UNCLASSIFIED 431616 AD

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, bor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any cther person or corporation, or conveying any rights cr permission to manufacture, use or sell any patented invention that may in any way be related thereto.

DATE 10 March 1964

REVISED

EVALUATION OF BRAZING ALLOYS FOR THE

FABRICATION OF INCONEL 718

HONEYCOMB SANDWICH PANELS

REPORT A469 SERIAL NO. 20

MCDONNELL

This report was prepared under Contract Number AF33(657)-11215 and BPSN: 63-6899-7381-738103. Additional information pertaining to any data contained herein may be obtained from the Directorate of Materials and Processes (ASRCEM-1), Aeronautical Systems Division, Air Force Systems Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, or McDonnell Aircraft Corporation, St. Louis, Missouri

INDEX.	
CODE -	(Ni-4)(I-i)(IV-a)(VI-b)

	12 July 1963	
REVILED	(4) 8-3-63	
REVISED	(B) 9-17-63	

MCDONNELL

IT. LOUIS, MIMOUTI

PAGE ____ A469 REPORT ____

 $(N_{1-4})(I_{-1})(I_{-a})(V_{I-b})$

FINAL REPORT

LABORATORY: Structures

EVALUATION OF BRAZING ALLOYS FOR THE PARRICATION OF INCONEL 718 HONETCOHB SANDAICH PANELS

ABSTRACT

A nickel base structural alloy, Inconel 718, has been considered for use in the fabrication of honeycomb structures capable of sustained operation at elevated temperatures. Four gold-containing brase alloys were selected for compatibility testing with Inconel 718 base metal.

From the results of these tests Premabrase 128 and Premabrase 130 braze alloys appeared to be suitable for honeycomb structure brasing with Inconel 718 as base metal. No evidence was found to indicate that either of these braze alloys are susceptible to crevice corrosion. The Micoro and Incuro 20 braze alloys were eliminated from testing because of inferior wettability and flow characteristics.

PREPARED BY Jan & PPROVED BY

Kulla Orbup Angineer, Materials and Methode, Metallurgical Group

APPROTED BY Will/cs.cs (API Dept. Hanger; Structures Lab APPHOVED BY

 \bigwedge Laboratory

MAC 2310 INEN I AND BIT

MGDC	, N	NEL	. K.
------	------------	-----	-------------

ST, LOUIS, HISSOURI

				-	
 	(8)	9-3	17-	63	

.....

*FV1180

12 July 1963

PIGE E REPORT Alury

B

1. INTRODUCTION

Brased honeycomb construction can be highly efficient in the production of thin airfoil or control surface panels capable of withstanding the effects of high temperature operation. Incomel 718 has come under consideration as a base metal alloy for this type of structure, but little data concerning the compatirility of Incomel 718 and commercial brase alloys is available. Four goldcontaining brase alloys were selected for study as possible Incomel 718 honeycomb brasing materials.

Wettability, lap shear, crevice corronion, and edgewise compression tests were conducted in a brase alloy evaluation program by the McDonnell Structures Laboratory during the period 12 June through 27 November 1962.

2. DESCRIPTION OF TEST ARTICLES

.

2.1 Base Metal

Annealed Incomel 718 sheet stock (0.012, 0.025, and 0.043-inch thick), and honeycomb core (0.002-inch ribbon and 0.25-inch cell size) were furnished for specimen fabrication.

The chemical composition of Incunel 718, in percent, is tabulated below:

N1 - 50.0-55.0	C = 0.10 max
Cr - 17.0-21.0	Si - 0.75 may.
Cb+Ta - 4.5- 5.75	Mn = 0.50 max.
Mo - 2.8- 3.3	S - 0.03 max.
Al - 0.2-1.0	Ou - 0.75 max.
Ti - 0.3-1.3	Fe - belance

2.2 Brase Alloys

The four gold-containing braze alloys were in the form of 0.001 or 0.002 inch thick foils. Their chemical compositions and temperature characteristics are listed below:

_	Premabrase 128	Premabrase 130	Nicoro	Incuro 20
X Au	72	82	35	20
⊼ R1 ≸ Ou	22	18	3 62	78
≸ Cr ≰ Tn	6			
Melt Point Plow Point	17 <i>859</i> 1835 9	17110f 174Cf	1832 f 1886f	17 87 ¥ 1877 ¥

3. TEST PROCEDURE

WE PITS STATE T ALT ALL

3.1 Wettat'lity Tests

Eighty Inconel 718 test blanks, one square inch in area, were sheared from 0.025 inch thick sheet material. Several of these blanks were cleaned by each of the following procedures:

	12 1.1. 1661	MC	CDONNELL	
	12 3019 1903		ST. LOUIS, MISSOURI	PAGE
EVISED	. • 			REPOPT ALG
TVISED				
				FINAL REPORT
• •		• • • • • •		
3.1	WETCHDILLTY	Nets (Continu	ed)	
	Procedure A	 Vapor degrea Alkaline clea Rinsed with 	eid per PS 12010; aned per PS 12030; tap water, and dried by	forced air.
	Procedure B	- Vapor degrea Pickled in 3 (120F) for to Rinsed in ta	sed per PS 12010; O percent HNO ₃ - 2 perce en minutes; p water, and dried by fo	nt HF solution proed mir.
	Procedure C -	- Vapor degrea: Liquid honed Rinsed in taj	sed per PS 12010; per PS 12045; p water, and dried by fo	prood air.
	Procedure D	- Vapor degream Alkaline class Pickled "7, 30 (120F) for to Rinsed with	sed per PS 12010; aued per PS 12030; 0 percent HNO3 - 2 perce en minutes; tap water, and dried by	nt HF solution forced air.
ing iven inch 718 test	The speci- layup for braz adiately before h squares which wettability te ted for each co	imens were hand ting. The bray polication. Were stacked st blank. Two ombination of o	dled with white gloves a ze alloys were cleaned w The braze alloy foils to a depth of 0.006 inc o specimens were prepare cleaning procedure and b	fter cleaning and dur- ith trichlorethylene were cut into 0.25- h upon each Inconel d with each brase alloy razing temperature.
	The wette	bility specime	ens were brazed in a vac	uum retort which was
evac vacu a gi were	cuated to a pre num was maintai raphite cloth h fow 600F under v s conducted at	ined, the speci leating element 'acuum, and the the following	nan one micron before he imens were heated to bra t. After brazing, the s en air cooled to room te temperatures:	ating. While this sing temperature with pecimens were cooled to mperature. Test brazes
evac vacu a gi belc were	cuated to a pre- num was maintain raphite cloth h ow 600F under w s conducted at <u>Braz</u>	ined, the speci leating element vacuum, and the the following	nan one micron before he imens were heated to bra t. After brazing, the s en air cooled to room te temperatures: Test Temperatur	ating. While this sing temperature with pecimens were cooled to mperature. Test brazes es (^O F)
evac vacu a gi were	cuated to a pre- num was maintain raphite cloth h ow 600F under w conducted at <u>Braz</u> Prem	ined, the speci leating element 'acuum, and the the following (S Alloy (abraze 128)	nan one micron before he imens were heated to bra t. After brazing, the s en air cooled to room te temperatures: <u>Test Temperatur</u> 2000 2050	ating. While this sing temperature with pecimens were cooled to mperature. Test brazes es (^O P)
evac vacu a gr belc were	cuated to a pre- num was maintain raphite cloth h ow 600F under v conducted at <u>Braz</u> Prem Prem	ined, the speci meating element vacuum, and the the following s Alloy mbraze 128 mbraze 130	nan one micron before he imens were heated to bra t. After brazing, the s en air cooled to room te temperatures: <u>Test Temperatur</u> 2000, 2050 1800, 1900	ating. While this sing temperature with pecimens were cooled to mperature. Test brazes es (⁰ P)
evac Vacu a gi belc Were	cuated to a pre- num was maintain raphite cloth h bw 600F under v conducted at <u>Eraz</u> Prem Prem Nico	ined, the speci meating element vacuum, and the the following <u>s Alloy</u> wabraze 128 wabraze 130 ro	nan one micron before he imens were heated to bra t. After brazing, the s en air cooled to room te temperatures: <u>Test Temperatur</u> 2000, 2050 1800, 1900 1875, 1925.	ating. While this sing temperature with pecimens were cooled to mperature. Test brazes es (^o P)

3.2 Lap Shear Teste

Incomel 718 sheet, 0.043 inch thick, was sheared into pieces 4.5 \pm 8 inches in area for lap shear brazes. From the wettability test results,

WAT \$180 -484 + 8 4 442

MCDONNELL ST. LOUIS, MISSOURI

12 July 1963

ATVILLO ...

Page 1, HEPORT A1-09

#EVISED

FINAL REPORT

3.2 Lap Shear Tests (Continued)

cleaning procedure D was sciected for the preparation of the incomel 716 during this phase of the program. Also from the wettability test results, the braze alloys selected for further evaluation were Premabrase 128 and 130.

The lap shear panel parts were cleaned immediately before layup and were handled with white gloves during layup. A 0.002-inch thick braze alloy foil strip was placed between two 4.5×8 -inch Inconel 718 pieces to form a single panel measuring approximately 9 x 8 inches in area. A 3t overlap and the minimum possible clearance were maintained during layup and brazing.

The vacuum brazing procedure followed was similar to that of the wettability test specimens, except that the time at temperature was shortened to three minutes. The Premabraze 128 lap shear panels were brazed at 2050F, and the Premabraze 130 panels at 1900F. All lap shear specimen panels were cooled in the retort, under vacuum, to below 600F before air cooling to room temperature.

After cooling, the specimens were aged by heating at 1325F for eight hours, then furnace cooling at 100F/hr to 1150F, holding at this temperature for eight hours, followed by air cooling to room temperature.

The lap shear panels were friction sawed into 0.75-inch strips with the brazed joint perpendicular to the long axis and deburred to produce specimens as shown in Figure 1 on page 15.

Lap shear specimens brazed with Premabraze 128 and 130 were tested at room temperature and at 1000F in a 60,000-pound Baldwin universal testing machine. Load was applied at a rate of 3000 lb/min until failure. The specimens tested at 1000F were heated to temperature in one minute with quartz radiant lamp baths, held at temperature for five minutes, and tested.

Three specimens joined with each braze alloy were exposed to a 20 percent salt spray solution at 95F for 100 hours per Federal Test Method Standard 151a, Method 811.1. Three additional specimens joined with each alloy were submorged in aerated water at room temperature for 100 hours. After the exposure periods, the specimens were tested under tensica at room temperature to determine whether any damage had been sustained from crevice corrosion.

3.3 Honeycomb Brazing Tests

VE THE LATER ALE AS

Incomel 718 face skins and cores were prepared for brazing two honsycomb specimens with Premabraze 128 as braze alloy, and two with Premabrare 130. The face skins, measuring 3.5×2.3 inches in length and width, were sheared from a 0.012-inch thick sheet, and the matching cores were cut from 0.63-inch material having a 0.002-inch foil thickness.

M	C	D	0	A		V	E	L,	L
	1	IT. 1	.001	5, 6	415	\$0			

12 July 1963

HEVISED _____

HEVISED .

PAGE 5 REPORT Alugo

FINAL REPORT

3.3 Honeycomb Brazing Tests (Continued)

The cores and face skins were cleaned according to Procedure D described in section 3.1. The braze alloys were cleaned with trichlorethylene. The parts were handled with white gloves during layup. A single sheet of 0.002-inch thick braze alloy was laid between each face skin and the core, and the specimens sealed into vacuum envelopes for brazing.

After placing the brazing envelope and specimen in the retort, the envelope and retort were both evacuated to a pressure of less than one micron. With this vacuum maintained upon the envelope, the retort was back filled to provide a differential pressure of approximately two psi on the envelope. Brazing was conducted at 2050F with Premebraze 128, and at 1900F with Premabraze 130 alloy. In each case, the specimens were held for three minutes at brazing temperature and cooled to below 300F in the envelope under vacuum.

The honeycomb specimens were heat treated similarly to the lap shear specimens, except that they were left in the brazing envelope and a continuous flow of argon gas was maintained throughout the sging cycle.

After heat treatment, the honeycomb edgewise compression specimens were machined to three inches in length and two inches in width. The twoinch ends were ground to a parallelism within 0.001 inch/inch.

With parallel loading plates clamped lightly to the specimen ends, compressive testing was conducted in a 60,000-pound Baldwin universal testing machine. Each specimen was loaded to failure at a rate of 1500 lb/min. One specimen brazed with each filler alloy was tested at room temperature and one of each at 1000F. The elevated temperature test specimens were heated with quartz radiant lamp banks and held at temperature for fifteen minutes prior to testing. The edgewise compression test setup is shown in Figure 14 on page 26.

4. TEST RESULTS

Lemabraze 128 and Premabraze 130 wettability data is tabulated in Tables 1 and 2 on pages 8 and 9. Photographs of all Prematraze 128 and Premabraze 130 wettability specimens are shown in Figures 2 through 5 on pages 16 through 19, with representative specimens of Nicoro and Incuro 20 shown in Figures 6 and 7 on pages 20 and 21. Typical base metal-braze alloy interfaces of Prematraze 128 and Premabraze 130 are shown in Figures 8 and 9 on page 22.

Shear strength data for Fromabraze 128 and Premabraze 130, it room temperature and 1000F, is presented in Tables 3 and 4 on pages 10 and 11

ردو و د د د و و م

12 July 1963

REVISED

MCDONNELL

ST. LOUIS, MISSOURF

PAGE 0 REPORT A469

#EVISED _____

FINAL REPORT

L. TEST RESULTS (CONTINUED)

The room temperature shear strengths of Premabraze 128 and Premabraze 130, after crevice corrosion tests, are tabulated in Tables 5 and 6 on pages 12 and 13.

Edgewise compression test data obtained by testing honeycomb specimens brazed with Premabraze 128 and with Premabraze 130 braze alloys is presented in Table 7 on page 14. Photographs of all failed compression specimens are shown in Figures 10 and 11, on pages 23 and 24. Photomicrographs of typical honeycomb-to-skin brazed joints are presented in Figures 12 and 13 on page 25.

5. LISCUSSION OF TEST RESULTS

47. 7. 1

The limited quantity of gold-containing braze alloys available for the wettability tests did not permit the formation of a measurable contact angle. Therefore, a standard wettability rating could not be computed. Brase alloy selection for further testing was, therefore, based upon the measured flow radius. Extremely poor flow characteristics were exhibited by Nicoro and Incuro 20 alloys, regardless of surface preparation or brazing temperature (see Figures 6 and 7 on pages 20 and 21). Further evaluation of these two alloys was not conducted.

Both Premabraze filler alloys showed good flow characteristics, particularly upon Inconel 718 surfaces prepared by cleaning procedures B or D, as described in Section 3.1. Cleaning procedure D, requiring vapor degressing. alkaline cleaning, HNO3 - HP pickling, tap water rinsing, and forced air drying was selected for the preparation of Inconel 718 for brazing lap shear and honeycomb specimens.

Evaluation of the lap shear test data in Tables 3 and 4 on pages 10 and 11, revealed that joints brazed with Premabraze 128 failed at higher average shear stresses than did those brazed with Premabraze 130 (50,900 psi versus 46,200 psi) when tested at room temperature. In tests conducted at 1000F, however, Premabraze 130 joints failed at an average shear stress of 32,500 psi and Premabraze 128 joints at 31,300 psi average.

The lap shear specimens subjected to salt spray and aerated water exposure before room temperature shear tests failed generally at shear stresses higher than those developed by unexposed specimens. This probably was caused by variation in overlap or joint clearance.

Higher failing edgewise compression stresses were exhibited by the honeycomb specimens brazed with Premabraze 128 when tested at room temperature and at 1000F. A comparison of the test results is tabulated on the following page.

12 July 1963	S7. LOUIS, MISSOUMI	P & Lé 16
		71NAL RLYORT
5. LISCUSSION OF TEST RESUL	LTS (CONTINUED	
Braze Alloy	Feiling Edgewise	Compression Stress (pei)
	R.T.	1000F
Premabraze 128 Premabraze 130	167,600 156,500	11,2,300 131,300
Visual examination Premabraze 128 tends to form	of the brazed honey a larger fillets that	comb specimens indicated that n does Premabrane 130.

6. CONCLUSION

war gyr laeg r y c wie

Both Premabrane 128 and Premabrane 130 appeared suitable for brasing Inconel 718. No evidence that either of these braze alloys applied to Liconel 718 is susceptible to arevice corrosion appeared in these test results. Although the mechanical properties of structures brazed with Premabrane 128 were nearly always higher than those of similar specimens brazed with Premabraze 130, the lower brazing temperature of Premabrane 130 may be preferable because of the thermal effects on the inconel 718 base metal.

Nicoro and Incuro 20 braze test results indicated that these alloys are unsuitable for vacuum brazing Inconel 718.

MCDONNELL

ST. LOURT, MISSOURT

PAUS U Alfori Auc,

PECIMEN NUMBER	SURFACE CONDITION	BRAZE TEMP (°F)	TIME AT TEMP (min)	WETTED AREA (in²)	FLOW RADIUS (in) A	
	A	2000	15	0 192	0123	
2	A			0.133	0.081	
3	В			0.196	0.125	
4	В			0.192	0.12.3	
5	с			0.216	0.137	
6	С			0 2 0 7	0131	
7	ס			0.200	0.127	
8	D	¥	¥		0.183	0.116
11	А	2050	15	0.166	0.105	
12	A			0.176	0.112	
13	Б			0.209	0.133	
14	В			0.232	0.146	
15	с			0.075	0.030	
16	С			0.096	0.050	
17	D			0.210	0.134	
18	D	Ļ	Ļ	0.116	0.067 A	
STES. 🛆 A B C D	N – VAPOR DEG S – VAPOH DEG S – VAPOH DEG S – VAPOH DEG	REASED AND 4EASED AND REASED AND REASED, ALI	ALHALINE CI HNO3-HF PI LIQUID HONE NALINE CLEAN	EANED. Caled D ED AND HNG	s-HF PICKLED	

WE: 2714 TOTA 7 AUG 811

.

(A) 8-3-6	3	\$7. LOI	115, HISSAUAI		PAGE NEPONT
TABLE	2 - PRE	MABRAZE	130 WET	TABILITY	DATA
PECIMEN NUMBER	SURFACE CONDITION	BRAZE TEMP [SF]	TIME AT TEMP (min)	WETTED AREA (in²) A	FLOW RADIUS (in)
21	A	1800	15	0.010	- 0.070
22	А	1		0.019	-0048
23	В			0.010	-0.070
24	В			0 011	-0.067
25	c			0	-0.125
26	с	l		0	-0.125
27	D			0.013	-0.060
28	D	Ļ		0.012	-0.065
31	A	1900	15	0.107	0.060
32	A			0.146	0.091
33	Б			0.144	0.089
34	В			0.134	0.081
35	c				- A
36	С			0.162	0.102
37	5			0.139	0.086
38	<u>9</u>	¥	v	0.142	0.088
38 T 5 5 A A B C D A A] - VAFGA (н.бн - VAPOR (ресл - VAPOR (ресл - VAPOR (ресл - VAFGH (ресл - 4450 (ресл) - 4450 (ресл)	PASLO AND DEASLO AND HEASED AND HEASED, ALMA DE ALLOY A	NLAALINE CLE HIIGG-FIF PICA LIGGID HOHEL NLVE CLEANE FIFP FLOW	0.142 :ANED. LED. D AND HW03-	0.088

HAC STIG THEY F AUG CIT

.

•

1

WAC 2376 FREY 1 AUG 611

•

à

40						17. LOU	16, 1018	LOURI				; ;	466 EPORT _		Ā
	BASE METAL Stress at Faluae (pgi)	163,500	136,400	164,400	155,100	158,000	142,300		112,500	100,900	102,500	92,900	124,500	109,300	
AZE 130	Fsu (pei)	48,300	37,600	61,000	47,600	42,700	39,700	46,200	36,200	3 1, 900	32,700	27,500	34,800	32,100	32,500
	FAILING LOAD (10)	5215	4420	5245	4995	5120	4610		3690	3450	3300	3000	4035	3465	<u></u>
	LOCATICN FAILURE	ВJ							В Ч					>	
	BRAZE JOINT AREA (In)	0.106	0 117	0.086	0, 105	0.120	0.116	<u> </u>	0.102	0.108	101 0	0, 109	0.116	0.108	
	BASE METAL AREA (.n3)	0.0319	0.0324	6.63.0	0.6322	0.0324	0.0324		0.0328	0.0342	0.0322	0.0323	0.0324	2160.0	
	OVER- LAP LAP	0.144	0.156	0 115	0.140	0,160	0.155		0.136	0.144	0, 13.4	0 145	0 155	0.144	
	BASE METAL THICHNESS (10)	0.043					>		0.043					>	
	TEST TEMR (°F)	Rw. Tem D					>	Average	1000					>	Average

â

78		67	LOUIS	, 141960					PAGE R(P)	He1	/
	BASE . YETAL STRESS AT FAILURE (PSI)	130,700	129,800	150,230		170, 400	131, 700	131,500			
AZE 128	Fsu (psi)	66,900	52,800	45,600	55,100	54,200	45,200	58,800	52,700		
REMABR. NS	FAILINS LCAD (16)	5620	4645	4655		5315	4110	5760			
A FOR F SPECIME	LOCAT ION OF FAILURE	B.7		>		ВJ		>			
5TH DAT RCSION	BRAZE JOINT AREA ('n=)	0.064	c.086	0.10 2		0.098	0.091	0.097			
R STREN	BASE METAL AREA (in ²)	0.0311	0.3310	0 0310		0.0312	0.0312	6.0314			
- SHEA CPEV	CVER- LAP (in)	0.111	0.117	0.135		0.130	0.120	0.128		, t ; ;	
TABLE 5	BASE METAL THICHNESS	0.042	6	>		0.042		>		Braze Jo.	
1-	CREVICE CORROSION TEST	SAL -			Averuge	STANDARD CONTROLLER		>	Average	NOTE: BJ-	

MAC 2316 (PEV 1 AUG 61)

.

MCDONNELL ST. LOUIS, MISSOURI

MAC 2316 1814 1 AUG 611

0.

۰.

a to the the test of the test substants and the states of the substant of the

NATE NEVISED REVISED		MCD 17.1			FA.L. 		P.	ACE EPORT	1 Аче
DATA		MODE OF FAILURE	SKIN AND CORE	CRUSHED		SKIN AND CORE) ČRUSHEL		
ON TEST		F _{FC} (psi)	167,600	142,300		155,500	131, 300		
IS SEAGWO		FA:LING LOAD (10)	8130	6800		7450	6300		
D BSWDS		SPECIMEN WIDTH	2.020	056 1		1.935	1.958		
ອັງ ທີ່ 1	•ECIMENS	THICHNESS (in)	0.012	0.012	SNJWENS	0.012	0.012		
TABL	ZE 128 SI	LOADING RATE (b/min)	1500	1500	ZE 130 SF	1500	1500		
	FEMABRA	TEST TEMP (*)	Rm. Temp.	1000	'REMABRA	Rm. Temp	0001		

and a second second

.

NAC 2316 IREV 1 446 411

1

-

æ.,

MCDONNELL

واهن ورادهه و د

. مرد د دموم المادمان .

PAGE 20

FINAL REPORT

FIGURE 2

INVEST OF WETTABILITY SPECIFIENS WITH FREMARRAZE 12" PRAZED AT 20007

SPECTMENS NO. 1 (LEPT) AND 2 WERE VAPOR DEGREASED AND ALKALINE CREANED PRIOR TO BRAZING.

SPECTMENS NO. 3 (LEPT) AND & WERE VAPOR DEGREASED AND HER - HE FICKLED PRIOR TO BRAZING.

DIZCIMENS NO. 5 (LEPT) AND & WERE VARDE DEDREASED AND LUNC TO BRAZING.

CIECIMENS NO. 7 (LEFT) AND & WERE VAFOR DEOFFASED, ALEALIST CLEARED AND HONG-HD FICKLED PRIOR TO BRAZING.

الم يتدمهم معمية ويرابع الم

(1 1411)	ilia-255201		MCD	ONNEL	.L	PAGE	<u>17</u> Amisy
	÷ .		F 16	URE 3		MENAL HEF M	-•
1420	NGT - a Training	SILITY ST	otkens with	PREMARKATE) - prais (<u>x</u> t	2 7	

SPECTMENS NO. 11 (LEPT) ADI 12 WER- VAPOR DEGREASED AND ALKALINE CLEANED FRICE TO BRAITING.

.

SPECIMERS 1; (LEFT) AND 14 WERE VAPOR DECREASED AND MERCANY FIGHTS TO BRACING.

TE THETE , AND DE WERE VALLE CORRACED AND LIGHT MERCE .

CONTRACT NO. 17 AND 18 WERE VAROR DEGREASED, ALKALING CLEANED AND HIMPLAY. CONTROL OFFICE OF BRAZING

الانا محمد مواملة معراور المتربعان

C#*8		MCDONNELL		
	D4E-255203	SPU COURS HASSIC PE	PAGE	18 <u>A¹-09</u>
	····	••••••••••••••••••••••••••••••••••••••	PINAL REPORT	
		FIGURE 1		i
137035	to the stattas hiety	SITUIMENS WITH TREMARRATI INC BRAZED /	AT 1FCOP	

SIECIMENS NO. 21 (LEPT) AND 22 WERE VAPOR DEGREASED AND ALKALINE CLEANED FRICE TO BRAZING

CONCIMENC 24 (LAPT) AND 24 WERE VALOR DEGREASED AND HNO-HE FICKLYD FRICE TO BRAZING.

- CINENAL - CLEART AND 26 WITH VALCH DOTREASED AND LIGHTD HONED STALLS - CLASS

- -

and and the second statements and the second statement of the second statement of the second statement of the s

· · · • •

- I TYTEL IT (LIPT) AND 24 WERE VAREN OFFICEASED, AIRALINE CLEANED AND FROM THE TYTEL OFFICE TO BRAZING.

MCDONNELL

,

.

• . •

242-254204

÷.,

2000 IMENES - COLEMPT AND SCHEEP VAR RECOVERALISM ARE ADRADED COLOMN , COLOM

(1) 27 MML (1) A POLYAKING CONTACT MARK MUSIC

. ...

• ••• •

• •:

• • • . .

0418		\$7. L9019, W1560URI	P1()
REVISED			+/ P3+1
#EVISED	<u>0'.1-277720</u>		
			FINAL REPOR
		FIGURE 7	
	INCONE	L 716 WETTABILITY SPECIMENS WI	TH INCURO 20
			·
			•
	TIPICAL LIQUI	LU NUNEU SPECIAEN AT 1000F, 191	
		3 e	
	PYDIALL OF B	MATHER CONCEASE (OPUND THAN	TOUTD HOMES.)
	TIPICAL OF RI	AT 18607 AND 19107	ITANT HOUSE
1			
	TIPICAL OF R	AT 2000F	ETTANID HOMFE)
1			

**************************************		Pige 2 Report Aug
FIGURE 14 -	eloealse compression test setup	FINAL, PEPORT

TITLE.	nel 718 Honey	or Brazing Al	lova for the F. Panola	Aprication of
LABORA	CAN CA DEM. NEW	QD 4111		MODEL Sisce
PHODUC	TION PARTS FOR TEL	T NOT REQUIRED	 	None
OBJEC	TIVE JUNE PURION	WORK REQUE	NOUMER.	
		RYICE HISTORY AND BACK	NOUND INFORMATION	
1,0	OPJECTIVE		K <u>ev</u>	575-07E
	To obtain in brazing allo honeycomb po shoet and bu the results brazed join adgowise co Shear and co room temper	nformation nego oy for fabrica angle value in ar materials. of vettabilit ts, resistance morgssion test onpression test ature and 1000	ded for the so tin; temperatu conel 71% hone Selection wil / tests, shear to crevice co s of sample pu ts will be con F.	election of a promotion of a pycomb core; I be based or strength of prosion and angl specimens a stand at
2.0	JUSTIFICATI	<u>o::</u>		
	In the designed sections, managements of the more application information comporcially alloys with	in of temperat aximum structu utilizin; bra base hlig;, in efficient str , and, at the is avaitable y available te incomel 213.	ure resistant ral efficiency zed humeyos.a cuevi 71° is d uctural materi prosent time v on the commata memoture resi	thin airfoil construction, construction, and for this ery little delity of start brazing
3.0	THE I LAN			
	Evaluation as follows:	touto e: orani	ng ailoys aill	be conducted
	3.1 Jatt Inco Liti rubju top 1 danar claan arthu	atility losts not 718 sheet as of considet actual to south brazing tomost hds to a creat high to a creat high to a creat high to a creat high to a creat	- inst specing containing mas e brazing allo olles trazing atores. Since extent on tot o, four shifts cludes as a by	ens of sured gaan- ws will be treatments at sustability at carface went clearing art of this
REFE	IEMCES OR EN	CLOSURES	C.N.F	7-31-63
୍ଟ୍ୟ	PFAC AD/ F .	MOTAS K	Bronge Allo	43 - 320

PAGE 27 REPORT A469

PAGE	28
REPORT	N169

- 3. <u>Sharr Tunks</u> Lap shear specimens will be prepared using only those brazing alloys which have adequate wettability as determined in 3.1, above. The brazing temperature and cleaning treatment will also be limited to the most satisfactory temperature and treatment as determined in 3.1.
- 5.3 <u>Crevice Corrosion Tests</u> Lap shear test specimens, prepared as in 3.2, will also be used in this investigation to determine the effect o balt spray and personal water on resistance to crevice correction of brazed joints.
- 3.1 <u>Edge:/isc. Compression Tests</u> The information obtained in 3.1, 3.2 and 3.3 will be used as a basis for selecting the most suitable brazing alley or alloys, brazing temperatures and cleaning treatment 10: fabricating adgewise compression test specimens for final evaluation.

1.0 TIST HATERIALS

- 4 1 Incon 1 718 shoet, 0.012 inch thick.
- 1.2 Incompl 718 shuet, 0.040 inch thick.
- 4.3 Incons1 718 honeycomb core, 0.75 to 1.00 ± .003 thick x 3.125" x 2.12," 3/16 square cell 0.002 inch ribbon, perforated.

halt Brazing alloys.

- 2.1.1 Prenabraze 128, 0.001; in. foll.
- h had Promabraze 130, 0.0015 in. foil.
- 4.1.3 Micoro (Au, Cu, Mi), 0.0015 in. foil.
- halfel inc 20 (Au, Cu, In), 0.0015 in. foil.

5.0 PREPARATION OF TEST LANDINGS

- 5.1 Mottability succimons
 - 5.1.] Shear 0.040 in. Inconel 71% sheet in the annealed condition into pieces 1.0 x 1.125 in. Prepare 16 pieces for evolution of each brazing alloy.
 - 5.1.2 Clean L specimens as follows:
 - Gelefel Vapor degrease por UNC Fele 12010.
 - 5-1-2-2 Alkaline class per USC P.J. 12030 Type 11 Cer. 5-15 minutes and ringe.

PLGE	-	29
REPORT		A469

5.1.3 Clean h steelmans of follows:

5.1.3.1	Vapor	dogranse	per	. nU	P .5 .	12010.
---------	-------	----------	-----	------	--------	--------

j.l.j.2 Immerse in mitric-hydroflucric acid pickle solution at 70-140 F. for 15-90 minutes. .ickle only long encude to remove exiden. .inse in tap water.

- Selei, Clean is re-release ar followes.
 - Selelel Vapor derrease par 1560 rate 1201 .
 - Volekoz Liquid hore for INC Pare 12015.
- GeleV Hean & spectments for 1 1940. 12050 for Inconel X material.
- 5.1.6 After cleaning hardle all parts with clean white gloves multimazing is conclude.
- 5.1.7 Flace regime allo in the center of each specimen using the procedure described in T.M. \$13-296.

5.2 Shoar specimens

2.3

- 5.2.1 Shear 6 pieces 4.55 x a in. of 0.040 in. annealed incomel 715 start material for evaluation of each selected brazing alloy.
- 5.2.2 Clean all pieces using the optimum method as determined from partititing tests. After cluthing, handle site field white gloves usial brazing in complete.
- 1.2.2 Tack weld vienes to make 3 panels 8 x y in. with lapsed juints. so 3t overlap, and 7.005 in. shim show in the juint to maints in plearance for brazing alloy.
- 1.2.4. Flace brazing alloy in contion in joints of 3 gamels for each brazing alloy loing subjected and braze.

lage Compression Lost Spectrons

- (a) Share , pieces 3.12, 2.125 in. or 0.012 in. anneales increal 713 shoet saturial for each selected brazing stick.
- .1. Matting a place of an even of benegrowing one .75 103 in. trick op 2.12, x and the for each brazing slidy. Rithon of worthe shall be same to be 2.125 in. Homosom
- (a) from All biodes wint the optimum method un usternines to methodist, bests, option clamming handle with sizes of showes appli brasist to me take.

PAGE	30
ALPORT	 A469

5.3.4 Assemble compression specimen components with brazing alloy material in a suitable brazing fixture in preparation for brazing.

6.0 BRAZING TREATHERT

- 6.1 iraze all test specimens in vacuum. (Kinimum pressure available).
- 6.2 brazing temperatures for wettability tests shall be as shown below. Time at temperature shall be 15 minutes. Gool to room temperature.

Promabraze 128, (1900 and 1950 F.)

rremabraze 130, (1800 and 1050 F.)

Micoro (Au, Cu, Mi)(1175 and 1925 F.)

liduro 20 (Au, Cu, In) (1860 and 1910 F.)

7.0 HEAT TREATHEAT

After brazing, retain all specimens in the brazing envelope and heat to $1325^{\circ}F_{\bullet}$, hold for 8 hours, furnace cool at 100 F./hr. to 1150 F., hold at 1150 F. for 8 hours and air cool. Circulate pure dry argon through the envelope during heat treatment.

8.0 SPECIEZI PREPARATION

- 8.1 <u>Shear Specimens</u> Out shear panels in strips and machine test specimens to the geometry shown in rigures 1 and 2 for room temperatture and elevated temperature specimens respectively. Prepare a total of 12 room temperature specimens and 6 elevated temperature specimens for each alloy.
- 8.2 <u>Edge Compression Specimens</u> Machine edges of all specimens in accordance with Paragraph 7.2.1 of AIC Report No. AdC-17. Finished dimensions shall be 2.00 x 3.00 in. x brazed thickness.

9.0 TESTS

- 9.1 <u>Wettability Tests</u> Examine all specimene using the method described in T.M. 513-226.
- 9.2 Shear Tosts Test six specimens in tunsion at room temperature (0.005 in./min.) and six at 1000 F. second load at failure, joint shear stress at failure and location of failure.
- 9.3 <u>Crevice Corresion Tests</u> Expose three lab shear specimena to a 20% sedium chloride solution per Fed. Test Sethod Std. No. 151a, Kethod (11.1 for 10) hours and load in tension to failure at root.

(Continued) -

temperature. In addition, expose three lap shear specimens to 100 hours in a standard controlled humidity environment and test at room temperature. Hecord load at failure, joint shear stress at failure and location of failure.

9.4 <u>same Compression Tests</u> - Conduct tests at room temperature and at 1000 F. in accordance with the procedure described in Paragraph 7.2.2 of ATC Report No. AKTC-17. Record load at failure, facing stress conditional and mode of failure.

and the second second

- 1C .O DATA RECUIRED
 - 10.1 The followin; information is required for all tests:
 - 10.1-1 Detailed cleaning procedures.
 - 10.1.2 Detailed brazing procedures. (temporature, time at temporature, etc.)
 - 10.1.3 Detailed heat treating procedures.

10.7 Vottability Tests

- 10.2.1 Wetting index values.
- 30.2.2 chotomacrographs and chotomicrographs of all specimens.

10.3 Shear Tests

- 10.3.1 Joint shear stress at failure.
- 20.3.2 Base metal stress at l'allure.
- 10.3.3 Location of failure.
- 10.3.1. Test temperature
- 10.2.5 Loading rate.
- Leak Grovice Corrogion Tests
 - 10.4.) Complete description of environmental conditions.
 - John 2 Joint shoar stross at failure.
 - 10.1.2 Base metel stress at failure.
 - Webel Location of failure.
 - 17.4.5 Loading rate.
 - 10.4.6 Photomicrographs of any indications or evidence of crewice corrosion.

PAGE	32
AEPORT_	A469

10.5	Edge	Comprossion	Tests

- 10.5.1 Load at failure.
- 10.5.2 Facing stress at failure.
- 10.5.3 Mode of failure.
- 10.5.L Test temporature.
- 10.5.5 Loading rate.
- 10.5.6 Diagrammatic and/or photographic description of test set-up.
- 10.5.7 Photomicrographs of typical honeycomb to skin brazed joints and any unusual conditions observed.
- 10.5.8 Photographs of failed specimens.

