates into a probability

mass function with mass divided between zero and one, a fact that the

authors discuss at some length. No matter how many a posteriori obser-

vations are then made, the density remains degenerate. In contrast, in

the present investigation as the equivalent number of observations n

approaches zero, Eq. (44) approaches a uniform density (see Table 5)--

a much more reasonable result.

Raiffa and Schlaifer also confine their work entirely to simple

reproducing densities ("natural conjugate" densities). They make no

mention of any other form of densities which may reproduce.

4. Turin

Turin [Ref. 131 utilizes a slight modification of the composite

reproducing density Eq. (58) for learning the characteristics of a radio

channel. He assumes that a known signal Y = (Y1, "'" Yn)t is trans-

mitted over a channel with amplification a and phase shift 0, so
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that the received signal is X = aY ejo. Assuming additive Gaussian

noise with mean zero and variance a 2

p(X la,0,Y) 1 (n exp L- i1j2 Ixa y, ei 12] (64~)

This equation is the same as the basic equation developed in the

present study for the likelihood of a complex Gaussian process with

unknown mean (Case 7, Table 2), save for replacing the constant a by

the variable ay.. Following the same procedure used in the present

paper in analyzing the complex Gaussian case, and assuming Y is known,

there is obtained for a simple reproducing density on (a,0),

p(a,O) = [

a >0, -i( <0 <it

0, otherwise. (65)

with I xiyi.

n (66a)

Irm (xiy•)
E n I tan-1 (66b)

Re (x. y)

r 2(66c)

n- 
lyi 12
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This density reduces to that shown in Table 2 if yi is taken equal

to one for all i.

On the basis of reasoning about the physical process he is con-

sidering, Turin picks as a priori density on (a,,) the Rician

density

a exp ( i 2a2 2a R cos (0-5) + R2],a>0, -7<0<i

p(a,)=

0, otherwise. (67)

which corresponds to Eq. (58) in the same way that Eq. (65) corresponds

to the density in Case 7, Table 2. Thus, Turin's density is a composite

reproducing density with r(a,o) equal to a. The analysis developed

in the present study shows why Turin's density reproduces itself, and

also indicates how alternative reproducing densities which may agree

more closely with experiment may be found.

Reproducing distributions are doubtless used elsewhere in the

literature. The treatment described in the present paper is more general

and thorough than any others that have been found in the literature

search, however.
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VII. APPLICATIONS

A. PATTERN RECOGNITION, EXPONENTIAL DENSITIES

In the previous work by Abramson, Braverman, and Keehn discussed in

Chapter III, reproducing distributions were applied to a pattern-

recognition process with learning. Using the methods developed in the

present study, it is easily possible to generate reproducing distribu-

tions for learning a wide variety of parameters, thus obtaining obvious

generalizations of the Abramson, Braverman, and Keehn techniques. One

application similar to (but in some respects more complex than) the

applications discussed by Abramson, Braverman, and Keehn involves

learning the parameters of a non-Gaussian density, and in addition

learning the probability of a pattern and using this to adjust a

threshold.

Consider a variation of the pattern-recognition problem discussed in

Chapter III. It is again desired to find a decision rule minimizing the

probability of error in recognition. Equation (8) and the discussion

that accompanies it indicate that the optimum decision rule picks the

pattern for which p(Xli)P(i) is maximum.

For simplicity assume two possible patterns, designated by the

indices 1 and 2. The optimum decision rule is then:

1) if P(jlj P(2 (68)

otherwise

If it be assumed that p(Xji) is an exponential density with

parameter Ni, Eq. (68) becomes

I (N2-X1 )x F (69)

d(X)
0O, otherwise
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or

1i, if (N 2  >i)X • ) • + InN (70)
d(X)

0, otherwise

When neither the i nor the PWi) is known, the learning procedure

developed in this investigation is employed. To learn the Ni, the

simple reproducing density for this case (No. 9 in Table 2) is used. As

an a priori density on N. the gamma density given by
i

C n~ -C x
p(i= ci (Col i3)n0i e- ci (71)

noi

is assumed. This gives

00

p(xji) - fp(xii, Ni) pC\)dXi
0

=oi - n +2 (72)=Co--- (I + X/Col) o

It is also desired to learn the probabilities P(i). Letting P(l)

equal P and P(2) equal l-P, it is seen that P is the parameter

characterizing a binomial distribution. Use is again made of a simple

reproducing density (in this case No. 1 in Table 2). The number of

times each pattern occurs in the "a priori set of observations" is

already known; the parameter noi in Eqs. (71) and (72) corresponds

to the number of observations of pattern i. Substituting nol and

n02 for the corresponding parameters r and s in Case 1 of Table 2:

= (no+2) n 1 ol (02
P(P). P (l-P) (73)

r(n01 +l)r(n0 2+l)
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where

n +f (74)

Then, applying the standard statistical procedure for computing

marginal probabilities

1

P -i) =J P(ilP)p(P) dP

0

n. +1
01 (75)

n + 2
0

since P(lIP) = P, P(21P) = 1-P. The optimum decision rule then becomes

if (1 + X/Co 2 )02 (n2 + l)/(n + 2) (n +1)/c

__,____f___ > ____o ____+ ._ (o2 +l/o2

d(X)( + X/Co r)is 01 - (nol + 1)/(no + 2) (nol +1)/Col

12, otherwise 
(76)

If nI classified learning observations are then taken, with nli

from class i, an "a posteriori decision rule" of identical form

results except for replacing noi by n oi+nli = nt, no by

no nI - nt, and Coi by Coi+C1 i = Cti (with Cli the sum of the

X that correspond to the ith pattern). The optimum decision rule

after n1  observations is:
no 0'+2(1 + n2Xc +2 > (no 2+l)/(n+2) (nt 2+l)/Ct2

nol+- - (nt 1+l)/(nt+2) (ntl+l)/Ctl

Cti

2, otherwise (77)
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Since (n ti+l)/(n t+2) is an estimate of P(i), it is designated

ti ti
by P(i). Similarly, (nti+l)/Cti is designated by •isince it is

an estimate of the parameter Ni' Taking logarithms in Eq. (77):

d (X)= -(ntl2) 2 [.. 2 A

2, otherwise. (78)

The quantity X/Cti can normally be expected to be of the order

1/nti. Hence, after a few observations, the first term in the expansion

of the logarithm becomes predominant and higher-order terms can be

neglected. After a few observations it is also possible to neglect the

difference between nti +2 and n ti+1. After a few observations, then,

the optimum decision rule given by Eq. (77) is closely approximated by

the decision rule

1,l if (N2 X1)_ I ()+I

d' (x) 

X

nI

0, otherwise. (79)

This is of the same form as Eq. (70). Hence, it may be concluded

that after a few observations are taken, the optimum decision rule is

closely approximated by a rule that is of the established form for

Xnown statistics, but which utilizes estimates of the parameters in

place of the parameters themselves.

The approximate decision rule derived in Eq. (79) can be implemented

as shown in Fig. 6 by a device of the form which would be applicable

with known parameters, but with variable components.

Since the Ni may take on any positive values and the P(i) any

values between zero and one, the Bayes' decision rules computed from
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FIG. 6. PATTERN CLASSIFIER FOR EXPONENTIAL. DENSITIES.

Eq. (79) can assign all X's below any real-number threshold to

class 1 and those above the threshold to class 2; or vice versa. In

other words, any non-randomized decision rule based on a single

threshold is a possible Bayes' rule.

The estimate of each of the parameters used in Eq. (79) converges
with probability one to the true value of the parameter. Hence, the

limiting form of the decision rule given in Eq. (79) is idu-ntical to

the rule that would be used if all the parameters were known. This

again could be any non-randomized decision rule based on a single

threshold.

B. FINDING EXPECTATION OF A RANDOM VARIABLE

Another class of problems for which reproducing densities are

applicable is that of finding the expectation of a random variable.

More precisely, reproducing densities are useful in cases where a

probability density is required that will adequately represent a priori

information and at the same time allow the expected value of a non-
negative random variable to be expressed in a simple form. This type
of problem may be illustrated by considering the problem of detecting

*
a cosine of unknown frequency. Two possible hypotheses are assumed:

*
This example was suggested and first worked out by Professor

Norman Abramson, Stanford University.
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H x(t) = S(t) + N(t)

H2. X(t) = N(t)J (80)

where

S(t) = a cos (wit + w), c = 21ff (81)

and N(t) is white noise, or noise with a flat spectrum Sn(f) _ N0 /2

(at least over the frequency range f0 < f <f).
It is assumed that the parameters a, 0, and f (or wi) are all

unknown, although the following are known: (1) that 0 is uniformly

distributed over the range 0 < 0 < 2A; (2) that a is Rayleigh-

distributed with parameter A 2; and (3) that f is restricted to the

frequency range f < f < f " It is desired to use a likelihood ratio

test, comparing

P(XIH )

I(x) = . H (82)
p(xIH 2 )

with some threshold.

If a, 0, and f were known, the likelihood of a sample X(t),

0 < t <-T1, would be

(xla,0,f) = ep ~ -•o cos 2 (4t+I)d x(t) cos (at+0) d
0 _j t)}

exp xp X(t) cos (t+) dt (83)

In writing the last form of the equation it has been assumed that T

is large in comparison with 1/f0 , so that the integral of the cosine-

squared term is approximately I2 regardless of w or 0.

It is shown in the Appendix that, with the likelihood given in

Eq. (83) and with the probability densities assumed for 0 and a,
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1(Xjf) =K, x(t) e (84)

with

B 2(85)' AýTI +No0

It is desired to find a probability density p(f) which will give

a reasonably simple form for I(X) and at the same time accurately

reflect any information that is available about f. Such a density is

obtained by following the same process that was used in finding repro-

ducing densities. Although I(Xlf) is not a probability density, it is

non-negative. If i(Xif) were normalized to integrate to one, it would

satisfy the formal requirements for a probability density. This is the

same procedure used to derive reproducing-type densities from likelihood

functions; this suggests deriving a density for f in the same manner.

Such a density was derived in Chapter VI, Section C, and is given by

Eq. (6o). Utilizing the density in Eq. (60) for f gives

fl .2 T1 2

1(x) =exp KT Z(t) e iat dt df (86)

with

•YT <t<O

Z(t) =

(t), 0 _< t < t (87)

and K4 a new constant that may be absorbed into the threshold for the

likelihood-ratio test.

Without specifying X(t) and Y(t) more definitely, the integrals

in Eq. (86) cannot be evaluated. However, the following points may be

noted. If T is small, the frequency information in Eq. (86) is0

primarily determined by X(t); if T is large, the information
0
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is primarily determined by Y(t). Hence, T is a measure of confidence0

in the a priori information. Also, by proper choice of Y(t), p(f)

can be caused to peak around any desired frequency band. The density

given by Eq. (60) appears to be the only one yet found with these

properties, which are important for this application.

C. ESTIMATING A PARAMETER WITH NO A PRIORI INFORMATION

1. Bayes Estimates

In order to compute the Bayes estimate of a parameter it is

necessary to specify an a priori probability distribution for the

parameter. If no information about this distribution is available, and

if no reason is known for favoring some values of the parameter, a uni-

form a priori probability distribution is the logical assumption. It

is only possible to assume a uniform distribution if the range of the

parameter is of finite Lebesgue measure, however.*

The techniques developed in this investigation can be used to

eliminate this difficulty. To illustrate the procedure, assume that it

is desired to estimate a parameter w, and that a squared-error loss

function is involved:

L(w, U^)) = (c - W)2 (88)

where • is the available estimate of c. It is well known [Ref. 20]

that the Bayes estimate for this case is the a posteriori expected

value of w, or

W(X) j cp(wIX) dw (89)

with X the observation that is being utilized to estimate W.

The function p(wjX)is an a posteriori density function, of the

form that has been studied in this investigation. If it is desired to

*

As mentioned earlier, uniform densities over ranges of infinite
measure are allowed in the theory developed by Renyi [Ref. 21].
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approximate the form that the Bayes estimate would take with a uniform

a priori density over w, a reproducing-type a priori density on w

can be assumed, then the size of the set of a priori observations can

be allowed to approach zero. It has been shown that the reproducing

density then approaches a uniform density. At the same time, however,

the a posteriori density p(wux) approaches ^(XjX), if this latter

density is defined. (This may be seen by examining the form of Eq. (31)

as the size of the set of a priori observations approaches zero, with

r(e) set equal to a constant.)

The following result is thus obtained: The limiting form of the

Bayes estimate of w as the a priori density on w approaches

uniformity is given by

W(X) =,/ c(Culx) dw (9o)

where (wjox) is an "experimental" probability density of the form

defined in Eq. (20).

if the estimate is based on a sequence of measurements Xl ... X1)

the same result is obtained, but with ý(wjX) replaced by p(WIj, "'"

X1). The Bayes estimates are given by the mean values listed in Table 3
for the cases studied in this investigation; no distinction was made

between a priori and a posteriori observations in making up this

table.

The derivation given above is based on the assumption of a squared-

error loss function. Bayes estimates with other loss functions, if they

can be evaluated, are also given in terms of a posteriori densities.

Estimates with no a priori knowledge would be obtained in a manner

analogous to that just described.

2. Maximum-Likelihood Estimates

Maximum-likelihood estimates are often used instead of Bayes

estimates if no a priori information is available. The techniques

discussed in this report can also be used to simplify the procedure for

obtaining maximum-likelihood estimates. These estimates correspond to

the mode of the likelihood function, or the value of w for which the
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likelihood function is maximum. This mode is also the mode of the
"experimental portion" of the a posteriori density, since this portion

is simply a normalized version of the likelihood function. If the
"experimental portion" of the density is of fixed form, the mode can

normally be expressed as a fixed function of the parameters characterizing

the density. Expressing the parameters characterizing the density in

terms of the sufficient statistics for the observations, and the mode

in terms of these parameters, a recursive method for computing the maxi-

mum likelihood estimates is obtained. The maximum-likelihood estimates

may in this manner be expressed as explicit functions of the observations.

The two methods discussed above for estimating parameters when no

a priori information is available are not equivalent, although the

difference is negligible for large numbers of learning observations.

For example, in estimating the parameter P of a binomial distribution,

the maximum likelihood and Bayes estimates are r/n and (r+l)/(n+2)

respectively, while in estimating the covariance matrix of a Gaussian

density, the corresponding estimates are Vn/n and Vn/(n+d+l).
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VIII. SUMMARY AND CONCLUSIONS

A model has been developed for a learning technique capable of

utilizing and evaluating statistical information relating to a physical

system or process. Characteristics of the technique are as follows:

A. BASIC ASSU=IvTIONS

1. A body of statistics is available, or can be obtained, about the

system or process under study.

2. In these statistics there are one or more parameters, denoted by

0, whose values are unknown.

3. Each unknown parameter 0 can be treated as a random variable

having a probability density p(6) over the range of its possible

values. (The expedient of treating 0 in this manner is typical

of the "Bayesian" approach to probability theory.)

4. A priori information is available to aid in choosing the

probability density p(6). This a priori information can

involve information gained from a knowledge of the physical

principles involved in the process, information gained from

experience, or information gained in other ways.

5. It 1.s possible to perform experiments on the system, yielding

sets of learning observations A,, ... A .n
6. The likelihood of each set of learning observations A. is

known as a function of 0, and is designated as p(A. 10).

(When viewed as a function of e for fixed Ai, p(Ai 1e) is

called a likelihood function; when viewed as a function of A.1

for fixed 0, p(Ai 1I0) is called a conditional-probability-

density function.)

7. The learning observations Al, ... An are used only to gain

knowledge about e, and do not influence the values of 0.

•. A random variable Z may be selected to represent some desired

criterion of 3ystem performance, such as the fraction of the

time the system makes an error, or some other error function.
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9. The excellence of system performance may be judged by the

statistical expectation of Z, E[Z], where

E[Z] = / E[Zj0] p(e)da (d)

10. In the above equation, E[ZIe] is the conditional expectation

of Z given 0, expressed as a function of 0, and is

independent of Ay, ... A . E[Zje] is assumed to be known

a priori.

B. DEVELOPMENT OF BASIC LEARNING MODEL

1. Apply "Bayes' rule" to obtain

= p(ille) p(e) (2)
J p(A•le) p(e) de

where

p(eIA1 ) = a posteriori probability density of e

= probability density of e evaluated in the

the light of the set of learning observations A1,

and also

p(e) = a priori probability density of e,

p(A1Ie) = likelihood of the learning observations A,
2. Then Eq. (1) becomes

E[Zj 1,_] = E[ZIOI p(O'jA_) de (3)

where

E[ZIAI = statistical expection of Z, in the light of the

learning observations A,

and

E[Z01] = conditional expectation of Z given 0, expressed

as a function of 0.
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3. An additional set of learning observations A2 is obtained
and Bayes' rule, Eq. (2) is again applied to obtain:

p(O I A,, A 2 ) = p(A21e, A)p(e Al) (4)J p(A2 1e,A )p(01A) dO

4. The process is repeated to yield, eventually,

p(elP n, ... A n p( An ... An .1 )p (0G A ,.. 'A .l1 )

P (Anle, A, ... A n_1 )p(eIlA, ... A 1_) de

(5)

where

p(elA1 , ... A) = the a posteriori probability

density of e in the light of the

first n sets of learning

observations;

P(An 1e,A_, ... A A 1 ) = the likelihood of the nth set of

observations given the first n-l

sets of observations.

5. If it be assumed that the sets of learning observations are

conditionally independent given 0, Eq. (5) may be simplified to:

p(A jo)p(eA., A A 1 )(6

j p(Anle)p(eoIA, ... A.1 ) de

6. Using Eq. (6) above (or Eq. (5)), Eq. (3) is expanded to give:

E[ZjAl, A... A 1 : E[ZI]p(ejA, ... An) dO (7)

7. Equations (6) and (7) above form the basis for the learning model

illustrated in Fig. 1 of the report.

sEL-63-099 - 82 -



C. CONDITIONS FOR FEASIBILITY OF THE LEARNING PROCESS

1. The learning technique described above may be considered to be a

practical learning process if:

a. The true values of the unknown parameters are eventually

learned, at least in the limit as the number of learning

observations approaches infinity. This condition may be

considered to be met if, as the number of learning observations

approaches infinity, the a posteriori density p(O Al, ... An)

approaches a Dirac delta function at the true values of the

unknown parameters.

b. The form of the learning process does not change as additional

observations are taken. This condition may be considered to

be met if the probability distributions on 9 are reproducing

in nature--i.e., if the a posteriori and a priori distribu-

tions are of Lhe same form under Bayes' rule. If the distribu-

tions are reproducing, the learning process simply involves

computation of new parameters for the densities at each stage

of the process, neither the number nor the type of computations

changing.

2. Condition (a) is fulfilled if it is possible to compute the true

value of 0 from an infinite .;equence of learning observations;

and this true value is not ruled out by p(O), the a priori

probability distribution assumed for e. It is shown in the

report that these conditions are met by most probability distribu-

tions of practical significance, even by some distributions of

such form that condLtion (b) cannot be met. Thus, the learning

process developed in this report should be valid for most

practical cases, provided condition (b) is also fulfilled.

3. In order to determine whether the a priori p(O) assumed is

reproducing or not (condition (b)] a technique has been developed

whereby the expression for the a posteriori density is factorized

as follows:

p(Ao)l, .. .  ... An) A p() (19)

- p() -SA-, A n]I
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wherein

(e .. = ;(20)

) p(/ , ... Ane)

= "experimental portion" of a posteriori

density (depends only on the

observations),

E[p(G) A1 , ... AA = statistical expectation of p(e) taken

with respect to ý(e A1 , .... An).

The likelihood function p(/A, ... Anle) used to generate

ý(el~l, ... Ah) is assumed to be an integrable, non-negative

function of e; the "experimental portion" of the a posteriori

density is a normalized version of the likelihood.

4. It is shown in the report that (at least after a large number of

learning observations) the behavior of the a posteriori density

p(eJA1 , ". \n) is primarily determined by the "experimental

portion" P3(elA 1 , ... An), see Eq. (19) above. Conditions for

the "experimental portion" to be reproducing are analyzed in the

report. It is shown that the "expeiimental portion" of the

a posteriori density is reproducing if and only if the learning

observations are such that a sufficient statistic for e of fixed

dimension exists.

5. It is possible to find an a priori p(e) that is reproducing if

and only if the "experimental portion" of the a posteriori density

is reproducing, i.e., if and only if a sufficient statistic for e
of fixed dimension exists. Any reproducing p(e) that exists may

be generated by multiplying a function of the form of the likelihood

P(A1, ... Anle) by an arbitrary non-negative function of e and

then normalizing.

6. If a sufficient statistic for e of fixed dimension exists, the

a posteriori densities p(eLA1 ), p(GJA1 ,A 2 ), ... become repro-

ducing after the first observation has been utilized (occasionally

after the first few observations have been utilized). Hence, if

there is no objection to one reprogramming of the learning system

SEL-63-099 - 84 -



after the first set of learning observations, the learning tech-

niques described herein can be applied regardless of what a priori

density p(e) is used, provided a sufficient statistic of fixed

dimension exists.

7. Since this is the case, the use of reproducing-type a priori

densities may in many cases afford little if any simplification

in the computations involved. Non-reproducing densities might be

preferred if they resulted in a faster rate of convergence to a

delta function of the a posteriori probability densities. It

is shown, however, that little if any increase in rate of conver-

gence can be obtained by using non-reproducing densities, if the

a priori densities are approximately the same width.

8. The results can be generalized to apply to the case where the

learning observations AI., ... A are not conditionally independent

given e; however, in this case the form of the learning system may

depend on the state of the system derived from the previous

observations.

D. EXAMPLES OF REPRODUCING-TYPE DENSITIES

1. Two classes of reproducing-type densities are considered:

a. Simple reproducing-type densities are densities identical in form

with the "experimental portion" of the a posteriori density.

Such densities may be generated by picking the "a priori

observations" (A~m, ... A , then normalizing the likeli-

hood for these observations as in Eq. (20) above.

b. Composite reproducing-type densities are simple reproducing-

type densities multiplied by another function of 0 and then

normalized; i.e., composite reproducing-type densities are

of the form

P (etA ~m A. A ) r(e)
p(e) _M (30)j = (OeA m, ... A0 ) r(e) dO

where r(e) is a non-negative, integrable function of 0.
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2. Tables I through 5 list a number of simple reproducing bype

probability densities, with many of their parameters and proper-

ties. Methods of utilizing the densities to represent a priori

knowledge are discussed; the limiting forms of the densities as

the number of observations becomes very small or very large are

also given.

3. Two important classes of composite reproducing-type densities are

discussed. The first class is applicable when the parameter e

is known to lie within a certain range, but no parts of this range

are to be preferred over others. The second class arises from

the possibility of choosing r(e) to convert an unfamiliar

probability density into a more familiar form. Numerous other

types of composite reproducing-type densities are possible.

E. APPLICATIONS

1. As long as a sufficient statistic of fixed dimension exists, the

techniques herein developed are applicable to a wide variety of

problems such as pattern recognition with incomplete knowledge of

the statistics involved, finding a probability density that simpli-

fies taking the expectation of a non-negative random variable, or

estimating a parameter when no a priori information is available.

The problems include some for which the learning model developed

in this paper is not applicable.

2. The chief requirement for application of the technique is the

existence of a sufficient statistic of fixed dimension. Dynkin

[Ref. 19] has made a general study of the conditions under which

sufficient statistics of fixed dimension exist, and of methods for

finding them. Sufficient statistics of fixed dimension appear to

exist for most of the simpler probability laws normally encountered,

and for some of the more complex ones.
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IX. RECONENDATIONS FOR FURTHER WORK

Although the results of this investigation give solutions to a

number of problems in the field of machine learning, they open up a

number of new problems. These problems include finding methods for

extending the present theory and finding methods for tying the present

theory in with other results in the machine-learning area. Some of

these problems are indicated below.

A. FROBLEMS SUGGESTED

1. Procedure When Sufficient Statistics do not Exist

Much of the work on the theory of communication systems involves

analyzing complex systems. The probability laws encountered in studying

the more complex systems (and some of the simpler ones) are often of

forms for which no simple, sufficient statistics exist. In these cases

the theory developed in this paper is not directly applicable.

One of the chief problems to be investigated is finding how to pro-

ceed when no simple, sufficient statistic exists. A possible approach

would be to use a statistic that is not sufficient, but that is of

fixed dimension and in some sense "efficient." If this approach is to be

used, some method of comparing possible statistics is needed. A cri-

terion might be based on Kullback's information integral or divergence

[Refs. 22, 231, which are maximum if and only if based on a sufficient

statistic.

2. Effect of Taking Expectation of Performance Criterion

The analysis herein has been confined almost exclusively to the

computation of the probability densities p(ejA1 , ... An). In actual

applications, these probability densities would normally be used to

take the expectation of some random variable (see the final stage in

Fig. 1). The forms that this final stage of the computation might take

and the effects of these forms on the learning process should be

investigated. The chief result along these lines in this investigation

is the proof that the limiting form for the total computation is the
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form that would have been obtained if the unknown parameters had been

known (Corollary, Theorem I, Chapter IV).

3. Rate of Convergence

Little work has been done on investigating the rate at which the

probability densities converge to their limiting (delta function) form.

Since it has been shown that the convergence properties are determined

largely by the "experimental portion" of the a posteriori density,

and since this portion of the density is a normalized likelihood, some

of the techniques employed in the study of maximum likelihood estimates

may be useful here.

4. Applications

The material presented in this paper has only begun to scratch

the surface of the possible applications of the techniques that have

been developed. The problem has been formulated in a general enough

manner to indicate that there is a wide variety of possible applications;

however, a great deal of work on specific applications remains to be

done.

5. Information-Theory Properties

The probability densities examined in this paper appear to have

some interesting information-theory properties. These aspects have not

been investigated as yet. It may be possible to tie the theory

developed in this paper in with some models for learning processes that

are based on such information-theory concepts as entropy [Refs. 24, 25].

6. Effects of Errors

If an error is made in the type of likelihood function, p(Alle)

assumed, the results are unpredictable. (This does not contradict the

proof that the limiting form of the a posteriori density is independ-

ent of the a priori density, as in this case p(Alle) was not in

error.) The form that the a posteriori density will take in the

limit can be predicted in any particular case. For example, if it were

assumed that the observations were generated by a one-dimensional

Gaussian process with the density having known variance and unknown
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mean, whereas the input observations were actually generated by an

exponential process, the sample average would be used as an estimate

of the mean while this sample average was actually converging to

i/A (see Tables 2 and 4). How accurately the resulting probability

distribution would fit the data is not clear. This question would be

worth investigating, as would a more general analysis of the effects

of errors.

7. Several Possible Likelihood Functions

In certain cases it might be known that the likelihood function

took one of several possible forms, such as Gaussian, Rayleigh, or

exponential, but the precise one of these forms applicable might not be

known. In such cases an approach assuming a number of possible forms

for the likelihood function is possible, weighting each of these

hypotheses by a factor similar to Watanabe's credibility measure [Ref.

26], and adjusting the weights as observations are taken may be feasible.

A similar problem has been investigated by Magill [Ref. 27] in developing

techniques to predict which of a known set of possible Gaussian signals

is being observed, and at the same time predict the value of the signal.

B. SUMKARY

In summary, a fairly general theory has been developed, which appears

to have wide applicability; however, much additional work on extending

the theory, tying it in with other theories, and applying it to specific

cases remains to be done.
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APPENDIX

DETAILED COMPUTING PROCEDURES

This appendix describes the detailed procedures used in computing

the densities, limits, and so on in Tables 1 through 5: it includes

also a special computation for the expectation of a cosine of unknown

frequency for Chapter VII.

A. COMPUTATION OF REPRODUCING DENSITIES

It is desired to compute the forms of the simple reproducing densi-

ties listed in Table 2, plus the simple reproducing density for the

Gaussian case with both M and K unknown.

The first density, the beta density for learning P for a binomial

distribution, was computed in the main text. The computation simply

involves normalizing the likelihood function in the first column of

Table 2. This can be done either by integration or by comparing with

standard densities as discussed in the text. A similar procedure is

followed in all the cases in Table 2.

The second and third densities in Table 2 are generalizations of

the first and need no discussion. The derivation of the fourth, a gamma

density for learning the parameter a for a Poisson distribution, is

also straightforward. It is simplified slightly if the likelihood is

rewritten as

p(n,Tla) = K(n,T) d' e-T (A.1)

and only the part depending on a is considered in normalizing.

The fifth density, Gaussian for learning a Gaussian mean, is derived

in a similar manner. The computation is simplified by completing the

square in the exponent of the likelihood, using

( xi- M )t K'1( xi-M ) = n( Xn-M )t K( n.M )

+ I (X i- 'n t 9-1( X i- Tn (A.2)
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The likelihood is then rewritten as

P(X 1 , ...XXnM ) = K(XI, ... X.) exp M(Xn-M )tKnl(n-M )]

(A.3)

proceeding thereafter as in the Poisson case.

The Wishart density for learning an unknown covariance matrix

(Case 6) is derived in a similar manner, utilizing the identity

nty K -1 ( 't -(xi~

tr V -n = Ni-M Xi- m (A.4)
i=l

to show that the two forms of the likelihood in the fifth and sixth

cases of Table 2 are equivalent. In this case, comparing the manner in
-1

which the likelihood depends on K with the manner in which the

Wishart density depends on V is much simpler than integration asn

a method of obtaining the normalizing constant. Sec Chapter VI, Section

A for a discussion of this procedure.

If both M and K 1  are unknown, p(XX, ... XnIM , K-1)

is rewritten as

P( Xl, ... Xn N, K1 ) = r( 2 ,)d I 'exp L tr Vn K-1

[(2n) di X1-1/2 ex [M K N ~

(A.5)

with

n

V n Xi n)(Xf-.)t' (A.6)
i=l

and the other terms defined as before.

The second factor in Eq. (A.5) depends on its parameter in the

manner in which a Gaussian density depends on its argument, while the
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first factor depends on its parameter in the manner of a Wishart density.

This suggests as a normalized density*

* -(n+d)/2 -(n-l)/2 t* r ]-
-l X) IVni IKj exp trV Kn

,a d-l d-(n+d) 2d(d-')/4 - n+d-a

o0*

(( 2 v)dj Kn) -1/2exp (M -Xn)t K I(M -il) (A.7)

The normalization in Eq. (A.7) can be checked by integrating first

over M , then over K 1. The first integration gives a Wishart

density as a marginal density; the integral of this Wishart density is

then unity as it should be.

V is the only parameter that has been encountered in a simple

reproducing-type density for which a recurrence relation for computing

the new value of the parameter from its old value and the learning

observations is not obvious. A simple recurrence relation exists,

however, as follows:

* * n-i [(X X X X (A.8)V n = Vn-i +-:•[- n ~ ) -- A8
n n1 n n n-l n n-l t

To derive the density for learning the magnitude and phase of a

complex Gaussian mean (Case 7), the portion of the exponent in the

likelihood depending on a and 0 is first rewritten as follows:

-2a jXij cos (0 +ai) +ka -2na~j' cos (0 + 8n" + na (A.9)

with ixnI and bn defined in Table 2. The normalization is then

accomplished by computing

The density in Eq. (A.7) is not included in Table 2. It is the
simple reproducing-type density for learning both M and K-l
and is the density utilized by Keehn for this purpose (Ref. 10).
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exp " [2a - 2aI1nI cos (0 + 5n) (A.10)
0- k. 2on J0 -o•

utilizing some of the properties of Bessel functions (Ref. 28].

The final three cases in Table 2 are straightforward. The densities

for the exponential and Rayleigh cases may be normalized by comparing

with the gamma density; but the density for the rectangular distribution

must be normalized by integration.

B. COMPUTATION OF MOMENTS

The moments given in Table 3 were arrived at as follows: beta,

Dirichlet, gamma, Gaussian, and Wishart densities are standard forms

with moments already tabulated [Refs. 29 - 311. Hence, in this appendix

it is merely necessary to compute the means and the variances for the

two cases (Cases 7 and 10) where the simple reproducing-type densities

are not standard forms.

The expectation of a, the magnitude of the complex mean of a

Gaussian density (Case 7), is given by

E~a ] = an2,l I• exp [-ý 12/ý_

n

j a exp 2a 2 a 2al% cos (0 - dO da (A.11)

-it 0n

It is known that the integral of the Rician density is unity, or

exp [-K I /2/o*2-
a exp a2- I2 cos (0- db d]a:2a 9 2 ff2a,2nn

n -i 0o n (A.12)
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Comparing Eqs. (A.12) and (A.11) it is found that:

Eta] (2)1/2 a-exp L 1~2/40.2 1- [,, 2 /402] (A.13)

To obtain the variance, the same procedure is followed, using the

fact [Ref. 32] that the first moment of the Rician density is given by

J.T a2 exp 2o [2 a 2ajX niCos (0 n ~n2] do da
-71 0n

/2 n h nkna 2  0 02

+ -j z12I 1h2 (A.14)2 2

n

to obtain

22

Eta n 1+ Ln 2_ (A.Ia)
2 [IX' ~2 +

Ln J
22

Subtracting E 2[a] gives the tabulated variance.

Integrating the expression for p(a,0) over a gives

exp {[- [XnI2/40] [i - 2 cos2 (0 - )] 5 L1+erf Ixn (I-Cn)o
ý(0) L 2- n [1t 2] n n

P ( )4 c -2 - < '0 <

0, otherwise. (A.16)
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with erf(x) = the error function. No closed-form expressions exist for

the moments of this density, so efforts are confined to finding large-

and small-sample equations. First, however, the mean and variance must

be computed for the final simple reproducing-type density, the density

for learning W for a rectangular distribution (Case 10).

E[W] is found by straightforward integration

E[W] =J (n-1)() dW, n > 1

M
n

n-l•M > 2,
{n-2M nn2

1 <n < 2 (A.17)

Similarly

00n-2

M
n

n-1 Mnn > 3,
n--'-n

- 1 < n < 3 (A.18)

Subtracting E 2[W gives Var [W] except for the case 1 < n < 2,

which is of the form oo - c and hence undefined.

C. LARGE-SAMPLE LIMITS OF MOMENTS

The limiting forms of many of the parameters in Table 4 may be ob-

tained by the simple algebraic process of letting the size of the set

of observations grow without bound, then computing the limits obtained.

This process gives all of the values tabulated as zero in Table 4.

The limiting forms of most of the remainder of the parameters follow

directly from application of the strong law of large numbers if the limits
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are determined by actual observations. For the binomial distribution,

Case 1:

E 1RIP = PO] = P0  (A. 19)

Hence, by the strong law of large numbers

_ , p (A.2O)n 0

with probability one.

Similar reasoning applies in most of the other cases studied. In

case of the multinomial distribution, Case 2:

F P = Pi: Pi (A.21)

For the binary Markov Process, Case 3:

E "riitn o ~ ] =(A. 22)
Eni IP ii = Pii = Piio (.2

For the Poisson process, Case 4:

E 1il a]0 = a0(A.23)

For the Gaussian process with unknown mean vector, Case 5:

E[(X).ilmi = mio] = nio (A.24)

or with unknown covariance matrix, Case 6:

B [( n) i" Kl = o1] = koJ (A.25)

For the complex Gaussian process, Case 7:

E[ 7n Ia : a= ] = a (A.26)
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and

=F n 0 = I = 0o (A.27)

For the Rayleigh process, Case 8:

[E a2 =% =-o (A.28)

hence, the reciprocal parameter p converges to 1/cA2 For the

exponential process, Case 9:

E LEX' 1 N = N l/N~ (A.29)

with the same type of reciprocal relationship as found in the corresponding

case, Case 9, in Table 3.
In each of these cases, the strong law of large numbers applies in

the same manner as in the binomial case. The only case differing is

Case 10, the rectangular distribution. Convergence can be proved in

this case also, but the proof differs from that for the other cases.

Since in Case 10 the sequence of M 's is bounded and monotone,n

it must have a limit, with probability one. This limit must be W

if the latter is the true value of W, since if the limit were not
W it would have to be less than W . Then the Borel-Cantelli lemmas

0 0
[Ref. 13] would state that values between the limit and W occurred

0
infinitely often in an infinite sequence of observations, a contradic-

tion. Hence, Mn must converge to W with probability one.

The limiting forms for means and variances in all cases save the

complex Gaussian, Case 7, then follow immediately from Table 3. For

the complex Gaussian density the limiting forms of the moments for a

follow from expansion of the Bessel function terms, using the usual

asymptotic expansions valid for large arguments [Ref. 28]. The moments

of 0 follow from the limiting form of p(0):

P(O) _ 1 n I exp in 12 sin 2(-5n)] /2 - <_It < It (A.30)

n
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Since -n* 0, Expression (A.30) approaches zero except for 5n.
Hence, E[0] - & . The order of magnitude of the variance can be esti-

mated from the width of the pulse given by Expression (A.30). This is
2

obviously of the order of o- . The variance is a measure of the widthn
of the pulse and must be of the same order of magnitude. The limiting

form of the covariance is at most of the maximum order of the variances.

D. SMALL-SAMPLE LIMITS OF MOMENTS

The values of all limits in Table 5, save for the complex Gaussian

case, phase variations, are obtained immediately from taking limits in

Table 3. The moments for uniform densities may be found tabulated in

the cases where the parameter range is finite. If the parameter range

is infinite, and a function of 0 is unbounded and non-negative, the

limiting value of the expectation of the function, as the density on

0 approaches uniformity, is infinite; while if the function can be

both positive and negative, the limiting expectation is undefined.

This gives all values in Table 5 save for the moments of 0 in the

seventh case.

For these moments of 0 it is merely necessary to evaluate the
2

expression for p($) in Eq. (A.16) as n approaches zero and a n
n

approaches infinity. The limit is a uniform density over the range

- 7( < 0 < it.

E. LIKELIHOOD FOR COSINE OF UNKNOWN FREQUENCY

Section B of Chapter VII applied the learning technique to finding

the expectation of a random variable--specifically a likelihood ratio

involving a cosine of unknown frequency. It was necessary to integrate

Eq. (83) twice to obtain Eq. (84). Since p(0) is uniform over the

ranre [0,21rl:

exp [-a T1 / oN0 2 T

£(Xlaf) = 2exp 4 J X(t) cos (at + e) dt dO

00 
0L3
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Expanding the cosine term,

T 1 T1 T1

r x(t) cos (wt+O)dt = cos 0 1 x(t) cos wtdt - sin 0 ' x(t) sin wtd~t

0 0 0 (A.32)

Hence

a2Ti, [I T1(lf--o4, X(t) e io°Ydt (A. 33)
I(xja,f') = e 0a f

Then, since by hypothesis, a is Rayleigh-distributed with

parameter A2

(xf) f a2 e 0 o --1 - .0o2 4 0X(t) eiLtdt B 2

NB 2 f0B2 T1  2 }
= exp ` X(t) ei(tdt (A.34)

A 1N 0J

wherein use is made of the fact that the integral of the Rician density

is unity in a manner analogous to Section B of this Appendix.
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Researci, L:d Developmen.t Labs. Mall Statioc F-7
P.0. Box n5l1, Dgtation "C" Great Neck, Long Island, N. F.

Ottawa, Ontario, Caad 1 Attn: K. Bar's:., '•,rgr. Dept. Head

1 Attn; J. F. Tatlook
Via: ASD, Foreigr Release Sperry Microwave Electronics

Office Clearwater, Fla.
W-P AFB, Ohio 1 Attn: J. E. Pippin, Res. See. eaed

Mr. J. Troyen (A=Y?)
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