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ABSTRACT 

The coupling of magnetohydrodynamic waves to electromagnetic 

and sound waves at a plane interface between a plasma and a neutral 

gas is considered for arbitrary direction of the incident wave vec- 

tor and for the constant external magnetic field lying either in the 

plane of incidence or perpendicular to it.  The relations between the 

angle of incidence, reflection, and transmission, the ratio of the 

field amplitude transmitted or reflected to the corresponding ampli- 

tude incident, and the energy coupling coefficients are calculated. 

An incident fast magnetoacoustic mode generates a sound wave 

whose wave propagation vector makes an angi« with the normal to the 

boundary of the order of the sound speed to Alfven speed, when this 

ratio is small.  In this case, the energy coupling coefficient of 

sound to the fast magnetoacoustic mode is also of the order of this 

ratio.  An incident slow magnetoacoustic mode generates a sound wave 

with energy coupling coefficient of the order of unity, and an elec- 

tromagnetic wave with energy coupling coefficient of the order of 

the ratio, speed of sound to speed of light. 
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1.  INTRODUCTION 

Although magnetohydrodynamlc wave propagation has been thoroughly 

treated for the case of a homogeneous Infinite medium,  in many cases of prac- 

tical significance the results are not applicable since the medium is inhomo- 

geneous due to spatial changes in the ionization density.  The present paper 

is concerned with wave propagation in a medium with a spatial discontinuity 

in the ionization density.  In particular, this discontinuity will be taken 

so that the gaseous medium changes from one which is fully ionized to one 

which is totally un-lonized.  The ionized medium can support three distinct 

magnetohydrodynamlc modes (the Alfven, the fast magnetoacoustlc, and the slow 

magnetoacoustlc), whereas the un-lonized medium can support electromagnetic 

waves and sound waves.  The coupling of the magnetohydrodynamlc modes to the 

electromagnetic and acoustic modes at a plane plasma-neutral gas interface 

will be discussed in the present paper. 

This problem is similar to two others which also involve discontin- 

uities in the gaseous medium.  All three may be described In terms of the Ion- 

isation concentration on each side of the interface: 

A. the media on both sides of the Interface are fully Ionized (plasma-plasma 

problem) ; 

B. the medium from which the waves are approaching the interface la totally 

un-lonized, whereas the other medium is fully ionized (neutral gas-plasma 

problem); 

C. the medium from which the waves are approaching the Interface is fully 

ionized, whereas the other medium is totally un-lonized (plasma-neutral gas 

problem), 
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A.  Plasma-Plasma Problem 

Any of the three magnetohydrodynamic modes (Alfven, fast magneto- 

acoustic, and slow magnetoacoustlc) may be incident, and in the most general 

2 
case all three modes can be reflected or transmitted.  Ferraro considers 

reflection and transmission of Alfven waves In incompressible media for the 

magnetic field of the incident wave parallel to the interface.  Roberts 

extends Ferraro's work to arbitrary orientations of the magnetic field of 

the incident wave.  Simon , Williams'', and Raju and Verma consider reflec- 

tion and transmission of all three modes in compressible media and examine 

in detail the case where the external magnetic field is normal to the in- 

7 
terface.  Talwar extends this analysis by assuming the sound velocity is 

/ Q 
much smaller than the Alfven velocity. Fejer examines dispersion relations 

and Snell's laws when the two plasma regions have a relative velocity paral- 

lel to the interface.  He chooses the external magnetic field parallel to 

q 
the interface.  Frieman and Kuxsrud^ calculate amplitude relations for all 

three modes when the external magnetic field is parallel to the interface 

and lies in the incident plane,  Pridmore-Brown  gives a graphical presen- 

tation of Snell's laws to determine the nature and disposition of reflected 

and refracted waves.  Eazer  calculates amplitude relations in detail for 

the external magnetic field in the incident plane. 

B.  Neutral Gas-Plasma Problem 

The two electromagnetic modes and the sound mode may be incident 

on the interface and reflected from it, while all three magnetohydrodynamic 

12 
modes can be transmitted.  Turcotte and Schubert   calculate the coupling 

of an incident electromagnetic wave with magnetohydrodynamic waves.  They 
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consider the cases where the external magnetic field Is parallel to the in- 

terface, the magnetic field of the incident wave is parallel to the external 

magnetic field, and the incident wave vector is either normal, to or parallel 

to the Interface.  Kornhauser ^ considers in greater detail the case where 

the external magnetic field is parallel to the interface and the incident 

wave vector Is normal to the Interface.  Kontorovich and Glutsyuk  calcu- 

late the coupling of an incident sound wave with magnetohydrodynamic waves 

for the Alfven velocity much less than the sound velocity. 

C,  Plasma-Neutral Gas Problem 

Any of the three magnetohydrodynamic modes can be incident on and 

reflected from the interface, while acoustic waves and electromagnetic waves 

of both polarizations can be transmitted.  Kahalas  considers the case in 

which the sound velocity is zero and both the incident wave vector and the 

external magnetic field are normal to the interface.  Ullah and Kahalas  , 

17 and Kahalas ' discuss the case in which the sound velocity is zero, the in- 

cident wave vector has arbitrary orientation, and the external magnetic field 

lies either in the plane of incidence or perpendicular to it.  In the above 

analyses only the electromagnetic waves are transmitted since with sound vel- 

ocity zero sound waves do not propagate. 

This paper is an extension of the latter work to the case of non- 

zero sound velocity.  The incident wave vector will be allowed to have an 

arbitrary orientation with respect to the interface, but the constant ex- 

ternal magnetic field will be constrained to lie either in the plane of in- 

cidence or perpendicular to it. 

The mathematical model analyzed in this paper has features in com- 
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mon with the physical situation which describes the propagation of geomag- 

netic disturbances down through and below the ionosphere.  The ionosphere 

and atmosphere are considered here as two distinct regions, with the ionos- 

phere as a homogeneous plasma, the atmosphere as a homogeneous neutral gas, 

and the transition between the two as a plane surface. 

Within the ionosphere and the atmosphere, the sound velocity is 

much less than the Alfven velocity; consequently, this fact will be used 

to simplify some of the equations. 

The physical model discussed here is lacking because the external 

magnetic field is assumed to be uniform whereas the earth's field is not, 

collisions between positive ions and neutral molecules in the lower ionos- 

phere have not been taken into account, the ionospheric boundary is not 

necessarily as abrupt as assumed, and the effect of the conducting earth 

itself has not been included.  Numerical studies have been made by Francis, 

1 ft 
Karplus, and Dragt  on the propagation of magnetohydrodynamic waves through 

the lower ionosphere incorporating the positive ion-neutral particle colli- 

sions, the effect of the earth, and the gradual change of ionospheric param- 

eters.  The present analytical approach should be considered as a supplement 

to their work. 

In Section 2, a derivation is given of the boundary conditions re- 

lating field quantities across the fluid interface.  These boundary condi- 

tions are valid for the plasma-plasma, neutral gas-plasma, and plasma-neu- 

tral gas problems.  Section 3 gives an overall statement of the problem. 

Section h  discusses the properties of magnetohydrodynamic waves.  In par- 

ticular, the dispersion relations, relation between field quantities, and 
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energy transport vector are exhibited.  Section 5 discusses the same topics 

for the electromagnetic and acoustic waves propagating in the neutral gas. 

Section 6 treats the relations between the angles of incidence, reflection, 

and transmission and the relations between the field quantities on both 

sides of the interface for the case in which the constant external magnetic 

field lies normal to the plane of incidence.  Section 7 similarly discusses 

the case in which the constant external magnetic field lies in the plane 

of incidence. 

2.  BOUNDARY CONDITIONS 

The boundary conditions relating the field quantities on two sides 

of a discontinuity have been derived by several authors using somewhat dif- 

19,20 
ferent methods. '    The present derivation involves an integration of the 

conservation equations across the boundary.  The boundary conditions which 

result are equally valid for the plasma-plasma, plasma-neutral gas, and neu- 

tral gas-plasma cases. 

In order to derive the boundary conditions at a plasma-neutral gas 

interface, it is important to ensure that the equations used are valid in 

both the plasma and the neutral gas.  This means, for example, that the3E/9t 

term (needed to describe electromagnetic waves) must be included in the 7xB 

Maxwell equation, although it is often left out of the magnetohydrodynamlc 

equations.  Similarly, Ohm's law is written with a finite conductivity, 

since the variation of the conductivity (from Infinity in the plasma to zero 

21 
in the neutral gas) must be included.  The equations used are 

P^v/öt) - -p{v-v)V  -  vp +  (jxB)/c + ppE     , (2.1) 



(öP/ät) + v-Cpv) = 0 

and 

vxE = -(l/c)(ÖB/ät) 

vxB =  (l/c)(öE/ät) + 4jrj/c 

vß = 0 

v-E = l+itp 

j = a(E + vxB/c) 

vp = s vp 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

where E, B, v, p, j, p, p  c, s, and er are total electric field, magnetic 

field, fluid velocity, pressure, electric current density, mass density, elec- 

tric charge density, velocity of light, velocity of sound, and electrical con- 

ductivity, respectively.  A bar over a field quantity denotes a total unlin- 

earized quantity, a subscript zero denotes constant quantities, and field 

quantities without bars are used to denote quantities of small amplitude. 

These equations may be rearranged to express the conservation of mo- 

19 
mentum 

(Ö/ät)  pv^ (l/knc)   EXB\    +  E  Ö^./ÖX. 

and conservation of energy 

o/at) [rpv2/2) + (E
2
 + B2)/3nJ ■ ---    ■ -: • ■ ■• 

0 (2.9) 

+  vT   -   p(v.v) +  J2/(T -   (vE)(vE)/i*j( - 0     (2.10) 



«ij 5 pv 

and 

where 

JVJ + ?flj + ["(E2 + B2)/8^1    Sij     -  (lAÄ)(E1E;j + BjBj)   ,    (2.11) 

T = "pv +  (c/kn)  ExB +  (72/2)  pv .     (2,12) 

The Integration of Eq. (2,3) over a closed line path lying on both 

sides of the interface yields 

nxEj^ = nxE2 . (2,1?) 

Similarly, the integration of Eqs. (2.2), (2.5), and (2.9) over the volume of 

a Gaussian pillbox extending through the interface gives, respectively, 

p1(v1-n) = p?(vp.n)      , (2,14) 

B,-n  = B9-n , (2,15) 

and 

where subscripts 1 and 2 refer to quantities on the two sides of the boundary 

A 
and n is the unit normal to the interface.  Equations {2.13),   (2.14), and (2,lb) 

are the boundary conditions for the problem.  Equation (2.15) is obtainable 

from Eq. (2.15) and thus provides no further restriction on the system. 

Consider now only small perturbations about an unperturbed solution 

of the system.  Let E, B, v, p, j, and p be the small deviations of electric 

field, magnetic field, fluid velocity, pressure, electric current density, and 

mass density from their equilibrium values which are 0, B , 0, p , 0, and p , 

B0 and p are the uniform magnetic field and mass density throughout the entire 



and 

system.  Then Eqs. (2.15) -  (2,l6) may be written to first order in the per- 

turbation as 

nxE, = nxE0 , (2.17) 

A       ^ /ox v^n = v2'n . (2.18) 

B -n = B -n , (2.19) 

= Fpg + (Bo-B2)An"]2>-(
1/M fe^o-^) + Bo(B2^1 •   (2-20) 

A A  A  A  . .     ,       .     . 
With the vector Identity B = (B-n)n - nx(nxB) along with Eq. (2.19), Eq. (2.20) 

may be separated into its normal and tangential parts, giving 

P1 + (Bo-B1)AIt = P2 + (Bo-B2)AJt (2.21) 

and 

A /\ A A 
(B -n) nxB = (B "n) nxB . (2.22) 
»**-■ "»^      -»ä^ ^^ *"  •tow 

A A 
There exist two separate cases depending on whether B "n = 0 or B 'n / 0. 

When B0.n = 0, the boundary conditions are Eqs. (2.17), (2.18), and 
«Mt   «MW 

(2.21). A discontinuity in B, resulting from a surface current density, J*, 
v* tw 

is determined by nx^n - B,) = i«tj*/c. 

When B0-n = 0, the boundary conditions reduce to Eqs. (2.17) and 

(2.18) along with 

A     A 
^xBj = nxB2 , (2.23) 

and 
Pj = P2 . (2.2M 
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It will be shown now that Eq. (2,10) is consistent with the boundary 

conditions to first and second order in the perturbation.  To first order Eq, 

(2.10) is the scalar product of Eq. (2.3) with B   The resulting boundary con- 

dition duplicates the scalar product of Eq. (2,17) with B0. To second order, 
IMAM 

Eq. (2.10) becomes 

«w/at + V-T^ j2Ar= 0      ,        (2.25) 

where 

T = pv + c(ExB)An , (2.26) 

and 

W = p0v
2/2 + (E2 + B2)/8jt + s2p2/2p0 

The Integration of Eq. (2.25) over a Gaussian pillbox of base area Ok  and vol- 

ume Sv  extending through the surface gives 

A     A 
T^n = T2-n + A (2,2?) 

■TV*   •**•      ^w   V«*» 

where A 3 Lim (l/£A),/./L  dV(j2Ar).  For the case B -n ^ 0 there is no surface 

current density and A = 0.  Then Eq. (2.27) is seen to be consistent with Eqs. 

(2.17), (2.18), (2.25), and {2.2k).     For the case B0-n = 0, there is a sur- 

face current density. A Is calculated directly from j^/fl"» _)•(£ + VXBQ/C) 

evaluated over the surface.  The surface current density is by definition tan- 

gential to the interface and (E + vxB^/c)^    ^. , is continuous across the 
—  .«- Ji  'tangential 

boundary so that A is given by A " j*-(E.+ v,xB0/c).  The term in parentheses 

vanishes when evaluated in the plasuia medium where the conductivity is infin- 

A     A /s 
ite so that A- 0 and Eq. (2.27) becomes T,-n - To-n,  If (To - T,)n is cal- 

urn*     *»•*'    ■niT'   *** ••*       YMl.   '** 

culated directly from the definition, Eq. (2.26), using Eqs. (2,17), (2.18) 

■9- 



and (2.21), one gets 

(T2 - T1).n =(c/4Tt)(B2 - B^ • rnxE1 - (n-v1/c)Bo "1 , 

Again, the bracketed term vanishes when the conductivity Is Infinite so that 

Eq. (2.10) Is consistent with the boundary conditions to first and second 

order In the perturbation. 

5.  DESCRIPTION OF PROBLEM 

In the ionized medium, the equations governing extremely low fre- 

quency wave motion (i.e., frequencies less than the ion cyclotron frequency) 

are given by Eqs. (2.1) - (2.8) written to first order In the perturbation 

and are 

Po(av/«t) = -'P + JxB0/c 

and 

«p/8t + P0v-j/ = 0 

vxE = -(l/c)9B/9t 

■ffxB =  Ujtj/c 

v-B =  0 

^•E = knpc 

E -   -vxB   /c 

Vp   -    8       Vp 

(5.1) 

(5.2) 

(5.5) 

(3A) 

(5.5) 

(5.6) 

(5.T) 

(5.8) 

where   infinite conductivity has  been  assumed and  the»E/ftt  term  in Eq.   (2.1+) 

has been neglected. 
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In the neutral gas the conductivity is assumed to be zero, so that 

the electric charge and current densities are zero.  The electromagnetic equa- 

tions are then uncoupled from the fluid flow equations, and the system is de- 

scribed by 

Po^/st) s 's2 VP ' (5.9) 

ap/at + pnv-v = o , (3.10) 

VKE =   -(1/c) ©B/dt , (3.11) 

vxB =    (l/c)aE/at , (3.12) 

v-B = 0 , (3.13) 

v-E =  0 . (3.1*0 

and 

Since Eqs. (3.1) - (3-1*0 are linear and homogeneous, the solutions may be ob- 

tained by assuming that the field quantities vary as exp|i(k.r - cot) I where (x> 

is the angular frequency and k is the wave vector.  Then Eqs. (3.1) - (3.8) 

describe magnetohydrodynamic waves of three modes, Eqs. (3.9) and (3.10) de- 

scribe a sound wave, and Eqs. (5.11) - (3.1'+) describe electromagnetic waves 

with two independent polarizations, 

The geometry is chosen so that the x-y plane at z = 0 is the plane 

of the interface, and the normal, n, lies along the positive z axis and points 

from the plasma into the neutral gas.  Without loss of generality k will be 

taken to lie in the y-z plane which is the plane of incidence.  Let 6  be the 

angle made by k with the z axis.  Then k may be written 

-11- 



k = k(0, sin 6, cos 0) (3.15) 

The calculations will be made for two cases:  B perpendicular to 

the plane of incidence and B in this plane.  In the first case, only the fast 

magnetoacoustic mode propagates, and in the second case the Alfven mode is un- 

coupled from the magnetoacoustic modes. 

The geometry is shown in Fig. 1 for the case in which B0 lies in the 

plane of incidence.  Superscripts i, r, and t refer to the incident, reflected, 

and transmitted waves, respectively.  There is, in general, more than one mode 

reflected and transmitted ( for a given incident mode) but this is not shown 

in the figure.  The ratios of the transmitted to incident fields and the ra- 

tios of energy transmitted in any mode to the incident energy will be cal- 

culated.  The energy coupling coefficient is defined to be the latter ratio, 

t A      £ A 
< T -n >/< T •n >, where the brackets denote a time average. 

It may happen that for certain directions of k , some kr and k' will 

have imaginary z components.  This corresponds to the physical fact that these 

reflected and transmitted waves are exponentially attenuated in the z direc- 

tion.  The attenuation is of the form exp(-|z|/d) where 

d = l/|k2|   . (3.16) 

Now k - k(l - sin 6)   .     Whenever sin 9 » 1, then 
z 

dv (klsir.elr1 = Ikyl"1 (5.17) 

-12- 



h.     PROPERTIES OF MAGNETOHYDRODYNAMIC WAVES 

Equations (3.1) - (3.8) give 

.2 ,, ?   _2_/_ ..\   „2 v^x^vx^ijj rv/at* =  sdv{vv)   -   a^x UxMvxBg)! \ (h.l) 

where the caret denotes a unit vector, s is the sound velocity, and a is the 

Alfven velocity, B0/(^}tp0) .  Equation (^.1) can be written 

^Mljvj = 0   , (4.2) 

j 

where 

M.j £ p - a^yk)2^^ - (s2 + a2)^ + a^Vk)^^ + ^1.(4.3) 

The condition for a non-trivial solution of Eq. (^.2) is that det M vanish; 

this gives the dispersion relations for three modes 

(h.h) 

where subscript»* is used to denote the Alfven mode, 

Jl + (82/2a2)(k+xro)
2 + 0(s/a)M = k+a 1 + (8^/2a^)(k+xB0)'
; + 0(s/a)'+      ,        (U.5) 

where subscript + is used to denote the fast wave of the magnetoacoustic mode, 

and 

>|k..B0| fl - (s2/2a2)(k.xB>
0)
2 + 0(8/a)in (4.6) 

where subscript - is used to denote the slow wave of the magnetoacoustic mode. 

The dispersion relations are exhibited as a power series in {a/a)     for appli- 

cation to the geophysical problem where s/a « 1. 

-13- 



The eigenvectors associated with each mode are determined from Eq. 

{h.2)  with the aid of the dispersion relations.  The results are that v^ is 
Mt» 

perpendicular to both k^ and B0, and v+ and v_ lie in the plane containing 
"«• A~- ^fc. "W 

B0 and the corresponding wave vector. 
MWW 

When B is normal to the plane of incidence, i.e., B «» B (l, 0, 0), 

only the fast magnetoacoustic mode propagates.  Its dispersion relation is 

2   2 % 
exactly a> = ^.(s + a )  and v is parallel to k , 

v+ = v+(0> sin e+, cos e+)      . (^.7) 
*»* 

When B lies in the plane of incidence, v, and v_ also lie in this 

plane, while v^ Is perpendicular to it.  Let cp and ^3 be the angles made by B0 

and v, respectively, with the z axis. 

For 

B0 = Bo(0, sin cp, cos cp) ,       (h.Q) 

then 

and 

where 

and 

v«= v0,(lJ o, o) ,     (U.9) 
ftow 

v
t = 

v
+(0, sin|3 + , cos(3+) ,      (^.10) 

^ = cp + jt/2 - (s2/2a2) sinl 2(e+ - cp)J + 0(s/a)^  ,      C+.ll) 

^3. = cp - (82/2a2) sin [2(6. - CpH + 0(s/a)1+        .      (1+.12) 

A A     A A 

Thus, to zeroth order In s/a, v  is perpendicular to B and v_ is parallel to B0. 

The energy transport vector Is given by Eq. (2.26) which, when written 

here in terms of the fluid velocity, v, is 

■Ik- 



T -(a2p 0/a>)\k{v*.B0)2  -  (vxB^) rk.(vxB0)| + (8
2/a2) v(k-v) {  .   (4.15) 

For the different modes, this reduces to 

T^ B0p0a(vor)
2
<r(VBo^ ^•1'+) 

and 

.2/.2 Tt -(a^Po/co) ^(v+xBo)^ + (s^/a^) v+(l^.v+) (4.15) vt(Kt-vt) 
4^M  MV>   MM*   I 

where<r(f) = f/|f|.  Equation (4.1^) shows that the energy in the Alfven mode 

propagates in the direction of the constant magnetic field. 

When B is normal to the plane of incidence, the relevant field quan- 

titles, written in terms of v., are 

E+ = (B0/c) v+(0, -cos e+l sin 0+)       , (4.16) 

and 

From Eq. (4.15) 

T, - (Poa
2k AD) (v+)

2[i + (s2/a
2)l       , (4.18) 

which shows that the energy transport is entirely in the k direction. 

When B lies in the plane of incidence, the field quantities, written 

in terms of v, are 

E = (B /c)vor(0> cos cp, -sin cp) , (^.19) 

E+ = -(Bo/c)v+ 8in(p+ - qp) (1, 0, 0)      , (4.20) 

Bo< = -(BQ/^)^^ co8(eo< " <?) (!. o. o)   .        C+.si) 

-15- 



and 

B+ =  k+(B0v+/u5)  sln(^+  - cp)   (0,   -cos 0+,   sin 0+) . (1+.22) 

From Eqs.   (4.1^)  and  {k.l5) 

To,=   Bopoa(vo<)
2or^os(0al-  cp)] . (^.23) 

T+ = (a
2po/a)) k+(v+)

2|X + v+ 0(8
2/a2)~l , {k.2k) 

T = (s2p k /CD) (V )2 cos(e - cp)Rn + k 0{82/a2)~l . (4.25) 

The energy In the fast wave of the magnetoacoustic mode propagates mainly In 

the k, direction with a component 0(s /a ) less In the v+ direction, while the 

energy In the slow wave of the magnetoacoustic mode propagates mainly in the 

B direction with a component 0(s^/a ) less in the k_ direction. 

5.  PROPERTIES OF SOUND AND ELECTROMAGNETIC WAVES 

Equations (3.9) and (3.10) give 

a2v/at2 = s2v(v.v) (5.1) 

/^    A 
which is the equation of a longitudinal wave, i.e., vs = k8, where the sub- 

script s denotes sound waves.  The dispersion relation is CJü = kg9, and the 

energy transport vector is 

Ts = Pvg = (s2p0/a3) k8(v8)
2 (5.2) 

Equations (3.11) - (3.1^) describe electromagnetic waves.  The dis- 

persion relation is CL. = k c, where the subscript c denotes electromagnetic 

waves.  With ke = (0, sin 0o, cos 9e)j the electromagnetic modes may be de- 
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scribed completely by specifying Ex and E ,  Then Ez = -E tan ee, Bx = -E sec 0e, 

By - Ex cos 0e) Bz = -Ex sin 0el and 

A 

Te = (cAn) ke Rx2 + Ey2 sec2 ee"] (5.5) 

6.  CALCULATIONS FOR B0 NORMAL TO THE PLANE OF INCIDENCE 

When B0 is normal to the plane of Incidence, only the fast magneto- 

acoustic mode propagates.  The requirement that the boundary conditions, Eqs. 

(2.17), (2.I8), and (2.21), be valid for all times over the entire interface, 

in the usual manner, leads to the conditions that a>  and nxk are constant. 
AW MM 

These, along with the dispersion relations, are sufficient to calculate k 

and k1- in terms of k .  One finds, then, that the angle of incidence equals 

the angle of reflection. 

e+
r = n - e+

1 ,        (6.1) 

k+
r = k+

i ,        (6.2) 

k/ - k^s2 + a2)Vc , (6.3) 

sin 0e
t = c(s2 + a2)'^ sin e+

1 , (6.1+) 

k/ = k^s2 + a2)Vs , (6.5) 

t     2   2-^      i 
sin es = s(8 + a )  sin 0 . (6.6) 

Equation (6.1+) shows that whenever e+  is greater than (s + a   )*/c,   sin 0 

is greater than unity so that cos ee  is imaginary.  In this case, the electro- 

magnetic wave is exponentially damped in the z direction. Thus, the incident 
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fast magnetoacoustlc mode must have its wave vector He within a small cone 

of half angle (s + a )  Ic  with cone axis along the normal to the boundary 

in order for the electromagnetic wave to propagate unattenuated. When the 

incident wave vector lies outside this cone, the transmitted electromagnetic 

wave is exponentially damped, proportional to exp(-z/d) where, from Eq,(3.1T).. 

d 2J (s2 + a2p/|(ju sin 0+ |.  Equation (6.6) shows that when s/a « 1, the fast 

magnetoacoustlc mode incident on the boundary gives rise to a sound wave ly- 

ing within a cone of half angle (s/a) with cone axis along the boundary nor- 

mal.  That is, a fast magnetoacoustlc wave, in this approximation, gives rise 

to a sound wave which propagates at a small angle to the normal regardless of 

the angle of incidence. 

By applying the boundary conditions, Eqs. (2.17), (2.18), (2.21), 

and (^.16) - (4.18), one finds 

-(Bo/c)(v+i c08 V + V c08 V) " Eyt        >      (6-'ir) 

v+
1 cos 0+

i + v+
r cos e+

r ■ Vgt cos 6^ (6.8) 

(sSp^oK-vV + k+
rv
+
r) + (a2P0/a>Xk+

lv+i + \*v+*) 

= (s2p0M(ks
tvs

t) - (B0/l+n)(Ey
t/cos 6^)    (6.9) 

From the latter equations, with the aid of Eqs. (6.1) - (6.6), one can show that 

E/ /E+iy - (v/ - v+
r)/V+

i 

= 2c(s2 + a2)^/! c(82 + a2)^ + a2co8 e+
1/co8 ee

t + sc cos S^/cos e8
t | 

= 2       (s « a « c) (6.10) 
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Ezt/E+S *  (tan 0et/taa e+l)(Eyt:/E+!'y) 

= 2c cos e+
1/a cos 0^ (s « a « c)   , (6.11) 

Bxt/B+!x = [(
82 + a2)%/c][co8 0+

1/cos ee^[(v+
1 - v+

r)/v+
lj 

= 2a cos e+
1/c cos Be1 (s « a « c)   , (6.12) 

^a2c(cos e+
1/co8 0e

t)(s2 + a2)^ < ^> 

< n-T+i>        c(s2 + a2)^ + a2cos e+
t/co8 6^ + sc cos e+

1/cos  e8
t   I 

=   (l+a/c)(co8 e+
1/co8  ee

t) (s « a « c) , (6.1?) 

<i,ist> i+sc2(co8 e^/cos 0s
t)(s2 + a2)^ 

< n.T+
i> c(82 + a2)^ + a2co8 e+

1/cos B^ + sc  cos e+
1"/co8 9^ 

=   (Us/a)(cos  e+
i/cos es

t) (s « a « c) , (6.lU) 

Equation (6.13) gives the energy coupling coefficient for electromagnetic to 

magnetohydrodynamic waves, and Eq. (6.l!+) gives the energy coupling coeffi- 

cient for acoustic to magnetohydrodynamic waves.  In the limit of s »: 0, 

Eqs. (6.10) - (6.12) reproduce Eqs. ( ^1 ) - (^3 ) of Ullah and Kahalas16. 

T.  CALCULATIONS FOR B0 IN THE PLANE OF INCIDENCE 

In contrast to the case of B0 perpendicular to the plane of incidence 

where only the fast magnetoacoustic mode can propagate, In general now all 

three magnetohydrodynamic modes can propagate.  It will be shown in this sec- 

tion that the two magnetoacoustic modes are coupled, but propagate indepen- 

dently from the Alfven mode.  Before discussing the coupling of wave ampli- 

tudes across the boundary, we shall consider the relations between the inci- 

-19- 



dent wave vector and the reflected and transmitted ones. 

A.  Relations between Wave Vectors 

The calculation of the reflected and transmitted wave vectors In terms 

of the Incident wave vector Involves the requirement that the boundary condi- 

tions, Eqs. (2.17), (2.18), (2.23), and (2.24), are satisfied over the entire 

A 
boundary plane for all times.  This leads to the statement that co and nxk 

«*•> »ff 

are constant.  In addition, one must Impose the requirement that an incident 

wave propagating in the plasma transports energy towards the boundary and a 

reflected wave propagating in the plasma transports energy away from the bound- 

ary.  These requirements must be kept in mind because it is quite possible for 

the Alfven and slow magnetoacoustic modes to transport energy in such a manner 

A 
that T-n, the projection of the energy transport vector in the z direction, has 

opposite sign to k-n.  This situation will be discussed in more detail below. 

For B0 lying In the plane of incidence, there are several different 
AW 

situations that can arise.  These are specified in terms of the wave mode in- 

cident . 

l)  Alfven Mode Incident 

Consider now 'he relation between wave vectors of the reflected Alf- 

ven mode and the incident Alfven mode.  Since cu is constant, 

*J-   \cosieJ-   - cp)| = kj  |co6(0o<
r - 9)|    . (7.1) 

Since nxk Is constant, 

l^1 sin ^i = k^ sin e^1" .        (7.2) 
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From these two equations one finds two solutions 

(cot 6^ + tan cp) = + (cot Q^   +  tan cp) (7.5) 

From Eq. (1+.23) <in-
To<> = P0a < (v^)

2 > (cos cp coste,^- <p)|cr-(cos <p)a-jco8(0<a< 

- cp)  .  In order for the Incident wave energy to Impinge on the boundary plane, 

O"(cos cp)»" cos(0»* - Cp)| > 0, and for the reflected wave energy to be propa- 

gated into the plasma away from the boundary,cr" (cos Cp)^ co8(6 fcoste,/ - qp] < 0. 

Thus it is required that 

<r (cos cp) = o-rcos^1 - cp)j = -cr[cos(6w
r - tp)!,        (j.k) 

Equation {j.k)   is consistent with Eq. (7.3) only when the minus sign is chosen. 

This leads to 

r i 
cot e^1 = - cot ^ - 2 tan cp. (7.5) 

Figure 2 shows a plot of Fq. (7.5) for various values of (p in the first and 

fourth quadrants.  0 is restricted without loss of generality to lie in the 

range 0 < 6 < it.  Only for cp = 0 or for very small angles of incidence does 

the angle of incidence equal the angle of reflection (i.e., 6 = rt - 6r). 

A graphical construction, Fig. 3, is valuable in seeing the relation- 

ship between the reflected k^ and the incident l^r.  The dot-dashed line is 

A    
A  i 

the locus of all vectors k for which nxk = nxk-^ .  The dashed lines are the 

locus of all vectors k for which Ik-B I »Ik-, . B„ I .  In Fie. 3a, the inter- 

sect ions of the dashed lines with the dot-dashed line gives both the incident 

wave vector and the single possible reflected wave vector at A.  In Fig. 3^, 

B0 lies along the y axis, and the two equations, (7.1) and (7.2), provide the 
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same Information.  In this case, there is no unique solution.  In Fig, Jc, 

r A 

both intersections lie in the upper half plane.  Note that < T™ -n > < 0, as 

r ^ 
required, whereas k^ -n > 0. 

t      1 A 

The relationship between ke and k^, (obtained from a» and nxk con- 

stant) is given by 

sin e^  =(c/a)^sin eJV coaidj   - cp)\j (7.6) 

and 

K* = *J:a\ cos(eJ - y)\fc ■ (T.7) 

For the electromagnetic wave to propagate unattenuated, sin 0e must be less 

than or equal to unity.  Equation (7.6) shows that the incident wave vector 

must lie within a cone (the cone for radiation) whose axis lies along the nor- 

mal to the boundary and with half angle for a/c « 1 given by a cos cp /c. 

When the electromagnetic wave is damped, proportional to exp(-z/d), d is given 

by Eq. (5.17) 

d^ a | cos(eo<
1 - cp) | / cojsln^1!    . (7.8) 

2)  Fast Mode Incident 

Consider first the relation between wave vectors of the reflected and 

the incident fast magnetoacoustic mode.  To lowest order in s/a, the dispersion 

relation of the fast magnetoacoustic mode is independent of the orientation 

of k   Since cu is constant 

A 
and since nxk is constant, 

V1 = k+
r       • (T.9) 

k+
i   sin  e+

i  =  k+
r   sin  e+

r (7.10) 

-22- 



Thus, the angle of Incidence equals the angle of reflection, 

e+
r = n- e+

1   . (7.u) 

From the requirement that < T ^-.n > > 0 and < T+
r'n > < 0 and from the fact 

that T, is in the direction of k to lowest order in a/a,   0 ^ 0. ^ Jt/2 4 6 r 

Next the relation between wave vectors of the reflected slow magneto- 

acoustic mode to the incident fast magnetoacoustic mode is considered.  With 

cu constant 

k+
i  a =  k/  s   |cos(0_r  - «p)| , (7.12) 

A 
and nxk  constant 

i i r r 
k+     sin 0+    =  k,     sin 6. . (7.15) 

From these two equations one finds two solutions 

a/I s sin e+ jcos cp j = + (cot 0  + tan cp)   .        (7.1^) 

Without loss of generality 0 is taken so that 0 ^ 0 ^ n for all modes.  From 

Eq. (4,25) <^.-T- > = (Pos2k-''CD)< (v-)2 > jcos (p cos(0_ - (p)ja-(cos cp)«»- cos(0_ 

'] tp) I .  The requirement that < n-T_ > < 0 leads to 

er (cos cp) = -<r cos(0.r - cp)     . (7.15) 

Since ©"(sin 0.r) •" + 1, there resultscr- co8(S_r - cp) « <r (cos Cp)or (cot 0.r 

-t- tan tp).  This combined with Eq. (7.15) leads to the condition thatO-(cot 0_r 

-+- tan cp) • - 1.  Thus Eqs. (7.1^+) and (7.15) are consistent only when the minus 
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sign is chosen, which gives 

cot 0_r = - a/(s sin 0+
1 |cos q)|)| - tan cp (7.l6) 

Equation (j,l6)   shows that for any angle of incidence the reflected wave lies 

within a cone of half angle si cos cp|/a whose axis lies along the normal to the 

boundary. 

Figure k  shows the construction by which k_r is found given k. , 

A     A . 
Again, the dot-dashed line is the locus of all vectors k for which nxk = nxk,1. 

The circle has a radius ak /s, and the dashed lines are the locus of all vec- 
.  A       * 

tors k for which k-B  = ak /s.  In Fig. ka,   the intersection of these loci 

occurs at A and A'.  By considering all possible orientations of B0, one can 

r 
show that k_  is given by the intersection at A in the lower half plane and 

that the k_  always lies in the lower half plane.  Figure l^b shows the case 

when cp « + it/2.  In this case, there is no solution. 

The relations between the transmitted wave vectors and the wave vec- 
A 

tor of the Incident magnetoacoustic mode (given by to and nxk constant) are 

C = k+
i a/c (7.17) 

and 

e + 

for the electromagnetic wave and 

sin O = c sin 9,1 Ja (7.18) 

ks 
t = k+

i a/s (7.19) 

and 

sin 98 = s sir Ln e+
1/a (7.20) 

for the sound wave.  For the electromagnetic wave to propagate unattenuated 
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sin 0  must be tess than or equal to unity.  Equation (7.I8) shows that the 

incident wave vector must lie within a cone whose axis lies along the normal 

to the boundary and with half angle sin (a/c). The angle at which the sound 

wave is transmitted is, from Eq. (7.20), close to the normal for any e+^ when 

s/a « 1. When the electromagnetic wave is exponentially damped, proportional 

to exp(-z/d), d is given by Eq. (3.1?) 

d«- a/ (i>\sin  0+
11 (7.21) 

3)  Slow Mode Incident 

Consider first the relation between wave vectors of the reflected 

fast magnetoacoustic mode to the incident slow magnetoacoustic mode.  Since 

CD is constant, 

k+
ra = k/s jcos(0.i - q)).|    , (7.22) 

/\ 
and since nxk is constant, 

k+
r sin 0+

r = k.1 sin e.1     . (7.23) 

These two equations have two solutions 

a/(8 sin 0+
r |cos CD | ) - + (cot 0_i + tan cp)   .       (7.210 

Without loss of generality 0 is taken so that 0 ^ 0_ < n.  From Eq. (4.2$) 

< jvT. > -(p0s
2k_/a))< (v_)2 > I cos cp cos(0. - (p)| gr (cos (p)a- I co8(e_ - <p) I . 

The requirement that < n-T_ ^ > 0 leads to 

CT- (cos qp) - <r I co8(e.1 - 9) (7.25) 



With 0.  In the first and second quadrants, a I cos(0_  - <p) I = o"(cos (p) 

cr{cot  0_i + tan Cp). The latter equation combined with Eq. (T.25) leads to 

the condition that o-(cot e.1 + tan Cp) « + 1. Thus Eqs. (7.24) and (7.25) 

are consistent only when the plus sign is chosen which gives 

sin 0+
r = (a/s)   | cos cp | (cot 0_i + tan cp)J        (7.26) 

For the reflected fast magnetoacoustic mode to propagate unattenuated, cot 0_ 

>.  (a/s I cos tpj ) - tan cp, which may be approximated by 0. •$ (s/a) I cos <p | . 

That is, the incident slow magnetoacoustic mode must be within a cone of half 

angle (s/a) | cos cp | .  When the fast magnetoacoustic mode is attenuated, pro- 

portional to exp(-|z|/d), d is given by Eq. (3.I7) 

d«. s |cos(0.:L - cp) I / culsin 0_1| (7.27) 

Figure 5 shows the construction by which k  is found, given k_ . 

A     A   1 
Again, the dot-dashed line is the locus of all vectors k for which nxk ■ nxk 

""•»        •"••«. •»■ •*£ 
A 

The circle has a radius (s/a) (k^^-B |» cu/a.  Then k+
r is determined by the 

intersectlon of the circle and the dot-dashed line.  There can be two inter- 

sections, and the one in the lower half plane is chosen, according to the re- 

quirement ^ T.r'n > < 0, since the fast magnetoacoustic mode transports en- 

ergy in the direction of k.r.  In Fig. 5a the intersections occur at A and 

A', and the one in the lower half plane is chosen.  Figure 5k shows a con- 

struction in which no solution exists.  In this case sin 0 r > 1, and Eq. 

(7.26) leads to cot 0_ < (a/s | cos (p j ) - ten qp.  Figure 5^ gives the con- 

struction for cp - + jt/2 for s/a < 1.  In this case no solution exists. 
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Next, the relation between wave vectors of the reflected slow mag- 

netoacoustic mode to the incident slow magnetoacoustic mode is considered. 

With CD constant. 

k.1 | cosCe,1 - 9) | = k_r | cos(e.r - (p) | (7.28) 

and with nxk constant. 

k i sin 6 1 = k r sin e_r (7.29) 

These two equations are the same as the ones for Alfven mode incident and re- 

flected.  The discussion is the same as for that case, with the resulting 

equation 

cot e cot e_  - 2 tan cp (7.30) 

Figure 2 shows the relation between the angles of incidence and reflection, 

r       1 and Fig. 5 shows the construction of k_  from k_ . 

The relations between the transmitted wave vectors and the wave vec- 

tor of the incident slow magnetoacoustic mode (given by co and nxk constant) 

are 

k/ - k.1 |co8(e.1 - cp) | s/c (7.31) 

sin 6^ -(c/s^sln e.1/|co8(e.i - cp)| I (7.32) 

and 

for the electromagnetic wave, and 

kg' - k.1 | cos^.1 - qj)| (7.33) 



and 

sin e8
t - sin e,1/  |cos(e_i - <p)| (7.3^) 

for the sound wave.  Equation (7-3^) i-e  shown graphically in Fig. 6.  Equation 

(7.32) shows that for the electromagnetic wave to propagate unattenuated, the 

incident wave vector of the slow magnetoacoustlc mode must lie within a cone 

whose axis lies along the normal to the boundary and with half angle given by 

s I cos cp I /c.  When the electromagnetic wave Is exponentially damped, propor- 

tional to exp(-2/d), d is given by Eq. (5.1?) 

du s IcosCe.1 - cp) [/ £D|sin ö.1]     .        (7.35) 

Equation (7'3^) shows that the sound wave is damped unless 

cot 6.1 :>, (1/ I cos cp I ) - tan cp      . (7-36) 

Whenever -n/2<: 9 ^ n/2, Eq. (7.36) Is equivalent to S.1 ,$ cp/2 + it/U.  When- 

ever it/2 ^ q)>^ 3n/2, Eq. (7.36) is equivalent to 0. < Cp/2 - n/U. When the 

sound wave Is exponentially damped, proportional to exp(-z/d), d is given by 

Eq. (3.17) 

d«.     sjcosCe.1 - cp)| / a)  I cos cp cos(2e.1 - cp) I r (7-37) 

B.  Relations between Wave Amplitudes 

The boundary conditions, Eqs. (2.17), (2.18), (2.23), and (2.21+), are 

now applied, along with the equations of Sections k  and 5 in which the field 

vectors are expressed In terms of specific amplitudes and angles.  The re- 

sulting equations separate into two sets.  The first set contains only vrt , 
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v r, and E  :  the second contains only v  , v r, E '", and v  .  Thus, an in- 
a      y ■7+,+,x,     s       ' 

cident Alfven mode gives rise only to a reflected Alfven mode and a trans- 

mitted electromagnetic wave.  An incident magnetoacoustic mode gives rise only 

to reflected magnetoacoustic modes and transmitted electromagnetic and sound 

modes. 

1) Alfven Mode Incident 

The equations relating amplitudes on the two sides of the boundary 

are 

B0 cos cpCv^
1 + va

r)/c = Eyt (7.38) 

and 

(BJ(M  k K  i  cos(e i - cp) + k rv r cos(0 r - cp)  = E t/cos  9 t       (7-59) 

These equations determine va
v  and Ey1- in terms of v^1.  From Eqs. (7.38) and 

(7.39)i the ratios of field quantities are 

E t/E l - (v i + v r)/v i 

- 2  cos  Se/     cos  eet +  (a/c) | c08 ^I 

- 2 (a/c «   1)      , il.hQ) 

E2
t/Ezi -  (tan 9^/tan q))(Eyt/Eyi) 

- 2   sin  0e     cot cp/    cos  0e    +   (a/c)   | cos Cp| 1 

- 2   tan d^  cot qp (a/c «  l)     , (7.^0 

Bx
t/Bx

1 -  (2a/c)  j cos cp I /I cos  6^ +  (a/c)  | cos cp | 

- (2a/c)   j cos cp   |/co8  ee (a/c «   l)     . (7.^2) 
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The expressions  for the coupling coefficients are 

<    n-T t >      (Wc)|cos 9 | cos 6 * 

A . ' 
<    H-TQ

1
 >      (cos  9 t + a|cos qpl/c)' 

A r 
< n-T r > 

< n-T  i  > 

(4a/c)|cos Cp^/cos  6 t (a « c)     ,       (T.1!?) 

cos  0 *■  -   a|cos cp |/c 

cos  0 t + alcos (p |/c 

=  -   1 (a « c)     .       (J.hk) 

2)     Fast or Slow Mode Incident 

The equations relating the amplitudes on the two sides of the bound- 

ary  are 

(B, ■0/cMv+
isin(ß+

1  - cp) + v_isin(ß_i  - cp) + v+
rsin(ß+

r   - Cp) 

+ v.rsin(ß.r   - cp^l   =  -  E^       , (IM) 

^/c4|k+
1v+

i8in(ß+
1   - cp)cos  e+

1 + k.^. isin(ß.i  - cp)cos  0.i +  k+
rv+

r- 

'   8in(ß+
r - cp)cos 0+

r + k.rv.rsin(ß_r  - tp)cos e.r   I 

k+
1v+

1cos(e+
1  -  ß+

1) + k.iv,Lc.os{e,i -ß,1) + k+vv+
rcoa{e+

r:  -  ß+ 

cos e^E/ (7A6) 

+  k.rv.rcos(0.r r)  " k^v^ .     (TA7) 

and 

V    ^COS    ß    1   +   V_^C08    ß    ^   +   V    rC08    ß    r   +   V    rC08    ß v  tcos 0 ' 
8 8 

(T.W) 
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For the fast magnetoacoustlc mode incident v_i ■ 0 and tu Is given by Eq. (^.5); 

for the slow magnetoacoustlc mode Incident v+^  « 0 and CB is given by Eq. {k.6). 

The solution of Eqs. (7.^5) - (7.^8) for the fast wave incident gives 

for the ratio of field amplitudes 

Ext/Ex1 = K1 + v+r)/v+1 

= 2 cos 0+1/ cos e,,1 + (a/c) cos 6^ 

=2 (a « c)  ,     (7.49) 

and 

2 cos 0, 9+ / I cos 0+ + (a/c) cos 0e I 

=2 (a « c)  ,     (7.50) 

y  y     +    + ' + 

= (2a/c) cos ©gY cos 0+
1 + (a/c) cos 0^1 

= (2a/c)(co8 0e
t/cos 0+

i)       (a « c)  .     (7-51) 

The expressions for the coupling coefficients are 

< n-Tgt >  (Wc) cos 6,1 cos 6^ e 

< n-T i >     fcos 0 i + (a/c) cos 0 H 

- (Wc)(co8 O^/cos  0+
1)  (a « c)  ,     (7.52) 
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< n'T.1 > (Wa)   sln2Cp cos  0. i cos  ß.1 

_-L-_.      -^  (7.53) 
< R'T,1 >   cos e,1 + (a/c) cos OH     | I cos (p | + cos Sg^l 

In the above only the lowest order in s/a has been kept.  Equation (7.53) gives 

the coupling coefficient of sound waves to magnetohydrodynamic waves.  It is 

of the order of s/a which has been assumed to be small in this paper.  In the 

lower ionosphere where collisions between heavy ions and neutral particles 

become important (lower E region), the phase velocity of magnetohydrodynamic 

wave propagation can be reduced to a small fraction of the Alfven velocity 

and, in fact, can become comparable with the sound velocity.  In this case 

there may be a large coupling between magnetohydrodynamic and acoustic waves, 

although the present model is not adequate to treat that situation because 

only a fully ionized plasma has been discussed here. 

For s/a « 1, sin 9 t is small and cos 8^—   1.  For sin e+
i < 

a/c, the electromagnetic wave is undamped and Eq, (7.53) can be written 

< n-T t > 

— —  = {ha/a)  tan2((p/2)      ( -it/2-$ cp < n/2) 
<2.T+

i> 

= (Wa) cot2(cp/2)       ( n/2 ^ cp ^ 3fl/2)  .  (7.5^) 

The solution of Eqs. (T.45) - (7.^8) for the slow wave incident gives 

for the ratio of field amplitudes 

E^/E^ - -(a/s)|^cos e.1 6-/1 costs.1 - cp)|j (7.55) 
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where 

8tn(0.r - cp) cos 0.r 

slnCe.1 - cp) cos e.1 

^\ 
jcos cp I - cos Os*- 

cos Cpl + cos Sgt 

[cos e+
v  -  (a/c)co8 öeM 

When the transmitted electromagnetic wave Is undamped, ö^—  0, ö8
t 

-Ü 0, 0-rd «, and e+
r^ K.  Then Eq. (7-55) becomes 

Also 

Ex /Ex - (2a/s)/(l + | cos qpj) 

Byt/Byi = ■(a/c) cos eet B' 

(7.56) 

(7.57) 

and when the transmitted electromagnetic wave is undamped, 

By
t/B J- = (2a/c)cos ee

t|cos cp|/(l + | cos cp |) (7.58) 

Also 

B t/B i = -(a/c) sin 6 t cot 6 i 5" z   z    \ ' /     e 
(7.59) 

which becomes^when the electromagnetic wave is undamped 

Bz
t/Bz

i = (2a/c) sin 6^   cot e.^cos cp|/(l + | cos (p |) )      (7.6o) 

which is of the order of a/s because cot 0_^ is of the order of c./a  when 0.^ 

lies within the cone for radiation in this case. 

The expressions for the coupling coefficients are 

< n-Tgt >  (Wc) cos ©gt sln2q) |co8 cp| 

A   1 
< n.T. |_1 + jcos (p|j' 

(7.61) 
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and 

< n.T t >    Ulcos cpl cos 0.' 

< n.T.1 >   [[cos cp | + cos S^T 

(7-62) 

Figure 7 is a plot of Eq. (7.62). As one might expect^the slow wave of the 

magnetoacoustlc mode couples most strongly to the sound wave and much more 

weakly (of the order of s/c) to the electromagnetic wave. 
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APPENDIX 

In References 16 and 17, "Coupling of Magnetohydrodynamlc to Electro- 

magnetic Waves at a Plasma Discontinuity. I and II", (hereafter called I and 

II), there Is an error made which seriously affects some of the results of 

those papers. This appendix Is devoted to a discussion of the error and Its 

correction.  The work of Section 7 is directly related to this discussion, 

since the problem is the same when s = 0. 

The error occurs for the case where B lies in the plane of incl- 

/ . 
dence and the Alfven mode is incident.  (In I and II, this is called Case lb, 

and the Alfven mode is called the extraordinary mode.)  The error is that the 

angle of reflection was assumed to be equal to the angle of Incidence.  This 

assumption is correct for the fast magnetoacoustic mode incident (called the 

ordinary wave in I and II), so that all the results of Cases la and 2a which 

refer to the ordinary mode incident are correct.  For the Alfven mode, the 

relation between the angle of Incidence and reflection is given in Eq, (7.5) 

and is shown graphically in Fig. 2.  It is seen that only for cp " 0 or for 

6 small does the angle of incidence equal the angle of reflection. 

Before proceeding to the discussion of the revision of the equa- 

tions, we wish to point out that, in spite of the error made, the results of 

I are correct even for Case lb.  This may be seen from the following reason- 

ing:  In I discussion was restricted to the case when electromagnetic waves 

In the vacuum region propagated unattenuated.  This restriction implies that 

the wave vector of the incident Alfven mode lies within the cone for radia- 

tion, i.e., that sin 6 4 Va cos qp/c (Eq. (31) of I in the notation of that 

paper).  When the angle of incidence is very small, It is seen from Eq. (7>5) 
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that for all (p, da    - jt- 6 i;  i.e., the angle of incidence equals the angle 

of reflection if the angle of incidence is very small. Thus the assumption 

made is correct, and all the results of I are correct. 

Instead of Eq. (25) of I (in the notation of that paper), the cor- 

rect equation is 

|k cos e'l |sin e{yr - yi) +  cos 6(1 - tan 6  cot er)| 

I k cos e'(7
r sin 0 - sin 6 cot 6 )  + k'j 

(A.l) 

where 0r is the angle of reflection (as defined in Fig. l).  The expression 

for y     (Eq. (20) of II) is given correctly in that paper by 

i m cos2(e - (p)8in2q) + x2[cos2e - cos2(e - Cp) - sin2^ + x^sin^ 

-cos (S - cp)sin qp cos (p + x (sin cp cos q) + sin 0 cos 6) - x sin 6  cos 0 
(A.2) 

However, the correct expression for y    is 

cos2(0 - cp)stn2cp + x2rsin20 cot20r - cos2(0 - cp) - sin2cpj + ^{l  -  sin2© cot20r) 

-co82(0 - cp)8in cp cos cp + x2 sin20 cot 0r + sin cp cos cp I - x^sin20 cot 0 

In addition Eq. (7-5) Is written in slightly different notation 

cot 0r « -cot 0-2 tan cp (A.4) 

(A.3) 

These equations are adequate for discussing the behavior of E  .  First, if 

there were a transmission resonance in Case lb (i.e., Alfven mode incident) 

the bracketed part of the first term in the denominator of Eq. (A.l) must 

vanish.  This occurs when y*-  cot 0 .  However, yr    is approximated by yT  S 

- tan cp which leads to the solution, using Eq. (A.i+), 0 - Cp » + n/2.     In this 
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case, the Incident Alfven mode does not propagate slncejc is perpendicular 

to B . Thus no transmission resonance is possible in Case lb. contrary to 

the results of II. 

Equation (A.l) will now be evaluated.  The left hand term of the de- 

nominator of Eq. (A.l) vanishes only when the angle of incidence lies on the 

cone for radiation (cos 61 = 0) or when 0 - cp = + jt/2, as discussed above. 

Excepting these cases, the right hand term in the denominator is 0(a/c) with 

respect to the left hand term and so is Ignored.  Thus Eq. (A.l) becomes 

|sln e(yT  -  71) + cos 9(1 - tan 6 cot er) 

1 (7r - cot er)sin 6 | 
(A.5) 

On using y = -^ = - tan 9 together with Eq. (A.^), one gets that 

E t/E i » 2 
y y 

(A.6) 

which is the correct answer for all 9,  The only remaining point is to see 

when -y     and 7 may be approximated by - tan cp.  From Eq. (A.2) and (A.5), one 

sees that the approximation is permissible when the terms independent of x 

do not vanish.  When these terms do vanish <P " 0, + jt/2, and 6 - (p « + «/2. 

The latter condition corresponds to the case of no propagation, as mentioned 

above; <p " + A/2 corresponds to an indeterminate situation because the con- 

ditions U) constant and nxk constant are the same to lowest order in x.  If 

one allows finite x, then the angle of incidence again equals the angle of re- 

flection, and the discussion of II is valid (for 9 * + «/2).  For 9 " 0 also, 

the discussion of II is correct. 
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Equation (21) of II Is not changed, since it has no dependence on 

reflected quantities.  Thus, for all values of cp, (in the notation of II) 

yo 

exp 
sln20 

cos2(e - 9) - xc 
(A.7) 
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