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ABSTRACT 

In order to fully exploit recent advances in photogrammetric technology it has been 

necessary to develop a comprehensive plate reduction appreciably more powerful than any hitherto 

employed.    In addition to factors considered in previous plate reductions, an advanced reduction 

must treat with full physical and statistical rigour such factors as;    random errors in catalogued 

stellar positions;  atmospheric refraction (particularly at great zenith distances);   higher-order 

symmetric radial distortion;  tangential distortion and asymmetric radial distortion resulting from 

imperfectly centered optics;  differential bias between measurements of different types of images; 

effective utilization of uncatalogued stars for photogrammetric control;   introduction of a priori 

constraints on any ot the parameters of the reductiono   Such a reduction is developed In this paper 

and illustrations of its practical application are provided.    Special attention is given to decentering 

distortion, a topic inadequately treated in the photogrammetric literature.    It is suggested that 

uncompensated decentering distortion has often in the past been the major obstacle to the full 

practical realization of theoretically attainable accuracies.    The Advanced Plate Reduction is 

designed to be valid for any combination of focal length and angular field.    By allowing for the 

possibility of correlated errors in the plate coordinates, it is also valid for cameras not having flat 

fields (e,g, , the Baker Nunn Satellite Camera),   Special note is taken of the application of the 

Advanced Plate Reduction for the definitive calibration of mapping cameras to be used for the 

analytical extension of photogrammetric control. 
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AN ADVANCED PLATE REDUCTION AND CALIBRATION 

FOR PHOTOGRAMMETRIC CAMERAS 

1.0 INTRODUCTION 

In an earlier paper [ 1]  the writer traced the evolution of plate reductions for 

ballistic cameras.    It was pointed out that, during the formative years or ballistic camera 

photogrammetry in the early 1940' s, techniques for plate reduction were largely borrowed 

from positional astronomy.   Because of the relatively wide-angular fields of ballistic 

cameras, these techniques proved to be ill-suited to the ballistic camera application 

and were supplanted by the early 1950,s by techniques developed by Schmid [2] , [3] 

which were based on closed expressions rigorously defining the central projection of 

three-dimensional object space into two dimensional image space.   Schmid1 s plate 

reduction was extended in 1956 by the writer [4]  to include the calibration of radial 

distortion of the lens.   As thus extended, Schmid1 s reduction proved adequate for data 

gathered from the types of ballistic cameras in general use through the 1950's.   These 

cameras may be characterized as being of fairly short focal length (300mm and less) and 

of fairly wide angular field (33° square and greater).   Changing and more stringent 

requirements led in 1960 to the development of the PC-1000 ballistic camera under 

the sponsorship of AFCRL.   The 1000mm focal length of this camera is over three times 

greater than that of the 300mm ballistic camera.    Experience with the PC-1000 demonstrated 

that many of the practices and procedures which were satisfactory with cameras of shorter 

length are unsatisfactory or marginal with cameras of long focal length.    Indeed, long 

focus ballistic cameras have required development of significant refinements in photo- 

grammetric theory and practice in order that their full potential for improved accuracy 

might be realized.    In this report we shall develop an Advanced Plate Reduction designed 

to extract the practical ultimate from the informational content of a ballistic camera 

plate.   Although the Advanced Plate Reduction was developed primarily to satisfy the 

special requirements of long focus ballistic cameras,   we have taken pains to cast the 

solution in a form of universal applicability.   Thus, the reduction, as presented, is 

equally valid for cameras of very short focal length and very wide angular field and 

for cameras of very long focal length and very narrow angular field.    Special attention 

has been given to the following problems: 
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(a) rigorous consideration of random errors in star catalogue data, 

(b) adequate compensation for atmospheric refraction, particularly at great 

zenith distances, 

(c) calibration of radial distortion of the lens, 

(d) calibration of tangential distortion and asiymmetric radial distortion 

resulting from imperfect centering of the elements of the lens, 

(e) utilization of uncatalogued stars as control points, 

(f) utilization of "a priori" or independently measured elements of orientation, 

(g) simultaneous utilization of measurements of stellar breaks and stellar 

punctiform images. 

In [1] we discussed many of the properties of the Advanced Plate Reduction and some of the 

results of its application, as well as its relationship to earlier reductions.   This reference is 

attached as an appendix to the present report because it is especially pertinent to the investi- 

gation at hand and because it was originally generated under the present contract.   We suggest 

that the reader acquaint himself with the appendix before proceeding further, for it provides 

a heuristic and relatively nonmathematical introduction to the Advanced Plate Reduction, 

2.0 STAR CATALOG ERRORS 

Plate reductions currently in general use for ballistic camera reductions treat 

catalogued stellar positions as if they were perfectly known, random error being ascribed 

solely to the measured plate coordinates.   As we shall see, the premise of perfect control 

is untenable for cameras of focal length appreciably in excess of 300 mm,   The significance 

of a specific level of error in catalogued positions may best be gauged through a comparison with 

attainable plate measuring accuracies.     Normal rms plate measuring accuracies for well- 

defined images are on the order of 2 to 3 microns and, for a fixed plate size, are largely 

independent of focal length.   We have, however, observed a tendency for plate measur- 

ing accuracies to improve somewhat with increasing focal length, probably because 

of the superior and more uniform image quality generally characteristic of narrow angular 

fields (as long as diffraction is not a serious consideration).   Therefore, we shall adopt 

the more stringent figure of 2 microns as a standard for plate measuring accuracies.    It 

then becomes clear that errors in catalogued stellar positions assume significance with a 
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given camera if they exceed one micron when projected onto the plate. 

In spite of its relative obsolescence, the General Catalog (GC) prepared by 

Benjamin Boss is still widely used in baüistic camera work because of its complete 

coverage of the celestial sphere (both northern and southern hemispheres are covered 

with good uniformity), because of its large number of stars (over 33,000 stars, an 

average of 0.8 stars per square degree), and because of its convenience in utilization 

(proper motions are provided for all stars; hence catalogues of different epochs need not be 

consulted in order to update stellar positions).   The mean epoch of the GC is about 1900. 

Eichhorn [5] quotes the typical mean error of a stellar position at mean epoch as being 

0".15 and the typical mean error of annual proper motion as being 0".010.    It follows 

that the mean error of the typical star in the GC for year 1965 approaches 0".7.    This 

is equivalent to errors of about 1 micron, 2 microns, and 3.5 microns on the plates of 

300mm, 600mm, and 1000mm cameras respectively.   Thus, errors in the GC are not of 

major significance for cameras of focal length of 300mm or less, are comparable in 

significance to plate measuring errors for cameras of focal length near 600mm, and 

are actually of greater significance than plate measuring errors for cameras of focal length 

of lOGOmm or more. It is accordingly clear that, when the GC is used, a plate reduction 

which throws all of the adjustment on the plate coordinates may be unrealistic with 

cameras of moderately long focal length. 

Because of its early mean epoch, the accuracies of the GC for a current epoch 

are appreciably lower than those of some of the more modern catalogues.   We have 

summarized in Table 1 a number of pertinent characteristics of the major star catalogs 

of potential value for ballistic camera plate reductions.    The accuracies quoted are 

adopted from papers of Eichhorn [5] and Scott [6] ,[7] .    It should be appreciated 

that the compilation of many catalogues has consumed decades and that, therfore, the 

mean epoch may shift significantly from zone to zone.   Thus, it is sometimes difficult 

and misleading to abstract a single figure to characterize the accuracy of a given 

catalogue.    For this reason we sugyest that the reader consult the papers cited above for more 

detailed and comprehensive treatments of the subject of star catalogues and their 

accuracies. 
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In Table 1 we have also listed for cameras of various focal length the plate 

measuring error which is equivalent to catalogue error listed In column (6).    Those 

entries of columns (7) - (12) which are one micron or greater (and, hence, are significant 

relative to attainable plate measuring accuracies) lie above the heavy, stepped line 

crossing the columns.    We see that errors of even the best of the catalogues assume 

significance as focal lengths approach 2000mm.    When the AGK-3 is published in 

1964, the northern hemisphere of the celestial sphere will be covered with high density 

and high accuracy.   Correspondingly dense coverage of the southern hemisphere, however, 

depends largely on the Yale and Cape Catalogues,   Inasmuch as current accuracies of the 

Yale and Cape Catalogues are generally only one-half to one-third as great as those of 

the AGK-3, the problem of catalogue errors for the southern hemisphere will remain 

highly significant for long focus ballistic cameras until the completion of the Southern 

Astrometric Program towards the end of this decade. 

From the foregoing it Is clear that a truly rigorous plate reduction for long 

focus ballistic cameras must take into account not only random errors in plate coordinates, 

but also random errors in stellar control.   The fact that each star carried as control can 

give rise to several successive images provides the means for the effective separation of 

plate measuring error from catalogue error, for the effects of catalogue error are essentially 

constant for all images of a given star, whereas those of plate measuring error are inde- 

pendentfirom image to image.   We shall exploit this fact in our derivation of the 

Advanced Plate Reduction. 

3.0 ATMOSPHERIC REFRACTION 

Atmospheric refraction of the stellar control carried in ballistic camera 

reduction is rarely a significant problem for zenith distances less than 70°.   This is true 

even though only very nominal corrections for refraction may have been applied.   The 

reason stems from the fact that the relative refraction of points on a ballistic camera 

plate can be expressed to the first order as a linear combination of the elements of 

orientation.   This means that the elements of orientation resulting from a stellar 

calibration can readily compensate for moderate errors in the refraction corrections 
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applied to the steMar direcflons.    In particular,  the calibrated principal distance and 

the calibrated zenith distance of the camera axis act in concert to compensate for 

residua! refraction.    However,  as zenith distances increase beyond 70°,  the elements 

of orientation rapidly lose their ability to compensate for uncorrected refraction.    It 

is not unusual for ballistic camera observations to be made at zenith distances in excess 

of 70°.    Indeed, observations of missile re-entries or of flashing lights for determination 

of the azimuth of Hiran lines are made to within a few degrees of the horizon.   Thus, the 

problem of refraction for great zenith distances is of more than academic interest.    We 

shall, therefore, accord it full consideration in the Advanced Plate Reduction. 

In order to provide the mathematical model for the plate reduction with the 

necessary freedom    to account fully for the relative refractive displacements of stars 

at great zenith distances, we must incorporate a sufficiently comprehensive refractive 

model.    The conventional model for atmospheric refraction is of the form 

(3.1) %   =      Epttan2n+1
r      , 

where 6^   denotes the astronomical refraction corresponding to the observed zenith 

distance ^ and the p1 are coefficients depending on the structure of the atmosphere. 

The model may also be expressed with the true, rather than the observed , zenith 

distance as the argument of the expansion.    It then assumes the form 

OO 

(3.2) 5z  ^      Vqitan2n+1z 
i=0 

where   6z is the astronomical refraction corresponding to the true zenith distance z 

and the qi are appropriate coefficients.    If 6^ and 6z are taken as positive quantities, 

we have by definition. 
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(3.3) £    -    z+öz, 

(3.4) z    =    £ - Ö£       . 

The above expansions for refraction become impractical for points near the horizon, 

inasmuch as tan £   and tan z   increase without limit as £ and z approach 90° (the 

series are noneJ-heless convergent since the coefficientsp   , q    approach zero more 

rapidly than the powers of tan^   and tan z approach infinity)e   A more powerful 

and    convenient expansion for astronomical refraction is that of Garfinkel [8]. 

With the observed zenith distance as the implicit argument, Garfinkel1 s expansion 

assumes the form 

(3.5) %    =      Tjh tan2"4"1«)      , 

where tan 0 is an auxiliary function computed as follows from the observed zenith distance: 

(3.6) tan 20  =    — tan £ / 
ro 

or, alternatively. 

(3.7) tan 0  =       ( 1 + y2 cot2^)    - y   cot £    , 

in which y    is an atmospheric constant equal to 

(3.8) y       =     8.16(273/1 )* 
o 0       ' 
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where T0 is the t-empercrture in degrees Kelvin at the observing station.    Garfinkel's 

expansion may also be expressed with the true zenith distance as the implicit 

argument.    In this case, one has 

(3.9) dz   =     YJ ^ifan "    0 

i=0 

in which 

1 
(3.10) tan 20      =    — tan z    , 
v ro 

or 

(3.11) tanO    =       (1 + y0
2 cot^z)2- yocotz    , 

where y0 is as above. 

The writer demonstrated in [9] that four terms of Garfinkel' s expansion are 

functionally capable of representing astronomical refraction to accuracies on the order 

of a few tenths of a second of arc for all zenith distances from 0° to 90°.    For instance, 

the writer found that, when four terms of the expansion were fitted by least squares to 

sets of actual refraction data for several different nights (Strand [ 10]), a mean error 

of fit of less than 0".2 resulted in every case, even though each sample included values 

of refraction at intervals of 2° for zenith distances down to and including 90°.   The 

writer has consistently obtained similar results from least squares fits of Garfinkel's 

expansion to the results of extensive ray tracing through actual atmospheres sampled 

by balloonsondes.    Even with refractive profiles affected by severe temperature 

inversions, four terms of Garfinkel' s expansion have been found to yield rms accuracies 

of 0". 2 or better for zenith distances to 90°.    It follows that Garfinkel's expansion 

provides an exceptionally compact and flexible model for atmospheric refraction. 

Accordingly, we shall incorporate four terms of the expansion in the Advanced Plate 



Reduction in order to accommodate zenith distances as great as 90°. 

In | 8|  Garfinkel provides tables for the computation of astronomical 

refraction for any given observed zenith distance £ and for any specified temperature 

(T),  pressure (P) and height (h) at the observing station.    By making several entries 

for different zenith distances, one can construct a refraction table appropriate to the 

observationol situation.    The coefficients of Garfinkel's expansion may then be estimated 

by fitting the expansion to the entries of the table.    The absolute accuracy of such a 

refraction function Is likely to be on the order of ±1 per cent.    In view of the compen- 

sative capabilities of the elements of orientation, this Is unquestionably adequate for 

zenith distances as great as 7(7;  only for zenith distances greater than 70° Is there any 

merit In allowing adjustment of the coefficients of the expansion.    For this reason. In 

the Advanced Plate Reduction, we shall constrain the values of the coefficients of 

Garfinkel1 s expansion resulting from the adjustment to be statistically consistent 

with the pre-computed values.    As a practical matter, this means that the precomputed 

coefficients will undergo significant adjustment only for plates having stars at substantial 

zenith distances.   At the higher zenith distances, refractive coefficients are essentially 

superfluous In a plate reduction. Inasmuch as the elements of orientation alone are 

adequate to compensate for residual refraction.   Here the Inclusion of refractive coef- 

ficients as unknowns would ordinarily lead to an indeterminate or nearly indeterminate 

set of normal equations.    By constraining the refractive coefficients resulting from the 

plate reduction to be statistically consistent with precomputed values, one obviates 

this tendency towards indeterminacy at small and moderate zenith distances and, at the 

same time, automatically allows the coefficients sufficient freedom    for adjustment at 

great zenith distances. 

4.0 SYMMETRIC RADIAL DISTORTION 

The distortion of a perfectly centered lens whose axis is normal to the 

photographic plate is symmetrical about the principal point and is, consequently, a 

function of radial distance only.    As the writer pointed out In [4] , the distortion 

function 6 is of the following form when the principal distance c Is carried as an 

unknown in the plate reduction: 
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(4.1) 6    -     k,^    +   k2r
5     +   k3r7     +    ...     , 

where r Is the radial distance (from the principal point) and the k's are the coef- 

ficients of distortion.    The single coefficient k]    Is sufficient to account for the 

distortion of most simple lenses over their usable field.    However, we have found 

that modern highly corrected lenses are likely to require the fifth and even the 

seventh order coefficients.   Three coefficients of the expansion have proven adequate 

for all ballistic cameras encountered to date. 

In the event that It is desired to enforce a specified principal distance 

in the plate reduction, the distortion function must assume the form 

(4.2) 8'     =     k'or  +   k',^   +   k^r5    +   k^ i7    +   ...     . 

If c denotes the principal distance associated with 6 and cJ= c + Ac denotes the 

principal distance associated with 6* , It follows frc. i [4] that 

Ac,   - Ac 
(4.3) ö*    =       (1 + —^)   Ö     + 

from which 

r 

(4.4) ki =-^i ,      k,^ (1+4^) k, ,      ki = (1 +4^-) k5 ,    etc. 

This emphasizes that a distortion function Is meaningful only when its associated 

principal distance is specified.   The term k'r    in (4.2) is equivalent to a constant 

scale factor.    Therefore, one cannot arbitrarily carry bothk1   and c'   as unknowns In 

a plate reduction, for both parameters perform preci sely the same function In the 

model;   to do so would lead to an indeterminate set of normal equations.   Accordingly, 

If the principal distance Is carried as an unknown, the associated distortion function 

must be of the form (4.1);  the form (4.2) may be used only if an arbitrary value of the 

principal distance is enforced.    It is essentially Immaterial which approach is taken, 

for the results of the one can be transformed to correspond to the other. 
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Because radial distortion is ideally invariant for a given lens,  it is common 

practice to calibrate the coefficients of distortion in special massive reductions Involving 

150 to 200 or more stellar images.    This generally yields a distortion function having a 

mean error of better than one micron at the extremities of the field.    Such a function 

can be enforced in routine reductions without introducing significant error.    From 

time to time the calibration of distortion may be repeated as a measure of quality 

control. 

The rigorous determination of coefficients of distortion as an integral   part 

of a ballistic camera reduction was first derived by the writer in [4] .   We shall incor- 

porate this solution into the Advanced Plate Reduction.    In a later section, we shall 

take up the problem of the determination of the tangential and asymmetric  radial 

distortion introduced by an Imperfectly centered lens. 

5.0 PARAMETERIZATION OF DIFFERENTIAL BIAS 

Certain aspects of the rationale of the Advanced Plate Reduction are best 

understood through a consideration of the character of a typical stellar trace on a 

ballistic camera plate.    In Figure 1 we have presented a sketch of a stellar trace optimized 

for a 1000mm camera for declinations between ±60°.    The time scale associated with the 

trace indicates the relative durations of the shutter openings and closings.   The sequence 

of exposures constituting the "precalibration" begins a few minutes before the tracking 

observations are to be made and consists, for the case depicted in Figure 1, of two 

repetitions of a basic cycle consisting of 

(1) a ten second exposure leading to a short trail, 

(2) a one second break, 

(3) a ten second exposure leading to a second short trail/ 

(4) a ten second break, 

(5) a one second exposure, 

(6) a ten second break, 

(7) a one-half second exposure, 

(8) a ten second break, 
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(9) a one-quarter second exposure, 

(10) a ten second break, 

(11) a one-eighth second exposure, 

(12) a ten second break. 

Precallbration Sequence Postcallbration Sequence 

v -       - .y.- - 

Basic Pre Cycle Basic Post Cycle 

[ h   --f-    -f—■ t 1-- -^    ---f-        f  -f-- | f-      -I f- f- 1 1 1 >- 

0 60 120 180 240 300 sec Time 

FIGURE I.    Sketch of typical stellar trace reflecting recommended exposure sequence for camera 
of 1000mm focal length (7X enlargement). 

Immediately after the completion of the preculibration, the camera shutter 

Is opened to record the object being tracked (usually a flashing light beacon carried 

by a missile, a satellite or an aircraft).   At approximately the center of the programmed 

tracking Interval, the camera Is closed for one second, thereby creating a short break 

which serves to provide a special check on the stability of the camera.    Immediately 

after the completion of the tracking observations, the sequence of exposures constituting 

the "postcallbration" Is performed.   This sequence is usually the reverse of that employed 

In the precallbration, although reversal is by no means essential and is perhaps more 

aesthetic than functional.   The final trail of the postcallbration is normally longer than the 

initial trail of the precallbration in order to Indicate at a glance the direction of stellar motion. 

We see that the stellar trace of Figure I contains a total of 21 potential 

control points, consisting of 5 breaks and 16 punctiform images,    in most cases, the set 

of punctiform Images   of most nearly optimal quality (40 to 60 micron diameter) would 

be selected from each basic cycle of exposures for measurement.    Thus, normally, four 

Images would be measured on each trace, two from the precallbration and two from the 
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postcalibration.    Stars of fainter magnitude are unlikely to yield punctiform images 

suitable for measurement.    With the PC-1000, for instance, stars of 7th to 9th 

magnitude normally produce well-defined trails (and,  hence, well-defined breaks 

as well), but only marginal punctiform Images (If any).    Therefore, the centers of 

breaks provide the only usable control points on the traces of fainter stars.    While 

well-defined breaks can be measured with high precision, their Inclusion in a 

reduction with punctiform Images creates a potential problem stemming from the 

possibility of the existence of a significant personal bias in the measurements of 

breaks relative to points.    Personal bias Is of no consequence In a plate reduction 

provided that It is constant for all points, for then it has no effect on the relative 

positions of the measured points.    For this reason, pains are taken in the selection 

of control to insure that the stellar imagss are of uniform quality closely matching 

the characteristics of the images of flashes (ideally, these would be so exposed as 

to be of optimal quality).   When stellar breaks are also employed for control, one 

has no insurance that the personal bias in measurements of breaks will be the same 

as for points.   Since the characteristics of stellar breaks are entirely different from 

those of punctiform images, personal bias for breaks and points may even be of 

opposite direction.   Accordingly, appropriate provisions must be made for the 

problem of differential personal bias If different classes of control points are to be 

rigorously employed in a common reduction. 

The classical way around the difficulty of differential personal bias 

involves the measurement of the plate in two positions, one rotated 180° with 

respect to the other.    If the differential personal bias Is persistent,   it will then be 

removed when the two sets of measurements are averaged (after one set has been 

transformed into the coordinate system of the other).    An equivalent, but more convenient, 

solution can be effected if the viewing system of the comparator Incorporates a selec- 

table reversing prism.    Here, measurements would be made both with and without the 

reversing prism in position.    Either approach doubles the measuring effort and may be 

self-defeating to the extent thqjt personal bias may gradually be altered by measuring 

fatigue. 
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in which 

In our formulation of the Advanced Plate Reduction, we have adopted an 

alternative approach to the problem of differential bias in order to avoid the need 

for direct and reversed measurements.   The approach consists of carrying the mean 

bias of breaks relative to points as additional unknowns in the plate reduction.   The 

plot« coordinates Kl/yl for the t     poinf arm expressed as 

y,   =   yt +  st -y    , 

x.^Xj ore the measured plate coordinates. 

Ax, A y ore the unknown mean biases of measured breaks relative to 
measured points, 

^     ■  0 if the i     image is a point, 

|     =   1 if the t     image is a break. 

tn general. Ax and Ay will not exceed a few microns in absolute value.   This 

knowledge may be exploited in the adjustment by treating   Ax, Ay as if they were 

observations having values of zero and standard deviations   ^Ax' aAy 0^ perhaps 

three microns.   Thus constrained, the differential biases Ax, Ay could easily adjust 

to any value within the range  ±3 microns, but would strongly be constrained from 

adjusting to a value as large as, soy, 10 microns. 

The parameterization of differential personal bias in the plate reduction 

can be convenient even when only one type of image is measured.    For instance, in 

a reduction requiring an exceptionally large number of points (as in a definitive cali- 

bration of radial and tangential distortion),parameterization of personal bias would make 

it permissible for one individual to measure some of the points and another to measure 

the remainder (here the differential personal bias would be that of one individual 

relative to another).   The parameterization of differential bias is also a powerful 
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diagnostic tool in fine-grained, statistical investigations of the internal consistency 

of one class of measured points relative to another.   Although it is possible in principle 

to carry more than one set of differential biases in the reduction, we feel that inclusion 

of more than one set would unduly burden the Advanced Plate Reduction. 

6.0 THE OBSERVATIONAL EQUATIONS 

We are now in a position to consider the general observational equations 

for the plate reduction.   Following the notation of reference [9], we begin with the 

fundamental projective equations 

(6.1) 

X      = 

y  =  y, 

AX -f By -► o 
DX + E|j + Fv 

+     A'X^B'M-K:'^ 
c    DX   + Efj   + fv 

in which 

x/y 

X/M/t' 

xp,yp 

c 

A  B C" 

A' ß'C 

D E  F 

=      plate coordinates of image point, 

=      direction cosines of object point in arbitrary Cartesian frame, 

=      plate coordinates of principal point, 

=      principal distance, 

orthogonal orientation matrix defining the rotational 
=      relationship between x,y,z axes of image space and the 

X,Y,Z axes of object space. 

As in [9] we shall find it convenient to define our X,Y,Z system so that the origin is 

at the center of projection, the positive Z axis passes through the zenith and the positive 

X and Y axes pass through the East and North points of the horizon.    Let ip,  a.', K denote 

the angular elements of orientation of the camera corresponding to a, Cü, K defined in [9] 

( ^i = azimuth, XtF elevation, K = roll).    Then the orientation matrix may be expressed 

as the product of three rotations: 
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~A   B   C ' 

(6.2) A' B'C 

D   E   F 

If we define 

/Z.  '3\ S] = sin ip i 

-cos K   sin K   0 

sin K   cos K   0 

0        0        1 

1 0 0 

0  -sin a;   cos OJ 

0    cos Cü   sin Ct) 

cos ii -sin ^   0 

sin (/;   cos ^   0 

0        0        1 

Cj  = COS^/ 

S2 = sin Cü/ S3 = sin K , 

C2 - cos CJ, eg = cos /< , 

this reduces to 

ABC 

(6.4) A'B'C 

D   E   F 

—   1 

51C2 clc2 *2 

Let A/Z denote the local azimuth and zenith distance of the unrefracted ray to a 

stellar control point of hour angle H and declination Ö and let Öz denote the refraction 

of the ray(6z is taken as a positive quantity).   Then the local direction cosines of the 

observed ray may be written 

(6.5) 

sinA sin(z-5z) 

cosAsin(z-5z) 

cos(z-öz) 

If <t> denctes the latitude of the station and T the sidereal time of the stellar obser- 

vation, we may express the direction cosines X*, \i%, vl of the true (unrefracted) 

ray as 

(6.6) 

A' 
I 

M 

-10 0 

0  -sin <J>   ccs 0 

0     cos O  sin <t> 

sin H cos öl 
co< H cos 6 

sin 5 
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or, since H = T - O?, where a Is the right ascension of the star. 

(6.7) 

A.' 

M1 

-10 0 

0  -sin O   cos ct> 

0    cos 0   sin <J> 

-cos 7    sin T    0 

sin r    cos T    0 

0        0 

sin a cos Ö 

cos a cos 6 

sin Ö 

Equation (6.5) may be put in the form 

(6.8) 

cos 5z 0 

0 cos öz 

sin A sin öz      cos A sin 5z 

-sin A sin 6z 

-cos A sin Öz 

cos öz 

sin A sin z 

cos A sin z 

cos z 

But the true direction cosines X*, \il , V1 f are defined by the expression 

(6.9) 
i 

M 

V1 

sin A sin z 

cos A sin z 

cos z 

Hence, the direction cosines of the observed ray to a star are related to its right 

ascension and declination (oi,ö) at the instant of exposure by the matrix equation 

(6.10) H 

V 

cos öz 0 -sin A sin öz 

0 cos öz -co$ A sin Öz 

sin A sin öz    cos A sin öz cos öz 

-COST     sinT     0 

sinT      COST     0 

0 0 1 

1 0 0 

0  -sin <t>   cos 0 

0    cos 0  sin 0 

sinÄcos Ö 

cos Of cos Ö 

sin Ö 

It shoul d not be overlooked that the azimuth A in the above expression is actually an 

implicit function of Of, Ö, c& and r and would normally be computed from 
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sin A - A'/sin z     , 
(6.11) 

cos A = |j'/sm z    l 

where 

(6.12) sinz    =    (1 - (l/1)2)* 

and where A* , \i  , vx     are in turn computed from (6.7).    The particular merit of the 

form of the relationship (6.10) is that the azimuth appears only in first order terms 

(since sin özjs of the first order).   This greatly simplifies the linearization of the 

observational equations/ for the implicit dependence of A on o^Ö may be ignored in 

the differentiation of X, \i, V   with respect to Gt,b (such differentiation will ultimately 

be required inasmuch as we shall consider Of,Ö as subject to error) 

As we have seen, the astronomical refraction corresponding to the true 

zenith distance z is given by the truncated expansion 

(6J3) öz    =     r]i tan 0 +r;2^ö +r]3 tan50 +Tj4tan7 0 

in which 

(6.14) tan 0     =      (1 + /J cot2z)     - y0 cot z 

The substitution of the above expansion for Öz into (6.10) introduces the refraction 

coefficients ?)| / T]2/ ^3 / ^U 'n^0 ^e direction cosines \, JJ, V   and, thence, into 

the basic projective equations (6.1 ). 
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The x,/ coordinates In the equations (6.1) were implicitly assumed to be 

free of distortion.    If x,/ denote the distorted plate coordinates, we may write 

x-x =       (l+JL-XJ-x)       =       (1 + 1^ + l<2r
4 + ka^ + ...)(x-x  )   , p r p * J •       p 

(6.15) 

y-y      =     (i + —Ky-y )      =    d + k^2 + k2r
4 + '<3<

i + ...)(y-yj / 
p i p \J 

in which 

(6.16)        r    =     [(;-xp)2  +   (y-yp)2l4 . 

The substitution of equations (6.15) into the projective equations (6.1) introduces 

the coefficients of distortion  k^, k?, ^  into the observational equations. 

In order to handle the problem of differential bias of one class of points 

relative to another (usually of breaks relative to points), we replace x,y In (6.15) 

and (6.16) by x + ^Ax, y + i;Ay, where, as Indicated In Section 5,   | is zero for 

one of the two classes of points and unity for the other. 

Collecting foregoing results and introducing the convenient projective 

constant K, we may express the basic projective equations (6.1) for the i     measured 

image of the j star as 
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(6.17) 

Du    _ 
(H )(x,   + ^    Ax-x ) 

r i ] ' J n 
i  i 

D, 1 J , ,- 

n+—)(yu^i;Ay-y) 

-cos K sin K    U 

sin«   cos K   0 

0        0        1 

cos öz 

0 

i j 

1 0        0 

0  -sin u; cos uJ 

0   cosu?  sinu; 

0 

cos Öz 
i J 

zos'C     sin ll    0 

sin;'    cos;    0 

0 0 1 

-sin A      sin öz 
' i 

-cos A      sin Öz 

sin A      sinöz cos A   . sinöz   . 
i j ij i ] l] 

cos Öz 
M 

1 0        0 

0 -sinO cos<t> 

0    cos0 sin O 

-COST. sinr. . 0 
ij i] 

sinT . cos r. 0 

0 0 1 

sinöf cosö 

cos Of. cosÖ. 
i i 

sin ö. 

In these equations 

x  .fy   .       are obtained by direct measurement, 

CK   ,0   .       are computed from data taken from a star catalogue and current ephemeris, 

Tn 
is obtained from the reduction of recorded timing measurements of 

shutter openings and closings, 

is specified for each measured point   (according to its classification). 

Is a station constant. 

The following unknowns are explicit in (6.17): 

lpt (jo, K - the rotational elements of exterior orientation; 

x  ,y  ,€ - the elements of interior orientation (x  ,y    are also implicit in D     /r     ); 
p 'p P    p n'  ij  ' 

Ax, Ay -   the differential biases in x,y measurements of different classes of points; 
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The follov/ing unknowns are Implicit in the terms   0      t  öz      : 

kj, k^ / l<3    -        the coefficients of distortion, 

^1# rl7'rl2 'Vi ~   ^e coefficients of refraction. 

The projective constant K     may be eliminated by dividing the last of the three matrix 

equations implicit in (6,17) into the first two.    Thus, we see that each pair of plate 

measurements gives rise to two independent equations involving as many as fifteen 

physically meaningful unknowns.    In the absence of errors of any kind, the measurement 

of a sufficient number of well distributed Images will lead to a sufficient number of 

equations to effect a solution for the unknowns, provided that the system is inherently 

determinate.   The matter of determinacy is important, for it is by no means assured 

merely because the number of equations equals (or exceeds) the number of unknowns. 

For instance, one easily sees that, when the camera is in a zenith orientation, it 

becomes impossible to separate the coefficients of distortion from those of refraction 

(in this case, the atmosphere becomes, in effect, an additional, properly centered 

element of the tens). 

Because all of the unknown parameters in the projective model have a 

physical interpretation, the attractive possibility arises of constraining the adjustment 

resulting from the use of the projective equations to be consistent (in a statistical 

sense) with specified a priori values of any of the parameters.   The rotational elements of 

orientation ip, a), K, for instance, would ordinarily be known in advance to an accuracy 

ranging from a few tenths of a degree from a camera mount of nominal precision (such as 

that of the PC-1000) to perhaps as good as ten seconds of arc from a mount of high 

precision (such as that of the BC-4).   Similarly, the elements of interior orientation 

x   ,y  ,c   may well be known in advance to a high degree of accuracy from previous 

calibrations.    Differential biases   Ax, Ay should not depart from zero by more than 

a few microns.   Coefficients of refraction Tf\, 't]2f Vl * VA    computed according to 

Garfinkei's theory are probably accurate to about one per cent and most certainly 

are not off by more than two per cent.   Coefficients of distortion kp k2, k3  may be 

known in advance to a certain degree from a previous calibration. 
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In order to be able to utilize a priori  information in the plate reduction to 

whatever extent desired, we shall treat all parameters as if they were observed quantities. 

The reciprocals of the variances assigned to the a priori values of the parameters serve 

as weights in the adjustment.    Therefore,  zero weight  may be assigned to any parameter 

which is to be unconstrained by a priori considerations. 

7.0 THE LINEARIZED OBSERVATIONAL EQUATIONS 

When K   .    is eliminated from (6. 17),  the resulting pair of equations may be 

considered to be of the functional form: 

^(^•i'^-i7 Cl'i'^i,ul/U2'• • •/U  ^     =    0 / '   ~   1/2,...,n       , 
(7.1) 3     u       j    ] p ] 

M^ij'/ij  «^ Ö./u1,U2/. ../u )    =    0  , i   =   1,2,...^     , 

in which 

u, = ip u^Xp U7= Ax u9= k] ^2=77l 

(7.2)        u^w u5 = yp u8 = Ay uw=k1 »B =r?2 

U3= K: U6 = C ull = k3 UU=T?3 

In (7.1) we have left ourselves uncommitted as to the number of unknown parameters. 

This is done for the sake of generality in order that the matrix representation of the 

adjustment will  not be affected if parameters are added to or deleted from the model. 

In the event that certain parameters are deleted as unknowns,  the numbering of the 

remaining parameters would be altered to preserve continuity of numbering. 

In equations (7.1) the measured plate coordinates are subject to random errors; 

so are the right ascensions and declinations.    The u's may on option be considered to be 

either measured quantities or completely unknown quantities.    Because equations (7.1) 

are nonlinear, we shall employ a truncated Taylor's series to reduce them to linear form. 
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(7.6) 

fni Vx^v,^, y°, + v?i, ^»«.ö^ ,0^65 , uf«+öu u"+6V = 0, 

2lj 
f2(xU + viM'  y"/'^,,  '^So       5^65,  u™+öu, u^ + öu   I  =0. 

Retaining  the zero and first order terms of the Taylor's expansion ov      ,6), we get 

v,    .    ■    u uu,     ■   ^2       C--     - -  UP 

li] ilj        ' 

(7.7) 

+ b1     SU,  + b2 . 8u2 + ... + b^. . 6un+ b1, . 6a. + b2    66 =     e,      , 

V2M +b9ll 
6ui   + b9,    6u9+  •••+ b7-    8un+ bl. 8a. + b2       86 =6 ^U 2ij        1 2i)        2 2ij        p 2lj        ] 2ij        j 2^, 

in which 

(7,8) 

f /30        "0       ^00     c00       00        00 00 \ 

^2ii 
r  / "0        ~0 00    rOO       00       00 00 \ 

■f2(xij' yij' ai  '  6j   '  Ul    '   u2"--'   V 

and 

(7.9) b^ 
8f. 

Hj 

au. ^u 
9f 

2i3 

au. k - 1,2,.. ^p 

(7.10) 

^n      = 
^ 

0 
< 3a. 

j 

b" ^M 

0 
l\u D21J 3a. 

3f 
Hi 

36. 

9f 
2ij 

36. 
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In (7.9), (7.10) the symbol is used to indicate that the partial derivatives are 

evaluated at the point   {x0    , y0    , o? , 6°° , u^, u^,,.., jp0).   We shall not concern 

ourselves here with the computational formulas for the partial derivatives, for 

their derivation is entirely straightforward. 

th 
The linearized projective equations for the *     measured image on the trace of 

the J     star may be put into the following matrix form 

(7 11)      V+B6+B6 =     t 

in which 

(2,1) 

(7.12) 

'Uj 

'211 
(2,p) 

bj       b2 u2ij       "jij 

(2,2) 

•••     ^ 
,   6   = 

J     (P,l) 

ÖLh 

6u2 

\vui 
v.," -6c,; '

€
UJ1 

[^ lu_ • 5. = 
^ €2il 

th 
The set of 2n    equations arising from the n    images measured on the trace of 

the 1      star may be written 

(7.13)     vJ +6,6, +'^6.     -    e,    . 
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wherein 

(7.14) 

(n, J) 

Mj 

'2J 

\ 

/     B, 

("j /P) 

lj 

21 

"i1 

(^,2) 

II 

2J 

",' 

€,    = 

(Jyl) 

"n 

-21 

""i1 

in which   n   = 2n .   Collecting the equations for all n stars, we have 

(7.15)      V+B8+B5    =    € 

in which 

v2 
(7.16)    v    = 

(nj) 

B 

(n,p) 

Bi 

B2 

B      = 

(n/2n) 

B]    0 

0     B2 

0     0 

0 

0 

Si 61 

„ 62 €2 
6 = /   € = 

{2nt 1) 

6 
n 

(nj) 

n 

where n denotes the total number of equations 

(7,17)    n      =      n^^+.^+n     =    2^ + 2n2 + ... + 2^ , 

-   26  - 



We shall let   A   denote the covariance matrix of the observational vector 

associated with the full set of linearized projective equations.    If we assume that the 

plate coordinates for different points are independent,   A   may be written 

(7.18)    A   = 

(n,n) 

A,     0 

0      A2 

0 

0 

0      0      ...    Ar 

in which  A    is the covariance matrix of the   plate coordinates of the images on the 

j     stellar trace.      A    may, in turn, be written 

(7.19)    A,   = 

(ryn,) 

A,«   0 Ml 
A 

2j 

.     0 

.     0 

.    A 
njj 

in which  A      denotes the covariance matrix of the plate coordinates  x^ ,y°     . 

In order to allow the utmost flexibility in the choice of measuring method, we shall admit 

the   possibility   of correlation in the x and y coordinates of a given point.   Thus,    A 

Is considered to be of the form 

(7.20)     A^    = 

(2,2) 

2 

x 
I j 

— 

y.j 

a.2 

_ 
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The inverses of   A,   A. , and A   .   will be denoted by   W, W. / W     , respectively. 

So far we have not used the fact that the right ascensions and declinations are 

actually measured quantities known  to a high degree of accuracy.   This information may 

be expressed by the following set of observational equations 

(7.21) 

a    +   v        / 
1 a3 

6°  +   v. J = 1,2,...^ 

in which   a   ,6    are the values computed from catalogue data and  v     , vc     are the 
J     J a,      Sj 

unknown random residuals associated with the "observed" right ascensions and declinations. 

Replacing   a   ,6    in (7.2!) by the values in (7.4), we get 

(7.22) 

c - 00 0 v      -  bat     =      a,    - a, 
a J i i 

vc    -  56      -      S00 - 6° 
8 i i i 

These may be written 

(7.23)     vi   -Si     =    €. 

in which   6    is as in (7.12) and 

(7.24) 

(2,1) 

a. 
3 

(2,1) 

a] - ai 

500- 5° 
J        j 
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It should be noted that    since a   ,6^    are arbitrary initial approximations to a. ,6. , 

we may choose them to be equal to the observed values   0,6   .   This would reduce 

the elements of   e   to zero.   We have not done this because it may be necessary to 

iterate the adjustment in order to eliminate the effects of higher order terms neglected 

in the linearization of the projective equations.   Although the initial approximations 

are wholly arbitrary, subsequent approximations are not arbitrary, but are determined 

by the preceding iterative cycles.   It is to emphasize this fact that we do not regard 

£    as necessarily equal to zero, although at the outset this would ordinarily be the 

case. 

Collecting all of the equations of the form(7.23) , we have 

(7.25)       v-8 =  e 

in which 

(7.26)       v      = 

(2n,1) 

V1 

v2 
,       6 

(2n/l) 

61 

62 

/       €    : 

(2n/i; 

£1 

The covariance matrix associated with the entire observational vector of right ascensions 

and declinations may be denoted by  A .    If errors in catalogued   positions of different 

stars are regarded to be independent, we may write 

A,    0     ...     0 

(7.27)       A     = 
(2n,l) 

0     A, 

0      0 An 
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In which 

(7.28)        A4 

(2,2) 

a2      0 
a. 

3 

o      ol 

The variances   O2 , a2    can be computed from information supplied in the star catalogue 
aj        J 

employed .    In general 

(7.29) 

ff2   =      (ff2)oo+ (T-To)2 a2     , a. a. LI 
J 

in which 

al   =      ^l^ + (T-To)2"2      ' 
6 5i ^Sj 

(a2)oo/(or2)oo are the standard errors of the stellar position at the epoch TQ 
a, aj 

of the catalogue, 

O     , a are the standard errors of the annual proper motion in aw 6,   , 
^n       ^ 1       j 

T    is the time in years of the observation. 

We shall denote the inverses of  A   and   A   by   W, W . 

The additional information made available by a knowledge of a priori  values of 

any of the parameters of the projective equations may be introduced through the incorporation 

of the appropriate set of observational equations.    Let u     denote the a priori value of the 
, th _. 
k     parameter.    Then we may write 
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(7.30) u0 + v (k= 1,2,...^). 
k       uk 

in which   v      is the residual associated with the "observed" value of the k     parameter. 
uk 

Eliminating uk/ the adjusted value of the parameter, from equations (7.5) and (7,30), we get 

(7.31)        v.    •   S.      =      u*- u0
k u u 

(k=l/2/.../p). 

This entire system of observational equations may also be written 

(7.32)        v-6   =    € 

in which 

(7.33)       v 
(pJ) 

ui 

u2 8 

(P/D 

ui 

U2 f      e 

(PJ) 

Jf -Ji 
00 0 

U 2    "   U 2 

P P 

As with the discrepancy vector  €  for right ascensions and declinations/ the initial 

discrepancy vector   € for the projective parameters may be made equal to zero by the 

simple expedient of choosing each arbitrary initial approximation   uk   to be equal to 

its specified a priori value   uj.   Again, for presentational purposes we shall not require 

that this be done because in doing so one can easily lose sight of the fact that € will 

no longer be zero after the initial solution of the iterative process required to account 

for the higher order terms of the Taylor's expansion. 
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We shall let   A  denote the   pxp covariance matrix of the vector of a priori 

values of the p parameters and shall let   W denote its inverse.    If the k     parameter 

is to be totally unconstrained,  it is merely necessary to employ zeroes for ail elements 

in the k     row and column of W.    On the other hand; the a priori value   u     of an 

arbitrary parameter may be enforced by choosing   uj" equal to u    and by setting   s*kk/ 

the k     diagonal element of W, equal to infinity (or to a practical computational 

eauivalent). 

8.0 THE MINIMUM-VARIANCE ADJUSTMENT 

Now that all of the information available has been expressed in the form of 

observational equations, we are ready to consider the problem of adjustment.   First, 

however, we shall consolidate our three basic sets of observational equations, namely, 

v ♦ B6+ B6    =    € , 

(8.1) 0-8 =    e, 

v           -   *8   =   e , 

into the single matrix equation 

(8.2) v + B6    =    i 

in which 

(8.3)     ; 
(N,l) 

V 

V 

V 

B 
(N,P) 

B    B 

-I     0 

0 -I 

6 

(Ml 
€      - 

(N,l) 
€ 
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where 

(8.4) N   =   n + P, P  =   2n + p . 

Similarly we shall consolidate the three covariance matrices   A/ A, A and their associated 

inverses (or weight matrices), W,  W, W into the composite matrices  A and   W   where 

(8.5) 

A   0    0 

A      - Ü    A    0 
N,N) 

0    0    A 

w 
(N,N) 

w 0 0 

0 w 0 

0 0 w 

Inasmuch as the consolidated system of observational equations (8.2) involves 

a total of N equations in   N+2n+p   unknowns (N residuals in the vector   v   and   2n+p 

parameters in the vector   6), there are more unknowns than equations.    Therefore, 

an infinite number of possible solutions exist.    The writer has shown in   [11] that    if 

the observational errors have the multivariate normal distribution, the solution of 

maximum likelihood is that which satisfies the observational equations (8.2) while 

minimizing the quadratic form 

(8.6) s    =       vT W v 
(1,N)   (N,N)   (NJ) 

Even if the observational distribution is not multivariate normal, this solution will 

lead to unbiased estimates of the parameters having the smallest possible variances. 

Because the criterion of minimum variance does not require a knowledge of the observational 

distribution, we shall consider our subsequent results to constitute the minimum variance 

solution tothe problem at hand, understanding, of course, that they also constitute the 

maximum likelihood solution when the observational distribution is multivariate normal 

or the least squares solution when the covariance matrix of the multivariate normal 

distribution is diagonal. 
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The particular vector 6 which leads to the residual vector minimizing the 

quadratic form   s   is shown in [11]   to be defined by the system of normal equations 

(8.7) N 8        - c 

(P/P)   (PJ) (P,l) 

in which 

(8.8) N       =       BT W B 
(P,P) (P,!^)   (N,N)   (N,P) 

(8.9) c 

(pj; 

BT W € 
(P^)   (NAN)   (N,l) 

Once  8 has been determined from the solution of (8.7), the residual vector v can be obtained 

from (8.2). 

While the foregoing constitutes the formal solution to the problem at hand, it 

is not in a practical form because of the excessive order of the normal equations for a 

moderate number of stellar control points»    For instance,  if   n   were to equal    50   and 

p were to equal    15,    the order of the normal equations would be   N^ 2(50)+15= 115. 

!n view of this, our approach is clearly impractical unless vast simplifications can be 

effected.    As we shall see, the structure of the normal equations is such that an  altogether 

practical solution can be derived no matter how large N may be.    The general nature 

of the solution is similar to that derived by the writer in   f 1 2J for the general problem of 

multistation analytical Stereotriangulation. 

By virtue of the partitioning of (8.3) and (8.5), the normal equations (8.7) 

can be put Into the form 

(8.10) 
N N 

NT     N 

-   34   - 



in which 

N     =    BT W       B     +    W       , 
(p^)      (p,n) (n/n) (n,l)    (p/p) 

N      =    BT       W        B 
(p^n)     (1,0) {n,n) (n^n) 

(8.11) NT   =     BT       W       B       , N      =     BT        W        B    +     W 
(2n,p)     (2n,n) (n,n) Kp) {2n,2n)     (2n/n) (0,0) (n,2n) (2n/2n) 

•T • • .. ..T 

c=B        W     e      -    W      €     ,       c     =   B We-W e 
(P/1)     (p.n)(n/n)(n/l)     (p/p)(p/l)       (20,1)    (2n,n) (n,n) (n,l)   (2n,2n) (2^1) 

Employing the partitioning of (7.16), (7.18) and (7.27) in equations (8.11), we can 

express the normal equations (8.10) as 

(8.12) 

N  + W    [        N, 
 i j  

N2        . N 
n 

6 s C. 
] 

- We 
 .|  .. .. .. 

R^     :  N, + w, 0 0 6l Cl - W, e, 

N]     I      0 N2+W2     . 0 *62 
— c2 - W2 e2 

NT      I        0 
n      i 

0 ..    N + W 
n        n 

S 
n 

c 
n 

-We 
n n 

in which the broken lines partition the system in accordance with the partitioning of (8.10). 
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In (8.12) 

N     =     B W B N    -     BT vV B       , 
J 3 ] J 

(pj)     {p,n.) (n^n.J (n.J) (p,2)     (p/n.) (n^n.) (n.,2) 

(8.13) NT   =     BT        W B 
i J j j 

(2^)     (2/nj)(n./n.)(n./p) 

N.   =    BT W. 
] i 

(2,2)     (2,n.)(n./nj)(n./2) 

c.    =    B W.        €. 
j } i i 

(p#l)     (p/n.) (n^n.) (n.,1) 

c     =    BT        W €. 
j J J 

(2,1)     (2,nj)(n.,nj)(n.,l) 

Equation (8. 12) shows that the lower right hand portion of the coefficient matrix 

corresponding to   N + VV   consists of a diagonal matrix of n two by two matrices 

(the   N. + W.) .    We may exploit this fact to invert N by the method of partitioning. 

First let us set 

(8.14)        M     - 
M        M 

MT      M 
=   N 

-i 

-t-1 

N        N 

NT     N 

where the matrices   M, M, M   are of the same order, respectively, as their counterparts 

N, N and N.     Because M is the inverse of N we may write 

(8.15) 
N N M 

"1 
M I    0 

NT N MT M_ 0    I 
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This leads to the four simultaneous matrix equations 

(a) NM+ NMT   =   I    , 

(b) NM+ NMT   -   0   , 

(8-^ _T-   -.T 
(c) N M+ NM     =   Ü   , 

(d)      FlT^ + NM  =   1   . 

The solution of (8.16(c)) for   M    is 

(8.17) MT   =   -N"1 NTM  , 

which, substituted in (8.16(a)) and (8.16(d)), gives 

(8.18)        NM- NN'^M    =    1   , 

(8.19)        -N^NN"1   +   NM    =    1 

These may be solved for M and M, yielding 

(8.20) M    =   ( N -     N        N"1        NT)   , 
(p,p)      (p,p)   (p,2n)(2n,2n)(2n,p) 

(8.21) M     =     N"1 +    N"''        NT      M       N N"1 

(2n,2n)     (2n,2n) (2n,2n) (2n,p) (p,p) (p,2n) (2n/2n) 

-   37   - 



Because N is a diagonal matrix of 2x2 matrices/  the computation of N        in (8. 20) 

is the equivalent of the inversion of n two by two matrices and, thus, presents no 

practical difficulties;   this is the key to the derivation of an efficient computational 

procedure.    Once M has been computed from (8.20), KA can be computed from (8.21) 

and   N can be computed from (8.17).    However, M is a completely filled 2n by 2n 

matrix and/thus, would require inordinate storage for large n.    At this point we are, 

therefore, still short of our goal of achieving a computationally feasible reduction, 

even though the largest individual matrix requiring inversion has been reduced to the 

order of N.    Proceeding further, we note that the solution of the normal equations 

(8.10) is formally 

(8.22) 

N       N 

N      N 

M      M 

MT    M 

from which 

(8.23)        6    =    Mc +   Mc    , 

(8.24)        6    =    MTi+Mc 

If we define 

(8.25) Q    =      N"1       NT 

(2n,p)    (2n,2n) (2n,p) 

and note from (8.17) that 

(8.26) M     =    -MQT   , 
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we can express (8.23) as 

(8.27)        5    =    M(c-QTc) 

Once 6 has been computed, an alternative formula for 6 may be derived from the second 

of the pair of matrix equations implicit in (8.10), namely, 

(8.28)        NT6 +   N8    =    *c   . 

The solution of this for 5 in terms of 8 is 

(8.29)        6   =     Nf1 c - Q5    . 

This formula for 6 is preferable to that of (8.24) because it does not require the 

evaluation of M . 

To avoid operating with large matrices in the solution for  8 and 8, we may exploit 

the partitioning implicit in (8.12).   We see that 

u o 

(8.30)        N    =     S  N + W   , 
i = l     i 

(8.31) N   =    (N, N2...N )   , 

(P/2n) 

(3.32) N      =    diag(N, + Wj)    , 
(2n/2n) (2,2) (2,2) 

(8.33) c    =      2 c   - Wc    , 

(pJ) J = l 
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(8.34) c 
(2n,1, 

c,   -  rJ] t, 

c2 - vV2t2 

c   - W e 
n n  n 

(8.35) 6 
(20,1] 

Si 

62 

Therefore, If we define the auxiliary matrices 

(8.36) Q.    =    (N. +    W.)"1 N^       , 

(2^)        (2,2)    (2,2)   (2,p) 

(8.37) R.   =       N      Q 
J j i        ' 

(p.p)     (p,2)(2,p) 

(8.38) S.      =     N.   -   R 

(p,p)        (p,p)    (p,p) 
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(8.39) c     =     c.   -   QT     c. 
) J J 3 

(p,l)     (pj)   (9,2) (2,1) 

(8.40) S     =    S S 
(P/P)        ^1 

n 

/ (8.41) c      =      £ c, 
(p,l) «=i 

we can readily verify that M In (8.20) is given by 

(8.42) M    =    (S+W)"1 

(P/P) 

and that the expression (8.27) for 8 becomes 

(8.43)        6     =       ( S   +   W)"1 (   c   -   W      c ) 
(p/p) (P/P)     (p/1) (p/p) (p/1) 
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Similarly, we find that the elements of 6 in (8. 29) become 

(8.44) 6.     =    N";1 ( c. -   W      Cj) -   Qi     6 

(2,1)      (2,2) (2,1) (2,2)(2,1)   (2,p)(p,l) 

From the foregoing we see that the computations can be so arranged that 

the largest individual matrix to be operated on is of order pxp.    Even thougK the order 

of the original normal equations is (2n+p) x (2n+p), the total number of computations 

for n>>p is propcrttonai to p2n rather than r? as would have been the case had the 

diagonal character of N not been exploited.   It follows that the overall computational 

effort tends to increase linearly with the number of ttars carried despite tb« fact 

that each additional star introduces two additional unknowns.   Because of these 

characteristics, the Advanced Plate Reduction is well suited to programmed compu- 

tation on a digital computer. 

9.0 ERROR PROPAGATION 

Because of the possible influence of neglected higher order terms of the 

Taylor's expansion of the projective equations, it may be necessary to Iterate the 

adjustment by treating the results of the initial solution as improved approximations. 

In thi» cate the values of 6 and 8, resulting from the i      iteration of equations 

(8.43) and (8.44), may be exprt«ed as 

(9.1) S(,)    =    (S^W^-W^)    , 

(9.2) if     =     (NfV'^-W^)    . 
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The initial solution corresponds to the case *  = 0, and subsequent solutions result from the 

relinearizatio.T of the observational equations using the results of the prcceeding solution as 

improved approximations.    The process of iteration is best continued until the mean error of the 

adjustment (to be discussed below) stabilizes sufficiently according to a sound criterion. 

if the initial approximations to the parameters are chosen to be equal to their a priori 

or measured values (as may be legitimately done), the initial discrepancy vectors e , e will 

both reduce to zero.    In this case the discrepancy vectors for the first iteration will be 

(9.3)    ;(1) = ;(0)+5(0>= 6<0) , 

(9.4) ^ =   -PK-PK   i«»    . 

and in genera! 

(9.5)    ;(i)=;<'-i)+6(,-1) = 8(0)
+ ^)+...+ 6<i-1)

/ 

(9.6) ^)= ••(l-1)+6(,-,)  =  5(0)
+5(1) + ...+   6(,-1). 

Hence, discrepancy vectors subsequent to zero Initial vectors are not necessarily zero, but rather 

are equal to sum of all preceeding adjustments of the parameters. 

After the solution has converged to the point where further adjustments of the 

parameters are insignificant, the vectors of measuring residuals may be obtained from 

v     =   e 

(9.7)     ;  = ; 

v      =    6 

in which €, e, e denote the final discrepancy vectors of the iterative process.   The quadratic 

form of the residuals is 

(9.8) s     =    vTWv  +   CTWv  +   *vTW*v   . 

The degrees of freedom associated with the adjustment is equal to the number of observotlom in 

excess of the minimum number required for a unique solution. From (8,1) we see that the total 

number of observational equations is 
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(9.9) N   -   n   +    2n+ p. 

In (9.9) the number of measured plate coordinates Is 

(9.10) n   =   2^ + 2n2 + .. + 2n 1 n 

where n    denotes the number of different images measured on the trace of the i     star;  the 

number of "observed" right ascensions and declinations is 2n and the number of "observed" 

project!ve parameters is p.    Precisely offsetting the 2n "observed" stellar coordinates and the 

p "observed" projective parameters are the 2n unknown stellar coordinates, and the p unknown 

projective parameters.    Thus the degrees of freedom are 

f  =   n   =   number of measured plate coordinates. 
A A 

In the event that p of the p projective parameters and 2n of the 2n stellar coordinates are regarded 

as completely unknown quantities, rather than observed quantities of known variance, the degrees 

of freedom become   reduced to 

(9.11) f =  n  - p   -2n. 

The mean error of the adjustment is 

(9.12) m  =   Vs/f   . 

Inasmuch as unit variance was implicitly taken equal to unity, the quadratic form s has thex 

distribution with f degrees of freedom (provided that the distribution of the original observational 

vector is multivariate normal).   The probability of obtaining a value of X    as large as s with f 

degrees of freedom can be determined from a table of the chi square distribution.    If this probability 

should be excessively small (say less than 5 percent), one may conclude that the residuals from the 

adjustment are not statistically consistent with the covariance matrix of the observational vector. 

This would indicate the presence of significant systematic error. 

The inverse of the coefficient matrix of the normal equations provides the covariance 

matrix of the unknowns.    In particular, the covariance matrix of the p projective parameters 

resulting from the adjustment is 
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(9.13) I    =       M 

(P/P) 

and that of the vector of adjusted stellar positions Is 

(9.14) I     =       M   - 
(2n,2n) 

By virtue of the equations (8.21) and (8.25), we may write 

(9.15) I    =        N-1    +       Q        M      QT    . 
(2n/2n)    (2n/2n)      (2n/p) (p^) (p#2n) 

The submatrix of I corresponding to the coordinates of the J     star are 

(9.17) I   =        (N.+   V^P*   Qj     M       Q^       . 

(2'2)       (2,2)   (2,2)       (2,p)(p,p)(p,2) 

In this equation the first term, (N   + W   jT   # represents the covariance matrix of the adjusted 

stellar position under the assumption that perfect projective parameters are known and the 
T 

second term, Q MQ  , represents the contribution of errors in the projective parameters resulting 

from the adjustment.   By carrying a sufficiently large number of stellar control points, one can 

suppress the magnitude of the second term to insignificance relative to the first.   This is a 

basic objective of the plate reduction, for the errors in the computed directions to the various 

unknown points (stars or flashes) will be significantly correlated with each other if the projective 

parameters are not established to sufficient accuracy;  by adequately suppressing Q M Q    through 

effective expbiting of redundancy, one can maximize the informational content of the computed 

directions of unknown points measured on a given plate. 

As we have seen/uncatalogued stars can be carried through the Advanced Plate Reduction 

by treating their unknown stellar coordinates as observations of zero weight and noting that observa- 

tions of zero weight do not contribute to the degrees of freedom of the adjustment.   For an uncatalogued 

star to be of metric value in the adjustment it is necessary that at least two images be carried.    If 

only a single image is carried, an uncatalogued star becomes totally extraneous and contributes 

nothing to the observational redundancy.   An extraneous observation, nonetheless, can be carried 
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through the adjustment, even though It ha* absolutely no effect on the adjustment and, in 

turn, is totally unaffected by the adjustment.    The only merit in doing so arises from the 

fact that the computed dirtction of the star and its covariance matrix then becomes con- 

venient by-products of the adjustment via equations (8.44) and (9.17).   For the same reason, 

the plate coordinates of flashes may be carried through the adjustment even though they can 

make no contribution to the adjustment (here a flash would be treated as if it were an 

unknown star). 

10.       CALIBRATION OF DISTORTION CAUSED BY LENS DECENTRATION 

The theory presented thus far presupposes that the lens is perfectly centered (i.e., 

that the centers of curvature of all optical surfaces are col linear).   A significant 

degree of decentering will introduce tangential distortion and asymmetric   radial dis- 

tortion.    The suppression of such distortion to a value not exceeding five microns over 

the plate format requires appreciable skill and patience on the part of the optical technician 

in aligning the lens, its suppression to a value not exceeding two microns calls perhaps for 

an element of luck in addition to skill and patience.    In view of our decision to regard 

at significant any factor contributing the equivalent of one micron or more of error in 

plate coordinates,  it is clear that we cannot ignore the effects of errors of lens centration. 

Neither con we circumvent the problem by asserting that cameras which display significant 

tangential distortion should not be employed in metric applications, for to do so would 

be tantamount to rejecting virtually every camera in existence (as long as we set one 

micron as the level of significance).    It is fortunate, therefore, that we have found that 

distortion caused by errors of centering is fully as amenable to calibration as symmetric 

radial distortion.    This being so, it becomes admissable in analytical photogrammetry to 

employ cameras which are affected by appreciable tangential and asymmetric   radial 

distortion;   in fact, decentering can be tolerated to the extent that it does not sensibly 

affect the quality of images. 

Only a few reference books on optics touch on the subject of decentered optical 

systems (e.g., Hardy and Perrin [13], Strong [14]).    These state thot the ophcai properties 

of a slightly decentered lens can be very nearly duplicated by placing an appropriately 
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oriented thin prism of appropriate deviation in front of the perfectly centered lens.   The 

thin prism model is also adopted in the few papers we have been able to find in the litera- 

ture concerning tangential distortion or lens decentering (Bennett [15] , Washer [16]/Carman 

(17], Pennington [181, Sewell [19], Sharp [20], Livingston [21]).   We should note 

that, in the thin prism model, a single prism Is adequate to account for the composite 

effect of any number of decentered elements, for a group of individual thin prisms in 

object space (one associated with each decentered element) can be replaced by on equiva- 

lent, single prism. 

Bennett [15] was one of the first to test the thin prism model against actual 

observational data.   Washer [16]  considers the effect of decentering (or of a bent optical 

axis) on the determination of the principal point.   Carman [17] presents the results of 

numerical ray tracing through a thin prism of points on a grid and demonstrates that a 

suitable choice of principal point can minimize (though not eliminate) the effects of 

decentering.   Pennington [18] takes note of the systematic effects of tangential distortion 

an photogrammetrlc extension of control and discusses the practical determination of 

tangential distortion, pointing out that its observed characteristics agree with the thin 

prism model.   In [19] Sewell gives an example of   the determination of tangential di;tortion 

by photographing a straight-line array of targets across both diagonals of the format.   Uiing 

Pennington* $ technique, Livingston [21] reports the measured tangential distortion across both 

diagonals of the photographic format of 33 Metrogon lenses and one Topogon lens.   As we 

shall see presently, Livingston's results are actually not generally in strict accordance with 

the thin prism model for angles in excess of 25° from the axis of the camera.    However, the 

"cosine variation" of tangential distortion seems to be well substantiated by his results. 

It is well to consider at this point the behavior of tangential distortion according 

to the thin prism model.   As described by Pennington [19] , there exists on the plate an 

axis passing through the principal point along which the tangential distortion is maximum. 

At right angles to the axis of maximum tangential distortion is an axis of zero tangential 

distortion.   The tangential distortion along any other axis passing through the principal 
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point is proportional to that along rhe axis of maximum tangential distortion, the constant 

proportionality being the cosine of the angle between the axis in question and the axis of 

maximum tangential distortion.   Couched in analytical terms, the model may be described 

as follows: 

(10.1) At(x,y)   =     P(r) cos {<t)-0o)     = (^ co. OQ + 7- sm <D0) P(r) 

in which 

^(x'y)   =    tangential distortion at x, y (x, y are referred to principal point); 

r =    (x2 + y2)   =   radial distance; 

P(r) =    profile of tangential distortion along axis of maximum tangential distortion; 

4>Q =    clockwise (in th« strict mathematical sense) angle between positive x 
axis of maximum tangential distortion; 

0 =    clockwise angle between positive x axis and radius vector from 

principal point and x, y. 

The profile function P(r) is zero at the principal point and is tangent to the x axis at the 

principal point.   This suggests that P(r)  is an even powered expansion in r: 

(10.2) ?(r)        =   J, r2 1- J2r4 + ... 

During the course of the past decade we have had the opportunity to study the 

residual vectors from scores of st«llar plates, each taken explicitly for the calibration 

of radial distortion and each containing typically from 100 to 200 fairly uniformly 

distributed images.   On the occasions when discernible tangential distortion was encountered, 

the pattern did correspond approximately with that described by Pennington, particularly 

with regard to the cosine variation.    However, the tangential distortion was definitely 

nonzero at the principal point.   Moreover, a peculiar form of asymmetric radial dis- 

tortion was found to accompany the tangential distortion. 
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In order to resolve the partial discrepancies between theory and observation, we 

undertook a special investigation.    The first step was to gain greater insight into the physical 

properties of the thin prism mechanism by performing a rigorous analytical ray tracing through 

such a prism.   We should point out here that Carman1 s [ 17]  results and all others we have 

encountered are either consequences of numerical ray tracing or else are restricted to first 

order approximations of tangential distortion and thus do not clearly define the full and 

precise relationship between the parameters of the prism and analytical characteristics of 

the resulting distortion.   We shall present only the essential results of our ray tracing rather 

than the detailed derivation/ inasmuch as it is fairly involved, though entirely straight- 

forward.   First we define the following: 

€ =      angle of prism, 

}j =      index of refraction of prism, 

0Q       =      angle between image of edge of prism and positive x axis of plate coordinate 

system (when <t>o = 0°, a line normal to the image of the edge of the 

prism and directed through the principal point coincides with the positive 

y axis;  when OQ = ^80°/ such a line coincides with the negative y axis.), 

0 =      angle between radius vector to image (x,y) and positive x axis, 

Ög = angle between undeviated principal axis and ray to image point (x/y); 

undeviated principal axis is arbitrarily taken to be normal to the front 

surface of the prism, 

01 =      angle between principal ray and image ray after refraction by first surface 

of prism, 

62 =      angle between normal to second surface to prism and refracted image ray 

within prism , 

63 =      angle between emergent ray and normal to rear surface of prism, 

c =      principal distance of camera. 

For points of infinity, the distance of the prism from the lens is of no consequence.    Similarly, 

without essential loss of generality, the prism can be oriented with one of its faces normal to 

the principal axis.    This leaves only the three parameters e, p, OQ as essential to rhe complete 

specification of the prism. 
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From analytical ray tracing, we ultimately arrive at the following formulas for the 

radial and tangential components of distortion: 

(10.3) Ar(x,y) =    Psin(ct>-O0)   , 

(10.4) At£,y) =    Pcos(ct)-ct)0) / 

in which 

(10.5) P = c [(cos &! cosp e - cos 63) sinp e   + (1 - cos e cosp e) sinSo sin (O- 0Q)] . 

Starting with the coordinates x, y of the image point, we can, for specified e, |j and OQ, 

compute the quantities in the expression for P by means of the following sequence of equations: 

(10.6) r =       (x^y2)*, 

(10.7) sin %=      r/V + c2)*, 

(10.8) sinO   =      y/r   cos O =   x/r , 

1 o     i 
(10.9) sin^  =      -sin 60,  cos 6,    =   (1 - sin2^)   , 

(10.10)cos62 -      sin(0-OQ) s'r,öi sin e + cos 6]   cose, 

(10.11)sine2 =      (1 - cos2e2)
i
/ 

(10.12)sine3 =      fJsin62)  cose3    =   (1 - sin'83)     . 

The expression given for P is closed;  no approximations were invoked in its derivation.    If 

e is regarded as a small angle and only first order terms are retained, P reduces to the form 

(10.13) P     s      0(0056,   - cose3) (|J6) 

and this in turn can be replaced by the expansion 

(10.14) P     =*     l^l-J^sin2 e0 + cC(<P,sin4e0). 

This indicates neither \i nor e is individually of primary consequence, but rather that both 

combine to form the essential parameter of the prism given by the coefficient of sin26Q, namely, 
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(10.15) P,   s     ^1(1--^). 

Thus/ for ol! practical purposes one may specify an arbitrary value such that jj> 1 and 

e > 0 for either |j or e, but not for both simultaneously.    It is convenient to specify a 

value for \i which is typical of a glass and to let e assume the role of the free parameter. 

We shall adopt the value p = V 2   ,   since it lends an aesthetically satisfying character to 

some of the ray tracing formulae. 

The explicit formulation provided by equations (10.3)/ (10.4) and (10.5) shows 

clearly that the radial component of distortion of the thin prism model is fully as important 

as the tangential component.   Yet/ the radial component has been almost universally ignored, 

virtually all consideration of the effects of decentering being restricted to tangential dis- 

tortion.   From (10.3) we see that the behavior of radial distortion is precisely the same as 

that for tangential distortion except for a 90° shift of phase.   Thus, the axis of maximum 

radial distortion corresponds to the axis of zero tangential distortion and vice versa.   At 

phase angles of <t>- OQ = n-j- , the radial and tangential components are of equal magnitude 

for a specified radial distance. 

From (10,10) we see that 62/ and hence 63/ are weakly dependent upon the "phase" 

angle <J>.   This means that the profile function P is not strictly a function of radio! distance 

alone, as indicated in (10.1), but varies weakly with 0 as well.   However, for small (though 

significant) decenterings, the dependence of the profile function on <t> may be considered 

to be negligible. 

Operating on the relations (10.3) and(10.4), we can readily derive the result 

(10.16) Pcos0o      =      A   sinO + A cosO 

(10.17) Psin<l>0      =      A^cos0 + Asin0 

in which A , A, are short for A (x,y) , A^y) .   If we let A  , A   denote the x, y rt rx'//t\'// xy ' 

components of the distortion, we can show that 
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(10.18) A       =      A   cos 0 - A sin 0, 
x r t 

(10.19) A       =      A   sin 0+  A cos 0. 
y r t 

It follows from these and (10.16), (10.17) that 

(10.20) A       =      -Psin<t)0/ 

(10.21) A      =      Pcos0o. 

Hence, 

(10.22) P       =     ( A2     +  A2)* 
x y 

and 

(10.23) $in<t>o=     -A/P/ 

(10.24) cos^=     A /P. 

If we adhere strictly to the thin prism model, P car assume only positive values and the 

above formulae for P and OQ are entirely unambiguous.   At a later point in our discussions, 

however, we shall partially relax the thin prism model to the extent of letting the profile 

function P assume both positive and negative values.   To avoid ambiguities of sign under 

such circumstances, we shall invoke symmetry to restrict OQ to the range 0 =   OQ = ^ ^0' 

This means that sin 0Q can assume only positive values and, hence, that the sign of P must 

always be taken opposite that of A  . 

Before we take up the extension of the Advanced Plate Reduction to calibrate 

distortion resulting from centering error, we shall study how distortion arising from the thin 

prism model propagates through a least squares plate reduction.   This will provide us with 

the insight we require for the correct interpretation of least squares residuals within the 

framework of the thin prism hypothesis.   Figure 2 shows the residual vectors when a 16 cm 

x 16 cm grid is projected through a thin prism onto the plate of a camera of 600 mm focal 

length and 17° x 17° field of view(ail but one of the figures of this section have been placed 

at the end of the section).    The residual vectors are exaggerated in scale by a factor of 1000. 

The parameters of the prism are 
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e      =10 minutes of arc, 

'o 0n     -    0° 

In the projection of Figure 2, the true elements of orientation were taken as i|>= 0, 

w = 0, /< = 0, x   = 0, y   = 0, c == 600 mm and were rigidly enforced.   Therefore, the 

elements of orientation in this case can afford no compensation whatever for thin prism 

distortion and the residuals strictly follow equations (10,20), (10.21).   We note that the 

residuals in x are all zero by virtue of our choice of ^>o = 0. 

In Figure 3a the plate coordinates of the distorted grid were subjected to a least 

squares adjustment.   The resulting adjusted elements of orientation are ij) = 0, CJ = 0?0255 

K = 0, x   = 0, y   = 0.260mm, c = 600.000mm.   This demonstrates that basic mechanism 
P P 

afforded by elements of orientation for compensation of thin prism distortion consists of 

(1) a shift of the principal point away from the edge of the prism, 

(2) a tilt of the camera axis away from the edge of the prism. 

It is noteworthy that the principal distance does not enter into the compensative process. 

Indeed, only the equivalent of two of the six essential projective parameters afford partial 

compensation for thin prism distortion.   We note that the profile function in Figure 3a is no 

longer zero at the principal point and that it now assumes both positive and negative values. 

In comparing Figures 2 and 3a one should observe that the scale of the residual vectors in 

Figure 3a is twice that of the residual vectors in Figure 2. 

With narrow projective bundles a small shift of the principal point is very nearly 

the photogrammetric equivalent of a small tilt of the camera axis.   The approximate equiva- 

lence of translation and rotation no longer holds for wide projective bundles.    In order to 

determine the nature of the compensative process for wide projective bundles, we repeated 

the computations leading to Figures 2 and 3a for a lens of 115 mm focal length and 76° x 76° 

field of view.    In order to maintain the same general magnitude of thin prism distortion, we 

changed the prism angle from 10 minutes of arc to 2 minutes of arc (the absolute effects 

on plate coordinates of thin prism distortion for a fixed plate format vary inversely with the 

focal length).    The two sets of residual patterns for the 115mm camera turned out ro be 

practically identical with Figures 2 and 3a respectively.   The only essential difference in 
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the overall results was that the principal point underwent no adjustment with the wide 

projectlve bundle;  all compensation resulted from a tilt of the camera axis away from the 

edge of the prism.   Only when the adjustment was repeated with the tilt angle enforced to 

its true valun, did th« principal point shift.   The resulting compensation was significantly 

lesi than that of the tilt.   This demonstrates that, in the case of wide projective bundles, 

the •iscntial compensative process afforded by the unconstrained elements of orientation 

consists solely of a tilt of the principal axis; a shift of the principal point is actually 

effective only In the absence of the tilt mechanism. 

If b and Y denote the magnitude of the compensative translation and tilt (in radians), 

the residuals  A   ,A   in Figure 3a can be shown to satisfy the equations 

(10.25) Ax      =      -(P+b-crhlnOb  -   -^ r2a>s 0 sin(<D-4)0)    , 

(10.26) A        =        (P+b-cV) cos <t>o  - -~r2 sin<t>'sm(0-4>o)    . y c 

The corresponding equations In terms of radial and tangential components are 

(10.27) Ar      =     (P + b-cr- ^-r2)   iin(0.4)o)    , 

(10.28) At      =     (P + b-cT)   co5(<t>-4)0)      . 

By largely (though not completely) offsetting the effect of tilt, the translation b permits 

the application of a tilt which would otherwise be excessively large;  It Is this which makes 

the expression -^-r2 sufficiently large to be effective in the compensative process for 

narrow angle cameras.   When the b and t are token equal to zero, equations (10.25), 

(10.26) reduce to (10.20) and (10.21) and equations (10.27), (10.28) reduce to (10.3) 

and (10.4).   In Figures 4 and 5 we have plotted the radial and tangential components of 

the residual vectors of Figure 3. 

At the origin  x = y= 0, the profile function P is equal to zero.   Therefore, when 

x = y = 0 and  0 = ^0/ ^e tangential distortion A   given by (10.27) becomes equal to b-cT . 

This demonstrates that tangential distortion is not zero at the principal point in the case 

where partial compensation is afforded by the tilt and translation resulting from a least squares 

plate reduction.   Moreover, since P+b-cy passes through zero at a sufficiently large radial 

distance, tangential distortion can assume both positive and negative values across the format. 
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The compensation for tangential distortion is limited to a translation of the profile funcfion P 

by the amount b - c/.    This "balances" the profile across the format but does not alter its 

shape.    On the other hand, the compensative process for the radial component involves 
y 

not only the translation b-cY , but also the second order term --^-r2, which partially 

counteracts the initial term of the expansion of P given by (10.14).   Accordingly, the 

compensative process is more effective In reducing the radial component of thin prism 

distortion than in reducing the tangential component.    In comparing Figures 3b and 3c, 

for example, we see that the mean error of the radial component is 2.5 microns, which 

is about 60% of the 4.2 micron mean error of the tangential component.   This is perhaps 

one reason why the radial effects of decentering have received virtually no attention in 

the literature.   Another possible reason is that the nature of the radial component is such 

that it has no effect on the angle subtended by pairs of radially symmetric points.    This 

renders impossible the direct measurement of the radial component of decentering distortion 

by those conventional procedures of camera calibration which depend intrinsically on the 

determination of the relative radial displacements of opposing pairs of targets symmetrically 

arrayed across varioui diagonals passing through the center of the format,    indeed, when 

we contemplate the character of the residuals of thin prism distortion as resulting from 

compensative tilt and translation (Figure 3a), we can appreciate that techniques of camera 

calibration wh'ch measure only angles subtended across central diagonals are incapable of 

truly definitive calibration of cameras.   The power of the stellar technique of calibration 

lies in the fact that it exploits a knowledge of the direction of each stellar control point 

relative to ali  other stellar control points. 

In view of our fuller knowledge of thin prism distortion and particularly of our newly 

gained appreciation of the precise nature of compensative tilt and translation, we reviewed 

the residual plots from all stellar calibrations of radial distortion performed by our Photo- 

grammetric Laboratory.   We found that all occurrences of reasonably well-defined tangential 

distortion and asymmetric radial distortion conformed to the thin prism model as modified by 

the compensative process.   Our sample consisted of a total of 32 cameras, all having angular 

fields not exceeding 330x330.    In a great majority of cases, possible thin prisrn distortion 

was   sufficiently   small relative to the random measuring   error   to make Its   detection 

by visual inspection    virtually impossible. 

-   55- 



For this reason we resorted to a physical experiment in order to shed furrher light on the 

matter.    In cooperation with Space Systems Laboratory (SSL) we obtained stellar plates 

from a pair of Pth 6C Phototheodolites manufactured by SSL.   The cameras have focal lengths 

of nominally 600mm, effective apertures of about 200mm, and angular fields of  17° x 17°. 

One of the two cameras (Camera 001) was known by inspection on an optical lathe to be out 

of alignment to the extent that small further physical adjustments would have clearly been 

worthwhile.   The second camera (Camera 002) was considered to be aligned to the limit of   . 

the optical art and hence v/as considered not to be subject to further meaningful physical 

improvement. 

The stellar plates from the two cameras were exposed simultaneously and were of a 

common zenithal star field.   The plates were photographically processed together and were 

measured by the same operator on different days,   A total of 155 well-distributed stellar 

Images were measured on each plate.   The plate measurements were subjected to the Advanced 

Plate Reduction considered earlier.    However, no allowance was made for star catalog error, 

even though the GC was employed (the typical GC error is equivalent to about 2 microns 

on the plate of a 600mm camera).   This was deliberate and was done to prevent any possibility 

that the adjustment of stellar positions might partially compensate for locally significant 

systematic effects.   The x, y residuals therefore reflect not only random error in the plate 

coordinates, but also random error in stellar coordinates as well as any systematic error un- 

accounted for by the mathematical model of the reduction.   The residual vectors for Camera 

001 are plotted in Figure 4a.   The radial and tangential components of the residual vectors 

are plotted in Figures4band4c.   The corresponding results for Camera 002 are plotted 

in Figures 5a, 5b, and5c respectively. 

Very definite systematic tendencies of the residual vectors are obvious from a visual 

inspection of Figure 4a.   These are more clearly defined in Figures 4b and 4c (especially in 

Figure4c).  When due allowance is made for the random component of the residual vectors, 

we see that the patterns of radial and tangential components in Figures4b and 4c are in 

excellent correspondence with the patterns of Figures 3b and 3c provided that (PQ is taken as 

approximately 70°.    Even though strong systematic effects are evident, it is noteworthy that 
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the nrean error of the residua! vectors In Figure 4a Is only 3-9 microns.    This demonstrates 

the effectiveness of tilt compensation. 

The systematic effects so pronounced for Camera 001 are absent from Camera 002 

(Figures So, 5b, 5c).   This does not necessarily mean that thin prism distortion is insignificant 

for Camera 002, but rather that it Is sufficiently small relative to the random error to elude 

visual detection.    It is altogether conceivable that even after tilt compensation such distortion 

might amount to as much as 3 to 4 microns in some areas of the plate and might have a mean 

error of perhaps as much as 2 microns.    It Is therefore clear that we require a method of 

evaluating possible thin prism distortion which is more powerful and less subjective than mere 

visual inspection of least squares residuals.    Clearly such a method would result If the 

mathematical model we derived for thin prism distortion were incorporated directly into 

the Advanced Plate Reduction.   Before we take up the details of the appropriate modification 

of the least squares plate reduction, we shall investigate further the applicability of the thin 

prism model- 

As we have already noted, Livingston1 s results from wide angle lenses (Metrogons 

subtending 74° x 74° fields) are not generally in strict accord with the thin prism model. 

The discrepancy stems from the fact that the typical profile function P found by Livingston 

(Figure 6) is not monotonic as required by the thin prism model but rather reverses its 

direction towards the edge of the field.   The broken curve in Figure 6   shows the nature of 

the profile function to be expected from the thin prism model.   We see that the thin prism 

model holds well out to about 25° from the camera axis and thereafter becomes increasingly 

inadequate.   If follows that the thin prism model is more correctly viewed as a first approxi- 

mation to the true model.   For narrow angle cameras (less than 30° x 30°) the model appears 

to be sufficiently valid as it stands; for medium to wide angle cameras it cieorly requires 

modification. 

In the light of our analytical results coupled with the empirical results of Livingston, 

it would appear that a generally suitable choice for the profile function Is 

{]0.29)P = J]r
2 + J2r*+ .... , 
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Thin Prism Profile / 

V 

FIGURE 6.   Average Profile function of tangential distortion obtained by Livingston from 
measurements of 33 Metrogon lenses as compared with most nearly equivalent thin prism 
profile. 

where no constraints are placed on the coefficients (in the corresponding expansion of the 

profile function of the thin prism model the coefficients are all of the same sign; moreover, 

all are direct functions of u and € and are weakly dependent on <t>).   The mathematical model 

which we shall adopt for centering error combines the above profile function with equations 

(10.20) and (10.21),   Thus we have 

(10.30) Ax      =      -Psin<t>0=-   (^ r2 + J2 r4 + ...)     sin ct>0 , 

(10.31) A        -      Pcos<l>o   =        (Jir2 +J2r
4 + ...)      cos <t>0   . 

The x, y plate coordinates corrected for symmetric radial distortion/ differential bias and 

decentering distortion are then 

(10.32) x        =      (1+.H-)   (5 -x )+ 4Ax  -PsinO0   , 

(10.33) y        =     (1 +-^)   (y - y ) + Uy   + P cos <t>0 . 
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When decenterlng distortion Is to be calibrated, these expressions therefore must replace 

their counterparts in the general projective equations (6.17), 

The modification of the least squares plate reduction to account also for decenterlng 

distortion is entirely straightforward.    Inasmuch as experience to date indicates that the 

first two terms of the expansion of P are sufficient for wide angle cameras, we shall truncate 

the expansion at this level.   The incorporation of the model for decenterlng distortion there- 

fore Involves three additional parameters:    Jj, ^/^o»   We shall let J^0, J200/ O00 denote 

initial approximations to these parameters and shall set 

(10.34)^   =J1
0O+6J1,   J2 = J2

o0+6J2/   Oo=  V0 + *t>o   . 

Then if we reinterpret the model to embrace the three additional parameters of decenterlng 

distortion, the matrix B     in (7.11) must be augmented by 

(10.35)    [Bu]    = 

k15 k17 k18 blij blij blii 

*j6 '.I? ;i8 
b2lj b2ij b2ij 

In which 

(10.36) 

where 

(10.37)     u16 

kl6 
9fHJ 

b? M d 

au16 

af2ij 

"16 

8f 
k17 

'   blij 

lij 

U17 

af2n 
.17     _     Zl1 

=   J]  ,     u17   = J2 /    u,8 =    ^0 • 

b,8 
blij 

k18 

/       b2ij 

9fuj 
9u18 

9f2ij 

9u18 

With B      thus augmented and with the vectors 5, e and the matrix W correspondingly 

augmented, the matrix representation of the adjustment proceeds exactly as outlined in 

Section 80 

The determination of Initial approximations for J^00, J2
00/ ^J^00 poses something of a 

problem.   Unlike the Initial approximations for the coefficients k^, k2/  ... of symmetric 

radial distortion, the initial approximations for J^, J2 cannot arbitrarily be taken equal 

to zero, for this would make the coefficients of 5^o "n ^e linearized projective equations 

-   59   - 



equal to zero for all points whichjn turr^would lead to an indeterminate system of normal 

equations.    Thus J] 00
/ at least,  has to be sensibly finite. 

One approach to the problem of determining suitable initial approximations consists 

of performing an initial least squares plate reduction without J^, J2/ Og and of then estimating 

OQ00 and the approximate profile function from a visual examination of the resulting residuals. 

This approach works quite well when decentering distortion is sufficiently large to be readily 

discernabie as in Figures 4a, b, c.   On the other hand, it is of little value when decentering 

distortion is less than or comparable to random measuring error as in Figures 5a, b, c. 

An alternative approach requiring one or two extra iterations of the adjustment but 

having the merit of being entirely automatic is the following.    The phase angle OQ 'S regarded 

as having the 'a priori1  value of 

(10.38) <V  =   90°  = TJ/2, 

the standard deviation of which is taken as 

(10.39) a0 0 =   180° =  ITT   . 

The value On0 = 90° is midway between the extremities of the admissable range of OQ, namely: 

0 = 00 =  180°.    The initial approximation to <ty) 's token as <t>0
00 = OQ0«    'n order to produce an 

initial approximation to J] we resort to gross physical considerations suggested by the expansion 

(10.14) and write 

Me00 1 
(10.40) J,00^     H (1 -  —) 

in which 

c00 = approximate focal length of camera in same units as plate measurements, 

M    = vT, 

e00=   gc00. 
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If the plat« measurements are expressed in meters, a suitable value for g in the formula for 

600     is g = 0.5 x 10"'.    This leads to a moderately significant prism angle for the focal 

length under consideration.    Since J^00 is finite, J200 may arbitrarily be taken equal to zero. 

Although our Initial approximation to J^ has been taken to be positive, the fact that <t>o 

is considered to be restricted to the range 0 = Og = ^0° makes it equally possible for J^ 

to be negative.   The possibility that the approximation J]00 may be of the wrong sign causes 

no difficulties, for this will automatically be rectified in the initial adjustment.   The 

important thing is for the adjustment to have a finite starting value on which to operate. 

An initial choice of the wrong sign will merely entail an extra iteration of the adjustment. 

By means of the artifice of treating ^>0 as a very weakly constrained a priori 

observation we prevent the solution from becoming indeterminate in the event that the profile 

function actually were zero (in this case, of course, OQ would be undefined since there could 

be no axis of maximum tangential distortion).   On the other hand, the constraint on <&$ 

is so weak at to be of no practical consequence in the event that the profile function were 

strongly defined.   The fact that the initial approximation H>O00 ~ 90° may be off by as much 

as ^90* is not of serious consequence, for the second adjustment of <t>o00 will ordinarily be 

within a few degrees of the final value.   As with our approximation for Jj00/ the only draw- 

back to this approach is that ■<• entails one or two extra iterative cycles over what would 

have been required with sharp initial approximations.   With electronic computation this Is 

not 0 serious consideration. 

The covariance matrix of the parameters defining decentering distortion may 

be abstracted from M, the covariance matrix of the entire vector of projective parameters. 

If we denote this matrix by [M] .     .    ^ , the covariance matrix of the x and y components of 

decentering distortion is given by 

(10.41) 

in which 

A A 
x   y 

xy 

=    A 

(2,3) 

^1 I  A 
A 

(2,3) (3,2) 
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(10.42)   A 
a(A ^ ) 

=      x   y 
x,y        8(J]/J2,«i>o) 

(2,3) 

-sin0o      -r2sincj)0      -(J1 + J2r
2)    cos0o 

COSCDQ r2cosO0     -(J1 + J2r2)    sinCpQ 

Thus not only does ^he extended version of the Advanced Plate Reduction lead to optimal 

(minimum variance) estimates of the distortion functions A  , A   , it also provides estimates 
x       y r 

of their accuracies for any specified radial distances. 

Using the data giving rise to Figures 4 and 5, we applied the Advanced Plate 

Reduction in its extended form (considering decentering distortion) to SSL Cameras 001 and 

002,,   Results of three different reductions at varying levels of refinement are summarized 

for each camera in Table 2, 

TABLE 2.   MEAN ERRORS RESULTING FROM VARIOUS ADJUSTMENTS WITHIN 
FRAMEWORK OF ADVANCED PLATE REDUCTION. 

1 Camera Number of 
Control 
Points 

Case 1 Case 11 Caselll 

Mean Error of 
Plate Coord. 
Residuals 

Mean Error of 
Plate Coord. 
Residuals 

Mean Error of 
Plate Coord. 
Residuals 

Mean Error of 
Stellar Coord. 

Residuals 

SSL 001 

SSL 002 

155 

155 

3.9p 

3.4p 

2.5M 

3.1p 

2.1M 

2.8p 

0^27 

0,.,34 

Case 1.        Star catalogue error and decentering distortion are not explicitly considered in 
the adjustment (residuals plotted in Figures 4 and 5). 

Case II.       Decentering distortion, but not star catalogue error, is rigorously treated in the 
adjustment. 

Case III.      Star catalogue error and decentering distortion are both rigorously treated in the 
adjustment (plate coordinate residuals for Camera 001 are plotted in Figure 7). 

The calibrated profile functions P(r) for Cameras 001 and 002 are plotted together with their 

one sigma confidence limits in Figure 8.   We see that the decentering distortion for Camera 

001 is nearly three times as great as that for Camera 002 and amounts to about 15 microns at 

a radial distance of 100 mm.   Although the calibrated profile function for Camera 002 grows 

to 5 microns at 100 mm,  it should be kept in mind that this is representative of the profile 
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function without the benefit of compensative tilt and translation.    When such 

compensation is operative (as it is in Figures 5a, b, c), the maximum value of 

the profile function for Camera 002 is reduced to about 3 microns and its rms value 

is on the order of 1.5 microns.   This provides a good illustration of how decentering 

distortion can be significant and yet not be apparent from visual inspection of the 

residual t. 

In comparing the residual vectors of Figures 4a/ and 7, we see that the 

Advanced Plate Reduction has been most effective in removing the systematic components 

of the residuals of Figure 4a.   The mean error of 2.1 microns in Figure 7 is only slightly 

greater than half the 3.9 micron mean error of Figure 4a and is fully consistent with 

basic plate measuring accuracies.   Moreover/ the randomness of the residual vectors 

of Figure 7 leaves nothing to be desired. 

Inasmuch as random errors in catalogued stellar positions were rigorously 

taken into account in the adjustment/ residuals are also obtained for stellar positions. 

It will be noted in Table 2 that the mean error of the stellar residuals for Camera 001 

is only 0"27 which corresponds to 0.9|j on the plate.   This relatively low value reflects 

the fact that the stellar field employed (Cygnus) is especially well determined in the 

GC (two thirds of the 42 different stars carried had updated mean errors of less than 

01'40 and only 4 had updated mean errors in excess of O'.'öO). 

In our experience over the past decade the full scale stellar calibration 

of over 50 different ballistic cameras/ at least three quarters of the calibrations have 

yielded mean errors in the range of 3,5 to 5*0 microns, a range incompatibly large 

relative to the 2 to 3 microns normally attributable to the combined effect of plate 

measuring errors and random instability of the photographic emulsion.   Because of 

this it was often necessary in routine reductions to resort to tedious piecewise pro- 

cedures wherein two or three overlapping groups of stars encircling different portions 

of long flashing light traces were individually reduced/ the purpose being to give the 

elements of orientation greater freedom for local compensation of unmodeled systematic 
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errors.    In ihe light of our present findings we hove become convinced that the ex- 

cessively large mean errors frequently encountered in past full scale stellar calibrations 

are primarily attributable to uncompensated decentering distortion.   As the confidence 

limits of the profile functions of Figure 9 indicate, this difficulty has now been overcome, 

for the Advanced Plate Reduction provides a practical and effective means for cali- 

brating dectntering distortion to rms accuracies of better than one micron out to the 

very corners of the plate format.   It follows that absence of significant decentering 

distortion need no longer be considered (or b« fancied) to be a requirement for metric 

cameras, particularly for cameras employed in analytical photogrammetry.   Indeed, in 

many instances decentering can be tolerated almost to the point where it begins to have 

a sensible effect on image quality, for 30 microns of decentering distortion can be cali- 

brated and removed just as effectively as 3,   Insofar as ballistic cameras are concerned, 

stability of the optical system should be of particular concern.   An adverse thermal 

environment is especially to be avoided, for it can induce unstable decentering distor- 

tion of a form unamenable to practical calibration. 
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FIGURE 4o.   Residual vectors from stellar calibration of SSL Camera 001 as obtained from 
least squares solution for elements of orientation (no parameters carried for decentering 
distortion); mean error = 3.9M. 
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11.        GENERAL CONSIDERATIONS 

In its fully developed form the mathematical model for the Advanced Plate 

Reduction contains 18 physical parameters.   These may be classified into the following 

three groups: 

(1) Ideally Invariant: x  , y / c 

Jw -»2' ^0 

(2) Generally Variable/ but highly constrained:       Ax, Ay 

Hi/ 12' Ha ' ^4 

(3) Generally Variable, weakly constrained: 4», u, K   . 

The parameters of the first group are those which depend upon the physical structure 

of the camera and lens.   Under idea! circumstances they could be considered to be constants 

of the camera.   In practice, however, they may be influenced somewhat by thermal environ- 

ment or by camera orientation.   For instance, the principal distance c may vary directly 

with temperature (unless temperature compensating ceils are provided).   Similarly, if the 

camera cone is insufficiently rigid the lens centering (and hence Jj, J2, $0) rnay change 

significantly with the attitude of the camera.   An extremely poor practice we have observed 

with some cameras Is the mounting within a few inches of the uninsulated metal of the camera 

cone of a continuously running motor for driving the shutter.   This produces a pronounced 

thermal gradient across the lens, potentially inducing not only significant decentering but 

also the deformation of some of the optical surfaces by sizeable fractions of a wave length. 

The resulting distortion is too complex and unstable to be subject to calibration.   Such 

considerations make it clear that the long term stability and reliability of the so called 

invariant parameters are largely dependent on sound instrumental design and on sound 

operational procedures.   With sound design and procedures, all of the parameters in the 

first group except c should require redetermination only at infrequent intervals.   We shall 

define a definitive calibration to be one which produces estimates of the invariant parameters 
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sufficiently accurate to be rigidly enforced in subsequent routine plate reductions. 

Ordinarily/ a definitive calibration will require a minimum of 150 to 200 well- 

distributed control points.   By drastically reducing the number of parameters requiring 

determination, a definitive calibration makes routine plate reductions appreciably more 

efficient and effective. 

Many photogrammetric operations do not involve observations at zenith distances 

greater than 70°.   When this is the case, only the following five parameters will 

normally be required in routine reductions once a definitive calibration has been performed: 

ill,   u), K, c, t\\.   Of these rjj   may be heavily constrained, and c moderately constrained. 

We advocate carrying c in each reduction because it automatically provides compensation 

for any scale effects not explicitly considered in the reduction.   For this reason it is well 

to deliberately under constrain c, even though a highly accurate value may be available from 

a definitive calibration.   On the other hand, we do not hesitate to fully constrain the 

refractive coefficient rjj, for c and u are capable of compensating for small deficiencies 

in r^ (as long as f does not exceed 70°).   By the same token, a and u are capable of 

compensating for small errors in the calibrated coordinates of the principal point x  , y  . 

Therefore as long as the calibrated principal point can be recovered to within a few microns 

by means of fiducial marks, there is no point in carrying x  , y   as unknowns in routine 
P     P 

reductions.   Again, in routine reductions there is relatively little occasion to exploit the 

parameters of differential bias Ax, Ly, because one normally experiences little difficulty 

in finding an adequate number of suitably distributed control points of a common type. 

The parameters Ax, Ay are chiefly of practical value in definitive calibrations and in 

reductions of stellar plates taken at great zenith distances (in the latter case, most 

measurable images of stars close to the horizon would consist of breaks rather fhärt points). 

The number of stellar control points to be carried in a plate reduction depends on 

the circumstances, for the objective of the reduction ii to reduce the errors in the computed 

projective parameters toprectical insignificance in the determination of directions to 

unknown points.   From equation (9.17) we can express this criterion analytically as 
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(11.1)      tr Q.MQ^   <   ß2 tr (f^   +Wj)"
1 

This inequality states that the trace of the matrix defining the contribution of the projective 

parameters to the error in the direction of a point should be less than a stipulated fraction 

ß2 of the trace of the matrix defining the contribution of errors in the measured plate 

coordinates of the unknown point.   (The trace of a matrix is the sum of its diagonal 

elements.)   As noted earlier M is the covariance matrix of the adjusted parameters.   Its 

trace and hence that of Q   MQ    tends to vary inversely with the number of control points. 

On the other hand, the trace of (N   + W )   1   is independent of the number of control points. 

Therefore by carrying a sufficient number of control points one can satisfy the inequality for 

any specified ß2.   If ß2 is taken equal to 1/25, and if only the five basic projective parameters 

considered above are required, a total of 25 to 30 properly distributed stellar control points^ 

will ordinarily be sufficient to satisfy the inequality.   However, if star catalogue errors are 

comparable in significance to plate measuring errors (as would be the case when the GC 

is used in conjunction with the PC-1000), a greater number of control points will be required 

for a given ß2   (about 40 to 50 for ß2 = 1/25). 

The criterion (11.1) is quite sensitive to the number of parameters carried as unknowns. 

This is why a minimum of 150 to 200 control points is required in a definitive calibration. 

For the same reason, extraneous parameters should not be carried in the final reduction.   For 

example, three coefficients of radial distortion should not be carried when a single coefficient 

is actually adequate.   In many cases one does not know in advance whether a given subset of 

parameters is essential or not.   In such cases all questionable parameters may be carried pro- 

visionally, the adjustment being repeated with each provisional subset of parameters excluded 

in turn.   If the exclusion of a given subset of parameters does not significantly increase the 

quadratic form of the residuals, the subsei may be dropped as unessential.   An objective 

statistical basis for determining whether or not the inclusion of additional parameters significantly 

reduces the quadratic form of the residual may be based on the F ratio. 

Vq " sp 
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in which s    denotes the quadratic forrr. of the residuals (9.8) when p parameters are carried. 

This statistic has the F distribution with   q degrees   of freedom for the numerator and f 

degrees of freedom ( eq.    {2. 11 )) for the denominator.    The probabll ity of obtaining a value 

of F as small or smaller than Fg may be obtained from standard tables of the F distribution. 

vVe prefer to work at the 90% level of confidence in rejecting provisional parameters. 

Hence,  if   Pr   (F ^ FQ) 5 0.10 we ordinarily accept the provisional parameters. Through 

successive application of the F test all unessential parameters can be eliminated from a 

given plate reduction.    However/ this eliminative process can be unduly burdensome if 

carried out blindly.    Fortunately, physical considerations may be brought to bear to establish 

a reasonably logical heirarchy of priority for the process.    Thus the first parameters to be 

tested for potential elimination in a definitive calibration would be the higher order co- 

efficients of refraction, radial distortion and decentering distortion.   Moreover, such 

parameters as tjj, u, K, c  need not be tested at all because they are inherently essential 

to the reduction.    Also there is little merit in including in the initial model, parameters 

that are known to be unessential because of circumstances or previous experience.   This 

applies particularly to the higher order coefficients of refraction when zenith distances 

are not great and to the 5     and 7     order coefficients of radial distortion when previous 

calibrations of the same or similar cameras have unequivocally indicated such coefficients 

to be Insignificant,    The end result of the testing process is a compact model, namely one 

which contains no unessential parameters.    The attainment of a compact model should be 

the goal of any plate reduction, for this leads to the most effective utilization of the given 

data. 

In our opinion three distinct versions of the Advanced Plate Reduction should be 

programmed for electronic computation, namely: 

(1) the definitive calibration in which the entire eighteen parameter 

model is carried and full provisions are made for statistical compaction 

of the model; 

(2) a plate reduction suitable for great zenith distance after due corrections 

for previously calibrated invariant parameters have been applied (here 
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the unknown parameters of the Initial model would be i|) , u# K,  c, 

Ax, Ay;  r\}, r|2/ 13' ^A^ 

(3)       a plate reduction suitable for small to moderate zenith distances fc = 70°) 

after due corrections for previously determined invariant parameters have 

been applied (here the unknown parameters would be reduced to the com- 

pact set t|»,   u, K, c,   r)] with r|1 being heavily constrained) 

While (2) and (3) may be viewed as special cases of (1), the relatively infrequent requirement 

for the full capabilities of (1) makes it computationally uneconomical to program it as an 

all-purpose reduction. 

in conclusion we would point out that the version of the Advanced Plate Reduction 

without parameters for decentering distortion has been employed over the past two years 

by the Photogrammetric Laboratory of D. Brown Associates, Inc.  in the reduction of scores 

of plates.    Its application has resulted in a quantum improvement of results for long focal 

length ballistic cameras with mean errors of residuals of plate coordinates being consistently 

reduced from the 4.5 to 6 microns typical of previous plate reductions to values between 

2.5 and 3.5 microns.   With the more recent incorporation of the calibration of decentering 

distortion into the Advanced Plate Reduction, mean errors of plate measuring residuals 

have dropped to still lower levels.    We are now at the point where mean errors on the 

order of 2 microns appear to be routine in massive definitive calibrations.    In retrospect, 

therefore, it appears that a small, but significant degree of decentering has in the 

past precluded the full realization of the potential accuracies of many cameras.   Although 

the emphasis of this study has been on the calibration and reduction of ballistic cameras, we 

should take note of the possible application of our results to the definitive calibration of 

aerial mapping cameras.    Truly comprehensive calibration of mapping cameras is now of 

greater significance then ever because of the growing importance of the extension of mapping 

control by means of analytical photogrammetry.    In the past, many of the metric shortcomings 

of mapping cameras could be tolerated by virtue of the compensation provided by adequate 

networks of pre-established ground control.   On the other hand, in the analytical extension 
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of a sparse network of ground control It turns out that systematic errors resulting from un- 

compensated decentering distortion propagate through the model  in a most unfavorable 

manner.    Thus,  uncompensated decentering distortion as small as 2 to 3 microns has a rapid 

cumulative effect on the analytical reconstruction of a photogrammetric strip and assumes 

prominence (relative to propagated random errors! within a few models.    This in turn limits 

the admissible length of extension between absolute control points (the greater the un- 

compensated decentering distortion, the shorter the admissible extension).   Accordingly, we 

are convinced that the full potential of analytical techniques for extension of control will 

approach realization In practice only with mapping cameras which have undergone full-scale 

definitive stellar calibrations of both symmetric radial distortion and decentering distortion 

according to the method developed in this paper. 
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A.l INTRODUCTION 

Photographic determination of stellar positions has been a standard astrometric 

practice for over a half century.    The focal lengths of the cameras used for this purpose 

have generally been 2 meters and greater and the angular fields of view have invariably 

been under 10° square and usually well under 5° square.    (The standard astrographic cameras 

have focal lengths of about 3 meters and angular fields 2° square.)   During the past two 

decades photogrammetric cameras of much shorter focal length (100-300mm) and wider 

fields (30° to 75° square) have been utilized to determine the directions of missile-borne 

or airborne flashes relative to photographed stellar control.    Here entirely new observa- 

tional and reductionai techniques were evolved and perfected.    Since these techniques are 

familiar only to a relatively small group'of specialists, engaged for the most part in missile 

testing, it is appropriate to outline their salient features and to contrast them with the more 

familiar practices of positional astronomy.    For reasons to be developed presently, it is our 

belief that for the specific problem of obtaining directions to recorded flashes, fixed cameras 

of given f ratio and focal  length can yield results which are appreciably superior to those 

obtainable from equatorially mounted cameras of similar f ratio and focal length driven at 

the sidereal rate. 

If we are correct in this belief, it is of considerable importance that the fixed 

camera approach be better and more widely understood and appreciated, particularly inas- 

much as we are at the brink of a period wherein geodetic satellites carrying ground controlled 

flashing lights will be operational. 

In what follows we shall use the term "fixed camera" to denote a camera whose 

orientation remains stationary relative to the eartn throughout the period of photographic 

recording and the term "sidereal camera" to denote one which is equatorial ly mounted and 

which tracks at the sidereal rate (i.e., the sidereal camera is fixed in inertial space while 

the observations are being made).     In the case of the fixed camera, stars trail across the 
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photographic plate and in the case of the S'dereal  came-a stellar images remain e.c)SenfIally 

stationary on the platec    The key point to keep in mind in the ensu'ng discussion is that the 

data reduction of both fixed and sidereal cameras is based ultimately on the theory of the 

central projection according to which an object pointy its image and the cente- of projection 

are collinear and all image po'nts are coplana^.    Thus reduced to mathemat"ical essentials,  the 

camera consists of but two elements, the center of projection and the 'mage p'ane,, and the 

photograph is idealized as the central projection of a three dimensional object space onto a 

two dimensional image space. 

A02 EARLY DEVELOPMENT OF STELLAR ORIENTED FIXED CAMERA TECHNIQUE 

In the United States the development of photogrammetric techniques for the determina- 

tion of positions of flashing lights was pioneered by the Ballistic Research Laboratories of 

Aberdeen Proving Ground.   At the outset in the early 19406s procedures and reductional 

techniques were freely adapted from positional astronomy.    The primary Innovation was one 

of observational technique, for the camera remained fixed relative to the earth during the 

exposure instead of being driven at the sidereal rate on an equatorial mounts    Breaks m fhe 

photographed star trails produced by an accurately timed shutter provided the necessary con- 

trol pointSc.    Data reduction was based on straightforward modifications of Turner's method, 

which has been standard in positional ast.onomy for well over one half century.    The most 

Important application of the stellar-oriented fixed camera during World War 11 consisted of 

the precise determination of the position and velocity of a flashing light aboad a bombing 

aircraft at the Instant of bomb release. 

This information was vital to the calculation of accurate bombing tables.    Because 

of their role in ballistics measurements steHar-oriented fixed cameras became known as 

"ballistic cameras", a designation which persists to this day.    Directional accuracies of the 

order of 1 0 to 20 seconds of arc were obtained from 300 mm f/8 cameras having useable angular 

fields of approximately 20^ x 30^   accuracies of trlangulation of roughly one foot fo- aircraft 

at altitudes of 10,000 feet were achieved ,    Names associated with the ear-ly development of 

bal listic cameras at BRL during World War 1! are HL  Russell, T, Stetne and P..  Zug..    It was 
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Professor Russell of Princeton and the BRL Advisory Committee who originated the concept 

of the stellar oriented fixed camera and who argued successfully for its implementation 

Instead of sidereal cameras.. 

By the end of World War II a number of deficiencies in Turner' s method had become 

apparent.   Most of these arose from the fact that Turner's observational equations relating 

the measured plate coordinates x, y and the so-called standard coordinates, i;, q  (these being 

functions of hour angle and declination) are actually approximations having strict validity 

only for cameras of rather narrow angular field.    These equations which are of the general 

form 

£   =    OQ + O] x + a2y + a3X2 + a4xy + a5y2 + .   .   .  , 

0) 
r|   =    bg + bj x -i  b2y + b3X2 + b4xy + b5y

2 + .   .   .   , 

actually represent expansions of the following rigorous expressions which are based on an 

undistorted central projection 

?   = 

(2) 

anx+ a12y+ 0,3 

^31 x + a32yf  ] 

a21x+a22y + 023 

asix +032/ +  1 

Inasmuch as only six independent parameters are required to define an undistorted central 

projection, it follows that the eight parameters In equation (2) must be constrained by two 

additional equations.    These turn out to be 

c.n a, 2 + a2i a22 H  c^ C32     "   0   , 

2,2,2 2 2 2    _ n 
an + a21 + a31   ~ a21  '   a2 2  ~ a32 ~ U- 

In order for the expansion (1) to be valid with a reasonable number of terms it is necessary 

that 

(4) 0   <     103!*+ qj2y|< 1, 



a condition which is adequately met in practice only when ^, rj are so chosen that the 4/ 

q  plane is nearly parallel to the x, y plane and when the angular field is fairly narrow„ 

While equations (2) and (3) together define an undistorted central projection, 

this is true of equations (1) only if appropriate constraints are placed upon the coefficients 

so that the standard coordinates are expressed ultimately as functions of six independent 

parameters.,   Although such constraints can be formulated, they are ignored in practice, the 

consequence being that the central projection is not rigorously preserved when equations (1) 

are used.    A straight line in the |, r\  plane therefore does not project into a straight line 

in the x,  y plane.    This is true even when all known corrections such as refraction, aberra- 

tion,  lens distortion, etc., are explicitly applied to £, q and x, y prior to the solution of 

equations (1i) for the coefficients.   The reason is that random measuring errors alone are 

sufficient to prevent the determination of coefficients which will perfectly reproduce a 

central projection^    It is well to note here that the standard astrometric practice of allowing 

the coefficients of the expansion to absorb the effects of refraction, distortion, aberration 

and so forth turns out to be unwarranted with cameras of moderate angular field;  better 

results are obtained from Turner's method when these corrections are applied explicitly, 

A.3 DEVELOPMENT OF NEW REDUCTIONAL TECHNIQUES AT BRL 

By the late I940's reductions based on equations (I) were largely abandoned in 

advanced ballistic-camera work, having been superseded by the more rigorous expressions 

of equations (2).    However, the constraints of equations (3) were not enforced in the adjust- 

ment until the early I950£s when Dr= H    Schmld investigated the problem,    Schmid was 

also the first to recognize that the customary least-squares adjustments based on equations 

(I) and (2) were faulty, for they did not accord proper recognition to the quantities 

actually subject to significant random error,  namely the plate coordinates x, y.    Tnusf 

for instance.  In determining the coefficients in (I) or (2) by minimizing the quadratic 

forms 

(5) s -   I{ [| - (a0+ a,x + a2y ^      .   .)I2 +  [r]  - {b0 + b-x+ b2y + .   ,   .)l2K 
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(6) s=   I ? -    03^+ 032/+ 1   i 

a2ix + 022/ + a23  \ 2 

+    ^n a31x+ 032/+ 

one is Implicitly assuming that the standard coordinates £;, r| are subject to random error 

and that the plate coordinates are error free.    Quite the reverse is true with cameras of 

moderate focal length (say, 300 mm or less). 

By 1953 Schmid had perfected a new theory of ballistic-camera plate reduction 

that dispensed entirely with the astrometric theory.    Instead, results of classical photogrammetry 

initially derived by von Gruber were exploited and extended.    The fundamental projective 

relations were placed in the form 

(7a) 
A^ + Br) + C 

X     Xp     C D^ + Er, + F ' 
A'4+ B'n + C' 

y     yp     C   D| + En + F 

or alternatively 

(7b) 

wherein 

A(x - x ) + A' (y - y ) + Dc 
* = P v/      'p      
§      "C(x- x ) + C!(y - yT"+ Fc 

P ^        P 

B(x - x  ) + B' (y - y ) + E' c 
« = P P' 
n       C(x-x ) + C,(y-y ) + Fc 

x   , y    = plate coordinates of principal point, 
P      P 

c = principal distance. 

ABC 

A'     B'     C 

D      E      F 

matrix of direction cosines defining angular orientation 

=    of plate coordinate system relative to standard coordinate 

systemo 

Inasmuch as all the nine elements of the orientation matrix can be expressed uniquely 

in terms of three Independent quantities, say the three Eulerian angles, the projective relations 

(7a) or (7b) may be regarded as involving a total of six Independent parameters, namely three 

-   90   - 



translations x   , y   ,  c that define the coordinates of the center of projection in image space, 
P    ' P 

and three rotations, say a, w, K, that are implicit in the matrix of direction cosines and 

uniquely define the orientation of the plate coordinate system relative to the standard 

coordinate system.    The standard coordinates £, r|  are related to Cattesian Coordinates of 

object space by 

X - XC Y - YC 

(8)        « =  F7F-, n =   YTp , 

c       c       c 
wherein X   , Y  , Z    denote the coordinates of the center of projection In object space 

and the X and Y axes are parallel to the £ and r\  axes respectively.    If the X, Y, Z 

coordinates of a photographed point are finite (as opposed to coordinates of stars which 

are essentially infinite), equations {7a) and (7b) may also be regarded as being of the form 

A(X -XV B(Y- YC) + C(Z - ZC) 

P D(X -XC) + E(Y- YV F(Z -ZC)  ' 

(9aJ 

A' (X - XC) + B' (Y - YC) + C (Z - ZC) 
y     yp + c    D(X - XC) + E(Y - YC) + F(Z - ZC) 

X - XC       A(x- x  )+ 'A'(y - y )+ Dc 

Z - Z'' ~   C(x - x  ) + C,(y - y   + Fc     ' 
P P 

(9b) 

Y - YC       B(x - x )+ B'(y - y ) + Ec 
_ P P 

z -zc      C(x-x ) + C,(y-y ) + Fc 

In Schmid' s theory the so-called elements of orientation a, u, K,  x   , y   ,  c are deter- 
P      P 

mined by minimizing the quadratic form 
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(10) 

+     / A'g + B'n +C  2 

+ W
y
(y - yp - C  ^D^En-fF 

wherein w   , w    denote the weights of the measured x, y coordinates, and the standard 
x       y ^ ' 

coordinates t;, q  are computed from the hour angle and declination of the star.    While a 

minimum of three stars are sufficient for a unique solution of the elements of orientation, 

at least 10 were generally carried in the adjustment in order to minimize the effects of 

random errors in the measured plate coordinates.   Current practice is to utilize from 20 to 

30 stellar control points whenever possible, thereby producing elements of orientation that 

make a relatively Insignificant contribution to the errors in the directions to the flashing 

light. 

After the least-squares determination of the element of orientation, the pro- 

jective equations In the form (9a) or (9b) can be employed for the triangulation of the X, 

Y,Z coordinates of flash points.   The first completely rigorous treatment of ballistic- 

camera triangulation was provided by the writer in 1955;  all previous treatments had 

failed to adjust the measured plate coordinates properly, 

A.4 DEVELOPMENTS AT THE ATLANTIC MISSILE RANGE 

In 1956 Schmid1 s theory for ballistic-camera plate reduction was adapted by the 

author to the reduction of ballistic-camera plates acquired at the Atlantic Missile Range. 

Here ballistic cameras were employed routinely on scores of missile tests and on aircraft 

tests designed to evaluate accuracies of electronic tracking systems;   hundreds of plates 

were (and are) reduced each year.    Often five or more well-distributed ballistic cameras 

were employed In a single triangulation, and as many as 20 cameras participated In 

certain missions.    Thus ample opportunity existed for the evaluation of Schmid* s plate 

reduction.    By 1958 mean errors of 3 microns were more or less routine and by mid-1959 
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a sizable fraction of reduced plates had mean errors of 2.5 microns or better.,   A mean 

error of 1.5 microns for both orientation calibration and least-squares triangulation was 

attained in one reduction involving about 30 stellar control points on each plate and 

over 50 flash points.   Comparable results were obtained by Schmid at BRL.   Inasmuch as 

the standard deviations of plate measurements of well-defined stellar and flashing-light 

images range typically from 2 to 3 microns, the results demonstrated time and again that 

systematic errors were being successfully suppressed to a level significantly below the 

standard deviation of the random errors. 

Thus within the course of little over a decade a five to tenfold improvement was 

attained in the accuracies produced by ballistic cameras.   A substantial portion of this 

improvement was attributable to improved techniques of data reduction, particularly the 

abandonment of classical astrometric techniques in favor of more rigorous procedures that 

preserved the geometrical properties of the central projection and that were correct from 

the standpoint of error theory (this implies that the astrometric procedures are deficient 

from the standpoint of error theory;  this is Indeed so and astronomers could well benefit 

from a more careful study of Gauss).   The remainder of the Improvement is attributable to 

refinements in cameras and associated equipment.   Particularly noteworthy was the series of 

BC-4 cameras introduced by Wild Heerbrug, Inc., through the efforts of Dr. Schmid.   This 

represented the first time that lenses originally designed for stringent metric applications 

(in this case for aerial mapping) were adapted to ballistic cameras.   The almost perfect 

centering of these lenses reduced tangential distortion to relative insignificance, while 

their low degree of radial distortion was amenable to particularly precise calibration 

because of the absence of excessively steep gradients.   Three different camera cones con- 

stitute the BC-4 series:    the n5-mm f/5.6 Aviogon having a 76° square field;  the 210-mm 

f/4.2 Aviotar having a 45° square field;  and the 305-mm f/2.6 Astrotar having a 33e 

square field.   Also of major importance was the introduction of moderately priced photo- 

graphic plates flat to from 6 to 12 fringes of sodium light (or flat to within ±1 to ±2 microns 
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from a best fitting plane).    This eliminated unflat photographic surfaces as a significant 

source of error. 

Certain innovations made by the author at the Atlantic Missile Range also merit 

mention.    As indicated earlier,  control points were provided by short breaks (50 to 100 

microns) in the star trails.    In 1956 a study was conducted to determine the feasibility of 

using short exposures of star trails to produce point-like Images for control.    By using a 

geometrical series of exposures such as 2, 1, i , i sec, respectively, with 20 to 30 sec 

between each exposure, one obtains a well-graduated succession of well-spaced point-like 

images.    With a lens such as the 300-mm f/2.6 Astrotar, for Instance, a third to fourth 

magnitude star will generally produce a nearly optimum punctiform image with a i-sec 

exposure, whereas a sixth to seventh magnitude star will produce a similar Image with a 

2-sec exposure.    (Exposures significantly longer than 2 seconds lead to excessively elongated 

Images with a camera of 300-rnm focal length;  with a focal length of 1000 mm the maximum 

worthwhile exposure is about one second.)   The study demonstrated that somewhat greater 

plate-measuring accuracy could be obtained from optimal punctiform images than from optimal 

breaks.    However, the major advantage from replacing breaks by punctiform Images stemmed 

from the fact that it obviated the need for measuring the plate in direct and reversed positions 

to eliminate personal bias from the readings.    This is necessary when stellar breaks are used 

as control, for one has no assurance that personal bias will be the same, on the average, 

In measurements of breaks as In measurements of flash images;   personal bias.  If assumed 

constant,  can be eliminated by the principle of reversal .    On the other hand.  It Is clear 

that If the personal bias for the measured stellar control were the same as for the measured 

flash Images, the relative coordinates of control points and flash images would remain 

unaltered, no matter what the bias and measurement In both direct and reversed positions 

would therefore be unnecessary.    Thus, abandoning stellar breaks in favor of punctiform 

images halved the measuring effort without impairing accuracies.    Moreover,  greater 

flexibility was achieved,  for practically every recorded star yielded one Image per cycle 

of exposure which matched closely the characteristics of the flash images (the flashes in 
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turn were exposed to produce neaily optimum Images of 40- to 60-mIcrün diameter). 

Because each star could be exposed as many times as desired by repeating the basic 

calibration cycle,  little difficulty was generally experienced, even with rather sparse 

stellar fields, in selecting a group of 20 to 30 optimal control points Ideally distributed 

about the trace of the flashing light,   A p'int of a typical stellar plate taken by a 1000- 

mm f/5 camera Is reproduced In Figure 1 . 

Another Innovation made in 1956 was an improved solution for the stellar cali- 

bration of lens distortion.    In this solution coefficients defining the radial distortion of 

the lens were determined simultaneously with the elements of orientation.    All previous 

solutions were dichotomous in the sense that attempts were made to determine orientation 

and distortion Independently,    This had never been completely satisfactory,  for small 

errors in provisional orientations were reflected in the calibrated distortion curve and 

vice-versas    By calib-'ating orientation and distortion simultaneously using the plate 

measurements of 100 to 150 stellar images, we attained unprecedented accuracies and 

repeatibil ity;   independently determined distortion curves for a given camera rarely dis- 

agreed by more than ±1 micron.    Distortion coefficients were recalibrated periodically 

as a quality control measure.    From the plots of the x, y residual vectors it was possible 

to determine whether or not the projection v/as affected by a significant degree of tangential 

distortion „ 

Because the duration of the flashing-light sources is so short, a few milliseconds 

at best,  the effects of atmospheric turbulence must be reckoned with.    Atmospheric 

shimmer, as the phenomenon is sometimes called,  is of relatively little consequence 

with stellar Images inasmuch as they are accorded much longer exposures,   which effectively 

average out most of the effects of shimmer      Inasmuch as the magnitude of the effect of 

shimmer on the position of the centroid of the Image is approximately Inversely proportional 

to the aperture of the camera,  some improvement in directional accuracies of flashes may 

be realized through the use of cameras of wide aperture.    Even so, the problem remains 
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FIGURE Al. Pr'nt o? typical stellar plate exposed by 1000 mm f/5 camera showing steil 
traces of six cycles of five exposures each with two intervening trails. 
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of estimating the degree to which shimmer affects the coordinates of flash images on a 

given plate taken by a given camera.    Such estimation is most desirable so that the observa- 

tions from different plates may be properly weighted in the triangulation, for with widely 

distributed cameras it is entirely possible for shimmer to be insignificant for some cameras, 

moderate for others and severe for still others.    When a long series of successive flashes 

is recorded, estimates of the standard deviations of the plate coordinates from a given 

plate may be obtained from a time series analysis of the measurements;   such estimates will 

reflect the combined effect of all sources of random error that influence the relative 

positions of successive images and will thus include the effects of setting errors, random 

emulsion instability, atmospheric shimmer,  camera vibration (If significant) and so forth. 

In many operations, however, too few flash Images are recorded to permit a sound time 

series analysis.    Here it Is possible to employ a sufficiently bright star in the general 

region of interest to simulate a flashing light by making a series of very short exposures 

of the stars.    This, of course, requires a fast shutter capable of exposures of at least 10 msec 

to ensure that successive Images will be frozen in instantaneous shimmer positions as are the 

images of flashes.    By use of the stellar noise trace technique, as it has been termed, it 

becomes possible to estimate quite precisely the proper standard deviations to be used in 

weighting for triangulation.    Ordinarily, about 60 or so images are measured on a given 

noise trace and subjected to a time series analysis.   This yields estimates of standard 

deviations O, which in turn have standard deviations of about 0.13 O* 

A.5 RECENT DEVELOPMENTS 

By 1960 It was clear that significant further improvement In accuracies attain- 

able from stellar-oriented fixed cameras was to be realized only through the development 

of cameras of longer focal  length and wider aperture.    Increased apertures were necessary 

to offset the influence of shimmer, which would otherwise negate the potential gains of 

longer focal lengths.    Accordingly, the Atlantic Missile Range undertook the development 

of a 600-mm f/2 camera with 17° square field and Air Force Cambridge Research Labora- 

tories undertook the development of a 1000-mm f/5 camera with 10° square field.    The 
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latter camera was based on a telescopic lens designed for aerial reconnaissance by Dr. 

James Baker during World War II.    Surplus lenses produced by Perkin Elmer in 1952 were 

completely disassembled, rematched and refurbished where desirable, and critically re- 

aligned.   A total of 20 of these cameras, designated the PC-1000, were produced by 

Instrument Corporation of Florida for the Air Force and the Navy.   Most of these will be 

employed extensively for observations of forthcoming geodetic satellites.    The 600-mm 

f/2 camera was developed by Norrronics.   Six were contracted to be produced for AMR. 

Three have so far been delivered.    Since they have yet to be declared operational, further 

pertinent information is unavailable at this time. 

The calibration of the PC-1000 cameras for distortion was originally accomplished 

by the method developed by the writer while at AMR,    However, on plate after plate the 

mean error resulting from the calibration amounted to between 4 and 5.5 microns instead 

of the 2 to 3 microns considered to be compatible with plate measuring accuracies.   A 

plot of the x, y residual vectors from a typical plate is presented in Figure 2.    Each star 

was exposed for 1,  1/2,  1/4 and 1/8 sec respectively, this cycle of exposures being re- 

peated four times thereby leading to a total of 16 wel l-spaced images per star.    The most 

nearly optimum image from each cycle of exposure of a selected star was measured.    The 

straight lines In Figure 2 connect the images corresponding to each star.    Perhaps the most 

striking feature of the plot of residuals is the systematic nature of successive residual vectors 

for many of the stars.   Yet, residual vectors of adjacent stars appear   quite uncorrelated0 

This strongly suggests that the effect is not attributable to either the camera or the emulsion 

but rather is attributable to random errors in the catalogued right ascensions and declinations 

of the stars.    Accordingly, the star catalogue employed, namely the Boss Catalogue, was 

investigated and the conclusion was reached that random errors in the proper motions could 

indeed conceivably account for the observed effect«   The estimated standard deviations of 

updated right ascensions and declinations were found to vary from about OM to as much as 

]"5i- the value G'.V being typical.    An angle of OIV is equivalent to 3.5 microns on a 

PC-1000 plate,  which is somewhat greater than the typical plate measuring accuracy.    In 
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FIGURE A2.   Plate coordinate residuals from least squares calibration of orientation of stellar plate 
taken by 1000 mm f/5 camera;   star catalogue errors not taken into account;   mean 
error of residuals 5,2 |j. 
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spite of this, in the adjustment giving rise to the residual plot of Figure 2 only errors in 

the measured plate coordinates were considered, the catalogued positions of the stars being 

regarded as error free«    Hence, the errors in the catalogued positions were transferred to 

the plate coordinates.   This effect had not been noted in earlier fixed camera reductions 

because the focal lengths, being 300 mm and shorter, were not sufficiently great for the 

catalogue error to be significant relative to the plate measuring error. 

In view of the foregoing it was considered advisable to develop a new plate re- 

duction wherein random errors in both plate coordinates and catalogued positions were 

properly adjusted.   A research program to achieve this end was undertaken by Instrument 

Corporation of Florida under the sponsorship of Air Force Cambridge Research Laboratories. 

It is not our intention to consider details of the resulting reduction here, inasmuch as the 

derivation is rather lengthy and is being documented in a separate paper to be published 

later.   Suffice it to say that the adjustment is based on the minimization of the following 

quadratic form, the residuals of which are interrelated by the fundamental projective rela- 

tions: 

m     n n 

OD       s=   V   S(wx   v;   +w   v^. £ (w    2   +w     M 
1=1    j^l       X!j     Xij yii    yii J=l A3    Ai Uj    Ui 

where 

v     , v =   residuals of measured plate coordinates of i     images of i     star; 
x y 

W     , W      =   weights of measured plate coordinates (inversely proportional to measuring 
Xij        yii . v 

variances); 

v ., v-.       =   residuals of updated right ascension A and declination D of J     star; 
j J 

V\.  , W_    =  weights of updated A, D (inversely proportional to variances computed 

from catalogued probable errors). 
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Thus the reduction yields not only plate coordinate residuals but also residuals 

of right ascension and declination.    It follows that some measure of improvement is to 

be expected in the catalogued positions as a consequence of the adjustment.    It can be 

shown theoretically that if the standard deviations of the catalogued positions were O'J? 

in A and D, if plate measuring standard deviations were 3 microns, if a total of 8 different 

stars were measured on a given plate, and if 6 different images were measured on each 

stellar trace, the adjusted values of A and D from the reduction of a PC-1000 plate would 

have standard deviations of slightly better than 0"35, or about half that of the values Input 

into the computer.    More generally, the following approximate formula may be employed 

to predict the standard deviations to be expected for adjusted right ascensions and declina- 

tions? 

In this formula, which ignores the degrees of freedom Involved in the adjustment and thus 

has Increasing validity with Increasing m and n, 

O      =       approximate standard deviation in radians of adjusted right ascension and declination; 
A. 

CJ      =       standard deviation of catalogued right ascensions and declinations In radians 

(assumed same for all stars); 

CJ      =       standard deviation of measured plate coordinates (assumed same for all points), 

c       -       focal length of camera in same units as 0; 

m      =       number of Images measured per stellar trace; 

n       =       number of different stars measured. 

In order to gain Insight concerning the effectiveness of the new plate reduction, 

we performed a numerical simulation wherein the adjustment was applied to artificially 

generated data,    A uniform array of 25 "stars" was generated.    To the "true" right 

ascensions and declinations of these "stars" were added random errors drawn from a table 

of random normal deviates normalized to have a standard deviation of O'.V.    This produced 
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simulated "observed" right ascensions and declinations.    The "true" plate coordinates 

of the "stars" were computed for four different instants of time from a postulated set of 

elements of orientation.    Random errors drawn from a population having a standard devia- 

tion of 3 microns were then added to the "true" plate coordinates to produce simulated 

"observed" plate coordinates.    The resulting simulated data were then subjected to Schmid's 

adjustment which, it will be recalled, considers only errors In the measured plate coordinates. 

The resulting residual vectors are plotted in Figure 3.   The similarity of these results to those 

of Figure 2 is quite striking.    Next, the same simulated data were subjected to the new 

adjustment which treats both plate coordinates and catalogued positions as subject to 

random error.   The resulting plate coordinate residuals are plotted in Figure 4o    Here it 

is seen that randomness is achieved not only from star to star as In Figure 2, but also for 

the successive images of each individual stellar trace, which is as it should be.    The mean 

error of the plate coordinates is reduced from the 4.2 microns of Figure 2 to 2.7 microns, 

a figure statistically consistent with the true value, which in this case is known to be 3 

microns.    Inasmuch as the solution also produces residuals of right ascension and dedlnarion, 

it is particularly interesting to plot these and to compare them with the actual errors.    This 

is done in Figure 5, the signs of the errors being reversed to facilitate the comparison.   An 

excellent degree of correlation Is seen to exist between the residual vectors and the error 

vectors.    The results of the simulation thus demonstrate the validity and effectiveness of the 

reduction within the framework of the assumptions. 

The data giving rise to Figure 2 were also processed through the new reduction. 

The resulting plate coordinate residuals are plotted In Figure 6.    Virtually complete 

randomness is achieved and the mean error of the plate coordinate residuals is reduced 

from 5,2 microns to 2,6 microns.    In future studies, results obtained from different cameras 

for a common star field will be used to determine the consistency of the adjusted right 

ascensions and declinations.    Preliminary results with three plates Indicate a good measure 

of consistency for those stars having the larger residuals. 
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FIGURE A3,   Plafe coordinate residuals from least squares claibration of simulated   stellar 
plate taken by 1000 mm focal length ballistic camera;  nms errors of O'.'? in 
catalogued right ascensions and declinations are not taken into consideration; 
mean error 4,2 p. 
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FIGURE A4.     Plate coordinate residuals from least squares calibration of simulated stellar 
plate taken by 1000 n.-Ti focal length ballistic camera;  rms errors of O'.V in 
catalogued right ascensions and declinations are properly taken into consider- 
ation;   mean error 2.7 p. 
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FIGURE A5,    RigHt ascension and declination residuals from least squares calibration of simu- 
lated stellar plate taken by 1000 mm focal length ballistic camera;   rms errors of 
3 microns in plate coordinates and of O'.V in catalogued right ascensions and 
declinations are properly taken into account;   mean error of catalogue residuals 

O'.'ö. 
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FIGURE A6,   Plcrte coordinate residuals from least squares calibration of stellar plate taken by 
1000 mm f/5 camera (same original data as in Figure 1);  star catalogue errors 
properly taken into account in adjustment;  mean error of residuals 2.6 \i. 
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It will be noted ^hc^ ^here are more stars in Figure 6 than in Figure 2.   The 

extra stars are those which were originally measured but whose coordinates were not 

subsequently ^ound in the Boss catalogue.    Hence they had to be dropped from the original 

solution.   An interesting and useful Property of the new solution is that uncatalogued stars 

can be utilized;   it is merely necessary to assign approximations to the unknown right ascensions 

and declinations and to set the corresponding weights equal to zero*    Because the relative 

hour angles of uncatalogued stars are known by virtue of the measured differences in the 

times of exposuresy it is possible for uncatalogued stars to make a worthwhile cor.tribution 

to the calibration of orientation (particularly to the determination of scale)t 

Other noteworthy features of the new solution are the following^ 

1) Provisions are made for the measurements of both stellar breaks and puncti- 

form images»    To accomplish this without making it necessary to measure the plate in 

direct and reversed positions in order to eliminate personal bias» two addtlonal parameters 

Ax, Ay are carried as unknowns.   These represent the biases of measured stellar breaks 

relative to the m^nvured punctiform images»   The parameters Ax and Ay are constrained 

to lie between ±5 microns at the one sigma level.    The deslrabillty of measuring breaks 

in addition to points stems from the fact that two additional stellar magnitudes are thereby 

gained.   With the PC- 1000,  for instance, the faintest stars giving use to acceptable 

punctiform images are of seventh to eigth magnitude/ whereas stars from eighth to ten^h 

magnitude yield well-defined trails.   Often there are sizable regions on the plate wherein 

only trails   are *o be found.   Often tl-iese traüs are of uncatalogued sta^s, but as indicated 

above, this does not prevent their effective use, 

2) Pov!sIor>s Q»e made fo! carrying coefficients of distortion as adHi*ional 

unknowns so that the solution con be employed to calibrate distortion whenever desired 

(the data genera+ing Figures 2 and 6 were processed through the version of the solution 

providing distortion calibration), 

3) Provisions a.e made fo   Incoipoating up to four   coefficient of Garf'nkel' s 

expansion of astioncmlcal reffactlon as unknowns.   These may be consfraIned, If desired, 
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to be statistically consistent with a priori values derived from meteorological data.    The 

parametrization of refraction is particularly desirable when zenith distances exceed 60° 

to 70°;   it Is of relatively little value when zenith distances are less than 50°.    For observa- 

tions near the horizon (as in flashing light line crossings for determination of azimuth of 

Hiran lines) 't is mandatory to carry at least three coefficients of refraction as unknowns in 

the adjustment. 

A.6 FIXED CAMERA VS0 SIDEREAL CAMERA FOR DETERMINATION OF DIRECTIONS 

TO FLASHES 

Now that sufficient background has been established for an understanding of the 

more advanced fixed camera observational and reductional techniques, it is pertinent to 

compare the relative merits of the fixed and sidereal cameras for the basic problem of 

determining precise directions of recorded flashes.    The most fundamental difference, of 

course, is that the fixed camera is stationary relative to the earth, whereas the sidereal 

camera is stationary relative to meriiai space.   The most serious deficiency of sidereal 

cameras for flashing-light applications arises from the fact that the mechanical imper- 

fections of most equatorial mounts and drives constitute a source of significant error by 

causing the camera actually to be unstable in inertial space.    Indeed, in most cases the 

error introduced by the mount will considerably exceed that introduced by the plate measure- 

ments.    It should be appreciated that this consideration applies only to flashing-light 

applications, for small errors or jitter in the drive do not have a significant effect on 

the relative positions of stellar images, particularly if guiding is practiced to keep the 

tracking excursions within reasonable bounds.    Thus the sidereal camera is well suited to 

conventional astrometric applications in spite of the imperfections of mounts and drives. 

On the other hand, the duration of a flash is so short that its position on the plate of a 

sidereal camera relative to the mean positions of the stars will depend directly on the 

instantaneous inertial orientation of the camera relative to the mean inertia! orientation. 

It follows that if a particular mount were to provide an rms accuracy of, say, 2 seconds 
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of arc with guiding (which would be excellent), directional accuracies to recorded flashes 

could not be recovered to better than two seconds of arc rms even though relative stellar 

directions on the same plate could conceivably be recovered to a few tenths of a second of 

arc.   Thus it is our contention that the use of sidereal drives can only deteriorate the 

accuracies potentially obtainable from a given camera (again, we are referring only to 

flashing-light applications).    Beyond this, however,  the fixed camera enjoys a number of 

significant advantages over the sidereal camera, even in certain purely astrometric 

applications.   Aside from stability, the most important factor contributing to these advantages 

is the fact that precise measurements of time are fully exploited in fixed-camera applications, 

whereas time does not constitute a useable measurement in sidereal applications.    The 

following table provides a summary of the relative advantages of fixed and sidereal cameras 

when used for directional determination of flashing lights.    In items 4, 5 and 13 the values 

quoted apply to cameras similar to the PC-1000.    These may be revised appropriately to 

apply to other cameras. 

A.7 RELATIVE ADVANTAGES OF FIXED AND SIDEREAL CAMERAS FOR DETERMINATION 

OF DIRECTIONS OF FLASHES 

Fixed camera 

1, Essentially perfect stability over short 
periods (a few minutes) Is relatively 
easily attained with earth-fixed orien- 
tation. 

2. Very small but possibly significant 
changes or disturbances in earth-fixed 
orientation can be detected through 
use of stellar images recorded at dif- 
ferent times.   Therefore, direct check on 
validity of data Is Immediate by- 
product of reduction.    This check Is 
independent of subsequent triangula- 
tion checks. 

Sidereal camera 

Inaccuracies and jitter of conventional 
sidereal drive can introduce errors of 
several seconds of arc in determination 
of directions of nearly instantaneous 
flashes relative to stars. 

Very small but possibly significant 
changes or disturbances In Inertial 
orientation are Internally undetect- 
able;   they merely result In a slight 
Increase In image diameters.    No check 
on validity of directions of flash points 
is available prior to h languiation.. 
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3. A given star may be recorded several 
times, giving rise to a series of vveli- 
spaced control points;   multiple usage 
of stars overcomes problem of sparse 
stellar fieldso 

4. Use of a series of different exposures 
(e.g., 1, 1/2/ 1/4,  1/8 sec) produces 
images of graduated diameter so that 
each recorded star produces at least one 
nearly optimum image per exposure cycle; 
repetition of basic cycles can lead to 
several nearly otpimum images from 
each star, 

5.     Stars down to eighth magnitude yield 
useable point images;   fainter stars to 
ninth or tenth magnitude generate only 
weak trails;  stars fainter than ninth to 
tenth yield no images at all.    Hence 
confusing extraneous images (i.e., 
images of uncatalogued stars) are 
minimal. 

6. Discrimination of flash images is easy, 
because a short trail is associated with 
each star, whereas flashes have no 
associated trails. 

7. Timing data are required for stellar 
exposures (but not for flashes) in order 
to determine directions of flashes. 

8. Except for 3 or 4 key stars, stellar 
identification may be established auto- 
matically by the computer as part of 
the general reduction;   hence the side- 
real mount offers no basic advantages 
insofar as identification is concerned. 

A given star produces one and only one 
control point;  nothing can be done to 
augment sparse stellar fields. 

All stellar images have some exposure 
so that image diameter Is strictly de- 
pendent on stellar magnitude and 
color;   selection of sufficient catalogued 
stellar control having uniform and 
optimum image diameters is extremely 
difficult and. In many cases, is Impos- 
sible (for results of maximum accuracy, 
Images of stellar control should closely 
match those of flashing light). 

A few minutes of total exposure will 
produce distinct images from slors '■■ 
eleventh, twelfth or even thirteenth 
magnitude.   These together with images 
of stars of ninth and ienth magnitudes 
are extraneous and confusing because 
they are not catalogued;   only a few per- 
cent of the stellar images are actually 
usable and these, being produced by the 
brighter stars, are likely to be oversized. 

Discrimination of flash Images from 
star images can be extremely difficult, 
particularly when (as in the case of 
satellite flashes) only five or so are 
distributed across the plate„ 

Timing data are required for the flashes 
(but not for stell or exposures, except 
very nominally) in order to determine 
directions of flashes. 

Automatic star Identification is equally 
feasible when sidereal mounfs are used; 
however, because each star is used only 
once, from two to four t;mes more 
distinct stars must be identified than 
with a fixed mount. 
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9.     Initial set-up of camera orientation 9. 

depends only on expected direction of 

flashes and is independent of expected 

time of flashes. 

10. A fixed camera mount is relatively in-        10. 

expensive and is readily compatible 

with a mobile operation . 

11. Standard deviations of effects of atmos-      11 . 

pheric shimmer on directions of flashes 

can be estimated for a given plate by 

means of the "noise trace technique"; 

this permits proper weighting of such 

observations in subsequent reductions. 

12. Images of uncatalogued stars can be 120 

used as supplementary control/ because 

the relative hour angles between such 

exposures depends only on time differ- 

ences which constitute independent and 

easily made measurements. 

13. Random errors in catalogued right 13. 

ascensions and declinations can be 

estimated with worthwhile accuracy 

and separated from plate measuring 

errors by means of observations made 

on a single plate. 

14. Shutter and shutter timing is required 14. 

(to accuracies of 5 to 10 msec).  Recent- 

ly developed VLF t;ming techniques 

readily permit accurac es of ±lmsec to 

be achieved anywhere in the world. 

Initial set-up of camera orientation 

depends on both expected direction 

and time flashes;   reorientation is re- 

quired whenever expected times change, 

as with missile holds. 

A sufficiently accurate equatorial mount 

Is quite expensive and is not generally 

well suited to a mobile operation. 

Use of stellar mount precludes use of 

"noise trace" or any other simple tech- 

nique to estimate effects of shimmer on 

directions of flashes (unless drive is 

stopped and high performance shutter 

is used to produce noise trace as in 

fixed camera techniques)» 

Images of uncatalogued stars cannot 

be used as supplementary control;   they 

serve only to "clutter" the plate and, 

for all practical purposes, constitute 

"noise" insofar as discrimination of 

flash images is concerned. 

Random errors In catalogued right 

ascensions and declinations can effec- 

tively be separated from plate meas- 

uring errors only through reduction of 

multiple plates of the same field, 

Shutters are not required;   this is only 

advantage of sidereal mount In flashing 

light applicationSv 

A.8 CONCLUSIONS 

We have outlined some of the key points in the evolution of fixed-camera techniques. 

We have seen that the original application of fixed cameras was to determine the precise 

directions of flashing beacons.    This is still their  chief appl ication and is one In which 
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they excel.    Nonetheless.,  it seems that every so often someone,  having little or no 

familiarity with the theory and evolution of fixed-camera techniques, will seriously 

suggest replacement of fixed cameras by sidereal cameras or else would revive astrometric 

data reduction procedures (or would do both).    It is our opinion that the time is at hand 

when sophisticated fixed-camera techniques can profitably be exploited In purely astro- 

metric applications.    Geodetic satellites carrying flashing-light beacons will afford an 

unprecedented opportunity to accomplish not only geodetic objectives but also to effect 

a significant improvement of star 'catalogues largely as a by-product of the reduction of 

plates from fixed cameras (this in turn, of course, would benefit the geodetic objectives). 

On Project ANNA alone It Is estimated that as many as 2000 reducible plates will be 

exposed by some 20 PC-"!000 cameras during the first year of operation.    Since the field 

of the PC-1000 is 10° x 10°, this Implies that the entire celestial sphere would be 

photographed five times over during the course of a single year if the observations were 

uniformly distributed.   Accordingly, it would be reprehensible, in our eyes, if a well-thought- 

out program were not implemented to exploit to the very fullest the vast quantities of 

information to be obtained (at veiy considerable expense) In future geodetic satellite 

operations. 
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