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THE UNSTEADY FLOW WITHIN A SPINNING CYLINDER

i ABSTRACT

A theoretical analysis 1s given of the unsteady flow within s liquid-filled
cylinder of finite length, which is started impulsively to spln about 1ts axis.

It is established that a secondary flow, which is caused by the cylinder
ends, has a remarkable effect on the generution of spin in the liquid.

The theoretical results are compared with experimental obaervations and
good agreement is found,
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I. INTRODUCTION

It is well known that spin-stabilized shells can become dynamically un-
stable if they are filled with a liquid.‘ According to a theoretical analysis
of K. Stcwartson (1959), the stability of a shell containing a cylindrical
liquid-filled cavity can be predicted if the liquid is in rigid body rotation.

However, for a liquid of small viscosity, it requires a relatively long
time for the liquid to reach full spin, and, during the transition period, the
shell might become dynamically unstable even though it might be stable at 1ts
final state if the liquid attained rigid body rotation. In the course of
experimental investigations (B, G. Karpov, 1962), severe dynamic instabilities
of liquid-filled spinning shells have been observed in cases where the shell
should have been ctahle according to Stewartson's theory and the assumption of
rigid rotation of the liqnid €ilier. TIu order to extend the prediction of in-
stabilities in such cases, it appeared desirable to analy:se the problem of un-

steady fluid motion within a cylinder, started to spin about its axis.

If the cylinder is infinitely long, a solution to the problem is obtained
without difficulty, but the expectation that this solution might approximastely
be vélid for slender but finite cylinders proves to be wrong. It is found that
the effect of the cylinder ends on the fluid motion is not only not negligible,
o dominating., The fluid motion is entirely changed by the presence of &
secondary flow induced by the cylinder ends. The seconduiy ~i1nw convects
spinning fluid from the walls into the interior of the cylinder and, as a
consequence, the fluld attains rotational motion many times faster then without

.

secondary flow.
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R S P e B Rt ~ A - red =~ 1 = R
i the following, a theorstical analysis is giver

g
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The results are then compared with some cxperimentél data obtained: 1) from
spin decay data of liquid-filled shells; and 2) from direct observations of the

secondary flow within a spinning transparent cylinder.

II. THEORETICAL ANALYSIS OF THE FLOW

o T s o g

a, Structure of the Secondary Flow

The diagram in Figure 1 shuws an axlal sezctior and a cross-section of the
spinning cylinder. The helght of the cylindsr is h, the radius a. TFor the
Jurtowing analysls, we use a polar-coordinate system 6, r, z with the origin in
the center as shown in the diagram (Figure 1). The velocity components are v, u,
w, respectively,  The Navier-Stokes equations in these coordinates for a flow of

rotabional cymmetry are:

cmpri
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g%+u(%‘f+¥)+w%vz—=v li§+%(¥)+§;%il (1a)

2 2 2

)
%+u%+w%-¥—+%§:v[§r—%+%(%)+§] (1b)
v +u oy + W + L gB = [QEE + Low + éfﬁ (1c)
3} x oY rar 2 ¢
-or oz
Fregtoo (a)

]

The boundary conditions are u = w =0, v

at r =8, withu=0at r =0,

Let us assume the cylinder is started at time t = O to spin about its axia

of rolulion with the constant or time-dependent angular velocity w.

If the cylinder is infinitely long; 1.e., h — o, the Equations (Ib), (le) and
Chi)with the eorresponding houndary conditions are solved by

2
A 1
w=w=0, =0 28+

and Equation (la)reduces 10 a linear differential equation:

*- v ¥ (@)

where v depends on r and t only; i.e., v(r,t). No such solution with u =w = 0

it

- 1g poecaible if the ¢ylinder has & finlte length: In the vicinlty of lhe -endwalls,
z = + h/2, the circumferential component v must depend on z and, according to
Equations (b) end {lc), the velocity components u, w must be different from zero,
In fact, the fluid particles at the cylinder ends rotate with the veloclty of
the walls and, therefore, are subject to centrifugal forces. Due to these
centrifugal forces. the particles close to the endwalls are driven outward,
creating & sccondary flow with velocity components u, w. We can assume, however,
with the reservation of a final préof, that the secondary motion u, w is very
slow except 1u a thin boundary layer region at each of the endwalls, Thus, we
can divide the entire flow reglon in two parts, the boundary layer reglon close
to the endwalls and the rest of the flow, which we will call the core flow. A
simllar flow structure was found by Ludwieg (1951) Tor the steady flow in a
rotating duct, and the following considerations will be analogous to those given

by Ludvieg {1951).

8
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rwat z = - h/2, and u = w = 0, v=amw




b, Approximate Equation for the Core Flow

Let us use the notetion VO, uo, wo, po for the velocity components and the
pressure in the core flow. If we apply Equation (lb) to the core flow, we can
neglect the terms containing u, w, according to our assumption thet the
secondary motion is very slow in the core flow, and we have approximately

1 apo v62
3T . (3)

From Equation (lc) we observe that the axial pressure gradient 559 18 very

small; or, within our approximation, we can assume that the pressure is independ-
ent of z. But then, according to Eguation (3), v, must be 1ndep;ndent of z, and
Equation (la) applied to the core flow gives:

Bvo Bvo vé) aevo avo/r
&“*_%(&‘*TW(BTQ *T) : ()

Since v_ is independent of z, it can be seen from Equation (4) that also u must

be independent of z. Thus, Equation (%) reduces to a partisl differential
equation in the independent variables r and t.

Before we can solve Equation (4) for the circumferential component Vo, we
muat have en additional relation which allows us to express the other dependent
variable U, by Ve The required additional relation between Uy and A will be -
given by the coupling between boundary layer flow and core flow.

¢. Boundary Layer Flow

to the middle plane z = 0, we_can restrict our anelysis to the boundery layer at
one of the endwalls, say z - - h/2,

The boundary layer equatlons can be obtsined from the Navier-Stokes
Kquations (la) to (1d), applying the usual boﬁndary layer simplifications. The
radial pressure gradient within'the boundary layer can be replaced by the
pressure gredient of the "outer" flow; i.e,, the core Clow ln our case. Thus,

according to Equation (3), % %E = vi/r. The friction forces reduce to v ——% ’

ete., Although the boundary layer flow 1ls unsteady, we can treat it as & quasi-
steady flow; 1.c., the local acceleration terms proll etc,, can be neglected.
Apart from a very short acceleration period, after the cylinder is started to
gpin, the local acceleration terms are very emall c~pared to the convective

terms. During the acceleration period, the flow at each of the endwalls 1s

9




essentially the same as the [low on an lmpulsively started rotating disk, The
unsteady boundary layer flow on an impulsively started rotating disk was in-
vestigated by Thiriot (1940), According to Thiriot!s solution, the duration of
the acceleration period is sbout t = g ; 1.e,, after 8 fraction % of a

revolution the boundary layer flow is almost steady. We can, therefore, ignore

the acceleration period and consider the boundary layer flow as quasi-steady for

. 8ll time, The boundary layer equations then are:

M. om 2% R
LY E STt TVCT (5a)
oz
ov v ov _ v
u-BF-i-uF-O-w&-—-V'B”—E (5b)
S (52

For convenience we change our coordinate system, so that the lower endwsll of

the cylinder 1s glven by z = 0. The boundary conditione, then, are:

vV = T
~u =0 at z =0 7
w =0 (5d)
v oEvy {r,t)
at 2 = @
u=20

v, enters into our boundary leyer problem twice; first,iit oceurs 1in Equation
(5a); and secondly, it enters into one of the houndary conditions. For any

‘Eiven’buter*flow*vafr); the boundary layer-flow is determined by the Equations
(58, b, ¢) and the boundary conditions {5d). Thus, we have s coupling between

i

the boundary leyer flow and lhe core flow.

The boundery layer Equations (%a, b, c) have been the subject of many
investigations, von Kﬁrmén (1921) considered the flow on & rotating disk in e
fluid at rest (vO = 0) and obtained approximate solutions using the integral
method he invented, A more sccurate solution to the same problem was - )
caleulated by Cochren (1934), The problem of rigid body fluid rotation over a
stationary disk was solved by Bodewadt, (1940),

Batchelor (1951), Stewartson (1958), Regers and lance (1960) and others
investigated the more general problem of a fluld in rigid body rotation over a

rotating disk. A common feature of the above mentioned flows is that they have

10




similarity solution‘s, where lhe veloclity components Luke the form v = 1 G(z),
us=r F(z), W o= H(z). These similarity solutions are also solutions o1 the exact
Navier-8tokes equations, since the terms, which are commonly neglected in boundary
layer theory, vanish identically. Ludwieg (195i) and Squire (1953) linearized

the boundary layer Equations (58, b, ¢) for the case of small disturbances about

a state of rigid rotation. In the linearized form, the Equations (5a, b, c)

reduce to a set of ordinafy differential equations, which are linear.

For general v, - distributions, when neither linearization nor the
essumption of similarity {low ls applicable, approximate solutions may be obtain-
ed by using the momentum integral method.  Mack (1962) (1963) has applied the
momentun integral method (1962) and a simplified momentum integral method (1963)
‘to rotating flows on a stationary disk, The latter wmethod, which makes computa-

tions easy, could be extended to our case of rotating flows on a rotating disk.

While the momentwn integral method docs nol give the exacl shupe ol e
veloclty profiles, i1t provides failrly good approximetions to c-rtaln integral
values, e.g., the radial mass flow within the boundary layer, which is

o)
M(r) = 2xr . pL[ﬂ u(r,z) dz where & is the boundary layer

thickness. When the radlal mass flow distribution M(r) has been determined = for
e given distridbution of vo(r) - the radial velocity in the core flow, uo(r), can
be found, »

Making use of the condition, that the total radisl mass flow (within the

two boundary layers and the core flow) must be zerc, cne obtains -

3]
orr . p[ﬂ Jf w(r,z) dz + h uo(r)w = 0
A .

(6)
h A
or -3 uo(r) = d[ u(r,z) dz
o
Thus, we have a {unctional dependence
u (r) = Flv ()] (1)

This means, for any given distribution of vo(r) wve can find the distribution of

u ().

1)




In principle we could now express u, in Equation (4) by Yo making use of
the funotional dependence (7). But aside from the fact that we cannot give an
explicit formule for uo(r), the relation (7) will be much too complex to enable
us to solve Equation (L4). Thus we have to confine ourselves to & simple

approximation of the relation (7).

d. Approximate Formula for u,(r)

At the beginning of the fluld motlon the circumferential component of the
core flow, Vo 1s zero and the boundary layer problem reduces to the problem of
the rotating disk flow, which was solved by Cochran (1934).

According to Cochran's solution we have: 4

fudz::olhl&*/:&)r. (rw) | | (8)

aud hence, Crom BEyuation (G)

RN - (9)

If on the other hand the fluid finally attains the state of rigid rotation
,.(vo = 1) the boundary layer Equations (5) have the trivial solution v = rw,

u=w=0andhenceuo=0.

The simplest possible approximation for general VO distrif)utions then i1s

to msesume, thet:

1]

u_ = 0.“143,\/%- (ro - v ),

which is & linear interpolation between the two extreme cases,

(10)

We can test the validity of this approximation in a few other cases. If
the core flow is almost a rigid body rotation with the angular veloelty w, i.e.,
v, =ro+v! and ‘v‘o | < < rw, the boundary layer Equations (58, b, ¢) can be

linearized., In doing this we transform:

u?

1

<
n

rw+vo','u

(11)

v o= rwo+v; owo o= w!
where the primed quantities are small compared with ro. Substituting (11) into
{~a, 1) and neglecting terms of higher than first order in the primed quantities,

Fquations (Ha, %b) become:
3




1
v 9 g 200 = O
oz
(12)
2
ou' t 1 -
er'-+2Ll)(v-vO)—O

These linearized equations were used by Ludwieg (1951) for the boundary layer
flow in a rotating duct.

With tﬁe boundary conditions:

vt.= 0] vio= vt ' .-
at 2 = 0 ’ at 2 ==

u' = 0 ut = 0

Eqations (12) are solved by: ’ -

It
o
7\
H
I
o]
Q
)
S
) =
® 13
.
<IE
IS
N—

vt
(13)
qﬁﬁ
-[= =
u' = - vt sin‘jg 7. eV
0 v
For the radial component in the core flow u, we have, according t» Equation (6) ,
- ¢
J '
h 2y = “yt = 'l.ji 1 |
-3 uo(x) -b/\ urdz =-v'J5 3 '
N : .
If ve replace ;é} accordiﬂé to (11) by - (ro - VO), we have:
. 0. 500 .ﬁ'(rw- v_) 7 7(12") 7
2 0 W o ,

This formula for 4y is cimilar to the linear interpolatlon [ormul (10) except
Lhat the factor of 0.500 in (14%) is 13% larger than the factor 0.443 in (10), so

Lhat the error of the approximate formuls (10) in this case is 13%.

For the casc that the onter flow is a rigid rotation witn the anguiar
velocity Q, i.e., v = 1rQ, the Poundary layer Equatlons (5) have been solved

by Rogers and Lancc (1960) for scvera! values of % .

13




 after obtaining the solution for vn(r,‘q). A calculation of the radial flow .

" from Equation (10) and the agreement was found to be good within the accuracy of

According ta the solution of Rogers and Lance (1960), the vadial flow

eoral is olven by:
e = it b

-%uo = f wdz = J(—E . T f(%) : (15)

where the function f((%) is shown in Figure 2, If we apply our appi‘oximation

formula (10) to the case, when v, = TR, we geb:

I JE Q
—— [ J— o vm ] = _fems - — ,) by B -
5l =ov T -0 hb3 {1 u))

Thue the fungtion i‘((%) has to be compared with the approximate expression 0, L43
(1 - %), which 1s shown by the dotted line in Figure 2.

The "agreemsul, -is sbill good enough that wo-ean -consider Equation (10) es a -
reasongble approximation wlso iu this cape. Whether or not Fquation (10) ic

approximately valid for the actual velocity profiles v Re ,t) canbe checked

integral for some of the obtained velocity profiles Tr;('r,'b_) has been done, based
on the simplified momentum integral method of Mack (1965')_':. The u, values ob-
tained from these calculations bave been compared with the approximate values

the momentun integral method, which is about 15%. Thus, we can conclude this
section with the remark that the error of the approximation for uy (Bquation 10) -
is probably not larger than 15%. , - -

Using—thenotation Re = »ai D sor the Reymiolds number, eqw:tim,,ﬁ()) oan be . -
written: ]
11; = - 0,443 -12]}- . 'J%'e' (rw - Vo) -(17)
or, with the notation o
kK = 0,403 %Edé%' | (18)
1
uo = -k (rw - ‘/O) : (19)

e, Solulion for “"o("}j')

After substitubing (19) into Bquation (L) the equation for v, is:

PNO ' (\NO v })Evo Bvo /T 20)
-5—1:— 4- ]((‘»’O - ]'(1))("3—]‘— + ‘;—' = V(arg + T) ("



28 1
vhere k = 0,443 % VR

The initial and boundary conditions are

v, = 0 fort<oO
O .
v, = ewforr=aandt>0 o

fi

~ Let us restrict our analysis at this instant to the case of constant w
(ﬁ;e.,,the cylinder {s started at.t = O to spin with constant anguler veloeity
w)} In many cases now, we can neglect the friction terms at the right hand side
‘of Equation (20) against the convection terms. To see this, we multiply

Edhation (20) with —55 ‘and, introducing the dimensionless variables v¥* = E%,A
¥ = % Equation {20) becomes:

2 - .
+‘k(v*'- r*)( 7 * !i = %g (Zr:: + ES; %;) (21)

i
i

ovk
Tt
with theibaﬁhdar& conditions: _7 _ hih.ﬂ“f:
v¢ = 1 forr¥ £ 1andwt > 0

It can be seen from Equation (21) that the solution v* is a function of

7 MUt, r* and the dimensionless parameter kRe = O, hh} . NRe , l.e., v¥ = f(r#,
kﬂ)‘b; kRe) h

If kRe = 0, hh}. Ea'JRe > > 1 then the viscous terms at the right hand side
of (21) become small except for emall times when the gradient 5;— is large near

the wvall r* = 1, t .
i i

For not too small times and kRe > > -1 wiu- can therefore neglect the viscous
terms and the solution of the inviseid equetion 1s'
7 Dkt 1
; r*em T - Ty ) ket
Ve o T gy gy M

; L (22}
v¥ = 0 for r* <'e ket

A plot of the v* profiles (Equation 22) for different times is shown in

_ Figure 3,

It is remarkablc that the golution (22) satisfles 8lso the complete
Equation (21) with viscous terms except at the point r¥= e'}wt where the first

derivative is discontimwous. The inviscid equation 15 of the first order in the

.15




no

" From the equationubf’CGntihUity’(EquaPion 1d) and the condition that the'fibﬁ”
Tt ST T T T T T must be symmetric to the plane z = 0, 1t follows: T e s

\:\
derivatives and hence only the solution function has to be continuous, while tﬁe
complete equation has second order derivatives and the solution must hawe con-
tinuous derivatives, The effect of the viscosity, therefofe, will be to smooth
Lhe corner.atbr¥ = o it With the solution for Vo {Equation 22) the other flow
componentsfuo, W, can be obtained at once. First of all we have, from Equation
(19)+ ‘
u o= - k(rw - Vo)'

Ziaruo o N N
vy o= sz . I (23)
Within the core flow we can distinguish two reglons:. ‘ o \’
" Region (1): O <7r/a< g Kt - - x
‘Reglon (2): e <r/a< ‘

According to Equation (22) the partidleqﬁ}n region (1) do not rotate (i.e.,
v, = 0) while the particles in region (2) rotate with the veloeity Vg = awvk
given by Equation (22). Region (L) and (2) are separated by the cylindrical

front r/a = e'kﬂm, which 8 moving toward the axis r = 0, - )

It can be shown that the particles in region (i), 1,e,, the particles ahead
of the moving front, remain ahead of it until they hit one of the boundary layers

at the endwalls z = + % .

To see this, we compute the trajectories of the particles in region (1).

From v_ = 0 1t follows, that'ub = - kroo and v_. =_2kaw (Equation 23), From:

i

i - d.r
=u, = - kro

du- (éh)
~dz _ -

a-%- = WO = 21_{2.(1)

wé obtain by integration:
) L ket
ro= T,
- 2kt Toy2 (25)

z = z.e = zo(;—)

where (ro,zo) is the particle position at t = 0,

The Lrajectorics (25) course entirely in region (1), so that the eolution
(25) is compatible with the supposition v = 0.

]L(’)

A




Thus, we obtain the following flow picture:

After the cylinder is started at t = 0, the fluid particles move
along hyperbolas given by (25) until they hit the boundary layer at one of

-the endwalls z = + h .

2
It
In the boundary layer the flow direction changes rapidly, the particles
acquire rotational motion and are thrown radially outwards until “hey emerge

from the boundary layer at some distance behind the moving front r/a. = e'km',

nov having & rotational component v, according to Equation (22), ~The rest of -

the trajectory courses entirely in region (2), [

Actually, this flow pleture will be modifled slightly. The particles
can acquire rotational motion already in reglon (1) by the action of the viscous
force term in Equation {21) which has been neglected so far, This will also
slightly modiry the trajectories_given by Equation (25), =

. Equations for the Angular Momentum "
Of particular interesl ls the Gotal angular momentum of the liquid within

the cylinder, ‘\;}hich KT

_ &, _
I = ph.EﬁE[rvodr ' (26)

K

An equation for the angular momentum I ocan be obtained from Equation (20), *

To this end, we multiplyavKuation (20) by r2 and integrate from r = 0 to
v arv .
r = a. If we consider thab 59.- to o %1‘”—“ ) this glvea:

1

. i-,a [3 rzvcdr + k [a(rvo - rw) -a%’o- dr.] - _
& R arv (1)
v [ o]

The second integral consists of two terms: the first one gives:

a oy &
kf rvé—-sr—o-dr- = [ (rvo)e“

5 -

ol=

while the secord term can be integrated by parts:

a al‘v a - a
2 0 - 3 =2
- kew J r > dr = [- kw r vo] + 2ktv r voc‘,r

17
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Considering that v, = ew for r = a, the second integral of Equation (27) gives:

’ 2 arvo k
kf(rvo-rw)-ydr=-h—2-aw +2kwf1vdr
The 1ntagral at tue right side of Equation, (27) becomes, after integration by

p&rta' - S [ S e o e — L —_— e
R &rv R aTV a aV‘ ’
v far2 %: (%— —Fo) dr = v [I‘E‘—O'J - ~V[21‘VQ]§ 3 (—§) res

[¢] Q |

We thuc get the equation: )
d . k o o/r .
Hf vdr--—am-f-km['rvdr-va ( 2'=a, (28) L
o

a !
According to (26) the value of th’e angular momentum is : I m 2¢h . p f ravodr. ¥
N _ [ et

In the final state, i,e., when the liguid appzom.hcb rigid body rotallon

Vo = 1, the angular momentu.m becomes L

" T T Tt Tt "*‘
a 4 ' :
"I, = 2rh . pf rudr = 2h , p 9-,;“-’ o

o]

The ratio of the angular momentwn I to ite final value I, then is!

a
~[::'evodr

I =

To g w/b

After dividing Bquation (28) by %,' 1t can be wrltten: - - - o

Cd)vem[Eoa]al 2 (30)

Ir=a

| . : b _
If we neglect again the viscous term at the right side of EHquation (%0), the —

equation can be integrated at.once to give:

= (1. 7P (1)

-
8‘—’l

This result, of course, could have 'heen ohtaieed also from the solution
Equation (22) for the velocity profiles o = by integration.

18




In order to improve the solution (51) we have to take into account the

by o/ T R
friction term — (—-&-)Fa of Equation (30').

This can be done within a fairly

good approximation by assuming the approximate shape of the velocity profiles

dv_/r

Q

v (r) and expressing ( ) by I/I..
& 'r=a @

Since the contribution of the viscous term is smell, it appears reasonable

to assume that the v profiles have essentlally the same shape as the profiles,

Thus, we may assume profiles of the form:

Yo _ Ae.r[a-a[r"

aw A2 -1
v,
2L = 0

vhere A ié e function of time. For -the case that the viscous term 1s neglecuea ’

Tor r/a > A

-1

for r/a < At

_____which we have obtained as solution for the inviscid equation. ——— - — —————

TP

L

at all, the solution for E was given, according to Eq_uatrion (22), by the profilae

(32) vith A = ek‘““.

It might be mentioned, that the v, profiles (32) eatisfy the compatibility

condition

_ vhich is obtained by evaluating Equation (20) at r=a,

given by (32) we have:

B av /I‘ B %
A
while
/1, =1 - nE
Thus, from (34) end (3%5) we obtain:

avo/r

(T)rfa =§L_b[-1711—0; - l]

' Inserting (36) into (30) we nave:

-

QJ[Q..
(24

@ - " o[£ 11
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Using the vo,proﬁJ.eLa o

(34)

(35)

(36)




or, after dividing by w,

ar/1, [ 8 1 _
dl.Dt- + 2k ‘I;:‘ - l- = ﬁ‘ '7——]: I“ - l:‘ (57)

' ' ov./r .
It should be mentioned that the approximation for (—Eg-—)r_a, which 1is o
gliven by Equation (36),_;s“not very sensitive to the special choice of veloeity

profiles. Although the very early v profilea—ére somewhat different fron those
B ”rigivan7in7Equation7(52),"Fhe,expression4(56)”iﬂ\stillAgﬁgood approximation,

Tt can be obtained from Equation (37) thay for sufficiently small times the

friction term is dominant however large kRe is,

The equation for A then is:
A v, .
Y = Pme ) v 'j‘ - (38)y =

which is obtalned from hqpation (ao) hy. neglecting the convection terms and o

v /r & vy . . -
v compared with v . -
EE are

The solution of (38) is:

vo(r,t) = aw [l -% fm e'ya d,y] - (39)

o)

- With the veloecity profiles giveﬁ by Bauation (39) one would have:

- TS
a" I7I°° et I7I°°

while Equation (36) glves approximately

o T’V /F)

BV/r ) 2{1_3*1'
a I;I°°
since for small times we can noglect 1 against I T Thus, we see that

Equation (36) is s remsonably good approximation even for the very early velocity

profiles,

The differential Equation (37) now has to be solved for the initial
conditicn I/Iw =0 at t = 0, The solution for I/Im can be given.implicitly:




a X
et s Hﬁf’e(l- 1/1,) + i 1o (1 ¢ S 1) | ()
kRe : :

For kRe - the solution (L0) reduces to: 1 - I/I = e-Ekum; i.e., the

“inviscid solution given by 3l)

For very small times, or more preciselv for I/E <« 1 and -nf I/I <<,
Equetion (40) gives: I/Im N,J‘g . Nwt; i.e.,, the angular momentum increases as

the square root of .. -

The validity-of the preceding results-ls-restricted to-the case where-the -.
\@ngular velocity of the cylinder, w, remains constant after the cylinder is
&tarted. N ”

If @ 13 not constant, it is adventageous.to introduce the dimensionless

quantity T i
I T -
I* = T = T— [ VOI'\\ dr, \\\ (hl)
et ey T

. :
vhere W, is a constant reference angular velocity and I is a reference angular

momentum'
8 5
I° = 2% p h\jn w.r dr,
O -

the latter corresponding to & rigid rotation with angular veloeity w .
" 2 _.
8, v, /T
Dividing Equation {28) by -ﬁ=— and. substiéuting —5 according

o R rea
to Equation (36) we have: )
. 1/2 '
4aI* . ® w 8 w |1 w
8k (5=) [I*--—-l =——-|—_-—-1-‘ L2)
ot o iy i g | Re, o | TFuog ™ 7 _ (12)
2
a%w_ 5 _
vhere: Rey = _;JE and- k, = O.“hﬁlj% . (Reo),l/g

Equation (42) has been used to calculate the apin decay of a liquid-filled
shell, If a shell containing a liquid-filled cylindrical cavity i1s started im=
pulaively to spin about its axis of rotation, the Iiquid contimiously absorbs
anguler momentum, thus reducing the spin until the liquid finally attains rigid
body rotation, B
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'up to about 3 ¢ lO5 (see e.g. Schlichting 1958), TFor Reynolds numbers greater

- @ Tulbulent Boundary Leyer Flow - - -- - .- - C e - o

e . . 1

Let A be the axial moment of inertia of the empﬁy shell, ® the instantane-
ous angular velocity and I the angular momentum of the liquid, then, due to the

conservation of angular momentum,

I+wA = constant = w4, , (u3)

where W, is the initial angular veloecity when the liquid is at rest.

According to (L3) we can express I by 3

‘ I = Al -'wdu%):; e T s e o
or using the definition (l1): ' '

Mo . o . . . _
\ I* = ? (1 - d.)/t.l)o). . (m"') T .
After insertirg (Lk). into (42)-we get o differentisl equation Tor/T* (or w/w A # o

which may be hoLved by. nume11LaL ¢uucb1uu10n

In Sections (c) and (&) we have assumed that the boundary layer flow at. thg
cylinder enda ie laminer. Thie assumption is valid for Reynolds numbers Re = 5;- '
A\
than 3 lO5 the boundary layer flow will be turbulent and the radial mass flow

and hence u, will be different from the laminar case, ) - . )

. According to the solution of von Karman (1921) for the turbulent boundaﬂy

layer flow on e rotating disk, the radiql ;low integral is:

o«

,' =

This formula is analogous to Equation (8), which corresponds to the laminar case.
| 2
Using again the notation Re =-Eﬁ£ for the Reynolds number, Equation (45)

ean be writcen:

[ 8/5 .
=1/5 (1w
[ w =0 (th el - (16)
A o (aw) _
By arguments similar to those used in Section (d) for the laminar boundary
layer, it ssems appropriate to generalize Equation (46) to:

(xw = v )%

fo»a'idz = 0,035 a, (Re )_l/) ""‘("‘ )575 (47)
/ aw

o
no




According to Bguation (6) we then have for the radial component of the core flow:

ICl)-V 8/5

s(r) = - 0.035 . () ()™ ﬁ? -

aw)

Equation (48) iz analogous to Equation (17). With u obtained from Equation (48)
the equation for the core flow (Equation 4) becomes: '

o , ae ] BV .. _ T
,,,,,,,,, ,—1—37" - v /5( e =) V{%§7+ T‘f/{] (%)

ks 003 (B ()P o)

Analogous to the procedure described in Section (f), we find the equation for
the angular momentum by multiplying Equation (49) with r? -1TL75 and

Integrating over 7.

If we further introduceé again the dimensionless quantity I* according to
EBquation (41) ve finally have:

ke b 8 arvo L /x :
.—gtf);tf (m)5/5 T g[r(rw-ﬂ/‘j ) dar -{‘( S )_ (51)

The integral in Equation (51) cannot be evaluated as it could for ‘the laminar
case, without knowing how v, depends on r, Only for small times when the v,
profiles mre restricted to a marrow zone neay the wall T=a, We C&n approximate
r in the integral by a and find: ‘ '
a
N /5 |5 2 13/5| | 5. o2(a)L3/5
f&(a-w"'o F’ = [15“ (e - v,) - 13 & ()™
0

"Ingerting the last result into (51) and using for the viscous term at the right
side the same approximation as in Bquation (42), we cbtain: i

ar* 20, (w95 _ 8 Wyl oo -
. Wt~ T3 to w &) = TRe)g (wb) [T¥ o l] ’ (>2)
where again (Re)o = and k= 0.035 (%?) (Reo)-l/5

In order to evaluate the Ilntegral in Equation (51) for later times, when the
- assumption r =~ g is no longer valid, we have to make assumptions about the shapa

of the velocily profiles vo(r). We may assume, that the velocity profiles are




given again roughly by Equation (32). These profiles, at least, satiafy
the compatibility condition (33),_i.e., they are correct near the wall.

Using the v, profiles given by (32) the integral in Equation (51) can be
evaluated and expressed by I¥*, After some lengthy calculation, one finally
obtains from Equation (51):

R L 8/5
N R e

° (1 - x)

+20,8/5
aT* o (@49/5 (1 - o5 /

dwot " Mo I * (I* w_m)lB;‘j '

(53)

)

Be (e o) .
ReO(DO_*(DO .

w .
For small times, 1.e., as long as I* 59 < <1, the integral approximates to: -

. w 13/5
sk, |

S w, 8/5 j 3
vhile (1 = I*‘a?) ~ 1, and Equation (53) reduces to Bquation (52).
Equation (53) has bekn used to calculate the spin decey of liquid-filled

shell for Re > 3,107,

III, COMPARISON WITH EXPERIMENTS

In order to test the analysls given in the preceding section, some of the
theofeﬁ%cal predictions have been compared with existing experimental dats,

A deteiled description of the experimental arrangements is glven by
Karpov (1962),

" A quantity which hes been measured directly is the axial spin décay of
liquid-fille& shells, fired from a gun, After the shell leaves the gun, the
angular veloclty decrecases continuously. The decrease of angular velocity is
caused by avsorption of angular momentum in the liquld and by the torque due to
~air friction. The contribution of the alr frietion, which is usually small, can,
be determined séparatcly by observation of the spin decrease of the empty shell.
The diff=rence, which is duc to absorption of &ngular momentum has been plotted
for two typiecal cases in Figurce 4 and Flgure 3. For comparison, the theoretical
curves are plotted in the samec diagram and also the turvzs obtained from the l
theory without secondary flow. The [ineness ratio of the cylindrical cavity was
in both cases gﬁ = 2,68, VFor rincness ratios smaller than 2,68 the effect of the

secondary {low would be even morce pronounced,

2l




The Reynolds number for the case plotted in Figure 4 was Re = 1.76 x lO5 80
that a laminar boundary layer flow could be assumed, while for the.case of
Figﬁre 5 the Reynold% number of Re = 6.1 x 105 was ‘above critical and therefore
theiformula for turbulent boundary layer flow was applied.

In addition to observations of spin decay, experiments have been done to
observe the secondary flow itself, To this end an Iimpulsive spin generator was .
designed which is described by Stoller (1960). ‘Ihe spin generator consisted of

‘8 liquld-filled cylinder with trensparent walls which could be startedimpulsively
w0~ 8pin -about its:axis.'*Arsuspenaion'of*smallmpafﬁicles was dissolved in the - - —-

liﬂpid, the specifiec gravity of the particles beiné the same as that of the
liquid. The trajectories of the particles could be observed with the aid of a
motion camera. For this type of observation, of course, only transparent liquids

[

couid be used.

Figure.6 shows some ol the observed purlicle Llrajectories, or rather the
first part of it, and the partlcle positions at constant time intervals. Close
to the observgd trajectories; theéoretical trajectories and particle positions —
according to Equetion (25) are plotted. The agreement is ressonably good.

Some deviations can be explained by the fact that the Reynolds number of the
experimental flow was rather low (Re = 1,83 x 10h)»while the theoretical
prediction ia based on the assumption of hlgh Reynoids numbers, where the viscous

forces in the core flow can be neglected,
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