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THE UNSTEADY FLOW WITHIN A SPINNING CYLINDER

, ABSTRACT

A theoretical analysis is given of the unsteady flow within a liquid-filled

cylinder of finite length, which is started impulsively to spin about its axis.

It is established that a secondary flow, which is caused by the cylinder

ends, has a remarkable effect on the generation of spin in the liquid.

The theoretical results are compared with experimental observations and

good agreement is found.
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I. INTRODUCTION

It is well known that spin-stabilized shells can become dynamically un-

stable if they are filled with a liquid. According to a theoretical analysis

of K. Stewartson (1959), the stability of a shell containing a cylindrical

liquid-filled cavity can be predicted if the liquid is in rigid body rotation.

However, for a liquid of small viscosity, it requires a relatively long

timc for the liquid to reach full spin, and, during the transition period, the

shell might become dynamically unstable even though it might be stable at its

final state if the liquid attained rigid body rotation. In the course of

experimental investigations (B. G. Karpov, 1962), severe dynamic instabilities

of ltquid-filled spinning shells have been observed i.n' cases where the shell

should have been stahl.e according to Stewartson's theory and the assumption of

rigid rotation of the liqild! filler. 1i order to axtend the prediction of in-

stauilities in such cases, it appeared desirable to analyze the problem of un-

steady fluid motion within a cylinder, started to spin about its axis.

if the cylinder is infinitely long, a solution to the problem is obtained

without difficulty, but the expectation that this solution might approximately

be valid for slender but finite cylinders proves to be wrong. It is found that

the effect of the cylinder ends on the fluid motion is not only not negligible,

' 'c dominating. The fluid motion is -ntirely changed by the presence of a

secondary flow induced by the cylinder ends. The secondry "'nw convects

spinning fluid from the walls into the inter: Vr of the cylinder and, as a

consequence, the fluid attains rotational motion many times faster than without

6eceondary flow. Ln th-e following, a theoretical1 analysis iss given of the un-

ctcad5 flow within a cylinder which is started 4- spin P bct its axis of rotationi

The reSulLS are then compared with some cxperimental data obtained: 1) from

spin decay data of liquid-filled shells; and 2) from direct observations of the

secondary flow within a spinning transparent cylinder.

II. THEORETICAL ANALYSIS OF THE FLOW

a. St-ucture of the Secondary Flow

The diagram in Figure I bhu'u: an axial sectior and a cross-section of the

spiiining cylinder. The height of the cylinder is h, the radius a. For the

,uLtowing analysis, we use a polar-coordinate system 9, r, z with the origin in

cl center as shown in the diagram (Figure 1). The velocity components are v, u,

, m :-ct iveTy. he Navier-Stokes equations in these coordinates for a flow of

'{,~it o~i ;vrnm/c ; (i.[j are.:



-V 6 u + + &- +- +- V (la)

ara+ i u L_+1L + +6u

_ r 67 rV 2 r , ]2lb

C) ) Ww+I (1c)

+u u +w
ru+ --o (ld)

(id
0+

The boundary conditions are u w 0,. v 7no at z - h/2, and u = w = 0, v=at

at r = a, with u 0 at r = 0.

Let us assume the cylinder is started at time t =0 to spin about its axis

of roLalun with the constant or time-dependent angular velocity W.

If the cylinder is infinitely long; i.e., h -4oo, the Equations (Ib), (1c) and

(id) with the corresponding boundary conditions are solved by

u =w =0, =0 , r

and Equation (la)reduces to a linear differential equation:

v 2v6V 2?V v/r
;2 ,(2)

where v depends on r and t only; i.e., v(r,t). No such solution with u ='w = 0

ic possible if the cylinder has a finite -length. In the vicintLy of Whe undwall-

z = + h/2, the circumferential component v must depend on z and, according to

Equations 4b) and (ic), the velocity components u, w must be different from zero.

In fact, the fluid particles at the cylinder ends rotate with the velocity of

the walls and, therefore, are subject to centrifugal forces. Due to these

centrifugal forces. the particles close to the endwalls are driven outward,

creating a sucondary flow with velocity components u, w. We can assume, however,

with the reservation of a final proof, that the secondary motion u, w is very

slow except lv a thin boundary layer region at each of the endwalls. Thus, we

can divide the entire flow region in two parts, the boundary layer region close

to the endwalls and the rest of the flov, which we will call the core flow. A

similar flow structure was found by Ludwieg (1.951) for the steady flow in a

rotating duct, and the following considerations will be analogous to tnose given

by Ludwieg (1951),



b. Approximate Equation for the Core Flow

Let us use the notation vo, U0 , w0 ) PO for the velocity components and the

pressure in the core flow. If we apply Equation (ib) to the core flow, we can

neglect the terms containing u, w, according to our assumption that the

secondary notion is very slow in the core flow, and we have approximately

1 ko Vo2
P (3

From Equation (IC) we observe that the axial pressure gradient is very

small; or, within our approximation, we can asstune that the pressure is independ-

ent of z. But then, according to Equation (3), vo must be independent of z, and

Equation (la) applied to the core flow gives:

v°  (3o )o¢. 2 Vo 0 o/r ,

Since v is independent of z, it can be seen from Equation (4) that also u must0 0

be independent of z. Thus, Equation (4) reduces to a partial differential

equation in the independent variables r and t.

Before we can solve Equation (4) for the circumferential component v, we

must have an additional relation which allows us to express the other dependent

variable u0 by v0 . The required additional relation between u0 and v. will be

given by the coupling between boundary layer flow and core flow.

a. Boundary Layer Flow

_Since the flow within the spinning cylinder must be symmetric with respe"t

to the middle plane z = 0, we can restrict our analysis to the boundary layer at

one of the endwails, say z - - h/2.

The boundary layer equations can be obtained from the Navier-Stokes

Equations (la) to (ld), applying the usual boundary layur simplifications. The

radial pressure gradient within the boundary layer can be replaced by the

pressure gradient of the "outer" flow; i.e., the core flow in our case. Thus,

= v?/r. The friction forces reduce to vvaccording to Equation (3), 14 o0 -

etc. Although the boundary layer flow is unsteady, we can treat it as a quasi-
6v

steady flow; i<o., the local acceleration terms 7 , etc., can be neglected.

Apart from a very short acceleration period, after the cylinder is started to

spin, the local acceleration terms are very small c"-ipared to the convective

terms. During the acceleration period, the flow at each of the endwalls is

9



essentially the same as the flow on an impulsively started rotating disk. The

unsteady boundary layer flow on an impulsively started rotating disk was in-

vestigated by Thiriot (1940). According to Thiriot's solution, the duration of

the acceleration period is about t -2 ; i.e., after a fraction 1 of a

revolution the boundary layer flow is almost steady. We can, therefore, ignore

the acceleration period and consider the boundary layer flow as quasi-steady for

all time. The hnnbordry ]yer eqmatlnns then ar:

2
2w z2U v v a vS+ __ +w o(5a)

v + uv+ v (5b)

7 + z b V -

For convenience we change our coordinate system, so that the lower endwall of

the cylinder is given by z 0. The boundary conditions, then, are:

V = !

U =0 at z = 0
w = 0 (5d)

V =v O0 (r,t)
"atz

u=O

v enters into our boundary layer problem twice; first, it occurs in Equation

(5a); and secondly, it enters into one of the boundary conditions. For any

-iven outer flowv (r) the boundary layer-flow is determined- by the-Equations

(5a, b, c) and the boundary conditions (5d). Thus, we have a coupling between

the boundary layer flow and Lhe core flow.

The boundary layer Equations (ba, b, c) have been the subject of many

investigations. von Kdrmgn (1921) considered the flow on a rotating disk in a

fluid at rest (vO = 0) and obtained approximate solutions using the integral

method he invented. A more accurate solution to the same problem was

calculated by Cochran (1954). The problem of rigid body fluid rotation over a

stationary disk was solved by Bodewadt (1940).

Batchelor (19,51), Stewartson (1958), Rogers and Lance (1960) and others

invesigated the more general problem of a fluid In rigid body rotation over a

rotating disk. A common feature of Lht above mentioned flows is that they have

10



similarity solutions, where the velocity compolents Lake the form v = r G(z),

u = r F(z), w = H(z). ihese similarity solutions are also solutions oir the exact

Navier-Stokes equations, since the terms, which are coimonly neglected in boundary
layer theory, vanish identically. Ludwieg (1951) and Squire (93) linearized

the boundary layer Equations (5a, b, c) for the case of small disturbances about

a state of rigid rotation. In the linearized form, the Equations (5a, b, c)

reduce to R set of ordinary differential equations, which are linear.

For general v - aListributions, when neither linearization nor the

assumption of similarity flow is applicable, approximate solutions may be obtain-

ed by using the momentum integral method, . Mack (1.962) (1963) hac applied the

momentum integral method (1962) and a simplified momentum integral method (1963)

to rotating flows on a stationary disk. The latter method, which makes computa-

tions easy, could be extended to our case of rotating flows on a rotating disk.

While the mOisentiii iaLcgral uLhthud docL ; n1UL G LliU uxacL hlUPu U.' Lhu

velocity profiles, it provides fairly good approximations to c-rtain integral

values, e.g., the radial mass flow within the boundary layer, which is

M(r) = 2gr . PJ u(rz) dz where 5 is the boundary layer

thickness. When the radial mass flow distribution M(r) has been deturmined - for

a given distribution of v0 (r) - the radial. velocity in the core flow, uo(r), can

be found.

Making use of the condition, that the total radial mass flow (within the

two boundary layers and the core flow) must be zero, one otains

2nr . f f u(r,z) dz + h uo(r)] 0
0 (6)

or - g Uo(r) 1u(r,z) dz

0

Thus, we have a functional dependence

UO(r) = F[v 0 (r) (7)

This means, for any given distribution of v0 (r) we can find the distribution of

U(r ).
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In principle we could now express u0 in EquaLion (4) by v making use of

the funct.on- dependence (7). But aside from the fact that we Pannot give an

explicit foannu-ls for Uo(r), the relation (7) will be much too complex to enable

us to solve Equation (4). Thus we have to confine ourselves to a simple

approximation of the relation (7).

d. Approximate Formula for u,(r)

At the beginning of the fluid motion the circumferential component of the

core flow, vo, is zero and the boundary layer problem reduces to the problem of

the rotating disk flow, which was solved by Cochran (1934).

According to Cochran's solution we have:

00

f udz0.43 (rW) (8)

aLd huiuu, fr.usL Euation (6)

h
h it 0.443 j 7rc (9)

If on the other hand the fluid finally attains the state of rigid rotation

(v = rm) the boundary layer Equations (5) have the trivial solution v = M,

u = w = 0 and hence u O = 0.

The simplest possible approximation for general v distributions then is0

tn asaume, that:

h u °  o 443 (rcu - v (10)

which is a linear interpolation between the two extreme cases.

We can test the validity of this approximation in a few other cases. If

the core flow is almost a rigid body :rotation witth tho angular velocity c, i.e.,

V = rM + V' and Ijv I< < rco). the boundary layer Equations (5a, b, e) can be

linearized. In doing this we transform:

v = ID+V !  U = U
t

0 0 (n1)

V rco + vw; W

where the primed quantities are small compared with ram. Substituting (11) Into

( n, b) and neglecting terms of higher than first order in the primed quantities,

Equations ()a, 5b) become:

12



V 2v' 2CM' = 0
2

dz

(12)
2u

v- + 2c(v'- v 0
on 2o

These linearized equations were used by Ludwieg (1951) for the boundary layer

flow in a rotating duct.

With the boundary conditions:

V1. 0 Vt

at z =0 at z

Equations (12) are solved by:

V1 =V (1 - cos-P z. e a)

ul = - v' sin -' z. e "-0

For the radial component in the core flow u0 we have, according ta Equation (6)

- u (r) fu'dz - V~t .j

0

If we replace v according to (11) by - (rQ - vo) we have:

h 0.500 . (r - v) (14)- = ( .0

Thil" formrula for u 0c uimni].ar to the linear interpolation formul (i0) except

Lhat Lhe factor of 0.500 in (1h) is 13% larger than the factor 0.443 in (1O), so

that the error of the approximate formula (1O) in this case is 13.

For the case that the outer flow is a rigid rotation wtn the angular

velocity 0, i.e., v = rQ, the boundary layer Equations (5) have been solved

by Rogers and Lance (1960) for several values P -f
La

15



According to the solution of Rogers and Lance (.960), the radial flow

lntenurnl1 isz u-Iveen by:

= Fuz = -. rwi( ) (15)
2 0 J ~ v-

0

where the function f(2 ) is shown in Figure 2. If we apply our approximation

formula (1Q) to the case, when v = rQ, we get:

- U I- ru- . -0_443- (1- -)

Thus the f'untion f(-) has to be compared with the approximate expression 0. 443

(I- ), which is shown by the dotted line in Figure 2.

".The "agreernriu -Lt sLlLl good enough that wc- can consider Equation (l0) as a--

reasonable appruximatLiun ulo in thi1s case. Whether or not Euation (i0) is

approximately valid fox the actual velocity profiles vo(re,t) canbe checked

after obtaining the solution for v (r,t). A calculation of the radial flow "

integral for some of the obtained velocity profiles vO(r,b) has been done, based

on the simplified momentum integral method of Mack (1965). The u. values ob-

tained from these calculations have been compared with the approximate values

from Equation (10) and the agreement was found to be good within the accuracy of

the momentum integral method, which is about 15%. Thus, we can conclude this

section with the remark that the error of the approximation for u0 (Equation 10)

is probably not larger than 15%.~2
. -i.ng-the-notaton = for the Reynolds nmber, Equa.tion (o) nan be

V

written:

0a Ae (nM V 0) -(17)

or, with the notation

t 0.)00 a (18)

10 - k (no - V0) (19)

e. Solution for v)0 (r',,)

After substLituLng (19) into Equation (4) the equation for v is:

v V C vo/r
- ±(v - .a,) (2 + -2) v( (o)0t 3) --T-

14



2a 1

where k O0.445 2a 1

Te initial and boundary conditions are

v = 0 for t < 00

v = aw0for r = a -andt > 0

Let us restrict our analysis at this instant to the case of constant (0

(i.e., the cylinder i's started at.t = 0 to spin with constant angular velocity

w). In many cases now, we can neglect the friction terms at the right hand side

of Equation (20) against the convection terms. To see this, we multiply
il1 0Equation (20) with -2 and, introducing the dimensionless variables v*

sin]

r* Equation (20) becomes:
a2 v v* 1 2 -_A

v*-* r*)( ,Z+ .V._ (V* 6 V*) (21)
,, 79T+ k(* 77(L 7* -= Re ( 2 + 9

with the boundary conditions:

v* = 1 for r* 1 and ct > 0

It can be seen from Equation (21) that the solution v* is a function of2a JWe i~e.v r,
jo'" knt, r* and the dimensionless parameter kRe = 0.443 -- , , =

ket, kRe).

if kRe - 0.443. La e > > 1 then the vi.scous terms at the right hand side

of (21) become small except for small times when the gradient is large near

the wall r* - 1.

For not too small times and kRe > > I w..can therefore neglect the viscous

terms and the solution of the inviscid equation is:

/ r*e 2kt 1
V*= - : ior*>

t for r* ><e-It(2

A plot of the v* profiles (EquAtion 22) for different times is shown in

Figure 3.

It is remarkabic that the golution (22) satisfies also the complete

Equation (21) with visnous ternis except at the point r*- e - k wt where the first

derivative Is discontinuous. The inviscid equation i of the first order in the

15



derivatives and hence only the solution function has to be continuous, while the

complete equation has second order derivatives and the solution must have con-

tinuous derivatives, 'Me effect of the viscosity, therefore, will be to siooth

the curner. r* = e With the solution for v (Equation 22) the other flow

components Uo, wO can be obtained at once. First of all we have, from Equation

(19):

u = -k(ri- v0 ).

From the equation,,focontinuity (Equation ld) and the condition that the flow---

must be symmetrit to-the planrz = 0, it follows, --

aruwo T ' " •, -- (23) .

Within the core flow we can distinguish two regions:

Region(1): <r/a<e -
..

Region (2): e < r/a < 1

According to.Equation (22) the particles in region (1) do not rotate (i.e.,

v° = a) while the particles in region (2) rotate with the velocity v = awy*

given by Equation (22). Region (i) and (2) are separated by the cylindrical

front r/a = e , which As moving toward the axis r = 0.

It can be shown that the particles in region M1), i.e., the particles ahead

of the movihg front, remain ahead of it until they hit one of the boundary layers

at the cndwalls z 
= + h

-2

To see this, we compute the trajectories of the particles in region (1).

From V. 0 it follows, that u - kr and w. =-2kzw (Equation 23). From:
0

,.dr
dt 0

(24

T.w 2kzw

we obtain by Integration:

-cut
r r e

2ktot (ro2 (25)
Z 0 ror o -

where (r 0 , z0 ) is the particle position at b = 0.

The trajectories (25) course enitirely in region (1), so that the solution

(25) is compatible with the supposition v0 = 0.

6C



Thus, we obtain the following flow picture:

After the cylinder is started at t = 0, the fluid particles move

along hyperbolas given by (25) until they hit the boundary Layer at one of
h

the endwalls z = 
+ .

f,

In the boundary layer the flow direction changes rapidly, the particles

acquire rotational motion and are thrown radially outwards until they emerge

from the boundary layer at some distance behind the moving fpont r/a ekt

now having a rotational component vo according to Equation (22). --The reqt -f

the trajectory courses entirely in region (2).

Actually, this flow picture will be modified slightly. The particles

can acquire rotational motion already in region (1) by the action of the viscous

force term in Equation (21) which has been neglected so far, This will also

slightly modify Me trajectories-given by-Equation-(25)_-

f. Equations for the Angular Momentum

Of particular tnteretL is Lbs LuLal angular momentum of the liquid within

the cylinder, which it:

I - ph . 2fr 2v0dr (26)

An equation for the angular momentum I can be obtained from Equation (20),

To this end, we multiply Equation (20) by r2 and integrate from r - 0 to
()v 0 'o 1 rvO

r = I. If we consider that - + t- -- , h !.t gives:

,a
revadr + k q(rv0 -r w dr

[v U r2 6 (1 C~r )dr1

Thie second integral consists of two terms: the first one gives:

k rv0 --N dr, -- (rVo)

o o

while the secord term can be integrated by parts:

a3 r 1,Vdr = a [. k 3r v  v + 2,,, Pa r 2V Ox

ar10 o
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Considering that v o 0 a for r = a, the second integral of Equation (27) gives:

2 rv k 4 2 a 2
kf(rvorC) dr -. + 2kLO 2 vodr

0

The integral at tfhe right side of Equation., (27) becomes, after IntegraLion by

parts:

V fa * 0( . ) dy V [rV] [i2rv0 1 = va~
0 

"r 
r0

We thus get the equation:

.t V Ovr - k a 2 (28)
ta 2 l

0

According to (26) the value of the angUar momentum is I 2h f v 0 vd.

In the final state) i.e., when the liquid opproachca rigid body xuLulion

v r.x, the angular momentum becomes:

a 4
I, = 2Ah.Pf ana2h . aa CU 29

0

The ratio of the angular momentum I to its final value Ip then i:
a

After dividing Equation (28) by -0 it can be written:

dt 1. (I0

If we neglect again the viscous term at the right side of Equation (30), the

rquation can b') Integrated at once to give.

I =( 1 -2t) (11)

This rsutltb, of course, could have'?een obtained olso from the solutionVO

Equation (22) for the. velocity profiles v* = -by integration.
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In order to improve the solution (31) we have to take into account the

4 vo/r ..
friction term ac (--)-- of Equation (30). This can be done within a fairly

good approximation by assuming the approximate shape of the velocity profiles

6v /r
Vo(r) and expressing (0 ) by I/I0.

Since the contribution of the viscous term is small, it appears reasonable

to assume that the v° profiles have essentially the same shape as the profiles,

-which we have-obtained as solution for the-invscid, equation.-- - --

Thus, we may assume profiles of the form:

vo  A2 r/a - a/r for r/a > A-l

A . 1 (32)

- 0 fonr/a< A-'

where A is a function of time. For the case that the viscous term is neglected
v 0

at all, the solution for was given according to Equation (22)j by the profilft

(32) 4ith A = e Wt.

It might be mentioned, that the v0 profiles (32) satisfy the compatibility

condition ,.2pVo 6v_/T

which is obtainedby evaluating Equation (20) at rPa. Using the 0 profiles

given by (32) we have:

)V/r -_ 1 (34)

ra A - 1

while

I,'- I - A"2  (35)

Thus, ftrom (34) and (35) we obtain:

6v/r 1( )

Inserting (36) into (30) we nave:

t •2k[ 1] = a

19



or, after dividing by w,

+ 2k ]-l = - - 1] (37)

It should be mentioned that the approximation for (-. ) which is

given by Equation (36), isnot very sensitive to the special choice of velocity
profiles. Although the very early vo pro2iles are somewhat different from those

-'kiven -in- Equation-(32), the expression (36) izstill A good approximation.

It can be obtained from Equation-(37) tha', for sufficiently small times the

friction term is dominant however large kRe is.

The equation for vo then is:

00

'- K- -2( - -

which is obtained from Equation (P0) by neglecting the convection terms and6V1r 62v .V,,
v FT compared with v 2 ,.

The solution of (38) is:
a-r

vo(r,t) = atu I e y dy] (39)

0

With the velocity profiles given by Equation (39) one would have:

CU 1 2.54~ L'
-- "71- at 711-_

r=a CO

while Equation (36) gives approximately

( vo/r) 2~ ___ -

r=a•

since for small times we can neglect 1 against 7 Thus, we see that

Equation (36) is a reasonably good approximation even for the very early velocity

profiles.

The differential Equation (37) now has to be solved for the initial

condition I/I, = 0 at t = 0. The solution for I/I can be given implicitly:

20



2L-t [log (1 - I/Q') + log (1 + k5e I/i.) (40)

k~e
For kRe -m the solution (40) reduces to: 1 - I/I = e2kt ; .e. the

inviscid solution given by (31).

kRe
For very small times, or more precisely for I/. < < 1 and -" i/is < < 1,

4 4
Equation (40) gives: I/In We . t; i.e., the angular momentun increases as

the square root of t,., .

The validity of the preceding results-is-restricted to-the-case where the

'\ngular velocity of the cylinder, a), remains constant after the cylinder is

tarted.

If a) is not constant, it is advantageousitto introduce the dimensionless

quantity

1* 4 2f v

Yo~ ~ 4 i0r,

where wo is a constant reference angular velocity and I is a ref'erence angular

momentum:

0 = 27 p hfaor3dr,

0

the latter corresponding to a rigid rotation with ngular velocity wo0

4 2 / I v /r\
Dividing Equation (28) by 0 and substituting (- - according

to Equation (36) we have- ".

+"2k o (+) I* = TL 1] (4P)
-- o " He w TT

a2w
whre Ho0 ' 2a 0 , :i3±-1He / 2whcre: RO o = 0 ' .1 " (Re°

v 'V h 0

Equation (42) has been used to calculate the spin decay of a liquid-filled

shell. If a shell containing a liquld-filled cylindrical cavity is started im-

pulsively to spin about its axis of rotation, the liquid continuously absorbs

angular momentum, thus reducing the spin until the liquid finally attains rigid

body rotation.
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Let A be the axial moment of inertia of the empty shell, ca the instantane-

ous angular velocity and I the angular momentum of the liquid, then, due to the

conservation of angular momentum,

I + ak = constant = co0 A, (43)

where to is the initial angular velocity when the liquid is at rest.

According to (W) we can express I by w:u

I Ap An( 1 -eAnO.7

or using the definition (41):

An

Y -' (l - %). (44)

After insertirlg (44) into- (42)-we got a differentia] -equation for"I* (or (4/mo)

which may bc iolved by- numeriual in Lration.

, Turbuledt. Boundary Layer -low

In Sections (c) and.(d) we-have assumed that the boundary layer flow at tho
a w

cylinder ends is liaminar. This assumption is valid for Reynolds numbers Re -

up to about 3 105 (see e.g. Schlichting 1958). For Reynolds numbers greater

than 3 . lo the boundary layer flow will be turbulent and the radial mass flow

and hence u0 will be different from the laminai case. .

According to the solution of von Kdrman (1921) for the turbulent boundary

layer flow on a rotating disk, the radial .low integral is:
On

This formula is analogous to Equation (8), which corresponds to the laminar ease.
: 2W

Using again the :otatidn Be !Za  for the Reynolds number, Equation (45)
can be wri'.en:

f udz 0.035 a . -l5 (146)o ,,- 3.

By arg uneto simi Lar to those used In Section (d) for the laminar boundary

layer, it seems appropriate to generalize Equation (46) to:

(Ix )8/5
,dz= 0.035 a . (Re) 0 (47)
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According to Equation (6) we then have for the radial component of the core flow:

- 8/5

uo(r) - 0.035 . (a) . (Re)- // (48)
0 h/5

Equation (48) is analogous to Equation (17). With uo obtained from Equation (48)

the equation for the core flow (Equation 4) becomes:

-CV k tr-/5av- ) v 6 V ;/ri
o t (cov)85-+# (49)

where: kt  0.0 a)' (Re) "z/5  ". (0
k (La (50)

Analogous to the procedure described in Section (f), we find the equation for

the angular momentum by multiplying Equation (49) with r
2 .- T- and

= an

integrating over r.

If we further introduce again the dimensionless quantity I* according to

Equation (41) we finally have:

dI* kt pa, 8/ 5 Cvo) 4
ot--(w -a to, =-U-ft (a 1

The integral in Equation (5i) cannot be evaluated as it could for the laminar

case, without knowing how v. depends on r. Only for small times when the vo

profiles are restricted to a narrow-zonie neRr the wall r-a, we an approximate

r in the integral by a and find:

a ~w- V) 8/5 2hv r a a2 (aca - v,,) 1/5 a jj (w 1/.

0

'Inserting the last result into (51) and using for the viscous term at the right

side the same approximation as in Equation (42), v.e obtain:

dI* 2 0 k ()9/5 8. [wFIlw 1 ] (52),"i to "*o- (R) '~o () -i (

where again (Re)o  and k ,o 0)-1/5

V toh

in order to evaluate the Integral in Equation (51) for later times, when the

assumption r a is no longer valid, we have to make assumptions about the shapre

of the velociby profiles vo(r). We may assume, that the velocity profiles are
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given again roughly by Equation (32). These profiles, at least, satisfy

the compatibility condition (33), i.e., they are correct near the wall.

Using the vo profiles given by (32) the integral in Equation (51) can be

evaluated and expressed by I*. After some lengthy calculation, one finally

obtains from Equation (5l):

-l M 9/5 CU x*)/

-gt koZZ c21/ 4 (x 3 1 0 
j

0 X

For small times, i.e., as long ac I* -< < 1, the integral approximates to:

L (1* 013 M

while (I - 1*0) 1, and Equation (53) reduces to Equation (52).

Equation (53) has bebn used to calculate the spin decay of liquid-filled

shell for Re > 3.105.

III. COMPA1ISON WITH EPERIMENTS

In order to test the analysis given in the preceding section, some of the

theoretical predictions have been compared with existing experimental data.

A detailed description of the experimental arrangements is given by

Karpov (1.962).

A quantity which has been measured directly is the axial spin decay of

liquid-filled shells, fired from a gun. After the shell leaves the gun, the

angular velocity decreases continuously. The decrease of angular velocity is

caused by absorption of angular momentum in the liquid and by the torque due to

air friction. The contribuLJin of the air friction, which is usually small, can,

be determined separately by observation of the spin decrease of the empty shell.

Tie difference, which is dic to absorption of 6ngilar momentum hau been plotted

for two typical. cases in Figure h and Figure 5. For comparison, the theoretical

curves are plotted in the same diagram and also the curv-B obtained from the

theory without secondary flow. The fineness ratio of the cylindrical cavity was

in both eases - 2.68. For fineness ratios smaller than 2.68 the effect of theck-- 2a

!..c.onduryj flow woild be even more pronounced.
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The Reynolds number for the ease plotted in Figure 4 was Re 1.76 x 105 so

that a laminar boun4ary layer flow could be assumed, while for the. case of

Figure 5 the Reynolds number of Re = 6.1 x .105 was'above critical and therefore

the iformula for turbulent boundary layer flow was applied.

In addition to observations of spin decay, ,experiments have been done to

observe the secondary flow Itself. To this end an impulsive spin generator was

designed which is described by Stoller (1960). tTh e spin generator consisted of

- a liquid-filled cylinder with transparent walls Which coulA be started-impulsively

to spin about its,axis. -A-suspension of -small -par icles was dissolved in- the -

li uid, the specific gravity of the particles being the same as that of the

liquid. The trajectories of the particles could be observed with the aid of a

motion camera. For this type of observation, of coutse, only transparent liquids

could be used.

Figure .6 shows some of the observed parLicle Lrajectorics, or rather the

first part of it, and the particle positions at constant time intervals. Close

to the observed trajectoriedj theoretical trajectories and-particle positiuns--

according to Equation (25) are plotted. The agreement is reasonably good.

Some deviations can be explained by the fact that the Reynolds number of the'O
experimental flow was rather low (Re = 1.83 x 10 ) while the theoretical
prediction is based on the assumption of high Reynolds numbers, where the viscous

forces in the core flow can be neglected.
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