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SUMMARY

- The results of measurements of various statistical properties of the
fluctuating wall-pressure field associated with turbulent subsonic boundary
layer flow in conditions covering & range of values of boundary layer
thickness and flow speed are given. The measured quantities include
overall rms pressures, frequency spectra, and longitudinal and lateral
space-time correlations in both broad and narrow frequency bands. Some
experimental values of space-time correlation between wall-pressure
fluctuations and turbulent velocity fluctuations at various positions in
the boundary layer are also presented.

These experimental results and some of their implications on the
structure of the wall-pressure field and the nature of its convection and

decay are discussed.

SOMMAIRE

On donne les résultats de mesures de diverses propriétés statistiques
du champ de pression de paroi variable associé & 1’ écoulement des couches
limitrophes turbulentes subsoniques dans des conditions englobant une
plage de valeurs d' épaisseurs de couches limitrophes et de vitesse
@’ écoulement. Les quantités mesurdes sont entre autres les pressions
totales racine de moyenne des carrés, les spectres de fréquence et les
corrélations espace-temps longitudinales et latérales tant dans les
baides de fréquences larges qu’ étroites. On présente aussi quelques
vaieurs expérimentales de corrélation espace-temps entre les fluctuations
de pression & la paroi et les fluctuations de vitesse de turbulence &
diverses positions dans la couche limitrophe.

On discute ces résultats expérimentaux et certaines de leurs implications

sur la structure du champ de pression & la paroi et la nature de sa
convection et sa décroissance.
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NOTATION

skin friction coefficient = 7, /q,

diameter of pressure transducer

boundary layer form parameter = &*/0

free stream Mach number

fluctuating component of static pressure on the wall
root mean square wall pressure = { p° )

free stream dynamic pressure = %ﬁbU;

wall pressure covariance (Equation (2))

covariance of narrow band wall pressure signals
Reynolds number = UOH/V

wall-pressure correlation coefficient (Equation (4))

correlation coefficient of narrow band wall-pressure
signals

pressure-velocity correlation coefficient (Equation (14))
fluctuating velocity component in Xy direction

root mean square velocity fluctuation in stream direction
= (u})

mean velocity in flow direction
average convection velocity
instantaneous convection velocity

convection velocity derived from narrow band correlation
measurements

mean flow velocity outside boundary layer
friction velocity = V(7 ,/0,)
co-ordinate in the direction of mean flow

co-ordinate normal to wall
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PROPERTIES OF THE FLUCTUATING WALL-PRESSURE FIELD OF A
TURBULENT BOUNDARY LAYER

M.K. Bull®*

1. INTRODUCTION

Wall pressure fluctuations produced by a turbulent boundary layer have been the
subject of many investigations. Early experimental work was, on the whole, confined
to measurement of the root mean square and frequency spectrum of the wall pressure,
and in many cases the instrumentation available did not give an adequate coverage of
the band-width of the fluctuations. More recently the development of miniature
pressure transducers and the extensive use of correlation techniques has led to a much
more detailed examination of the wall pressure field, and its relation to turbulent
velocity fluctuations in the boundary layer.

The experimental results presented in thisReport show that space-time correlations
of the overall pressure signals, supplemented by correlations in narrow frequency bands,
cen provide a considerable amount of information on details of the structure of the
pressure field. Additional information on the relation between the wall pressure
field and velocity fluctuations in the boundary layer is provided by correlating the -
outputs of a pressure transducer in the wall and a hot-wire anemometer in the boundary

layer.

2. THE WIND TUNNEL

The experimental data which are presented in this Report were obtained from
measurements made on the turbulent boundary layer developed on one of the ground and
polished 9-inch walls of the subsonic test section of the 9 inch x 6 inch boundary
layer tunnel in the University of Southampton.

This wind tunnel is of the induced flow non-return type driven by the injection of -
compressed air downstream of the working sections. It has two working sections, a
subsonic section 10 feet long followed by a supersonic section 6 feet long, both of
which have rectangular cross-sections nominally 9 inches x 6 inches. The working
sections are of fairly massive steel construction, are mechanically independent, and
carried on anti-vibration mountings. The subsonic section is slightly divergent to
compensate for boundary layer growth and so that there is no pressure gradient along
it. Instrumentation has to be mounted in 6-inch diameter plugs which fit ports in one
of the 9-inch walls. The general arrangement of the tunnel is shown in Figure 20.

To keep the extraneous sound field in the test section to a minimum, injector and
diffuser are heavily sound-proofed and in the present experiments the tunnel was always
run in a choked condition so that injector and diffuser noise were not propagated
internally into the test section. The diffuser outlet is outside the laboratory

building.

*Department of Aeronautics, The [niversity of Southampton, Southampton, England




3. INSTRUMENTATION

All measurements of fluctuating pressures were made with piezoelectric transducers
set flush in the wind tunnel wall. The pressure-sensitive elements were lead zirconate-

titanate disks, 0.030 inch in diameter.

The pressure transducers were mounted rigidly in their instrument plugs, the mass
of the side-plates of the wind tunnel being relied upon to keep vibration of the
instruments down to an acceptable value.

The electrical output of the transducer was fed to a pre-amplifier with high input
impedance and the signal then further amplified for direct spectral analysis (Bruel
and Kjaer ﬁé-octave Audio Frequency Spectrometer, Type 2111) or for recording on
magnetic tape (Ampex Model FR-100). All correlation values were obtained from recorded
signals processed by the correlation equipment described in Reference 1.

Calibration of a transducer was effected by first mounting it in the wall of a
shock tube and checking the overall linearity by means of the response to the passage
of a shock wave across its face. A detailed low frequency response was then obtained
by calibration against a standard condenser microphone, the two instruments being
mounted in a small cavity together with a moving coil hearing aid which was used as
the calibration signal generator. With the latter procedure the transducer could be
calibrated in its experimental mounting. The calibration was normally checked before
and after each tunnel run when root mean square pressure and spectral density
measurements were being made.

Velocity fluctuations were measured by a constant temperature hot-wire anemometer
(Disa Type 55 A 01). The hot-wires were tungsten, 0,0002 inch in diameter. The
wires were welded to their supports and subsequently copper plated leaving an umplated
working length of 0.06 inch. The hot wire probes were carried on supports of
aerofoil section which could be traversed normal to the tunnel wall,

4. THE FLOW UNDER INVESTIGATION AND ASSOCIATED EXPERIMENTAL CONDITIONS

4.1 Boundary Layer Characteristics

Measurements of wall pressure fluctuations were made for two free stream Mach

numbers, M, = 0.3 and 0.5 . The variation of displacement thickness, &* , and
momentum thickness, & , of the boundary layer along the working section for these

two flow conditions is shown in Figures 1 and 2. These Figures also show the variation
of the form parameter H = Sﬂ/é . The corresponding values of Reynolds number and

skin friction are given by Figures 3 and 4.

Skin friction values were derived from the slopes of the measured velocity profiles
using the law of the wall,

— g —1n(—> + B (1)

with K= 0.40 .




Velocity profiles were obtained from Pitot tube and wall static pressure
measurements. For both flow Mach numbers a satisfactory collapse of velocity profile
data from various stations along the test section was obtained in velocity defect
form in terms of the derived skin friction values. The plot of (U, - U)/UT versus
y/8 for M, = 0.5 is shown in Figure 5.

The intensity of the longitudinal component of residual turbulence in the free
stream outside the boundary layer was measured only for M0 = 0.5 . The value found
was u'/U0 = 2.0 x 10°% with virtually no variation along the length of the working

section.

4.2 Sources of Extraneous Pressure Signals

The two effects most likely to give rise to interference with the wall pressure
measurements are vibration of the working section of the wind tunnel and the presence
of a sound field in the working section.

Measurements of the spectrum of the output of the transducer when it was mounted
in the tunnel wall but blanked off from the flow showed that vibration effects were

sufficiently small to be neglected.

On the other hand the sound field in the working section was not negiigible under
all measuring conditions. The intensity of this field in the free stream was measured
by means of a faired %-inch condenser microphone. It was established that the
introduction of the microphone itself produced no significant increase in the internal
sound intensity by means of a monitor microphone located flush with the wall of the
settling chamber, upstream of the contraction leading to the working section (it
had been found, previously, that acoustic disturbances in the working section produced
by the introduction of measuring apparatus such as Pitot tubes and hot-wire probes
could be quite readily detected by a microphone in this position). The sound intensity
registered by the faired microphone therefore represented the internal sound field of
the empty tunnel plus possibly some small increase due to the disturbance effect of

the microphone itself.

The sound pressure level in the test section was found to increase with increasing
distance downstream for both M, = 0.3 and 0.5 , the increase being about 5 decibels
from upstream to downstream end of the working section. For most test conditions
the mean square acoustic pressure was less than 4 per cent of the mean square wall
pressure, although in the worst case, which occurred at the downstream end of the
working section at M0 = 0.5, this figure approached 9 per cent.

The microphone signal had a broad band character, the spectral density being
highest at low frequencies and falling off with increasing frequency. Because of the
high spectral density of this background field at low frequencies, the spectral
density measurements of the pressure field were rejected for frequencies less than
300 cycles/sec. This low frequency cut-off amounts to a Strouhal number limitation
of 0.01 to 0.06 depending on the flow conditions. The recorded signals for correlation
purposes were also cut off at this frequency by making use of the response
characteristics of the tape recorder. The bandwidth of recorded signals was 300 to

30,000 cycles/sec.




ROOT MEAN SQUARE AND FREQUENCY POWER SPECTRUM OF THE WALL PRESSURE
FLUCTUATIONS

5.
The statistical properties of the wall-pressure field to be discussed are all
particular values of the covariance
Qp© 857 = (XX t) P(X, + &, X, + &5, t+ 7)) (2)

(where ( ) denotes a statistical mean value) or of spectral functions derived from

it.
Equation (2) can be normalised by dividing it by the mean square pressure
"% = (p) = Q0,00 (3)
to give the correlation coefficient

(S )
Ryp(§1:€qm) = -Qﬂzfgf—- (4)

The Fourier transform of Qpp with respect to time yields the spectral function

-]
1 -lw
Gpp€1.85@) = o Qw(fl.fa,'r)e lor g7 (5)
i =0
the inverse relation being
[o2]
PpEpéa = j"spn(‘fvfavw) e do . (6)
-

i
i
i

The frequency power'spectral density ¢b(a» of the pressure fluctuations, as measured

by a wave-analyser, is given by

t

Bp(@) = Bp(0,0,0) + i (0,0,-)

'

QDD(O,O,T)coszdT. 4

0

It was hoped that measurements of root mean square pressure at various stations
along the working section at the two free stream Mach numbers M, = 0.3 and 0.5 would
give an indication of the effect of Reynulds number on this parameter. However, even
with the small transducer elements used, for which the ratio of transducer diameter to
boundary layer thickness was in the range 0.17 < d/6* < 0.52 , the real effects of
Reynolds number seem to have been obscured by the effects of transducer resolution.




The measured values of p'/q, and p’/7, are shown in Figure 6. At both flow
Mach numbers the value of p’/q0 was found to increase as the measuring station was
moved downstream along the test section. Since the corresponding value of skin friction
coefficient Cf decreases (lMigs. 3 and 4), there is an even more rapid increase in
the ratio of rms pressure to wall shear stress p’/r0 . In fact the value of p’/'r0
increases by about 40 per cent for a Reynolds number change by a factor of about 4.
In contrast to this behaviour the values of p’/T0 found by various previous
investigators suggest a decrease with increasing Reynolds number (see for example the
summary given in Reference 2) although the trend is by no means well established,
largely because of the diversity of experimental conditions. For pipe flow Corcos®
finds a slow decrease of p’/'T0 with increasing Reynolds number.

The data for the frequency power spectrum of the pressure, expressed in
non-dimensional form, ¢ (a»Uo/qSS‘ , in terms of the dynamic pressure and velocity of
the stream outside the boundary layer and displacement thickness, are shown in Figure
7. They collapse quite well at low and intermediate frequencies, w8‘/U0 <1, but at
higher frequencies there is a spread of values, consistent with an increasing
ailenuation (due to finite transducer size) with increasing d/6* . It is fairly
clear, therefore, that a large part of the observed increase in p’/To with Reynolds
number is due to the parallel decrease in size of the transducer relative to the scale

of the pressure field.

However, if we assume that where the measured spectra fall on a single
non-dimensional curve (a)S‘/U0 < 1) the effects of finite size of transducer are
negligible, there remains an indication that over this region spectral density
expressed in terms of wall shear stress in the form ¢b(a»Uo/q§3‘ increases with
Reynolds number although at a considerably smaller rate than suggested by the rms

pressure measurements.

At M, = 0.5 the value of p’/'r0 at the smallest experimental value of d/6*
(namely 0.17) was 2.68 whilst at M0 = 0.3 the smallest value of d/6* was 0,16 and

the corresponding p’/To was 2.53.

6. OVERALL SPACE-TIME CORRELATIONS

Overall space-time correlations Rpp(fl,faur) were measured for various transducer
separations along lines making angles of 0°, 30°, 60° and 90° with the mean flow
direction at M, = 0.3 and 0° and 90° at M,=0.5. The flow conditions for these
measurements are summarised in Table I. A typical set of curves of the longitudinal
space-time correlation, R (fl,O,T) , as a function of non-dimensional time delay
UOT/S‘ , for various values of 51/5‘, are shown in Figure 8.

6.1 Space Correlations

The values of the longitudinal space correlation, Rpp(fi,0,0) , for a variety of
flow conditions are shown in Figure 9 as a function of the non-dimensional spatial
separation 51/8‘ . The points can be reasonably well represented by a single curve.
The longitudinal correlation is negative for spatial separations greater than about
3.90* , while the lateral correlation, Rpp(0,§5,0) , shown in Figure 10, remains
positive at the largest value of 53/3‘ investigated. Correlations along lines at
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angles of 30° and 60° to the free stream flow direction for M, = 0.3 (Pig.11) have
intermediate forms.

TABLE I

5=

(inches) Reg H

0.3 0.081 10,100 1.36

0.3 0.149 19, 400 1.31

0.5 0.057 10,900 1.39

0.5 0.126 24,300 1.37

0.5 0.173 33,800 1.36

From the space correlation curves for the four angles to the flow (Fig.11), the
correlation pattern of the pressure field can be mapped out as a set of isocorrelation
contours. Figure 12 shows the resulting pattern. If the long tail of the lateral
correlation curve is accepted, the scale of the pressure field in the lateral
direction is considerably greater than the longitudinal scale, and this is clearly
shown by the isocorrelation contours of the field. The integral lateral scale,

(4]
f Rpp(o,fa,O)df3 , is about three times as great as the longitudinal scale
0

«©
J‘ Rpp(fl,O,O)dcf1 . At large separations the accuracy of determination of the
0

correlation coefficients is not high and the results are more likely to be influenced
by extraneous effects such as the background sound field in the wind tunnel, so the
disparity in scales may not be quite as large as indicated above. However, the results
certainly indicate anisotropy of the pressure field with the lateral scale exceeding

the longitudinal.

6.2 Space-Time Correlations and Convection Velocity

If we take the position of the centre of a pressure eddy after a lapse of time 7
to be that value of 51 for which the correlation with the original signal Rpp(fl,O,T)




is a maximum at the instant 7 then Uc = fl/T represents an average velocity of
the eddy over the period 7 . This same velocity Uc can equally well be derived
from the envelope of the curves of R (§1,0,T) versus T for various values of

fl = constant. A typical set of these curves is shown in Figure 13. The convection

velocity is now given by

U, = é‘- (8)
c

where Te is the time delay for which the curve fl = constant touches the envelope.

The instantaneous convection velocity, Ué , of the pressure field is given by the
slope of the 51 versus 7, curve

s =L (9)

This distinction between average and instantaneous velocities has to be made since it
is found that the relation between fl and T, 1s not linear, as Figure 14 shows. In
fact, as will be seen from Figure 15, the convection velocity increases markedly with
increasing spatial separation from a value less than 0.6 U, at very small separations
to a value in excess of 0.8U, at large separations. The asymptotic values of Uc/Uo
found in the present experiments are 0.53 and 0.825 for small and large separations

respectively.

If the convection velocity is determined in the same way from correlations for
which 53 # 0 1t is found that the initial rise with increasing spatial separation

is even more rapid than for the fa = 0 case (Fig.15)

A feature of the space-time correlation curves with increasing 51 is that, in
addition to the maximum value of correlation coefficient becoming smaller, the curves
quickly lose their sharp peaks and become much broader (for example, Figure 8). This
indicates that the spectrum of the correlation-producing wave-number components is
becoming progressively curtailed at the high wave-number end, and further that each
particular wave-number component loses coherence in the time taken for it to travel
8 distance which is broadly proportional to its wave-length.

This behaviour considered in conjunction with the observed variation in convection
velocity indicates that the high wave-number (small-scale) components of the pressure
field are convected downstream slowly at speeds of the order of 0.5U0 and rapidly
lose their coherence while the low wave-number (large-scale) components are convected
rapidly at speeds typically of the order of 0.8 to 0.9y, and lose coherence quite

slowly.
7. NARROW-BAND SPACE-TIME CORRELATIONS AND CONVECTION VELOCITIES
More detailed information about the convection velocities and rate of loss of

coherence of the various components of the pressure field can be obtained from
measurements of correlations of the pressure signals after they have been passed through
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narrow-band filters, a method first applied to wall pressure measurements by Harrison®,

If the covariance of the pressure signals in a narrow frequency band centred on w
is denoted by Q(£,,£,,7) , defined in the same way as Qy,(£,,£,,7) (Equation (2))
for the broad-band signal, then we can define a correlation coefficient

w
¢,£,7
R“’(..T)=Q"°‘° 10
wrée ™ = oy 0
which is the narrow-band analogue of Equation (4).
It can oe shown® that
| (€,.€, 0]
Ry (6,657 = — PRV 7 eog(wr +a) (11)

16,5(0.0,0)

¢b being the (complex) spectral function given by Equation (5). a, the phase angle
of ¢bp6§1,§3,a» , results from the convection of the pressure components in the
frequency band being considered. Convection velocities could be determined from the
envelove of the major peaks of the curves of R;; versus time delay for various
constant values of spatial separation, in the same way as for the overall pressure
correlations, but it is somewthat more convenient to find convection velocities,

Uc(a» , from the time delays corresponding to the major peaks themselves, i.e. given by

“ . (12)

The values of convection velocity obtained by the two methods will not differ very
greatly.

The way in which a particular frequency component loses coherence during the
convection process is represented by the behaviour with increasing spatial separation
of the amplitude of narrow-band correlation coefficient l¢hp(§1'§5'“°|/|¢bp(o'O'Q»I
which will be denoted by IR;;(fl.fa.T)l- Experimental results for the variation of
amplitude of the longitudinal narrow-band correlation, IR;;GEI,O,T)I, are shown in
Figure 16; they can be quite accurately represented as a unique function of wf /U, (w)
except at low values of this parameter. This type of dependence is untenable at low
values of «f /U () since IR;;(§1,0,7)| must equal unity at £ =0 for all w,
but will not equal unity for w= 0 at non-zero values of fl . The deviation from
wél/Uc(an dependence at low values of af;/Ucau) might be expected to occur at higher
values of w& /U (w) the higher the value of £,/6* , and this expectation is
confirmed by the trends indicated in Figure 16. In Reference 5 an expression for

R;;Ofl,O,T)I was derived for a pressure field which was a slowly varying function of
time in a convected reference frame. IR;;(fl'O’T)| was found to be a function of
51/8‘ only, and not frequency dependent. This conclusion, which seems to have been
largely a consequence of the particular forms assumed for the correlation functions,
becomes increasingly at variance with the present experimental results and those of
References 3 and 4 as the values of ag;/uc«») increases, but it may still provide a
reasonable representation of the behaviour of the narrow-band correlations at low
frequencies where wéi/Uc(a» dependence is no longer valid.




The fact that the amplitudes of the longitudinal narrow-band correlations behave
as & function of a&i/UCOw) over a wide range of values of this parameter indicates
that, in the main, the loss of coherence of a frequency component occurs in a time
which is inversely proportional to its frequency, or, identifying frequency components
with convected wave number components by means of the relation

w = kU, (13)

that a wave number component loses coherence in travelling a distance proportional to
its wave-length.

The enplitude of the lateral filter band correlations, |R2(0,£,,m)| , in the same
way, tends to be & unique function of w&,/U,(w) except for small values of «f,/U,(w)
(Fig.17), indicating that the lateral coherence of a given longitudinal wave number
component is also proportional to its wave-length. As in the longitudinal case the
deviations from dependence on wég/uc(an only are greater the larger the value of

53/8‘ .

Values of the ratio of convection velocity to free-stream velocity are shown in
Figure 18 as a function of aﬁ‘/Uc(a» . As well as a frequency dependence the values
of Uc(w)/Uo show a variation with spatial separation of the measuring points, similer
to that observed in the case of the overall convection velocity (Fig.15). A spatial
dependence was also found in the low and high frequency measurements reported by
Willmarth and Wooldridge in Reference 2. a

Figure 18 shows that the increase in Uc«»)/Uo with spatial separation occurs
mainly for 0 < &£, /6* < 5. At greater values of 51/3* there is very little further

convection velocity increase.

It has been assumed on several occasions in this Report that fixed point frequencies
and longitudinal wave-numbers are interchangeable, It is known that the time scale of
the pressure fluctuations in a frame of reference moving with the pressure eddies is
very much greater than the time scale in a fixed reference frame, so that the relation
given by Equation (13) can be expected to be a good approximation. However, to further
identify a given fixed point frequency with one wave-number component (or a very narrow
bend of wave number components) rather than with a wide range of k, all of which are
associated with the same value of kxuc(kx) requires that the convection velocity
should be a unique function of k1 . This is equivalent to saying that Uc«v) should
be a unique function of wS'/UCOv) . Figure 18 shows that this condition is not
precisely satisfied - in fact if this figure is interpreted as Uc(k1)/Uc versus k18‘
then there will be an uncertainty in Uc(k1)/Uo associated with a given value of k1
which is small at small k13‘ but becomes of the order of * 10 per cent at large
k18‘ . But, although there is a range of convection velocities associated with a
particular value of k1 , the indications are that it is confined within fairly narrow

limits.

The results of the correlation measurements in narrow frequency bands therefore
indicate that the pressure field can be regarded as made up by the superposition of
longitudinal wave number components with each of which can be associated a reasonably
well-defined convection speed or limited range of convection speeds. The various
components are coherent over lateral distances which are proportional to their
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wave-lengths and retain coherence in the flow direction for times proportional to the
times taken for them to be convected distances equal to their wave-lengths.

This conclusion is consistent with the observation of the overall space-time
correlation characteristics of the pressure field. It explains the change in character
of the correlation with increasing time delay and spatial separation, the variation of
convection velocity with increasing spatial separation and the different rates of
variation of convection velocity with fl for different values of 53 .

The fact that a more or less unique convection velocity can be assigned to a
particular wave number component, suggests that by and large the pressure fluctuations
of a particular longitudinal wave number originate from a region of the boundary layer
where the mean flow velocity is equal to the observed convection velocity. If
longitudinal wave number components k1 are associated with physical scales this leads
to the conclusion that small-scale pressure fluctuations originate from boundary layer
turbulence quite close to the wall while the larger-scale fluctuations are associated
with motion in the outer regions of the layer. This conclusion might be expected to
apply with greater accuracy to the small-scale than to large-scale fluctuations, since
the correspondence between the longitudinal wave number k1 and physical scale tends
to lose precision at small values of k, ; this is borne out by the fact that the
convection velocity of the overall field at large separations does not greatly exceed
0.8U0 and that even in narrow frequency bands Uy (w) does not exceed 0.9U, for
small k, , indicating that the sources of fluctuation with low k1 cannot be so
accurately located, but are more widely dispersed throughout the boundary layer, their
convection velocities representing an average of a fairly wide range of values.

8. PRESSURE-VELOCITY CORRELATIONS

In an effort to determine how different regions of the boundary layer contribute
to the wall pressure field, measurements of the correlation between the wall pressure
fluctuations and turbulent velocity fluctuations at various positions in the layer
were begun. It was the intention to investigate the correlation between p and u,
and between p and u, , but because of experimental difficulties which are briefly
referred to below values of the former correlation only have been obtained.

The coefficient of correlation hetween p and u, is defined as

(DX X X0 8) D(X, +£,,%, + €%, + &8+ 7))
(14)

Rpu1(§1:’§2.§3-7) S 1 1
(P2(x % %) VE(ul(x, + £,%, + £,x, + £) )7

Values of Rpul(fl,fé,o,T) have been obtained for 0.4 < 52/8‘ < 4.4 and
0< 51/3* < 12.3 for flow conditions M, = 0.5 and 0* = 0.126 inch.

Considerable di.ficulty was experienced in eliminating the interference effect of
the hot-wire probe on the pressure field, even when the wire was located downstream
of the pressure transducer. By careful re-design of the hot-wire probe the
interference was considerably reduced, to a state where it amounted to only 1 or 2 per
cent increase in the output of the pressure transducer. Under these conditions the
main effect was an increase in pressure spectral density at low frequencies,
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wS‘/Uo < 0.14 , and the pressure and velocity signals were therefore passed through
high-pass filters which cut out frequencies below this value.

Typical results for verious values of &,/8* and & /8* = 3.88 are shown in
Figure 19. The correlation curves are asymmetrical, the correlation being zero at the
centre of the disturbance which is correlated with the wall pressure. The greatest
magnitude reached by the coefficient on either side of its zero-crossing was found to
be greatest for small values of & /0* and £,/8* and to decrease slowly as these
separation distances increased. The slow decrease towards the outer edge of the
boundary layer does not necessarily imply that the wall pressure receives comparable
contributions from all parts of the boundary layer since the intensity of velocity
fluctuation falls off rapidly as the distance from the wall, §2/8‘ , ilncreases. A more
realistic indication of the contributions of various parts of the layer to the wall
pressure can probably be obtained by considering the variation of ujiRp,, across the
layer. Since the value of u{/U0 varies from about 0.10 in the inner region of the
boundary layer to the residual free-stream value, which in this case was about 2 x 10'3,
the value of u{Rpul falls off quite repidly with increasing distance from the wall.
In relation to its value at about one displacement thickness from the wall, the value
at 52/8' = 5 1is about 10 per cent and at the outer edge of the layer only 1 or 2 per
cent, supporting the view that the inmer region of the boundary layer is mainly
responsible for the wall pressure fluctuations.

The measurements also show that the longitudinal velocity disturbance at a
particular distance from the wall, which is correlated with the wall pressure, is
convected at the speed of the local mean flow.
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DISCUSSION

Comment by P. Davies

Dr. Curle of Southampton has investigated the effect of discarding parts of a flat
spectrum and shows the error of doing so is not large. This is not of course true
when discrete frequencies form a large proportion of the overall signal power.

Comment by J.S. Serafini

I would like to clarify and emphasize the points I made after the paper by
W.W. Willmarth. Of importance in the filtering here is not only what is the cut-off
frequency, but how sharply the rate of cut-off takes place. What is your rate of

cut-off of your filter, Dr. Bull?

Author's reply

In obtaining the pressure-velocity correlations the low-frequency cut-off for
wd*/V ;< 0.14 was sharp, from memory 12 db/octave .

Comment by J.S. Serafini

If indeed your cut-off is quite sharp, note that in so doing you have removed not
just increased spectral level due to interference, but you also have removed the
‘non-interfered’ level in this filtered range of the frequency. Thus, it is not
entirely clear to me precisely under what grounds one can neglect the fact that in
removing the ‘interference effect’ by sharply filtering the spectra one also has
changed the basic character of the fluctuations to be correlated.

Author’s reply

It is true that filtering removed the true signal as well as the interference effect
but the contribution to the pressure energy from frequencies for which wS*/U0 < 0.14
amounts to only 3 or 4 per cent of the total, and I believe that the effect on the

measured correlations is small.

M. Strasberg

Dr. Serafini’s point, that the contribution of the low frequencies to the cross
correlation may be greater than their contribution to the mean-square signal itself
is well taken. This may be stated in a more definite way be noting that the cross
correlation is the Fourier transform of the spectral density, viz.

. 1
R, (T) = ; [Plz(w)coscdl‘-k le(w)sinwr]dw

0

where P12 and le are the real and imaginary parts of the cross-spectral density.
If the signals are filtered with high-pass filters having a cut-off frequency w, ,




34

then the integration is perfo;med only from @, to o . But the contribution to the
integral of P12 and le from zero to w, may be a larger portion of the total

integral than the contribution of Pll(a» to the mean-square signal.

Author’s reply

Errors could certainly be introduced in this way, but it was found that when the
interference effect itself was small, the effect of filtering was also small, producing
- changes in correlation ceefficient of the order of 0.01 or 0.02 when the interference
signal produced about 2 per cent increase of rms pressure - only in the case of large
interference effects did filtering give rise to large changes in correlation coefficient.
This reinforces my belief that the effect of filtering in this case has been to remove
the interference signal without significantly affecting the correlation of the real

pressure signal with the velocity.
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