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ABSTRACT

In order to fully exploit recent advances in photogrammetric technology it has been
necessary to develop a comprehensive plate reduction appreciably more powerful than any hitherto
employed. In addition to factors considered in previous plate reductions, an advanced reduction
must treat with full physical and statistical rigour such factors as: random errors in catalogued
stellar positions; atmospheric refraction (particularly at great zenith distances); higher-order
symmetric radial distortion; tangential distortion and asymmetric radial distortion resulting from
imperfectly centered optics; differential bias between measurements of different types of images;
effective utilization of uncatalogued stars for photogrammetric control; introduction of a priori
constraints on any ot the parameters of the reduction. Such a reduction is developed in this paper
and illustrations of its practical application are provided., Special attention is given to decentering
distortion, a topic inadequately treated in the photogrammetric literature. It is suggested that
uncompensated decentering disturtion has often in the past been the major cbstacle to the full
practical realization of theoretically attainakle accuracies. The Advanced Plate Reduction is
designed to be valid for any combination of focal length and angular field. By allowing for the
possibility of correlated errors in the plate coordinates, it is clso valid for cameras not having flat
fields (e.g., the Baker Nunn Satellite Camera). Special note is taken of the application of the
Advanced Plate Reduction for the definitive calibration of mapping cameras to be used for the

analytical extension of photogrammetric control.
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AN ADVANCED PIATE REDUCTION AND CALIBRATION

FOR PHOTOGRAMMETRIC CAMERAS

1.0 INTRODUCTION

In an earlier paper [ 1] the writer traced the evolution of plate reductions for
ballistic cameras. |t was pointed out that, during the formative years or ballistic cumera
photogrammetry in the early 1940's, techniques for plate reduction were largely borrowed
from positional astronomy. Because of the relatively wide-angular fields of ballistic
cameras, these techniques proved to be ill-suited to the ballistic camera application
and were supplanted by the early 1950's by techniques developed by Schmid [2], [3]
which were based on closed expressions rigorously defining the central projection of
three-dimensional object space into two dimensional image space. Schmid's plate
reduction was extended in 1956 by the writer [4] to include the calibration of radial
distertion of the lens. As thus extended, Schmid's reduction proved adequate for data
gathered from the types of ballistic cameras in general use through the 1950's. These
cameras may be characterized as being of fairly short focal length (300mm and less) and
of fairly wide angular field (33° square and greater). Changing and more stringent
requirements led in 1960 to the development of the PC-1000 ballistic camera under

the sponsorship of AFCRL. The 1000mm focal length of this camera is over three times

greater than that of the 300mm ballistic camera. Experience with the PC-1000 demonstrated

thet many of the practices and procedures which were satisfactory with cameras of shorter
length are unsatisfactory or marginal with cameras of long focal length. Indeed, long
focus ballistic cameras have required development of significant refinements in photo-
grammetric theory and practice in order that their full potential for improved accuracy
might be realized. In this report we shall develop an Advanced Plate Reduction designed
to extract the practical ultimate from the informational content of a ballistic camera
plate. Although the Advanced Plate Reduction was developed primarily to satisfy the
special requirements of long focus ballistic cameras, we have taken pains to cast the
solution in a form of universal applicability. Thus, the reduction, as presented, is
equally valid for cameras of very short focal length and very wide angular field and

for cameras of very long focal length and very narrow angular field. Special attention

has been given to the following problems:




(a) rigorous consideration of random errors in star catalogue data,

(b) adequate compensation for atmospheric refraction, particularly at great
zenith distances,

{c) cclibration of radial distortion of the lens,

(d) calibration of tangential distortion and assymmetric radial distortion
resulting from imperfect centering of the elements of the lens,

(e) utilization of uncatalogued stars as control points,

(f) utilization of "a priori" or independently measured elements of orientation,

(g) simultaneous utilization of measurements of stellar breaks and stellar

punctiform images.

In [1] we discussed many of the properties of the Advanced Plate Reduction and some of the
results of its application, as well as its relationship to earlier reductions. This reference is
attached as an appendix to the present report because it is especialiy pertinent to the investi-
gation at hand and because it was originaliy generated under the present contract. We suggest
that the reader acquaint himself with the appendix before proceeding further, for it provides

a heuristic and relatively nonmathematical introduction to the Advanced Plate Reduction.

2.0 STAR CATALOG ERRORS

Plate reductions currently in general use for ballistic camera reductions treat
catalogued stellar positions as if they were perfectly known, random error being ascribed
solely to the measured plate coordinates. As we shall see, the premise of perfect control

is untenable for cameras of focal length appreciably in excess of 300 mm. The significance

of a specific level of error in catalogued positions may best be gauged through @ comparison with

attainable plate measuring accuracies.  Normal rms plate measuring accuracies for well-
defined images are on the order of 2 to 3 microns and, for a fixed plate size, are largely
independent of focal length, We have, however, observed a tendency for plate measur-
ing accuracies to improve somewhat with increasing focal length, probably because

of the superior and more uniform image quality generally characteristic of narrow angular
fields (as long os diffraction is not a serious consideration). Therefore, we shal! adopt
the more stringent figure of 2 microns as a standard for plate measuring accuracies. It

then becomes clear that errors in catalogued stellar positions assume significance with a
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given camera if they exceed one micron when projected onto the plate.

In spite of its relative obsolescence, the General Catalog (GC) prepared by
Benjamin Boss is still widely used in ballistic camera work because of its complete
coverage of the celestial sphere (both northern and southern hemispheres are covered
with good uniformity), because of its large number of stars (over 33,000 stars, an
avercge of 0, 8 stars per square degree), and because of its convenience in utilization
(proper motions are provided for all stars; hence catalogues of different epochs need not be
consulted in order to upd;:'re stellar positicns). The mean epoch of the GC is about 1900.
Eichhorn [ 5] quotes the typical mean error of a stellar position at mean epoch as being
0".15 and the typical mean error of annual proper motion as being 0",010. It follows
that the mean error of the typical star in the GC for year 1965 approaches 0".7. This
is equivalent to errors of about 1 micron, 2 microns, and 3.5 microns on the plates of
300mm, 600mm, and 1000mm cameras respectively, Thus, errors in the GC are not of
major significance for cameras of focal length of 300mm or less, are comparable in
significance to plate measuring errors for cameras of focal length near 600mm, and
are actually of greater significance than plate measuring errors for cameras of focal length
of 1000mm or more. It is accordingly clear that, when the GC is used, a plate reduction
which throws all of the adjustment on the plate coordinates may be unredlistic with

cameras of moderately long focal length.

Because of its early mean epoch, the accuracies of the GC for a current epoch
are appreciably lower than those of some of the more modern catalogues. We have
summarized in Table 1 a number of pertinent characteristics of the major star catalogs
of potential value for ballistic camera plate reductions. The accuracies quoted are
adopted from papers of Eichhorn [5] and Scott [6],[7]. It should be appreciated
that the compilation of many catalogues has consumed decades and that, therfore, the
mean epoch may shift significantly from zone to zone. Thus, it is sometimes difficult
and misleading to abstract a single figure to characterize the accuracy of a given
catalogue. For this reason we suggest that the reader consult the papers cited above for more
detailed and comprehensive treatments of the subject of star catalogues and their

accuracies,
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In Table 1 we have also listed for cameras of varicus focal length the plate
measuring error which is equivalent to catalogue error listed in column (6). Those
entries of columns (7) - (12) which are one micron or greater (and, hence, are significant
relative to afminable plate measuring accuracies) lie above the heavy, stepped line
crossing the columns. We see that errors of even the best of the catalogues assume
significance as focal lengths approach 2000mm. When the AGK-3 is published in
1964, the northern hemisphere of the celestial sphere will be covered with high density
and high accuracy. Correspondingly dense coverage of the southern hemisphere, however,
depends largely on the Yale and Cape Catalogues. inasmuch as current accuracies of the
Yale and Cape Catalogues are generally only one-half to one-third as great as those of
the AGK-3, the problem of catalogue errors for the southern hemisphere will remain
highly significant for long focus ballistic cameras until the completion of the Southern

Astrometric Program towards the end of this decade.

From the foregoing it is clear that a truly rigorous plate reduction for long
focus ballistic cameras must take into account not only random errors in plate coordinates,
but also random errors in stellar control. The fact that each star carried as control can
give rise to several successive images provides the means for the effective separation of
plate measuring error from catalogue error, for the effects of catalogue error are essentially
constant for all images of a given star, whereas those of plate measuring error are inde-
pendent from image to image. We shall exploit this fact in our derivation of the

Advanced Plate Reduction.

3.0 ATMOSPHERIC REFRACTION

Atmospheric refraction of the stellar control carried in ballistic camera
reduction is rarely a significant problem for zenith distances less than 70°. This is true
even though only very nominal corrections for refraction may have been applied. The
reason stems from the fact that the relative refraction of points on a ballistic camera
plate can be expressed to the first orcer as a iinear combination of the elements of
orientation. This means that the elements of orientation resulting from a stellar

calibration can readily compensate for moderate errors in the refraction corrections
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applied to the stellar directions. In particular, the calibrated principal distance and
the calibrated zenith distance of the camera axis act in concert to compensate for
residuai refraction. However, as zenith distances increase beyond 70°, the elements

of orientation rapidly lose their ability to compensate for uncorrected refraction. It

is not unusual for ballistic camera observations to be made at zenith distances in excess
of 70°. Indeed, observations of missile re-entries or of flashing lights for determination
of the azimuth of Hiran lines are made to within a few degrees of the horizon. Thus, the
problem of refraction for great zenith distances is of more than academic interest. We

shall, therefore, accord it full consideration in the Advanced Plate Reduction.

In order to provide the mathematical model for the plate reduction with the
necessary freedom to account fully for the relative refractive displacements of stars
at great zenith distances, we must incorporate a sufficiently comprehensive refractive
medel. The conventional model for atmospheric refraction is of the form

+
(3.1 & = a2

pl ta ¢ ,

A8

where 8¢ denotes the astronomical refraction corresponding to the observed zenith
distance ; and the p, are coefficients depending on the structure of the atmosphere.
The model may also be expressed with the true, rather than the observed , zenith

distance as the argument of the expansion. It then assumes the form

0]
(3.2 Sz = qungnﬂz
1 =0

3

where 6z is the astronomical refraction corresponding to the true zenith distance z

and the q, are appropriate cocfficients. If 8¢ and &z are taken as positive quantities,

we have by definition,
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The above expansions for refraction become impractical for points near the horizon,
inasmuch as tan ¢ and tan z increase without limit as ¢ and z approach 90° (the
series are nonetheless convergent since the coefficientsp, , q, approach zero more
rapidly than the powers of tany and tan z approach infinity). A more powerful
and convenient expansion for astronomical refraction is that of Garfinkel [8].
With the observed zenith distance as the implicit argument, Garfinkel's expansion

assumes the form

r‘2n+1¢

1

(3.5) & = E f1 ta
i=0

where tan @ is an auxiliary function computed as follows from the observed zenith distance:

(3.6) tan 2 = —%— tan ¢ ’

or, alternatively,
3
(3.7) tan® = (1+ y"; cofzg) - 70 cot ¢

in whichy is an atmospheric constant equal to
0

(3.8) y = 8.16 (273/70)*




where T, is the temperature in degrees Kelvin at the observing station. Garfinkel's
expansion may also be expressed with the true zenith distance as the implicit

argument. In this case, one has

o0
N D2
3.9  dz = Yaga™le
1=
in which
(3.10) tan 2&’ = ]fcnz
) Yo
or
(3.11) tan ® = (]+}'02 cofiz)%-yocofz ’

where Y, is as above.

The writer demonstrated in [9] that four terms of Garfinkel's expansion are
functionally capable of representing astronomical refraction to accuracies on the order
of a few tenths of a second of arc for all zenith distances from 0° to 90°, For instance,
the writer found that, when four terms of the expansion were fitted by least squares to
sets of actual refraction data for several different nights (Strand [10]), a mean error
of fit of less thar: 0".2 resulted in every case, even though each sample included values
of refraction at intervals of 2° for zenith distances down to and including 90°. The
writer has consistently obtained similar results from least squares fits of Garfinkel's
expansion to the results of extensive ray tracing through actual atmospheres sampled
by balloonsondes. Even with refractive profiles affected by severe temperature
inversions, four terms of Garfinkel's expansion have been found to yield rms accuracies
of 0".2 or better for zenith distances to 90°, It follows that Garfinkel's expansion
provides an exceptionally compact and flexible model for atmospheric refraction.

Accordingiy, we shall incorporate four terms of the expansion in the Advanced Plate




Reduction in order to accommodate zenith distances as great as 90°,

In [ 8] Garfinkel provides tables for the computation of astronomical
refraction for any given observed zenith distance ; and for any specified temperature
(T), pressure (P) and height (h) at the observing station. By making severai entries
for different zenith distances, one can construct a refraction table appropriate to the
observational situation. The coefficients of Garfinkel's expansion may then be estimated
by fitting the expansion to the entries of the tchle. The absolute accuracy of such a
refraction function is likely to be on the order of +1 per cent. In view of the compen-
sative capabilities of the elements of orientation, this is unquestionably adequate for
zenith distances as great as 7(5); only for zenith distances greater than 70° is there any
merit in allowing adjustment of the coefficients of the expansion. For this reason, in
the Advanced Plate Reduction, we shall constrain the values of the coefficients of
Garfinkel's expansion resulting from the adjustment to be statistically consistent
with the pre-computed values. As a practical matter, this means that the precomputed
coefficients will undergo significant adjustment only for plates having stars at substantial
zenith distances. At the higher zenith distances, refractive coefficients are essentially
superfluous in a plate reduction, inasmuch as the elements of orientation alone are
adequate to compensate for residual refraction. Here the inclusion of refractive coef-
ficients as unknowns would ordinarily lead to an indeterminate or nearly indeterminate
set of normal equations. By constraining the refractive coefficients resulting from the
plate reduction to be statistically consistent with precomputed values, one obviates
this tendency towards indeterminacy at small and moderate zenith distances and, at the
same time, automatically allows the coefficients sufficient freedom for adjustment at

great zenith distances.

4.0 SYMMETRIC RADIAL PISTORTION

The distortion of a perfectly centered lens whose axis is normal to the
photographic plate is symmetrical about the principal point and is, consequently, a
function of radial distance only. As the writer pointed out in [4], the distortion
function & is of the following form when the principal distance c is carried as an

unknown in the plate reduction:




(4,]) 5 = ‘(1[3 + k2f5 + k3r7 ¥ 600 ’

where r is the radial distance (from the principal point) and the k's are the coef-
ficients of distortion. The single coefficient k; is sufficient to account for the
distortion of most simple lenses over their usable field. However, we have found
that modern highly corrected lenses are likely to require the fifth and even the
seventh order coefficients. Three coefficients of the expansion have proven adequate

for all ballistic cameras encountered to date.

In the event that it is desired to enforce a specified principal distance

in the plate reduction, the distortion function must assume the form
(4.2) &' = kir + KiP + kyrd o+ Ky o+ L. .

If ¢ denotes the principal distance associated with & and c'= c + Ac denotes the
principal distance associated with &', it foliows frc. s [4] that

Ac Ac
c

(4.3) ' = (1+ )y & o+ —/—r ,

from which

(4. 4) g =25

A
CC )kz , etc.

;K= k=04

This emphasizes that a distortion function is meaningful only when its associated
principal distance is specified. The term kyr in (4.2) is equivalent to a constant
scale factor. Therefore, one cannot arbitrarily carry both k(; and ¢' as unknowns in

a plate reduction, for both parameters perform precisely the same function in the
model; to do so would lead to an indeterminate set of normal equations. Accordingly,
if the principal distance is carried as an unknown, the associated distortion function
must be of the form (4.1); the form (4.2) may be used only if an arbitrary value of the
principal distance is enforced. It is essentially immaterial which approach is taken,

for the results of the one can be transformed to correspond to the other.
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Because radial distortion is ideally invariant for a given lens, it is common
practice to calibrate the coefficients of distortion in special massive reductions involving
150 to 200 or more stellar images. This generally yields a distortion function having a
mean error of better than one micron at the extremities of the field. Such a function
can be enforced in routine reductions without introducing significant error. From
time to time the calibration of distortion may be repeated as a measure of quality

control.

The rigorous determination of coefficients of distortion as an integral part
of a ballistic camera reduction was first derived by the writer in [4] . We shall incor-
porate this solution into the Advanced Plate Reduction. In a later section, we shall
take up ihe problem of the determination of the tangential and asymmetric radial

distortion introduced by an imperfectly centered lens.

5.0 PARAMETERIZATION OF DIFFERENTIAL BIAS

Certain aspects of the rationale of the Advanced Plate Reduction are best
understood through a consideration of the character of a typical stellar trace on a
ballistic camera plate. InFigure 1 we have presented a sketch of a stellar trace optimized
for a 1000mm camera for declinations between £60°, The time scale associated with the
trace indicates the relative durations of the shutter openings and closings. The sequence
of exposures constituting the "precalibration" begins a few minutes before the tracking
observations are to be made and consists, for the case depicted in Figure 1, of two

repetitions of a basic cycle consisting of

(1) o ten second exposure leading to a short trail,
a one second break,

a ten second exposure leading to a second short trail,

)
)
(4) a ten second break,
(5) a one second exposure,
(6) a ten second break,
(7) a one-half second exposure,
(8) a ten second break,




(9) a one-quarter second exposure,
(10) a ten second break,
(11) a one-eighth second exposure,

(12) a ten second break.

Precalibration Sequence Postcalibration Sequence
D S ) S S .
! | -
l Y [ [ ——
Basic Pre Cycle Basic Post Cycle
T T S T e S I e
0 60 120 180 240 300 sec- Time

FIGURE 1. Sketch of typical stellar trace reflecting recommended exposure sequence for camera
of 1000 mm focal length (7X enlargement).

Immediately ofter the complation of the preculibration, the camera shutter
is opened to record the object beingtracked (usually a flashing light beacon carried
by a missile, a satellite or an aircraft). At approximately the center of the programmed
tracking interval, the camerc is closed for one second, thereby creating a short break
which serves to provide a special check on the stability of the camera. Immediately
after the completion of the tracking observations, the sequence of exposures constituting
the "postcalibration" is performed. This sequence is usually the reverse of that employed
in the precalibration, although reversal is by no means essential and is perhaps more
aesthetic than functional. The final trail of the postcalibration is normally fonger than the
initial trail of the precclibration in order to indicate at a glance the direction of stellar motion.
We see that the stellar trace of Figure 1 contains o total of 21 potential
control points, consisting of 5 breaks and 16 punctiform images. in most cases, the set
of punctiform images of most nearly optimal quality (40 to 60 micron diameter) would
be selected from each basic cycle of exposures for measurement. Thus, normally, four

images would be measured on each trace, two from the precalibration and two from the
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postcalibration. Stars of fainter magnitude are unlikely to yield punctiform images
suitable for measurement. With the PC-1000, for instance, stars of 7th to $th
magnitude normaily produce well-defined trails (and, hence, well-defined breaks
as well), but only marginal gunctiform images (if any). Therefore, the centers of
breaks provide the only usable control points on the traces of fainter stars, While
well-defined breaks can be measured with high precision, their inclusion in a
reduction with punctiform images creates a potential problem stemming from the
possibility of the existence of a significant personal bias in the measurements of
breaks relative to points. Personal bias is of no consequence in a plate reduction
provided that it is constant for all points, for then it has no effect on the reiative
positions of the measured points. For this reason, pains are taken in the selection
of control to insure that the stellar images are of uniform quality closely matching
the characteristics of the images of flashes (ideally, these would be so exposed as
to be of optimal quality). When stellar breaks are also employed for control, one
has no insurance that the personal bias in measurements of breaks will be the same
as for points. Since the characteristics of stellar breaks are entirely different from
those of punctiform images, personal bias for breaks and points may even be of
opposite direction. Accordingly, appropriate provisions must be made for the
problem of differential personal bias if different classes of control points are to be

rigorously employed in a common reduction.

The classical way around the difficulty of differential personal bias
involves the measurement of the plate in two pasitions, one rotated 180° with
respect to the other. If the differential personal bias is persistent, it will then be

removed when the two sets of measurements are averaged (after one set has been

transformed into the coordinate system of the other). An equivalent, but more convenient,

solution can be effected if the viewing system of the comparator incorporates a selec-

table reversing prism. Here, mgasurements would be made both with and without the
reversing prism in position. Either approach doubles the measuring effort and may be
self-defeating to the extent thqt personal bias may gradually be altered by measuring
fatigue.

- 13 -




In our formulation of the Advanced Plate Reduction, we have adopted an
alternative approach to the problem of differential bias in order to avoid the need
for direct and reversed measurements. The approach consists of carrying the mean
bias of breaks relative to points as additional unknowns in the plate reduction. The

. th .
plote coordinates x ,y, for the 1 point are expressed as

= ~ +

X, X, Ele ’
= g EOA

Y, = Y Y g, 8y

in which
;1 ’;1 are the measured piate coordinates,

Ax, Ay are the unknown mean biases of measured breaks relative to
mezawred points,

E, = Oif the e ral

g, = Vifthe a'h image is a break.

In general, Ax and Ay will not exceed a few microns in absolute value. This
knowledge may be excloited in the adjustment by treating Ax, Ay as if they were
observations having values of zero and standard deviations T A, OAy of perhaps
three microns. Thus constrained, the differential biases Ax, Ay could easily adjust
to any value within the range *3 microns, but would strongly be constrainad from

adjusting te a value as large as, say, 10 microns.

The parameterization of differential personal bias in theplate reduction
can be convenient even when only one type of image is measured. For instance, in

o reduction requiring an exceptionally large number of points (as in a definitive cali-

bration of radial and tangential distortion), parameterization of persona! bias would make

it permissible for one individual to measure some of the points and another to measure
the remainder (here the differential personal bias would be that of one individual

relative to another). The parameterization of differential bias is also a powerful

- 14 -
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diagnostic tool in fine-grained, statistical investigations of the internal consistency
of one ciass of measured points relative to another. Although it is possible in principle
to carry more than one set of differential biases in the reduction, we feel that inclusion

of more than one set would unduly burden the Advanced Plate Reduction.

6.0 THE OBSERVATIONAL EQUATIONS
We are now in a position to consider the general observational equations
for the plate reduction. Following the notation cf reference [9], we begin with the

fundamental projective equations

AN+ Bu+Cy
Xp+c 5)\+Ep+FV !

x
L}

(6.1)
A'x+B'p+C'y
= +
y YoT DN +Ep +Fv '
in which
X,y = plate coordinates of image point,
ApeV = direction cosines of object point in arbitrary Cartesian frame,
XprYp = plate coordinates of principal point,
c =  principal distance,
-
ABC _ . . . . .
orthogonal orientation matrix defining the rotational
A'B'C' = relationship between x,y,z axes of image space and the
DEF X,Y,Z axes of object space.

As in [9] we shall find it convenient to define our X,Y,Z system so that the origin is
at the center of projection, the positive Z axis passes through the zenith and the positive

X and Y axes pass through the East and North points of the horizon. Let ), w, k denote

the angular elemerits of orientation of the camera corresponding to a, w, k defined in [9]

(% = azimuth, .w= elevation, k = roll). Then the orientation matrix may be expressed

as the product of three rotations:
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ABC | ~cosk sink O 1 0 0 cos U -siny O
(6.2) A'B'C'| = sink cosk O 0 -sinw cosw siny cosy O
DEF 0 0 1 0 cosw sinw 0 0 1

If we define

sy =siny, s9 = sin w, s =sink ,

(63)

¢ = cosy, cy = cos W, & =CosK,

this reduces to

ABC €16 - 51529 N1C - €i%2% €2%
(6.4) A'B'CHl =1 am -ssey -wmy tas;q o |
D EF 51Cy 1Y ] $2

Let A,z denote the local azimuth and zenith distance of the unrefracted ray to a
stellar control point of hour angle H and declination & and let 6z denote the refraction
of the ray (0z is taken as a positive quantity). Then the local direction cosines of the

observed ray may be written

A ]—sinA sin(z-6z)
(6.5) v = cos Asin(z-0z)
cos(z-6z)

If ® dende the latitude of the station and 7 the sidereal time of the stellar obser-

vation, we may express the direction cosines A*, pu', V' of the true (unrefracted)

ray as
A -1 0 0 sinH cos 0

(6.6) ' = 0 -sin ® ccs 4 cosH cos d
V' J cos®P sin @ sin &
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or, since H=T-a, where & is the right ascension of the star,

A -1 0 0 -cos7 sinT O sin@ cos &
(6.7) n = 0 -sin® cos @ sinT cosT O cos @@ cos &
v 0 cos®d s5ind 0 0 sin &

Equation (6.5) may be put in the form

A cos 0z 0 -sin A sin 6z sin A sin z
(6.8) u = 0 cos 6z -cos A sin 6z cos A sin z
v I_ sin A sin 0z cos A sin 6z cos Oz cos z

But the true direction cosines X', p', V', are defined by the expression

A sin A sin z
(6.9) p' = cos A sinz
V' cos z

Hence, the direction cosines of the observed ray to a star are related to its right

ascension and declination (a,8) at the instant of exposure by the matrix equation

by cos 0z 0 —sinAsindz | [ 0 0
(6.10) v = 0 cos Oz ~cos A sin 0z 0 -sind cos®
v sin A sin 6z cos A sin 0z cos 0z ] £ cos @ sin @
-cost  sinT 0 | [sin@cosd
sinT  cost O cos @ cos
0 0 1 sin 0
— L

It shoul d not be overlooked that the azimuth A in the above expression is actually an

implicit function of @, §, ¢ and 7 and would normally be computed from
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sin A=X'/sinz ,
(6.11)
cosA = p'/sinz 5

where

(6.12) sinz = (1 - (u')z)* .

and where ', u', V' are in turn computed from (6.7). The particular merit of the
form of the relationship (6.10) is that the azimuth appears only in first order terms
(since sin Oz is of the first order). This greatly simplifies the linearization of the

observational equations, for the implicit dependence of A on @, 6 may be ignored in

the differentiation of X, p, V with respect to @, & (such differentiation will ultimately

be required inasmuch as we shall consider &, 8 as subject to error)

As we have seen, the astronomical refraction corresponding to the true

zenith distance z is given by the truncated expansion

(6.13) 6z = mptan B +7,tad +1y tan%d +qtad 0
in which

= 2 2 %
(6.14) tan 6 = {1+ Y§cot’z) - Yycotz

The substitution of the above expansion for 8z into (6. 10) introduces the refraction
coefficients W , 75, N3, 14 into the direction cosines X, u, v and, thence, into

the basic projective equations (6.1).
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The x,y coordinates in the equations (6.1) were implicitly assumed to be

free of distortion. If x,y denote the distorted plate coordinates, we may write

A
) .

xxy = (0 ) = (kg g+ L)
(6.15)

Ry Ok i e
i ek
(6.16) ¢ = [(>’<-xp)2 + (9-yp)2]*

The substitution of equations (6.15) into the projective equations (6.1) introduces

the coefficients of distortion k;, kg, ks into the observational equations.

In order to handle the problem of differential bias of one class of points
relative to another (usually of breaks relative to points), wereplace x,y in (6.15)
and (6.16) by x +£Ax, y + EAy, where, as indicated in Section 5, £ is zero for

one of the two classes of points and unity for the other.

Collecting foregoing results and introducing the convenient projective

constant K, we may express the basic projective equations (6.1) for the 1th measured

h
image of the j T etar as




ij -
(14 ot E o Ax- I~ -
( i) .)(X” Su XP) -cos K sifi K Ol
iy sink cosk O
j
Diy _ 0 0] 1
+ - - L
(6.17) 1 (1 Tag )(y” EijAy YP)
B <:os(32ij
0
C
L sanijsinﬁzij

In these equations

1Yy
0”,6“.

LY

1j

are obtained by direct measurement,

1 0 0
0 -sin® cos®
0 cos®dsind®

lrl 0 0]
0 -sinw cosw
0 cosw sinw
0

cos 0z
ij

cosA_ sindz . .
ij ij

-cos’l’lj smTij
sinT,. cosT, .
1] 1;

0 0

0 | isin Ozj cos Gj

0 | |cos aj cos O,

osd sind O
sin cos! O
0 0 i

-sinA  sindz_.
it ij
-cosA __ sinfz,
ij 1]

cos 0z .

1j

-

1 sin §,
A T

are computed from data takenfrom a star catalogue and current ephemeris,

is obtained from the reduction of recorded timing measurements of

shutter openings and closings,

is specified for each measured point (according to its classification),

is a station constant,

The following unknowns are explicit in (6.17):

Y, w, ¥ - the rotational elements of exterior orientation;

xp,yp,c - the elements of interior orientation (xp,yp are also implicit in D“, /r“, );

Ax,Ay - the differential biases in x,y measurements of different classes of points;




The following unknowns are implicit in the terms Dlj 5 Gz” :

ky, kos kg - the coefficients of distortion,

M, Ny2My . my = the coefficients of refraction.

The projective constant Kij may be eliminated by dividing the last of the three matrix
equations implicit in (6.17) into the first two. Thus, we see that each pair of plate
measurements gives rise to two independent equations involving as many as fifteen
physically meaningful unknowns. In the absence of errors of any kind, the measurement
of a sufficient number of well distributed images will lead to a sufficient number of
equations to effect a solution for the unknowns, provided that the system is inherently
determinate. The matter of determinacy is important, for it is by no means assured
merely because the number of equations equals (or exceeds) the number of unknowns.
For instance, one easily sees that, when the camera is in a zenith orientation, it
becomes impossible to separate the coefficients of distortion from those of refraction
(in this case, the atmosphere becomes, in effect, an additional, properly centered
element of the lens).

Because all of the unknown parameters in the projective model have a
physical interpretation, the attractive possibility arises of constraining the adjustment
resulting from the use of the projective equations to be consistent (in a statistical
sense) with specified a priori values of any of the parameters. The rotational elements of
orientation ¥, w, Kk, for instance, would ordinarily be known in advance to an accuracy
ranging from a few tenths of a degree from a camera mount of nominal precision (such as
that of the PC-1000) to perhaps as good as ten seconds of arc from a mount of high
precision (such as that of the BC-4). Similarly, the elements of interior orientation
55 7 08 ey well be known in advance to a high degree of accuracy from previous
calibrations. Differential biases A x, Ay should not depart from zero by more than
a few microns. Coefficients of refraction 1, 15, 173, 4 computed according to
Garfinkel's theory are probably accurate to about one per cent and most certainly
are not off by more than two per cent. Coefficients of distortion ky, ky, k3 may be

known in advance to a certain degree from a previous calibration.
9
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Ir order to be able to utilize a priori information in the plate reduction to
whatever extent desired, we shall treat all parameters as if they were observed quaniiiies.
The reciprocals of the variances assigned to the a priori values of the parameters serve

as weights in the adjustment. Therefore, zero weight may be assigned to any paremeter

-

which is to be unconstrained by a priori considerations.

7.0 THE LINEARIZED OBSERVATIONAL EQUATIONS

When Ky; s eliminated from (6.17), the resulting pair of equations may be

considered to be of the functional form:

By (%, 0¥, 0 @0 009,000 ) = 0, i=12,...,n ,
7.1) (O & MR M p i

fz(i'ij,ylj:aj,Gj,ul,uz,...,up) = 0, i=1,2,...,n ,
in which

u =Y U = Xp W= Ax ug= k; U =M
(7.2)  wTw Us = ¥p ug = Ay up=ka ug =12

U= K W = C un =kg uy =73

Uis T4

In(7.1) we have left ourselves uncommitted as to the number of unknown parameters.
This is done for the sake of generality in order that the matrix representation of the
adjustment will not be affected if parameters are added to or deleted from the model.
In the event that certain parameters are deleted as unknowns, the numbering of the

remaining parameters would be altered to preserve continuity of numbering.

In equations (7.1) the measured plate coordinates are subject to random errors;
so are the right ascensions and declinations. The u's may on option be considered to be
either measured quantities or completely unknown quantities. Because equations (7.1)

are nonlinecr, we shall employ a truncated Taylor's series to reduce them to linear form.
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Accordingly, we write

x0+v

X :
] ij 11 j

(7.3)

-0
+
¥ o Vv, ..

yij 21j

th

where ;13";(1);' denote the measured plate coordinates for the i1 measured image of the

T

i star, and v are the corresponding measuring residuals. For reasons to be

IREACRE
made clear presently, in linearizing the projective equations we shall regard the right
ascensions and dec!inations as unknown parameters rather than measured quantitites.

Accordingly, we write

a, = @ + ba,
(7.4) J J
5 = ™+ 65, , i=1,2,...,n
J ] i
in which cx?o ; 6?0 are arbitrary approximations to a, ,6]. and Gaj ,563. are the appropriate,

out unknown corrections. In the linearization of the projective equations, we shall

ikewise treat all of the u,_as unknown parameters, even though some (or all) may be

independently measured quantities. Thus, we write

(7.5) Uk - U]0(0+ 6Uk ’ k:],2’ooolp
where Ugo are arbitrary approximations and the Su, are appropriate, but unknown,

corrections. The substitution of (7.3), (7.4), (7.5) into (7.1) puts the projective

equations in the form



. - -0 0, 5 0, = 00+
flil fl(xJ*v]i],yi]+v2iJ,o} 001,5]. 66, w+dy,..
(7.6)
- -0 -0 00 00 00
= + + + + + .
f2iJ fz(x‘1 Vigs * Yyt Van, 0 9 50]_, 53 (55j, Ut Oy,

Retaining the zero and first order terms of the Taylor's expansion of . 6), we get

s 2 N T 2
+b bU] +b]lj 8U2+.'.+b‘ijsup+qi]‘80j+ b]ij 86]

L u® 46y ) =0,
p

P

L, 0%+6u ) = 0.
p P

Viii 117 T Gy
(7.7) . . 5 , .
! 2 1 2 -
Vo +b2”, 8u] + bZiJ' 5u2+ ..t bZij 8up+ b?ij 80], + b21j SSJ. 62“_ ’
in which
- i 00 00 0 00 00
€, = —fl(xij,ygj,aj ,Sj ,Lﬂ,uz ,...,up)
(7.8)
_ -0 -0 00 00 00 00 00
€y = —fz(x”,yij,aj,sj,u] s Ugreeeys up)
aond
of . of,
° k 11j k 21j
= - , = S ——— , k=1,2,...,
(7.9) bhj auk . b2ij 3uk . P
. . af“j 2 i af“J
113 - aaj 0 ! 11j 38] 0 !
(7.10)
. _ afm EZ _ afm
21j 3, 0 ! 211 95, 0
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In(7.9), (7.10) the symbol

evaluated at the point (;(:

0 i used to indicate that the partial derivatives are

|G ;2’ , af;o, 5(’)0, ._,?0, u‘;’,, cer ugo). We shall not concern

ourselves here with the computational formulas for the partial derivatives, for

their derivation is entirely straightforward.

S - . h
The linearized projective equations for the !

th . . .
the §  star may be put into the following matrix form

¥ B8 + B8, =

(7.11) v, €y,

in which

|

MIT} . ij

Vis T |y v By = e

2

2,1) 24 (2,p) Y
(7.12)

‘)

. b“’

B = 1

13 b

(2’2) 21)

measured image on the trace of

o 'p
b;u bm .

. .p 8

2 )

o ]
y

blt: - 801
“2 P 8 - 0 €
bzt: i 88’ 19

The set of Zn, equations arising from the n, images measured on the trace of

th :
the s star may be written

(7.13) v, +B5 +BE = ¢
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wherein

. 7]
B”
. B
2]
B =]
b]
(nj IP)
ani
I

in which ij = 2n,. Collecting the equations for all n stars, we have

(7.15)

in which

(7.16)

v+ BS + BS

A

(n,1)

Vi

v2

= €

By
B, ;
=] 0 B =]
: (n,2n)
B
n

where n denotes the total number of equations

(7.17)

n

EI+F\2+...+En

= 2m + 2n, +
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We shall let A denote the covariance matrix of the observational vector
associated with the full set of linearized projective equations. If we assume that the

plate coordinates for different points are independent, A may be written

A O 0
7.18) A - 0 A, ... O
(n,n)
0 0 A,
L -

in which A; is the covariance matrix of the plate coordinates of the images on the

t . .
1 stellar trace. 1\j may, in turn, be written

(Ayo ... 0 |
7.9 A, = |0 Ay O
(7,5 : ;

Lo 0 ... A,

in which A” denotes the covariance matrix of the plate coordinates ;21,;121 .
in order to allow the utmost flexibility in the choice of measuring method, we shall admit
the possibility of correlation in the x and y coordinates of a given point. Thus, A“

is considered to be of the form

o_ o. -
(7. 20) A” = 1] X134y
(2,2) oo _ of
STRATY Yy
b —
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The inverses of A, Aj , and ij will be denoted by W, Wj e W” , respectively.
So far we have not used the fact that the right ascensions and declinations are

actually measured quantities known to a high degree of accuracy. This information may

be expressed by the following set of observational equations

(7.21)

o
|

& + vy 1=1,2,...,n
i

in which a? ,5? are the values computed from catalogue data and v, tVg oare the
i §

unknown random residuals associated with the "observed" right ascensions and declinations.

Repiacing a, /& in (7.21) by the values in(7.4), we get

_ = 00 _ 0

vc(j Sclj a oy
(7.22) " ,
vg " 585 = 8, - 6j

These may be written

(7.23) v, —Sj =a e

in which gj is as in (7.12) and

——~~
<
N

S
<

H

m

I
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It should be noted that since 0?0,6?0 are arbitrary initial approximations to a, ,Sj ’
we may choose them to be equal to the observed values a? , 8(; . This would reduce
the elements of 21 to zero. We have not done this because it may be necessary to
iterate the adjustment in order to eliminate the effects of higher order terms neglected
in the linearization of the projective equations. Although the initial approximations
are wholly arbitrary, subsequent approximations are not arbitrary, but are determined
by the preceding iterative cycles. It is to emphasize this fcct that we do not regard

€, as necessarily equal to zero, although at the outset this would ordinarily be the

case.

Collecting all of the equations of the form(7.23) , we have

e . ve o

(7.25) v-b = €

in which L ; - _ »
vi 5 3
o ;2 o éz - €2
(7. 26) v = ’ 8 ’ € = .
(2n, V) : (2n,1) . (2n,1) .
. _ A L i

The covariance matrix associated with the entire observational vector of right ascensions
and declinations may be denoted by A. If errors in catalogued positions of different

stars are regarded to be independent, we may write

p— . -
A, O ... ©

(7.?) ‘.A = 0 A2 o0 O ,
(2nl]) o 5 o




in which

(7.28) A , %

(2,2 0 Ug

[t}

The variances 002 , 082 can be computed from information supplied in the star catalogue

i i
employed. In general

2 - 2 _T\2 g2
oaA (Ua_)oo"‘ (T-To) cp '
] ] 0’
(7.29)
082 = (Ué)oo + (T-Tg)? 0: '
| )
j
in which

(%2)00 ,(%2 Yoo are the standard errors of the stellar position at the epoch Tg

i b}
of the catalogue,

)

o ,o0 are the standard errors of the annual proper motion in a ., 8 .

T is the time in years of the observation,

We shall denote the inverses of A and A’ by W, Wj .

The additional information made available by a knowledge of a priori values of

any of the parameters of the projective equations may be introduced through the incorporation

0

. denote the a priori value of the

of the appropricte set of observational equations. Let u

th .
k' parameter. Then we may write
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(7.30) v grv,  (k=1,2,....0).

k

. . - - : : : , th
in which v, s the residual associated with the "observed" value of the k' parameter.
K

Eliminating U, s the adjusted value of the parameter, from equations (7.5) and (7.30), we get

(7.3) v, -8 = P (k=1,2,...,p).

k k

(7.32) v-8 = €

in which

= [ - — -1

% | % o -4

(7.33) v = v02 ’ § = 5U2 ’ € = P - 9

(Pl]) . (Pl )] . (p, 1) .

0 _ 0

vup Sup up Yo
L . L - L J

As with the discrepancy vector € for right ascensions and declinations, the initial
discrepancy vector € for the projective parameters may be made equal to zero by the

simple expedient of choosing each arbitrary initial approximation u?to to be equal to

its specified a priori value ui. Again, for presentational purposes we shall not require
that this be done because in doing so one can easily lose sight of the fact that € will
no longer be zero after the initial solution of the iterative process required to account

for the higher order terms of the Taylor's expansion.




We shall let A denote the pxp covariance matrix of the vector of a priori
y e th
values of the p parameters and shall let W denote its inverse. If the k  parameter
is to be totally unconstrained, it is merely necessary to employ zeroes for all elements

0

in the k’h row and column of W. On the other hand, the o priori value u, of an

arbitrary parameter may be enforced by choosing u?to equal to ug and by setting w,__,
th . y A . q
the k' diagonal element of W, equal to infinity (or to a practical computational

equivaient),

8.0 THE MINIMUM-VARIANCE ADJUSTMENT
Now that all of the information available has been expressed in the form of
observational equations, we are ready to considerthe problem of adjustment. First,

however, we shall consolidate our three basic sets of observational equations, namely,

v + .BS#BS

= €,
8.1 v- & = ¢,
v -85 = €,

into the single matrix equation

(8.2) v+85 = ¢

in which
) v i B B & i
(8.3) v = v , B = -[ 0 ; 8§ = 6 , € =
(NN o | ) ’ (N, )
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where

(8.4) N =n+P, P=2n+p.

Similarly we shall consolidate the three covariance matrices A, A, A and their associated

inverses (or weight matrices), W, W, W into the composite matrices A and W where

A O O W 0 0
@5 A =]loAo| , w = 0O W o
NN, 00 A (N, N) 00 W

Inasmuch as the consolidated system of observational equations (8.2) involves
a total of N equations in N+2n+p unknowns (N residuals in the vector v and 2ntp
parameters in the vector §), there are more unknowns than equations. Therefore,
an infinite number of possible solutions exist. The writer has shown in [11] that if
the observational errors have the multivariate normal distribution, the solution of
maximum likelihood is that which satisfies the observational equations (8. 2) while
minimizing the quadratic form
Toow©

w v
(1,N) (N,N) (N,1)

(8.6)

w
it

Even if the observational distribution is not multivariate normal, this solution will

lead to unbiased estimates of the parameters having the smallest possible variances.

Because the criterion of minimum variance does not require a knowledge of the observational
distribution, we shall consider our subsequent results to constitute the minimum variance
solution tothe problem at hand, understanding, of course, that they also constitute the
maximum likelihood solution when the observational distribution is multivariate normal

or the least squares solution when the covariance matrix of the multivariate normal

distribution is diagonal.




The particular vector & which leads to the residual vector minimizing the

quadratic form s is shown in [ 11] to be defined by the system of normal equations

(8.7) N s = c
(P,P) (P, 1) (P, 1)
in which
. =T - =
(8.8) N = B w B :

(P.P) (P,N) (N, N) (N,P)

(8.9) c = B W &

(P, 1) (P,N) (N,N) (N,1)

Once & has been determined from the solution of (8.7), the residual vector v can be obtained
from (8.2).

While the foregoing constitutes the formal solution to the problem at hand, it
is not in a practical form because of the excessive order of the normal equations for a
moderate number of stellar control points. For instance, if n were to equal 50 and
p were to equal 15, the order of the normal equations would be N=2(50)+15=115.
'n view of this, our approach is clearly impractical unless vast simplifications can be
effected. As we shall see, the structure of the normal equations is such that an altogether
practical solution can be derived no matter how large N may be. The general nature
of the solution is similar to that derived by the writer in [12] for the general problem of
multistation analytical stereotriangulation,

By virtue of the partitioning of (8.3) and (8.5), the normal equations (8.7)

can be put into the form

3 ® q :

810 | _; .|]. .
N N

18] ¢

1}
~




in which

N =8B w B +w , N =8 w B
(p,p)  (psn) (n,n) (n, 1) (p,p) (ps2n)  (1,n) (n,n) (n,2n)
@m N =8 w s , N =8 w B+ w ,

(2n,p) (2n,n) (n,n) (n,p) (2n,2n)  (2n,n) (n,n) (n,2n) (2n,2n)

é=BTW€-W€,.c.='B.TW€-\x/'6.

(Pll) (Piﬁ) (ﬁlﬁ) (ﬁll) (P:P) (Pl ]) (2n,]) (2nlﬁ) (ﬁl—ﬁ) (ﬁl]) (2n12n) (2nl])

Employing the partitioning of (7.16), (7.18) and (7.27) in equations (8.11), we can

express the normal equations (8.10) as

2. L _ _ j -] [ 7]
2 N+w LK N, N 3 > ¢, - We
_J ;.! __________ .i ___________________________________ RNy R b - -j.=.1 ____________
1
NC 1 N+ W, 0 0 & a - W e
]
(8.12) NI E 0 N, + W, 0 8, | < c; - W€
E
|
| .
T ! R -
N+ 0 0 . N +W an ¢, -~ W€,
e - | - -

in which the broken lines partition the system in accordance with the partitioning of (8.10).
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In (8.12)

N=8 w B, N -8 w8,
) )_ _ J_ _ ] ) ]_ _ ]_ _ )
(PI]) (P:nj) (nj' nj) (njl‘) (P/ 2) (Plnj) (njlnj) (njr 2)
T T . . e .
(8.13) Ny = B W by =8 W8
(2:P) (21n ) (n N )(n :P) (2/ 2) (21 nj) (njlnj) (njl 2)
¢ =8 w oo S =B W e
1 1 -]. _ ] 1 _ _ -] _ ]
(p']) (pl nj) (njlnj) (nd]) (21]) (21nj) (njl nj) (njl ])

Equation (8.12) shows that the lower right hand portion of the coefficient matrix
corresponding to N +W consists of a diagonal matrix of n two by two matrices

(the N, + W,). We may exploit this fact to invert N by the method of partitioning.

First let us set

-1
M M : N N
(8.14) M = . = N =
v M NT N

where the matrices M, M, M are of the same order, respectively, as their counterparts

N, N and N. Because M is the inverse of N we may write

’—l .
N N M M 1 0
(8.15) . . =
NT N KAT M 0 1
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This leads to the four simultaneous matrix equations

(@) NM+NM

1l
—
~

b) NM+RNM' =0,
(8.16) o
(0 N'M+NM =0,

@ RTM+NM =1

The solution of (8.16(c)) for KAT is

T

T -|NM,

(8.17) M = -N
which, substituted in (8.16(a)) and (8.16(d)), gives

(8.18) NM-RNN'R'M = 1,
8.19) -N'MRNT" + NM = 1 .

These may be solved for M and M, yielding

8.20 M = (N- N N ’Y,
(PIP) (PIP) (P:Zn) (2n12n) (2an)

.o o-_] oo-" - . — l._
(8.21) M = N+ N RNmM RN

(2n,2n;  (2n,2n) (2n,2n) (2n,p) (p,p) (ps2n) (2n,2n)
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. o
Because N is a diagonal matrix of 2x2 matrices, the computation of N~ in (8.20)

is the equivalent

of the inversion of n two by two matrices and, thus, presents no

practical difficulties; this is the key to the derivation of an efficient computational

procedure. Once Mhas been computed from (8. 20), M can be computed from (8. 21)

and N can be computed from (8.17). However, M is a completely filled 2n by 2n

matrix and,thus, wouid require inordinate storage for large n. At this point we are,

therefore, still short of our goal of achieving a computationally feasible reduction,

even though the largest individual matrix requiring inversion has been reduced to the

order of N. Proceeding further, we note that the solution of the normal equations

(8.10) is formally

3
(8.22) .
3

from which
(8.23) § =
(8.24) & =

If we define

(8.25) Q
(2n,p)

and note from (8.

(8.26) M =

N N c M M CA'
NT N c MM 2_[
Mc + !\_A; ;
K/\Tc.:-*Mc
- NN

(2n,2n) (2n,p)
17) that

_MQT ,
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we can express (8.23) as
SRR &
(8.27) & = M(c-Q «¢)

Once & has been computed, an alternative formula for & may be derived from the second

of the pair of matrix equations implicit in (8.10), namely,

8.28) N6+ N& = ¢ .

The solution of this for 8 in terms of & is
8.29) & = N'c-aQs

This formula for & is preferable to that of (8.24) because it does not require the
evaluation of M,
To avoid operating with large matrices in the solution for & and §, we may exploit

the partitioning implicit in (8.12). We see that

(8.30) N = Z)] N+W
j=

(8.31) R = (\\N,...N) ,
(p,2n) n

(3.32) N = dicg(f.\‘lj + Wj) ,
(2n, 2n) (2,2) (2,2)

(8.33) c = Te¢- We |,
(p, 1) 1=1
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(S \‘/‘./| €
(8.34) ¢ = | cp- Wy
(2n,1) 5
b=,
8
(8.35) 5§ = 5
(2n,1) .
.
n

Therefore, if we define the auxiliary matrices

.39 Q= (N + w)" R
(ZIP) (212) (2,2 (le)

(8.37) R. = N Q

j i i ’

(prp)  (p,2) (2,p)

(8.38) S. = N - R,

i ] §

(prp)  (psp) (psp)
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_ . T o
(8.39) < ¢, - Q’, < ,

(Prl) (PI]) (plz)(zll)

1]

(8. 40) s = »s |
(prp) = !

®4) T = 0T
(p,V) 1=

we can readily verify that M in (8.20) is given by

(8.42) Moo= (s+wW)
(P:P)

and that the expression (8.27) for § becomes

(8.4) 5§ = (S+W (T-W ¢)
(p:P) (PeP) (P, V) (prp) (P, V)
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Similarly, we find that the elements of & in (8.29) become

.o _ --_‘ .. .. . &
(8.44) 8], = Nj (cj- Wj ej)- Q’ )

(2,1) (2,2)(2,1) (2,2)(2,1) (2,p)p,1)

From the foregoing we see that the computations can be so arranged that
the largest individual matrix to be operated on is of order pxp. Even though the order
of the original normal equations is (2n+p) x (2n+p), the total number of computations
for n>>p is propertional to p2n rather than ® as would have been the case had the
diagonal character of N not been exploited. It follows that the overall computational
effort tends to increase linearly with the number of stars carried despite the fact
that each additional star intraduces two additional unknowns. Because of these
characteristics, the Advanced Plate Reduction is well suited to programmed compu-

tation an a digital computer.

9.0 ERROR PROPAGATION

Because of the possible influence of neglected higher order terms of the
Taylor's expansion of the projective equations, it may be necessary to iterate the
adjustment by treating the resuits of the initial solution as improved approximations.
In this case the values of 6 and g, resulting from the 1”‘ iteration of equations

(8.43) and (8.44), may be expressed as
0.0 & = (sUhw @l welt)y

6.2 &Y = (R g,
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The initial solution corresponds to the case i = 0, and subsequent solutions result from the
relinearization of the observational equations using the results of the preceeding solution as
improved approximations. The process of iteration is best continued until the mean error of the

adjustment (to be discussed below) stabilizes sufficiently according to a sound criterion.

if the initial approximations to the parameters are chosen o be equal to their a priori
ang arE - (0 ..(0) .
or measured values (as may be legitimately done), the initial discrepancy vectors e( ), e( ) will

both reduce to zero. In this case the discrepancy vectors for the first iteraiion will be

9.3 L0, Ho_ (0

(9.4) ) _ w0, (o) £(0)

and in general

(9.5 AL ;(!4)-# gD - 50, (M gD '

(0. = NN J 5O L 5y gD,

€

Hence, discrepancy vectors subsequent to zero initial vectors are not necessarily zero, but rather

are equal to sum of all preceeding adjustments of the parameters.

After the solution has converged to the point where further adjustments of the

parameters are insignificant, the vectors of measuring residuals may be obtained from

v = €
(9.7) v = €
v = ¢

in which ¢, e, € denote the final discrepancy vectors of the iterative process. The quadratic

form of the residuals is
(9.8) s = vTWv + ;TWV + vTWv
The degrees of freedom associated with the adjustment is equal to the number of observations in

excess of the minimum number required for a unique solution. From (8.1) we see that the total

number of observational equations is




(9.9) N =n+ 2n+p.

In (92.9) the number of measured plate coordinates is

(2.10) n = 2n|+2n2+..+2nn

where n, denotes the number of different images measured on the trace of the ifh star; the
number of "observed" right ascensions and declinations is 2n and the number of "observed"
projective parameters is p. Precisely offsetting the 2n "observed" stellar coordinates and the
p "observed" projective parameters are the 2n unknown stellar coordinates, and the p unknown
projective parameters. Thus the degrees of freedom are

f = n = number of measured plate coordinates.
In the event that FA:» of the p projective parameters and 2n of the 2n stellar coordinates are regarded

as completely unknown quantities, rather than observed quantities of known variance, the degrees

of freedom become reduced to
(9.11)  f =7 -p -2n.
The mean error of the adjustment is

(9120 m = Js/F .

Inasmuch as unit variance was implicitly taken equal to unity, the quadratic form s has the x?
distribution with f degrees of freedom (provided that the distribution of the original observational

vector is multivariate normal). The probability of obtaining a value of ! as large as s with f

degrees of freedom can be determined from a table of the chi square distribution. If this probability
should be excessively small (say less than 5 percent), one may conclude that the residuals from the
adjustment are not statistically consistent with the covariance matrix of the observationai vector.

This would indicate the presence of significant systematic error.

The inverse of the coefficient matrix of the normal equations provides the covariance
matrix of the unknowns. In particular, the covariance matrix of the p projective parameters

resulting from the adjustment is




(9.13) I= M
(p,p)

and that of the vector of cdjusted stellar positions is

9.14 I = M
(2n,2n)

By virtue of the equations (8.21) and (8.25), we may write

905 1= N'+ @ M Q' .
(2n,2n) (2n,2n) (2n,p) (p,p) (Pl2n)

- o : . th
The submatrix of I corresponding to the coordinates of the i star are

©.7) I = (N+w)y+aqa M Q@ .
(2,2) b] i j J
(2,2 (2,2)  (2,p) (psp) P/2

in tnis equation the first term, (Nj + .Wj J' 1, represents the covariance matrix of the adjusted
stellar position under the assumption that perfect projective parameters are known and the

second term, ij\.A Q;r, represents the contribution of errors in the projective parameters resulting
from the adjustment. By carrying a sufficiently large number of stellar control points, one can
suppress the magnitude of the second term to insignificance relative to the first. This is a

basic objective of the plate reduction, for the errors in the computed directions to the various
unknown points (stars or flashes) will be significantly correlated with each other if the projective
parameters are not established to sufficient accuracy; by adequately suppressing Q M QT through
effective explbiting of redundancy, one can maximize the informational content of the computed

directions of unknown points measured on a given plate.

As we have seen,uncatalogued stars can be carried through the Advanced Plate Reduction
by treating their unknown stellar coordinates as observations of zero weight and noting that observa-

tions of zero weight do not contribute to the degrees of freedom of the adjustment. For an uncatalogued

star to be of metric value in the adjustment it is necessary that at least two images be carried. |If
only a single image is carried, an uncatalogued star becomes totally extraneous and contributes

nothing to the observational redundancy. An extraneous observation, nonetheless, can be carried
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through the adjustment, even though it has absolutely no effect on the adjustment and, in
turn, is totally unaffected by the adjustment. The only merit in doing so arises from the
fact that the computed direction of the star and its covariance matrix then becomes con-
venient by-products of the adjustment via equations (8.44) and (9.17). For the same reason,
the plate coordinates of flashes may be carried through the adjustment even though they can
make no contribution to the adjustment (here o flash would be treated as if it were an

unknown star).

10.  CALIBRATION OF DISTORTION CAUSED BY LENS DECENTRATION

The theory presented thus faor presupposes that the lens is perfectly centered (i.e.,
that the centers of curvature of all optical surfaces are collinear). A significant
degree of decentering will introduce tangential distortion and asymmetric radial dis-
tortion. The suppression of such distortion to a value not exceeding five microns over
the plate format requires appreciable skill and patience on the part of the optical technician
in aligning the lens. Its suppression to a value not exceeding two microns calls perhaps for
an element of luck in addition to skill and patience. In view of our decision to regard
as significant any factor contributing the equivalent of one micron or more of error in
plate coordinates, it is clear that we cannot ignore the effects of errors of lens centration.
Neither con we circumvent the problem by asserting that cameras which display significant
tangential distortion should not be employed in metric applications, for to do so would
be tantamount to rejecting virtually every camera in existence (as long as we set one
micron as the level of significance). It is fortunate, therefore, that we have found that
distortion caused by errors of centering is fully as amenable to calibration as symmetric
radial distortion. This being so, it becomes admissable in analytical photogrammetry to
employ cameras which are affected by appreciable tangential and asymmetric radial
distortion; in fact, decentering can be tolerated to the extent that it does not sensibly

affect the quality of images.

Only a few reference books on optics touch on the subject of decentered optical
systems (e.g., Hardy and Perrin [13], Strong [ 14]). These state that the opticail properties

of o slightly decentered lens can be very nearly duplicated by placing an appropriately
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oriented thin prism of appropriate deviation in front of the perfectly centered lens. The

thin prism model is also adopted in the few papers we have been able to find in the litera-
ture concerning tangential distortion or lens decentering (Bennett [15], Washer [16], Carman
[17], Pennington [18], Sewell [19], Sharp [20], Livingston [21]). We should note

that, in the thin prism model, a single prism is adequate to account for the compusite

effect of any number of decentered elements, for a Qroup of individual thin prisms in

object space (one associated with each decentered element) can be replaced by on equiva~

lent, single prism.

Bennett [15] was one of the first to test the thin prism model against actual
observational data. Washer [16] considers the effect of decentering (or of a bent optical
axis) on the determination of the principal point. Carman [17] presents the results of
numerical ray tracing through a thin prism of points on a grid and demonstrates that a
suitable choice of principal point can minimize (though not eliminate) the effects of
decentering. Pennington [ 18] takes note of the systematic effects of tongential distortion
on photogrammetric extension of control ond discusses the practical determination of
tangential distortion, pointing out that its observed characteristics agree with the thin
prism model. In [19] Sewell gives an example of the determination of tangentic! distortion
by phatographing a siraight-line array of targets across both diagonals of the format. Using
Pennington's technique, Livingston [21]} reports the measured tangential distortion across both
diagonals of the photographic format of 33 Metrogon lenses and one Topogon lens. As we
shall see presently, Livingston's results are actually not generally in strict accordance with
the thin prism model for angles in excess of 25° from the axis of the camera. However, the

“cosine variation" of tangential distortion seems to be well substantiated by his results.

It is well to consider at this point the behavior of tangential distortion according
to the thin prism model. As described by Pennington [19], there exists on the plate an
axis passing through the principal point along which the tangential distortion is maximum.
At right angles to the axis of maximum tongential distortion is an axis of zero tangential

distortion. The tangential distortion along any other axis passing through the principal




point is proportional to that along rhe axis of maximum tangential distortion, the constant
proportionality being the cosine of the angle between the axis in question and the axis of
maximum tangential distortion. Couched in analytical terms, the model may be described
as follows:

(10.1) A5 = P(r)cos (¢-p) =(_f_co; ¢30+-F)i-sin @) P(r)

in which
Alx,y) = tangential distortion at x, y {x, y are referred to principal point);
¢ y (x,y principal p
9, —ai c
r = (x° +Yy%) = radial distance;
P(r) = profile of tangential distortion along axis of maximum tangential distortion;
¢y = clockwise (in the strict mathematical sense) angle between positive X
axis of maximum tangential distortion;
] = clockwise angle between positive X axis and radius vector from

principal point and X, y.

The profile function P(r) is zero at the principal point and is tangent to the X axis at the

principal point. This suggests that P(r) is an even powered expansion in r:

(10.2) P() = Q2 vl .., .

During the course of the past decade we have had the opportunity to study the
residual vectors from scores of sffllar plates, each taken explicitly for the calibration
of radial distertion and each containing typically from 100 to 200 fairly uniformly
distributed images. On the occasions when discernible tangential distortion was encountered,
the pattern did correspond approximately with that described by Pennington, particularly
with regard to the cosine variation. However, the tangential distortion was definitely
nonzero at the principal point. Moreover, a peculiar form of asymmetric radial dis-

tortion was found to accompany the tangential distortion.




In order to resolve the partial discrepancies between theory and observation, we
undertook a special investigation. The first step was to gain greater insight into the physical
properties of the thin prism mechanism by performing a rigorous analytical ray tracing through
such a prism. We should point out here that Carman's [17] results and all others we have
encountered are either consequences of numerical ray tracing or else are restricted to first
order approximations of tangential distortion and thus do not clearly define the full and
precise relationship between the parameters of the prism and analytical characteristics of
the resulting distortion. We shall present only the essential results of our ray tracing rather
than the detailed derivation, inasmuch as it is fairly involved, though entirely straight-

forward. First we define the following:

€ = angle of prism,

H =  index of refraction of prism,

®, = angle between image of edge of prism and positive x axis of plate coordinate
system (when @y = 0°, a line normal to the image of the edge of the
prism and directed through the principal point coincides with the positive
y axis; when &y = 180°, such a line coincides with the negative y oxis.),

® = angle between radius vector to image (x,y) and positive x axis,

8y = angle between undeviated principal axis and ray to image point (x,y);
undeviated principal axis is arbitrarily taken to be normal to the front
surface of the prism,

6 =  angle between principal ray and image ray after refraction by first surface
of prism,

8; = angle between normal to second surface to prism and refracted image ray
within prism,

6; = angle between emergent ray and normal to rear surface of prism,

c =  principal distance of cemera,

For points of infinity, the distance of the prism from the lens is of no consequence. Similarly,
without essential loss of generality, the prism can be oriented with one of its faces normal to
the principal axis. This leaves only the three parameters €, p, ®y as essentiz! to the complete
specification of the prism.
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From analytical ray tracing, we ultimately arrive at the following formulas for the

radial and tangential components of distortion:

(10.3) & (x;y) = Psin(®-a) ,
(10.4) Af(;,;) = Pcos (P- ) ,
in which

(10.5) P = ¢ [(cos B cospe - cos B3) sinpe + (1-cosecospe) sinBp sin (P- dg)].

Starting with the coordinates x, _y- of the image point, we can, for specified ¢, p and &y,

compute the quantities in the expression for P by means of the following sequence of equations:

(10.6) r = (22+§2)%,
(10.7) sin gy = r/(r2+c2)%,

(10.8) sin® y/r cos®= x/r,

(10.9) sin6, ’llsin By, cos & = (1- sinzel)i,

(10.10) cos 8, sin(® - ®y) sinB; sine + cos 6 cos ¢,

(10.11)sin 0, (1 - cos 292)% ;

(10.12)sin83 =  usinBy, cosB; = (1 - sin2 93)% .

The expression given for P is closed; no approximations were invoked in its derivation, If

¢ is regarded as a small angle and only first order terms are retained, P reduces to the form
(10.13) P =~ c(cos B - cosBj) (pe)
and this in turn can be replaced by the expansion

CHE

(10.14) P s

1

(1- L ) sin? 8, + ¢ O(D,sin*8,).
? 0 0

This indicates neither p nor ¢ is individually of primary consequence, but rather that both

combine to form the essential parameter of the prism given by the coefficient of sin28y, namely,
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(]0.15) P‘ a3 _T(]——T).

Thus, for all practical purposes one may specify an arbitrary value such that u> 1 and

€ > O for either uor ¢, but not for both simultaneously. It is convenient to specify a
value for p which is typical of a glass and to let € assume the role of the free parameter.
We shall adopt the value p= v 2 , since it lends an aesthetically satisfying character to

some of the ray tracing formulae.

The explicit formulation provided by equations (10,3), (10.4) and (10.5) shows
clearly that the radial component of distortion of the thin prism model is fully as important
as the tangential component. Yet, the radial component has been almost universally ignored,
virtually all consideration of the effects of decentering being restricted to tangential dis-
tortion. From (10.3) we see that the behavior of radial distortion is precisely the same as
that for tangential distortion except for a 90° shift of phase. Thus, the axis of maximum
radial distortion corresponds to the axis of zero tangential distortion and vice versa. At
phase angles of ¢ - &y = n%— ¢ the radial and tangential components are of equal magnitude

for a specified radial distance.

From (10.10) we see that 8,, and hence 6,, are weakly dependent upon the "phase"
angle ®, This means that the profile function P is not strictly a function of radial distance
alone, as indicated in (10.1), but varies weakly with ® as well, However, for small (though
significant) decenterings, the dependence of the profile function on ® may be considered

tc be negligible.

Operating on the relations (10.3) and(10.4), we can readily derive the result

(10.16) P cos &y Ar sin¢+Atcos¢
(10.7) Psin®, = Arcos¢+Afsin¢

in which Ar' At are short for Ar (x,y) , Af(;,;) . Ifwe let Ax' Ay denote the x, y

components of the distortion, we can show that
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(10.18) Ax Ar cos © - Atsm P,

(10.19) A A sind+ A cos P,
y r t

It follows from these and (10.16), (10.17) that

(10.20) Ax =  =Psin®,
(10.21) Ay =  Pcos .
Hence,
3
\ = 2 2
(10.22) P (Ax + Ay)
and

{10.23) sind,= -A/P,
(10.24) cos®= Ay/P'

If we adhere strictly to the thin prism model, P car assume only positive vaiues and the
above formulae for P and @, are entirely unambiguous. At a later point in our discussions,
however, we shall partially relax the thin prism model to the extent of letting the profile
function P assume both positive and negative values. To avoid ambiguities of sign under
such circumstances, we shall invoke symmetry to restrict ®, to the range 0 = &, = 180°.
This means that sin ®; can assume only positive values and, hence, that the sign of P must

always be taken opposite that of Ax.

Before we take up the extension of the Advanced Plate Reduction to calibrate
distortion resulting from centering error, we shall study how distortion arising from the thin
prism model propagates through a least squares plate reduction. This will provide us with
the insight we require for the correct interpretation of least squares residuals within the
framework of the thin prism hypothesis. Figure 2 shows the residual vectors when a 16 cm
x 16 cm grid is projected through a thin prism onto the plate of a camera of 600 mm focal

length and 17° x 17° field of view(all but one of the figures of this section have been placed

at the end of the section). The residual vectors are exaggerated in scale by a factor of 1000.

The parameters of the prism are
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10 minutes of arc,

M V2,
q’o = 00-

™
|

In the projection of Figure 2, the true elements of orientatior were taken as ¢= 0,
w=0, k=0, Xp =90, yp =0, ¢ = 600mm and were rigidly enforced. Therefore, the
elements of orientation in this case can afford no cempensation whatever for thin prism
distortion and the residuals strictly follow equations (10.20), (10.21). We note that the

residuals in x are all zero by virtue of our choice of ¢y = 0.

In Figure 3a the plate coordinates of the distorted grid were subjected to a least
squares adjustment. The resulting adjusted elements of orientation are y = 0, w = 020255
k=0, XP =0, yp = 0.260mm, ¢ = 600.000mm. This demonstrates that basic mechanism
afforded by elements of orientation for compensation of thin prism distortion consists of
(1) a shift of the principal peint away from the edge of the prism,

(2) atilt of the camera axis away from the edge of the prism,

It is noteworthy that the principal distance does not enter into the compensative process.
Indeed, only the equivalent of two of the six essential projective parameters afford partial
compensation for thin prism distortion. We note that the profile function in Figure 3a is no
longer zero at the principal point and that it now assumes both positive and negative values.
In comparing Figures 2 and 3a one should observe that the scale of the residual vectors in

Figure 3aistwice that of the residual vectors in Figure 2.

With narrow projective bundles a small shift of the principal point is very nearly
the photogrammetric equivalent of a small tilt of the camera axis. The approximate equiva-
lence of translation and rotation no fonger holds for wide projective bundles. in order to
determine the nature of the compensative process for wide projective bundles, we repeated
the computations leading to Figures 2 and 3a fora lens of 115mm focal length and 76° x 76°
field of view. In order to maintain the same general magnitude of thin prism distortion, we
changed the prism angle from 10 minutes of arc to 2 minutes of arc (the absolute effects
on plate coordinates of thin prism distortion for a fixed plate format vary inversely with the
focal length). The two sets of residual patterns for the 115mm camera turned out fo be

practically identical with Figures 2 and 3a respectively. The only essential difference in
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the overall results was that the principal point underwent no adjustment with the wide
projective bundle; all compensation resulted from a tilt of the camera axis away from the
edge of the prism. Only when the adjustment was repeated with the tilt angle enforced to
its true value, did the principal point shift. The resulting compensation wos significantly
less than that of the tilt. This demonstrates that, in the case of wide projective bundles,
the essential compensative process afforded by the unconstrained elements of orientation
consists solely of a tilt of the principal axis; a shift of the principal point is actually
effective only in the absence of thetilt mechanism.

If b and Y denote the magnitude of the compensative translation and tilt (in radians),

the residuals Ax’Ay in Figure 3a can be shown to satisfy the equations

(10. 25) A ~-(P+b-cY)sindy - —;— rlcos O sin(®-&;)

]

Y . ;
(10. 26) Ay (P+b-cY) cos &y - —E-r2 sin @ sin (®- D)
The corresponding equations in terms of radial and tangential components are

(10.27) (P+b—c7--;-r7) sin (-9

D>
]

(10.28) A (P+b-cY) cos(d-d,)

t

By largely (though not completely) offsetting the effect of tilt, the translation b permits
the application of a tilt which would otherwise be excessively large; it is this which makes
the expression -g-rz sufficiently large to be effective in the compensative process for
narrow angle cameras, When the b and ¥ are taken equal to zero, equations (10.25),

(10. 26) reduce to (10.20) and (10. 21) and equations (10.27), (10.28) reduce to (10.3)
and (10.4). In Figures 4 and 5 we have plotted the radial and tangential components of

the residual vectors of Figure 3.

At the origin x =y= 0, the profile function P is equal to zero. Therefore, when
x =y =0and ®=,, the tangential distortion A, given by (10.27) becomes equal to b-c Y.

This demonstrates that tangential distortion is not zero at the principal point in the case

where partial compensation is afforded by the tilt and translation resulting from a least squares

plate reduction. Moreover, since P+b- cY passes through zero at a sufficiently large radial

distance, tangential distortion can assume both positive and negative values across the format.
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The compensation for tangential distortion is limited to a translation of the profile function P
by the amount b-cY. This "balances" the profile across the format but does not alter its
shape. On the other hand, the compensative process for the radial component involves
not only the translation b-cY, but also the second order term -—z:-rz , which partially
counteracts the initial term of the expansion of P given by (10.14). Accordingly, the
compensative process is more effective in reducing the radial component of thin prism
distortion than in reducing the tangential component. In comparing Figures 3b and 3¢,

for example, we see that the mean error of the radial component is 2.5 microns, which

is about 60% of the 4.2 micron mean error of the tangential component. This is perhaps
one reason why the radial effects of decentering have received virtually no attention in
the literature. Another possible reason is that the nature of the radial component is such
that it has no effect on the angle subtended by pairs of radially symmetric points. This
renders impossible the direct measurement of the radial component of decentering distortion
by those conventional procedures of camera calibration which depend intrinsically on the
determination of the relative radial displacements of opposing pairs of targets symmeirically
arrayed across various diagonals passing through the center cf the format. Indeed, when
we contemplate the character of the residuals of thin prism distortion as resulting from
compensative tilt and translation (Figure 3a), we can appreciate that techniques of camera
calibration which measure only angles subtended across central diagonals areincapable of
truly definitive calibration of cameras. The power of the stellar technique of calibration
lies in the fact that it exploits a knowledge of the direction of each stellar control point

relative to ali other stellar control points.

In view of our fuller knowledge of thin prism distortion and particularly of our newly
gained appreciation of the precise nature of compensative tilt and translation, we reviewed
the residual plots from all stellar calibrations of radial distortion performed by our Photo-
grammetric Laboratory. We found that all occurrences of reasonably well-defined tangential
distortion and asymmetric radial distortion conformed to the thin prism model as modified by
the compensative process. Our sample consisted of a total of 32 cameras, all having angular
fields not exceeding 33°x33°. In a great majority of cases, possible thin prism distortion
was sufficiently small relative to the random measuring error to make its detection

by visual inspection virtually impossible.




For this reason we resorted tc a physical experiment in order to shed furrher light on the
matter. |ncooperation with Space Systems Laboratory (SSL) we obtained stellar plates

from a pair of Pth 6C Phototheodolites manufactured by SSL. The cameras have focal lengths
of nominally 600mm, effective apertures of about 200mm, and angular fields of 17° x 17°,
One of the two cameras (Camera 001) was known by inspection on an optical lathe to be out
of alignment to the extent that smcll further physical adjustments would have clearly been
worthwhile. The second camera (Camera 002) was considered to be aligned to the limit of
the optical art and hence was considered not to be subject to further meaningful physical

improvement.

The stellar plates from the two cameras were exposed simultaneously and were of a
common zenithal star field. The plates were photographically processed together and were
measured by the same operator on different days. A total of 155 well-distributed stellar
images were measured on each plate. The plate measurements were subjected to the Advanced
Piate Reduction considered earlier. However, no allowance was made for star catalog error,
even though the GC was employed (the typical GC error is equivalent to about 2 microns
on the plate of a 600mm camera). This was deliberate and was done to prevent any possibility
that the adjustment of stellar positions might partially compensate for locally significant
systematic effects, The x, y residuals therefore reflect not only random error in the plate
coordinates, but also random error in stellar coordinates as well as any systematic error un-
accounted for by the mathematical model of the reduction. The residual vectors for Camera
001 are plotted in Figure 4a. Theradial and tangential components of the residual vectors
are plotted in Figures4dband4c. The corresponding results for Camera 002 are plotted

in Figures 5a, 5b, and 5¢ respectively.

Very definite systematic tendencies of the residual vectors are obvious from a visual
inspection of Figure 4a. These are more clearly defined in Figures 4b and 4c (especially in
Figure 4c). Whendue allowance is made for the random component of the residual vectors,
we see that the patterns of radial and tangential components in Figures 4b and 4c are in
excellent correspondence with the patternsof Figures 3b and 3c provided that @; is taken as

approximately 70°, Even though strong systematic effects are evident, it is noteworthy that
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the rean error of the residual vectors in Figure 4a is only 3.9 microns. This demonstrates

the effectiveness of tilt compensation.

The systematic effects so pronounced for Camera 001 are absent from Camera 002
(Figures 5a, 5b, 5¢). This does not necessarily mean that thin prism distortion is insignificant
for Camera 002, but rather that it is sufficiently small relative to the random error to elude
visual detection. It is altogether conceivable that even after tilt compensation such distortion
might amount to as much as 3 to 4 microns in some areas of the plate and might have a mean
error of perhaps as much as 2 microns. |t is therefore clear that we require a method of
evaluating possible thin prism distortion which is more powerful and less subjective than mere
visual inspection of least squares residuals. Clearly such a method would result if the
mathematical model we derived for thin prism distortion were incorporated directly into
the Advanced Plate Reduction. Before we take up the details of the appropriate modification
of the least squares plate reduction, we shall investigate further the applicability of the thin

prism model.

As we have already noted, Livingston's results from wide angle lenses (Metrogons
subtending 74° x 74° fields) are not generally in strict accord with the thin prism model.
The discrepancy stems from the fact that the typical profile function P found by Livingston
(Figure 6) is not monotonic as required by the thin prism model but rather reverses its
direction towards the edge of the field. The broken curve in Figure 6 shows the nature of
the profile function to be expected from the thin prism model. We see that the thin prism
model holds well out to about 25° from the camera axis and thereafter becomes increasingly
inadequate. it follows that the thin prism model is more correctly viewed as a first approxi-
mation to the true model. For narrow angle cameras (less than 30° x 30°) the model appears
to be sufficiently valid as it stands; for medium to wide angle cameras it clearly requires

modification,

In the light of cur analytical results coupled with the empirical results of Livingston,

it would appear that a generally suitable choice for the profile function is

(10.29)P=Jyr2 + Jyet + ...,




\ 25u ¢’

" &£
\. o
. 20 Thin Prism Profile ,/‘

N \"'

\ 15 4
. o

Observed Profile

4 bt ————+ R e e e
-120mm  -80 -40 0 40 80 120 mm r
-40° -30°¢ -20° -10° 0O° 10  20° 30° 40° 8

FIGURE 6. Average Profile function of tangential distortion obtained by Livingston from
measurements of 33 Metrogon lenses as compared with most nearly equivalent thin prism
profile.

where no constraints are placed on the coefficients (in the corresponding expansion of the
profile functicn of the thin prism model the coefficients are all of the same sign; moreover,
all are direct functions of yu and ¢ and are weakly dependent on ®). The mathematical model
which we shall adopt for centering error combines the above profile function with equations
(10.20) and (10.21), Thus we have

(10.30) Ax

Psin®y = - (Jrl+lyrt+..) sindg,

(10.31) Ay P cos &, (Jyr2+ Jprd +..0) cosdy .

The x, y plate coordinates corrected for symmetric radial distortion, differential bias and

decentering distortion are then

(10.32) x = “*}2’ (-x)+ Ebx - Piindy
10.33)  y = (142 (7= v)* by +Pcord.
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When decentering distortion is to be calibrated, these expressions therefore must replace

their counterparts in the general projective equations (6.17).

The modification of the least squares plate reduction to account also for decentering
distortion is entirely straightforward. Inasmuch as experience to date indicates that the
first two terms of the expansion of P are sufficient for wide angle cameras, we shall truncate
the expansion at this level. The incorporation of the model for decentering distortion there-
fore involves three additional parameters: Jy, J,, ®g. We shall let J,°°, J,°°, ©°° denote

initial approximations to these parameters and shall set
(10.34) J] = J|°° + GJ], J2 = J2°°+ 5.]2, ¢0 = ¢0°° + 5@0

Then if we reinterpret the model to embrace the three additional parameters of decentering

distortion, the matrix B,, in (7.11) must be augmented by

¥ 7 18 _]
bhj b

. blij M1 j i‘
(10.35) [B,.] = 16 7 118
1] by b2i;  bay _J'
in which
o af“j 17 af“j 18 af‘i
by = Jog 'b"j:—aj';o ¢ Pus T oy 0’
0
(10.36) - of i3 0 a5 18 of 545
b2 = ug P I¥ e el B a1y = dug |
0 0 0
where

(10.37) 'y = hy, yz =J3, wg= &

With B” thus augmented and with the vectors &, ¢ and the matrix W correspondingly
augmented, the matrix representation of the adjustment proceeds exactly us outlined in

Section 8.

The determination of initial approximations for J;°°, J,°°, ®°° poses something of a
problem. Unlike the initial approximations for the coefficients ky, ky, ... of symmetric
radial distortion, the initial approximations for J;, J, cannot arbitrarily be taken equal

to zero, for this would make the coefficients of 8®4 in the linearized projective equations
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equal to zero for all points which,in turn,would lead to an indeterminate system of normal

equations. Thus J;°°, at least, has to be sensibly finite.

One approach to the problem of determining suitable initial approximations consists
of performing an initial least squares plate reduction without Jy, J,, @y and of then estimating
®,°° and the approximate profile function from a visual examination of the resulting residuals.
This approach works quite well when decentering distortion is sufficiently large to be readily
discernable as in Figures4a, b, c. On the other hand, it is of little value when decentering

distortion is less than or comparable to random measuring error as in Figures 5a, b, c.

An alternative approach requiring one or two extra iterations of the adjustment but
having the merit of being entirely automatic is the following. The phase angle ®; is regarded

as having the 'a priori' value of

(10.38) ®,° = 90° = 1/2,

the standard deviation of which is taken as

(10.39) o, = 180° = 27 .
®o

The value ®y° = 90° is midway between the extremities of the admissable range of @y, nameiy:
0=y = 180°. The initial approximation to @ is taken as PP°° = ®y°. In order to produce an

initial approximation to J; we resort to gross physical considerations suggested by the expansion

(10.14) and write

pEOO ] ]

(10.40) J;°°= — - —)
2C°° IJZ
in which
c®° = approximate focal length of camera in same units as plate measurements,
M O=V2,
€0 = gc®°.




If the plate measurements are expressed in meters, a suitable value for g in the formula for

€® isg=0.5x 1077, This leads to a moderately significant prism angle for the focal

length under consideration. Since Jy°° is finite, J,°° may arbitrarily be taken equal to zero.
Although our initial approximation to J; has been taken to be positive, the fact that @

is considered to be restricted to the range 0 = &g = 180° makes it equally possible for J;

to be negative. The possibility that the approximation J;°® may be of the wrong sign causes
no difficulties, for this will automatically be rectified in the initial adjustment. The
important thing is for the adjustment to have a finite starting value on which to operate.

An initial choice of the wrong sign will merely entail an extra iteration of the adjustment.

By means of the artifice of treating ® as a very weakly constrained a priori
observation we prevent the solution from becoming indeterminate in the event that the profile
function actually were zero (in this case, of course, ®y would be undefined since there could
be no oxis of maximum tangential distortion). On the other hand, the constraint on &
is so weak ae to be of no practical consequence in the event that the profile function were
strongly defined. The fact that the initial approximation ®°° = 90° may be off by as much
as £90° is not of serious consequence, for the second adjustment of ®°° will ordinarily be
within a faw degrees of the final value. As with our approximation for J;°°, the only draw-
back to this approach is that it entails one or two extro iterative cycles over what would
have been required with sharp initial approximations. With electronic computation this is

not @ serious consideration,

The covariance matrix of the parameters defining decentering distortion may
be abstracted from M, the covariance matrix of the entire vector of projective parameters,

If we denote this matrix by [M] , the covariance mairix of the x and y components of

hid2:®
decentering distortion is given by
A OAXAJ :
10.41 = M
( ) 2 AX:Y [ ]J“le ®, Ax,y
9, A (2,3) (2,3) (3,2
Xy 14

in which




a(AX,Ay) , "-sin @y -rZsin®y - (J1+d,1) cosd,

10.42) A = =
( 2) X,y 0(37,J5,%) ' cos D rlcos®y - (Jj+Jyr) sind,
(2,3) -

Thus not only does the extended version of the Advanced Plate Reduction lead to optimal
(minimum variance) estimates of the distortion functions Ax, Ay' it also provides estimates

of their accuracies for any specified radial distances.

Using the data giving rise to Figures 4 and 5, we applied the Advanced Plate
Reduction in its extended form (considering decentering distortion) to SSL Cameras 001 and
002. Results of three different reductions at varying levels of refinement are summarized

for each comera in Table 2.

TABLE 2. MEAN ERRORS RESULTING FROM VARICUS ADJUSTMENTS WITHIN
FRAMEWORK OF ADVANCED PLATE REDUCTION,

Case | Case |l Case IlI
Camera | Number of| Mean Error of Mean Error of Mean Error of Mean Error of
Control Plate Coord, Plate Coord. Plate Coord. Stellar Coord.
Points Residuals Residuals Residuals Residuals
SSL 001 155 3.9 2.5p 2,1y 0427
SSL 002 155 3.4y 3.1u 2.8u 0"34
Case |. Star catalogue error and decentering distortion are not explicitly considered in

the adjustment (residuals plotted in Figures 4 and 5).

Case Il.  Decentering distortion, but not star catalogue error, is rigorously treated in thé
adjustment.

Case lll.  Star catalogue error and decentering distortion are both rigorously treated in the
adjustment (plate coordinate residuals for Camera 001 are plotted in Figure 7).

The calibrated profile functions P(r) for Cameras 001 and 002 are plotted toggther with their
one sigma confidence limits in Figure 8. We see that the decentering distortion for‘.Camerc
001 is nearly three times as great as that for Camera (002 and amounts to about 15 microns at
a radial distance of 100 mm. Although the calibrated profile function for Camera 002 grows

to 5 microns at 100 mm, it should be kept in mind that this is representative of the profile




function without the benefit of compensative tilt and translation. When such
compensation is operative (as it is in Figures 5a, b, ¢), the maximum value of

the profile function for Camera 002 is reduced to about 3 microns and its rms value
is on the order of 1.5 microns. This provides a good illustration of how decentering
distortion can be significant and yet not be apparent from visual inspection of the

residuals.

In comparing the residual vectors of Figures 4a, and 7, we see that the
Advanced Plate Reduction has been most effective in removing the systematic components
of the residuals of Figure 4a. The mean error of 2.1 microns in Figure 7 is only slightly
greater than half the 3.9 micron mean error of Figure 4a and is fully consistent with
basic plate measuring accuracies. Moreover, the randomness of the residual vectors

of Figure 7 leaves nothing to be desired,

Inasmuch as random errors in catalogued stellar positions were rigorously
taken into account in the adjustment, residuals are also obtained for stellar positions.
It will be noted in Table 2 that the mean error of the stellar residuals for Cemera 001
is only 0Y27 which corresponds to 0.9 on the plate. This relatively low value reflects
the fact that the stellor field employed {Cygnus) is aspecially well determined in the
GC (two thirds of the 42 different stars carried had updated mean errors of less than
0740 ond only 4 had updated mean errors in excess of 0160).

In our experience over the past decade the full scale stellar calibration
of over 50 different ballistic cameras, ot least three quarters of the calibrations have
yielded mean errors in the range of 3.5 to 5.0 microns, a range incompatibly large
relative to the 2 to 3 microns normally attributable to the combined effect of plate
measuring errors and random instability of the photographic emulsion. Because of
this it was often necessary in routine reductions to resort to tedious piecewise pro-
cedures wherein two or three overlapping groups of stars encircling different portions
of long flashing light traces were individually reduced, the purpose being to give the

elements of orientation greater freedom for local compensation of unmodeled systematic
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errors. In the light of our present findings we have become convinced that the ex-
cessively large mean errors frequently encountered in past full scale stellar calibrations
are primcrily attributable to uncompensated decentering distortion. As the confidence
limits of the profile functions of Figure 9 indicate, this difficulty has now been overcome,
for the Advanced Plate Reduction provides a practical and effective means for cali-
brating decentering distortion to rms accuracies of better than one micron out to the
very corners of the plate format. It follows that absence of significant decentering
distortion need no longer be considered (or be fancied) to be a requirement for metric
cameras, particularly for cameras employed in analytical photogrammetry. Indeed, in
many instances decentering can be tolerated almost to the point where it begins to have
a sensible effect on image quality, for 30 microns of decentering distortion can be cali-
brated and removed just as effectively as 3. Insofar as ballistic cameras are concerned,
stability of the optical system should be of particular concern., An adverse thermal
environment is especially to be avoided, for it can induce unstable decentering distor-

tion of a form unamenable to practical calibration.
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FIGURE 8, Profile functions and associated one sigma confidence iimits of
decentering distortion resulting from stellar calibrations of SSL Cameras 001
and 002 by means of the Advanced Plate Reduction,
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11, GENERAL CONSIDERATIONS

In its fully developed form the mathematical model for the Advanced Plate
Reduction contains 18 physical parameters. These may be classified into the following
three groups:

1 Ideally Invariant: X c
(V) eally Invarian o yp,

kys koo kg
J], Jz, ¢°
(2) Generally Variable, but highly constrained:  Ax, Ay

M, MN2,N3, Ny

(3) Generally Variable, weakly constrained: $, W, K .

The parameters of the first group are those which depend upon the physical structure
of the camerc and lens. Under idaal circumstances they could be considered to be constants
of the camera. In practice, however, they may be influenced somewhat by thermal environ-
ment or by camera orientation. For instance, the principal distance ¢ may vary directly
with temperature (unless temperature compensating cells are provided). Similarly, if the
camera cone is insufficiently rigid the lens centering (and hence J;, J3, ®3) may change
significantly with the attitude of the camera. An extremely poor practice we have observed
with some cameras is the mounting within a few inches of the uninsulated metal of the camera
cone of a continuously running motor for driving the shutter. This produces a pronounced
thermal gradient across the lens, potentially inducing not only significant decentering but
also the deformation of some of the optical surfaces by sizeable fractions of a wave length.
The rasulting distortion is too complex and unstable to be subject to calibration. Such
considerations make it clear that the long term stability and reliability of the so called
invariant parameters are largely dependent on sound instrumental design and on sound
operational procedures. With sound design and procedures, all of the parameters in the
first group except ¢ should require redetermination only at infrequent intervals. We shall

define a definitive calibration to be one which produces estimates of the invariant parameters
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sufficiently accurate to be rigidly enforced in subsequent routine plate reductions.
Ordinarily, a definitive calibration will require a minimum of 150 to 200 well-
distributed control points. By drastically reducing the number of parameters requiring
determination, a definitive calibration makes routine plate reductions appreciably more

efficient and effective.

Many photogrammetric operations do not involve observations at zenith distances
greater than 70°. When this is the case, only the following five parameters will
normally be required in routine reductions once a definitive calibration has been performed:
¥, W, K, ¢, ny. Of these n; may be heavily constrained, and ¢ moderately constrained.
We advocate carrying ¢ in each reduction because it automatically provides compensation
for any scale effects not explicitly considered in the reduction. For this reason it is well
to deliberately underconstrain ¢, even though a highly accurate value may be available from
a definitive calibration. On the other hand, we do not hesitate to fully constrain the
refractive coefficient ny, for ¢ and w are capable of compensating for small deficiencies
inmy (as long as ¢ does not exceed 70°)., By the same token, a and w are capable of
compensating for small errors in the calibrated coordinates of the principal point x_, y .
Therefore as long as the calibrated principal point can be recovered to within a few microns
by means of fiducial marks, there is no point in carrying xp, yp as unknowns in routine
reductions. Again, in routine reductions there is relatively little occasion to exploit the
parameters of differential bias Ax, Ay, because one normally experiences little difficulty
in finding an adequate number of suitably distributed control points of a common type.
The parameters Ax, Ay are chisfly of practical value in definitive calibrations and in
reductions of stellar plates taken at great zenith distances (in the latter case, most

measurable images of stars close to the horizon would consist of breaks rather than points).

The number of stellar control points to be carried in a plate reduction depends on
the circumstances, for the objective of the reduction is to reduce the errors in the computed
projective parameters toprectical insignificance in the determination of directions to

unknown points. From equation {¥.17) we can express this criterion analytically as




(L) wQmQ) < B2 (R +W)!

This inequality states that the trace of the matrix defining the contribution of the projective
parameters to the error in the direction of a point should be less than a stipulated fraction

B2 of the trace of the matrix defining the contribution of errors in the measured plate
coordinates of the unknown point. (The trace of a matrix is the sum of its diagonal
elements.) As noted earlier M is the covariance matrix of the adjusted parameters. lts

trace and hence that of Q MQ;r tends to vary inversely with the number of control points.
On the other hand, the trace of (l.\.lj + Wj)-' is independent of the number of control points.
Therefore by carrying a sufficient number of control points one can satisfy the inequality for
any specified p2. If B2 is taken equal to 1/25, and if only the five basic projective parameters
considered above are required, a total of 25 to 30 properly distributed stellar control points.
will ordinarily be sufficient to satisfy the inequality. However, if star catalogue errors are
comparable in significance to plate measuring errors (as would be the case when the GC

is used in conjunction with the PC-1000), a greater number of control points will be required

for a given P2 (about 40 to 50 for B2 = 1/25).

The criterion (11.1) is quite sensitive to the number of parameters carried as unknowns.
This is why a minimum of 150 to 200 control points is required in a definitive calibration.
For the same reason, extraneous parameters should not be carried in the final reduction. For
example, three coefficients of radial distortion should not be carried when a single coefficient
is actually adequate. In many cases one does not know in advance whether a given subset of
parameters is essential or not. In such cases all questionable parameters may be carried pro-
visionally, the adjustment being repeated with each provisional subset of parameters excluded
in turn, If the exclusion of a given subset of parameters does not significantly increase the
quadratic form of the residuals, the subse: may be dropped as unessential. An objective
statistical basis for determining whether or not the inclusion of additional parameters significantly

reduces the quadratic form of the residual may be based on the F ratio.

Fo = S ¥i




in which Sp denotes the quadratic form of the residuals (?.8) when p parometers are carried.
This statistic has the F distribution with q degrees of freedom for the numerator and f
degrees of freedom (eq. (2.11)) for the denominator. The probability of obtaining a value
of F as small or smaller than Fy may be obtained from standard tables of the F distribution.
We prefer to work at the 90% leve!l of confidence in rejecting provisional parameters.
Hence, if Pr (F=Fj) = 0.10 we ordinarily accept the provisional parameters, Through
successive application of the F test all unessential parameters can be eliminated from a
given plate reduction. However, this eliminative precess can be unduly burdensome if
carried out blindly. Fortunately, physical considerations may be brought to bear to establish
a reasonably logical heirarchy of priority for the process. Thus the first parameters to be
tested for potential elimination in a definitive calibration would be the higher order co-
efficients of refraction, radial distortion and decentering distortion. Moreover, such
parameters as ¢, W, K, ¢ need not be tested at all because they are inherently essential

to the reduction. Also there is little merit in including in the initial model, parometers
that are known to be unessential because of circumstances or previous experience. This
applies particularly to the higher order coefficients of refraction when zenith distances

are not great and to the Sth and 7"h order coefficients of radial distortion when previous
calibrations of the same or similar cameras have unequivocally indicated such coefficients
to be insignificant. The end result of the testing process is a compact model, namely one
which contains no unessential parameters. The attainment of a compact model should be
the goal of any plate reduction, for this leads to the most effective utilization of the given

data.

In our opinion three distinct versions of the Advanced Plate Reduction should be
programmed for electronic computation, namely:
(1)  the definitive calibration in which the entire eighteen parameter
model is carried and full provisions are made for statistical compaction
of the model;
(2) aplate reduction suitable for great zenith distance after due corrections

for previously calibrated invariant parameters have been applied (here
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the unknown parameters of the initial model would be ¢, w, k, c,
Ax, By; M Nzs N30 Nadi

(3) o plate reduction suitable for small to moderate zenith distances (r = 70°)
after due corrections for previousiy determined invariant parameters have
been applied (here the unknown parameters would be reduced to the com-

pact set ¢, w, K, ¢, ny withn; being heavily constrained}

While (2) and (3) may be viewed as special cases of (1), the relatively infrequent requirement
for the full capabilities of (1) makes it computationally uneconomical to program it as an

all-purpose reduction.

In conclusion we would point out that the version of the Advanced Plate Reduction
without parameters for decentering distortion has been employed over the past two years
by the Photogrammetric Laboratory of D. Brown Associates, Inc. in the reduction of scores
of plates. Its application has resulted in a quantum improvement of results for long focal
length ballistic cameras with mean errors of residuals of plate coordinates being consistently
reduced from the 4.5 to é microns typical of previous plate reductions to values between
2.5 and 3.5 microns. With the more recent incorporation of the calibration of decentering
distortion into the Advanced Plate Reduction, mean errors of plate measuring residuals
have dropped to still lower levels. We are now at the point where mean errors on the
order of 2 microns appear to be routine in massive definitive calibrations. In retrospect,
therefore, it appears that a smali, but significant degree of decentering has in the
past precluded the full realization of the potential accuracies of many cameras. Although
the emphasis of this study has been on the calibration and reduction of ballistic cameras, we
should take note of the possible application of our results to the definitive calibration of
aerial mapping cameras. Truly comprehensive calibration of mapping cameras is now of
greater significance then ever because of the growing importance of the extension of mapping
control by means of analytical photogrammetry. In the past, many of the metric shortcomings
of mapping cameras could be tolerated by virtue of the compensation provided by adequate

networks of pre-established ground control. On the other hand, in the analytical extension




of u sparse network of ground control it turns out that systematic errors resulting from un-
compensated decentering distortion propagate through the model in a most unfavorable
manner. Thus, uncompensated decentering distortion as small as 2 to 3 microns has a rapid
cumulative effect on the analytical reconstruction of a photogrammetric strip and assumes
prominence (relative to propagated random errors) within a few models. This in turn limits
the admissible length of extension between absolute control points (the greater the un-
compensated decentering distortion, the shorter the admissible extension). Accordingly, we
are convinced that the full potential of analytical techniques for extension of controi will
approach realization in practice only with mapping cameras which have undergone full-scale
definitive stellar calibrations of both symmetric radial distortion and decentering distortion

according to the method developed in this paper.
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Al INTRODUCTION

Photographic determination of stellar positions has been a standard astrometric
practice for over a nalf century. The focal lengths of the cameras used for this purpose
have generally been 2 meters and greater and the angular fields of view have invariably
been under 10° square and usually well under 5° square. (The standard astrographic cameras
have focal lengths of about 3 meters and angular fields 2° square.) During the past two
decades photogrammetric cameras of much shorter focal length (100-300 mm) and wider
fields (30° to 75° square) have been utilized to determine the directions of missile-borne
or airborne flashes relative to photographed stellar control. Here entirely new observa-
tional and reductional techniques were evolved and perfected. Since these techniques are
familiar only to a relatively small grouvp of specialists, engaged for the most part in missile
testing, it is appropriate to outline their salient features and to contrast them with the more
familiar practices of positional astronomy. For reasons to be developed presently, it is our
belief that for the specific problem of obtaining directions to recorded flashes, fixed cameras
of given f ratio and focal length can yield results which are appreciably superior to those
obtainable from equatorially mounted cameras of similar f ratio and focal length driven at

the sidereal rate.

If we are correct in this belief, it is of considerable importance that the fixed
camera approach be better and more widely understood and appreciated, particularly inas-
much as we are at the brink of a period wherein geodetic satellites carrying ground controlled

flashing lights will be operational .

In what follows we shall use the term "fixed camera" to denote a camera whose
orientation remains stationary relative to the eartn throughout the period of photographic
recording and the term "sidereal camera" to denote one which is equatorially mounted and
which tracks at the sidereal rate (i.e., the sidereal camera is fixed in inertial space while

the observations are being made). In the case of the fixed camera, stars trail across the
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photographic plate and in the case of the sidereal camera siellar images remain essentially
stationary on the plate. The key point to keep in mind in the ensuing discussion is that the
data reduction of both fixed and sidereol cameras is based ultimately on the theory of the
central projection according to which an object point, its image and the cente- of projection
are collinear and all image points are coplanar. Thus reduced to mathematical essentials, the
camera consists of but two elements, the center of projection and the image plane, and the
photograph is idealized as the central projection of a three dimensional object space onto a

two dimensional image space.

A2 EARLY DEVELOPMENT OF STELLAR ORIENTED FIXED CAMERA TECHNIQUE

In the United States the development of photogrammetric techniques for the determina-
tion of positions of flashing lights was pioneered by the Ballistic Research Laboratories of
Aberdeen Proving Ground. At the outset in the early 1940°s procedures and reductional
techniques were freely adapted from positional asironomy. The primary innovation was one
of observational technique, for the camera remained fixed relative to the earth during the
exposure instead of being driven at the sidereal rate on an equatorial meount. Breaks in the
photographed star trails produced by an accurately timed shutter provided the necessary con-
trol points. Data reduction was based on straightforward modifications of Turrer' s method,
which has been standard in nositional astconomy for well over one half century. The most
important application of the stellar-oriented fixed camera duiing World War 1} consisted of
the precise determination of the position and velocity of a flashing light aboa'd a bombirg
aircraft at the instant of bomb :elease.

This information was vital to the calculation of accurate Lombing tables. Because
of their role in ballistics measurements stellar-oriented fixed cameras became known as
"ballistic cameras". a designation which persists to this day. Directional accurazies of the
order of 10 to 20 seconds of arc were obtained from 300 mm {/8 cameras having useable angular
fields of approximately 20% x 30, accuracies of triangulation of roughly one foot for aircraft
at altitudes of 10,000 feet were achieved. Names associated with the early develcoment of

ballistic cameras at BRL during World War I} are H. Russell, T. Sterne and R. Zug. 1t was
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Professor Russell of Princeton and the BRL Advisory Committee who originated the concept
of the stellar oriented fixed camera and who argued successfully for its implementation

instead of sidereal cameras,

By the end of World War li a number of deficiencies in Turner's method had become
apparent. Most of these arose from the fact that Turner's observational equations relating
the measured plate coordinates x, y and the so-called standard coordinates, &, n (these being
functions of hour angle and declination) are actually approximations having strict validity
only for cameras of rather narrow angular ficld. These equations which are of the general

form

£ = agptayxtayyt ax? +oxy tagy? ...,

(1)

2] = bo'l‘bIX'f bz)”*’ b3X2+b4Xy+b5y2+ e e e

actually represent expansions of the following rigorous expressions which are based on an

undistorted central projection

an Xt apy+aog

§ 7 agpx *agyt ]

ayp X tapyy +an
o1 X Fogpy + 1

Inasmuch as only six independent parameters are required to define an undistorted central
projection, it follows that the eight parameters in equation (2) must be constrained by two
additional equations. These turn out to be
, ay oy tagiay Tepey 0,
(3) 2 2 2 2 2 2

ajtag oy - ay - gz - o3 = 0.
In order for the expansion (1) to be valid with a reasonable number of terms it is necessary

that
(4) 0 S ot oy <1,




a condition which is adequately met in practice only when £, n are so chosen that the £,

n plane is nearly parallel to the x, y plane and when the angular fieid is fairly narrow.

While equations (2) and (3) together define an undistorted central projection,
this is true of equations (1) anly if appropriate constraints are placed upon the coefficients
so that the standard coordinates are expressed ultimately as functions of six independent
parameters, Although such constraints can be formulated, they are ignored in practice, the
consequence being that the central projection is not rigorously preserved when equations (1)
are used. A straight line in the £, n plane therefore does not project into a straight line
in the x, y plane. This is true even when all known corrections such as refraction, aberra-
tion, lens distortion, etc., are explicitly applied to £, n and x, y prior to the solution of
equations {1) for the coefficients. The reason is that random measuring errors alone are
sufficient to prevent the determination of coefficients which will perfectly reproduce a
central projection. It is well to note here that the standard astrometric practice of allowing
the coefficients of the expansion to absorb the effects of refraction, distortion, aberration
and so forth turns out to be unwarranted with cameras of moderate angular field; better

results are obtained from Turner's method when these corrections are applied explicitly.

A.3 DEVELOPMENT OF NEW REDUCTIONAL TECHNIQUES AT BRL

By the late 1940's reductions bused on equations (1) were largely abandoned in
advanced ballistic-camera work, having been superseded by the more rigorous expressiors
of equations (2). However, the constraints of equations (3) were not enforced in the adjust-
ment until the early 1950° s when Dr. H. Schmid investigated the problem. Schmid was
also the first to recognize that the customary least-squares adjustments based on equations
(1) and (2) were faulty, for they did not accord proper recognition to the quantities
actually subject to significant random error, namely the plate coordinates x, y. Taus,
for instance, in determining the coefficients in (1) or (2) by minimizing the quadratic

forms

{5) s= I{[&-(ag+tax+tay+ . .)7+[n=-{bg+bx+by+...)7%,
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one is implicitly assuming that the standard coordinates £, n are subject to random error
and that the plate coordinates are error free. Quite the reverse is true with cameras of
moderate focal length {say, 300 mm or less).

By 1953 Schmid had perfected a new theory of ballistic-camera plate reduction

that dispensed entirely with the astrometric theory. Instead, results of classical photogrammetry

initially derived by von Gruber were exploited and extended. The fundamental projective

relations were placed in the form

_ At +Bng + C _ At +B'n +C'
(7o) x=x e T E Y Y CBETE AF

or alternatively
Alx-x )+ A'(y -y )+ Dc
£ = : :
C(x - xp) +C'l(y - yp) + Fc

14

(7b)
B(x - xp)+ B'(y - yp)+ E'c

n= C(x—x9+C'(y-yp)+Fc

7

wherein

X s yp = plate coordinates of principal point,
[t

c = principal distance,

A B C matrix of direction cosines defining angular orientation
A' B C' = of plate coordinate system relative to standard coordinate
D E F system,

Inasmuch as all the nine elements of the orientation matrix can be expressed uniquely
in terms of three independent quantities, say the three Eulerian angles, the projective relations

(7a) or (7b) may be regarded as invoiving a total of six independent parameters, namely three
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translations xp, y , c that define the coordinates of the center of projection in image space,
and three rotcnfionps, say a, w, K, that are implicit in the matrix of direction cosines and
uniquely define the orientation of the plate coordinate system relative to the standard
coordinate system. The standard coordinates £, n are related to Cartesian Coordinates of

object space by

(8) 5 = T, N =

wherein X©, Y, Z° denote the coordinates of the center of projection in object space
and the X and Y axes are parallel to the £ and n axes respectively. If the X, Y, Z
coordinates of a photographed point are finite (as opposed to coordinates of stars which

are essentially infinite), equations (7a) and (7b) may alsc be regarded as being of the form

AX - XY+ BY - Y +C(Z -29

Xx=x *tc ’

P D(X - X%) + E(Y - YO+ F(Z - 25

(9a)
A'(X - XY+ B(Y-Y)+C'(Zz-29
YT o T DX - X+ EY-Y)+Fz-29
X - X© A(x-xp)+'A'(y—yp)+Dc
Z-2° Clx-x)*Cly-y *F
(x xp) (y yp c
(9b)

Y -Y B(x - x )+ B'(y -y )+ Ec
(x xp) (y yp)

- C(x - +C'(y - +F
Z-7 (x xp) (y yp) c

In Schmid's theory the so-called elements of orientation a, w, K, xp, yp, c are deter-~

mined by minimizing the quadratic form




_ _ AL+ Bny +C)2
S X[WXC( xp_LW?‘>

(10 | 2
Y '

+wy(y-yp-c e%—g—;——l::%—;—g— ]:
wherein W wy denote the weights of the measured x, y coordinates, and the standard
coordinates £, n are computed from the hour angle and declination of the star. While a
minimum of three stars are sufficient for a unique solution of the elements of orientation,
at least 10 were generally carried in the adjustment in order to minimize the effects of
random errors in the measured plate coordinates. Current practice is to utilize from 20 to
30 stellar control points whenever possible, thereby producing elements of orientation that
make a relatively insignificant contribution to the errors in the directions to the flashing

light.

After the least-squares determination of the element of orientation, the pro-
jective equations in the form (9a) or (9b) can be employed for the triangulation of the X,
Y,Z coordinates of flash points. The first completely rigorous treatment of ballistic-
camera triangulation was provided by the writer in 1955; all previous treatments had

failed to adjust the measured plate coordinates properly.

A.4 DEVELOPMENTS AT THE ATLANTIC MISSILE RANGE

In 1956 Schmid's theory for ballistic-camera plate reduction was adapted by the
author to the reduction of ballistic-camera plates acquired at the Atlantic Missile Range.
Here ballistic cameras were employed routinely on scores of missile tests and on aircraft
tests designed to evaluate accuracies of electronic tracking systems; hundreds of plates
were (and are) reduced each year. Often five or more well-distributed ballistic cameras
were employed in a single triangulation, and as many as 20 cameras participated in
certain missions. Thus ample opportunity existed for the evaluation of Schmid's plate

reduction. By 1958 mean errors of 3 microns were more or less routine and by mid-1959
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a sizable fraction of reduced plates had mean errors of 2.5 microns or better. A mean
error of 1.5 microns for both orientation calibration and least-squares triangulation was
attained in one reduction involving about 30 stellar control points on each plate and
over 50 flash points. Comparable results were obtained by Schmid at BRL. Inasmuch as
the standard deviations of plate measurements of well-defined stellar and flashing-light
images range typically from 2 to 3 microns, the results demonstrated time and again that
systematic errors were being successfully suppressed to a level significantly below the

standard deviation of the random errors.

Thus within the course of little over a decade a five to tenfold improvement was
attained in the accuracies produced by ballistic cameras. A substantial portion of this
improvement was attributable to improved techniques of data reduction, particularly the
abandonment of classical astrometric techniques in favor of more rigorous procedures that
preserved the geometrical properties of the central projection and that were correct from
the standpoint of error theory (this implies that the astrometric procedures are deficient
from the standpoint of error theory; this is indeed so and astronomers could well benefit
from a more careful study of Gauss). The remainder of the improvement is attributable to
refinements in cameras and associated equipment. Particulariy noteworthy was the series of
BC-4 cameras introduced by Wild Heerbrug, Inc., through the efforts of Dr. Schmid. This
represented the first time that lenses originally designed for stringent metric applications
(in this case for aerial mapping) were adapted to ballistic cameras. The almost perfect
centering of these ienses reduced tangential distortion to relative insignificance, while
their low degree of rcdial distortion was amenable to particularly precise calibration
because of the absence of excessively steep gradients. Three different camera cones con-
stitute the BC-4 series: the 115-mm f/5.6 Aviogon having a 76° square field; the 210-mm
f/4.2 Avictar having a 45° square field; and the 305-mm f/2. 6 Astrotar having a 33°¢
square field. Also of major importance was the introduction of moderately priced photo-

graphic plates flat to from 6 to 12 fringes of sodium light (or flat to within +1 to £2 microns




from a best fitting plane). This eliminated unflat photographic surfaces as a significant
source of error.

Certain innovations made by the author at the Atlantic Missile Range also merit
mention, As indicated earlier, control points were provided by short breaks (50 to 100
microns) in the star trails. In 1956 a study was conducted to determine the feasibility of
using short exposures of star trails to produce point-like images for control. By using a
geometrical series of exposures such as 2, 1, z, & sec, respectively, with 20 to 30 sec
between each exposure, one obtains a well-graduated succession of well-spaced point-like
images. With a lens such as the 300-mm /2.6 Astrotar, for instance, a third to fourth
magnitude star will generally produce a nearly optimum punctiform image with a & -sec
exposure, whereas a sixth to seventh magnitude star will produce a similar image with a
Z-sec exposure. (Exposures significantly longer than 2 seconds lead to excessively elongated
images with a camera of 300-mm focal length; with a focal length of 1000 mm the maximum
worthwhile exposure is about one second.) The study demonstrated that somewhat greater
plate-measuring accuracy could be obtained from optimal punctiform images than from optimal
breaks. However, the major advantage from replacing breaks by punctiform images stemmed
from the fact that it obviated the need for measuring the plate in direct and reversed positions
to eliminate personal bias from the readings. This is necessary when stellar breaks are vszd
as control, for one has no assurance that personal bias will be the same, on the average,
in measurements of breaks as in measurements of flash images; personal bias, if assumed
constant, can be eliminated by the principle of reversal. On the other hand, it is clear
that if the personal bias for the measured stellar control were the same as for the measured
flash images, the relative coordinates of control points and flash images would remain
unaltered, no matter what the bias and measurement in both direct and reversed positions
would therefore be unnecessary. Thus, abandoning stellar breaks in favor of punctiform
images halved the measuring effort without impairing accuracies. Moreover, greater
flexibility was achieved, for practically every recorded star yielded one image per cycle

of exposure which matched closely the characteristics of the flash images (the flashes in
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turn were exposed to produce nearly optimum images of 40~ to 60-micron diameter).
Because each star could be exposed as many times as desired by repeating the basic
calibration cycle, little difficulty was generally experienced, even with rather sparse
stellar fields, in selecting a group of 20 to 30 optimal control points ideally distributed
about the trace of the flashing light. A print of a typical stellar plate taken by a 1000-

mm f/5 camera is reproduced in Figure 1.

Another innovation made in 1956 was an improved solution for the stellar cali-
bration of lens distortion. In this solution coefficients defining the radial distortion of
the lens were determined simultaneously with the elements of orientation. All previous
solutions were dichotomous in the sense that attempts were made to determine crientation
and distortion independently., This had never been completely satisfactory, for small
errors in provisional orientations were reflected in the calibrated distortion curve and
vice-versa. By calibrating orientation and distortion simultaneously using the plate
measurements of 100 to 150 stellar images, we attained unprecedented accuracies and
repeatibility; independently determined distartion curves for a given camera rarely dis-
agreed by more than £1 micron. Distortion coefficients were recalibrated periodically

as a quality control measure. From the plots of the x, y residual vectors it was possible

to determine whether or not the projection was affected by a significant degree of tangential

distortion,

Because the duration of the flashing-light sources is so short, a few milliseconds
at best, the effects of aimospheric turbulence must be reckoned with, Atmospheric

shimmer, as the phenomenon is sometimes called, is of relatively little consequence

with stellar images inasmuch as they are accorded much longer exposures, which effectively

average out most of the cffects of shimmer. Inasmuch as the magnitude of the effect of

shimmer on the position of the centroid of the image is approximately inversely proportional

to the aperture of the camera, scme improvement in directional accuracies of flashes may

be realized through the use of cameras of wide aperture. Even so, the problem remains
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FIGURE A1, Print of typical stellar plate exposed by 1000 mm f/5 camera showing stellar
traces of six cycles of five exposures each with two intervening trails,




of estimating the degree to which shimmer affects the coordinates of flash images on a

given plate taken by a given camera. Such estimction is most desirable so that the observa-
tions from different plates may be properly weighted in the triangulation, for with widely
distributed cameras it is entirely possible for shimmer to be insignificant for some cameras,
moderate for others and severe for still others. When a long series of successive flashes

is recorded, estimates of the standard deviations of the plate coordinates from a given

plate may be obtained from a time series analysis of the measurements; such estimates will
reflect the combined effect of all sources of random error that influence the relative
positions of successive images and will thus include the effects of setting errors, random
emulsion instability, atmospheric shimmer, camera vibration (if significant) and so forth.

In many operations, however, too few flash images are recorded to permit a sound time
series analysis. Here it is possible to employ a sufficiently bright star in the general

region of interest to simulate a flashing light by making a series of very short exposures

of the stars. This, of course, requires a fast shutter capable of exposures of at least 10 msec
to ensure that successive images will be frozen in instantaneous shimmer positions as are the
images of flashes, By use of the steliar noise trace technique, as it has been termed, it
becomes possible to estimate quite precisely the proper standard deviations to be used in
weighting for triangulation. Ordinarily, about 40 or so images are measured on a given
noise trace and subjected to a time series analysis. This yields estimates of standard

deviations 0, which in turn have standard deviations of about 0.13 0.

A5 RECENT DEVELOPMENTS

By 1960 it was clear that significant further improvement in accuracies attain-
able from stellar-oriented fixed cameras was to be realized oniy through the development
of cameras of longer focal length and wider aperture. Increased apertures were necessary
to offset the influence of shimmer, which would otherwise negate the potential gains of
longer focal lengths. Accordingly, the Atlantic Missile Range underiook the development
of a 600-mm f/2 camera with 17° square field and Air Force Cambridge Research Labora-

tories undertook the development of a 1000-mm f/5 camera with 10° square field. The
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latter camera was based on a telescopic lens designed for aerial reconnaissance by Dr.
James Baker during World War Il. Surplus lenses produced by Perkin Elmer in 1952 were
completely disassembled, rematched and refurbished where desirable, and critically re-
aligned. A total of 20 of these cameras, designated the PC-1000, were produced by
Instrument Corporation of Florida for the Air Force and the Navy. Most of these will be
employed extensively for observations of forthcoming geodetic satellites. The 600-mm

f/2 camera was developed by Nortronics. Six were contracted to be produced for AMR.
Three have so far been delivered. Since they have yet to be declared operational, further

pertinent information is unavaiiable at this time.

The calibration of the PC-1000 cameras for distortion was originally accomplished

by the method developed by the writer while at AMR. However, on plate after plate the

33

ean error resulting from the calibration amounted to between 4 and 5.5 microns instead

of the 2 to 3 microns considered to be compatible with plate measuring accuracies. A

plot of the x, y residual vectors from a typical plate is presented in Figure 2. Each star
was exposed for 1, 1/2, 1/4 and 1/8 sec respectively, this cycle of expasures being re-
peated four times thereby leading to a total of 16 well-spaced images per star. The most
nearly optimum image from each cycle of exposure of a selected star was measured. The
straight lines in Figure 2 connect the images corresponding to each star. Perhaps the most
striking feature of the plot of residuals is the systematic nature of successive residual vectors
for many of the stars. Yet, residual vectors of adjacent stars appear quite uncorrelated,
This strongly suggests that the effect is not attributable to either the camera or the emulsion
but rather is attributable to random errors in the catalogued right ascensions and declinations
of the stars. Accordingly, the star catalogue employed, namely the Boss Catalogue, was
investigated and the conclusion was reached that random errors in the proper motions could
indeed conceivably account for the observed effect. The estimated standard deviations of
updated right ascensions and declinations were found to vary from about 0V'4 to as much as
1!5,. the value 0V7 being typical. An angle of 0V7 is equivalent to 3.5 microris on a

PC-1000 plate, which is somewhat greater than the typical plate measuring accuracy. In
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FIGURE A2. Plate coordinate residuals from least squares calibration of orientation of stellar plate
taken by 1000 mm f/5 comera; star catalogue errors not taken into account; mean
error of residuals 5.2 p.




spite of this, in the adjustment giving rise to the residual plot of Figure 2 only errors in

the measured plate coordinates were considered, the catalogued positions of the stars being
regarded as error free, Hence, the errors in the catalogued positions were transferred to
the plate coordinates. This effect had not been noted in earlier fixed camera reductions
because the focal lengths, being 300 mm and shorter, were not sufficiently great for the

catalogue error to be significant relative to the plate measuring error.

In view of the foregoing it was considered advisable to develop a new plate re-
duction wherein random errors in both plate coordinates and catalogued positions were
properly adjusted. A research program to achieve this end was undertaken by Instrument
Corporation of Florida under the sponsorship of Air Force Cambridge Research Laboratories.
[t is not our intention to consider details of the resulting reduction here, inasmuch as the
derivation is rather iengthy and is being documented in a separate paper to be published
later. Suffice it to say that the adjustment is based on the minimization of the following
quadratic form, the residuals of which are interrelated by the fundamental projective rela-

tions:

m n n
() s= ) DWW vZ AW w2 ) ) (W, v+ W vl ),
21 =21 s %o Ya Yy =m0 AyA DD,

where
- . th . th
R = residuals of measured plate coordinates of ¢ images of i star;
TRERAT
W, Wy = weights of measured plate coordinates (inversely proportional to measuring
1j 1j .
" variances);

. . . N th
AL residuals of updated right ascension A and declination D of 1 star;
WA 0 WD = weights of updated A, D (inversely proportional to variances computed

from cotalogued probabie errors).
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Thus the reduction yields not only plate coordinate residuals but also residuals
of right ascension and declination. It follows that some measure of improvement is to
be expected in the catalogued positions as a consequence of the adjustment. [t can be
shown theoretically that if the standard deviations of the catalogued positions were 0V7
in A and D, if plate measuring standard deviations were 3microns, if a total of 8 different
stars were measured on a given plate, and if 6 different images were measured on each
stellar trace, the adjusted values of A and D from the reduction of a PC-1000 plate would
have standard deviations of slightly better than 01'35, or about half that of the values input
into the computer. More generally, the following approximate formuia may be employed

to predict the stundard deviations to be expected for adjusted right ascensions and declina-

/ o 2
- 02 1 [o
g eS|

n m (o}

In this formula, which ignores the degrees of freedom involved in the adjustment and thus

tions:
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has increasing validity with increasing m and n,

0 = approximate standard deviation in radians of adjusted right ascension and declination;

0 = standard deviation of catalogued right ascensions and declinations in radians
(assumed same for all stars);

0 = standard deviation of measured plate coordinates (assumed same for all points);

¢ = focal length of camera in same units as G;

m = number of images measured per stellar trace;

n = number of different stars measured.

In order to gain insight concerning the effectiveness of the new plate reduction,
we performed a numerical simulation wherein the adjustment was applied to artificially
generated data, A uniform array of 25 "stars" was generated. To the "true" right
ascensions and declinations of these "stars" were added random errors drawn from a table

of random normal deviates normalized to have a standard deviation of 0.7, This produced

- 101 -




simulated "observed" right ascensions and declinations, The "true" plate coordinates

of the "stars" were computed for four different instants of time from a postulated set of
elements of orientation. Random errors drawn from a population having a standard devia-
tion of 3 microns were then added to the "true" plate coordinates to produce simulated
"observed" plate coordinates. The resulting simulated data were then subjected to Schmid's
adjustment which, it will be recalled, considers only errors in the measured plate coordinates.
The resulting residual vectors are plotted in Figure 3. The similarity of these results to those
of Figure 2 is quite striking. Next, the same simulated data were subjected to the new
adjustment which treats both plate coordinates and catal ogued positions as subject to

random error. The resulting plate coordinate residuals are plotted in Figure 4, Here it

is seen that randomness is achieved not only from star to star as in Figure 2, but also for

the successive images of each individual stellar trace, which is as it should be. The mean
error of the plate coordinates is reduced from the 4.2 microns of Figure 2 to 2.7 microns,

a figure statistically consistent with the true value, which in this case is known to be 3
microns. Inasmuch as the solution also produces residuals of right ascension and declination,
it is particularly interesting to plot these and to compare them with the actual errors. This
is done in Figure 5, the signs of the errors being reversed to facilitate the comparison. An
excellent degree of correlation is seen to exist between the residual vectors and the error
vectors. The results of the simulation thus demonstrate the validity and effectiveness of the

reduction within the framework of the assumptions.

The data giving rise to Figure 2 were also processed through the new reduction.
The resulting plate coordinate residuals are plotted in Figure 6. Virtually complete
randomness is achieved and the mean error of the plate coordinate residuals is reduced
from 5.2 microns to 2.6 microns. In future studies, results obtained from different cameras
for a common star field will be used to determine the consistency of the adjusted right
ascensions and declinations. Preliminary results with three plates indicate a good measure

of consistency for those stars having the larger residuals.

- 102 -




e /\,.N.,. T &.,,,__.\1/{

A\

TN SRR

FIGURE A3, Plate coordinate residuals from least squares claibration of simulated stellar
plate taken by 1000 mm focal length ballistic camera; ms errors of 07 in

catalogued right ascensions and declinations are not taken into consideration;
mean error 4,2 y,
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FIGURE A4,

Plate coordinate residuals from least squares calibration of simulated stellar
plate taken by 1000 n.n focal length ballistic camera; rms errors of 0V7 in
catalogued right ascensions and declinations are properly taken into consider-
ation; mean error 2,7 p.
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FIGURE A5. Right ascension and declination residuals from least squares calibration of simu-
lated stellor plate taken by 1000 mm focal length ballistic camera; rms errors of
3 microns in plate coordinates and of 0.7 in catalogued right ascensions and

declinations are properly taken into account; mean error of catalogue residuals

0lé6.
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FIGURE A6, Plate coordinate resuduals from least squares calibration of stellar plate taken by
1000 mm f/5 camera (same original data as in Figure 1); star catalogue errors
properly taken into account in adjustment; mean error of residuals 2,6 p.
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It will be noted that there are more stars in Figure é than in Figure 2. The
extra stars are those which were originally measured but whose coordirates were not
subsequently found in the Boss catalogue. Hence they had to be dropped from the original

solution. An interesting and useful property of the new sclution is that uncatalogued srars

can be utilized; it is merely necessary to ossign approximations to the unknown right ascensions

and declinations and to set the corresponding weights equal to zero. Because the relative
hour angles of uncatalogued stars are known by virtue of the measured differences in the
times of exposures, it is possibie for uncotalogued stars to maks a worthwhile cortribution

to the cclibration of orientation (particularly to the determination of scale).

Other noteworthy features of the new solution are the following:

1) Provisions are made for the measurements of both stellar breaks and puncti-
form images. To accomplish this without making it necessary to measure the plate in
direct and reversed positions in order to eliminate personal bias, two additional parometers
Ax, Ay are carried as unknowns. These represent the biases of measured stellar breaks
relative to the mencyred punctiform images. The parameters Ax and Ay are constrained
to lie between +5 microns at the one sigma level, The desirability of measuring breaks
in addition to points stems from the fact that two additional stellar megnitudes are thereby
gained., With the PC- 1000, for instance, the faintest stars giving use to acceptable
punctiform images are of seventh to eigth magnitude, whereas stars from eighth to tenth
magnitude yield well-defined troils, Often there are sizable regions on the plate wherein
only trails are to be fourd. Often these irails are of uncatalogued stars, but as indicated

above, this does not prevent their effective use,

2)  Provisions are made for carrying coefficients of distortion as additional
unknowns so that the solution con be employed to colibrate distortion whenever desired
(the data genercting Figures 2 and é were processed through the version of the solution

providing distortion calibration).

3) Provisicns aie made for incorporating up to four coefficients of Garf'nkel's
expansion of astroncmical refraction as urknowns, These may be constrained, if desired,

- 107 -




to be statistically consistent with a priori values derived from meteorological data. The
parametrization of refraction is particularly desirable when zznith distances exceed 60°

to 70°%; it is of relatively little value when zenith distances are less than 50°. For observa-
tions near the horizon (as in flashing light line crossings for determination of azimuth of
Hiran lines) it is mandatory to carry at least three coefficients of refraction as unknowns in

the adjustment.

A.6 FIXED CAMERA VS, SIDEREAL CAMERA FOR DETERMINATION OF DIRECTIONS

TO FLASHES

Now that sufficient background has been established for an understanding of the
more advanced {ixed camera observational and reductional techniques, it is pertinent to
compare the relative merits of the fixed and sidereal cameras for the basic problem of
determining precise directions of recorded flashes. The most fundamental difference, of
course, is that the fixed camera is stationary relative to the earth, whereas the sidereai
camera is stationary relative te inertial space. The most serious deficiency of sidereal
cameras for flashing-light applications arises from the fact that the mechanical imper-
fections of most equatorial mounts and drives constitute a source of significant error by
causing the camera actually to be unstable in inertial space. Indeed, in most cases the
error introduced by the mount will considerably exceed that introduced by the plate measure-
ments. It should be appreciated that this consideration applies only to flashing-light
applications, for small errors or jitter in the drive do not have a significant effect on
the relative positions of stellar images, particulariy if guiding is practiced to keep the
tracking excursions within reasonable bounds. Thus the sidereal camera is well suited to
conventional astrometric applications in spite of the imperfections of mounts and drives.
On the other hand, the duration of a flash is so short that its position on the plote of a
sidereal camera relative to the mean positions of the stars will depend directly on the
instantaneous inertial orientation of the camera relative to the mean inertial orientation.

It follows that if a particular mount were to provide an rms accuracy of, say, 2 seconds
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of arc with guiding (which would be excellent), directional accuracies to recorded flashes

could not be recovered to better than two seconds of arc rms even though relative stellar

directions on the same plate could conceivably be recovered to a few tenths of a second of

arc. Thus it is our contention that the use of sidereal drives can only deteriorate the

accuracies potentially obtainable from a given camera (again, we are referring only to

fiashing-light applications). Beyond this, however, the fixed camera enjoys a number of

significant advantages over the sidereal camera, even in certain purely astrometric

applications. Aside from stability, the most important factor contributing to these advantages

is the fact that precise measurements of time are fully exploited in fixed-camera applications,

whereas time does not constitute a useable meosurement in sidereal applications. The

following table provides a summary of the relative advantages of fixed and sidereal cameras

when used for directional determination of flashing lights, In items 4, 5 and 13 the values

quoted apply to cameras similar to the PC-1000. These may be revised appropriately to

apply to other cameras.

A7

RELATIVE ADVANTAGES OF FIXED AND SIDEREAL CAMERAS FOR DETERMINATION

OF DIRECTIONS OF FLASHES

Fixed camera

Essentially perfect stability over short
periods (a few minutes) is relatively
easily attained with earth-fixed orien-
tation.

Very small but possibly significant
changes or disturbances in earth-fixed
orientation can be detected through

use of stellar images recorded at dif-
ferent times. Therefore, direct check on
validity of data is immediate by-
product of reduction. This check is
independent of subsequent triangula-
tion checks.
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Sidereal camera

Inaccuracies and jitter of conventional
sidereal drive can introduce errors of
several seconds of arc in determination
of directions of nearly instantaneous
flashes relative to siars.

Very small but possibly significant
changes or disturbances in inertial
orientation are internally undetect-
able; they merely result in a slight
increase in image diameters. No check
on validity of directions of flash points
is available prior to hiiangulation.




A given star may be recorded several 3.
times, giving rise to a series of well-

spaced control paints; multiple usage

of stars overcomes problem of sparse

stellar fields.

Use of a series of different exposures 4.
{e.g., 1, 1/2, 1/4, 1/8 cec) produces
images of graduated diameter so that

each recorded star produces at least one
nearly optimum image per exposure cycle;
repetition of basic cycles can lead to

several nearly otpimum images from

each star,

Stars down to eighth magnitude yield 5.
useable point images; fainter stars to

ninth or tenth magnitude generate only

weak trails; stars fainter than ninth to

tenth yield no images at all. Hence
confusing extraneous images (i.e.,

ima ges of uncatalogued stars) are

miniral ,

Discrimination of flash images is easy, 6.
because a short trail is associated with

each star, whereas flashes have no
associated trails.

Timing data are required for stellar 7.
exposures (but not for flashes) in arder
to determine directions of flashes.

Except for 3 or 4 key stars, stellar 8.
identification may be established auto-
matically by the computer as part of

the general reduction; hence the side-

real mount offers no basic advantages

insofar as identification is concerned.
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A given star produces one and only one
control point; nothing can be done to
augment sparse stellar fields,

All stellar images have some exposure
so that image diameter is strictly de-
pendent on stellar magnitude and

color; selection of sufficient catalogued
stellar control having uniform and
optimum image diameters is extremely
difficult and, in many cases, is impos-
sible (for results of maximum accuracy,
images of stellar control should closely
match those of flashing light),

A few minutes of total exposure will
produce distinct images from siars ~f
eleventh, twelfth or even thirteenth
magnitude. These together with images
of stars of ninth and tenth magnitudes
are extraneous and confusing because
they are not catalogued; only a few per-
cent of the stellar images are actually
usable and these, being produced by the
brighter stars, are likely to be oversized.

Discrimination of flash images from
star images can be extremely difficult,
particularly when (as in the case of
satellite flashes) only five or so are
distributed across the plate.

Timing data are required for the flashes
(but not for steliar expocyres, except
very nominally) in order to determine
directions of flashes,

Automatic star identification is equally
feasible when sidereal mourts are used;
however, because each star is used only
once, from two to four times more
distinct stars must be identified thar
with a fixed mount.




10.

1.

12.

18

14,

A.8

Initial set-up of camera crientation
depends only on expected direction of
flashes and is independent of expected
time of flashes.

A fixed camera mount is relatively in-
expensive and is readily compatible
with a mobile operation .

Standard deviations of effects of atmos-
pheric shimmer on directions of flashes
can be estimated for a given plate by
means of the "noise trace technique";
this permits proper weighting of such
observations in subsequent reductions.

Images of uncatalogued stars can be
used as supplementary control, because
the relative hour angles between such
exposures depends only on time differ-
ences which constitute independent and
easily made measurements.

Random errors in catalogued right
ascensions end declinations can be
estimated with worthwhile accuracy
and separated from plate measuring
errors by means of observations made
on a single plate.

Shutter and shutter timing is required
(to accuracies of 5 to 10 msec). Recent-
ly developed VLF timing technigues
readily permit accurac es of £1msec to
be achieved anywhere in the world.

CONCLUSIONS

10.

11,

12,

13.

Initial set-up of camera orientation
depends on both expected direction

and time flashes; reorientction is re-
quired whenever expected times change,
as with missile holds.

A sufficiently accurate equatorial mount
is quite expensive and is not generally
well suited to a mobiie

PO,
Cpefcnvu.

Use of stellar mount precludes use of
"noise trace" or any other simple tech-
nique to estimate effects of shimmer on
directions of flashes (unless diive is
stopped and high performance shutter
is used to produce noise trace as in
fixed camera techniques).

Images of uncatalogued stars cannot
be used as supplementary contiol; they
serve only to "clutter" the plate and,
for all practical purposes, constitute
"noise" insofar as discrimination of
flash images is concernad,

Random errors in catalogued right
ascensions and declinations can effec-
tively be separated from plate meas-
uring errors only through reduction of
multiple plates of the same field.

Shutters are not required; this is only
advantage of sidereal mount in flashing
light applications.

We have outlined some of the key points in the evolution of fixed-camera techniques.

We have seen that the criginal application of fixed cameras was to determire the precise

directions of flashing beacons. This is stiil their chief application and is one in which
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they excel. Nonetheless, it seems that every so often someone, having little cr no
familiarity with the theory and evolution of fixed-camera techniques, will seriously
suggest replacement of fixed cameras by siderea! cameras or else would revive astrometric
data reduction procedures (or would do both). It is our opinion that the time is at hand
when sophisticated fixed-camera techniques can profitably be exploited in purely astro-
metric applications. Geodetic satellites carrying flashing-light beacons will afford an
unprecedented opportunity to accomplish not only geodetic objectives but also to effect

a significant improvement of star «catalogues largely as a by-product of the reduction of
plates from fixed cameras (this in turn, of course, would benefit the geodetic objectives).
On Project ANNA alone it is estimated that as many as 2000 reducible plates will be
exposed by some 20 PC-1000 cameras during the first year of operation. Since the field
of the PC-1000 is 10° x 10°, this implies that the entire celestial sphere weuld be
photographed five times over during the course of a single year if the observations were
uniformly distributed. Accordingly, it would be reprehensible, in our eyes, if a well-thought-
out program were nci implemented to exploit to the very fullest the vast quantities of
information to be dbtained (at very considerable expense) in future geodetic satellite

operations.
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