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ABSTRACT 

A method for approximating the solution of two-dimensional scalar 

scattering problems has been developed and tested.   Results indicate that 

the technique (which involves the expansion of the field in terms of cylin- 

drical wave functions) gives good results when wave length and body size 

are comparable. 
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I. INTRODUCTION 

An approximate method for calculating scalar scattering by two-dimensional 

bodies has been developed and used in a program written for the 7094 computer to cal- 

culate scattering from several shapes.   The method consists essentially of expanding 

the scattered field in terms of the first N of the cylindrical wave functions.    Compari- 

son of results obtained with an exact solution and an integral equation solution shows 

fair agreement.   The technique gives satisfactory results for small values of L/X (of 

the order of one or less), where L is the perimeter of the body and X is the wavelength 

of the incident radiation, but solutions become increasingly unstable as the geometric 

optics region is approached. 

II. THE METHOD 
ilex 

A plane wave propagating in the direction of the positive x-axis , E   = e 

k = 27T/A, is incident on an arbitrary cylindrical body, B, with axis parallel to the z 

axis (Fig.   1).   The scattered field, E   , may be validly expanded on and outside an 

imaginary circumscribed cylinder , C, in terms of the cylindrical harmonics. 

00 

EQ (r, 6)  =T     C   eln6H   (kr); (1) 
s l_j       n n 

n - o 

where H    (kr) is the Hankel function of the first kind, and r and 9 are the usual polar 
n 

coordinates.   The scattered field, of course , is not initially known on C , so that the 

determination of the coefficients C   by satisfying boundary conditions on C is not pos- 

sible.   If the circumscribed cylinder C is contracted to its minimum radius , say to 

C , it may be possible that, under certain circumstances , Eq. (1) could be used to evalu- 

ate the scattered field between B and C with small error.   In this case values of the C 
n 

calculated by satisfying (approximately) the given boundary conditions on the surface 

of the scatterer may be satisfactory for determining values of the far field. 

Dirichlet boundary conditions on the scatterer were employed; that is , it was 

specified that the total field on the surface of the scattering body be zero.   It was 

assumed that the first N terms of the expansion Eq. (1) could be used to give a close 

approximation to the scattered field E    in the neighborhood of the scatterer surface. 

Thus, at the surface of B the total field could be approximated by 



N 
^        ,-.      ^ i kr cos 0   ST _     in 9 rr    „   . ,„. 
E  =   E  + E   ~ e +)Ce        H   (kr). (2) 

is i_j    n n 
n = o 

Under the given boundary conditions the left side of Eq.  (2) should be equal to zero, and thus 

the C 's were to be determined in such a manner as to minimize the right side of (2), 
n 

in some sense, on the boundary.   The obvious choice was the least squares criterion, 

and this was used.   Thus the C "s were determined in such a way as to minimize the 
n 

mean square value of the total field on the scatterer boundary.   This is given   of course, 

by 
M 

2 
N 

E 
N 

1   C I   -1 kr cos 9    V 

• 4ie     +z 
kr cos 9    \" in 8 

-i- )   C   e H    (kr)     dl, (3) 
n n 

n = o 

where the line integral is over the boundary of B. 

Taking the partial derivatives of E   with respect to the C    (-a    +• 1 b ), and ft n n        n n 
setting these equal to zero, a system of linear equations for the a   and b   is set up: 

a     a  +/3    b  = y 
PJ   j       PJ    J        P 

where 

)        (p = 0,l,...,N), 

B . a -a     b  = 6 
PJ   J       PJ   J      P 

a   • = \   (J. 
PJ   JB JJ 

1   + N   N ) cos j 0 cos p 8 d£ 
P       j    P 

(4) 

PJ i". N   -NT) cos i 9 cos p 9 dl, 
P       J   P 

y    - ~ \   0   cos (kr cos 9) + N   sin (kr cos 9)) cos p 9 dl, 
p     X  P P 

~£"P cos (kr cos 9) — ]   sin (kr cos 9)) cos p 6 dl 

and J    (kr) + i N   (kr) = H    (kr). Jn % n n 



A computer program was written to evaluate these coefficients and solve Eqs. 4; 

results have been obtained for several scatterers. 

IE.        RESULTS OF COMPUTATIONS 

The method was first applied to a circular cylinder in which the origin of the 

cylindrical harmonics was offset from the cylinder axis to a point half-way between the 

axis and the leading edge of the cylinder, so that the surface of the cylinder was not in 

this case a coordinate surface in the coordinates employed.   A scattering pattern was 

calculated for ka = 2ira/X =2.0, where a is the cylinder radius, and is shown in Fig. 2. 

Note the excellent agreement with the exact result.   In this calculation the maximum 

order of the cylindrical harmonics employed was N = 5. 

The backscattering cross section (cr) of the circular cylinder was calculated for 

several values of ka and for a number of values of N for each value of ka.   The results 

are plotted in Fig. 3 along with the exact curve.   At ka = 1 the values of a calculated 

for four values of N were precisely the same and fall on the curve for the exact values. 

As ka increases the values of eras calculated for different values of N begin to show a 

spread.   At ka = 6, for example, the spread is about ± 20 percent of the exact value. 

In each case , however, there is one value of N for which the calculated cross  section 

is quite close to the exact value.   This does not occur, in general, for the largest 

value of N. 

Scattering patterns for nose-on incidence for a 12.5    (wedge half-angle) wedge- 

cylinder shape (the two-dimensional analog of the cone sphere) have been calculated 

for values of ka (where a is the cylinder radius) of 1. 93, 3. 85, and 5.00.   These are 

shown in Fig. 4.   Also shown is the result of a calculation for ka = 5.00 done for 

Lincoln Laboratory by TRG, Inc.   Their technique involves the numerical solution of the 

integral equation for the scattered field. 

The agreement between the TRG solution and our solution is fair in directions 

near forward scattering, while it becomes poor near the backscattering aspects where 

the cross section is small. 

IV.        DISCUSSION OF THE METHOD 

The method of "least squares" used above in computing the scattered scalar 

field from cylinders and wedge-cylinder shapes is an approximate scheme which was 



undertaken with the purpose of enhancing our understanding of the scattering phenomenon. 

In particular, we asked ourselves the following question:   To what extent can the cylin- 

drical harmonics describe the scattered field near the body when the boundary is not a 

level surface in polar coordinates? 

We can add to our knowledge of the phenomenon of scattering and its mathemat- 

ical description by explaining why our method works as well as it does.   We base our 

argument on the following two facts , and a third fact to be added later. 

(i)    For the 12 1/2   half angle wedge-cylinders being considered the 

number of cylindrical harmonics required to obtain a good descrip- 

tion of the far field is N ~ L/X = k L/2ir, where L is the perimeter 

of the body. 

(ii)   The first zero of H (kr) occurs when kr « n (Watson), or r ~ n/k. 
n 

Thus , the first zero of H   (kr) occurs at r s L/2TT , since k L/27T ~ N. 

For n < N, the first zero of H (kr) is within the circle of radius 
n 

L/27T, for n > N, outside.   Also, for kr < n, H (kr) ~ l/(kr)n , and 
v n 

for kr > n, H (kr) ~ e     /N/ kr. 
n 

It will be noted that the properties of the Hankel function referred to in (ii) and 

the physically observed facts of (i) both make statements about the special number 

N = k L/2TT.   Using these two facts , we will arrive at an explanation of the degree of 

success of our method. 

Referring to Fig.  1, we choose the center of coordinates so that as much of the 

scattering surface as possible is approximately L/2IT from the origin.    (As a simple 

example, suppose the scatterer is a circular cylinder of radius h/2ir.   The obvious 

choice for the origin is at the center , since then every point on the surface is exactly 

L/27T from the origin.) 

Next, let s denote arc length along the surface and consider the way in which 

the incident wave (and therefore the scattered wave, if we have Dirichlet boundary 

conditions) varies on the boundary.   To study this, we make the following observation. 

(iii) If the angular measure for a significant change in the scattered 

field on the surface is less than 27r\/L, it is because the radius r(£) 

is changing rapidly.   (This is the case in the region of the tip, for 



example.)   Furthermore , if the angular measure is_ less than 27rA/L , 

the linear measure cannot be greater than A itself. 

Now, we know from (i) that a good approximation for the scattered field outside 

a circle circumscribing the scatterer is given by 

kL 
27^ 

E    (r, 9) 7       C   ein9H    (kr) (5) 
s L-J n n 

n = 0 

Our method is based on the assertion that this expression is a good approximation 

for the field on the surface (r (l), 0 (£)), even though the infinite series in general 

diverges. 

To study this assertion and its limitations , we tentatively write 
kL 
2TT 

Ec (r (l), 0 (I))  * y C   e1 n m H   (kr (D), (6) 
s i_j n n 

n = 0 

where I is length measured on the surface.    For those points on the surface where 

r s L/27T, if n < k L/27T, then H   (kr) is , according to (ii), oscillating with wave length 
n 

X.   Note that this is true for eachn.   For those points on the surface where r < L/27T, 

H    (kr) has the oscillatory behavior only for n < k r    , where r     is the minimum value 
n mm 

of r(s).    For k r     < n < k L/27T, H    (kr) behaves like l/(kr)   for r < L/2TT.   Thus 
m n 

Q    (0  =  e1 n m H    (kr (I)) (7) 
n n 

behaves qualitatively like e for n < k r    , when r (l) is slowly varying, and like an 

oscillating function with wavelength A when r (t) is changing rapidly.    For r    < n < k L/2ir, 

this is true when r (l) is slowly varying, but if it is rapidly varying, it has the 1/kr (l) 

factor. 

Thus when r(s) is slowly varying, we are essentially expanding E   (r (t), 8 (I)) 

in a Fourier series, and, according to FACT (iii), the number of Fourier components 

needed is of the order k L/2ir, which agrees exactly with the assumed upper limit in Eq. (6) 

If r (l) is rapidly varying the Fourier components are satisfactory up to n = k r    , 



because the oscillatory behavior can, to a certain extent, be cancelled out by slight 

changes in each of the terms; or if such oscillatory behavior is needed to describe a 

fluctuation of wavelength X (see iii) small adjustments in the terms will provide the 

required behavior.   However , for k r     < n < k L/2ir., a rapidly varying r (£) spoils the 

use of cf> (I) as modified Fourier components, because for each n, the dependence on 

r is different (i.e.  l/(kr)    instead of oscillatory, see ii),.and so no cancellation can 

be made , nor can an oscillation with wavelength X be achieved, if required.   This last 

sentence describes the situation which is probably the major source of error in the 

method. 

The above simple reasoning, admittedly a little awkward to word, explains not 

only why the results have value, but also (and just as important) the limitations of the 

method. 

V. ADDITIONAL COMMENT 

Any method which computes surface values must have a high degree of accuracy 

if k, the wave number, is large, if the results are to be used for backscatter calcula- 

tions.   Thus , even if the method herein described gives reasonably accurate boundary 

values , the backscattered field will be disproportionately increasing in error as k L 

increases. 
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Figure 4.     Scattering Patterns,   12.5   Wedge-Cylinder 


