
AD 

UNCLASSIFIED 

431573 

DEFENSE DOCUMENTATION CENTER 
FOR 

SCIENTIFIC AND TECHNICAL INFORMATION 

CAMERON STATION. ALEXANDRIA. VIRGINIA 

UNCLASSIFIED 



NOTICE: When government or other drawings, speci- 
fications or other data are used for any puzpose 
other than In connection with a definitely related 
government procurement operation, the U. S. 
Government thereby Incurs no responsibility, nor any 
obligation whatsoever; and the fact that the Govern- 
ment may have formulated, furnished, or In any way 
supplied the said drawings, specifications, or other 
data Is not to be regarded by Implication or other- 
vise as In any manner licensing the holder or any 
other person or corporation, or conveying any rights 
or permission to manufacture, use or sell any 
patented Invention that may In any way be related 
thereto. 



CO 
|>ö ESD-TDR-63-474-1 

1/ 

00 

I 

( 

r. >■ 

c , fc c -C^ 
 — ^^—i^ 

GO 

Cf~'T> 

MITRE-SS-1 

FIRST CONGRESS ON THE INFORMATION SYSTEM SCIENCES 

SESSION 1 

CONCEPTS OF INFORMATION 

TECHNICAL DOCUMENTARY REPORT NO.    ESD-TDR-63-474-1 

FEBRUARY 1964 

431573 
Prepared for 

DIRECTORATE OF SYSTEM DESIGN 

DEPUTY FOR TECHNOLOGY 

ELECTRONIC SYSTEMS DIVISION 

AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 

L. G.  Hanscom Field,  Bedford, Massachusetts 

Project 704 

Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract AF33(600)-39852 

" 

' MAR 11)964 

J 
.   A 



Copies   available  at  Office  of Technical Services. 
Department of Commerce. 

Qualified requesters may obtain copies from DDC. 
Orders will be expedited if placed through the librarian 
or other person designated to request documents 
from DDC. 

When US Government drawings, specifications, or 
other data are used for any purpose other than a 
definitely related government procurement operation, 
the government thereby incurs no responsibility 
nor any obligation whatsoever; and ehe fact that the 
government may have formulated, furnished, or in 
any way supplied the said drawings, specifications, 
or other data is not to be regarded by implication 
or otherwise, as in any manner licensing the holder 
or any other person or corporation, or conveying 
any rights or permission to manufacture, use, or sell 
any patented invention that may in any way be related 
thereto. 

Do not return this copy. Retain or destroy. 



t 

t 

ESD-TDR-63-474-1 MITRE-SS-1 

FIRST CONGRESS ON THE INFORMATION SYSTEM SCIENCES 

SESSION 1 

CONCEPTS OF INFORMATION 

TECHNICAL DOCUMENTARY REPORT NO.   ESD-TDR-63-474-1 

FEBRUARY 1964 

Prepared for 

DIRECTORATE OF SYSTEM DESIGN 

DEPUTY FOR TECHNOLOGY 

ELECTRONIC SYSTEMS DIVISION 

AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 

L. G. Hanscom Field, Bedford,  Massachusetts 

Project 704 
Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract AF33(600)-39852 



CONCEPTS OF INFORMATION 

Session Chairman:   Rudolph F. Drenick 

1. OUTLINES OF A FUTURE SYSTEMS THEORY 
Rudolph F. Drenick 

2. A HEURISTIC DISCUSSION OF PROBABILISTIC DECODING 
Robert M.  Fano 

3. RECENT CONTROL SYSTEMS THEORY 
John G. Truxal 

FIRST CONGRESS ON THE INFORMATION SYSTEM SCIENCES 

Conducted at the Homestead, Hot Springs, Virginia 

November 19-20,  1962 

Chairman Executive Manager for the MITRE 
Edward Bennett Corporation 

James Degan 

Co-Chairman Executive Manager for the Air Force 
Joseph Spiegel Electronic Systems Division 

Anthony Debons, Col. , USAF 

These preliminary manuscripts were distributed specifically 
for consideration by participants in the First Congress on 
the Information System Sciences. The Air Force Electronic 
Systems Division and The MITRE Corporation, as sponsors 
of the First Congress on the Information Systems Sciences, 
do not necessarily endorse the technical information or 
opinions expressed by the authors in these various working 
papers. 



OUTLINES OF A FUTURE SYSTEMS THEORY 

R. F. Drenick 

ABSTRACT 

This paper discusses the possibilities of evolving a systems 
theory which would take into account the important theories now 
existing.   These include:   Wiener's prediction and filtering theory; 
Shannon's information theory; control theory; automata theory; and 
others.   A limited class of systems is specified to keep the dis- 
cussion general and brief.    "Noiseless," autonomous, noisy, and 
optimal systems are discussed, and the status of general theories 
for filtering, control, and communications systems, as well as 
additional systems problems, are described. 
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A HEURISTIC DISCUSSION OF PROBABILISTIC DECODING 

R. M.  Fano 

ABSTRACT 

This paper presents a heuristic discussion of the probabilistic 
decoding of digital messages after transmission through a randomly 
disturbed channel.   The more general problem of transmitting digital 
information through randomly disturbed channels is outlined,  and 
some of the key concepts and results pertaining to probabilistic 
decoding are reviewed. 

A sequential decoding procedure recently developed by the 
author is described.    The important characteristics of the procedure, 
i. e. , complexity, the resulting probability of error per digit, and 
the probability of decoding failure are defined and described. 



RECENT CONTROL SYSTEMS THEORY 

J. G. Truxal 

ABSTRACT 

In this paper, the status of current control theory and research 
is discussed, with particular emphasis on the nature of the problems 
under consideration, the extent to which theory relates to engineering 
practice, and certain directions particularly promising for future 
developments.   Those aspects of the theory which either have yielded 
interesting engineering results, or promise such a yield in the near 
future,  are detailed. 

The aspects of system design involved in "Stage 1, " the transi- 
tion from the customary, vague statement of broad system objectives 
to a configuration and a tractable model for the various elements of 
the system, are discussed initially.   This is followed by a discussion 
of "Stage 2, " which is concerned with the mathematical design of the 
"free" elements - the components in which at least certain of the 
parameters can be adjusted within specific bounds. 

The two different approaches to optimization of system per- 
formance,  restricted optimization and general optimization,  are 
described.   Recent work on the general problem of system per- 
formance with optimization based only on the specified process 
and signals is also described. 

vii 



OUTLINES OF A  FUTURE SYSTEMS THEORY 

Rudolph F. Drenick* 

SECTION I 

INTRODUCTION 

In the past few years, as has been variously observed, l-7, 1 J   a new trend 

has developed in some of the theoretical work on systems.   It is a trend towards 

the unification of systems concepts, a search for some of the basic features 

which all physical, or at least all man-made systems, have in common, and a 

study also of some of their most fundamental distinctions. 

It is a very interesting field, and apparently also a fairly difficult one.   If 

the term " inter-disciplinary" were not so widely abused, one would be tempted 

to use it here.    For it is a matter of course that any future theory of systems 

must involve in some way the important theories which now exist, such as the 

prediction and filtering theory of Wiener, Shannon1 s information theory, control 

theory, automata theory,  and others.   What is more, the mathematical methods 

needed are by all indications considerably more advanced than any of those that 

been traditionally used in the field. 

This article is intended to be a kind of status report.   It is a very partial 

report, in both senses of the word "partial. "   For one,  it is incomplete, and 

for another, it is biased.    At this stage of developments, it seems difficult to 

avoid this.    The trends have barely begun to emerge, or else have yet to take 

place.   It is often a matter of purely personal opinion when one singles out 
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those trends one considers promising, or isolates areas which seem to be 

ready to burst into activity.   Nevertheless, this is what is presented in this 

article.   If all that can be said for it is that it is stimulating, that will have 

made it well worth writing. 



SECTION II 

GENERALITIES AND TERMINOLOGY 

A system, in the sense in which the term is generally used in the infor- 

mation sciences and technology, is a device which can accept certain classes 

of physical quantities as inputs, and can generate certain other quantities as 

outputs.   Systems can be, and have been classified in many ways:   by their own 

physical nature and by those of their inputs and outputs; by whether they accept 

one, or more than one input, simultaneously, and whether they generate one 

or more than one output at the same time; by whether or not they change their 

charactertistics with time.   One distinguishes linear and nonlinear systems, 

lumped and distributed parameter systems, active and passive systems, and 

so on. Terms like linear filters, transducers, finite and infinite machines, 

and many others have been used to single out special, and especially important, 

classes of systems. 

In a general systems theory, one would evidently want to make as few 

distinctions as possible, at least at first, and treat as large a class of devices 

as possible.   On the other hand, one must not go overboard on this either.   If 

a class becomes all-embracing, chances are that nothing significant can be 

said about it.   The striking of the proper balance is in fact a continuously 

exasperating dilemma in this field.   One is always plagued with questions of 

whether or not the statements one can make about a large class of systems are 

still really "significant," or already so sweeping as to be virtually vacuous. 

For the purpose of this article, we will restrict ourselves as follows: 

we shall deal only with 

(i)   stationary systems (also called time-invariant) whose characteristics 

do not change with time; and with 



(ii)   systems with either a single input and a single output, or two 

inputs and one output (and the latter only when we mention it). 

Both restrictions are largely matters of convenience.   They make our case 

easier to present, yet do not sacrifice very much in conceptual content. 

It will be important in what follows to distinguish a few system types.    For 

one, we will speak of continuous and of discrete systems.    The former accept, 

and emit, a continuum of possible input values; for instance, all real numbers 

from -1 to +1, or from - ^ to + '
JO

.   The latter accept only a discrete set, often 

called an "alphabet" in this case; for instance, the integers 0 and 1, or all 

integers from 0 to 00.    Correspondingly, we will also speak of continuous 

signals and discrete signals. 

A second distinction we will have to make is between singular and non- 

singular systems.   A system is nonsingular, in Shannon" s terminology, if 

there is a one-to-one relationship between every possible input signal to the 

system, and the output signal that results from that input.   A nonsingular 

system, in other words, allows an input signal to be perfectly identified from 

the output signal,  and vice versa.   Singular devices, on the other hand, violate 

this property.   Such violations can happen in many ways, but one which will 

matter, especially in what follows, is that due to noise in the system. 

A nonsingular system evidently always has an (equally nonsingular) inverse; 

that is,  a device which reconstructs the original system input from the output. 

A singular system on the other hand has no inverse. 

A third distinction which will be made among systems is between causal 

and non-causal ones.   A causal system is one whose output at any one time 

can depend only on the input at that time and at previous times.   Causality is 

generally considered a basic property of all physical devices.   It expresses the 



fact that no such device can respond to a stimulus before it is received.   A 

non-causal device, by contrast, can respond to, and hence can anticipate the 

future. 

A notion related to causality, and the last to be mentioned here concerning 

systems, is the delay with which a system operates. It applies only to causal 

systems. If the output of such a system at any time depends only on the input, 

up to, say, one second prior to that time, the system is said to have the delay 

of one second. A system with a delay cannot have a causal inverse, even if it 

is nonsingular, since a precise reproduction (in time) of the original signal 

would require that the Inverse also cancel the delay. This, however, it could 

only do by anticipation. The presence of delay in a system, therefore, raises 

the threat of non-causality. 

Finally, we remark that we will treat most signals as random signals in 

our discussion below.   This is in keeping, if nothing else, with a rather 

dominant tradition in work with systems. 



SECTION m 

THE "NOISELESS" COMMUNICATION THEORIES 

It has been one of the curious side effects of the work on systems, rudi- 

mentary as it is, that some of the existing theories are now being viewed from 

a new perspective and that certain of their features appear to be gaining 

importance while others seem to be losing it.   Among these theories are Wiener' s 

prediction and filtering theory     J and Shannon's information theory.'-    *   These 

are the ones which are referred to in the title of this section as the "commu- 

nication theories. " 

Both theories fall rather naturally into two parts; one dealing with noiseless 

systems only, and the other with noisy ones.   Shannon' s theory,  in fact, makes 

this distinction explicitly.     Wiener does not, but his prediction theory can be 

viewed as dealing with noiseless systems.   Both theories contain theorems of 

a kind which might be called "signal convertibility theorems."   They are 

statements of conditions under which certain classes of signals are convertible 

into each other by means of appropriate systems.   Neither theory, however, 

has given these particular theorems the prominence which, according to some 

present thinking, they deserve.   It may, therefore, be useful to describe them 

here side by side, and to point out several similarities and distinctions. 

While both theorems deal with random signals. Shannon' s deals with 

discrete signals, while Witener' s deals with continuous ones.   The probability 

measures must be stationary in both theories, which is a mild requirement. 

Otherwise,  Shannon' s theory places only some very mild restrictions on them, 

while in Wiener' s theory they must be Gaussian, which is quite a drastic 

restriction (in principle anyway; in practice it is often quite acceptable). 



Shannon' s Theorem then states that any two discrete random signals can 

be converted into each other by a suitable system, and in fact, by a nonsingular 

one, provided only one condition is fulfilled.    They must agree in a number 

which Shannon succeeded in attaching to every one of these random signals, 

namely their entropy.   Wiener' s theorem on the other hand deals with Gaussian 

random signals and states that any two of them can be converted into each other 

by an "essentially" nonsingular system of a very special kind, namely a linear 

filter.    Moreover, this filter will be causal provided only another condition is 

fulfilled.   This second condition is of a rather mathematical character, and it is 

often called the Paley-Wiener criterion (although it originated with Szego).    Both 

theorems. Shannon' s as well as Wiener' s,  are constructive in that they not only 

assert the possibility of signal conversion, but also specify the devices which 

will accomplish it. 

It may be noticed that Wiener' s theorem assures us that the signal con- 

verters to which it leads are causal if the Paley-Wiener condition is fulfilled. 

In fact,  it further assures us that if the condition is violated,  either input 

signal or output signal will contain a curious ingredient, namely, an embedded 

signal which is perfectly predictable and hence not an altogether bona fide 

random signal.    Wiener' s theorem, we should add, ignores entropy altogether. 

Shannon' s theorem, on the other hand, ignores causality.   In fact, the 

signal converters to which it leads require delays in general, often even 

infinite delays,  so that their inverses are non-causal,  as we have mentioned 

above.    In other words. Shannon' s requirement that the entropies be the same 

before and after conversion does not assure causality of the signal converter, 

in contrast to the Paley-Wiener criterion which does.    The two conditions 

therefore have different purposes altogether. 



These theorems carry many implications, one of which will be useful here. 

It is in the nature of a conceptual short-cut which is often used in mathematics. 

The theorems assert that the signals from certain classes are freely convertible 

into each other by suitable nonsingular systems.   Such classes are then often 

called "equivalence classes," and some particular outstanding member of the 

class is chosen to represent the rest.   Wiener' s theorem can be looked on as 

lumping into one equivalence class all Gaussian signals without a perfectly 

predictable component.   The equivalence relation in this case is the conversion 

by causal linear filters.   The outstanding representative (despite some mathe- 

matically shady properties) is usually taken to be a random signal all of whose 

values are statistically independent.   This signal is called white Gaussian 

noise.   Shannon' s theorem lumps into an equivalence class all signals with 

the same entropy and uses as equivalence relation the conversion by some 

appropriate system, causal or not.   The outstanding representative is again 

a signal with all independent values (i. e., again a white noise through a 

discrete, not a Gaussian, one).   Moreover, it is the signal whose values 

(alphabet letters) are equiprobable. 

One of the basic results then of the two noiseless communication theories 

we have discussed here, and perhaps even the basic result of each, is the 

proof of the existence of such equivalence classes. 



SECTION IV 

STATUS OF A GENERAL THEORY OF NOISELESS SYSTEMS 

There are curious similarities in Wiener' s and Shannon's theories  which 

virtually beg for an attempt at unification and extension.   Such attempts have 

been in fact made recently, but they have been only partially successful at 
this writing. 

It stands to reason that,  in a general theory of physical systems, the concept 

of causality should play a rather fundamental role.   Causality, after all, is a 

fundamental property of physical systems.   If this is so, it follows further that 

it is Wiener' s theorem whose generalization should be attempted, and not 

Shannon's, for the latter ignores causality.   Such a generalization might ideally 

say roughly this:   "All random signals, Gaussian or not, fall into two classes; 

those that do, and those that do not. contain a perfectly predictable ingredient. 

Those that do not, are freely convertible into each other by causal nonsingular 

systems (linear or not), and thus can be freely generated from the reconverted 
to white noise. " 

If this theorem were true,  it would constitute a sweeping generalization of 

Wiener' s,  and it would embrace Shannon' s with room to spare.   Unfortunately, 

it is certainly untrue.   It has been shown by M. Rosenblatt14] that there are 

random signals which cannot be generated from white noise by any nonsingular 

causal systems.    Furthermore, there are also signals which cannot be 

reconverted to white noise by nonsingular causal devices. 

In other words, there is no common market for random signals.    The free 

convertibility a la Wiener is blocked by a class of nonconformist random signals. 

The full extent of the obstruction is not known, but one thing seems fairly certain. 

11 



It is the discrete signals, the ones figuring in Shannon' s theorem and some of 

their relatives, which are the nonconformists. 

Thus the ideal theorem we have proposed above must be modified.    Three 

modifications suggest themselves.    For one, the nonconformist signals can be 

excluded from it and treated in a separate theorem.    For another, the requirement 

of system causality can be abandoned.    Finally, the requirement of nonsingularity 

can be waived. 

The question of course is whether or not these modifications do any good 

at all.    The answer to this question is not known, though it is generally expected 

that it will be shown to be affirmative.   In other words, it is believed that all 

three modifications can be carried out successfully, and it will be a matter of 

taste which is the most appealing.    (The last one, however, is likely to win out, 

although it will often turn a noiseless system into a noisy one.)   Partial results 

have been obtained by M. Rosenblatt, Hansen,        and the writer,       those 

of Hansen being the most recent and most general. 

There are hopes, at any rate, that sooner or later a very general theorem 

will become available which will make broad statements concerning the con- 

vertibility of signals by appropriate systems.   Indications are, furthermore, 

that the statements will be constructive.    They will assert not only the possibility 

of conversion, but will specify the nature of the signal converter.   The latter 

will come in many forms, some already named (such as linear filters, finite- 

state machines, infinite-state machines, etc.) and others generally lumped 

under the nearly all-inclusive adjective "nonlinear. " 

The theorem will no doubt have a number of implications, among them one 

of possibly considerably consequence.   Since it will make statements concerning 

infinite state machines, universal Turing machines among them, there seems 

12 



to be good reason for expecting some entanglement with the issues of com- 

putability and decidability.   What forms this will take is unknown, but the 

mere prospect of it is most stimulating. 

13 



SECTION V 

THE STRUCTURE OF NOISELESS SYSTEMS 

In the preceding section, we have said of several theorems, some existing 

and some hoped for, that they are "constructive" because they specify the 

nature of certain signal converting systems.   One may ask just how specific 

that specification really is, and how much of an indication these theorems 

give on how to construct such systems. 

The answer unfortunately is that they do not give much of an indication. 

They specify the system usually in terms of a gigantic formula by which the 

output at any one time can be calculated if the input is known.   The formula 

however does not in general give a clue on how a special device is to be con- 

structed which will carry out the necessary calculations. 

This is not considered a satisfactory situation, and some effort is under 

way towards improving it.   The idea usually is to approximate, or even 

replace, a given complex formula by combinations of simpler ones.    One feels 

(and often can also demonstrate) that the simpler formulae are also more 

readily reduced to practice. 

[4] 
One line of attack is based on a theorem by Cameron and Martin      and has 

[17] 
been pursued with variations primarily by several workers, including Wiener. 

This theorem,  suitably interpreted, shows that a given system can under 

fairly general circumstances be built up from combinations of linear filters 

and memoryless nonlinear devices. 

A second line of attack uses as its point of departure a Taylor series type 

of expansion for functionals, due originally to Volterra.   It has since been vari- 

ously extended, most recently by Balakrishnan      with the specific purpose of 

applying it to systems problems. 
15 



Both methods are what one might call brute-force methods.    They can be 

used under an extremely wide range of circumstances, but they proceed fairly 

indiscriminately and can be quite inefficient.    They are aimed mainly at 

continuous systems, but at least their most recent forms are applicable also 

to discrete systems.    Finite-state systems in particular have been the subject 

of research along more specialized lines, and some methods of synthesis have 

been reported.     ' 

In neither case, as far as the present writer knows, do general synthesis 

procedures exist which even resemble those of linear networks.   It is, of course, 

pointless to expect a great deal of resemblance here, but the absence of any is 

disturbing. 

16 



SECTION VI 

AUTONOMOUS SYSTEMS 

The systems we have considered so far accept a single input and convert 

it into a single output.   These systems may be linear or not, but if they are 

linear and causal, one fact is well known concerning them: if the input is 

suddenly "turned off" (i. e. , if an input which is constant and equal to zero is 

applied) the output from that moment on is characteristic of the system and 

allows highly revealing inferences to be drawn concerning its nature.   In 

fact, knowing how a causal linear system behaves "autonomously", as the 

zero-input condition is often called, permits one to predict also its non- 

autonomous performance. 

One can ask whether similar circumstances prevail with causal nonlinear 

systems. Can one predict the non-autonomous performance of such a system 

from its autonomous behavior? 

The answer is a qualified yes.    The qualification comes mainly from the 

fact that in nonlinear systems the condition of zero-input need not carry the 

same implications as in a linear one.   With many such systems, constant 

non-zero inputs produce behaviors quite unlike that due to a constant-zero 

input, and hence in general all of them need to be considered.   A given nonlinear 

system may, thus, have many associated autonomous systems, one for each 

possible constant input, and the behaviors of these various autonomous systems 

may differ considerably from each other. 

It is easy to convince oneself, however, that if all autonomous behaviors 

of a system are known, then so is non-automonous performance. 

17 



This, unfortunately, is only the beginning of the problem, for it is next 

necessary to classify the possible autonomous behaviors and relate them to 

certain features, desirable or undersirable, of the non-autonomous system. 

Regarding this kind of problem,  scarcely anything is known that is of much 

generality.   The classification of autonomous behaviors could no doubt profit 

from two well-established mathematical disciplines, namely topological 

dynamics'"13' and ergodic theory. ^ J   Considerable profit has in fact already 

been derived from the studies of the stable and unstable behavior of certain 

autonomous systems of the continuous type. 

When it comes to the general problem of relating automonous and non- 

autonomous behaviors, no work exists to the writer1 s knowledge. 

18 



SECTION VII 

NOISY SYSTEMS 

In the preceding sections, we have discussed noiseless systems, and in 

fact mostly nonsingular noiseless systems, which have the property that to 

each input signal there is exactly one corresponding output signal, and vice 

versa.   A noisy system is among those for which this is not so.    Given an input 

signal, one can not be sure of the resulting output signal but can (in general) 

make only certain statistical statements concerning it; given the output signal, 

a similar uncertainty exists concerning the original input signal.    (These two 

uncertainties usually do, but need not occur jointly.   In many cases, it is the 

latter uncertainty which matters most.) 

Noisy systems have been treated by Wiener as well as Shannon, though 

again only Shannon distinguished them explicitly from the noiseless ones. 

In Wiener' s theory of prediction and filtering, it is the part dealing with 

filtering that involves noisy systems.   One can ask whether or not a parallel 

can be established between Wiener1 s and Shannon1 s "noisy" theories, as was 

done for the noiseless theories in the preceding sections, and whether or not 

the parallel can be similarly exploited? 

The answer to this question is not known.   Indications, however, are that 

it is negative.   Parallels, tempting as they are here, apparently do not exist. 

Shannon' s and Wiener" s noisy theories seem to be dealing with two quite 

dissimilar problems; Shannon' s being probably much more difficult and 

unmanageable than Wiener' s.   Wiener' s, on the other hand, may well be based 

on a more natural generalization of the concept of a noiseless system, or at any 

rate of the concept we have developed in this article.   It is this generalization 

19 



which we shall now describe.   (We shall have more to say about filtering theory 

ala Wiener in Sec. IX, and noisy communication theory a la Shannon in Sec. XL ) 

In the preceding sections, we assigned fundamental importance in a noiseless 

communication theory to a theorem, as yet unproven, which stated in effect 

that, given any two random signals (preferably without perfectly predictable 

ingredients), a system could be found (preferably delay-free and nonsingular) 

which would accept one of the signals as input and generate the other as the 

output.   We pointed out that this theorem, once proven, would subsume as special 

cases a theorem from Wiener" s prediction theory, and another from Shannon1 s 

noiseless communication theory. 

Now, in Wiener' s filtering theory one can discover a theorem which has 

some points of resemblance with the one just mentioned, and which says the 

following:   Any noisy linear system is equivalent to a system with two inputs, 

a main and a secondary one, and one output.    The secondary input is a Gaussian 

noise input which can always be made statistically independent of the main one. 

If the main input and the output have no perfectly predictable ingredients,  the 

system can be made   causal and the noise white.    Put in other words, any 

noisy linear system can for all purposes be replaced with another one in which 

all uncertainties and perturbations affecting the original are simulated by one 

independent (and often also white) Gaussian noise input.   In many cases, the 

substitute system will even be causal. 

There is reason for hope that this theorem can be substantially generalized. 

If it can, the new version will eliminate the words "linear" and "Gaussian. " 

Like its noiseless counterpart, it will have trouble accommodating discrete 

signals, and the systems accordingly may not always come out causal.   But in 

the main, the general theorem will no doubt sound very much like the special one 

from Wiener1 s theory.    Moreover,  since the proofs of the theorems from 

20 



Wiener' s noiseless and noisy theories are very similar, one can hope the same 

for their generalizations.   In other words, once the noiseless case is solved, 

the noisy one is likely to crack quickly. 

Let us share in the optimism and assume in what follows that this theorem 

is proven. 

21 



SECTION VIII 

OPTIMAL SYSTEMS 
« 

A large portion of future systems theory will no doubt deal with optimal 

systems.    These are systems which are required to perform a certain task and 

to perform it better than (or at least as well as) any other system.    The idea 

of such an optimum presumes two things, namely, 

(i)   that a class of systems is defined which are eligible for use and 

which may be entered into the competition for the optimum, and 

(ii)   that a criterion exists by which each system can be rated relative 

to all others,  and a best one (or possibly be a best group) be selected 

from the rest. 

Regarding item (i), the following can be said.   In most problems concerning 

optimal systems, the competing systems are encumbered from the start by a 

severe handicap:   a certain subsystem is given at the outset which must be 

accepted "as is," and all competing systems are required to incorporated it. 

The system designer, in other words, cannot negotiate over the given subsystem 

but must design the remainder of the system around it. 

The given subsystem goes under various names (plant, object, channel, 

etc.) depending on which group of specialists deals with it, but it is always 

essentially the same thing.    Let us call it the "plant" here.   It may be a 

noiseless system, but in most problems it is a noisy one.   The noise is often 

actually called noise, but sometimes also environment, uncertainty, etc.   In 

any case, according to what we somewhat optimistically assumed in the 

preceding section, a noisy plant can then be viewed as a system with one output 

and two inputs, a main input and a noise input.   What is more, it will often 

be possible to represent the latter by white noise, statistically independent 
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of the main input.   This is illustrated in Fig. 1 in which y is the output, z the 

noise input,  and x the main input. 

Plant y . 

Fig.  1   A Noisy Subsystem 

A system designer may thus assume that any plant with which he must 

contend in his design, is given in this form, along with certain specifications 

concerning the range of allowable inputs x, and concerning the uncertainty 

induced in y by the presence of z. 

His problem will then usually consist of supplementing the plant with 

auxiliary apparatus which will ensure that the output of the complete system has 

certain desirable properties.   The nature of the problem, however, and the 

method by which he will attack it, will depend very essentially on some other 

data of the problem,  namely the point (or points) at which he may install the 

auxiliary apparatus and the signals which he may make available there. 

Typically, three alternatives are open to him (which do not, however, 

exhaust all possible alternatives by any means).    They are: 

(a) insertion of a "filter" at the plant output with the idea of producing 

a more palatable system output u (see Fig. 2(a)); 

(b) insertion of a "controller" at the plant input with the idea of so 

conditioning x that the system output (in this case y) has the desired 

properties (in this arrangement, as shown in Fig. 2(b), the controller 

will often be supplied also with the system output y, making the system 

into a feedback system); 
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(c)   insertion of a controller and a filter, or as they are more often called 

in this combination, of a coder and decoder (a feedback is sometimes 

provided for also in this arrangement, as shown in Fig.  2(c)). 

Arrangement (a) leads to the so-called filtering problem. Arrangement 

(b) is the typical control system, especially when the feedback loop is present. 

Arrangement (c), minus the feedback path, is the traditional communication 

system. These three types are by now the garden varieties of systems, and 

they will be the only ones to be discussed in the section below, although they 

evidently are not the only ones that can be envisaged. 

(a) 

(b) 

(c) 

z 
X 

Plant 
y 

Filter 
u 

z 
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X 

Plant 
y 

L_ — 
z 
    — . __ _ j 

V Coder X Plant y . Decoder u 
i  ' 

i 

t 
1  

i 
i 

Fig.  2   "Gorden Varieties" of Systems 

First, however, it will be necessary to make some comments concerning 

item (ii) mentioned at the beginning of this section.    It dealt with the need for a 

criterion of selection among the systems competing for the optimum.    These 

systems, it has been said above,  are required to impart to the output signal 

certain desirable characteristics.    This can be visualized as meaning that a 
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prototype signal exists, in fact or in fiction, which actually has these charac- 

teristics, and that the performance of a system can be judged by how close its 

actual output comes to the prototype.   In engineering language one would probably 

say that the system output is to "track" the prototype. 

The question of relative system rating, on the basis of this argument, is 

equivalent to the definition of a measure of closeness, or of tracking performance, 

between output signal and prototype (random or deterministic).    Many such 

measures have been proposed and used, the mean squared error criterion 

being the most popular one by far.    This criterion penalizes a system at every 

instant by the square of the difference of the actual and desired system output 

at that instant.   It rates the system by the time average of all instantaneous 

penalties. 

Several generalizations of this are possible, and perhaps also desirable, 

and some have in fact been considered.   For one, it is possible to admit 

penalties which, like the squared error, depend on the instantaneous values 

of input and output, but which involve these values in a way other than as the 

square of their difference.    Such penalty functions go under various names, 

such as loss functions, fidelity evaluation functions,  payoff functions, etc. 

Secondly, the penalty at any one time may be a function not only of the output 

values, actual and desired,  at that same time, but also of the values at other 

times.    The loss function,  in other words,  may be a loss functional.   This 

possibility has been considered by Shannon.    The loss function, or functional, 

may depend on quantities other than actual and desired output or, which is 

saying the same thing, the system may be assessed not only by how well it 

tracks the desired output but also by some additional criteria.    Several such 

possibilities have been considered.    Finally,  system ratings may be considered 

which are not compounded from the individual ratings by mere averaging, or 

other linear operations, but by some nonlinear ones. 
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With this welter of possible criteria of selection, the question will then 

no doubt arise whether or not there is some way of singling out "reasonable" 

from "unreasonable" criteria.   At this time, the viewpoint prevailing among 

systems workers is, that there is-no such way.   The performance criterion, it 

is argued,  is a datum of the problem, provided to the system designer by some 

other agency, perhaps by an operations research group which has assessed the 

seriousness of an error or a failure to track the desired signals.    This may 

very well be so.   On the other hand,  some evidence has begun to appear which 

indicates that at least under certain circumstances some criteria are more 

natural than others.    The squared error criterion, for instance, is more 

natural than many others to linear problems when Gaussian random signals 

are involved.   Similar associations are apparently possible between other cri- 

teria and nonlinear problems.   This issue will be mentioned again below. 
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SECTION DC 

STATUS OF A GENERAL FILTERING THEORY 

The general filtering problem has been described briefly above, and 

illustrated in Fig. 2(a).    Given is a noisy plant, to be followed by a filter.    The 

latter is to be so designed that the system output y tracks a desired signal. 

Let this be the system input x (which is in fact often the case).   We ignore the 

question of performance criterion for the moment. 

A filter is in effect a decision-making device.   It is presented, at every 

time t, with a certain amount of evidence, namely, the present and the past of 

the plant output y.   On the basis of that, it is to make a judgment concerning 

the plant input x to which it has no direct access, and concerning which it can 

only make certain inferences.   It is, more particularly, to generate an output, 

namely the system output u, whose value u   at the time t constitutes the 

filter1 s best considered opinion, based on   all available evidence, on what the 

value x  of the system input is at that every same time. 

If the plant is nonsingular, the filter' s problem is clearly trivial since a 

nonsingular system by definition is one whose input can be perfectly reconstructed 

from its output.    Hence,  all the filter needs to do in this case is to carry out 

this reconstruction.   It is true there may be trouble here.    For instance, the 

filter may turn out non-causal and hence not strictly realizable.   On the other 

hand,  if the plant is noisy, and hence singular,  a perfect reconstruction of the 

input is impossible, causally or otherwise.    The problem of filtering is thus 

a genuine one. 

There is one type of filtering problem in which the situation is well in 

hand,  and this is the linear filtering problem, dealt with in Wiener' s filtering 

theory.    The plant in this problem is a noisy system in which a Gaussian 
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Signal x and a Gaussian noise z are linearly superposed to generate an output 

y (again Gaussian).   According to our comments in Sec.   VII, we can mentally 

replace this plant with another, carrying the same input x into the same output 

y, but injecting a noise z which is independent of x.    Let us assume we have 

done so. 

Intuitively, one can then visualize the filter to have to proceed as follows. 

It is a decision-making device which is required to reconstruct x   from the 

knowledge of the plant output y.    The decision would be simple in principle,  as 

we have just said,  if it were not for the noise.   On the other hand, the noise is 

statistically independent of x and hence cannot contribute any relevant infor- 

mation towards it.    In making the decision, therefore, the filter should be 

justified in ignoring the noise because it is irrelevant; that is, it should treat 

the problem as if the noise were identically zero. 

The remarkable thing is that this intuitive reasoning is correct, provided 

that the performance criterion is the mean squared-error.    In other words, 

unless the loss function is of the squared-error (or some very similar) type, 

the filter cannot ignore in its decision what is, in a sense,  irrelevant.    This 

fact singles out the squared-error type of loss functions from many other 

possible ones as being naturally associated with Wiener' s filtering problem. 

It develops then further that the filter obtained by the mathematical version 

of this reasoning is itself linear, namely the inverse of the linear plant in 

which the noise has been set equal to zero.    The filter is causal whenever y, 

the plant output, contains no perfectly predictable component. 

In the nonlinear filtering problem,  similar circumstances are likely to 

prevail though just how far the similarity will go is not known at this time. 

If the hopes expressed in Sec. VII come true, we will have atour disposal a 

theorem similar to Wiener' s in which all noises affecting the plant can be 
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reduced to one, namely z, and more particularly to a noise which is statisti- 

cally independent of the main input x.   By our intuitive argument,  statistical 

independence makes it irrelevant to the reconstruction of x from y, and should 

be immaterial to the filter design.   We can hope that this intuitive argument 

can be made rigorous, as in the linear theory, by the choice of a suitable 

performance criterion.   There is every reason to think that these things can be 

done and that a filtering theory can be evolved of greater generality than Wiener' s 

but approaching his in elegance. 

Until this happens, we can be content with a theory of lesser elegance but 

probably at least equal usefulness.    Fortunately, we have such a theory.   It 

ignores the issues of causality and perfect predictability, irrelevance and 

statistical independence, but it leads to filters of all kinds and for all kinds of 

purposes.   It is based on the argument that the design of a decision-making 

device,  such as a filter,  should be based on a well-known statistical theory, 

established now for over a decade and developed for just such purposes.    This 

is Wald1 s statistical decision theory,  and more particularly, the easiest and 

least controversial part of it, namely the theory of Bayesian decisions.    This 
[12] 

point of view was taken by Middleton and van Meter in a paper        in which they 

showed that all standard filtering-type problems can be phrased as Bayesian 

decision problems.   Once this was done, Wald' s theory could be exploited for 

the production of filters by the score. 
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SECTION X 

STATUS OF A GENERAL CONTROL THEORY FOR NOISY PLANTS 

Control theory deals with the system problem Illustrated in Fig.  2(b).   It 

differs from the filtering problem in Just one,  apparently trivial, way; namely, 

in that the decision-making device (the controller) is required to precede the 

plant rather than to follow it.   The difference, however, is far from trivial. 

Let us assume here,  as in the section above, that the system output y 

desired to be as close as possible (in some sense) to the system input,  in this 

casev.    Let us further assume that the plant is a causal system.   This means 

that any input value xt entered into it at the time t will have some effect on the 

present and future plant (and system) output y.   The controller must then be an 

extremely "cautions" device, as decision-making devices go.   Its decision to 

enter ^ is one whose consequences may have a bearing on all future system 

operation and hence on all future system performance.    Such consequences 

cannot be shrugged off. 

Note that the filters discussed in the preceding section, viewed as decision- 

making devices, needed to have no such worries.   The decision at the time t 

to generate a certain system out ut was made on the basis of all available 

evidence, namely the present and past plant output, but no thought needed to 

be given to any consequences of this decision on future system operation.   The 

reason is simple:   there were no such consequences. 

In the control problem, however, there are.   If controllers could be non- 

causal, if they could anticipate the future, they in fact could minimize their 

worries.    The decision on what control signal to pick at any one time would 

admittedly still have to consider all consequences, but because of its unlimited 
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foresight, the controller could (impractical as this may be) chart all consequences 

precisely and finally select the most favorable plant input v .    However, con- 

trollers typically are causal and cannot foretell the future, e. g., of the output 

of a noisy plant.    Hence, this approach is not only impractical, it is impossible. 

What is needed, therefore, is a technique for synthesizing optimal controllers, 

subject to the condition that they be causal.   This technique exists.    It is a 

recursion method, usually called "dynamic programming, " which has been the 

subject of large numbers of articles and books, most of them including the 
[2] 

authorship of Bellman. As of this writing, however, not very much more 

can be said than that the technique exists and that it can, and often has been 

used, to synthesize controllers for certain specialized plants.   Most of the 

controllers have been of the feedback type which is,  in fact,  the most important 

type.    However,  dynamic programming has not so far led to any new realizations 

which might be called "systems-theoretical" except in one area, and there they 

were,  in fact, obtained by an interesting variant of dynamic programming due 

to Howard. This is the area of finite-state systems. 

There is however,  every reason to hope that further results along this 

line are imminent.    Curiously, there is no indication so far that our much- 

heralded general theorem on the representation of noisy plants will be of great 

consequence here.    This may lie in the nature of a control system,  but more 

likely, is due to our limited understanding of the problem. 
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SECTION XI 

THE STATUS OF A GENERAL THEORY OF NOISY 
COMMUNICATIONS SYSTEMS 

The Communications system which plays the central role in the general 

theory of such systems is the one illustrated in Fig.  2(c).   It is, of course, the 

system to which Shannon's theory is devoted, and more particularly,  the portion 

dealing with noisy channels.    This theory has led to the two fundamental coding 

theorems for noisy channels (or plants, as we have decided to call them in this 

article), one for discrete channels and the other for continuous ones.    Together 

they constitute no doubt one of the greatest stimuli which the thinking in the 

natural sciences has received in this century. 

If this appraisal is correct, one can ask what more there is that can 

conceivably be said in this area and that is not merely an elaboration of Shannon's 

ideas.   At this stage, it seems impossible to produce more than some very 

circumstantial evidence which may indicate that Shannon's theorems do not 

answer all the basic questions that can be asked in this field. 

Some of the pieces of evidence, such as they are, are as follows: 

We have tried to make a case throughout this article that discrete systems 

and discrete signals apparently have some properties in which they differ 

fundamentally from their continuous counterparts.   It is true Shannon's theory 

makes this distinction too, but in what seems a less fundamental way.   In fact, 

when the showdown comes,  namely when the main coding theorem is proved 

for the continuous case, the proof is carried out by reducing the continuous to 

the discrete channel.   What evidence we now have seems to indicate that an 

important feature may have been lost in this process. 
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A related issue is concerned with the concepts of system causality and of 

entropy.   We have seen that in the noiseless case,  entropy played a significant 

role apparently only in the case of discrete signals and discrete systems.   There 

was no need for it in the continuous problems.    Yet in Shannon's theory of noisy 

channels, concepts related to the entropy are needed in the discrete as well as 

the continuous cases.    This may well be as it should but the disparity in this 

respect between the noiseless and the noisy theories is a curious phenomenon. 

A similar observation can be made concerning the concepts of causality and 

perfect predictability.   We have seen that in the noiseless theory, non-causality 

in a system invariably (as far as we now know) injects a perfectly predictable 

component into the output.    And once there,  the component cannot be eliminated 

except by another non-causal system.   Similar statements are possible also in 

filtering theory.    Yet no such statement occurs in Shannon's theory. 

Another curious point is this.    The three diagrams of Fig. 2 show that a 

communications system is in a way a combination of a controller and a filter. 

However, there is preciously little resemblance in the theoretical treatment of 

communications system on one hand, and those of control systems and filters on 

the other.   It is true that the basic statements of Shannon's coding theorems 

differ from the basic statements of the optimal control and filtering theories. 

Shannon's theorems assume a performance figure and state the conditions under 

which it can be reached or surpassed, but do not say now this can be done.    The 

other two theories state the best performance figure that can be reached and say 

how it can be done.    It seems reasonable to think that if one kind of statement 

can be made in one theory these similar statements ought to be possible in 

similar theories.    However,  no such statements have been made. 

These are samples of the circumstantial evidence mentioned earlier which 

may suggest that not all of the fundamental issues have been raised in 
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communication theory.    Perhaps, if they were raised, some additional insight 

could be gained also into the problems of coding and decoding which have pre- 

occupied workers in this field for over a decade and which have so far proven 

most intractable to sweeping solutions. 
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SECTION xn 

ADDITIONAL SYSTEMS PROBLEMS 

This partial review of the outlines of a nonexistent systems theory would 

be altogether too partial if something were not said about several problems in 

this field which have been the subject of considerable discussion.    Four of 

these problems will be mentioned briefly in this section.   All of them, the 

present writer feels, share one common feature; namely, that despite much 

discussion, no clear trend has become discernible (at least to him) which might 

promise substantial and uncontroversial achievement in the near future. 

The first of these is the field of adaptive or learning systems.   As far as 

the writer knows, there exists no generally appealing, let alone a generally 

accepted, definition of when to call a system "adaptive" or "learning. "   Nor 

has it been decided whether the two terms are to be considered synonymous, 

and perhaps further synonymous also with "self-organizing. "   There is some 

indication that all three terms mean roughly the same thing to most persons, 

though control theorists perfer "adaptive" while computer people like "learning" 

better.   Atempts at formalizing these concepts seem to have foundered on 

anthropomorphic objections and other preconceived notions. 

In the present writer's opinion, these complications will shortly be 

overcome,  and a widely acceptable theory of adaptation or learning will soon 

evolve.   It is further his opinion, that the theory will not live up to the high 

expectations now held for it.    Rather, it will develop to be essentially subsumed 

under the three theories discussed above. 

The second area to be mentioned is the problem of uncertainty, as it is 

often called.   It is argued that the theories we have described above are 
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houses built on sand, and the prettier the theory in many cases, the shakier its 

foundation.    The reason for this is that they all assume a great deal of knowledge 

concerning the statistics of the random signals and the systems involved in all 

problems.    Such knowledge typically is either not available or else not nearly 

as reliable as is generally assumed.    Nor is the traditional gambit at all con- 

vincing which always replaces an uncertain parameter by a random variable 

because this replacement only introduces more parameters (namely those 

characterizing the probability distribution of the random variable) which are 

even more uncertain than the original one . 

This complaint is very much to the point.    On the other hand,  it is probably 

also accurate to say that no good ideas exist on what to do about the situation 

in general.   Statisticians in whose field of competence this problem falls seem 

as divided on how to deal with it as systems theorists.    Perhaps the best thing 

to do is for the latter to wait and see what the former can agree on. 

The third issue to be discussed here is what might be called the problem 

of the bad optimum.    The complaint here is particularly against optimal systems 

theory,  and it charges that the optima that come out of that theory (if they can 

be determined at all) are totally impractical.   What is needed is a "workable 

sub-optimum. " 

This is a most reasonable request, but it is hard to fill.    It has always 

been difficult to say when a theoretical solution was "workable, " i.e. ,  readily 

reducible to practice, and almost impossible to specify beforehand.    The 

problem of how to find good and useful,  rather than best solutions, has thus 

resisted precise formulation, and as far as the writer knows,  none is in sight. 

The last problem to be mentioned here is that of great complexity.    The 

three canonical systems illustrated in Fig.  2 are patently gross over- 

simplifications.    Systems of all kinds are much more complex in practice 
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as a rule, with potentially many subsystems in tandem or in parallel.    The 

problem of synthesis, that is, of how to interconnect these many systems, and 

with what auxiliary equipment to supplement them, has received only little 

attention.   Much the same is true of the problem of analysis, that is, of how 

to assess the performance of a given system of great complexity. 
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A HEURISTIC  DISCUSSION OF PROBABILISTIC DECODING 

by 

Robert M.  Fano* 

SECTION I 

INTRODUCTION 

The purpose of this paper is to present a heuristic discussion of the 

probabilistic decoding of digital messages after transmission through a 

randomly disturbed channel.   The adjective "probabilistic" is used to dis- 

tinguish the decoding procedures discussed here from algebraic procedures ^   ' 

based on special structural properties of the set of code words employed 

for    transmission. 

In order to discuss probabilistic  decoding in its proper frame of 

reference, we must first outline the more general problem of transmitting 

digital information through randomly disturbed channels, and review briefly 
r 21 

some of the key concepts and results pertaining to it        .   These key concepts 
r si and results were first presented by C.  E. Shannon in 1948 , and later 

sharpened and extended by Shannon himself and others.   The first probabilistic 

decoding procedure of practical interest was presented by J.  M.  Wozencraft in 
[4] r s] 

1957       , and extended shortly thereafter by B.  Reiffen .   Equipment 
r gi 

implementing this procedure has been built at Lincoln Laboratory and is 

presently being tested in conjunction with telephone lines. 

*Ford Professor of Engineering, Massachusetts Institute of Technology. 
Department of Electrical Engineering and Research Laboratory of Electronics. 
The work of this laboratory is  supported in part by the U.   S. Army Signal 
Corps, the Air Force Office of Scientific Research, and the  Office of 
Naval Research. 
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SECTION II 

THE ENCODING OPERATION 

We shall assume, for the sake of simplicity, that the information to be 

transmitted cgnsists of a sequence of equiprobable and statistically independent 

binary digits.   We shall refer to these digits as information digits, and to their 

rate, R,  measured in digits-per-second, as the information transmission rate. 

The complex of available communication facilities will be referred to as 

the transmission channel.   We shall assume that the channel can accept as input 

any time function whose spectrum lies within some specified frequency band, and 

whose r. m. s.  value and/or peak value are within some specified limits. 

The information digits are to be transformed into an appropriate channel 

input, and must be recovered from the channel output with as small a probability 

of error as possible.   We shall refer to the device that transforms the information 

digits into the channel input as the encoder,  and to the device that recovers them 

from the channel output as the decoder. 

The encoder may be regarded, without any loss of generality, as a finite- 

state device whose state depends, at any given time,  on the last v information 

digits input to it.   This does not imply that the state of the device is uniquely 

specified by the last v digits.   It may depend on time as well, provided such a 

time dependence is established beforehand and built into the decoder as well as 

into the encoder.   The encoder output is uniquely specified by the current state, 

and therefore,  is a function of the last u information digits.   We shall see that 

the integer v, representing the number of digits on which the encoder output 

depends at any given time, is a critical parameter of the transmission process. 

The encoder may operate in a variety of manners depending on how often u 

digits are fed to it.   The digits may be fed one at a time every 1/R seconds, or 
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two at a time every 2/R seconds, etc.   The limiting case in which the information 

digits are fed to the encoder in blocks of v every v/R seconds is of special interest 

and corresponds to the mode of operation known as block encoding.   In fact, if each 

successive block of i> digits is fed to the encoder in a time short compared to 

l/R, the decoder output depends only on the digits of the last block and is totally 

independent of the digits of the preceding blocks.   Thus, the encoder output during 

each time interval of length v/R corresponding to the transmission of one 

particular block of digits is completely independent of the output during the 

time intervals corresponding to preceding blocks of digits.   In other words, 

each block of v digits is transmitted independently of all preceding blocks. 

The situation is quite different when the information digits are fed to 

the encoder in blocks of size v < v.   Then, the encoder output depends not only 
o 

on the digits of the last block fed to the encoder, but also on ^ - i'   digits of 

preceding blocks.   Therefore, it is not independent of the output during the time 

interval corresponding to preceding blocks.   As a matter of fact, a little 

thought will indicate that the dependence of the decoder output on its own 

past extends to infinity in spite of the fact that its dependence on the  input digits 

is limited to the last v.   For this reason, the mode of operation corresponding 

to i^   < ^ is known as sequential encoding.   The distinction between block encoding 
o 

and sequential encoding is basic to our discussion of probabilistic decoding. 

The encoding operation, whether of the block or sequential type, is best 

performed in two steps,  as illustrated in Fig.   1.   The first step is performed by 

a binary encoder which generates no binary digits per input information digit, 

where the integer n    is a design parameter to be selected in view of the rest of 

the encoding operation and of the channel characteristics.   The binary encoder is 

a finite state device whose state depends on the last v information digit fed to 

it, and possibly on time as discussed above.   The dependence of the state on the 
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information digits is illustrated in Fig.  1 by showing the v information digits as 

stored in a shift register with serial input and parallel output.   It can be shown 

that the operation of the finite state encoder need not be more complex than a 

modular-2 convolution of the input digits with a periodic sequence of binary 

digits of period equal to n^.   A suitable periodic sequence can be constructed by 

simply selecting the n^u digits equiprobably and independently at random.   Thus, 

the complexity of the binary encoder grows linearly with v, and its design depends 

on the transmission channel only through selection of the integers n    and v. 
o 

The second part of the encoding operation is a straightforward transformation 

of the sequence of binary digits generated by the binary encoder into a time 

function acceptable by the channel.   Because of the finite state character of 

the encoding operation, the resulting time function must necessarily be a 

sequence of elementary time functions selected from a finite set.   The 

elementary time functions are indicated in Fig.l as S. (t), S„(t), ... , S   (t), where M is 
1 2 M 

the number of distinct elementary time functions and T is their common duration. 

The generation of these elementary time functions may be thought of as being 

controlled by a switch, whose position is in turn set by the digits stored in 

a M-stage binary register.   The digits generated by the binary encoder are fed 

to this register M  at a time, so that each successive group of n digits is trans- 

formed into one of the elementary signals.   The number of distinct elementary 

signals, M, can not exceed 2ß, but it may be smaller.   A value of M substantially 

smaller than 2ß is used when some of the elementary signals are to be employed 

more often than others.   For instance, with M = 2 and ß = 2 we could make one 

of the two elementary signals occur three times as often as the other, by connecting 

three of the switch positions to one signal and the remaining one to the other. 

While the character of the transformation of binary digits into signals 

envisioned in Fig. 1 is quite general, the range of the parameters involved 

is limited by practical considerations.   The number of distinct elementary 
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Signals. M, must be relatively small, and so must be the integer B .   The values 

of M and no> as well as the forms of the elementary signals, must^e selected 

with great care in view of the characteristics of the transmission channel.   In 

fact, their selection results in the definition of the class of time functions that 

may be fed to the channel, and therefore, in effect, to a redefinition of the 

channel        .Thus, one faces here a compromise between equipment complexity 

and degradation of channel characteristics. 

Fig. 2 illustrates two choices of parameters and of elementary signals, 

which would be generally appropriate when no bandwidth restriction is placed 

on the signal and thermal agitation noise is the only disturbance present in the 

channel.   In case (a) each digit generated by the binary encoder is transformed 

into a binary pulse, while in case (b) each successive block of four digits is 

transformed into a sinusoidal pulse four times as long, and of frequency 

proportional to the binary number spelled by the group of four digits.   The example 

illustrated in Fig.  3 pertains instead to the case in which the signal bandwidth is 

so limited that the shortest pulse duration permitted   is equal to the time interval 

corresponding to the transmission of two information digits.   In this case the 

elementary signals are pulses of the shortest permissible duration, with 16 

different amplitudes. 

These examples should make clear that the encoding process illustrated 

in Fig.   1 includes, as special cases, the traditional forms of modulation employed 

in digital communication.   What distinguishes the forms of encoding envisioned 

here from the traditional forms of modulation is the order of magnitude of the 

integer  P.   In the traditional forms of modulation the value of V is very small, 

often equal to 1 and very seldom greater than 5.   Here instead we envision 

values of u of the order of 50 or more.   The reason for using large values of u 

will become evident later on. 
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SECTION III 

CHANNEL QUANTIZATION 

Let us suppose that the encoding operation has been fixed to the extent of 

having selected the duration and identities of the elementary signals.   We must 

consider next how to represent the effect of the channel disturbances on these 

signals.   Since most of our present detailed theoretical knowledge is limited to 

channels without memory, we shall limit our discussion to such channels.   A 

channel without memory can be defined for our purpose as one whose output 

during each time  interval of length T, corresponding to the transmission 

of an elementary signal, is independent of the channel input and output during 

preceding time intervals.   This implies that the operation of the channel can be 

described within any such time interval without reference to the past or the 

transmission.   We shall assume as well that the channel is stationary in the 

sense that its properties do not change with time. 

Let us suppose that the elementary signals are transmitted with probabilities 

P(S1),  P(S2),. . . .p(sM). and indicate with S^t) the channel output during the 

time  interval corresponding to the transmission of a particular signal.   The 

observation of S'(t) changes the probability distribution over the ensemble of 

elementary signals  from the a priori distribution P(S) to the a posteriori 

conditional distribution P(S| S').   The latter distribution can be computed, at 

least in principle, from the a priori distribution and the statistical characteristics 

of the channel disturbances.   More precisely, we may regard the output S'(t) as a 

point S'  in a continuous space of suitable dimensionality.   Then, if we indicate 

with p(S' | Sk) the conditional probability density  (assumed to exist) of the output 

S' for a particular input S  , and with 
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M 

1 
lc=l 

P(S')   =    L    P(Sk) p(S' | sk), (i) 

the probability density of S' over all Input signals, we have 

P(S\B'\. P(S) P(S'|S) (2) P(S|s ) p(Sl) ( ) 

Knowing the a posteriori probability distribution P(S|S') is equivalent, 

for our purposes, to knowing the output signal S'.   In turn, this probability 

distribution depends on S'  only through the ratios of the M probability densities 

p^' |S).   Furthermore, these probability densities can not be determined, in 

practice, with infinite precision.   Thus, we must decide, either implicitly or 

explicitly, the tolerance within which the ratios of these probability densities 

are to be determined. 

The effect of introducing such a tolerance is to lump together the output 

signals S' for which the ratios of the probability densities remain within the 

prescribed tolerance.   Thus, we might as well divide the S'  space into regions 

within which the ratios of the densities remain within the prescribed tolerance 

and record only the identity of the particular region to which the output signal 

S' belongs. 

Such a quantization of the output space S' is governed by considerations 

similar to those governing the choice of the input elementary signals, namely 

equipment complexity and channel degradation.   We shall not discuss this matter 

further, except for stressing again that such quantizations are unavoidable in 

practice, and that their net result is to substitute for the original transmission 

channel a new channel with discrete sets of possible inputs and outputs, and 
[7] 

a correspondingly reduced transmission capability 
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SECTION IV 

CHANNEL  CAPACITY 

It is convenient at this point to change our terminology to that commonly 

employed in connection with discrete channels.   We shall refer to the set of 

elementary input signals as the input alphabet and to the individual signals 

as  input symbols.   Similarly, we shall refer to the set of regions in which the 

channel output space has been divided as the output alphabet,  and to the individual 

regions as output symbols.   The input and output alphabets will be indicated with 

X and Y respectively, and particular symbols belonging to them will be indicated 

with x and y.   Thus, the transmission channel is completely described by the al- 

phabets X and Y, and by the set of conditional probability distributions P(y|x). 

We saw above that the net effect of the reception of a symbol y is to change 

the a priori probability distribution P(x)  into the a posteriori probability 

distribution 

|y; P(y) P(y)   ' (3) 

where P(x,y) is the joint probability distribution of input and output symbols. 

Thus, the information provided by a particular output symbol y about a particular 

input symbol x is defined as 

I(x;y) = log mM = lo     PfiLbsI =   loe      P(x,.y) V   ^ 8    p(x) log       p(y) log     p(x)   p(y)   . (4) 

We shall see that this measure of information and its average value over the input 

and/or output alphabets play a central role in the problem under discussion. 
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It is interesting to note that I(x;y) is a symmetrical function of x and y so 

that the information provided by a particular y about a particular x is the same 

as the information provided by x about y.   In order to stress this symmetry 

property, I(x;y) = I(y;x) is often referred to as the mutual   information between 

x and y.   By contrast, 

I(x)=log    ^ (5) 

is referred to as the self-information of x.   This name follows from the fact that, 

for a particular symbol pair x = x^ y = y ,   I^y.) becomes equal to I(xJ when 

P(xk|yi) = 1, that is when the output symbol y. uniquely identifies x,  as the input 

symbol.   Thus, I(xJ is the amount of information that must be provided about x^ 

in order to uniquely identify it, and as such is an upper bound to the value of 

i(xk;y). 

In the particular case of an alphabet with L equiprobable symbols the self- 

information of each symbol is equal to log L.   The information is measured in bits 

when base-2 logarithms are used in the above expressions.   Thus, the self- 

information of the symbols of a binary equiprobable alphabet is equal to 1 bit. 

Let us suppose that the input symbol is selected from the alphabet X with 

probability P(x).   The average, or expected value, of the mutual information 

between input and output symbols is then. 

I(X;Y) =2  P(x.y) I(x;y). 
XY 

This quantity depends on the input probability distribution P(x) and on the 

characteristics of the channel represented by the conditional probability 
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distributions P(y|x).   Thus, its value, for a given channel, depends on the prob- 

ability distribution P(x) alone. 

The channel capacity is defined as the maximum value of I(X;Y) with respect 

to P(x), that is 

C = Max I(X;Y) 
P(x) 

(7) 

It can be shown*   that if a source which generates sequences of x symbols is 

connected to the channel input, the average amount of information per symbol 

provided by the channel output about the channel input can not exceed C, regard- 

less of the statistical characteristics of the source. 

See Ref. 2, Sec. 5.2 
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SECTION V 

ERROR PROBABILITY  FOR BLOCK ENCODING 

Let us consider now the special case of block encoding, and suppose that 

a block of v information digits are transformed by the encoder into a sequence 

of N elementary signals, that is, into a sequence of N input symbols.   Since the 

information digits are by assumption equiprobable and independent of one another, 

it takes an amount of information equal to log 2, (1 bit), to identify each of them. 

Thus, the information transmission rate per channel symbol is given by 

R =   ^   log 2. (8) 

The maximum amount of information per symbol that the channel output can 

provide about the channel input is equal to C, the channel capacity.   It follows that 

we cannot expect to be able to transmit the information digits with any reasonable 

degree of accuracy at any rate R > C.   Shannon' s fundamental theorem asserts 

further that, for any R < C, the probability of erroneous decoding of a block of 

v digits can be made as small as desired by employing a sufficiently large value 

of  v and a correspondingly large value of N.   More precisely, it is possible 

to achieve a probability of error per block bounded by 

-„    -  + 1 
P    < 2 " , (9) 

e 

if 

The same symbol is used to indicate the information transmission rate, 
whether per channel  symbol or per unit time. 

** 
See Ref. 2, Ch. 9. 
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where  a is independent of ^ and varies with R as illustrated schematically in 

Fig. 4.   Thus, for any R < C, the probability of error decreases exponentially 

with increasing  v. 

It is clear from Eq.  (9)  that the probability of error is controlled primarily 

by the product of  v and a/R.the latter quantity being a function of R alone for 

a given channel.   Thus, the same probability of error can be obtained with a small 

value of v and relatively small value of R, or with a value of R close to C and 

a correspondingly larger value of v.   In the first situation, which corresponds to 

the traditional forms of modulation, the encoding and decoding equipment is 

relatively simple because of the small value of  v, but the channel is not utilized 

efficiently.   In the second situation, on the contrary, the channel is efficiently 

utilized, but the relatively large value of v implies that the terminal equipment 

must be substantially more complex.   Thus, we are faced with a compromise 

between efficiency of channel utilization and complexity of terminal equipment. 

It was pointed out in Section 1 that the operation to be performed by the 

binary encoder is relatively simple, namely the convolution of the input informa- 

tion digits with a periodic sequence of binary digits of period equal to n ^. 
o 

Thus, roughly speaking, the complexity of the encoding equipment grows linearly 

with  v.   On the other hand, the decoding operation is substantially more complex 

both conceptually and in terms of the equipment required to perform it.   The rest 

of this paper is devoted to it. 
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SECTION VI 

PROBABILISTIC BLOCK DECODING 

We saw in Section 1 that in the process of block encoding each particular 

sequence of  v information digits is transformed by the encoder into a particular 

sequence of N channel input symbols. We  shall refer to any such sequence of 

input symbols as a codeword, and we shall indicate with u,   the codeword corre- 

sponding to the sequence of information digits which spells k in the binary number 

system.   The sequence of N output symbols resulting from an input codeword will 

be indicated with v. 

The probability that a particular codeword u will result in a particular 

output sequence v is given by 

[P(y|x)].> (io) 

where the subscript j  indicates that the value of the conditional probability is 

evaluated for the input and output symbols which occupy the j      positions in  u 

and v.   On the other hand,  since all sequences of information digits are trans- 

mitted with the same probability, the a posteriori probability of any particular 

codeword u after the reception of a particular output sequence v is given by 

P(u|v) 
P(v 

2 p(v 
U 

u) P(u) = o"" p<vlu) „ix 
u)P(u) P(v)    " v    ; 

Thus, the codeword which is a posteriori most probable for a particular output 

v is the one that maximizes the conditional probability P(v|u) given by Eq. 

(10).   We  can conclude that, in order to minimize the probability of error. 
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the decoder should select the codeword with the largest probability, P(v|u), of 

generating the sequences v output from the channel. 

While the specification of the optimum decoding procedure is straightforward, 

its implementation presents very serious difficulties for any sizable value of v. 

In fact, there is no general procedure for determining the codeword corresponding 

to the largest value of P(v|u) without having to evaluate this probability for most 

of the 2 ^ possible codewords.   Clearly, the necessary amount of computation 

grows exponentially with v and becomes prohibitively large very quickly. 

However, if we do not insist on minimizing the probability of error, we may take 

advantage of the fact that, if the probability of error is to be very small, the a 

posteriori most probable codeword must be almost always substantially more 

probable than all other codewords.   Thus, it may be sufficient to search for a 

codeword with a value of P(v|u) larger than some appropriate threshold and take 

a chance on the possibility that there be other codewords with even larger values, 

or that the value for the correct codeword be smaller than the threshold. 

Let us consider then what might be an appropriate threshold.   Let us suppose 

that, for a given received sequence v, there exists a codeword \JL   for which 

P(Uk'V)~ Z P(uilv)' (12) 
wtk 

where the summation extends   over all the other 2^-1 codewords.   Then u,  must 

be the a posteriori 'most probable codeword.   The condition expressed by Eq. (12) 

can be rewritten, with the help of Eq. (11), as 

P(viuk) - Z P(viui>- (13) 

Htk 
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The value of P(v|uk) can be readily computed with the help of Eq. (10).   However, 

we are still faced with the problem of evaluating the same conditional probability' 

for all the other codewords.   This difficully can be circumvented by using an 

approximation related to the random-coding procedure employed in deriving 
Eq.   (9). 

In the process of random coding each codeword is constructed by selecting 

its symbols independently at random according to some appropriate probability 

distribution Po(x).   The right-hand side of Eq. (9) is actually the average value 

of the probability of error over the ensemble of codeword sets so constructed. 

This implies,  incidentally, that satisfactory codewords can be obtained in practice 

by following such a random construction procedure. 

Let us assume that the codewords under consideration have been constructed 

by selecting the symbols independently at random according to some appropriate 

probability distribution P^x).   It would seem reasonable then to substitute for the 

right-hand side of Eq. (13) its average value over the ensemble of codeword sets 

constructed in the same random manner.   In such an ensemble of codeword sets, 

the probability P^u) that any particular input sequence u be chosen as a code- 
word is 

N 

J-l 

Po(U) -/   ILV^i' (J4) 

where the subscript j  indicates that P^x) is evaluated for the jth symbol of the 

sequence u.   Thus, the average value of the right-hand side of Eq. (12) is, with 

the help of Eq. (10), 

(2^-1)   £   Po(u)  p(v,u)   =   (2--l)//[[Po(y)J.> (15) 
U j = 1 
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where U is the set of all possible input sequences, and 

P0(y) = Jp
0(x) p(y|x) (16) 

X 

is the probability distribution of the output symbols when the input symbols are 

transmitted independently with probability P (x).   Then, substituting the right- 

hand side of Eq. (15) for the right-hand side of Eq.  (13), and expressing P(v|uJ 

as in Eq.  (10), yields 

i 

Finally, approximating 2^-1 with 2" and taking the logarithm of both sides yields 

N 

1 ['* 1$)] a N R • <18' 
j=l j 

where R is the transmission rate per channel symbol defined by Eq.   (8). 

The threshold condition expressed by Eq.  (18) can be given a very interesting 

interpretation.   The j"1 term of the summation is the mutual information between 

the jth output symbol and the ]tb input symbol, with the input symbols assumed to 

occur with probability P (x).   If the input symbols were statistically independent of 

one another, the sum of these mutual informations would be equal to the mutual 

information between the output sequence and the input sequence.   Thus, Eq. (18) 

states that the channel output can be safely decoded into a particular codeword if 

the mutual information that it provides about the codeword, evaluated as if the N 

input symbols were selected independently with probability P (x), exceeds the 

amount of information transmitted per codeword. 
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It turns out that the threshold value on the right-hand side of Eq. (18) is not 

only a reasonable one, as indicated by our heuristic arguments, but the one which 

minimizes the average probability of error for threshold decoding over the ensemble 

of randomly constructed codeword sets.   This was shown by C. E. Shannon in an 

unpublished memorandum.   The bound on the probability of error obtained by 

Shannon is of the form of Eq. (9); however, the value of a is somewhat smaller 

than that obtained for optimum decoding.   Shannon assumes in his derivation that 

an error occurs whenever Eq. (17)  is satisfied for any codeword other than the 

correct one and whenever it is not satisfied for the correct codeword. 

The fact that the probability of error for threshold decoding, although larger 

than for optimum decoding, is still bounded as in Eq. (9), encourages us to look 

for a search procedure that will quickly reject any codeword for which Eq. (17) 

is not satisfied and thus converge relatively quickly on the codeword actually 

transmitted.   We observe, on the other hand, that, even if we could reject an 

incorrect codeword after evaluating Eq, (17) over some small but finite fraction 

of the N symbols, we would still be faced with an amount of computation that 

would grow exponentially with v.   In order to avoid this exponential growth we 

must arrange matters in such a way as to be able to eliminate large subsets of 

codewords by evaluating the left-hand side of Eq. (17) over some fraction of a 

single codeword.   This implies that the codewords must possess the kind of tree 

structure that results from sequential encoding,  as discussed in the next section. 

It is just the realization of this fact that led J. M. Wozencraft to the develop- 

ment of his sequential decoding procedure in 1957.   Other decoding procedures, both 

algebraic and probabilistic , have been developed since, which are of 

practical value in certain special cases.   However, sequential decoding remains 

the only known procedure which is applicable to all channels without memory.   As 

a matter of fact, there is reason        to believe that some modified form of sequential 

decoding may yield satisfactory results in conjunction with a much broader 

class of channels. 
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SECTION vn 

SEQUENTIAL DECODING 

The rest of this paper is devoted to a heuristic discussion of a sequential 

decoding procedure recently developed by the author.   This procedure is similar 
[456] in many respects to that of Wozencraft      '   '     .but it is conceptually simpler 

and therefore it can be more readily explained and evaluated analytically.   An 

experimental comparison of the two procedures is in progress at Lincoln 

Laboratory.   A detailed analysis of the newer procedure will be presented in a 

forthcoming paper. 

Let us reconsider in greater detail the structure of the encoder output in 

the case of sequential encoding, that is when the information digits are fed to 

the encoder in blocks of size  v    (in practice   v    is seldom larger than 3 or 4). 

The encoder output, during the time interval corresponding to a particular block, 

is selected by the digits of the block from a set of 2^0 distinct sequences of 

channel input symbols.   The particular set of sequences from which the output is 

selected is specified,  in turn, by the  v - p    information digits preceding the 

block in question.   Thus, the set of possible outputs from the encoder can be 

represented by means of a tree with 2uo branches stemming from each node. 

Each successive block of u    information digits causes the encoder to move 

from one node to the next one along the branch specified by the digits of the block. 

The two trees shown in Fig. 5 correspond to the two examples illustrated 

in Fig. 2-b and Fig. 3. The first example yields a binary tree (v0 = 1), while the 

second example yields a quaternary tree (^0 = 4). 

In summary, the encoding operation can be represented in terms of a tree 

in which the information digits select at each node the branch to be followed.   The 

path in the tree resulting from the successive selections constitutes the encoder 
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output.   This is equivalent to saying that each block of J^ digits fed to the encoder 

is represented for transmission by a sequence of symbols selected from a set 

of 2x'o distinct sequences, but the particular set from which the sequence is 

selected depends on the preceding v - u0 information digits.   Thus, the channel 

output during the time interval corresponding to a block of ^0 information digits 

provides information not only about these digits but also about the preceding 

v - v0 digits. 

The decoding operation may be regarded as the process of determining 

from the channel output the path in the tree followed by the encoder.   Suppose, 

to start with, that the decoder selects at each node the branch which is a 

posteriori most probable on the basis of the channel output during the time 

interval corresponding to the transmission of the branch.   If the channel 

disturbance is such that the branch actually transmitted does not turn out to be 

the most probable one, the decoder will make an error thereby reaching a node 

which does not lie on the path followed by the encoder.   Thus, none of the branches 

stemming from it will appear as a likely channel input.   If by accident one branch 

does appear as a likely input, the same situation will arise with respect to the 

branches stemming from the node in which it terminates, and so forth and so on. 

This rough notion can be made more precise as follows. 

Let us suppose that the branches of the tree are constructed, as in the case 

of block encoding, by selecting symbols independently at random according to 

some appropriate probability distribution Po(x).   This is accomplished in prac- 

tice by selecting equiprobably at random the n^ binary digits  specifying the 

periodic sequence with which the sequence of information digits is convolved, 

and by properly arranging the connections of switch positions to elementary 

signals in Fig. 1.   Then, as in the case of threshold block decoding, the 

decoder, as it moves along a path in the tree, evaluates the quantity 
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N 

1-1L       0   J j (19) 

where y in the jth term of the summation is the jth symbol output from the channel 

and x in the same term is the jth symbol along the path followed by the decoder 

As long as the path followed by the decoder coincides with that followed 

by the encoder 1^ can be expected to remain greater than N R.   (R, the informa- 

tion transmission rate per channel symbol, is still equal to the number of channel 

symbols divided by the number of corresponding information digits, but it is no 

longer given by Eq. (8).)  However, once the decoder has made a mistake and has 

thereby arrived to a node which does not lie on the path followed by the encoder, 

the terms of 1^ corresponding to branches beyond that node are very likely to be 

smaller than R.   Thus 1^ must eventually become smaller than NR,   thereby 

indicating that an error must have occurred at some preceding node.   It is clear 

that in such a situation the decoder should try to find the place where the mistake 

has occurred so as to get back on the correct path.   It would be desirable therefore 

to evaluate for each node the relative probability that a mistake has occurred there. 
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SECTION VIII 

PROBABILITY OF ERROR ALONG A PATH 

Let us indicate with N the order number of the symbol preceding some 

particular node, and with N0 the order number of the last output symbol. Since 

all paths in the tree are a priori equiprobable, their a posteriori probabilities 

are proportional to the conditional probabilities P(v|u) where u is the sequence 

of symbols corresponding to a particular path, and v is the resulting sequence 

of output symbols.   This conditional probability can be written in the form 

N N 

P(v|u) =  -T-I- [P(y|x)] j-r-    [P(y|x)] . . (20) 

j=l j=N+l 

The first factor on the right-hand side of Eq. (20) has the same value for 

all the paths which coincide over the first N symbols.   The number of such paths, 

which differ in some of the remaining N0 - N symbols, is, 

(N   -N)R/log2 (21) 
m = 2 

As in the case of block decoding,  it is impractical to compute the second factor on 

the right-hand side of Eq. (20) for each of these paths.   We shall again circumvent 

this difficulty by averaging over the ensemble of randomly constructed trees. 

By analogy with the case of threshold block decoding we obtain 

N 
N o 

P0{v|u) =     Y\   tP(y|x)]j     TI    [P0(y)]j 

j=l i=N+l 

(22) 

where P (y) is given by Eq. (16). 
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Let PN be the probability that the path followed by the encoder is one of the 

m-1 paths which coincide with the one followed by the decoder over the first 

N symbols, but differ from it in some of the remaining symbols.   We have, by 

approximating m-1 with m. 

P    = Kn 2 n 1 
j=l 

N 
(no-N)R/log2        -fj j* 

I  \[P(y|x)]       / \ 
j=N+l 

p (y)]. (23) 

-N R/log2 
= K22 

N 

TTrp(yix) 
'   M P0(y) 

where ^ and K2 are proportionality constants.   Finally, taking the logarithm of 

both  sides of Eq. (23)  yields 

N 

logPN=   log K2 + J flog  ^-  -R 

j=l 

(24) 

The significance of Eq. (24)  is best discussed after rewriting it in terms 

of the order number of the nodes along the path followed by the decoder.   Let us 

indicate with Nb the number of channel symbols per branch (assumed for the 

sake of simplicity to be the same for all branches) and with n the order number 

of the node following the Nth symbol.   Then Eq. (24) can be rewritten in the form 

.n 

iogPn=iogK2+ J; 
k=l 

(25) 
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where 

k R 
b 

A.   = P(Y|x) 
i L      tlog   POO -^j (26) 

j=(k-l)Nb+l 

is the contribution to the summation in Eq. (24) of the kth branch examined by 

the decoder.   Finally, we can drop the constant from Eq. (25)  and focus our 

attention on the  sum 

n 

Ln =   I    Xk    ' <27) 
k=l 

which increases monatonically with the probability P . 
n 

A typical behavior of L    as a function of n is illustrated in Fig. 6.   The 

value of X    is normally positive in which case the probability that an error has 

been committed at some particular node  is greater than the probability than an 

error has been committed at the preceding node.   Thus, if the decoder has reached 

the n111 node and the value of A. corresponding to the a posteriori most 

probable branch stemming from it,  is positive, the decoder should proceed to 

examine the branches stemming from the following node on the assumption 

that the path is correct up to that point.   On the other hand, if the value of A 
n+1 

is negative, the decoder should assume that an error has occurred and examine 

other branches stemming from preceding nodes in order of relative probability. 
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SECTION IX 

• 

A SPECIFIC DECODING PROCEDURE 

It turns out that the process of searching other branches can be considerably 

simplified if we do not insist on searching them in exact order of probability.  A 

procedure is described below in which the decoder moves forward or backward 

from node to node depending on whether the value of L at the node in question 

is larger or smaller than a threshold T.   The value of T is increased or 

decreased in steps of some appropriate magnitude T    as follows.   Let us 

suppose that the decoder is at some node of order n, and that it attempts to 

move forward by selecting the most probable branch among those not yet 

tried.   If the resulting value of L^ exceeds the threshold T, the branch is 

accepted and T is reset to the largest possible value not exceeding L + . 

If. instead, L^ is smaller than T, the decoder rejects the branch and+L>ves 

back to the node of order n-1.   If L^ ^ T, the decoder attempts again to move 

forward by selecting the most probable branch among those not yet tried, or, 

if all the branches stemming from that node have already been tried, it rnc^es 

back to the node of order n-2.   The decoder moves forward and backwards in 

this manner until it is forced back to a node for which the value L is smaller 

than the current threshold T. 

The implication of the decoder being forced back to a node for which L is 

smaller than the current threshold is that all the paths stemming from that 

node contain at least a node for which L falls below the threshold. This situa- 

tion may arise because of a mistake at that node or at some preceding node, as 

illustrated in Fig. 6 by the first curve branching off above the correct curve. It 

may also result from the fact that, because of unusually severe channel disturb- 

ances, the values of L along the correct path reach a maximum and then 
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decrease to a minimum before rising again, as illustrated by the main curve in 

Fig. 6.   In either case the threshold must be reduced by T    in order to allow the 
o 

decoder to proceed. 

After the threshold has been reduced, the decoder attempts again to move 

forward by selecting the most probable branch just as if it had never gone beyond 

the node at which the threshold had to be reduced.   This leads the decoder to 

retrace all the paths previously examined to see whether L remains above the 

new threshold along any one of them.   Of course,  T can not be allowed to 

increase while the decoder is retracing any one of these paths, until it reaches 

a previously unexplored branch.   Otherwise, the decoder would keep retracing 

the same path over and over again. 

If L remains above the new threshold along the correct path, the decoder 

will be able to continue beyond the point at which it was previously forced back, 

and the threshold will be permitted to rise again as discussed above.   If instead 

L still falls below the reduced threshold at some node of the correct path or an 

error has occurred at some preceding node for which L is smaller than the 

reduced threshold, the threshold will have to be further reduced by T .   This 

process is continued until the threshold becomes smaller than the smallest value 

of L along the correct path, or smaller than the value of L at the node at which 

the mistake has taken place. 

The flow chart of Fig. 7 describes the procedure more precisely than it 

can be doen in words.   Let us suppose that the decoder is at some node of order 

n.   The box at the extreme left of the chart examines the branches stemming from 

that node and selects the one which ranks i* in order of decreasing a posteriori 

probability*.   Next, the  value Ln+1  is computed by adding L    and A.      .   The 

*The value of A for this branch itä indicated in the chart by the subscript i(n), and 
the integer i(n) is assumed to be stored for future use for each value of n.  The 
number of branches is b = 2^o.   Thus 1 £ i(n) £ b. 
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value of   Ln   may be needed later if the decoder is forced back to the nth node, 

and therefore it must be stored or recomputed when needed.    For the sake of 

simplicity, the chart assumes that   Ln   is stored for each value of  n. 

The chart is self-explanatory beyond this point except for the function 

of the binary variable   F.    This variable is used to control a gate which allows 

or prevents the threshold from increasing depending on whether   F = 0   of 

F = 1   respectively.    Thus,    F   must be set equal to   0  when the decoder 

selects a branch for the first time, and equal to   1   when the branch is being 

retraced after a reduction of threshold.    The value of   F   is set equal to   1 

each time a branch is rejected; it is reset equal to   0   before a new branch is 

selected only if  T < Ln < T + To   for the node to which the decoder is forced 

back.    The value   F   is reset equal to   0   after a branch is accepted if 

T ~ Ln+1 < T + To  for the node at which the branch terminates.   It can be 

checked that, after a reduction of threshold,    F   remains equal to   1   while a 

path is being retraced, and it is reset equal to   0   at the node at which the 

value of   L   falls below the previous threshold. 
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SECTION X 

EVALUATION OF THE PROCEDURE 

The performance of the sequential decoding procedure outlined in the 

preceding section has been evaluated analytically for all discrete channels 

without memory.    The details of the evaluation and the results will be presented 

in a forthcoming paper.    The general character "f these results and their 

implications are discussed below.    The most important characteristics of a 

decoding procedure are its complexity, the resulting probability of error per 

digit,  and the probability of decoding failure.   We shall define and describe 

these characteristics in order. 

The notion of complexity actually consists of two related but separate 

notions:   the amount of equipment required to carry out the decoding operation, 

and the speed at which the equipment must operate.   Inspection of the flow 

chart shown in Fig.  7 indicates that the necessary equipment consists primarily 

of that required to generate the possible channel inputs, namely a replica of 

the encoder, and that required to store the channel output and the information 

digits decoded.   All other quantities required in the decoding operation can 

be either computed from the channel output and the information digits decoded, 

or stored in addition to them if this turns out to be more practical.   We saw 

in Section I that the complexity of the encoding equipment increases linearly 

with the encoder memory    v  , since the binary encoder must convolve two 

binary sequences of lengths proportional to   v  .    The storage requirements 

will be discussed in conjunction with the decoding failures. 

The speed at which the decoding equipment must operate is not the same 

for all its parts.    However, it seems reasonable to measure the required 
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speed in terms of the average number   n  of branches that the decoder must 

examine per branch transmitted.    A very conservative upper bound to   n   has 

been obtained which has the following properties.    For any given discrete 

channel without memory there exists a maximum information transmission 

rate for which the bound to   n   remains finite for messages of unlimited length. 

This maximum rate is given by 

R 
comp poH   v ^ 0 P (x) \/P(y|x) (28) 

Then,  for any transmission rate   R < R^^, the bound on  n  is not only 

finite but also independent of   „ .    This implies that the average speed at which 

the decoding equipment has to operate is independent of   i> 

The maximum rate given by Eq.   (28) bears an interesting relation to the 

exponential factor  a   in the bound,  given by Eq.  (9),  to the error probability 

for optimum block decoding.    As shown in Fig. 4, the curve of a   versus   R 

coincides, for small values of  R,   with a straight line of slope-1.    This 

straight line intersects the   R  axis at the point R = R Clearlv R <•   r 
_        .x, .   , comP comp        - 

The author doesn't know of any channel for which   R is smaller than 
comp 

1/2 C, but no definite lower bound to   R has yet been found 
comp 

Next, let us turn our attention to the two ways in which the decoder 

may fail to reproduce the Information digits transmitted.   In the decoding 

procedure outlined above no limit is set on how far back the decoder may go 

in order to correct an error.    In practice, however, a limit is set by the 

available storage capacity.    Thus, decoding failures will occur whenever the 

decoder proceeds so far along an incorrect path that, by the time it gets back 
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to the node where the error was committed, the necessary information has 

already been dropped from storage.    Any such failure is immediately recognized 

by the decoder because it is unable to perform the next operation specified by 

the procedure. 

The manner in which such failures are handled in practice depends on 

whether or not a return channel is available.   If a return channel is available, 

the decoder can automatically ask for a repeat. If no return channel is 

available, the strean of information digits must be broken into segments of 

appropriate length and a fixed sequence ot V - P     digits must be inserted 

between segments.    In this manner,  if a decoding failure occurs during one 

segment, the rest of the segment will be lost but the decoder will start operating 

again at the beginning of the next segment. 

The other type of decoding failure consists of digits erroneously decoded 

which can not be corrected regardless of the amount of storage available to 

the decoder.    These errors are inherently undetectable by the decoder, and 

therefore, do not stop the decoding operation.    They arise as follows. 

The decoder,  in order to generate the branches that must be examined 

feeds the information digits decoded to a replica of the encoder.    As discussed 

in Section VI, the set of branches stemming from a particular node is specified 

by the last   v - v      information digits.    Then, let us suppose that the decoder 

is moving forward along an incorrect path and that it generates, after a few 

incorrect digits,  a sequence of  v - V      information digits which happen to 

coincide with those transmitted.    This is a very improbable event because the 

decoder is usually forced back long before it can generate that many digits. 

However,  it can indeed happen if the channel disturbance is sufficiently severe 

during the time interval involved.    After such an event, the replica of the 

encoder (which generates the branches to be examined) becomes completely 
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free of incorrect digits, and therefore the decoding operation proceeds just 

as if the correct path had been followed all along.   Thus, the intervening errors 

will not be corrected.   As a matter of fact, if the decoder were forced back to 

the node where the first error was committed, it would eventually take again 
the same incorrect path. 

The resulting probability of error per digit decoded is bounded by an 

expression similar to Eq.  (9).    However,  the exponential factor  a   is larger 

than for block encoding, although of course it vanishes for   R  = C.    This fact 

may be explained heuristically by noting that the dependence of the encoder 

output on his own past extends beyond the symbols corresponding to the last 

u   information digits.    Thus, we might say that, for the same value of   . . 

the effective constraint length is larger for sequential encoding than for block 
encoding. 

Finally,  let us consider further the coding failures mentioned above. 

Since these decoding failures result from insufficient storage capacity,  we 

must specify more precisely the character of the storage device employed. 

Suppose the storage device is capable of storing the channel output corresponding 

to the last   n   branches transmitted.   Then,  a decoding failure occurs whenever 

the decoder is forced back   n  nodes behind the branch currently transmitted. 

This is equivalent to saying that the decoder is forced to make a final decision 

on each information digit within a fixed time from their transmission.    Any 

error in this final decision, other than errors of the type discussed above. 

will stop the entire decoding operation.    No useful bound could be obtained to 

the probability of occurrence of the decoding failures resulting from this 

particular storage arrangement. 

Next, let us suppose that the channel output is stored on a magnetic 

tape,  or similar buffer device, from which the segments corresponding to 
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successive branches can be individually transferred to the decoder upon request. 

Suppose further that the internal memory of the decoder is limited to   n branches. 

Then, a decoding failure occurs whenever the decoder is forced back n branches 

from the furthest one ever examined, regardless of how far back this branch is 

from the one currently transmitted. 

Let us indicate with   k  the order number of the last branch dropped from 

the decoder's internal memory.    There are two distinct situations in which the 

decoder may be forced back to this branch after having examined a branch of 

order   k + n.    The value of   L  along the correct path falls below   L    at some 

node of order equal to, or larger than,   k + n;   or it falls below some threshold 

T < 1^ at some earlier node, and there exists an incorrect path, stemming 

from the node of order   k,   over which the value   L   remains above   T   up to 

the node of order   k + n . 

An upper bound to the probability of occurrence of these events can be 

readily found.    It is similar to Eq.  (9), with   ^ - n «^  ,   and a value of  a 

approximately equal to that obtained for threshold block decoding. 
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SECTION XI 

CONCLUSIONS 

The main characteristic of sequential decoding that makes it particularly 

attractive in practice is that the complexity of the necessary equipment grows 

only linearly with   v , while the required speed of operation is independent of 

v .   Thus, it is economically feasible to use values of v  sufficiently large to 

yield a negligibly small probability of error for transmission rates relatively 

close to channel capacity. 

Another important feature of sequential decoding is that its mode of 

operation depends very little on the channel characteristics, and therefore, 

most of the equipment can be used in conjunction with a large variety of 

channels. 

Finally, it should be stressed that sequential decoding is in essence 

a search procedure of the hill-climbing type.   It can be used in principle to 

search any set of alternatives represented by a tree,  in which the branches 

stemming from different nodes of the same order are substantially different 

from one another. 

91 



REFERENCES 

1. W.W.  Peterson,  Error-Correcting Codes. M.I.T.  Press and Wilev 
1961. •" 

2. R. M.   Fano,  Transmission of Information. M.I.T.  Press and 
Wiley,  1961. 

3. C.E.  Shannon,  "A Mathematical Theory of Communication, "   Bell 
System Tech.  J. ,  27,  379,  623 (1948). 

4. J.M. Wozencraft,  "Sequential Decoding for Reliable Communications, " 
Technical Report No.  325,  Research Laboratory of Electronics, 
M. I. T. ,  1957 - See also:   J. M. Wozencraft and B.  Reiffen, Sequential 
Decoding. M.I.T.  Press and Wiley,  1961. 

5. B.  Reiffen,  "Sequential Encoding and Decoding for the Discrete 
Memoryless Channel," Technical Report No.  374,  Research Laboratory 
of Electronics,  M.I.T.,  1960. 

6. K.M.  Perry and J.M. Wozencraft,  "SECO:   A Self Regulating Error 
Correcting Coder-Decoder, " IRE Trans. IT-8.  No. 5. S128, 
Sept.  1962. 

7. J.  Ziv,  "Coding and Decoding for Time-Discrete Amplitude Continuous 
Memoryless Channels," IRE Trans. IT-8.  No.  5.   199, Sept.  1962. 

8. R. G.  Gallager,  "Low Density Parity-Check Codes, " IRE Trans. IT-8 . 
21,  Jan.   1962. 

9. R. G.  Gallager,  "Sequential Decoding for Binary Channels with Noise 
and Synchronization Errors, "   Report 25G-2,   Lincoln Laboratory, 
M.I.T.,  1961. 

10.       J.M. Wozencraft and M. Horstein,  "Coding for Two-Way Channels, " 
Information Theory,   Fourth London Symposium (Edited by C.  Cherry) 
Butterworth,   London,  1961, p.  11. 

93 



RECENT CONTROL SYSTEMS THEORY 

John G.  Truxal* 

SECTION I 

INTRODUCTION 

The recent, explosive growth of control technology (and the related control 

theory) can be traced to three somewhat diverse causes: 

(1) The increased emphasis on military command and control systems 

in conjunction with the accelerating utilization of computer control 

in industrial automation, motivated by economic and performance 

considerations. 

(2) The breadth of control engineering, with the increasing scope of 

meaningful applications in such directions as economic system 

analysis,  management science, medical engineering, and societal 

engineering. 

(3) The development of computer technology, with the consequent 

radical changes in the scope of engineering analysis and design 

and in the constraints on the class of useful and useable engineering 

systems. 

This growth of the control and systems engineering field is mirrored by the 

intensive Russian and American research effort in industrial and nonprofit 

laboratories and in universities. ** 

* Polytechnic Institute of Brooklyn. 

** In U. S.  universities alone, the research budget approaches ten million 
dollars per year,  according to the 1961 survey of the American Automatic 
Control Council. 
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In the following paragraphs, an attempt is made to indicate the status of 

current control theory and research:   the nature of the problems under con- 

sideration, the extent to which theory relates to engineering practice, and 

certain directions particularly promising for future developments.   Emphasis 

is directed toward those aspects of the theory which either have yielded 

interesting engineering results or promise such a yield in the near future; thus, 

in these pages the construction of a future systems theory, in the context of 

Dr. Drenick's remarks, is only an objective very secondary to the development 

of the portions of that theory which are needed for the solution of pressing 

current problems. 
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SECTION II 

A MODERN CONTROL SYSTEM 

Many of the requirements imposed on control theory can be illustrated by 

the relatively simple, specific example shown in Fig.   1:   the control of a short- 

range vehicle by an electromechanical system which attempts to guide the 

vehicle along a line-of-sight path established by a human operator tracking the 

desired destination.    The complete system thus involves two primary sub- 

systems:   the tracking loop and the guidance-control loop.    (The system shown 

represents only one half of the overall configuration, which includes control of 

both the horizontal and vertical positions.) 

In other words, as the target moves,  the operator tracks with the optical- 

mechanical system in an attempt to hold the crosshairs on the target at all 

times.    Simultaneously, the position of the vehicle is automatically compared 

with the crosshair position; the resulting error is modified in a computer to 

generate a control signal in coded form suitable for transmission to the vehicle. 

Within the vehicle,  this control signal is used to actuate the corrective,  control 

system which attempts to modify vehicle position in such a manner as to reduce 

the error toward zero. 

The theoretical design problem for such a system consists of the 

following steps: 

(1) Consideration of system structure. 

(2) Simplification of the model. 

(3) Analysis of performance. 

(4) Design (in this case, of the computer program). 

(5) Evaluation of performance. 

(6) Introduction of complexities neglected in initial design. 
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Obviously, engineering design seldom involves a steady progression through 

these steps, but rather normally entails a variety of feedback loops.   Even in 

the simple form presented here, however,  the design problem illustrates many 

of the elements of the modern engineering theory. * 

First, the essential structure of the system is relatively complex (at 

least in comparison with the systems customarily described in the technical 

literature).    The two-dimensional feature of the problem,  involving the hori- 

zontal and vertical modes intercoupled by the nature of the vehicle dynamics 

and often also by the nature of the control-signal constraints, results in an 

overall system which can only be analysed with the use of analog or digital 

* The selection of a simple guidance-control system as a vehicle for develop- 
ment of the thoughts of the following pages demands a certain justification, in 
the light of the central theme throughout these contributions of the information 
system sciences.    Certainly to a considerable degree, an example such as 
Fig.  1 lies directly within the province of the control engineer, rather than 
the systems engineer. 

The distinctions between this feedback system and the more grandiose sys- 
tems for the detection and evaluation of enemy attacks (for example) are 
perhaps not as profound as might appear from superficial consideration. 
Certainly the contribution of the control and feedback engineer toward the 
development of an information system science must be based on the extension 
of the basic control theory to encompass systems which possess digital data 
processors rather than electromechanical equipment as components.    This 
development from the specific and simple toward the general and complex 
has commonly characterized basic engineering research in the U. S. ; it seems 
reasonable that information system science will evolve from the combination 
of such a direction and the merging of fundamental concepts from newly 
related scientific fields. 

Thus, here emphasis is directed toward those aspects of feedback and 
control theories which relate to a broader system theory. 
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equipment.    The determination of an approach to the design of such a system 

is still a problem which is largely unsolved (in spite of the extensive research 

efforts on multidimensional system analysis        ) since, in situations such as 

the present, complete separation of the two outputs by noninteracting controls 

seems clearly incompatible with the demands for system economy, simplicity, 

and reliability. 

Even if attention is focussed on the single-dimensional system of Fig.  1, 

difficult questions arise in connection with the desirability of the selected 

configuration.    For example, the control system engineer usually bypasses the 

fundamental question:   does the configuration represent an efficient utilization 

of the human operator ? In our configuration, the operator is asked only to 

track the target with the crosshairs; the guidance-control loop does not utilize 

the prediction abilities, the learning abilities, or the adaptability of the human 

operator (e.g. , his ability to compensate intelligently for certain equipment 

malfunctions or his adeptness in precognitive tracking).    The desirable use of 

the human being depends in general upon such factors as the nature of the other 

tasks concurrently assigned to him, the environmental conditions, the degree 

of training which can be attributed to him, and the probability distribution of 
[ 2] target motions. 

Consideration of the considerable and unusual abilities of the human 

operator to adapt and learn indicates, however, that in general the two loops 

of Fig.  1 should not be designed independently, that the human being should be 

allowed to influence directly the computer output.    The additional performance 

characteristics achievable by a feed-forward transmission path from the human 

operator directly into the computer can be utilized to simplify computer design, 

over-ride certain malfunctioning of the other equipment, and improve overall 

system performance in even relatively simple cases.    Even if this modification 
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of the configuration of Fig. 1 is not inserted, the two loops will be coupled to 

at least a minor extent if the operator can see not only the target but also the 

vehicle,  since the operator will be aware of the overall purpose of the system 

and will inevitably attempt to abet the action of the guidance-control loop. 

Inspection of Fig.  1 suggests immediately that improved performance 

could be achieved if a signal transmission path were added directly from the 

input target position into the computer.   In the usual implementation, however, 

there is no possibility of generation of a signal measuring target position.    The 

human operator can be used to develop a signal which is a function of the tracking 

error; alternatively, the crosshair-position signal can be modified dynamically 

(e.g., so that the input to the guidance-control loop contains a component pre- 

dicting the future crosshair position to offset lags in both loops). 

[ 3l Thus,  the choice of configuration, in even the elementary problem 

considered here, is by no means simple and straightforward; an intelligent 

design decision can only be made on the basis of detailed studies of the man- 

machine system, and unfortunately,  really only after analysis and initial design 

of the separate loops represented in Fig.  1 (i.e. , after the completion of all 

six steps listed above).    In actual situations the system engineer, harassed by 

pressing time schedules and confused by inadequate or insufficient data describing 

system components, customarily selects a configuration rattier arbitrarily (but 

with finality) and proceeds as rapidly as possible to the better-defined problem 

of the design of a specific system component (in the case of Fig.  1, the computer 

program). 

This brief description above of the difficulties arising at the outset of 

system design is included here to emphasize the large degree of arbitrariness 

which characterizes so many control system problems — an arbitrariness which 

tends to be forgotten once we are immersed in the details of computer design 
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and the problems (for example) of optimizing the guidance-control loop.    Before 

considering the nature of this more detailed loop design, however, we mention 

briefly certain additional aspects of the system design represented in Fig.  1 — 

aspects which further characterize so many of the applications of modern control 

theory. 

In addition to the configuration complexity and the involvement of a human 

operator, design is often complicated by the time-varying nature of the control 

and vehicle dynamics.    For example, if the vehicle changes speed markedly 

during the duration of the control interval, the "natural frequencies" may vary 

by large factors over time intervals only slightly larger than the system 

response time.    In such a situation, the concepts of natural frequencies,  damping 

ratios, and transfer functions can not be interpreted, and analysis requires a 

return to the simultaneous differential equations derived from the basic physics 

underlying the operation of the system components. 

An additional complication is introduced by the existence of time delays 

in one or more parts of the system.   In our specific example of Fig.  1,  signi- 

ficant time delays may be present in the action of the human operator (unless 

the target motion is sufficiently simple to permit the operator to anticipate 

future values),  in the computer (because of the time required to code,  to solve 

the equations of control, and to generate the coded computer output signal), 

and in the transmission system. 

The existence of ideal time delays in an analog system results in a 

mathematical model involving differential difference equations; the resulting 

analysis of even relatively simple systems is markedly more difficult than 

with the conventional analog or digital system.   While there seems to have 

been a steady increase in the Russian literature on the problem of the analysis 

of feedback systems with pure delays (particularly with emphasis on process 
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control problems in which delay results from the time required for transportation 

or for chemical or physical reactions), there seems to be a dearth of meaningful 

approaches to the resulting problems of system analysis.    Perhaps the most 

useful approach involves a return to the classical time-domain model, with a 

sampler inserted artificially to convert the mathematical model to a set of 

difference equations.    (If the sampling period is chosen so that the delay is an 

integral multiple of this period, the delay is simply represented mathematically. ) 

For example, the determination of the unit impulse response for the 

simple configuration of Fig.  2, including a process with a delay of one second, 

involves the time-domain solution of the relation 

[uo + k(t)]    e(t) = r(t)      . (i) 

where uo is the unit impulse, k the impulse response for K(s), e the error, 

and r the input (a unit impulse). If we choose a sampling period of one second, 

and if  k(t)   is then given by the sequence of sample values 

| k ( = 0,  0,  3/2,  7/4,   15/8,  31/16,   . . (2) 

a straightforward numerical solution of Eq.  (1) yields an   e   sequence directly 

by long division: 

| e j   =1,0,  -3/2,  7/4,  3/8,  -31/16,   . . . 

In the absence of the one-second delay, this unstable response is stable and 

exceedingly simple: 

(3) 

je |    =1,  -3/2,   1/2,  0,  0,  0,   ... (4) 
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A straightforward and conceptually simple analysis of this type permits 

evaluation of the response of actual systems of considerable complexity.    The 

existence of time delay is largely immaterial in its effect on analysis complexity. 

Unfortunately,  such numerical analysis (or analysis with discrete state system 

theory) is only somewhat indirectly useful in system design, primarily because 

the analysis does not lead in general to global solutions. *   The situation here 

is directly comparable to that which exists when we compare numerical analysis 

methods with the differential and integral calculus:   while discrete system 

analysis clarifies certain fundamental concepts of the calculus and permits the 

solution of specific problems of awesome complexity,  the calculus leads 

naturally to global solutions and general interpretations. 

Thus, the modern control systems design problem very often involves 

a complex system configuration (including a number of interlocking feedback 

loops and numerous inputs and outputs),  elements which are time-varying or 

nonlinear or which include a human operator, various time delays which may 

vary during operation, and finally (although not mentioned above) elements 

which are only very vaguely understood and poorly characterized mathematically. 

* We certain can derive stability tests,  for example,  for systems described 
by sets of linear difference equations with constant coefficients.    In the 
analysis of complex systems, however, we in general do not have available 
simple techniques for the determination of the influence of a particular 
parameter on system performance.    The problem of interpreting the numerical 
analysis is further complicated by uncertainty as to how to select the sampling 
period (in the analysis above,  for example).   We would like to select the 
sampling period as large as possible to simplify calculations,  but sufficiently 
small to insure our discrete model yields a response adequately close to the 
actual response of the continuous model.    Again,  no simple theory exists for 
determination of the compromise. 
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System design involves, correspondingly, system studies to arrive at some 

sort of decision on the selection of a configuration - a decision which usually 

must be reached relatively early in the design procedure (whether we are 

discussing a specific and relatively simple control problem as protrayed in 

Fig.  1,  or we are concerned with an information processing system involving 

primarily communication links and computers for the data storage and the 

decision functions - the problems seem to differ primarily in the nature of 

the components,  rather than in the philosophy of design). 

The aspects of system design discussed above are essentially concerned 

with what we might term Stage 1 of the system design problem:   the transition 

from the customary, vague statement of broad system objectives to a con- 

figuration and a tractable model for the various elements of the system.    Stage 

2 is concerned with mathematical design of the "free" elements (e. g., the 

computer of Fig. l) - the components in which at least certain of the parameters 

can be adjusted within specified bounds.   In the following section, we consider 

the status of modern control theory for the second stage, which essentially 

completes the theoretical aspect of the system design,   [in an actual problem, 

these two stages are followed, of course, by specific realization of desired 

component characteristics (frequently a design problem in itself), prototype 

construction and test and/or computer simulation system studies (for reliability 

and life-test evaluations,  for example), actual system testing and evaluation, etc. ] 

106 



SECTION III 

OPTIMIZATION THEORY 

The central theme of control and feedback systems research at the present 

time is unquestionably optimization:   the design of physical systems to yield 

performance which is analytically optimum according to a selected performance 

criterion.   While the control systems engineer hopes to apply this optimization 

theory to the design of the overall system (as depicted in Fig.  1, for example), 

mathematical and conceptual difficulties ordinarily require that the optimization 

theory be applied to the design of specific elements such as the computer,  in 

order to yield an optimum within the constraints imposed by the arbitrary 

selection of configuration and the simplification of the models of the process 

being controlled, the human operator, etc. 

Optimization theory, as we shall briefly describe it in the following 

paragraphs,  is motivated by: 

(1) The difficulties which arise when we attempt to apply conventional 

control theory to complex problems such as the system of Fig.  I. 

In even moderately complicated situations, the designer is confronted 

with the difficult question of how to start.    Optimization theory 

delineates the necessity for selection of a mathematical performance 

criterion, the type of models required for characterization of the 

components,  and the form of an appropriate control system (i.e., 

the solution to the optimization problem). 

(2) The need for an "absolute" basis for the evaluation of systems 

designed by other approaches,  including empirical methods. 
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(3)   The possibility of realizing useful solutions.    For example, in 

a variety of idealized guidance problems, optimization theory has 

led to such significant improvements in system performance that 

there can be no question of the significance of the solution even if 
[ 4] second-order effects were included. A problem falling into 

this category is the determination of a program of attitude and 

velocity versus altitude to bring a piloted aircraft from the ground 

to a pre-specified altitude and horizontal flight speed in minimum 

time. 

The excitement of optimization theory resides in the strong promise that 

significant results will be realized in all three of these directions. 

Any discussion of modern optimization theory is difficult because the 

more general we attempt to be in our theory, the more simplifications are 

necessary to bring the problem within tractable bounds.   While this conflict 

exists throughout engineering, it is particularly troublesome in optimization 

theory, since there is a fundamental question of the value of an optimum solu- 

tion for an idealized and hypothetical problem:   is this "optimum" solution of 

the hypothetical problem actually better than a non-optimum solution of the 

real problem? 

Input r (t)    Control u(t) 
Process 

Output  x(t) 

Fig. 3  Optimization Problem 

The difficulty can be illustrated with reference to Fig. 3, which indicates 

the notation used below.   The control problem is:   given the reference input  r 

and the process and the desired behavior of the response  x, how do we determine 
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the control signal   u ?  The optimization problem is straightforward if we can 

impose adequate constraints on the various elements of the problem: 

(1) The signals — for example,  if  r   is known to be a member of a 

narrow class,  such as the polynomials of second order in   t, or if 

r   can be approximated by such a function over intervals of time 

significantly larger than the system response time. 

(2) The process — if the process is completely known. 

(3) The state of the system — if the present state is known or 

immediately measurable. 

(4) The criterion — if the performance criterion to be maximized 

or minimized is specified. 

(5) The constraints — if the constraints are,  for example,  saturation 

limits on the components of  u,    and do not involve constraints 

on the state components. 

(6) The disturbances — if there are no disturbances influencing 

the future state of the system, or if the effects of such disturbances 

can be determined precisely. 

(The above are not necessary conditions for the solution of the optimization 

problem,  but rather are listed to indicate the complications which arise when 

we attempt to apply the theory in real-life situations.) 

If all of the conditions cited above are applied,  the resulting control 

problem is hardly exciting.    Indeed,  in the challenging systems problems, we 

find that several, if not all,  of the conditions are violated.    Furthermore, in 

actual situations the goal of system design if frequently improved performance, 
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rather than optimum performance in the sense of the minimization of some 

arbitrarily selected, mathematically convenient integral function of the system 
error. 

As a consequence of these difficulties, and in the light of the demands on 

the theory as expressed at the beginning of this section, two quite different 

approaches to optimization have developed in the last few years in the control 

systems field:   approaches which we term here restricted optimization and 

general optimization, although these names perhaps imply an unjust relative 

evaluation. 
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SECTION IV 

RESTRICTED OPTIMIZATION 

Within the realm of restricted optimization, we include those design 

approaches which focus on the concept of improved system performance,  and 

which attempt to realize this goal by restricting consideration to a sub-optimum 

problem of system design.    For example, within this category fall those sys- 

tems which operate on the basis of the adjustment of a single parameter ( or a 

small number of parameters) to extremalize a selected function of system 

performance.    The system configuration and the individual elements are selected 

according to conventional control techniques, after which the optimization is 

included in order to improve performance within the framework of the original 

system design. 

The technical literature of the feedback control is replete with examples 

of such sub-optimal systems developed during the last few years.    In general, 

such designs are characterized by simplicity both conceptually and practically, 

reliability, and emphasis on practicality.    In terms of control systems theory, 

such designs represent major contributions primarily in terms of the novel 

configurations which result — systems which never would evolve from the con- 

ventional control theory focussing so heavily on stability considerations for 

linear,  single-loop feedback configurations. 

The research efforts along this direction of restricted optimization can 

be illustrated by three specific approaches, the first of which is depicted in 

Fig.  4, a sketch of the M. I. T.  Instrumentation Laboratory adaptive system 

which has evolved from the early work by Draper and Li on optimalization.   In 

this configuration,  a conventional feedback control system (represented in 

simplified form by the single control loop in the figure,  even though in most 
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cases the configuration is multi-loop) is designed; superimposed on this is the 

optimizing subsystem.    The actual system output is compared with the response 

of a model to yield a generalized error   e  .   A nonlinear function of this   e 
e g 

is used to adjust a parameter   K  of the control loop to yield a minimum of the 

performance criterion. 

Certain basic problems arise in the design of such a "model-reference 

adaptive system:" 

(1) How is the model to be chosen? 

(2) How are we to select that parameter   K  which is to be varied ? 

(3) How is the criterion function chosen ? 

(4) Under what conditions is the optimizing loop itself stable ? 

While certain aspects of these problems have been investigated, * the extension 

of this approach to complex configurations in the sense of Section II of this 

paper relies heavily on the final design and verification of performance charac- 

teristics via simulator studies.   Such a situation should be neither surprising 

nor discouraging, however,  in view of our earlier thought that optimization 

techniques are primarily useful in the design of complex systems in which the 

engineer is faced with the difficult question of how to start. 

The extensive development of the configuration of Fig. 4 has been motivated, 

at least in part,  by the adaptive autopilot problem for piloted aircraft moving 

through radically varying environments — a specific engineering problem which 

also stimulated the development of the Minneapolis-Honeywell autopilot con- 
[ 7] figuration. Complementary to the military interest in optimization has been 

* In particular,  recent work has focussed on the selection of the moder 5 ^ 
and the relation of the sensitivity function to the selection of the parameter K. '• 6 ^ 
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the emphasis on industrial applications of computer control; once the computer 

is installed for data logging and routine processing of system performance infor- 

mation, for shutdown, startup and emergency control, and for the automation 

of routine economic analyses, the systems engineer visualizes utilization of the 

computer flexibility to realize optimum plant performance, or at least control 

which is more precise and faster than that achievable with human operators. 

In the technical literature describing applications of optimum computer 

control, two approaches dominate:   the model approach and the automatic 

experimental approach. *   Under the former design philosophy, a model of the 

process is used to determine the optimum control signal as a function of 

measurable signals and disturbances.   The response can be very rapid, can 

avoid difficulties with multiple extrema, and can include learning or updating 

modification in the model; on the other hand, performance is limited by the 

accuracy of the model, and realization of performance near optimum requires 

intensive studies of and measurements on the process to be controlled. 

In the automatic experimental approach, the optimum is realized by the 

injection of artificial input signals to perturb the operating point, with a sub- 

sequent evaluation of whether the performance improved or deteriorated as a 

result of the change.    In such an approach,  the speed of response is limited by 

the fact that the system must search for an optimum, the presence of multiple 

extrema causes difficulties, and the existence of many signal variables leads 

to exceedingly slow and possibly poor performance.   A considerable portion of 

the optimization literature of the past few years is devoted to study of searching 

techniques to overcome one or more of these difficulties. 

[ 81 
* The terminology here is that of the Chen-Decker article, which also includes 

references to a number of actual applications of industrial computer control. 
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[ 8l Chen and Decker emphasize the advantages to be gained by combining 

these two approaches, with the performance of the composite system indicated 

in Fig.  5.    The plot shows the payoff   J   as a function of the control signal   u 

for various disturbance inputs   (d    and   d     specifically indicated).    The solid 

curve portrays the variation of   J  with   u  for the actual plant, the dashed curve 

the corresponding solution for the simplified model of the plant.    The two con- 

straint curves indicate the allowable bounds on   u  and   J  which result from 

considerations such as safety or which are imposed in order to avoid subsidiary 

extrema. 

If the system is initially operating at point 0 with a disturbance input   d , 

and the dynamic performance is demonstrated by a change from   d     to   d ,   we 

find that the performance moves initially to point   E   since   u  can not change 

instantaneously.   As fast as the model system responds, operation moves to 

point C;* thereafter the automatic experimental procedure moves the system 

toward the optimum operating point B.    Clearly we are using the model here 

for fast, gross corrections, the automatic experimental system for the slower, 

fine corrections, although the specific inter-relation of these two portions of 

the system may be quite complicated in problems more realistic than the simple 

situation depicted in Fig.  5. 

* The system was initially at 0, rather than the model value D.    This offset 
from D was the result of the automatic experimental procedure.    If this 
offset remains after the step change in   d,   the model action may bring 
operation to   A  rather than   C; the actual location depends on the way the 
model and the experimental signals are inserted.    In any case, however, 
motion toward   B  follows the action of the experimental equipment, and in 
many applications the details of motion are of little interest. 
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Fig. 5   Second Example of Restricted Optimization 
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The final aspect of restricted optimization to be discussed here is based 

upon the utilization of simple digital logic for the determination of the desired 

control signal   u  on the basis of inspection of the response of a high-speed 

model of the process.   If for conceptual simplicity we assume the discrete case, 

we can consider in Fig.  4 the problem of selecting the control signal   u  which 

is to be constant over each interval of time.    At the time   t= 0,   we wish to 

determine the constant control signal for the first interval from   0   to   T.    This 

determination must be derived from the available information:   the present and 

past values of the control signal  u,   the response x,   and the reference input  r. 

The determination can be implemented in the following way.   We consider 

only the values of  r, x,    and   u  every   T   seconds (i. e.,  at the sampling times). 

On the basis of the known statistical characteristics of   r,   we can estimate 

ri' r2' r3'  ••'  (theva111680^  r   at   T,  2T,  3T,  ...  ).    On the basis of the past 

values of  u  and  x  and our knowledge of the process dynamics, we can determine 

the response values into the future   (x^ x^ x3,  ...  ) for any assumed sequence 

of control signal values   u^  u., u2    If we wish to minimize the mean 

square error, we might attempt to select  u     in such a way that (assuming   u , 

u2,  ...  are later selected optimally) we would minimize the summation 

(ri  "  Xl)2   +   (r2  "  V2 + • • • 

It seems apparent that the choice of  u     has a decreasing effect on the 

successive terms in this series; furthermore, because of the increasing difficulty 

of predicting   r    as we look farther into the future, we should weight more 

heavily the early terms.    Such considerations suggest the consideration of only 

a small number of these terms, for example three: 

J = (r1  - x/   +   (r2 - x2)2   +   (r3  - x/    . (5) 

117 



Here  r ,  r ,   and  r     are predicted values of  r;   the  x    are future system 

response values which incorporate the effects of past signals plus the effects 

of the variable or controllable future signals   u , u,   and  u .   The optimization 

involves determination of 

mm 
I   .    = 
mm u0, u^ u2 

(ri-Xl)2 + (r2-X2)2 + (r3-X3)2 (6) 

but we actually shall apply to the process only the signal   u .   When   t = T 

(and  u    is to be applied), we shall re-evaluate the new optimum value for the 

control signal. 

The attractiveness of this approach to sub-optimization derives from the 

possibility of simplification in the evaluation of  u .   If we consider a binary 

control signal (u   equals -1 or +1), we must choose between these two values 

on the basis of minimization of J,   where we assume  u    and  u    will sub- 

sequently be selected in an optimum manner.    In terms of the logic required to 

implement this decision on   u ,   we need to divide our three-dimensional space 

into two parts:   one requiring   u   = +1, the other   u 1.    Our present location 

in this three-dimensional space is determined from the three predicted values 

of the future system input and the response with all possible inputs. 

[ g] 
Major further simplication is possible if the process is linear, so 

that the future response can be divided into two, additive parts resulting from 

past inputs and from future inputs.    Then our present location in this three- 

dimensional space is determined by the predicted values of the future system 

error with no control input.    Implementation of this control scheme then involves 

only high-speed prediction of  e  , e  ,    and  e     without control, and then (by 

simple digital logic) determination of the location of this "state" with respect 
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to the division of "state" space into the two parts corresponding to the two 

possible control signals.    Thus,  this system involves only a high-speed model 

of the process to predict future response values from the present energy 

storage conditions, a predictor to act on the present and past input, and simple 

digital logic to determine in which half of the three-dimensional space we 

are situated. 

The three schemes described in this section are only three of a wide 

variety of practical system realizations derived with emphasis on the sub- 

optimization problem.   In each case,  design of the optimizing equipment requires 

at least a reasonable estimate of process dynamics;* in each case, the opti- 

mizing system is designed to correct for slow process variations or the effects 

of low-frequency disturbance inputs; in each case,  the optimizing components 

are sufficiently simple to permit simultaneous realization of control over 

reliability.    These advantages are at least to some extent offset by the fact that 

meaningfial analysis of the three systems is apparently not possible if we are 

working with anything other than the most elementary processes; actual design 

and verification of the value of optimization must rest upon computer simulation 

studies and actual equipment tests.    This difficulty is perhaps more alarming 

to the professor than to the control system designer,  however, since the latter 

seldom is concerned with systems amenable to detailed analysis, regardless 

of the design philosophy employed.    Certainly in the three directions, control 

engineering is beginning to accumulate an impressive list of successful 

applications. 

* For example, in Fig. 4 neither the model nor the parameter can be 
selected without this knowledge; both the last two methods depend upon a 
model of the approximate process characteristics, even though in both 
cases the model can be improved automatically during normal system 
operation. 
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SECTION V 

GENERAL OPTIMIZATION 

In the examples of the preceding section,  the configuration is selected 

at the outset; the optimization considered is based upon variation of a single 

parameter (or a very few parameters) to realize the best possible performance 

from this configuration.   In this section, we mention briefly the recent work 

on the more general problem of optimization of system performance, with 

optimization based only on the specified process and signals.    As indicated in 

Section III. if we are to obtain solutions of this more general problem, we 

must accept additional constraints on the problem specification.    For example, 

optimization procedures assume the plant dynamics are known entirely - precisely 

in the deterministic cases and in terms of the relevant statistics in the stochastic 
cases. 

The types of optimization problems which have been investigated cover a 

wide range,  depending on the hypotheses as to the nature of the known aspects 

of signals, process dynamics, and constraints.    Two typical problems are: 

(1) Minimization of the time required to reach a specified system 

state from the given initial state, with constraints on the control 

signal (e.g. , the components of  u   subject to saturation).    The 

work in this direction represents a generalization of the well- 

established analysis of the bang-bang problem. 

(2) For control of a vehicle,  minimization of the expected error at 

a certain point in the trajectory.    In a common form, this problem 

clearly illustrates the three elements of the optimization problem: 

criterion,  constraint,  and conflict.    The criterion of performance 
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is the expected error.    The constraints are a specified, limited 

quantity of fuel,  uncertainty in the effects of using a given amount 

of fuel, and uncertainty in the estimation of the present vehicle 

position and velocity.    The conflict arises because the longer we 

wait before making a correction, the more accurate is our infor- 

mation on the vehicle state;   on the other hand, we would like to 

make the corrections as early as possible in order to realize 

greater improvements in the final accuracy from a given quantity 

of fuel. 

Thus,  the specific optimization problem depends upon the criterion, the 

constraints, and the particular conflict involved, as well as on the specific 
,    [ 10,11,12] 

plant dynamics and the known characteristics of the exciting signals. 

The form of the optimization problem can be illustrated in terms of an 

exceedingly simple example.   If the process is described by the differential 

equation in vector form 

x = f(x, u) . (7) 

and by the initial state   x(t ),   and if the criterion is given by the integral 
o 

T 
J =    C     F(x, u) dt   , (8) 

t 

we seek the optimal control policy   u    which minimizes (or maximizes)   S. 

Clearly, two forms of solution are possible.    In the simple case outlined above, 

the optimal control signal   u    depends on  x(t )   and  t;   in other words, at 

the outset we can find the control to apply throughout the time interval from 

t     to   T.   In such a case, which describes the majority of recent optimization 
o 

122 



work, the solution is open-loop: we do not need to measure continually x(t), 

the state of the process, and the control signal does not depend upon process 

response. 

While the justification for the use of feedback in optimal and nonlinear 

systems is certainly not theoretically apparent, we do feel intuitively that 

feedback should assist in the reduction of the effects of immeasurable dis- 

turbances and uncertainties or variations in the process parameters.    The 

close-loop solution can be realized if we can find a solution  u    which depends 

upon continuing measurement of the system state.   Alternatively, we can 

employ a sampled data approach, periodically measuring  x(t)   to update our 

optimal control policy by a re-determination of the optimal design, with the 

measured  x(t)   in the role of  x(t )   initially, and the interval of integral in 

Eq.  (8) changed correspondingly. 

The two basic solutions to the optimization problem are provided by 

Pontryagin's maximum principle and Bellman's dynamic programming. 

In the former approach, we encounter the necessity for the solution of a non- 

linear two-point boundary value problem, with the corresponding need for 

research in computer and simulation techniques for solution.    The problem 

can be solved by arbitrarily assuming  x(T),   rather than the given  x(t ), 

then working backward in time, if we are able to scan until all values of  x(t ) 

are obtained.    If we want a feedback system operating on the basis of meas- 

urement of x(t),   we need computer storage able to handle the entire range of 

x(t).   In order to avoid the storage and computational difficulties,  recent 

research emphasizes the application of steepest descent methods for evaluation 

of the optimal, open-loop control law. 
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In the dynamic programming approach, we calculate in reverse the 

optimum trajectories — again any meaningful problem leads to extreme 

computational and storage difficulties unless logical procedures can be de- 

termined for finding simple approximations to the optimal control policy.    (In 

the dynamic programming approach, however, we are led logically to a 

feedback structure,  since the solution indicates directly the manner in which 

updated and improved data on the system state should be used.) 
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SECTION VI 

CONCLUSION 

Modern feedback and control systems theory is being developed under the 

pressure of a wide range of complex systems problems arising from both 

military and industrial extensions of control technology.    Faced by the myriad 

of system design problems in which a logical starting point is not even apparent, 

the control system scientist (and in particular, the applied mathematician) has 

focussed attention on optimization theory. 

The recent work in optimization has not only led to promising guidelines 

for the solution of actual problems, but of perhaps even greater significance, 

this work has led to a number of fundamental concepts new in control technology. 

For example, the mathematical techniques of dynamic programming lead to 

new insight into system description,  suggest ways to reformulate previously 

difficult problems, and indicate logical techniques for basic problems such as 

the measurement of system state.   The intensive study of optimization bv 
„ , [ 14] 
Kaiman, in particular, has led to definitions of controllability and observ- 

ability,   with novel results in such directions as filtering theory and our 

understanding of the relationship between various process models (e.g. , the 

transfer function and the state description).   Scientific results of this nature 

provide a foundation for a startling expansion of control system science and 

a gradual development from the specific problems of engineering research 

toward the general systems theory of the future. 
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