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SUMMARY

This report 1s concerned with a linear time varying approximation to the
dynamics of low-speed flying machines. Simplifications and approximations
are applied widely in order to emphasize essential aspects,

The range of time variation is described in terms of frozen system loéi of
the roots corresponding to the predominant mode of a system. The rate of
the time variation is described in terms of the deviation from the frozen
system approximation. An analog computer study was made to specify quanti-
tatively those rates of time variatlion which cannot be considered as slow.

The longitudinal dynamics of VIOL aircraft 1s studled as an example in
rather general terms. Approximations and the application of root locus
methods in terms of the most significant stability derivatives lead to a
construction describing the behavior of the oscillatory roots during
transition.

The results are used in a discussion of the following variable feedback
configurations: direct feedback adjustments, adaptive feedback, and pro-
grammed feedback adjustments.




CONCIUSIONS

Two distinct aspects of time varying systems are the range and the rate of
time variation. The question of when the time variation should be considered
"fast" is answered on the basis of practical considerations by means of a
computer study. The rate of time variation should be considered fast if,
during the time of one period of the predominant mode, the spring constant
variation 1s equal to (or more than) 50% and/or the damping coefficient vari-
ation is equdl to (or more than) .5. In these cases the system response is
markedly different from that obtained by the frozen system approximation.

The range of the time variation and the behavior of the predominant roots can
be predicted to a large extent by a construction based on simplifying as-
sumptions. This method makes the tracking of the influence of important sta-
billity derivatives very straightforward. With this method, considerable

a priorl knowledge can be provided on the behavior of the oscillatory roots
during VIOL transition. This knowledge is used in & discussion of three
different principles which can be used for artificiasl stability augmentation
by means of feedback. The advantages of programmed feedback gain adjustment
versus adaptive control are emphasized.

Recommendations.

The performance of an artificial stability augmentation system with programmed
galn adjustments depends largely on the amount of informstion avallable.
Therefore, further refinements of the presented approximating methods, es=-
recially in mid-transition, would be of great value. The full potential and
limitations of such & system should be investigated by exploring the sensi-
tivity of the performance to deviations from assumed design parameters.




INTRODUCTION

One common characteristic of low-speed flying machines is their abllity to
achieve raplid changes of the flight condition. The accent is on the word
"rapid," and the present report is concerned primarily with this aspect of
the flylng characteristics of such vehicles,

The reason why low-speed flylng machines exhibit this characterlstic can be
made plausible by consldering Newton's law: F = ma. If a certain accelerat-
ing force, F, 1s acting on a body for a time interval, T, the achieved ve-
locity can be expressed in this form:

X_ =1 + _EL.T

Vo v,

The smaller the initlal velocity, Vo, the larger 1s the relative change in
velocity. Most of the aerodynamic stability and control derivatives vary

with ;3 therefore, a set of linearized differentlal equations can be ex-

pected to become invalid more rapidly at low speeds than at high speeds.

It should be noted here that the rapid changes of characteristics at very
high speeds, although similar in effect, are of a different origin. The
very high velocitles enable the vehicle to encounter rapid changes of the
environment; for example, of the air density.

In both cases, at very low and at very high velocities; 1t is actually the
nonlinear varlation of the dynamic pressure which causes the conventional
set of linear equations to become invalid. Therefore, the findings of this
report, although presented with low-speed flying machines in mind, are appli-
cable to dynamic problems at both extremes of the velocity range.

A rigorous approach to the outlined problem would lead to a set of nonlinear
differential equations valid over the required velocity range. In .the
present state of the art such an approach could not be expected to yleld
useful results. A more promising approach tries to extend the classical
method of small perturbations so that approximating results could be ex-~
pected to reveal the essentlial behavior of the nonlinear system.

Consider a general physical system as described by a set of differential
equations. There are three kinds of "elements” which can be distinguished
in most differential equations:




1. Functions of the independent variables only (inputs).
2. Dependent varisbles. and their derivatives (outputs).
3. Coefficlents (parameters).

The equivalent terms generally used are in parentheses. A simplified repre-
sentation of a falrly general system can be given in the following form:

time L {_—_
’p;!.ramEterB

: .
[l Ly

distyrbances .. Yook S

compands | inputs 0“1"“7 ' linearization
feedback -\;

"\\“ o

This somewhat unconventional representation has been chosen in order to empha-
size the general nature of the relationships. A nonlinear differential
equation can be considered a variation of an approximating linear differential
equation in which the coefficients are functions of the dependent variebles.
The line connecting the outputs with the parameters then represents the es-
sential characteristic of nonlinear systems which is the dependence of coef-
ficients on the dependent variables. Linearization means cutting this line as
indicated, i.e., considering the coefficients to be independent of the de-
rendent variasbles. Total removal of all lines affecting the parameters is
equivalent to a further simplification to a constant parameter system de-
scribed by differential equations with constant coefficients. This latter
approach is used when small perturbations of an equilibrium (trim condition)

are investigated. In this case there is a conventional linear system with or
without feedback.,

The effect of the loop, indicated by the line between outputs and parameters,
on such a linearized system, will now be discussed. From the viewpoint of
dynamic response, there are two distinct effects of the nonlinear relation-
ships represented by the upper loop in the sketch.
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l. Nonlinear effects may change the dynamics in the vicinity of the
equilibrium so that linearized perturbation equations are not valid. For
example, saturation, backlash, etc., cause such effects. Several methods
(e.g., phase space, describing functions) can be used to deal with these
problems.

2. Nonlinear effects may change the equilibrium (trim) conditions to
such an extent that the coefficients of the linear perturbation equation
must be changed. For example, the change of dynamlc pressure or the change
of mass with fuel consumption cause such effects. It 1s this type of ef-
fect with which the present report is concerned.

It must be emphasized that the above distinction is not based on mathemati-
cal but rather on practical considerations. Actually, the same non-
linearity may give rise to both types of effects, depending upon the forces
acting on the system. The first case occurs if the dynamic motion result-
ing from disturbances and control actions involves the nonlinearity; however,
the equations describing the dynamics remain unaltered throughout the regime.
The problems arising from this situation are not of concern here. It 1s
assumed throughout the present report that the "small perturbation equations"
of the system are linear.,

The second case occurs when an average disturbance or control action moves
the equilibrium state along the nonlinearity. The change of the linear
term in the Taylor series expansion of the nonlinearity means continuous
changes in the coefficients of the small perturbation equations. This con-
sideration leads to the following linearization of the nonlinear prcblem.

It 1s assumed that the average forces and moments are contlnuously balanced
(trimmed). Small deviations from the trim condition appear as forcing terms
in the perturbation equatlions. If the assumption is now made that the time
history of the trim conditions can be predicted, then the parameters of the
perturbation equations can be considered functions of time instead of
functions of the system output. With these assumptions the nonlinear system
is approximated by a linear time varying system. The upper loop in the
Figure on page 4 has been cut and the arrow pointing to the parameters repre-
sents a function of the time, t, which can be considered,in a generalized
way, as an additional parametric input to the system.

If the predicted time variation is slow so that the parameters of the per-
turbation equation can be considered constant for the duration of at least
one transient response, then the system can be further simplified to a

"quasi-stationary" system. In this case, loci of the poles and zeros can
be plotted with time as the running parameter. Such a plot represents the




so-called "frozen system" approximation to the time varisble system. The.
somewhat vague fashion in which the "quasi-stationary” or "frozen" concept
is introduced indicates the difficulty in defining a border line between
time variable and constant parameter systems. JAgain, the distinction has
to be based on practical engineering rather than on mathematical considera-
tions. Obviously, problems arlise when the time variation is such that the
quasi-stationary approximation does not hold.

This report is concerned with the linear time variable approximation to the
dynamic problems of low-speed flying machines. Only smooth and monotonic
time variation are considered. Simplifications and approximations are ap-
plied widely in order tc emphasize essential aspects rather than detailed
calculations. .One major aspect investigated 1s the effect of the speed of
parameter variation. Various feedback stability augmentation configurations -
are considered. As an example, the transition of a VIOL aircraft is dis-
cussed in more detail.




THE FROZEN SYSTEM APPROXIMATION

Time varying linear systems can be described by linear differential
equations in which the coefficients are functions of time. If the time
variation is slow, the coefficients will not vary to any great extent with-
in a given time interval. The definition of "slowness" involves the speci-
fication of the time interval to be considered as well as the specification
of the coefficient variation to be tolerated. For practical reasons these
specifications have to be determined with the actual output of the system
in mind.

A stationary system 1s usually described either in the frequency domain
(transfer function or amplitude and phase characteristic) or in the time
domain (weighting function or impulse response). The frequency domain ap-
pears to be the less natural cholce in which speed of time variation should
be defined since it implies, by definition, steady state test frequency
signals. The impulse response, on the other hand, provides the significant
information within a limited time interval. A time interval, at the end of
which it is possible to make a Judgement on the essentlal characteristics
of the system, s¢éems useful as a basis for the investigation of the rate of
time variation. The significance of the time variation can be Judged by the
deviation from the response of a stationary system. These ideas are now
considered in more detail.

Assume a differential equation of a time varying system with an impulse ap-

plied at the time, T, in the following form:

T e Ly x ) (1)
£,.(t x (t) = &(< 1

Y n) o (

i=o0

If the variation of the coefficients, £4(t), 1s very slow, then the quasi-
statlionary equation

di
ifi('t) Zoa¥(e) = 8(x) (2)

i=o0

is a good approximation. If the roots of the correspondiné characteristic
equation are plotted with. T as the running parameter, the frozen system
loci of the time varying system are obtained. In general, the time varia-
tlon of the zeros, as well as of the poles of a transfer function, can be




characterized in this way. The locl do not change if, T, 1s replaced by, nt.
The time variation is faster when 1 1increases. Obviously, the approxi-
mation becomes worse with increasing  n. The frozen sdlution, y(t), can be
used as a reference with which the solution, x(t), of the time variable can
be compared.

The problem 1s to define a time interval which permits a meaningful charac-
terization of the frozen system solution and which can also be used for
evaluating the deviation of; x(t), from the frozen system solution. y(t).
Solving this problem in 1ts full generallty will not be attempted. Use will
be made of two restrictions determined by the subJject covered.in this report:
(1) to consider systems in which the time variation is smooth and mono-
tonic, at least piecewise; (2) to examine the effect of the time variation
from the point of view of its effect on a feedback control applied to the
time varying system. The first restriction permits some highly simplifying
approximations; the second restriction 1s of great help in determining =a
time interval for a meaningful characterization of the rate of time vari-
ation and its effects.

A discusslon of some consequences of feedback control 1s presented first.
The frozen system 1s considered then the deviations due to fast time vari-
ation. As mentioned .before, the frozen system can be represented by loci
of poles and zeros on the complex plane. At each instant, 7. determines a
certain pole-zero configuration or pulse response. A pulse response of the
frozen constant parameter system is the sum of component response modes.
The modes are determined by the poles; the relative amplitudes and phases
are determined by the relastive location of the zeros and poles. Consider-
ing the response as the input to a feedback branch (automatic or human), it
is Important to distinguish between dominant modes and modes of minor sig-
nificance. Even responses of systems of high order can usually be matched
quite will with a second, third, or possibly fourth-order system response.
Thus in the case of a time varisble system the variation of the dominant
modes is of primary significance.

It is very difficult to be quantitative about a general criterion for de-
termining whether or not a mode should be considered predominant. However,
this study 1s restricted to alrcraft configurations. Equations of higher
than fourth-order need not be considered. The relative importance of
different modes should be Jjudged on the basis of relative amplitudes.

The relative amplitudes of the different modes in the pulse response can be
determined graphically from the pole-zero plot of the transfer function
(Reference 1). The amplitude for any individual pole is determined by




dividing the product of the distances of the pole from the zeros by the pro-
duct of the distances from the other poles. The amplitude of an oscilla-
tory mode, represented by a pair of conjugate complex poles, is twice the
amplitude determined for one of these poles. Any arbitrary scale can be
chosen since only the relative amplitudes are of interest.

The following sketch shows some significant points in this procedure. Con-
sider the following pole-zero configuration.

P3t
€7\ €2l
X
v R
P \
Py I
g o &!EL
Pl Zq Zo ‘ Py
]
|
[]
‘5
4

VWhen the amplitudes of the oscillatory mode and the, pl, mode are compared
in the form of a ratio, the distance between. P3: (or Ph) and, py, drops out.
The ratio can be written as

2’P3 -zl - leg - 7
Ayl [P3 - Byl [P35 - By (3)
" Py = 2| - |y - %
PL =y o [Py - P

?3 - 23| - [p3 - 2

e o i
B~ R s
|p1 - P :
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In this example, z is at a similar distance from both poles. The ratio of
the distances to, P, , together with cos €,, result in a factor of approxi-
mately two in favor of A L The decisive factor is caused by the fact

that z; is much closer tg’p than to p,. Therefore, it can be safely esti-
mated that the amplitude of the oscillgtory mode is more than five times the
amplitude of the Py mode .

The relative amplitude ratio AE/Al of the p; and p, modes is determined in
this example primarily by the square of the ratio of the distances to p

(or pu) because the arrangement of the zeros is fairly symmetrical with re-
spect to the two real poles. Therefore

i
:Ael " cos® D) ()
BT cos® e

The considerations in this example can be utilized generally. For example,
the conditions under which the short period mode of a pitch response is pre-
dominant can be easily estimated. Since no objective criterion for
"predominant” can be established, some rule of thumb must be used. The
amplitude of a predominant mode should not be less than four to five times
the amplitude of any other mode. This is a reasonable criterion for a
fourth order system.

NORMAT.IZATION

It is convenient to use a normalization so that the effect of time variation
on a particular mode can be investigated in a general form. In order to in-
vestigate some fundamental aspects of the time variation, only one pair of
complex conjugate roots is considered. This is equivalent to replacing,

for example, an aircraft pitch attitude response with the short periocd oscil-
latory mode. This oversimplification will be helpful in the investigation
of practical effects of fast time variation. The effect of deviations from
this simplified model is discussed later.

The homogeneous differential equation of the simplified time varying system
of second order is:

X + £1(t)% + f2(t)x = 0 (5)

The solution in the vicinity of a frozen time solution is now examined.
Using a conventional notation of fixed parameter systems

10



£,(7) = 2;FwFo
(%) = uf,

where the “ndex F, stands for "frozen."

In the course of transitions, the time variations of parameters are not only
smooth but also monotonic over the full range, or at least over large por-
tions of the range. Therefore, it is reasonable to investigate the effect
of time variation by considering only the first two terms of the Taylor

series of the coefficlent time functions: <the time varisble damping and
spring coefficients.

% + ,;;FmFo + B(t - _'r)_!, X + l}%o +D(t - TE, x = §(7) (6)

For copvenience, the origin of time és shifted to 1. Using the notations
B = Puf, D='““’1§" wp = Wp, \| 1 - L5

¥+ (@ + B8R + (uf+ mde)x = 8(o) (7
tpero | IR

=7
N\ Re
~ ‘fl

»
X

— e — e — — — —

v

Normalization is obtained by a linear transformation

EF@rot
xe

and a change in time scale

t' = uth.




With

P=p
Q=4 +p tan ¥ (8)
the normalized equation is
¥+ Pt'y + (L +Qt')v = 8(0) (9)

Here t' is dimensionless time as defined sbove. This normalization puts
the frozen poles into the (+J, -Jj) points of the Sy plane. The effect of
time variatlon can be investigated in this plane. The simple transfor-
matlion relationships are described in more detail in Appendix I.

The solution of the differential equation with linearly time varying coef-
ficients can be obtained in the form of hypergeometric functions. However,
for engineering purposes, such a solution in itself is not very helpful in
the evaluatlion of fast time variation. An analog computer study was pre-~
ferred because of the extreme flexlbility offered by thils approach. High
accuracy is not important because of the approximations involved in the
study. The goal is rather to identify significant effects of time
variation.




ANALOG COMPUTER STUDY

The scheme for experiments with the normalized second order system was deter-
mined as follows. Since the normalization transforms straight lines into
straight lines, it seemed advantageous to explore time variations which move
the roots along straight lines, rather than purely linear time varilations
which move the poles along circles.

The normalized system equation

§ 4Py o+ (1 Q' +tP)y =0 (10)
determines the following locus for "frozen" roots:
Sy(t')=-PtT't\Jl+Qlt' +Qpt 2 --P—zﬁ'—d (11)
If Q.= P+ Q] this locus becomes a pair of straight lines:
D:: —_— ) pair of straig nes:
sger) = - 5+ g+ 32 (12)

-1
The slope tan (- g_l) and the constant speed of variation

das

T

are the same as those determined for the linearly time varying case at

t' = 0 in Appendix I. It wasodecided that various speeds of variation along
eight different directions 45 from each other, originating in the "frozen"
pole pair (+J, -J) should be investigated.

2
P2+Q,1
=—é—

It was rather difficult to choose a basis for the evaluation of the effect
of time variation. In the case of slow time variation the frozen system 1s
a good approximation. The goal of the analog computer study was to explore
the deviations from the frozen system solution due to fast time variation,
from the viewpoint of the application of feedback. As stated above, in
order to speclfy a speed of time variation a time interval and a criterion
for the comparison must be chosen. The concepts of apparent damping and
apparent frequency change were used in this choice. Although theoretically
an "instantaneous" damping and frequency could be defined, these concepts

13




-have no practical meaning because some finite time interval 1s necessary to
measure damping and frequency. A human pilot 1s not very sensitive to
slight frequency changes; damping can be Judged most easily by pesak ratios;
therefore, at least one half cycle should be used for comparison. In order
to provide a mechanical method for the comparison, the apparent damping and
frequency vere assumed to be the damping and frequency of an adjustable con-
stant parameter system. The response of this system with an identical in-
put was matched to the response of the time variable system. The match was
made in the "least integral square error" (ISE) sense. This procedure was
set up on an analog computer. It was found that using only one half cycle
of the frozen system response for comparison was not selective enough;
therefore, one full cycle of the undemped frozen system response was chosen
as a comparison~-interval.

A block diagram of the computer setup is shown in Figure 1. The equation
of the normalized time variable system is gilven by

¥+ PEF + (1 +Qut + Quti)y = 0 (13)
where Qp was chosen so that the roots moved along straight loci.

The constant coefficlent system used to approximate the time varying system
was

Yo + Kp¥g + (1 + K,)¥a 5 0 (1)
vhere Ky and K, were adjustable parameters. Experiments at different
speeds 05 variation were conducted by applying ldentical inputs to both
systems and measuring the displacement error:

€(t) = y(t) - y4(¢)

This error was squared by a function generator and then integrated. The
parameters K, and K, wvere adjusted to find the particular combination which
minimized thg ISE over one period of the normallzed frozen system response,
2n seconds.

2xn >
ISE=[’ €°dt = qin (15)

Varilous speeds of variations were used for P and 9., varying from l/lt»y(
to 2/:r for increas spring and./or damping coefficitnt; and from 1/8:: for
decreasing spring and/or damping coefficient. OCbviously, the greater the
speed, the larger is the ISE. Speeds less than l/&; were barely noticed
(Kt and K,, are less than .05). Speeds greater than 1/x (300% of spring

14
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constant variation) generated huge errors. Changing this time interval had
little effect on Kp and K, for minimum ISE at slow speeds. At high speeds
(1/x, 2/x) Kt and ﬁu were very sensitive to such changes. An example indi-
cating the selectivity is shown in Figure 2.

Since very low speeds (P, Q) < 1/8x) were found to be epproximated well by
the frozen system solution and very high speeds can be omitted because of
practical considerations, the following two speeds were selected for
comparison:

P, Q]_ = J-/)“‘It
P) Q'l = 1/21[

The speed Q) = 1/Ux increased the spring constant by 506 in 25 seconds (the
period of the frozen system). The speed of Qy = l/2n doubles the spring
constant in 2y seconds. The speeds P = 1/lx and.P = 1/2x mean that, if

Q) = O, a frozen system damping factor of .5 and 70T, respectively, is
reached after 2x seconds.

Figures 3 and 4 show the apparent roots at these speeds in different d4i-
rections. The tips of the vectors indicate the frozen system roots at 2x
seconds. Figure 5 combines these two figures by normalizing to the vector

lengths.

These data, combined with data obtained with other speeds s are plotted.in a
different way in Figure 6. The heavy line in this figure indicates the
boundary between those values of P and Q3 which result in K; > 0 and those
which result in Kt < 0. For the range of speeds of condern’it can be seen
that the apparent” "destabilizing" effect of negative P can be cancelled
by a positive Q of twice the magnitude. For large values of negative Q,
the dynamic effect will be a decrease of apparent damping no matter how
large P. (This is meaningful only for Q) > - 1/2x since 3f Q1< - 1/2x,
the roots become real within 2x seconds).

In order to estimate the effect of fast parameter variation for oscillatory
roots anywhere in the complex plane, the inverse of the normalizing trans-
formation must be performed. The apparent damping found in the normelized
form estimates the change in the damping of the frozen system output. This
means that the larger the frozen damping coefficient, the less the apparent
deviation caused by a fast time variation. Therefore, it can be stated
that the region of interest for this effect is that of low positive andnega.-
tive damping. In those phases of a VTOL transition where the oscillatory
roots are in the vicinity of the imaginary axis, it can be assumed that
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deviations from the frozen system assumption will influence the handling
qualities and the performance of autopilots designed on a frozen system
basis if the parameter variation is fast. It has been shown that fast
variation of the spring constant means a 50% to 100% change within the
time of one frozen system period. A decreasing spring constant causes more
deviation from the frozen system than an increasing spring constant. Fast
variation in damping means a variation of .5 to .T in the damping ratio
during one frozen system period. If a combination of spring and damping
variation takes place, the effects may strengthen (or weaken) each other
with the result that a smaller (or larger) speed of variation of the indi-
vidual parameters can cause a similar effect on the apparent damping.

For VIOL transitions the significance of these findings is that the effects
caused by fast parameter variations are expected to be stronger when fre-
quency and damping are decreasing rapidly in the vicinity of the imaginary
axis than when the roots move in the opposite direction along a frozen
root locus.
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APPROXTMATTIONS TO THE
LONGTTUDINAL DYNAMICS OF A VTOL AIRCRAFT

The simplified linearized rigid-body equations which describe the perturbed
longitudinal airplane motion about a straight and level flight path may be
vwritten as follows:

(8 -X,) +Xw+go=0 (16)
-zuu+(s-zw)w-vse=o
- Mu - Mw + (58 - M3)Se = Mgd

u, W, 6, are the small variations of the perturbed flight variables around
the equilibrium point. The coordinate system is fixed to the body. The
X-axls is taken positive forward and is initially set horizontal. The
Z-axis is positive downward. The only input considered in these equations
is the control moment around the pitch axis of the airplane.

1. NEAR-HOVERING FILJIGHT

The description of the longitudinal dynamics in near-hovering flight can be
simplified by the assumption that the vertical degree of freedom is un-
coupled from the other two (the horizontal and the angular) degrees of free-
dom. This is Justified as long as the stability derivatives X, (variation
of horizontal force with vertical velocity) and M, (variation of pitch
moment with vertical velocity) are small.

These assumptions are commonly used for satisfactorily approximating the
modes of motion of helicopters near hovering. For VTOL machines M, can
be expected to remain negligible for a larger velocity range near hovering
than is the case for conventional single rotor helicopters, because the de-
stabilizing contribution by the rotors which increases as the VTOL airplane
gains speed is balanced to some extent by the tail effect. Moreover, for
VTOL machines of the tilt-wing type, the effect of X, on the transfer
function is expected to be small since the rotor and wing contributions to
this derivative are of opposite signs. These considerations encourage us to
consider the assumptions made for the near-hovering regime to be valid over
a consldersble range at low speeds.

The transfer function for the attitude response within this range can be
cexpressed as follows:
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(s - z5)(5 - X)
(5 - 2y) B(s - M)(5 - Xy) + eMy]

Hence, the Z,, mode is cancelled as far as the © response is concerned
(this mode is also cancelled for the u response). This leads to the follow-
ing third order characteristic equation for low speeds:

s(s - Mg)(8 - X) + aM, = O (18)

My

The location of the characteristic roots can be determined from the
following root locus where the gain is gM,

ZRN| 05

I«

I/,

Gain: gM, j
I/'
Y5
- % L —Re
/ \\
1/3(My + X)) \
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The larger gM,;, the closer are the osclllatory roots to the asymptotes
which originate in 1/3(Mg + X,). For large enough gM, the three original
poles (M3, X,, and zero) can in effect be replaced by a triple pole at
1/3(Mg + X,). In this case

Ex*- 1/3(Mé+xu):,3+gMu= 0 (19)

can be considered as an approximating characteristic equation. This approxi-
mation places the poles right on the asymptotes at equal distances of
gM; from the 1/3(My + X,) point. If the actual roots are Sy, S , 83,

and if the approximating roots are SI, Sé‘, S'§, the error of approximation
can be expressed as

2¢

X

(SE = Sl)

(8% -85) =- (e + Jey) (20)

(8% - 8) = - (e - Je)

Using the results obtained for €., € in Appendix II, it can be shown that

o 2
1 /305 + X)) - Mex,

&G R 7 X o (21)
€y = \13— €x (22)

For a VIOL with a reasonable amount of static stability with velocity, M,,

(eMy~1/sec™3) and expected values for Mg and Xy, we find €x < .o gec™t.
Therefore, for practical purposes it is sufficient to consider only the

variations of the parameters 1/3(Mj + X,) and N3 l gM; as affecting the
displacement of the roots.

8y = (Sp)ygy + 1/3 AlM + Xu) + A?I g, I(60°+1 220°) (g

1w 3, 2, 3

This means that the roots will move horizontally to the left for an increas-
ing damping and radially towards the c.g. of the three roots for a decreas-
ing static stability with velocity.
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The meximum speed to which thils approximation can be used depends primerily
upon the increase of (=VM§) with velocity. Experimental results with
different VTOL planesM%References 1, 2, 3) show that first My increases with
velocity, because of the inherent rotor instability with angle of attack.
Shortly thereafter, the tail stabilizing contribution overrides that effect
and My decreases and becomes negative. As a result, there is a velocity
at which the cubic characteristic equation accurately represents the dy-
namics of the vehicle. It is therefore reasonable to consider our approxi-
mation as accurate enough for the interval from hovering up to this point.

2. NEAR-FORWARD FLIGHT

As the airplane approaches its forward flight configuration, the static
stability with angle of attack increases considerably. The transfer
function for the pitch attitude becomes

S - X, X, 0
=iy, S - 2z, 0
%= -MU. -MW MS 2 (214-)
S - ?u X g
- 2, 8 -z, - sV
WK s

= Mg (s - 2,)(5 - X)) + X2,
(8 -2,) [s(s - Mé)(s - X))+ gMu] - w;ﬂv(s2 - X8 - g/v Z,)+

+ X S [zu(s - My) - VMu].

The derivative X, is not negligible now in comparison with some other
derivatives; yet the X, terms in both numerator and denominator can still be
disregarded on the basis that at higher speeds Mu is small and Z, is much
larger than in hovering. In other words, it 1s assumed
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Xy &¢ 2K,

XwMuLC Lg,xu

Hence

(s - Z,)(s - X,)
(5 - 7,) [B(s - My)(s - xy) + gMu] - My(5® - X8 - 8/V 2y)

It is a common practice to study the short-period roots of conventional air-
planes using & second order equation derived from the fourth order charac-
teristic equation when the higher frequency roots are far away from the
other two roots. By the same reasoning, the same procedure can be used in
dealing with VIOLs during the last part of the transition; but it should be
remenmbered that tha farther the flight condition is from forward flight,

the poorer will be thils approximation.

(25)

=]
= =M
5 o)

In order to show the influence of various pareameters on the approximation,
the root locus technique is used to determine the characteristic roots. -
(Reference 4). First, the low-frequency roots ("phugoid" roots) are
conslidered.

From the expression

8(s - Mg)(s - x,) + M, (26)

wvhich appears in square brackets in the denominator of the transfer
function 6/8 (equation25) one can determine three points on the complex
plane. The roots of the equation are on a root locus as sketched in
Figure TA with the gain gM,.

is assumed to be small and positive throughout the range near full speed.
Two of the roots will then be either on the real axis within the interval
(o, Xu) or close to the real axis on the curved branch, as shown in the
sketech., Next, another root locus can be used to obtain the roots of the
characteristic equation. The starting poles for this locus are the three
poles obtained as roots of the equation (26), and a pole at Z,, The zeros

are the roots of the equation:

2

8° -XS8-8/Nz,=0 (27)
and the gain is - My. This locus is shown in Figure TB.
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The zeros are most likely a complex pair close to the real axis. They lie
on the vertical line passing throu§5 the point (1/2 X,, 0J) and their dis-
tance from the origin is (g/Vv Zu)l . The effect of a large gain, - My, is
to bring the low-frequency roots of the characteristic equation very close
to the zeros given by equation (27). The result is the well-known approxi-
mation of the phugoid roots.

The above presentation shows how the approximastion deteriorates for smaller
Mg. In this case the approximation overgstimates the frequency of the
phugoid roots. Consequently, (g/V Zu)l/ is a 1limit fec.- the frequency of
the phugoid roots. The influence of all the other derivatives on these
roots can be easily followed by estimating changes in the geometry of
Figure T.

The two modes of motion, the phugoid and the short-periocd mode, are well
separated during the high-speed phase of the transition. Since the phugoid
roots are considerably closer to the zeros of the transfer function 9/6,
the short-period mode can be considered to be the predominant mode of the
pitch-attitude response.

An analysis follows of the second order approximation of the characteristic
equation

22 - (M + Zy + XM + (Zy + Xu)M§ - Mg + ZyXy = O (28)

For VTOL configurations with improved dynamic and aerodynamic characteristics
the following inequality can be expected to be valid during the high-speed
portion of the transition:

My > X,

This leads to further simplification of the second order equation:
2
A= (Mg +Zy, + XN+ (2 + XMy - My =0 (29)

Using the root locus technique is again helpful in tracing the effects of
the derivatives. The starting poles of the root locus
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are M3 and 7, + X,. The gain determining the roots is - My. The roots lie
on a vertical line perpendicular to the real axis, crossing the axis at the
arithmetic mean of (Zy + Xy) and M3.

The constant term in equation (29), (Zw + Xyu)M - My, represents the square
of the distance between either root and the origin. If the difference be-
tween M3 and (Zw + Xu) is considerably smaller than their absolute values
then their product which appears in the constant term can be substituted

by the square of their arithmetic mean. (The error introduced by this as-
sumption is only 6% i1f their difference is half thi}ﬁ arithmetic mean value)
With this substitution it can be shown that (- Md) is a good approxi-
mation to the distance of the roots from the real axis. The real part of
the short-period roots is approximated, as stated before, by

1/2(My + Z, + )&l Th72da.mping ratio depends on the parameter

)e
(My +2, +Xy)/d- M)t

3. CONSTRUCTION OF TRANSITION LOCI NEAR HOVERING AND NEAR THE END OF
THE TRANSITION.

The approximations of the osclllatory roots near hovering and near the end
of the transition can be obbained graphically as shown in Figure 8.
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According to the previous approximations two lumped parameters in te of
stability derivatives are introduced for the near-hovering regime ( lgMu

and 1/3 |Mg + xul ) and two others for the regime near the forward flight
end of the transition (\[- My and 1/2 (Mg + Z, + X|). The values of these
parameters can be assumed to be known for hovering and forward flight
(completed transition).

The changes in these parameters determine the approximate changes in the
oscillatory roots near both end points of a transition. Figure 8 illus-
trates boundaries for assumed /:;hanges of the parameters with respect to
the nondimensional velocity V/Ve,iward £1ioht, &0d their effect on varia-
tions of the oscillatory roots. =

The assumed boundaries are shown in auxiliary coordinate systems by means
of two lines for each parameter. Parameter variations described by any
line running between these 1limit lines will cause root varilations within
the constructed resultant boundaries on the S-plane. As an exsmple, an
upper boundary line for the location of the short-period roots is obtained
by combining the line of assumed minima of the damping, 1/2(My + 2, + X,),
for the near-forward flight situation with the line of assumed maxima of

the frequency \,- M-

In the near-hovering flight region the roots are determined graphically by
their coordinates in an auxiliary axis system in which the angle between
the axes is 60°, The root coordinates in this system are given by My
and 1/3(M'e + Xu). Similarly, the upper and lower boundaries. of the roots
are determined as above.

The plot of the roots on the S-plane shows a gap between the lines a a' and
b b' on which the roots corresponding to O.k V/Vf.f. are located when ob-
tained by the near-hovering and the near-forward flight approximation.

This is the natural consequence of the inaccuracies in the approximations.
The actual size of the gap also depends on the relative location of the
hovering and the forward flight roots.

4, MID-TRANSITION FLIGHT

The mid-transition flight regime can be defined as that range where My 1s
too small for the assumption made in the near-forward-flight approximation,
but cannot be neglected as was done in the near-hovering flight assumptions.
Moreover, Z, , which depends upon the wing operating conditions, can change
largely within this range whenever the wing operates in the nonlinear region
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of the 1lift curve with respect to effective angle of attack. Simplifying
approximations like those made for both end regions of the transition re-
sult in a grossly distorted picture, because it is characteristic for the
mid-transition regime that all the important stebility derivatives are of
comparable significance. Despite this fact, the construction of Figure 8
1s extended into the mid-transition region. It is interesting to note that
even this oversimplification gives an indication of the general behavior of
the oscillatory roots throughout the transition. In particular, both an
early increase in Zy and a fast decrease of M,, With increasing velocity,
indicate a "dip" of the oscillatory roots toward the real axis. However,
it cannot be predlcted by the illustrated procedure how far this dip actu-
ally extends in mid-transition flight. In fact, two alternatives for the
general behavior of the roots can be recognized. It is possible that the
hovering roots move (perhaps through a "dip") toward the short-period
roots and that the two real roots in hovering comblne into the phugoid
roots in forward flight (Figure 9A). The alternative possibility is that
the hovering roots move toward the phugold roots during the transition and
that the real roots in hovering combine and break away toward the short-
period roots somewhare in mid-transition (Figure 9B). The loci in

Figure 9 are not root loci in the usual sense but describe the motlon of
the characteristic roots in the complex plane during transition.

Further applicatlion of the root locus technique indicates that these two
different behaviors for the roots depend primarily on the relationship be-
tween Zy and My during mid-transition. If My increases much earlier in the
course of the transition than Zy, the locus of Figure 9A will be the re-
sult. If Zy increases earlier than My, the locus will be of the type
illustrated in Figure 9B.

In general, the variation of M, , M3 , 2, , and My in mid-transition de-
termines the eventual amount of "dip" in the movement of the oscillatory
roots. A sharp dip implies a large decrease and increase within a rela-
tively small speed range. In such a case the results of the previous
section on the effects of fast time variation apply.

Apparent deviations from the frozen system approximation can be expected

to influence the handling qualities and feedback control. It has been shown
that a fast decrease in frequency near the imaginary axis can cause a con-
siderable decrease in apparent damping. The approximate analysis presented
ir this section has identified the possible causes leading to this situation.
The method can be used in a quick evaluation of the effects of design
changes on the behavior of the oscillatory characteristic roots during a
transition.
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5., OSCILIATORY ROOTS IN TRANSITION

In order to illustrate transitions of the simplified second order model
described earlier, the plecewise straight transition locus shown in

Figure 10A has been chosen. The component of speed of varlation parallel
to the real axis was kept constant. Pulse inputs were applied automatically
at the instants when the roots were in the positions marked 1, 2, 3, k4;

only one point was tested in each transition. Transients for the fairly
fast total transition tlme of 32 seconds are illustrated in Figures 10B
through 1E. This time is approximately five times the period of the hover-
ing or mid-transition response. The frozen system pulse response (a) and
the responses for the accelerating (b) and decelerating (c) transition

are shown for comparison in each figure. Both the displacement and the
veloclity responses are shown.

Transients for an even faster transition of 16 seconds (approximately 2.5
periods) are shown superimposed in Figures 11A to 11D for the points illus-
trated in Figure 10A. Note the considerable destabilizing effect during
deceleration and the stabilizing effect during acceleration.
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FEEDBACK CONSIDERATTIONS

In this final section of the report some aspects of artificial pitch-

=attitude stability augmentation of VIOL aircraft are discussed. These
aspects are quite general in their nature and part of the discussion ap-
plies to all time varying feedback control systems in general. Some
important problems are omitted, such as the provision of sufficient con-
trol authority for the feedback system. Emphasis is placed on those
aspects which are connected with the time varying nature of the problem.
The range of varilations can be estimated, based on the frozen approxi-
mation. The deviation from the frozen can be estimated, based on the
results presented previously in this report.

In order to provide a basis for the choice of the feedback configurations,
the goal to be achieved must first be determined. Since the concern is
with piloted airecraft, some variation in freguency as well as in damping
of the predominant closed loop response can be tolerated because of pillot
adaptivity. A range of low frequencles within a 2:1 ratio and a range of
relative damping ratios between .2 and T can be handled easily by a pilot
Such tolerances define a conslderable area in the complex plane within
which the predominant closed loop roots may possibly be located.

We assume a basic rate and attitude feedback loop in which the feedback
gains have to be adjusted because of the time variation of the system.
The following alternatives will be considered as fundamentally differing
feedback adjustments for time varying feedback systems.

1. ADJUSTMENT BY DIRECT FEEDBACK

In principle, it would seem desirable to'make adjustments in the basic feed-
back loop according to the variation of the variable which is the physical
cause of the time variation. This is the dynamic pressure or veloclty for
VITOLs and helicopters, and a more complicated pressure distribution in the
case of ground effect machines. If the time varying system is well known,
then the proper gain ad justments as functions of the velocity can be pre-
determined. The instrumentation of such a scheme lnvolves the measurement
of the velocity, some nonlinear device determining the amount of gain adjust-
ment and the gain adjusting element itself (Figure 12A). Several diffi-
culties make this approach unfeasible for practical application to low-
speed flying machines. Dynamic pressures cannot be measured well enough at
very low speeds. However, even if they could be determined adequately, two
other fundamental problems remain. In the frozen system approach, the un-
certainty about the actual variations of derivatives makes the determination
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of the nonlinear adjustment functions somewhat arbitrary. Additional con-
ditions such as the amount of acceleration or deceleration at a certain
velocity cause large variations and additional comlexity.

The adjustment by direct feedback means an additional feedback loop around -3
the system with the basic loop. The two loops are coupled through the gain
adjustment. In the case of slow time variation, the variable on which the
ad justment depends, the velocity, can be filtered in order to extract the
average variation from the time history of the velocity. For fast time
variations, however, when significant changes take place within one period
of a predominant mode, the filtering time constant has to be so short that
dynamic coupling between the two loops cannot be avoided. This causes an
additional problem because the dynamics of the entire system become in-
creasingly complicated. Actually, the linearization which leads to a time
varying linear system is not valid in this case. For these reasons gain
adjustments by means of direct feedback should not be used for the purpose
in mind here.

2. ADAPTIVE FEEDBACK

The principle of adaptive feedback was introduced to handle control pro-
blems where the system to be controlled is not sufficiently well defined
for a conventional feedback system synthesis. The term "adaptive" is used
here for systems in which the performsnce of the feedback control is de-
termined in terms of a performance index, and adjustments are made accord-
ingly in the basic feedback loop (Figure 12B). Based on the frozen sys-
tem approximation, two major difficulties which were connected with the
first approach could be eliminated by an adaptive control system but at the
expense of added complexity. These arc the problems of velocity measure-
ment at low speeds and the effects of design uncertainties. However, the
less the time avallable for system identification, the larger will be the
instantaneous deviations of the gain settings from the optimum. If an
adaptive system is expected to follow changes within one period of a pre-
dominant mode, then dynamic coupling between the adaptive loop and the
basic feedback loop cannot be avoided. Fast system identification is com-
plicated even theoretically and could lead to very complex instrumentation.

One way of getting around this problem is to suppress the original pre-
dominant mode of the system. This implies that a considerably higher feed-
back gain can be applied than would be necessary for stability augmentation
itself, so that the natural frequency of the predominant closed loop mode
is increased to be fast with respect to the time variation. The result

is a very tight control system implying that more control authority must
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be available than would be necessary for stabillity augmentation only. For
example, in the Minneapolis-Honeywell adaptive autopilot such a tight loop
around the aircraft is used to make the aircraft follow a dynamic model
response.

Whenever the application of adaptive control is considered, as much & priori
knowledge as possible should be used in order to make the design as simple
and as efficient as possible. It has been shown in the section, "Approxi-
mations to the ILongitudinal Dynamics of a VTOL Aircraft," that even a very
simplified description leads to considerable information on the behavior of
the predominant roots. Determining the roots in the forward flight configu-~
ration and hovering are classical problems. An area inside which the oscil-
latory roots move in transition can be reasonably well approximated; the
actual root will not be too far from the crude approximation. A question
must be raised as to whether the complexity -of an adaptive system is Justi-
fied or whether a much simpler approach might not be as effective.

3. PROGRAMMED ADJUSTMENTS

The considerable amount of a priori knowledge and the rather broad toler-
ance permitted because of the pilot's adeptivity suggest the feasibility
of simple feedback gain adjustments. The range of open loop damping is
determined by the hovering and the forward flight roots. The frequency
range is influenced largely by the "dip" of the transition locus (Figure 8).
The simplifying approximations made throughout this report can serve as a
basis for programming the feedback adjustments. Programming means that the
adjustments are "open loop" adjustments rather than being derived from the
output of the system as in the previous two configurations (Figure 12C).
Adjustments are programmed as functions of the wing angle in the Tri-
Service VIOL aircraft. The closed loop-roots of an approximating model
can be confined to a small region of the complex plane by means of rather
simple gain programs. The neglected poles and zeros, variations of the
c.g. of the aircraft, and deviations due to acceleration and deceleration
will cause the closed loop roots to move within a larger region than the
one predicted by neglecting these effects. Thus it is necessary to rely on
the adaptivity of the pilot. The effect of fast time variation must also
be taken into account, using the relationships established in the Section,
"Analog Computer Study" and Appendix I. It has been shown that the apparent
effects due to fast time variation are strongest near the imaginary axis.
Therefore, with increased closed loop damping the effect of the fast time
varlation becomes less apparent.
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The simplicity of programmed feedback adjustments is very attractive.
Further investigation of the sensitivity of such a system to variations
and uncertaintles of system parameters is under way in order to establish
the full potentisl and limitations of this approach. Whenever the per=-
formance of this approach can be made acceptable it should be preferred
to the more elegant but much more complex adaptive approach.

Similar conclusions were reached in a previous report (Reference 5) in
connection with the artificial stability augmentation of ground effect
machines.
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APFENDIX I

NORMALIZATION
The normalization of
2 2,4 2
X + (2§FwFo + smFt)x + (mFo + pm;t) =0 (A1)
through y = xegFmFot and t' = wgt vwhere wp = wpg \s; L. ;%
leads to 4
y+Pt'y+ (1 +Qt')y=0 (a2)

This transformation is equivalent to a horizontal shift of the frozen poles
by ¢ Wpo into the imaginary axis and a scale expansion on both axes by the
factor l/wF. Lines passing through the frozen point on the Sy plane are
transformed into lines passing through the (+j, -Jj) point on the S, plane.
The transformation is angle preserving. The linear time variation of the
coefficients causes the frozen roots to move along circles centered on the
real axis. These circles go over into circles in the course of the trans-
formation. The relationships between P, Q and B, p was given, by definition

P=p; Q=p+Btany (v=tant_ SF ) (a3)

The slope of the variation as well as the rate of variation in the normali-
zed S plane can be determined as functions of B and u. The normalized
frozeh locus is obtained by taking t' as a parameter in the following
characteristic equation.

s§+Pt'sy+(1+Qt')=o (A4)
8y(t') = 1/2 EPt % \j(r‘t')2 - B(1 + Qt") (45) .
For the variation of Sy in the vicinity of t' = 0O
dSy(t') '
—®T = 1/2(P + Q) ( A6)

t'=0
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The slope of the locus is determined by

asy(s")
dat'

=7 =tan™" & = tan™ (%___;E__}

t'=0 -t

(AT)

¢
= tan ¥ vhere V¥ 1s the angle enclosed by the radius vector

F
2
ll-g

of the pole and the imaginary axis. u/ﬂ can be considered the tangent of
a fictitious angle ¢ . This permits the 1llustration of the full range

of B and p , including B = O, on a finite scale. The angle 7y of the
normalized frozen root variation is related to p/p and ;F of the original
root through the following relationship

tan 7y = tan ¢+ tan ¥  where ¢ = tan™t % (A8)

This relationship 1s plotted with CF as a parameter on Figure 13. The
speed of root variation 1s also determined by B, p and QF'

—_— = p (n - B) A9)
@ g0 g il ¥ - gFE (

For poles along the imaginary axis, where {p = O, this becomes
1/2 \|g® + w2

The general case can be related to this value.

2 tr 2
' B +(p -2 — B
wel | A\pree Ve Fg®
t'=0 2 ——
\ 2 4 2 (420)
\ H 2\j'l + .(ta.n ¢+ tan v)e
= 1/2 B+ \l-:—(t———— :;F——

; 2
The coefficient of 1/2 \|5 + p2 with Ly 88 & parameter, is illustrated
in Figure 1k.
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The shapes of the transformed frozen pole loci with time variation are
circles with their centers on the real axis at the distance

93

QP=L-2__~ - tan¢ +tany
B \l—'—l = C;
and the radius equal to .

\J1+ (tan ¢ + tan 1|r)2
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APPENDIX IX
NEAR-HOVERING -FLIGHT APPROXTMATTION

We can determine the error made in the determination of roots when the near-
hovering characteristlic equation

S(S - M3)(S - X) + gM, = O (A11)
is substituted by the followlng equation
[S*-l/S(Mé+xu) 3+gMu=0 (A12)

For convenience we shift the origin of the coordinate system into the
c.g. of the roots of both equations into the (1/3Mg + X;), O) point. This
transformation does not change the errors nor thc c.g. of the roots.

The nevw cubilic equation obtalned from equation (All) 1s of the type

NMaem+cd=0 (A13)
where =
2 MoX,,
B=- |1/3(M, + J . |3 - ——
[ i |'_1/3(M9 + X,) ]2_,
c3=SMu‘ [1/3(M6+Xu) 3 5 2_Mexll a

[1/3(1«9 . X,) "| |

Since M, is large for low speeds

¥eXu |
E—/3(Me + xu):[2

M, 77 [1/3(Me+xu) 3. 2 -

c = (gmu)l/ 3
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It can also be shown that B &L C

We solve the approximating equation which is obtained from equation (Al2)
as

AR (A1k)

then add to the roots correcting terms which are expliclt functions of the
coefficients B and C. The roots of equation (Al4) are

N = C, %—,3 = 1/2¢ ¢ 31/2 \|3 c (A15)

These roots form an equilateral triangle in the complex plane. The roots

of equation (Al3) differ from these roots. The components €x and €y of
the error are indicated in the following figure
Im
%® M
/ \\
&yl
- 36 \
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e \
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2€x e l Re
_x $
~
N M S
~ - |
= l
~
B —_— 23
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The roots of the exact equation can be expressed as

M =-C - 2e , ;2,3 = 1/2C + e, +3(1/2 ° - &) (a16)
The coefficient B is equal to the sum of all double products of the roots

3
B = (- C - 2€x)2 (1/20 + Gx) - _—'g—-:—e—e——
X

(The -product of the two imaginary roots §s expressed 1n terms of the
negative triple product of the roots - C-° divided by the real roots.)

Using seriles expansion, and neglecting the terms which are higher than
second order in 2e,/C

2
—_ o) ) 2€ hey '
B~ -C -lnxc-he§+c(l-—c—x+ 2 ) (n17)
and B
ex':;‘ - w (A18)
3

Similarly, the coefflcient C can be expressed as the product of the roots

as follows

- C3 = (_ c - Qex) [(1/20 + ex)2 + (1/2 *3 C - €-y)2 (Al9)
-G - C3+C2( - 3€x+\'3,:;)

€, = 3 & (A20)

In terms of the stablility derivatives we have

&y i (330 + X)" - Mex,

=L

TP @t

€
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Finally

arc tan

mlm
"<

= 60° (A21)

These results indicate that the complex roots of the exact equation (Al3)
lie on lines inclined 60° with respect to the horizontal and pass through
the complex roots of the approximating equation (Alk). The distance be-
tween each of these roots and the related roots of the exact equation (Al3)
is approximately equal to 2 ;ex; .

These conclusions yield a new and quick method for estimating the roots of
a cubic equation of the type given by (Al3).
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APPENDIX IIT

TLLUSTRATIONS

") K y(t)
%+ Pts +(14+Q,1 +0Q,t%)

Y S u cz ISE =[e2dt

INPUT =

20) K Y (1)

s K;s#(lﬂ(w)

FIGURE |. BLOCK DIAGRAM OF COMPUTER SETUP
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FIGURE 2. TYPICAL ISE SELECTIVITY
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FIGURE 3. APPROXIMATING ROOTS
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o axis

o

o= |/4w

o= /2w

FIGURE S. NORMALIZED APPROXIMATING ROOTS

FIGURE 4. APPROXIMATING ROOTS

SPEED OF VARIATION.4/0" +P*+

2m

FIGURE 6. BOUNDARY BETWEEN INCREASED
AND DECREASED APPARENT DAMPiING
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FIGURE 7. DETERMINATION OF
THE PHUGOID ROOTS

|-

+r

‘FORWARD | O SH.PER.ROOTS
FLIGHT [ & PHUGOID ROOTS

FIRUAE 24 # OSCILLATORY
HOWVER- {  ROOTS
L & REAL ROOTS
‘o
N
%
2
w
I
FIGURE 98

FIGURE 9. TWO POSSIBLE ROOT TRANSITIONS
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