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SUMMABY 

This report Is concerned with a linear time varying approximation to the 
dynamics of low-speed flying machines. Simplifications and approximations 
are applied widely in order to emphasize essential aspects. 

The range of time variation is described in terms of frozen system." lofii of 
the roots corresponding to the predominant mode of a system. The rate of 
the time variation is described in terms of the deviation from the frozen 
system approximation. An analog computer study was made to specify quanti- 
tatively those rates of time variation which cannot be considered as slow. 

The longitudinal dynamics of VTOL aircraft is studied as an example In 
rather general terms. Approximations and the application of root locus 
methods in terms of the most significant stability derivatives lead to a 
construction describing the behavior of the oscillatory roots during 
transition. 

The results are used in a discussion of the following variable feedback 
configurations: direct feedback adjustments, adaptive feedback, and pro- 
grammed feedback adjustments. 



CONCLUSIONS 

Two distinct aspects of time varying systems are the range and the rate of 
time variation. The question of when the time variation should be considered 
"fast" is answered on the basis of practical considerations by means of a 
computer study. The rate of time variation should be considered fast if, 
during the time of one period of the predominant mode, the spring constant 
variation is equal to (or more than) 50$ and/or the damping coefficient vari- 
ation is equal to (or more than) .5- In these cases the system response is 
markedly different from that obtained by the frozen system approximation. 

The range of the time variation and the behavior of the predominant roots can 
be predicted to a large extent by a construction based on simplifying as- 
sumptions . This method makes the tracking of the influence of important sta- 
bility derivatives very straightforward. With this method, considerable 
a priori knowledge can be provided on the behavior of the oscillatory roots 
during VTOL transition. This knowledge is used in a discussion of three 
different principles which can be used for artificial stability augmentation 
by means of feedback. The advantages of programmed feedback gain adjustment 
versus adaptive control are emphasized. 

Recommendations. 

The performance of an artificial stability augmentation system with programmed 
gain adjustments depends largely on the amount of information available. 
Therefore, further refinements of the presented approximating methods, es- 
pecially in mid-transition, would be of great value. The full potential and 
limitations of such a system should be Investigated by exploring the sensi- 
tivity of the performance to deviations from assumed design parameters. 



mTRODUCTICN 

One common characteristic of low-speed flying machines is their ability to 
achieve rapid changes of the flight condition.    The accent is on the word 
"rapid," and the present report is concerned primarily with this aspect of 
the flying characteristics  of such vehicles. 

The reason why low-speed flying machines exhibit this characteristic can be 
made plausible by considering Newton's law:    F = ma.    If a certain accelerat- 
ing force, F,   is acting on a body for a time interval,  i, the achieved ve- 
locity can be expressed In this form: 

5L=   1   +  _I_T 

The smaller the initial velocity, V0, the larger is the relative change in 
velocity. Most of the aerodynamic stability and control derivatives vary 
with V^; therefore, a set of linearized differential equations can be ex- 
pected to become invalid more rapidly at low speeds than at high speeds. 

It should be noted here that the rapid changes of characteristics at very 
high speeds, although similar in effect, are of a different origin. The 
very high velocities enable the vehicle to encounter rapid changes of the 
environmentj for example, of the air density. 

In both cases, at very low and at very high velocities, it is actually the 
nonlinear variation of the dynamic pressure which causes the conventional 
set of linear equations to become invalid. Therefore, the findings of this 
report, although presented with low-speed flying machines in mind, are appli- 
cable to dynamic problems at both extremes of the velocity range. 

A rigorous approach to the outlined problem would lead to a set of nonlinear 
differential equations valid over the reqiiired velocity range. In the 
present state of the art such an approach could not be expected to yield 
useful results. A more promising approach tries to extend the classical 
method of small perturbations so that approximating results could be ex- 
pected to reveal the essential behavior of the nonlinear system. 

Consider a general physical system as described by a set of differential 
equations. There are three kinds of "elements" which can be distinguished 
in most differential equations: 



1. Functions of the Independent variables onJy (inputs). 
2. Dependent variables and their derivatives (outputs), 
3. Coefficients (parameters). 

The equivalent terms generally vised are in parentheses. A simplified repre- 
sentation of a fairly general system can be given in the following form: 

time 

disturbances  ,. 

commands    , 
inputs 

feedback 

outputs, ; linearization U0/ 

This somewhat unconventional representation has been chosen in order to empha- 
size the general nature of the relationships. A nonlinear differential 
equation can be considered a variation of an approximating linear differential 
equation in which the coefficients are functions of the dependent variables. 
The line connecting the outputs with the parameters then represents the es- 
sential characteristic of nonlinear systems which Is the dependence of coef- 
ficients on the dependent variables. Linearization means cutting this line as 
indicated, i.e., considering the coefficients to be Independent of the de- 
pendent variables. Total removal of all lines affecting the parameters Is 
equivalent to a further simplification to a constant parameter system de- 
scribed by differential equations with constant coefficients. This latter 
approach is used when small perturbations of an equilibrium (trim condition) 
are Investigated. In this case there is a conventional linear system with or 
without feedback. 

The effect of the loop. Indicated by the line between outputs and parameters, 
on such a linearized system, will now be discussed. From the viewpoint of 
dynamic response* there are two distinct effects of the nonlinear relation- 
ships represented by the upper loop in the sketch. 



1. Nonlinear effects may change the dynamics In the vicinity of the 
equilibrium so that linearized perturbation equations are not valid. For 
example, saturation, backlash, etc., cause such effects. Several methods 
(e.g., phase space, describing functions) can be used to deal with these 
problems. 

2. Nonlinear effects may change the equilibrium (trim) conditions to 
such an extent that the coefficients of the linear perturbation equation 
must be changed. For example, the change of dynamic pressure or the change 
of mass with fuel consumption cause such effects. It Is this type of ef- 
fect with which the present report is concerned. 

It must be emphasized that the above distinction Is not based on mathemati- 
cal but rather on practical considerations. Actually, the same non- 
linearity may give rise to both types of effects, depending upon the forces 
acting on the system. The first case occurs if the dynamic motion result- 
ing from disturbances and control actions Involves the nonlinearityj however, 
the equations describing the dynamics remain unaltered throughout the regime. 
The problems arising from this situation are not of concern here. It Is 
assumed throughout the present report that the "small perturbation equations" 
of the system are linear. 

The second case occurs when an average disturbance or control action moves 
the equilibrium state along the nonllnearlty. The change of the linear 
term in the Taylor series expansion of the nonllnearlty means continuous 
changes in the coefficients of the small perturbation equations. This con- 
sideration leads to the following linearization of the nonlinear problem. 
It is assumed that the average forces and moments are continuously balanced 
(trimmed). Small deviations from the trim condition appear as forcing terms 
in the perturbation equations. If th^ assumption is now made that the time 
history of the trim conditions can be predicted, then the parameters of the 
perturbation equations can be considered functions of time instead, of 
functions of the system output. Vlth these assumptions the nonlinear system 
is approximated by a linear time varying system. The upper loop in the 
Figure on page k has been cut and the arrow pointing to the parameters repre- 
sents a function of the time, t, which can be considered,in a generalized 
way, as an additional parametric input to the system. 

If the predicted time variation is slow so that the parameters of the per- 
turbation equation can be considered constant for the duration of at least 
one transient response, then the system can be further simplified to a 
"quasi-stationary" system. In this case, loci of the poles and zeros can 
be plotted with time as the running parameter. Such a plot represents the 



so-called "frozen system" approximation to the tine variable system. The 
somewhat vague fashion in which the "quasi-stationary" or "frozen" concept 
is introduced indicates the difficulty in defining a border line between 
time variable and constant parameter systems. .Again, the distinction has 
to be based on practical engineering rather than on mathematical consldera- 
tions.  Obviously, problems arise when the time variation is such that the 
quasi-stationary approximation does not hold. 

This report is concerned with the linear time variable approximation to the 
dynamic problems of low-speed flying machines. Only smooth and monotonic 
time variation are considered. Simplifications and approximations are ap- 
plied widely in order to emphasize essential aspects rather than detailed 
calculations. .One major aspect investigated is the effect of the speed of 
parameter variation. Various feedback stability augmentation configurations 
are considered. As an example, the transition of a VTOL aircraft Is dis- 
cussed in more detail. 



THE FROZEN SYSTEM APPROXIMATION 

Time varying linear systems can be described by linear differential 
equations in which the coefficients are functions of time. If the time 
variation is slow, the coefficients will not vary to any great extent with- 
in a given time interval. The definition of "slowness" involves the speci- 
fication of the time interval to be considered as well sis the specification 
of the coefficient variation to be tolerated. For practical reasons these 
specifications have to be determined with the actual output of the system 
in mind. 

A stationary system is usually described either in the frequency domain 
(transfer function or amplitude and phase characteristic) or in the time 
domain (weighting function or impulse response). The frequency domain ap- 
pears to be the less natural choice in which speed of time variation should 
be defined since it implies, by definition, steady state test frequency 
signals. The Impulse response, on the other hand, provides the significant 
information within a limited time interval. A time interval, at the end of 
which it is possible to make a judgement on the essential characteristics 
of the system, seems useful as a basis for the investigation of the rate of 
time variation. The significance of the time variation can be judged by the 
deviation from the response of a stationary system. These ideas are now 
considered in more detail. 

Assume a differential equation of a time varying system with an Impulse ap- 
plied at the time, T, in the following form: 

n 
^ ^(t) ^T x (*) = 8(T) CD 

1 = o 

if the variation of the coefficients, fj^t), is very slow, then the quasi- 
stationary equation 

(2) J^)^y(t) = B(T) 
1 = o 

Is a good approximation. If the roots of the corresponding characteristic 
equation are plotted with, T as the running parameter, the frozen system 
loci of the time varying system are obtained. In general, the time varia- 
tion of the zeros,  as well as of the poles of a transfer function, can be 



characterized in this way. The loci do not change if, xt  is replaced by, TJT. 

The time variation is faster when TI increases, obviously, the approxi- 
matlon becomes worse with increasing, TJ. The frozen solution, y(t), can be 
used as a reference with which the solution, x(t), of the time variable can 
be compared. 

The problem is to define a time interval which permits a meaningful charac- 
terization of the frozen system solution and which can also be used for 
evaluating the deviation of; x(t), from the frozen system solution; y(t). 
Solving this problem in its full generality will not be attempted. Use will 
be made of two restrictions determined by the subject covered in this report: 
(l) to consider systems in which the time variation is smooth and mono- 
tonic, at least piecewise; (2) to examine the effect of the time variation 
from the point of view of its effect on a feedback control applied to the 
time varying system. The first restriction permits some highly simplifying 
approximations; the second restriction is of great help in determining a 
time interval for a meaningful characterization of the rate of time vari- 
ation and its effects. 

A discussion of some consequences of feedback control is presented first. 
The frozen system is considered then the deviations due to fast time vari- 
ation. As mentioned before, the frozen system can be represented by loci 
of poles and zeros on the complex plane. At each instant; T; determines a 
certain pole-zero configuration or pulse response. A pulse response of the 
frozen constant parameter system is the sum of component response modes. 
The modes are determined by the poles; the relative amplitudes and phases 
are determined by the relative location of the zeros and poles. Consider- 
ing the response as the input to a feedback branch (automatic or human), it 
is important to distinguish between dominant modes and modes of minor sig- 
nificance. Even responses of systems of high order can usually be matched 
quite will with a second, third, or possibly fourth-order system response. 
Thus in the case of a time variable system the variation of the dominant 
modes is of primary significance. 

It is very difficult to be quantitative about a general criterion for de- 
termining whether or not a mode should be considered predominant. However, 
this study is restricted to aircraft configurations. Equations of higher 
than fourth-order need not be considered. The relative importance of 
different modes should be judged on the basis of relative amplitudes. 

The relative amplitudes of the different modes in the pulse response can be 
determined graphically from the pole-zero plot of the transfer function 
(Reference l). The amplitude for any individual pole is determined by 
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dividing the product of the distances of the pole from the zeros by the pro- 
duct of the distances from the other poles. The amplitude of an oscilla- 
tory mode, represented hy a pair of conjugate complex poles, is twice the 
amplitude determined for one of these poles. Any arbitrary scale can be 
chosen since only the relative amplitudes are of interest. 

The following sketch shows some significant points in this procedure, 
sider the following pole-zero configuration. 

Con- 

/ 
y 

s 
s 

s 

-^- 
s 

When the amplitudes of the oscillatory mode and the; }?, ^ mode are compared 
in the form of a ratio, the distance between,- po- (or p^) arid, p-j^ drops out. 
The ratio can be written as 

^t 

P3 |P3 

P3-P4I *   fe - P2I 
P    - z   1 

1     ll 

W • l] 
(3) 

p3 -   Zi |P3 • »21 

1 

9 

cos e. 



In this example, Zp Is at a similar distance from toth poles. The ratio of 
the distances to, p^, together with cos €,, result in a factor of approxi- 
mately two in favor of A^ u. The decisive factor is caused by the fact 
that z-^ is much closer to'pj than to p^. Therefore, it can he safely esti- 
mated that the amplitude of the oscillatory mode is more than five times the 
amplitude of the p. mode. 

The relative amplitude ratio A2/A2 of the pj_ and pg modes is determined in 
this example primarily hy the square of the ratio of the distances to po 
(or PI4.) because the arrangement of the zeros is fairly symmetrical with re- 
spect to the two real poles. Therefore 

.Agl ^ cos  €2 (k) 

'Al!   cos C-i 

The considerations in this example can be utilized generally. For example, 
the conditions under which the short period mode of a pitch response is pre- 
dominant can be easily estimated. Since no objective criterion for 
"predominant" can be established, some rule of thumb must be used. The 
amplitude of a predominant mode should not be less than four to five times 
the amplitude of any other mode. This is a reasonable criterion for a 
fourth order syst.em. 

N0RMftT,I7;ATiaN 

It is convenient to use a normalization so that the effect of time variation 
on a particular mode can be Investigated in a general form.  In order to in- 
vestigate some fundamental aspects of the time variation, only one pair of 
complex conjugate roots is considered. This is equivalent to replacing, 
for example, an aircraft pitch attitude response with the short period oscil- 
latory mode. This oversimplification will be helpful in the investigation 
of practical effects of fast time variation. The effect of deviations from 
this simplified model is discussed later. 

The homogeneous differential equation of the simplified time varying system 
of second order is: 

x + f1(t)x + f2(t)x =0 (5) 

The solution in the vicinity of a frozen time solution is now examined. 
Using a conventional notation of fixed parameter systems 

10 



where the -"icLex 

tjr)  = 2t u. 
F Fo 

f2^  = "Fo 
F; stands for "frozen.1 

In the course of transitions, the time variations of parameters are not only 
smooth but also monotonic over the full range, or at least over large por- 
tions of the range. Therefore, it is reasonable to investigate the effect 
of time variation hy considering only the first two terms of the Taylor 
series of the coefficient time functions: the time variable damping and 
spring coefficients. 

*+ k/Vo+ B(t - -^1k+ ^o+ ^ - "^ x = ö(T) (6) 

For convenience,  the origin of jtiagls shifted to T.    Using the notations 
B   =   ß^.      Dm Mu£,      W, -  U^ \| 1   -   ^ 

x + (atyWpQ + ßt^t)i + {<^0+ ^t)x = 6(o) 

llm Ci^Fo 

Normalization is obtained by a linear transformation 
CF^FO* 

y =: xe 

and a change in time scale 

f = iyt. 

(T) 

n 



With 

P = ß 

Q = ^ + ß tan \|f (8) 

the normalized equation is 

V + Pt'y +  (1 + QtSv = 5(o) (9) 

Here t1 is dimensionless time as defined above. This normalization puts 
the frozen poles into the (+J, -j) points of the Sy plane. The effect of 
time variation can be investigated in this plane. The simple transfor- 
mation relationships are described in more detail in Appendix I. 

The solution of the differential equation with linearly time varying coef- 
ficients can be obtained in the form of hypergeometric functions. However, 
for engineering purposes, such a solution in itself is not very helpful in 
the evaluation of fast time variation. An analog computer study was pre- 
ferred because of the extreme flexibility offered by this approach. High 
accuracy is not important because of the approximations involved in the 
study. The goal is rather to identify significant effects of time 
variation. 

12 



MALOG COMPUTER STUDY 

The scheme for experiments with the normalized second order system was deter- 
mined as follows. Since the normalization transforms straight lines into 
straight lines, it seemed advantageous to explore time variations which move 
the roots along straight lines, rather than purely linear time variations 
which move, the poles along circles. 

The normalized system equation 

.2, y + Pt'y + (1 ' Q-Lt' + ^  )y = 0 

determines the following locus for "frozen" roots: 

Pt' 

If    Q2.:= P2 + Q! 

pSf 
Sy(t' ) =  - — ± \  1 + Qat'  + ^       " —? 

, this locus becomes a pair of straight lines: 

(10) 

(11) 

^f) 
Pt1 

= - 2 Ki*S£) (12) 

-1  Q-u The slope tan ( =) and the constant speed of variation 

P^ + Ql dS 
4 dt 

are the same as those determined for the linearly time varying case at 
t' = 0 in Appendix I, It was decided that various speeds of variation along 
eight different directions ^5 from each other, originating in the "frozen" 
pole pair (+J, -j) should he investigated. 

It was rather difficult to choose a basis for the evaluation of the effect 
of time variation. In the case of slow time variation the frozen system is 
a good approximation. The goal of the analog computer study was to explore 
the deviations from the frozen system solution due to fast time variation, 
from the viewpoint of the application of feedback. As stated above, in 
order to specify a speed of time variation a time interval and a criterion 
for the comparison must be chosen. The concepts of apparent damping and 
apparent frequency change were used in this choice. Although theoretically 
an "Instantaneous" damping and frequency could be defined, these concepts 



-have no practical meaning because some finite time interval is necessary to 
measure damping and frequency. A human pilot is not very sensitive to 
slight frequency changes; damping can be judged most easily by peak ratios; 
therefore, at least one half cycle should be used for comparison. In order 
to provide a mechanical method for the comparison, the apparent damping and 
frequency were assumed to be the damping and frequency of an adjustable con- 
stant parameter system. The response of this system with an identical in- 
put was matched to the response of the time variable system. The match was 
made in the "least integral square error" (ISE) sense. This procedure was 
set up on an analog computer. It was found that using on2y one half cycle 
of the frozen system response for comparison was not selective enough; 
therefore, one full cycle of the undamped frozen system response was chosen 
as a comparison-interval. 

A block diagram of the computer setup is shown in Figure 1. The equation 
of the normalized time variable system is given by 

y% Pty + (1 + Qjt + Q2t
2)y = 0 

where Q2 was chosen so that the roots moved along straight loci. 

(13) 

The constant coefficient system used to approximate the time varying system 
was 

y» + ^ya + (1 + Kjy& * 0 (14) 

where Kf and K^ were adjustable parameters. Experiments at different 
speeds or variation were conducted by applying Identical inputs to both 
systems and measuring the displacement error: 

€(t) = y(t) - ya(t) 

This error was squared by a function generator and then Integrated. The 
parameters K. and K^ were adjusted to find the particular combination which 
minimized the ISE over one period of the normalized frozen system response, 
2jt seconds. 

.2« „ 
ISE = 

■; 

€ dt =iBiti (15) 

Various speeds of variations were used for P and Q , varying from l/kn 
to 2/jt for increasing spring and/or damping coefficientj and from l/8jt for 
decreasing spring and/or damping coefficient. Obviously, the greater the 
speed, the larger is the ISE. Speeds less than l/8n were barely noticed 
(K£ and Ky are less than .05). Speeds greater than l/n (SOOjt of spring 

Ik 



constant variation) generated huge errors. Changing this time interval had 
little effect on Kf and K^ for minimum ISE at slow speeds. At high speeds 
(l/jt, 2/jt) K(; and Kco were very sensitive to such changes. An example indi- 
cating the selectivity is shown in Figure 2. 

Since very low speeds (P, (^ ^ 1/8«) were found to be approximated well by 
the frozen system solution and very high speeds can be omitted because of 
practical considerations, the following two speeds were selected for 
comparison: 

P, Qi = I/*« 

P, Q-L = 1/2« 

The speed ^  = l/kn  increased the spring constant by 505t in 2« seconds (the 
period of the frozen system). The speed of Q-L = 1/2« doubles the spring 
constant in 2« seconds. The speeds P = l/it* and P = 1/2« mean that, if 
% = 0, a frozen system damping factor of .5 and .707, respectively, is 
reached after 2« seconds. 

Figures 3 and k  show the apparent roots at these speeds in different di- 
rections. The tips of the vectors indicate.the frozen system roots at 2« 
seconds. Figure 5 combines these two figures by normalizing to the vector 
lengths. 

These data, combined with data obtained with other speeds, are plotted in a 
different way in Figure 6. The heavy line in this figure indicates the 
boundary between those values of P and ^ which result in K. > 0 and those 
which result in K^ -i. 0. For the range of speeds of condem it can be seen 
that the apparent "destabilizing" effect of negative P can be cancelled 
by a positive Q of twice the magnitude. For large values of negative Q, 
the dynamic effect will be a decrease of apparent damping no matter how 
large P.  (This is meaningful only for ft1> - l/2n since jf fti< - l/2«, 
the roots become real within 2« seconds). 

In order to estimate the effect of fast parameter variation for oscillatory 
roots anywhere in the complex plane, the inverse of the normalizing trans- 
formation must be performed. The apparent damping found in the normalized 
form estimates the change in the damping of the frozen system output. This 
means that the larger the frozen damping coefficient, the less the apparent 
deviation caused by a fast time variation. Therefore, it can be stated 
that the region of interest for this effect is that of low positive andnega- 
tive damping. In those phases of a VTOL transition where the oscillatory 
roots are in the vicinity of the imaginary axis, it can be assumed that 



deviations from the frozen system assumption will Influence the handling 
qualities and the performance of autopilots designed on a frozen system 
basis If the parameter variation Is fast. It has been shown that fast 
variation of the spring constant means a 50$ to 100^ change within the 
time of one frozen system period. A decreasing spring constant causes more 
deviation from the frozen system than an increasing spring constant. Fast 
variation in damping means a variation of .5 to .7 in the damping ratio 
during one frozen system period. If a combination of spring and damping 
variation takes place, the effects may strengthen (or weaken) each other 
with the result that a smaller (or larger) speed of variation of the indi- 
vidual parameters can cause a similar effect on the apparent damping. 

For VTOL transitions the significance of these findings is that the effects 
caused by fast parameter variations are expected to be stronger when fre- 
quency and damping are decreasing rapidly in the vicinity of the imaginary 
axis than when the roots move in the opposite direction along a frozen 
root locus. 
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APPROXIMATIONS TO THE 
LQNGITUDIHAL DYNAMICS OF A VTOL AIRCRAFT 

The simplified linearized rigid-body equations which describe the perturbed 
longitudinal airplane motion about a straight and level flight path may be 
written as follows: 

(S - Xj + V + gG = 0 (16) 

- zuu + (s - zw)w - vse = 0 

- Muu - MyW + (S - Mg)se = Ms6 

u, w, 9, are the small variations of the perturbed flight variables around 
the equilibrium point. The coordinate system is fixed to the body. The 
X-axis is taken positive forward and is initially set horizontal. The 
Z-axis is positive downward. The only input considered in these equations 
is the control moment around the pitch axis of the airplane. 

1. NEAR-HOVERING FUGHT 

The description of the longitudinal dynamics in near-hovering flight can be 
simplified by the assumption that the vertical degree of freedom is un- 
coupled from the other two (the horizontal and the angular) degrees of free- 
dom. This is justified as long as the stability derivatives X,, (variation 
of horizontal force with vertical velocity) and My (variation of pitch 
moment with vertical velocity) are small. 

These assumptions are commonly used for satisfactorily approximating the 
modes of motion of helicopters near hovering. For VTOL machines IL,    can 
be expected to remain negligible for a larger velocity range near hovering 
than is the case for conventional single rotor helicopters, because the de- 
stabilizing contribution by the rotors which Increases as the VTOL airplane 
gains speed is balanced to some extent by the tall effect. Moreover, for 
VTOL machines of the tilt-wing type, the effect of X^    on the transfer 
function is expected to be small since the rotor and wing contributions to 
this derivative are of opposite signs. These considerations encourage us to 
consider the assunrptions made for the near-hovering regime to be valid over 
a considerable range at low speeds. 

The transfer function for the attitude response within this range can be 
expressed as follows: 
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t 

0   S(S - |^)| 

(S - ZW)(S - Xu)  I 
(S - Zw) [S(S - MQ)(S - Xj + gMj] 

Hence, the Z^ mode is cancelled as far as the 9 response is concerned 
(this mode is also cancelled for the u response). This leads to the follow- 
ing third order characteristic equation for low speeds: 

S(S - Mg)(S - Xj + g^ = 0 (18) 

The location of the characteristic roots can be determined from the 
following root locus where the gain is gM^ 

Im i ß 

Gain:    gMu 
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^^ 1/3^ + Xu)   ' 
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The larger gM^ the closer are the oscillatory roots to the asymptotee 
which originate In l/3(Me + Z^),    For large enough gMu the three original 
poles (Mg, XU, and zero) can in effect he replaced by a triple pole at 
1/3 (M§ + XU). In this case 

£* - 1/3(M§ + Xu) ^ + sMu = 0 (19) 

. mai 

V 
can he considered as an approximating characteristic equation. This approxl- 
matlon places the poles right on the asymptotes at equal distances of 

gMu from the l/3(M§ + Xu) point. If the actual roots are S^ Sj? ,  S3, 
and If the approximating roots are S*, S#, S*, the error of approximation 
can be expressed as ^ 

(S^ - S2) = - (€x + jey) (20) 

(s! - V = " (€x " V 
Using the results obtained for €x, €y In Appendix II, It can be shown that 

l V3(l^ + x^)2 - M§XU ex • *   \[ß*r-  (21) 

€
y «NJT«, (22) 

For a VTOL with a reasonable amount of static stability with velocity. It, 
(gM^l/sec-3) and expected values for    M§ and Xu, ve find €x < #oe sec"1! 
Therefore,  for practical purposes  It Is sufficient to consider only the 
variations of the parameters l/3(M§ + Xu) and\3 F"^"  as affecting the 
displacement of the roots. >• 

sl 
-    (^-W ♦ 1/3 A(^ + Xu)  + A^l^eJC^l 120°) ^ 

1 = 1,  2,   3 

This means that the roots will move horizontal 1y to the left for an Increas- 
ing damping and radially towards the e.g. of the three roots for a decreas- 
ing static stability with velocity. 
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The maximum speed to which this approximation can be used depends primarily 
upon the Increase of ^~ (=71^) with velocity. Experimental results with 
different VTOL planes "References 1, 2, 3) show that first J^ increases with 
velocity, because of the inherent rotor instability with angle of attack. 
Shortly thereafter, the tail stabilizing contribution overrides that effect 
and ^j decreases and becomes negative. As a result, there is a velocity 
at which the cubic characteristic equation accurately represents the dy- 
namics of the vehicle. It is therefore reasonable to consider our approxi- 
mation as accurate enough for the interval from hovering up to this point. 

2. HEAR-FORWARD FLIGHT 

As the airplane approaches its forward flight configuration, the static 
stability with angle of attack increases considerably. The transfer 
function for the pitch attitude becomes 

8 - Xu Xw 0 

-zu s - ^ o 

9 -Mu '** M& 

6 s - su Xv, g 

-zu s - ^ - sv 

-Mu -\ S(S   - M^) 

(24) 

= M= 
(S - zw)(s - xu) + X^ 

(S ^)   J8(8  - M^)(S  -  Xu)  + gMj   - ^VCS2   - XuS   - S/V Zu)  + 

♦ X^  ^u(S  - M^)   - VMU 

The derivative X^    is not negligible now in comparison with some other 
derivatives; yet the Xy terms in both numerator and denominator can still be 
disregarded on the basis that at higher speeds 1^ is small and ZL. is much 
larger than in hovering. In other words, it is assumed 
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I 
X Z     <.<   Z X 

^"u^^   Vu 
Hence 

i    = M= 
(s - zw)(s - xu) 

(S  - 8,)   (s(S - |%)(fl - Xu) + gMJ - %(S2  - XUS  - g/V Zu) 
(25) 

It Is a common practice to study the short-period roots of conventional air- 
planes using a second order equation derived from the fourth order charac- 
teristic equation when the higher frequency roots are far away from the 
other two roots. By the same reasoning, the same procedure can be used In 
dealing with VTOLs during the last part of the transition; but It should be 
remembered that tha farther the flight condition Is from forward flight, 
the poorer will be this approximation. 

In order to show the Influence of various parameters on the approximation, 
the root locus technique Is used to determine the characteristic iroots. 
(Reference 4), First, the low-frequency roots ("phugold" roots) are 
considered. 

From the expression 
S(S - MÖ)(S - Xu) + gMu (26) 

which appears In square brackets In the denominator of the transfer 
function 9/S (equatlon25) one can determine three points on the complex 
plane. The roots of the equation are on a root locus as sketched In 
Figure 7A with the gain gl^. 

H^  Is assumed to be small and positive throughout the range near full speed. 
Two of the roots will then be either on the real axis within the interval 
(0, X^) or close to the real axis on the curved branch, as shown In the 
sketch. Next, another root locus can be used to obtain the roots of the 
characteristic equation. The starting poles for this locus are the three 
poles obtained as roots of the equation (26), and a pole at Zy, The z;eros 
are the roots of the equation: 

S - XuS - g/7 Zu = 0 

and the gain is - 1^. This locus is shown in Figure 7B. 
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The zeros are most likely a complex pair close to the real axis. They lie 
on the vertical line passing throuah the point (l/2 Xu, Oj) and their dis- 
tance from the origin is (g/V Zu)1/ . The effect of a large gain, - Jfa, is 
to bring the low-frequency roots of the characteristic equation very close 
to the zeros given by equation (27), The result is the well-known approxi- 
mation of the phugoid roots. 

The above presentation shows how the approximation deteriorates for smaller 
Ma.    In this case the approximation overestimates the frequency of the 
phugoid roots.  Consequently, (g/V Zu) / is a limit fcj  the frequency of 
the phugoid roots. The influence of all the other derivatives on these 
roots can be easily followed by estimating changes in the geometry of 
Figure 7. 

The two modes of motion, the phugoid and the short-period mode, are well 
separated during the high-speed phase of the transition. Since the phugoid 
roots are considerably closer to the zeros of the transfer function 9/5, 
the short-period mode can be considered to be the predominant mode of the 
pitch-attitude response. 

An analysis follows of the second order approximation of the characteristic 
equat ion 

X2 - (Me» + Zw + XU)X + (Zw + XU)M§ - Ma +  ZwXu = 0      (28) 

For VTOL configurations with improved dynamic and aerodynamic .characteristics 
the following inequality can be expected to be valid during the high-speed 
portion of the transition: 

"e >> Xu 

This leads to further simplification of the second order equation: 

X2 - (M^ + Zw + XU)X + (Z^ + XU)M§ - % - 0 (29) 

Using the root locus technique  is again helpful in tracing the effects  of 
the derivatives.    The starting poles of the root locus 
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are M§ and 7*^ + Xy^. The gain determining the roots is - %. The roots lie 
on a vertical line perpendicular to the real axis, crossing the axis at the 
arithmetic mean of (Z« + Xu)  and Mg. 

The constant term in equation (29),   (Zw + XU)M§ - Via, represents the square 
of the distance between either root and the origin.    If the difference be- 
tween MQ and (Z^, + Xy) is considerably smaller than their absolute values 
then their product which appears  in the constant term can be substituted 
by the square of their arithmetic mean.     (The error introduced by this as- 
sumption is only 65t if their difference is half their arithmetic mean value) 
With this substitution it can be shown that  (- J^) '     is a good approxi- 
mation to the distance of the roots from the real axis.    The real part of 
the short-period roots is approximated,  as stated before, by 
1/2(Me + ^w + Xn)«    Tte damping ratio depends on the parameter 
(M^ + zw +xu):/£r- v1/2. 

3. CQNSTRÜCTICW OF TRAHSITICK LOCI HEAR HOVERING AHD NEAR THE END OF 
THE TRANSITION. 

The approximations of the oscillatory roots near hovering and near the end 
of the transition can be obtained graphically as shown in Figure 8. 
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According to the previous approximations two lumped parameters In terms of 
stability derivatives are introduced for the near-hoverlng regime (\l gK, 
and l/3 IMQ + xj ) and two others for the regime near the forward flight 
end of the transition ( \j - % and l/2 [MQ + Z^, + xj). The values of these 
parameters can be assumed to be known ror hovering and 
(completed transition). 

forward flight 

The changes in these parameters determine the approximate changes in the 
oscillatory roots near both end points of a transition. Figure 8 illus- 
trates boundaries for assumed changes of the parameters with respect to 
the nondimenslonal velocity V/^fön^ttd flight' and- ^••i' effect on varia- 
tions of the oscillatory roots. 

The assumed boundaries are shown in auxiliary coordinate systems by means 
of two lines for each parameter. Parameter variations described by any 
line running between these limit lines will cause root variations within 
the constructed resultant boundaries on the S-plane. As an example, an 
upper boundary line for the location of the short-period roots is obtained 
by combining the line of assumed minima of the damping, l/2(l^ + Z^ + Xu), 
for the near-forward flight situation with the line of assumed maxima of 
the frequency \l- 1^, 

In the near-hovering flight region the roots are detemined graphically by 
their coordinates in an auxiliary axis system in which the angle between 
the axes is 60°. The root coordinates in this system are given by ^["gM^ 
and l/3(MQ + Xu). Similarly, the upper and lower boundaries of the roots 
are determined as  above. 

The plot of the roots on the S-plane shows a gap between the lines a a' and 
b b' on which the roots corresponding to O.i*- V/Vf^# are located when ob- 
tained by the near-hoverlng and the near-forward flight approximation. 
This is the natural consequence of the inaccuracies in the approximations. 
The actual size of the gap also depends on the relative location of the 
hovering and the forward flight roots. 

k.    MDP-TRANSITION FLIGHT 

The mid-transition flight regime can be defined as that range where 1^ is 
too small for the assumption made in the near-forward-flight approximation, 
but cannot be neglected as was done in the near-hoverlng flight assumptions. 
Moreover, Zy  , which depends upon the wing operating conditions, can change 
largely within this range whenever the wing operates In the nonlinear region 
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of the lift curve with respect to effective angle of attack. Simplifying 
approximations like those made for both end regions of the transition re- 
sult In a grossly distorted picture, because It Is characteristic for the 
mid-transition regime that all the important stability derivatives are of 
comparable significance. Despite this fact, the construction of Figure 8 
is extended into the mid-transition region. It Is Interesting to note that 
even this oversimplification gives an indication of the general behavior of 
the oscillatory roots throughout the transition. In particular, both an 
early Increase in Zy and a fast decrease of Mu./ with Increasing velocity. 
Indicate a "dip" of the oscillatory roots toward the real axis. However, 
it cannot be predicted by the illustrated procedure how far this dip actu- 
ally extends in mid-trans it ion flight. In fact, two alternatives for the 
general behavior of the roots can be recognized. It is possible that the 
hovering roots move (perhaps through a "dip") toward the short-period 
roots and that the two real roots in hovering combine into the phugoid 
roots in forward flight (Figure 9A). The alternative possibility is that 
the hovering roots move toward the phugoid roots during the transition and 
that the real roots in hovering combine and break away toward the short- 
period roots somewhare in mid-transition (Figure 9B).    The loci in 
Figure 9 are not root loci in the usual sense but describe the motion of 
the characteristic roots in the complex plane during transition. 

Further application of the root locus technique indicates that these two 
different behaviors for the roots depend primarily on the relationship be- 
tween Zw and Jfe during mid-transition. If Jfa increases much earlier in the 
course of the transition than Z«, the locus of Figure 9A will be the re- 
sult. If Zry increases earlier than Jfct, the locus will be of the type 
illustrated In Figure 9B. 

In general, the variation of MJJ , Mg , Zy , and 1^ in mid-transition de- 
termines the eventual amount of "dip" in the movement of the oscillatory 
roots. A sharp dip Implies a large decrease and Increase within a rela- 
tively small speed range. In such a case the results of the previous 
section on the effects of fast time variation apply. 

Apparent deviations from the frozen system approximation can be expected 
to influence the handling qualities and feedback control. It has been shown 
that a fast decrease in frequency near the imaginary axis can cause a con- 
siderable decrease in apparent damping. The approximate analysis presented 
in this section has Identified the possible causes leading to this situation. 
The method can be used in a quick evaluation of the effects of design 
changes on the behavior of the oscillatory characteristic roots during a 
transition. 
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5. OBCILLATORY ROOQS IN TRAMSITION 

In order to Illustrate transitions of the simplified second order model 
described earlier, the plecewlse straight transition locus shown in 
Figure 1QA has been chosen. The component of speed of variation parallel 
to the real axis was kept constant. Pulse Inputs were applied automatically 
at the instants when the roots were in the positions marked 1, 2, 3^ ^-i 
only one point was tested in each transition. Transients for the fairly 
fast total transition time of 32 seconds are illustrated in Figures 1QB 
through ICE. This time is approximately five times the period of the hover- 
ing or mid-transition response. The frozen system pulse response (a) and 
the responses for the accelerating (b) and decelerating (c) transition 
are shown for comparison In each figure. Both the displacement and the 
velocity responses are shown. 

Transients for an even faster transition of 16 seconds (approximately 2.5 
periods) are shown superimposed in Figures UA to 11D for the points illus- 
trated in Figure 1QA. Note the considerable destabilizing effect during 
deceleration and the stabilizing effect during acceleration. 
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FEEDBACK.  CQNSIDERATIQNS 

In this final section of the report some aspects of artificial pitch- 
■ attitude stability augmentation of VTOL aircraft are discussed. These 
aspects are quite general in their nature and part of the discussion ap- 
plies to all time varying feedback control systems in general. Some 
important problems are omitted, such as the provision of sufficient con- 
trol authority for the feedback system. Emphasis is placed on those 
aspects which are connected with the time varying nature of the problem. 
The range of variations can be estimated, based on the frozen approxi- 
mation. The deviation from the frozen can be estimated, based on the 
results presented previously in this report. 

In order to provide a basis for the choice of the feedback configurations, 
the goal to be achieved must first be determined. Since the concern is 
with piloted aircraft, some variation in frequency as well as in damping 
of the predominant closed loop response can be tolerated because of pilot 
adaptivity. A range of low frequencies within a 2:1 ratio and a range of 
relative damping ratios between .2 and .",7 can be handled easily by a pilot 
Such tolerances define a considerable area in the complex plane within 
which the predominant closed loop roots may possibly be located. 

We assume a basic rate and attitude feedback loop in which the feedback 
gains have to be adjusted because of the time variation of the system. 
The following alternatives will be considered as fundamentally differing 
feedback adjustments for time varying feedback systems. 

1. ADJUSTMEMT BY DIRECT FEEDBACK 

In principle, it would seem desirable to'make adjustments in the basic feed- 
back loop according to the variation of the variable which is the physical 
cause of the time variation. This is the dynamic pressure or velocity for 
VTOLs and helicopters, and a more complicated pressure distribution in the 
case of ground effect machines. If the time varying system is well known, 
then the proper gain adjustments as functions of the velocity can be pre- 
determined. The instrumentation of such a scheme involves the measurement 
of the velocity, some nonlinear device determining the amount of gain adjust- 
ment and the gain adjusting element itself (Figure 12A). Several diffi- 
culties make this approach unfeasible for practical application to low- 
speed flying machines. Dynamic pressures cannot be measured well enough at 
very low speeds. However, even if they could be determined adequately, two 
other fundamental problems remain. In the frozen system approach, the un- 
certainty about the actual variations of derivatives makes the determination 
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of the nonlinear adjustment functions somewhat arbitrary. Additional con- 
ditions such as the amount of acceleration or deceleration at a certain 
velocity cause large variations and additional comlexlty. 

The adjustment by direct feedback means an additional feedback loop around 
the system with the basic loop. The two loops are coupled through the gain 
adjustment. In the case of slow time variation, the variable on which the 
adjustment depends, the velocity, can be filtered in order to extract the 
average variation from the time history of the velocity. For fast time 
variations, however, when significant changes take place within one period 
of a predominant mode, the filtering time constant has to be so short that 
dynamic coupling between the two loops cannot be avoided. This causes an 
additional problem because the dynamics of the entire system become in- 
creasingly complicated. Actually, the linearization which leads to a time 
varying linear system is not valid in this case. For these reasons gain 
adjustments by means of direct feedback should not be used for the purpose 
in mind here. 

2. ADAPTIVE FEEDBACK 

The principle of adaptive feedback was Introduced to handle control pro- 
blems where the system to be controlled is not sufficiently well defined 
for a conventional feedback system synthesis. The term "adaptive" is used 
here for systems in which the performance of the feedback control is de- 
termined in terms of a performance index, and adjustments are made accord- 
ingly in the basic feedback loop (Figure 12B). Based on the frozen sys- 
tem approximation, two major difficulties which were connected with the 
first approach could be eliminated by an adaptive control system but at the 
expense of added complexity. These p.re the problems of velocity measure- 
ment at low speeds and the effects of design uncertainties. However, the 
less the time available for system identification, the larger will be the 
instantaneous deviations of the gain settings from the optimum. If an 
adaptive system is expected to follow changes within one period of a pre- 
dominant mode, then dynamic coupling between the adaptive loop and the 
basic feedback loop cannot be avoided. Fast system identification is com- 
plicated even theoretically and could lead to very complex instrumentation. 

One way of getting around this problem is to suppress the original pre- 
dominant mode of the system. This implies that a considerably higher feed- 
back gain can be applied than would be necessary for stability augmentation 
Itself, so that the natural frequency of the predominant closed loop mode 
is Increased to be fast with respect to the time variation. The result 
is a very tight control system Implying that more control authority must 

28 



be available than would be necessary for stability augmentation only. For 
example, in the Minneapolis-Honeywell adaptive autopilot such a tight loop 
around the aircraft is used to make the aircraft follow a dynamic model 
response. 

Whenever the application of adaptive control is considered, as much a priori 
knowledge as possible should be used in order to make the design as simple 
and as efficient as possible. It has been shown in the section, "Approxi- 
mations to the Longitudinal Dynamics of a VTOL Aircraft," that even a very 
simplified description leads to considerable information on the behavior of 
the predominant roots. Determining the roots in the forward flight configu- 
ration and hovering are classical problems. An area inside which the oscil- 
latory roots move in transition can be reasonably well approximated; the 
actual root will not be too far from the crude approximation. A question 
mast be raised as to whether the complexity of an adaptive system is Justi- 
fied or whether a much simpler approach might not be as effective. 

3. PROGRAMMEID ADJUSTHEHTS 

The considerable amount of a priori knowledge and the rather broad toler- 
ance permitted because of the pilot's adaptivity suggest the feasibility 
of simple feedback gain adjustments. The range of open loop damping is 
determined by the hovering and the forward flight roots. The frequency 
range is influenced largely by the "dip" of the transition locus (Figure 8). 
The simplifying approximations made throughout this report can serve as a 
basis for programming the feedback adjustments. Programming means that the 
adjustments are "open loop" adjustments rather than being derived from the 
output of the system as in the previous two configurations (Figure 12C). 
Adjustments are programmed as functions of the wing angle in the Tri- 
Service VTOL aircraft. The closed loop-roots of an approximating model 
can be confined to a small region of the complex plane by means of rather 
simple gain programs. The neglected poles and zeros, variations of the 
e.g. of the aircraft, and deviations due to acceleration and deceleration 
will cause the closed loop roots to move within a larger region than the 
one predicted by neglecting these effects. Thus it is necessary to rely on 
the adaptivity of the pilot. The effect of fast time variation must also 
be taken into account, using the relationships established in the Section, 
"Analog Computer Study" and Appendix I. It has been shown that the apparent 
effects due to fast time variation are strongest near the imaginary axis. 
Therefore, with increased closed loop damping the effect of the fast time 
variation becomes less apparent. 
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The simplicity" of progrannned feedback adjustments Is very attractive. 
Further investigation of the sensitivity of such a system to variations 
and uncertainties of system parameters is under way in order to establish 
the full potential and limitations of this approach. Whenever the per- 
formance of this approach can be made acceptable it should be preferred 
to the more elegant but much more complex adaptive approach. 

Similar conclusions were reached in a previous report (Reference 5) in 
connection with the artificial stability augmentation of ground effect 
machines. 
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APPENDIX I 

NDRMALZZATION 

The normalization of 

*  + (2CF'^Fo 
+ ^t)x + (^o + ^^ =  0 

throTAgh y = xe^F^Fo    and t'  = ojpt where Wp = ^ XU   _ ^2, 

leads to 
y + Pt'y +  (1 + Qt^y = 0 

(Al) 

(A2) 

This transformation is equivalent to a horizontal shift of the frozen poles 
by liyMpQ  into the Imaginary axis and a scale expansion on both axes by the 
factor l/u>p. Lines passing through the frozen point on the Sx plane are 
transformed into lines passing through the (+j, -j) point on the S plane. 
The transformation is angle preserving. The linear time variation of the 
coefficients causes the frozen roots to move along circles centered on the 
real axis. These circles go over into circles in the course of the trans- 
formation. The relationships between P, Q and ß,  yi was given, by definition 

P=ß; Q = M. + ß tan i U = tan-1  "^F   ) 

■f- *F 

(A3) 

The slope of the variation as well as the rate of variation in the normali- 
zed;5y plane can be determined as functions of ß and n. The normalized 
frozen locus is obtained by taking t' as a parameter in the following 
characteristic equation. 

Sf: + Pt'S^ + (1 + Qf) = 0 (AiO 

sy(f) = i/2 p »t* t W')
2 - Ml + Qf ) 

For the variation of Sy in the vicinity of t'  =0 

(A5) 

dSy(t') 

""dt1 = 1/2(P t JQ) 
t'^O 

( A6) 



The slope of the locus is determined by 

dSy(t') 

dt« t^O 
= 7 = tan  ^ = tan  (|j - P 

Y 
(AT) 

F 

= tan \|f where \|r Is the angle enclosed by the radius vector 

\l] ti 
of the pole and the imaginary axis. n/ß can be considered the tangent of 
a fictitious angle ♦ . This permits the illustration of the full range 
of ß and ix , including ß = 0, on a finite scale. The angle 7 of the 
normalized frozen root variation is related to n/ß and ^_ of the original 
root through the following relationship 

tan 7 = tan ♦+ tan y        where ♦ = tan 
ß 

(Aß) 

This relationship is plotted with ^j. as a parameter on Figure 13. The 

speed of root variation is also determined by ß, |i and £p. 

dSy(f) 

t'=0 
= 1/2 N ß2 + (. - ^ ß) 

For poles along the Imaginary axis, where ^j  = 0, this becomes 

(A9) 

1/2 ß2 + .
2 

The general case can be related to this value. 

dt" 
t^O 

-^ ß' + M2 

.M ^■^m^ 

= 1/2' 

\[ «2 2 ß    + n (A10) 

02 2 
ß    + »i 

\jl + (tan »+ tan j/Y 

Ml + (tan t)2 

The coefficient of l/2 >v ß    + p2    vith ^_, as a parameter,  is illustrated 
in Figure Ik, ^ 
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The shapes  of the traxisformed frozen pole loci with time variation are 
circles with their centers on the real axis at the distance 

f 
Q/P = ^  ■       =    tt» <!>    + tan \lr 

and the radius eq.\xal to 

\ 
1 + (tan (()    + tan \|r) 

3h 

■ 



APPENDIX II 

KEAR-HOVERING-FUGHT AEPRCKIMATiaN 

We can determine the error made in the determination of roots when the near- 
hovering characteristic equation 

S(S  - M§)(S  - XJ + gi^ = 0 

is  substituted by the  following equation 

I» - i/3(Me + TJ SMu - 0 

(All) 

(A22) 

For convenience we shift the origin of the coordinate system into the 
e.g. of the roots of both equations into the (1/3KQ + Xu)> 0) point. This 
transformation does not change the errors nor the e.g. of the roots. 

The new cubic equation obtained from equation (All) is of the type 

X3 + BX + C3 = 0 

where 

(A13) 

B = 

C3 = g»^ 

l/3(^ + XJ 3 - 
Me^u 

1/3(119 + xj 

Since M^  is large for low speeds 

[I/3(J% + xj r 

MeXu 

gMu'"? 1/3(M0 + Xj 2 - 

[1/3(1% + I«) 

[i/3(^ + X,,) 

and 

C -     (gMj 1/3 
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It can also be shown that B < C 

We solve the approximating equation which Is ohtalned from equation (A12) 
as 

^3   3 >•  + C = 0 (Alk) 

then add to the roots correcting terms which are explicit functions of the 
coefficients B and C. The roots of equation (Al4) are 

A = c,      4^ • 1/2C * J1/2 \ 3 C 

These roots form an equilateral triangle In the complex plane, 
of equation (A13) differ from these roots. The components €x 
the error are Indicated In the following figure 

(A15) 

The roots 
and €  of 

Im 
A*& 

X 

y ^ 
/ 

/ 

s \ 

e^ 
/ 

X \ 

y 
s s 

2€x ^s" Re 
*v 

xl 

1 
1 1 

-K^Q 
^ ^ J 

u. 
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I 

X1 = - C  - 26x , J^ 3 = 1/2C + ex ±j(l/2 3      - «x)        (A16) 

The coefficient B is equal to the sim of all double products of the roots 

B =  (- C  - 2€x)2  (1/2C + «-) 
C  - 2€, 

(The•product of the two Imaginary roots is expressed in terms of the 
negative triple product of the roots - C^ divided by the real roots.) 

Using series expansion, and neglecting the terms vhich are higher than 
second order in 2ex/C 

B ar - C2 - 46XC - te
2 + C2(l 

2€x     ktyt 
(A17) 

and 
€ Ä* X 

B (A18) 

Similarly, the coefficient C  can be expressed as the product of the roots 
as follows 

- C3 - (- C - 2€x) 

- c3^ - c3 + c^C - 

(1/2C + tx) + (1/2 -3 C - €.yf 

36, +  I e,r. V) 

(A19) 

ey ^ 3 ^ 

In terms of the stability derivatives we have 

V (gMu)l/3 

(A20) 
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Finally 

arc tan — r^. 60° €x 
(A21) 

These resxilts indicate that the complex roots of the exact equation (A13) 
lie on lines inclined 60° with respect to the horizontal and pass through 
the complex roots of the approximating equation (Al^f). The distance be- 
tween each of these roots and the related roots of the exact equation (A13) 
is approximately equal to 2 |€x| 

These conclusions yield a new and quick method for estimating the roots of 
a cubic equation of the type given by (A13). 
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APPENDIX III 

imiSTRATIONS 

rlt) 

s2+Pt8+(1+0,1+Q2t2) 
y(t) 

INPUT 
0- e(t) 

r(t) 

sSK.s+d*^.,) 
MÜL 

\J ISE'fe'dt 

FIGURE    I.    BLOCK   DIAGRAM  OF  COMPUTER   SETUP 
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05 .10 .15 .20 .25 .30 .35 

FIGURE  2.   TYPICAL   ISE    SELECTIVITY 

Itu axis 

FIGURE   3.  APPROXIMATING  ROOTS 

SPEED OF VARIATION:^' + P* ' 4Tr 
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I 
2r 

FIGURE  4.  APPROXIMATING  ROOTS 

o-oxit 

FIGURE   5.   NORMALIZED    APPROXIMATING    ROOTS 

SPEED OF VARIATION:-yo'+P1' ^ LVQ 

Ztl 'If 

FIGURE 6. BOUNDARY  BETWEEN  INCREASED 
AND   DECREASED APPARENT  DAMPING 
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GAIN: g Mu 

«s 

GAIN: Ma j 
 &- 

FIGURE   7.    DETERMINATION   OF 
THE    PHUGOID     ROOTS 

©VaMo 
®   '/jCM^+Xul 
® '4 iug tZ.+Xul 

®V Ma 

110 

■a 

■6 

-.4 ■■ V'T i 
.2                  \fl> 

FIGURE   8.   OSCILLATORY   ROOTS   DURING  TRANSITION 
(NEAR-HOVERING   AND NEAR-FORWARD-FLIGHT   APPROXIMATION) 

FORWARD / O SH.PER.ROOT5 
FLIGHT \ A PHUGOID ROOTS 

OSCILLATORY 
ROOTS 
REAL ROOTS 

+ 1«» 

FIGURE    98 

FIGURE  9.   TWO   POSSIBLE   ROOT    TRANSITIONS 
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POINTS 
2 ®   S'+ZS+S'O 

®   S'+S+Z.S'O 
®   S'tl-O 
®   S'-S + LS-O 

FIGURE IOA   TRANSITION   LOCUS 

HT^ 

 FROZEN 
 ACCELERATING 
  DECELERATING 

FIGURE  IOa TRANSIENTS IN POINT I 

FIGURE 10.   32 SECOND   TRANSITION 

FIGURE  IOC TRANSIENTS IN POINT  2 

FIGURE 100 TRANSIENTS  IN POINT   3 
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FIGURE  IDE   TRANSIENTS   IN POINT 4 

  FROZEN 
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FIGURE   MB.    TRANSIENTS     IN   POINT   2 

FIGURE   II.    16   SECOND   TRANSITION 

»I" 
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V v 

^   ' X 
\.   / 

FIGURE MC.    TRANSIENTS   IN   POINT   3 

y i   ly^ ^ ''    ■ 

  FROZEN 
 ACCELERATING 
 DECELERATING 

I      »--^   I 

FIGURE   IID.  TRANSIENTS   IN POINT   4 
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FIGURE   13. SLOPE   OF   FROZEN   LOCUS 
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