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FOREWORD 

This report contains a review of the UDOFT program from June 1956 to December 
1962. This period of approximately six and one-haif years comprises system development 
(June 1956 to April 1960), installation (April 1960 to September 1960) and operation (Sep¬ 
tember 1960 to December 1962). The work was sponsored jointly by the U. S. Air Force 
and the U. S. Navy under Contracts N61339-40, N61339-853 and N61339-1150. This sum¬ 
mary report has been prepared for the Behavioral Sciences Laboratory of the Aerospace 
Medical Division, Wright-Patterson Air Force Base, by the Electronics Systems Division 
of Sylvania Electric Products, Inc., Needham, Massachusetts, under Air Force Contract 
No. AF33(657)-7605 and is in support of Project 6114, "Simulator Techniques for Aero¬ 
space Crew Training" and Task No. 611413, "Digital Computers. " Mr. William B 
Goeckler, Simulation Techniques Branch, Training Research Division, Behavioral Sci¬ 
ences Laboratory, 6570th Aerospace Medical Research Laboratories, served as contract 
monitor. 

Mr, Julian Wargo, Manager of Sylvania's Digital Simulation Systems Department, 
was principal investigator and directed the preparation of this report. Other key Sylvania 
personnel who contributed include F. Kearney, K. Rago, and H. Wychorski of the Com¬ 
puter Laboratory; Mrs. F. MacNair and J. Prutsalis of the Programming and Analysis 
Laboratory, and D. Rush of the Product Support Organization. 



ABSTRACT 

UDOFT (Universal Digital Operational Flight Trainer) represents the first full- 
scale application of a high-speed, general-purpose digital computer to the real-time 
flight simulation problem. Through the use of the stored program digital computer, sim¬ 
ulation of different aircraft is accomplished by changing the computer program. This 
flexibility is the key to the realization of the full advantages of the digital control system, 
as compared to the conventional analog control system, in this application. Basically a 
high-speed, general-purpose digital computer, the UDOFT computer represents an ad¬ 
vancement in the design of real-time control computers. With the use of dual, 4096-word, 
random-access, magnetic core memories, the basic instruction time for the UDOFT com¬ 
puter is five microseconds. To interface with the analog environment of a flight compart¬ 
ment, the UDOFT computer is equipped with a special-purpose, real-time input-output 
capability. 

Use of the computer in a simulation system demanded the preparation of programs 
for applying the computer to the solution of the mathematical model of the real-world sys¬ 
tem under consideration. Such programs were written for the F-100A and the F9F-2. 
Extensive qualification testing was performed to ensure proper and complete simulation 
of these aircraft. 

PUBLICATION REVIEW 

This technical documentary report is approved. 

WALTER F. GRETHER 
Technical Director 
Behavioral Sciences Laboratory 
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UDOFT FINAL REPORT 

SECTION I 

INTRODUCTION 

1. 1 Purpose 

The purpose of this document is to summarize and evaluate the UDOFT {Universal 
Digital Operational Flight Trainer) program in a concise, coherent and objective manner. 
This report analyzes the UDOFT system covering both computer hardware and computer 
programming aspects of real-time digital simulation. A significant portion of this docu¬ 
ment is devoted to the numerous problems encountered during the program, the approach¬ 
es taken to solve these problems, and an appraisal of solution techniques. . . • 

Based upon the experience of Sylvania personnel, test data, and performance char¬ 
acteristics of the UDOFT system, recommendations are proposed and documented for 
reference with regard to future digital flight simulation systems'. 

1.2 Background Information 

Aircraft simulators for pilot and aircrew training have experienced widespread 
use and acceptance during the past fifteen years. During this period of time they have 
evolved from comparatively crude, unsophisticated devices to the highly complex electron¬ 
ic and electro-mechanical devices that now exist. Although the scope and magnitude of 
the simulation has been expanded greatly, the purpose of the simulator-trainer has remain¬ 
ed the same; namely, that of providing to the senses of the pilot-trainee the illusion of 
actual aircraft behavior. Basically, this is accomplished by causing the controls and the 
instruments in a reproduction of the aircraft cockpit to govern and to indicate aircraft' 
behavior exactly as they do in the actual aircraft. If the simulation requirement is limit¬ 
ed to this form of illusion, instrument and control simulation is sufficient; this degree of 
realism is adequate for most forms of simulator training. If, however, more detailed 
training is required, the senses of the pilot-trainee must be influenced to a greater degree. 
This is effected by simulating characteristic aircraft sounds, aircraft motion, and the 
environment in which the real aircraft would be operating. 

A simple simulator-trainer consists of a reproduction of the cockpit section of an 
aircraft, an instructor’s station, and a computing element. The cockpit and the instruc¬ 
tor's station provide inputs to and accept outputs from the computing element. As the 
pilot-trainee goes through the motions of flying, the cockpit controls, through appropriate 
transducers, provide input signals to the computing element. On the basis of the current • 
positions of the controls and the past history of the mock flight, the computing element 
determines the current status of the aircraft’s behavior (e.g., rate of climb, velocity, 
altitude, etc. ) and feeds these computed values to instruments and indicators of pilot-trainee 
and instructor. At the same time, the instructor may arbitrarily introduce various condi¬ 
tions, such as heavy icing, rough air, or engine failures, by means of controls located at 
his station. These inputs are assimilated by the computing element and the resulting 
effects on the simulated behavior of the aircraft are produced. Thus the pilot-trainee can 
be trained in the command and control of a particular type of aircraft under both normal 
and abnormal operating conditions. 

Simulator-trainers, in the same manner as the actual aircraft they simulate, have 
become more complex, more costly, and vastly different from their predecessors. The 
major reasons, in both instances, have been the rapid advancement in engineering tech¬ 
nology and the keen competition among manufacturers in the respective industries. Thus 
relatively few of the same components are ever utilized in the different classes of systems, 
most all of them being of a special-purpose nature. In the case of the simulator-trainers, 
each different device that has ever been built has been a special-purpose analog system, 
the function of which has been to simulate one, and only one, particular type of aircraft. 
As a result, aircraft obsolescence has causedsimulator-trainer obsolescence; the lack of 
flexibility has sounded the knell for the special-purpose system. 
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1. 3 Program History 

In order to minimize the obsolescence rate of the ever more costly analog 
simulator-trainers, the possible application of a general purpose digital computer to the 
flight simulator-trainer problem was taken under consideration at the U.S. Naval Training 
Device Center, Port Washington, New York. Since the digital computer art was relatively 
new in 1950, U.S.N.T.D.C., known then as the U.S. Navy Special Devices Center, award¬ 
ed a study contract to the Moore School of Electrical Engineering (MSEE) at the University 
of Pennsylvania. The evolution of the program at MSEE can best be summarized by using 
the words of Morris Rubinoff, an individual deeply involved in the development of real¬ 
time digital flight simulation. (Ref. 1). 

The results of the first year of this study contrasted markedly with the prevalent 
optimism of the digital computer field, then in its infancy, which had overestimated the 
capabilities of the computer of that day and underestimated the mathematical problems 
associated with digital real-time simulation. 

The fastest computer under’development at that time was Raydac, which had a 4 me 
clock rate. The Moore School study estimated that even with Raydac the flight simulation 
problem would require 0.22 seconds to advance the computation of airplane flight by one 
quadrature step. Unfortunately, it could only be conjectured what step size was acceptable 
for numerical methods of solution of the differential equations of motion. Hand computa¬ 
tions and intuition led to a guess that 1/8 second was the largest possible step which would 
avoid introducing spurious instabilities. 

Thus, even the most optimistic estimates indicated that real-time digital airplane 
simulation was not yet feasible because computers were too slow by at least a factor of 
two. The Moore School then addressed itself to the two basic problems: that of discovering a 
mathematical criterion or criteria for predicting the stability of numerical solutions re¬ 
gardless of the actual flight path taken by the simulated airplane; and that of improving 
the logical structure of the digital computer to increase speed by about one order of mag¬ 
nitude. The computer improvements had to come from logical design because it was felt 
that only switching circuits with proven reliability could be incorporated into a demonstra¬ 
tion operational flight trainer. An early decision was made to base all calculations on the 
1 me SEAC circuits, the latter running reliably since 1947. 

A breakthrough on the mathematical problem was made by Dr. H. J. Gray, Jr., 
with his development of a "stability chart" for numerical solution of differential equations. 
The stability chart is a digital counterpart of the Nyquist diagram, and permits a mathe¬ 
matician to specify, in advance, a quadrature step in size for which stable simulation is 
assured. 

The stability chart made it possible for the Moore School to find a "best" formula 
to use in stable real-time airplane simulation'of high performance airplanes using real¬ 
time steps of 1/20 second or shorter. This provided a quantitative goal for the improve¬ 
ment required in computer speed. Certain preliminary computer modifications led im¬ 
mediately to a four-fold improvement, sufficient to imply feasibility of real-time airplane 
simulation although without any margin of safety. The most significant change was the use 
of separate high-speed memories for instructions and data, considered (at that time) to 
be a backward step, but one which gave a full factor-of-two improvement. 

Still other logical improvements were incorporated into the computer design; the 
final result was a computer about 100 times the speed of SEAC, with a 5 microsecond add 
time and r 10 microsecond multiply time. 

This computer along with all the analog and switch inputs, the analog and switch 
outputs and displays, the real-time clock, and the multiplexed digital-to-analog converter 
was christened "Universal Digital Operational Flight Trainer" (UDOFT). In 1954 the 
Moore School informed NT DC that it firmly believed that digital simulation of even super¬ 
sonic aircraft was feasible using a computer such as UDOFT and advised them to proceed 
to have the simulator built. 

On 30 January, 1956, the Training Device Center issued a specification for "The 
Development and Construction of a Digital Computer System for Actuation of Operational 
Flight Trainers." The purpose of the procurement intended by this specification was to 
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demonstrate that a digital computer system could be utilized to simulate a subsonic F9F-2 
jet fighter and a supersonic F-100A jet fighter by actuating suitable cockpit reproductions 
and instructor control stations in real-time. 

A contract to undertake this program was awarded to Sylvania Electric Products, 
Inc. on 29 June, 1956. The scope of the work dictated that the equipment, specifically the 
digital computer system, should be designed, developed, and constructed in accordance 
with the logical computer structure and preliminary circuit design prepared by the Moore 
School. Although Remington Rand Univac had conducted an evaluation study of the Moore 
School design, resulting in numerous recommendations, many areas of the design required 
further effort. These included but were not limited to: 

1. Design and development of the dual five-microsecond coincident-current magnetic 
core memories 

2. Design and development of the five phase 1.2 megacycle clock pulse system 

3. Design and development of the computer operation and maintenance console 

4. Development of the plug-in circuit modules 

5. Integration of the computer system and the two government furnished analog 
simulators 

6. Programming of the computer for the two aircrafts 

7. Performance testing of the integrated system (computer systems aircraft simu- . 
lation program aircraft cockpit mockup, and simulator instructor station) 

After nearly four years of concerted effort and the expenditure of approximately 
two million dollars of Navy and Air Force funds, the UDOFT system was delivered to its 
permanent installation at the U.S, Naval Training Device Center Annex, Garden City, 
Long Island, New York. The formal unveiling of the system to the public occurred at the 
U. S. Navy - U.S. Air Force - UDOFT Conference and Demonstration on 13 September, 
1960. At this time it was clearly stated that the UDOFT system would be utilized as a 
research tool to investigate problems encountered in the use of digital simulation tech¬ 
niques and to support the study of psychological engineering, and mathematical applications 
of simulation to military training. 

These words have born fruit, for in nearly three years of operation, approximately 
10, 000 operating hours have been logged on the system for such applications as extensive 
testing and evaluation of the F-100A simulation model, simulation of the dynamics of a 
submarine (ref. 2), simulation of the dynamics of a surface ship (ref. 2), experimentation 
with the significance and the required accuracy of coefficients in aerodynamic equations 
of motion, investigation of the problems in the use of a digital computer for simulating a 
hypersonic earth orbital and re-entry vehicle, and the ever-present study of improved 
numerical procedures for maximizing the real-time simulation capability of a digital com¬ 
puter system. Awareness and availability of the UDOFT system is starting to permeate 
the military research organization; as a result it is expected that the research load placed 
on the UDOFT system will increase greatly in the future. The results of the current re¬ 
search projects and of the many now in the planning stages will provide invaluable infor¬ 
mation for the improvement of the real-time digital simulation art. 

1. 4 General Program Requirements 

As prescribed by the original system specification, the simulation equipment shall 
consist of a digital computer with input-output devices and all components and circuits 
necessary for solving, in real-time, the basic equations of motion, position,and flight 
dynamics of either of two specific high performance jet aircraft. The equipment shall also 
present to the cockpit displays of the appropriate aircraft, the solutions of these equations 
as a function of aircraft control movements in terms of the aircraft's performance and 
flying qualities. The system shall be sufficiently flexible to simulate any one of several 
types of single-engine jet fighter aircraft. The computer system shall consist of a digital 
computer, a computer control console, a punched-card handling input mechanism, an 
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output printer, analog-digital and digital-analog converters, multiplexers, servos, and 
all associated equipment needed to accept pilot and instructor commands and to provide the 
instrument and control reactions to the mock F9F-2 and F-100A cockpits. 

As the program progressed, it was realized that additional items, not considered 
at the time the specification was prepared, were necessary. The most important item by 
far was the computer program for the simulation of the F- 100A aircraft; of lesser profun¬ 
dity but equal importance were programs for aiding operating personnel in the maintenance 
of the computer system. Further, and again in the area of programming, there existed 
the need to develop programs to aid the programming personnel to create the aircraft 
simulation programs. As may be evident from these examples, the art and the understand¬ 
ing of programming was not even as advanced as the understanding of digital computer 
hardware which, although these statements refer to a period of time only six short years 
ago, was rather limited. 

And of course, as with any prototype development program, requirements existed 
for such supplementary items as reports, drawings, and handbooks on training, installa¬ 
tion and maintenance. 

These, in brief, are the basic requirements that guided the development of the 
UDOFT system. Throughout the program, minor changes and additions were made to the 
specification; however, the intent of the specification never changed and UDOFT was devel¬ 
oped very much as originally planned. 

1.5 Organization of this Report 

The body of this document, though divided into seven sections, covers four primary 
topics: the hardware system particularly the computer; computer programming; testing 
of the system as a flight simulator; and a brief evaluation of UDOFT and its use to date. 

The hardware system is discussed in three sections. Section II, System Descrip¬ 
tion, presents the fundamentals of digital computers, leading into an introduction to the 
UDOFT computer; Section III, UDOFT Computer Description, presents in some detail the 
various units of the computer and their functions; Section IV, Computer Hardware Develop¬ 
ment History, treats the more prominent design considerations and problems encountered 
during the development of the computer. 

Computer programming is discussed in two sections. Section V, Simulation Pro¬ 
gram Development, presents the programming aids that were evolved to effect efficient 
programs development and checkout, and the prominent factors that influenced the organ¬ 
ization of the flight simulation programs; Section VI, Simplified Description of the F-100A 
Program traces briefly the organization of a flight simulation program. 

Delineation of the aids, programs, and procedures that were developed to expedite 
testing of a complete flight simulation program is presented in Section VII, Testing Aids, 
Programs, and Procedures Used in Establishing the Performance and Flying Qualities of 
the Simulated F-100A Aircraft. 

The final section of the report. Section VIII, Summary, presents a brief objective 
evaluation of the UDOFT system, its design and its use to date. 
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SECTION II 

SYSTEM DESCRIPTION 

2. 1 Introduction to Basic Digital Computers 

The material in this section has been included for providing background information 
on the basic aspects of digital computers, which may be beneficial to persons not familiar 
with the vocabulary and thought patterns of the digital computer engineer. It is hoped that 
this material will be sufficiently informative to the uninitiated reader so that he may read 
this document without being overwhelmed by the bulk of specialized language and ideas 
contained herein. 

2.1.1 Numbering System 

Since digital computers manipulate electrical signals which discretely define the 
numerical magnitudes of a body or quantities, some notice must be taken of the numbering 
system employed by them. The binary system, utilizing only the digits 1 and 0, was 
found far more suitable for use within the computer than the familiar decimal notation with 
its ten digits. The octal system is then applied, to condense the bulky form of the binary 
into a shape readily spoken or written. 

The design of digital computers has dictated the use of binary notation. The reason 
for this is quite simple, the components used in digital computers are inherently binary in 
nature. For example, the relay used extensively in the early digital computers and still 
used in telephone switching computers, exhibit binary qualities. When activated, its con¬ 
tacts assume one state; when deactivated, its contacts can assume only one alternate state. 
Thus, with its characteristic of two stable states of operation, the simple relay constitutes 
a basic digital computer element. Examples of other so-called two-state elements are 
vacuum tubes and transistors, which may be maintained either saturated (fully-conducting) 
or cut-off (non conducting), and magnetic materials in which the magnetic field may be 
changed from one direction to the opposite direction. Thus it can be understood why the 
components dictated the use of the binary numbering system rather than the converse. 
Were it possible to develop inexpensive and reliable deca-state elements, digital computers 
would, in all probability, use the decimal system. 

Some computers do operate with decimal numbers; however, the technique used is 
that of manipulating the quantities as binary coded decimal (BCD). The basic mechanisms 
of these computers are still binary in nature, and such a device is over-complex. 

2.1.2 The Fundamental Computer 

The fundamental computer is composed of four major elements, an Arithmetic Unit, 
a Control unit, a Memory Unit, and an Input-Output Unit. This arrangement is depicted 
in Figure 1. 

Figure 1. Block Diagram of Fundamental Computer 

The Arithmetic Unit is the computational core of the computer. It is here that the 
basic arithmetic operations of addition, subtraction, multiplication and division are per¬ 
formed. In reality it is nothing more than an adding machine capable of performing multi- 
bit additions at extremely high speed. This limited capability is adequate, since the other 
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basic arithmetic operations may be performed by multi-step additions conforming to an 
algoritism which will achieve the desired result. 

The Arithmetic Unit of a digital computer may be likened to the counting wheels in 
a desk calculator. The mechanism for performing the additions is present, the means 
of activating such a mechanism is some externa] influence or control, in this case the 
Control Unit. 

The function of the Control Unit is to manipulate the Arithmetic Unit in an orderly 
sequence of operations, to achieve a usable result. The Control Unit may be likened to 
the mechanism of the desk calculator which connects the operate or control keys to the 
counting wheels. When the add key is depressed, the positions of the counting wheels are 
simply augmented by the quantity which has been entered on the calculator keyboard. When 
the multiply key is depressed, the operation becomes more complex. The result is a 
number of successive additions accompanied by an apparently erratic movement of the 
calculator-carriage. It is the control mechanism within the calculator that determines 
when the proper number of additions has been performed, when the carriage should be 
moved, and when the operation is complete. The Control Unit of the computer performs 
a similar function. However, since a digital computer is capable of executing a far greater 
variety of commands than a desk calculator, its Control Unit is considerably more com¬ 
plex than its counterpart in the desk calculator. 

A digital computer consisting of only an Arithmetic Unit and a Control Unit would 
have no greater value than the desk calculator sitting unused on a table. It is not until 
someone enters data in the calculator keyboard and depresses an operation key that the 
value of the machine is realized. So it would be also with a two-unit digital computer. It 
requires something to direct the control unit to add or to subtract; it requires something 
also to provide the quantities that are to be added or subtracted ■ This task falls to the 
third unit oí the fundamental computer, namely the Memory Unit. 

The primary function of the Memory Unit is precisely what the name implies, it 
remembers information which is inserted in at and makes this information available when 
requested. The basic unit of information is called a word. A word may be tersely de¬ 
fined as an ordered set of characters or bits, stored and transferred as a unit. The im¬ 
port of the information-unit takes on many forms; in one instance the memory word may 
represent a directive or instruction, in other instances it may represent a numerical 
quantity. 

More precisely then, the Memory Unit stores both the instruction type of word and 
the operand type of word. The instruction words when withdrawn from the memory 
activate the Control Unit, causing a sequence of micro-operations to occur The operand 
words are withdrawn as called for by the instruction words and are manipulated as di¬ 
rected by the instructional content of the instruction word- 

Using again the analogy of the desk calculator, the Memory Unit of the fundamental 
computer represents the human operator of the calculator. The operator processes a 
sequence of instructions that will cause the calculator to solve the problem; he introduces 
the numerical data that is to be acted upon, and performs the temporary storage of inter - 
mediate results as required, by means of his own memory or by means of some aid such 
as paper and pencil. 

The development of the fundamental computer has now progressed to the point 
where it can substantially govern its own performance. However this fundamental com¬ 
puter, now consisting of three units, is still incomplete. Without the fourth unit, the 
Input-Output unit, it is comparable to a desk calculator on which the number wheels have 
been masked. One major function of the Input-Output Unit of the digital computer is to 
make available to the user of the computer the results of certain computations This out¬ 
put may take any of several different forms, ranging from a single indication of satis- 
factory problem completion to extensive numerical print-outs or to the packaged control 
of a complex electro-mechanical system. Of equal importance is the input capability o 
the Input-Output Unit. It is by this means that the instructional program and the numerical 
operands are entered into the computer memory. On a higher level of utilization, the In¬ 
put-Output Unit provides the means for entering new or additional data while the computer 
is operating. The nature of these inputs may range from magnetic tape to punched cards 
to real-time data describing the condition of a complex electro-mechanical system is be¬ 
ing controlled by the computer. 
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The description of the fundamental four-unit computer is now complete. All 
digital computers may be dissected into these four identifiable units. The ensuing de¬ 
scriptions of the UDOFT computer are so sub-divided, in order to maintain organization 
and continuity. 

2.1.3 Definition of Terms 

However, before proceeding to a description of the UDOFT computer, it is 
desirable to define some of the other terms peculiar to a discussion of digital computers. 
The terms to be covered are register, address, program, serial, parallel and synchro¬ 
nous. 

Regardless of the form of storage media in a digital computer, any device which 
is capable of storing or holding information for a period of time is referred to as a 
register In the case of the Memory Unit, there may be a considerable number of reg¬ 
isters^ Each register is uniquely identified by a numerical designator. This designator 
is referred to as an address, because, just as a street address denotes a particular loca¬ 
tion on that street, this designator denotes the location of a particular register within the 
memory storage device. When information is withdrawn from or entered into a register, 
reference must be made to this designator or address. 

Computer instructions normally serve a twofold purpose. First, the instruction 
word denotes a particular arithmetic or logical operation that is to be performed. Second, 
if an operand is involved in the operation, the instruction word denotes the address of 
this operand. Instruction words vary in length and complexity depending upon the particu¬ 
lar computer. The simplest form of instruction word is the single-address type, which 
consists of a single operation or order and a single operand address. 

Computers usually have also the capability of address modification. When address 
modification is specified-by a bit of the instruction word-the address of the operand is 
the address portion of the instruction word incremented or decremented by the contents of 
another register usually called an index register. Computers may have more than one 
index register. 

The solution of a problem by a digital computer is accomplished by executing many 
successive instructions at a high rate of speed. The complete set of instructions devisea 
to cause the computer to solve the problem forms a computer program. If the program is 
entered into and stored in the internal memory of the computer, it is referred to as a 
stored program. Normally, instructions are executed in sequence; however it is possible, 
by means of the program itself, to modify the normal instruction sequence. 

Just as there are several ways of implementing an analog computer (AC, DC, etc. ) 
there are at least two basic forms that the implementation of a digital computer may as¬ 
sume; these are serial and parallel. In a serial computer, data transmission between 
registers is effected one bit at a time, on a single transmission line. Consequently the 
bits of a word in a serial computer are operated upon one at a time. This results in 
minimum hardware but has the disadvantage of low computational speed. On the other 
hand, the individual bits of a word in a parallel computer are transmitted simultaneously 
between registers on parallel transmission lines. Consequently entire words are operated 
upon in a parallel computer. This results in high effective computational speed but has 
the disadvantage of requiring much more hardware than the serial computer to perform 
the identical operations. 

The remaining significant term that requires definition is the word synchronous, 
which refers to the strict time dependency of computer operations. A computer^performs 
synchronously when each micro-operation of an instruction is performed at a distinct 
instant of time during the execution of that instruction and when the sequence of micro- 
operations is fixed for each instruction, regardless of the configuration of the operands. 
If on the other hand, there is no synchronization between the execution of the micro- 
operations and a fixed timing cycle, the computer performs asynchronously. Asynchronous 
operation has the advantage of increased computational speed. This results from the 
fact that the computer performs simple calculations rapidly, just as a human performs 
simple calculations rapidly. Asa case in point, it requires less time to multiply a 
quantity by 3 than it does to multiply the same quantity by 17, 395. However, the system 
logic is more complex for an asychronous computer than it is for a synchronous computer. 
As in the case of serial versus parallel, the tradeoff is between speed of computation and 
complexity of the hardware. 
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2.1.4 Computer Programming 
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bits. As a higher degree of resolution is required, the scanning rate must be increased; 
consequently the bandwidth of the system must be broadened. This is one of the most 
basic problems encountered when using a sampled-data device in an environment which 
is characteristically continuous, rather than discrete, in nature. 

By analyzing the dynamic characteristics of the aircraft system, the degree of 
resolution required for faithful simulation, the rate at which discrete motions appear 
continuous to the viewer, and the characteristics of the processes that would be used to 
obtain numerical solutions of the differential equations, it was determined that twenty 
complete solutions of the instantaneous behavior of the simulated aircraft must be perform¬ 
ed every second. With the solution rate specified it was determined that a digital computer 
for this application must be capable of extremely high computation speeds, namely twenty 
binary bit additions or subtractions in five microseconds, and multiplication in ten micro¬ 
seconds. These two rates are the most important because these arithmetic operations 
constitute most of the operations in the simulation programs. A digital computer was 
designed on the basis of these rates and of the role the computer would assume in the real¬ 
time closed loop system. The machine that resulted is explicitly a special-purpose, high¬ 
speed, parallel, single-address, binary, fixed point, synchronous digital computer. It 
is inherently a general-purpose computer and may be used as such; however, in its current 
application the computer lacks a certain degree of general utility, since only specialized 
input-output capabilities are provided. 

The basic characteristics of the UDOFT computer are shown in table I. The 
fundamental order time of 5 microseconds enables the computer to perform complete 
additions, including memory accesses for the instruction and the operand, at 5 micro¬ 
second intervals. This high computation speed is a'ccomplished through the use of two 
independent time-phased core memories, each with a capacity of 4096 words. 

Number words are 22 binary bits in length, fixed point and fractional (i.e., the 
binary point is to the left of the most significant bit). The least significant 20 bits of the 
word are the magnitude of the number; the 21st bit is the sign of the number and the 22nd 
bit is an "odd-ones" parity check bit. instruction words are only 20 binary bits in length 
and contain but one instruction per word. The least significant 12 bits of the instruction 
word designate the operand address, the next six bits designate the order type, the follow¬ 
ing bit specifies whether or not relative addressing is to be used and the last bit is again 
an "odd-ones" parity check bit. 

Of the 64 order types that could be specified by six order-type bits, only 32 such 
types have been mechanized in the machine. Most of the instructions can be executed in 
5 or 10 microseconds; only the divide instruction, which is infrequently used, is much 
longer. 

The specialized UDOFT input-output system consists of five basic channels of 
information flow. The analog inputs, of which there are 24, are generated by 10-bit 
shaft-position encoders linked to the continuously variable controls in the cockpit in the 
cockpit mockup or at the instructor's'console; examples of such controls are the throttle, 
the stick, the rudder pedals and the instructor's wind speed control. The analog out- 
outs, of which there are 64, are analog voltages generated by a single 12-bit digital-to- 
analog converter and multiplexed to the appropriate output device located either in the 
cockpit mockup or at the instructor's console; examples of these devices are the altimeter, 
the airspeed indicator, the rate-of-climb indicator and the control forces mechanism. The 
discrete inputs, 64 in all, are analogous to the sense switches of a truly general purpose 
digital computer. These inputs, which also originate either in the cockpit mockup or at 
the instructor's console, include, for example, the main battery switch, the landing gear 
controller, the after-burner switch, and the hydraulic system fail switch. The discrete 
outputs, of which there are 24, are binary outputs generated by the computer in accordance 
with the arithmetic sign of the number in the accumulator at the time the discrete output 
instruction is executed. Examples of indicators that are actuated by the discrete outputs 
are landing gear, up/down indicators, stall warning, and crash. The fast print facility 
is a 22-bit register which can be loaded under program control. The individual stages 
of the register control transistorized flip flops which control output devices. 

Other input-output equipment which is part of the computer system consists of an 
IBM 514 Card Reader/Punch and an IBM Output Writer (electric typewriter). The IBM 
514 provides the means for reading punched card information into the computer; the 
electric typewriter provides an output of printed information in non-real time. 

i»- 
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TABLE I 

BASIC CHARACTERISTICS OF THE UDOFT COMPUTER 

Mode of Operation 

Internal Number System 

Word Length 

Arithmetic System 

Parallel and Synchronous 

Binary 

20 bits 

Fixed point, fractional 

Memory 

Cycle Time 
Capacity^ 

.Order Code 

■ .Arithmetic Speeds’ 

. ‘ * AdcfV' ./ • 
** '-Subtract *•• ‘ 

$ Multiply ’.' ; ■ 
.., *. . "Divide ,f ; *.. 

■ .'Input-Output • ■ 

* ' .Discrete.' * • ... 

* • ■ ” Analog- -,- ' 

* * • Card’Reader * • ‘ 

Output-Writer ‘ • • 

Fast P-rint Facility 

Coincident current, magnetic core 

5. 0 Msec. 
2 X 4096 words 

32 orders 

5. 0 Msec. ï 
5. 0 Msec. 
10. 0 Msec. 
1Ò5. 0 Msec. 

64 inputs 
24 outputs 

24 inputs (10 bit inverted gray code) 
64 outputs (12 bit precision) 

converted to a-voltage 

1200 words/minute 

20,lines/minute (short form) 

6 line/minute (long form) 

22 bit output register 
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2.2.1 UDOFT Computer Operation-Simplified 

A simplified block diagram of the UDOFT computer is shown in figure 3. The 
instructions of the simulation program are stored in the instruction memory; the operands 
or numbers specified by the address portion of these instructions are stored in the number 
memory In general the output of the instruction memory specifies both the number loca- 
UonTn number memory and the operation to be performed. 
is being performed in the Arithmetic Unit, access is being made to the instruction memory 
for the next instruction to be performed. By the time the arit metic opera ion in^ca 
by the first instruction is completed, both the operation and number specified by the second 
instruction are available to the Arithmetic Unit. Thus fast computations are achieved 
since computer dead-time, normally experienced due to memory access time, ^ effe 
ly reduced to zero by using separate overlapping memories^ This “Wrease in spe d 
necessary to perform the problem in real-time, is achieved at the cost of greater system 
and programming capabilities. 

In the normal instruction cycle, the instruction sequence counter, a twelve-stage 
binary counter contains the address of .the instruction to be performed This address is 
transferred to the instruction memory address register and the instruction memory read- 
write cycle is initiated. ■ When the instruction is extracted from the memory, it is read 
into the7instruction memory output register. The five bits of ^hen initiates • 

' operation to be performed are transferred to the order-type decoder, which then initiates 
the execution of the instruction. * * • 

The address portion of the instruction may be routed to the number memory ad¬ 
dress register in the .direct mode or to a modified address, called a relative address, 
The reason for providing this address modification feature is to permit the application of ■ 
the same program sub-routine to several sets of data stored in the number memory. When 
using address modification, both the internal operation of thf m.a^e ■ g'' 
differ .considerably from that required by the direct mode. (Refer to section .2. 1. 3 for . . 
discussion of address identification.) 

In the direct mode of operation, the address portion of the .instruction is transferred 
directly to the number memory address register, and the number memory read-write^ 
cycle is initiated. The number specified by the address is read into the nurnber,memo y 
output register and then transferred to the Arithmetic Unit. When the arithmetic operation. _ 
has been completed, the results are routed to the transfer register. Data in this-register 
may then be transferred under program control to the number memory, the analog, output _ 
multiplexer, .the print register, the instruction memory or the-tally register. ~ _ 

.2.2.2 UDOFT System Operation-Simplified . ‘ ^ ‘ ' V.; 

The availability of a high-speed digital computer capable of performing the. air craft 
simulation program in real-time represents only a portion of the total simulation problem. 
The necessary adjuncts to the computer system are the real-world- environment, con 
sisting primarily of a replica of the aircraft cockpit, and the computer program vdnch 
provides the inètructions and numerical data that will enable the computer to solve t 
logical and the mathematical equations representing the condition of the aircraft ana its 

associated subsystems. 

The computer system communicates with the "real world" represented by the air¬ 
craft cockpit through the computer input-output unit. The five types of intercommunica¬ 
tions v/“Te described superficially in Section 2.2. The control of these interconnecting 
links ^"exercised by the computer through its control unit, as directed by the simulation 

program. 

More and more, the essential importance of the computer program becomes 
evident. It is by means of the program that not only the immediate problem is solved 
but also the flexibility of the digital computer system is most readily exploited The 
Structure of such a program must be initially organized to allow program modification 
with a minimum of effort and time. The minimum extent of organization ^ ^pmted m 
the simplified flow diagram of the F-100A simulation program, figure 4 Each block ol 
he d represents the computation of a particular set of inter-related variables; 

there if Minimal program dependence between blocks. As a result, modifying any program 
block has relatively little effect on the other program blocks. 
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There are essentially three modes of program execution, as shown in figure 4: 
normal, freeze/crash and zero. Normal mode operation accomplishes real-time flight 
simulation. Freeze mode operation permits suspension of the training problem to allow 
the instructor to criticize a pilot-trainee's efforts. When the freeze mode is entered, 
the instruments are maintained at their last computed value, and simulation is suspended. 

If, during a simulated flight, a trainee maneuvers in a manner which the decision 
routine recognizes as a crash condition, a crash is indicated and operation is automatically 
transferred from the normal mode to the freeze mode, thereby allowing a post mortem of 
the conditions that caused the crash to occur. To leave the crash mode the zero mode 
must be entered returning variables and instruments to their earlier values. Also, if the 
instructor desires to land the aircraft artificially the zero mode will effect this in a matter 
of seconds. 

The complete simulation program for the F-100A requires approximately 3850 
instructions and 3400 numbers. While operating in the normal mode, it requires ap¬ 
proximately 35 milliseconds to obtain one complete solution of the problem. With the 
less complex F9F-2 aircraft, the complete solution is executed in approximately a 
20-millisecond interval. In order to maintain a constant time interval, which is essential, 
the computer idles until the interval timer indicates that the 50 millisecond interval has 
been consumed, at which time the computation scheme is resumed. 
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SECTION III 

UDOFT COMPUTER DESCRIPTION 

3. 1 Introduction 

The UDOFT computer*- though designed and developed specifically for solving 

computer, figure 3. 

Thi« «potion of the report delineates the UDOFT computer's four functional units and esshs-œSsPHsh;, 
be discussed however, a description of the UDOFT "language" ts essential. 

3, 2 Word Format 

In the UDOFT computer the word or basic unit of information consists of twenty- 
two bits. Words may represent instructions or numbers. 

a. Number Word 

less than zero, *e Ü 20) to -’(1 - 2-20). If numbers outside of this range computer can understand is U ¿ ) w u / , 
are to be represented, they must De scaled appropriately. 

The bit nattern of the number word is shown in figure 5. 

PS 20ll9ll8ll7|i6|l5|l4|l3|l2|ll|lOl9|8|7lI|iR3{2[ 

Figure 5. Number Word Format 

The P position represents the parity bit; the S position, the sign bit; and positions 

1 - 20, the magnitude of the quantity. 

Since it is cumbersome to think of the numbers in their binary form, the binary 

ísSsÍ-SSISSSsiai 
bit bLary groups into decimal form. The method of grouping and an example of a 
translation is shown in figure 6. 

BIT POSITION P s 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

BINARY REPRESENTATION 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 

OCTAL WEIGHT FACTORS 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 

OCTAL REPRESENTATION - 3 5 0 6 2 7 2 
_ 

Figure 6. Number Word Translation from Binary to Octal 

t*. 
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A "one” in the sign position indicates a negative quantity and a "zero" indicates a 
positive quantity. The parity bit serves as an error checking device by detecting the 
most common types of memory failure, gaining or losing single bits. The parity bit 
contributes nothing to the value of the word, but makes the word’s total number of ones 
odd, hence the term odd parity. As each word is stored in memory, parity is formed 
and the appropriate value of the parity bit, flonen or "zero", is stored with it as part of 
the memory word. Parity is checked each time a word is used. Incorrect parity will 
indicate an error. In the example of figure 6, the parity bit assumed the value of "one" 
in order to satisfy this condition. 

b. Instruction Word 

The instruction word in the UDOFT computer consists of twenty binary bits (two 
of the twenty-two available bits are not used). ■ The instruction word is divided into two 
"fields", the order type field (OT) and the number memory address field (NMAD). 

BIT POSITION 

FIELD 

Figure 7. Instruction Word Format 

p R 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 

REL ! 0 T N M A D 

The bit pattern and the division into field of the instruction word is shown in 
figure 7. The number memory address occupies the twelve low order bit positions of 
the word and the order* type, the next*six bit positions. What.would normally be the 
nineteenth bit is defined as the relative bit. In general, the relative bit indicates 
whether relative addressing will be used by the next instruction. Last but not least is 
the parity bit, serving the same function as the parity bit for the number word. 

The order type specifies any one of the thirty-two different orders that the 
computer can execute. Thirty-one instructions perform the basic program functions; 
clerical, arithmetic, control, input/output and special purpose. These functions and 
the individual instructions will be discussed in detail in Section 3. 3. 

The number memory address field also serves a variety of purposes. 

1. In clerical and arithmetic instructions, it specifies the location 
(address) of the operand in memory or the direction and number of 
places a quantity is to be shifted in the arithmetic unit. 

2. In the control instructions, it specifies primarily an instruction 
sequence counter setting. • 

3. In the input/output instructions it specifies an input/output 
channel. 

As in the case of the number words, the instruction words are also thought of 
in octal form rather than the binary form. The grouping of the bits and an example of 
the binary-to-octal translation is shown .in figure 8. 

BIT POSITION P R 18 17 16 15 14 13 12 M 10 9 8 7 6 5 4 3 2 1 

BINARY REPRESENTATION 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 l 0 0 0 

OCTAL WEIGHT FACTORS 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 

OCTAL REPRESENTATION R 3 4 3 0 3 0 

Figure 8, Instruction Word Translation from Binary to Octal 

The instruction represented in figure 8 is R343030g. The subscript eight 
indicates that the word is in octal form. 
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3. 3 Instruction Repertoire 

This section contains: 

. a listing of UDOFT computer's thirty-two instructions categorized into 
groups according to their functions 

• a brief description of the function of each group of instructions 

• definitions of terms used in conjunction with the instructions 

• a table of symbolic descriptions of each instruction, and 

. a description of address modification as implemented in the UDOFT computer. 

3. 3. 1 Arithmetic Instructions 

There are nine arithmetic instructions in the UDOFT instruction rePe^fre. 

á5S!r=«sr 'ws&tsHSsäÄS - 
both the addition and subtraction operations, a^onî^°n ^¿tlong Jc considered as 

aritemetic opaeraüonsns1nce they perform" in reality, multiplication and division by 
powers of two. These and the other UDOFT instructions appear in table U. 

ADD Add 

ADM Add magnitude 

SUB Subtract 

SBM Subtract Magnitude 

MPY Multiply 

DIV Divide 

Shift Left. Shift Ri£ht SHK ) 

SHLA 1 Shift Left and Add, Shift Right and Add 
SERA ) 

MAD Multiply and Add 

3 3. 2 Clerical Instructions 

compútelas;. *'^ 

.instructions are available. 

CLA Clear and Add 

CLS Clear and Subtract 

CLA A Clear and Add Magnitude 

18 



CLAS Clear and Subtract Magnitude 

STO Store 

TCA Transfer (store) Clear and Add 

TIM Transfer to (Store in) instruction memory 

Use of TIM Instruction 

The use of two independent magnetic core memories, one exclusively for in- 
indenend^ntTn^f ,the number words, has advantages and disadvantages. An 
independent Instruction Memory was expected to increase system reUability in addition 
to gain in computer speed despite the use of relatively low-speed memories This 
conclusion is drawn from the premise that no writing of new information into the 

of df^liniTAîh^1p^1SfreqUlred 0nCK pr°£ram ¿s Vitiated, therefore, the likelihood 
of damaging the computer program becomes almost non-existant. This premise is only 
half true since m magnetic core memory read-out of information is destructive thereby 
withThÄ 4°f+the immediately following the read-out is necessary.' Even ^ 
with this fact it was still felt that loss of program control would be reduced if pro¬ 
grammed access to the Instruction Memory were not allowed. This is the prime 

mthrUDOFTecompuíeríaCÍ1Íty ^ modification’ other than relative addressing. 

Without any programmed access to the Instruction Memory, the automatic testine 
f this memory becomes impossible. For this reason, more than any other the TIM 

instruction (Transfer-to-Instruction-Memory) was introduced into the computer. The 
TiM instruction allows the transfer of information from the Transfer Register into the 
Instruction Memory. To ensure that this instruction is used only on test programs a 
console switch is instaHed to enable the execution of this instruction. This switch must 

. condltlon when simulation programs are being performed. When dis¬ 
abled, the TIM instruction is interpreted as a no-operation (NOP) instruction. 

3. 3. 3 Control Instructions 

The seven control instructions in the ÜDOFT computer, allow the sequence of 
instruction execution to be modified. By the use of these instructions it is not 
necessary therefore to prepare the computer program such that an unalterable sequence 
of instructions must be followed. In addition to easing the program preparation task 
it also allows more efficient use of computer instructions and time. Were it not for ' 
these instructions, it would be virtually impossible to utilize subroutines within the 
total program. The utilization of such sub-routines eliminates repetitive programming 
which results m savings of instruction storage. 

Control instructions are sub-divided into three classes; unconditional control 
conditional control and programmed HALT. Unconditional control instructions ex¬ 
ercise arbitrary control of the program. The UDOFT computer has two such control 
instructions; Sequence Counter Reset and Sequence Counter Reset to Content of Number 
Memory. Each and every time one of these instructions is encountered in the program 
positive transfer of control to some other portion of the program is affected. 

ihe conditional control instructions on the other hand provide the computer wii 
a degree of decision-making capability. The transfer of control is dependent on or 
conditional to some previous action. For this reason they are differentiated from the 
unconditional control instructions. The UDOFT computer has four such instructions- 
Transfer on Minus, Transfer on Overflow, Transfer on Zero, and Sense Interval 
lime. Whenever these instructions are encountered in the program the transfer of 
program control may or may not be affected, depending upon the results of the pre¬ 
ceding instruction. p 

Programmed HALT instruction will, if enabled by a console switch halt 
the computer. 
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The control instructions are; . 

SCR Sequence Counter Reset to NMAD 

SCRNM Sequence Counter Reset to Content of Number Memory 

TOV Transfer on Overflow 

TOZ Transfer on Zero 

TOM Transfer on Minus 

SENIT Sense Interval Timer 

HALT Halt _ • * 
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3.3.4 Input-Output Instructions 

The UDOFT input-output capability, as noted previously in Section II, is quite lim¬ 
ited, having been designed with the intent of optimizing the transmission of data or infor¬ 
mation between the computer and the real-world represented by the mockup of the aircraft 
flight compartment. The real-world of the flight compartment is predominantly analog in 
nature as opposed to the distinctively digital nature of the computer. The input-output 
instructions of the UDOFT computer therefore must be capable not only of performing the 
basic task of data transfer but also of transforming or converting the data from one form 
to another.' 

The first form of computer communication with the external analog environment is 
the analog input. The analog inputs to the UDOFT computer are identical to those inde¬ 
pendent-variable inputs that are implemented with potentiometers in analog flight simula¬ 
tors. It would have been possible to retain this input form in the digital system by using 
an analog-to-digital converter to provide the necessary interface compatibility. The con¬ 
verter would have been a single channel device, capable of operating upon a single input at 
a time. At the time that UDOFT was developed, available analog-to-digital converters 
were both slow and costly. To circumvent these two problems it was decided that, since 
each input was a mechanical shaft of one form or another, digital shaft encoders would be 
used. Further, to attain an acceptable level of accuracy and to minimize ambiguity of 
reading the shaft angle, the encoders to be used would be ten bit. Gray-coded binary. 

Using the encoders eliminates the need for the analog-to-digital converter; however, 
the Gray-coded binary encoders requires the use of a Gray-coded binary-to-conventional¬ 
binary-comrerter. This type of converter is relatively simple to implement; further, its 
resolution time is considerably short. 

The Multiplex Analog Input instruction provides the means by which the computer 
is instructed to process the analog inputs. Since there are twenty-four kinds of analog 
input that may be examined, this instruction must be capable of designating a particular 
input in addition to enabling the converter, and transferring the converted quantity to the 
ten high order bit positions of the Accumulator. The designation of the particular input to 
be processed is contained in the low order seven bits of the address field of the instruction. 
Once the data has been entered into the Accumulator, it may be handled like any other 
number in the computer. 

Just as there is the need for the capability to process real-time input data, there 
is the need also for processing real-time output data. The ultimate form of the outputs 
which-represent continuously varying quantities is a D.C. voltage. This requires the 
conversion, within the computer, of digital data to a proportional D.C. voltage. 

For reasons of economy it was decided to use a single time-shared digital to * mig ^ 
log converter rather than individual converters for each of the sixty-four analog output 
channels. However, using a single converter, it was necessary to provide means for 
storing or holding each of the analog voltages during the time the remaining analog output 
channels were being serviced. The individual holding device is simply a capacitor in a 
network which allows for the rapid change of the charge on the capacitor during the time 
when the particular channel is being serviced, yet provides an extremely high impedance 
discharge path during the off-time when the other output channels are being serviced. 

The function of the Multiplex Analog Output instruction is to transfer the quantity, 
in the Transfer Register to the digital-to-analog converter and to enable the analog output 
channel which is specified by the six low order bits of the address field of the instruction. 
Only the sign bit and the eleven most Significant bits of the Transfer Register are involved 
in the transfer of data to the converter. Thus, the numbers that may be converted to 
analog outputs are limited to the range from (-7776)g to (*7776)3. The number (-7776)g 
represents an analog output which is equivalent to zero; the number (0000)g is equivalent 
to a mid-range output; and the number (+7776)g is equivalent to maximum possible output. 

An added feature of the instruction is the ability to store the quantity in Number 
Memory simultaneously with the outputting process; the storage location is derived from 
the full address. 

In addition to the processing of continuously varying data between the computer and 
the real-world, the computer must be able to process discrete data. Discrete data defines 
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such limitecl variables as ^"y a two-wlf process? inputs and outputs of 

íhtTyÍarelseÍtS ThL inputs are'referred to as discrete inputs; the outputs, as 

discrete outputs. 

instruction. 

' The function of the Multiplex Discrete OutpuUnstn.ction 
discrete output channel to the appropriate ^att The^disc^ unU1 di. 

mented with locking type relays, °nce /¿Erected to assume is controlled by the sign 
reeled, to open. The state rel y d instruction is performed. If tne . 

âKï ^V!?Ä*SÄSÄSSiX* ■■ i—« •» - ” 
order bits of the address field. 

■ Th. «h-« input-output tu,.™«».. <ii=d 
rily with the communication of information betwe rface P The Print instruction is 
representing the simulation system ma - computer This instruction represents 
the fourth input-output instruction in the UooFT compter. ^ communicate 

the only attempt, in the design of the ¡“/¿i pUrpoSe digital computers this 

" äirÄÄS— ;s¿ .¿i. .. —•»'» 
Though UDOFT was developed with Í^tea^itls^^us^d^as a 

training device, it has not been s° ,P^ j compUter is used for research purposes of 
simulation research tool. Anytime a digi p t t the expeditious execution of a 

•sir/ — 
The Print Instruction transfers the buffer^betweeithe computer 

register, the Print Register The Print ^ originally conceived, was to be 
and other output devices. The P"nt‘out "\ech Rather tharfusing a few movable styii, 
a variation of the conventional strip rec°^, ee fixed gt üë The marks made by 
the UDOFT printer would have contained twe ty in binary form. Due to the 

activating the styii would ha^e pr°vhldedina ^is form Íf output, the on-line printout scheme 
many disadvantages associated with g the print Register are implemented m 
was discarded. However the Print instructio „ister wh|el which in turn controls 
the computer, and are used to control Actions are; 
the computer's peripheral equipment. The input P 

MLXI Multiplex In analog inputs 

MXLO ’ Multiplex Out analog output 

fyjXDO Multiplex discrete outputs , ’ 

PRNT Print (Fast) - • 

ln enden fe pne.id, some mean, 
an output printer is provided. Alt^^ ^ th punter capabiUty is quite limited. .No 

sÄÄÄÄsrsfÄi. “> w“ r fr " 
ping of the operation is exercised manually. 

The initial loading or reading-mof the “ P ™ ^ ^ e m in the compiler 

sr^S/tÂ tnto the computer; control of the 
operation is exercised manually. 
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3.3.5 Special Purpose Instructions 

The preceding instructions that have been implemented in the UDOFT computer 
are representative of the types of instructions found in most general purpose digital 
computers. The five remaining instructions are SIT, TAN, TAU, NOP and NOT whose 
functions are listed as follows: 

Instruction Function 

SIT Set Interval Timer - Load the interval timer 

TAN Tally Number Memory Address - Load the Tally 
Register 

TAU Tally Arithmetic Unit - Load the Tally Register 

NOP No Operation - Mark the time 

NOT Non Existant Order Type - A spare 

Although the No Operation Instruction (NOP) appears to be an inefficient instruc¬ 
tion, it is a necessity in the‘UDOFT computer. It does nothing but allow five microseconds 
to pass before execution of the next instruction can be initiated and transfer the contents 
of the Accumulator to the Transfer Register. It is used primarily to over come the 
problem of programming a forbidden sequence of instructions, (forbidden sequences are 
explained in Section 3. 3. 6) to transfer the quantity in the Accumulator to the Transfer 
Register in order that it can be stored in Number Memory by a following Store Instruc¬ 
tion. It also provides a simple means for generating a relative address for the succeed¬ 
ing instruction. It is apparent then that the NOP instruction provides a means to an end; 
it is not an end in itself. 

The NOT Instruction serves no real useful purpose; it is a spare or extra instruc¬ 
tion. Because the computer will treat this Non-Existant Order Type instruction in a 
manner similar to the Programmed Halt instruction, it may be used as another manually- 
controlled program halting mechanism. 

3.3.6 UDOFT Registers and Symbolic Description of UDOFT Instructions 

Symbolic Notations 

Refers to the contents of the Accumulator 

Refers to the contents of the G-Register 

Denotes the contents of location Y, where Y refers to some 
generalized location in Number Memory # 

Denotes the absolute value of (Y) 
Subscripts will be used to denote specific bit positions in a 
register. For example, C(AC)g ¡_2 denotes the contents of 
the Accumulator involving only bit positions sign, one, and 
two. 

The negative of a number is the number with its sign reversed. 
Similarly, the magnitude of a number is the number with its 
sign made positive. 

instruction means, in general, that instruction being 
performed or the instruction in question. 

means the second instruction following the instruction 

means the instruction preceding the instruction 

C(AC) 

C(G) 

C(Y) 

MAG(Y) 

Similarly: 
nd 

(J + 2) 

(J > Dst 
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Forbidden Sequences 

One of the methods employed ln U DO FT ^IsVesuUs 
use of independent instructions and number memo In sœf.ial cases this over- 

ÎâpÏing may^sult in erroneoufsXions. For this reason some sequences of instructions 

are forbidden. 

Accumulator (AC) 

1. • register t»..ng . C*«, of 20 b.ts gl» •" foOei*"-""1 

sign, It is used in all arithmetic operations. 

\C Overflow 

Most arithmetic operations can ^„Aoeomulator overflo ^ ^ occurs. The 

”S"sSÏ^:S“S’ “i nntii'an'arithmetic opera,,- is P.rtorm.0. 

at which time it is reset to zero. 

some cases an AC overflow is 

puter has a transfer on ove(rflofwt‘n8^^f *taee The usuai method of programming is 
(TOV) dependent on the state of the overdo g • rflow An AC overflow immediate- 
to have the TOV immediately follow the anticip {er oj corltrol( reset the overflow 
ly followed by a TOV instruction will pe ,. t from being set. An overflow not 
stage to a "zero," and prevent the overflow indica orsfrom^ ^ & „one„ and 
immediately followed by a TOV instruction will ^hADD) to be getg A TOv instruction 
cause one of the three overflow indicators <DI ■ if the overflow has not been 
not immediately following an °^erflowH ne of the overflow indicators will oe set. 

I^slmv confputaticm^a^overfhrw10^! immediately followed by a TOV instruction will halt 

the computer. 

AC Truncation 

Since it is possible to lose ADD ^FL 
AC wiilbe cleared and ail ones will be inserted. 

Truncation is possible on Add, Shift Left, and Divide OVFL. 

AC Positive Zero 

The Accumulator is a positive zero accumulator (i.e. no matter what the method 

of obtaining zero is, when the accumulator is zero the sign post - 

Transfer Register (TR) 

The Transfer Register is a register having a capacity of twenty-two bits, includ¬ 
ing: a twin; bit number,Pan independent sign bit, and an independent parity bit. 

The Transfer Register serves the following purposes: 

1. A buffer between the Accumulator and the memory 

2. A buffer for the Multiplexer Output Register 

3. A buffer for the fast print facility 

4. A buffer between the card reader and the memory 

5. In conjunction with the parity former to form the correct parity to be 

stored with the number. 

24 



The contents of the Transfer Register at the end of the J**1 instruction are the 

C(AC)<J-1)St instruction, unless the J**1 instruction is an STO or an MLXO, the previous 
C(TR) is erased. The STO and MLXO instructions do not change the contents of the TR. 

G-Register 

The G-Register is a special-purpose register having a capacity of 20 bits plus 
sign (no parity). The G-Register is used in conjunction with the shift add, multiply add, 
and divide instructions. It may be used as an intermediate register for many computa¬ 
tions since it is directly addressable. Information is stored in the G-Register by the 
shift add and multiply add instructions. 

The contents of the G-Register Address {1000)o can be made available by the 
following instructions; ADD, ADM, CLA, CLAA, GLAS, CLS^ MPY, MAD, SBM, and 
SUB. The G-Register is automatically cleared following all of these instruction with the 
exception of MAD and SHA. In addition, the G-Register contents may be displayed on the 
MD Registers as indicated by a switch on the console. There is also a G-Register Clear 
Switch on the console to clear the G-Register. 

Due to the G-Register address being (lOOO)g, the address <1000)g of the number 
memory is not available, i.e. (lOOOJg is reserved for the G-Register. Also, NMAD 
(1000)8 may not be used with DIV, SCRNM, SIT, STO and TCA 

Sequence Counter 

The "sequence counter" is a 12-bit binar}'' register which determines the instruction 
memory location from which the next instruction is to be taken. The counter functions 
basically as an add one binary counter which can be reset. 

Tally Register 

The Tally Register is a register having a capacity of 12 bits, which is used in 
conjunction with relative addressing. (For use of Tally Register see section on relative 
address.) It is addressable by the TAU and TAN instructions as well as manually from 
the console. 

Interval Timer 

The Set Interval Timer (SIT) and the Sense Interval Timer (SENIT) instruction 
are very special purpose instructions that serve an important function on the UDOFT 
computer; they exercise control over the Interval Timer. The Interval Timer is in 
essence a real-time clock which counts down from some specified quantity to zero. The 
process of counting down is performed automatically and occurs in real-time. Thus, if 
a quantity which is proportional to 50 milliseconds is set into the interval timer, it will 
require 50 milliseconds for the timer to run down to zero. The purpose of the timer is 
to provide a "settable" and "sensible" real-time clock which can be used to establish 
fixed intervals of time. The requirement for fixed time intervals is generated by the fact 
that the numerical integration and other time dependent functions become extremely 
cumbersome if a variable time interval between successive solutions (iterations) is allow¬ 
ed. The Set Interval Timer facilitates the "settable" function; the Sense Interval Timer 
facilitates the "sensible" function. 
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TABLE II 

SYMBOUC DESCRIPTION OF U DO FT INSTRUCTIONS 

MN K MON JC OCTAL TTMK 
I**CJBFTtMI fYMWOUt DOCRIPnCMi 

AMU m*G T»S TO 

m
i

 

AC 
JVERFtXM1 

mr, THE ISBT 

TR • 0*0° 
IM/*7 OWTRCCTyjR MAT SOT BE 

MIM AOO K S ADO REPLACE «T» WITH OACr',r re» re» 

AUM SI » AI» MACNftUW: REPLACE CfTM MITM CUOw 

AM) MAG. CW TO CÍAO 

TR ■ C(AC>U',:irîT 

AC .CÍAO“ '11^1- MAG 
cm 

re* ce» MME AN ADO 

eu M S CUCAR ANU AfXJ replace err» wrm cue»“ 

REPLACE Cl AO ■ITH CW 

TR • OAOu ' 

ac • cm 

res » MALI 

u-îf17 aaTSBCTWIN MAT NOT iiE 
MAD. JW RA. a*iU , 

CUA M i CUCAR ARO AI» 
MAO« mit* 

REPLACE CtTJP wrrH OACIU't,S1 TR • CIACr4;',ft 
AC • MAG. CÍT1 

TES NO MME AJ CU 

eus 31 s CUCAR AND .SUB¬ 
TRACT MACNmiOK 

(i.fA* 
replace err ■ »im ciao“ 
REPLACE CLACI »ITH -MAG CITÍ 

ij.|K*' 
Tr ■ einer 
ne < -mag. ein 

re» NO SAME A3 CU 

CL» JS s CUCARAND 
u- 

REPLACE CIT» »UH CLACj TR «emo6 
ac . -cm 

TK» NO SAME A3 CU 

DIV la IOS. nvtvr. u-u57 
REPLACE err» WITH C(AO 

MY CLACI BY C(TJ 

TR.CÎAOW','îrf 

AC - QUOTIENT OP ^¡2 

so m J-fl37 mût. MAT NOT BE WLU 
GW JOE 

I-sr‘ INST MAT SOÏ LIE » HAJD 
({iMilll, 

J-lC7 saaT MAT NCI KE WAD. 
JWCA. IK LA 

U-»*7' »«7. MAT NEW BE MAD. 
SHEA. 3HU 

MAO 1« 10 MULTIPLY ANDADO 
G fUCCISTEK 

u-u*7 
REPLACE CfTRJ »ITH CÍAO 
MULTIPLY C(T) BY THE CÍAO AND 
ADO THE OG! TO THE PMJOCCT 

It.ClAC,»'*” 
ne > 1 
G - REG ■ |CCTI ' CIAO) 

.era“'“” 

res TK U-JÍ47 MAY NOY ±- Sit GW lHt . 
CU. CLAA. CLE, CLAY, SHOT. II< Si. 
WT, MtDO. TOT. TOM. MLEÎ. Oft 
ANT WFTM.'OIC*» AE04SIHKDG G 

THE S-lí10 MAT NOJ BE .KU». ULAÍ. 
TOÍ TOM. MT.*ÏO. PENT. WUJD. 
VCA, 3TO PENT, MHO MAY BE IStS 

«•M77 gr.T NOT THE M-3V*W 

MLXt ¡2 10 MULTIPLEX IN 
ANALOG INPUT 

u-u57 
REPLACE err» WITH ClAO 
CLEAR AC. ADC THE BINARY REP- 
RESENTATJON OP THE ANALOG 
INPUT SELECTED TO (AO,. ,4 

TR> CUOU',,î7 
AC ■ Bt>AAT REPRESEN- 

7AT5£Ä OP THE 
ANALOG »PUT 

TEJ NO U- (/1-7 ENST. MAT SOT' BE ANY 
ARSJHMETSC OR CLERIC AL SWÏ • 
JJX» 

U-ä»57 DKST MAY NOS BEitSJJ 

U-Î»75 MAT NOT BE 570 1CA. O* 
MLXO 

MUCO It s MULTIPLEX OUT 
ANALOG OUTPUT 

CONVERT C(T»S ,, TO AN ANALOG 
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TABLE II (ConO 

SYMBOLIC DESCRIPTION OF UDOFT INSTRUCTIONS 
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3.3,7 Address Modification (Relative Addressing) 

UDOFT makes use of an index register, called the Tally Register, to 
modify the address of instructions. Address modification facilitates toe programming of 
iterative programs or subroutines. A program subroutine is defined looselyas a set o 
instructions which is used repeatedly to solve toe same problem only each time using a 
different set of-variables. A prime example of a UDOFT program subroutine 15 the 
numerical integration subroutine. In all,, this subroutine is used twelve times, to integrate 
the three translational accelerations (ii, v, and w) and the three rotational acceleratio , 

(P. 
inertial axis ( lt 

z-inertial axi: 

SicUiUtiai a.i.awh-' •> - , — 

q1 and r), and to integrate the three derivatives of the direction cosines for the y- 

2\ 
(1 

in and n0) and the three derivatives of the direction cosines for the 
u ¿ 

3' 
m and n^) 

It would be extremely wasteful of computer instructions (that must be stored in the 
Instruction Memory) if each of the twelve integrations required its own explicit program or 
routine Since the only difference between the individual programs is the independent van- 
able a means for using the same set of instructions with the facility of modifying the ad¬ 
dress of the variable. This facility is provided in the UDOFT computer by the feature of 
relative addressing; in contemporary computers this feature is normally referred to as 

’'indexing. " 

Address modifications is possible with ail 32 UDOFT instructions^ If Address 
modification is to occur the relative bit of the previous instruction must be a one When 
this condition is met the address used is the content of the relative address registe 

The relative address register always contains the arithmetic sum of the number 
memory address or the previous instruction and the contents of the Tally Register at th 
beginning of the previous instruction. 

The Tally Register is loaded by the TAN and the TAU instructions. TAN in- 
struction loads the Tally Register with the number memory address c^e^wlt^ r1® 
instruction. The TAU instruction loads the Tally Register with toe contents of toe Ac 
cumulât or bits six through seventeen. 

In addition the TAN instruction has a special feature which expedites the 
Tally Register If the relative bit coded with the TAN instruction, °r Pr®vlou+s instI^c- 
Uon is a "one" the contents of the Tally Register at toe beginmng of the TAN mstruction 
will'be augmented by the number memory address coded with the TAN instruction. 

The number memory address of the previous instruction is used in relatiye addressing 
to allow time for the Tally Register to be added to the number memory address. 

3.4 Main Frame 

The Arithmetic Unit, Control Unit I, and Control Unit II, taken collectiX®1^ ^“n 
orise what is commonly referred to as the Main Frame, (figures 9 and 10). The function 
of the Main Frame is to perform all the internal operations of the computer system and 
to control the operation of the remaining computer units, the Memory Umt and the Input 
¿tout Unit Had the implementation of the arithmetic and the control functions in the 
UDOFT computer been more efficient, there would not have been these three separate 
units Instead, a single physical unit, the Main Frame, requiring iess physical volume 
for the hardware, would have been evolved. The main reason for 
units as a single operating entity is the interdependence between the units. There is more 
communication among these units than there is between these units and the Memory a 

the Input-Output Units. 

Briefly the Arithmetic Unit functions as the computational element of the Main 
Frame Control Unit I performs all the control functions associated with the Arithmetic 
Unit Control Unit II performs all the control functions associated with the Memory and 
(he input O^Sut Units in addition to the supervisory control of the total computem This 
section of tlufreport will treat superficially each of the three units, detineating ttemajoi 

constituent elements and indicating their functions. Hor*X" e^^a brieVdescripti™ of 
operation and some of the idiosyncrasies of these major elements, a brief descriptio 
the master timing system of the computer is presented first. 
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3.4. 1 Master Timing System 

The UDO FT computer is a synchronous machine which uses dynamic logic. Nearly 
all large scale digital computers are synchrous, but few contemporary computers use 
dynamic logic. Dynamic logic enjoyed great popularity in the early 1950's, prior to the 
appearance of the high-frequency junction transistor. The advent of this transistor made 
it possible to produce large-scale computers with static logic for less cost than computers 
with dynamic logic which depended upon vacuum tubes with exceptional transconductance 
characteristics. 

The UDOFT computer was designed during this period of digital computer evolu¬ 
tion. Therefore, it might be expected that the type of logic used in the machine would be w. 
dynamic. This is further supported by the fact that the design of the computer was per¬ 
formed at the Moore School of Electrical Engineering of the University of Pennsylvania, 
at that time a practitioner of dynamic logic. 

In a computer using static logic, the basic communicator of information or data is 
a voltage level. Usually a voltage level approximating ground potential indicates a logical 
zero; a voltage level which is considerably more positive or more negative than that zero 
state level indicates a logical one. Such signals are obtained initially from static flip- 
flops. The outputs of the flip-flops may then be combined logically in passive networks 
commonly referred to as AND and OR gates. The combining process does nothing more 
than exercise a form of arbitrary control over the output of the network as a function of 
the inputs and the structure of the network. It is through the combining process that the 
capabilities of the simple bi-stable elements are exploited and combined into a powerful 
computing mechanism. 

The presence of pulse in a computer using static flip-flops and level logic is neces¬ 
sary to establish the time sequence by which the micro-operations that comprise the 
machine execution of an instruction are performed. The pulses, unlike the voltage levels, 
do not convey any information; their function is supervisory in nature. In the dynamic 
logic scheme, these same pulses are required. In addition, however, pulses rather than 
voltage levels are generated by the bi-stable elements. In the logical combining process 
pulses rather than voltage levels are combined. 

An unfortunate characteristic-of any physical element which is used to transmit 
electrical energy is that it is electrically imperfect. To cite a few examples of electrical 
imperfection, wires do not have zero resistance, resistors do not have zero reactance, 
and vacuum tubes do not exhibit perfect transfer characteristics. These deviations from 
the theoretical result in one characteristic common to all electrical elements, namely, 
time delay. Time delay is nearly always the factor that limits the speed of a digital com¬ 
puter. In a computer using dynamic logic, time delays are of paramount importance. 
This is most apparent when considering the logical combining of information pulse signals. 
A pulse will appear at the output of an AND gate if, and only if, all inputs are pulsed simul¬ 
taneously. Some degree of intolerance is allowed on the simultaneity of the incident pulses; 
however, it is usually quite small. 

The clock pulse or master timing system of a computer using dynamic logic per¬ 
forms the function of synchronizing the information pulse signals to a common time refer¬ 
ence. Without such a slaving capability the computer would be totally dependent upon the 
variations in the electrical characteristics of the myriad elements that comprise the com¬ 
puting system, resulting, undoubtedly in extremely sporadic and unpredictable operation. 
In addition, a secondary source of timing pulses is required, as in the static logic machine, 
for controlling the starting and the stopping of the computer micro-operations. The con¬ 
trolling pulses are referred to as timing pulses; the synchronizing pulses, as clock pulses. 

a.} Clock Pulse System 

' The UDOFT computer, like all dynamic machines, uses a multi-phase clock 
pulse system. This means that a number of timing.pulse chains is derived from a single 
source, each pulse chain having the same frequency as the source, but being displaced in 
phase from it by some fraction of the pulse repetition period. In the UDOFT computer 
there are five phases of the 1.2 megacycle clock. The separation between successive 
clock pulse chains is one-fifth of the period or 167 nanoseconds (figure 11). The width 
of the clock pulses is approximately one-half of the period or 417 nanoseconds. The five 
phases are identified as 00 (phase zero), 02, 04, 06, and 08. 

i*. 
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tr^oXe8eS;1er ofÄ3 oW 0.4 ^croseconds and OSUgged^ 0.«^- 

desig'nations^were'noraltered.Cl^U83phase 04 now lags 00 by 0.333 microseconds and 08 

lags 00 by 0.667 microseconds. 

A logical question that arises at this point is, why the muitiphased clock? Why 

»SrBSirir. «jas- *• “*- 
¢0 

¢2 

*4 

¥> 

¢8 

rn_r~i-r 

1 v_J^a_ 

V-J Un 
^ l^^O.SQpSEe—_/V^"' 

’ t-LuTpSEC ' ^^o.aaapSEC-^' ^ 

Figure 11. Five Phase Clock Pulse Characteristics 

c^..jsaarwS5iràî^S5Â^^Â. 
1. 2 megacycle sine wave was distributed to eacn “ neak-to-oeak The amplified 
where it is amplified to a signal of C^inUneac^ cabinet. 
signal was passed through a variable y ipmrths of the transmission cables between 
Even though care had been taken to equalize the lengths of to adjust 
the source and the computer units, t e h lit i t the vari0us phases by a 
for unequal delays The T ^“^^P^^^^^.j.^^ljp^igT^lanoseconds more d'elay than 
number of fixed delay lines eacn ot signal still in the form of a sine.wave, 
the previous one. ,The flve p.hasef °fp^Ded and clapped The signals were then in the 
were then amplified, symmetrical! ctiPP » inserted at this point to allow heavy 

SSÍSCSK SS^ÄSÄS - -. -«* ■»'** 
tion and distribution system is shown m figure 12. 

' It is vital, as has been stated previously, that the ^solute arri the relative timing 

of the clock pulse chains be exacx. As ^ c°“p0^eh”tSb° luteCt°mil^ since it is dependent 
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considerably and frequently. For this reason adjustment potentiometers were inserted at 
the outputs of the fixed delay lines. 

Under normal operating conditions (approximately 80 hours a week), the clock 
system required realignment every two or three months. On numerous occasions the 
clock pulse chains drifted sufficiently, between scheduled realignment periods, to cause 
operating difficulties. The operating difficulties materialize as sporadic and random 
failures of the computer, making it extremely difficult to determine the source of the 
trouble. Even when it has been determined that clock pulse timing was the cause, many 
hours were required to realign the clock pulse chains in each of the five cabinets. Since 
the clock pulse system was so critical an element and represented one of the more trouble¬ 
some areas in the computer, it became necessary to redesign the system for both the 
generation and the distribution of the clock pulses. 

Figure 12. Block Diagram of Original Clock Pulse Generation and 
Distribution 

The modified clock system improves the method of generating the five clock 
phases by climating adjustment of phasing, minimizing adjusting of clock pulse widths 
and eliminating the necessity of phasing the cabinets. 

The widths of the clock pulses are made independent of phase separation by 
using single shot multivibrators (SSMV) and well isolated fixed delay lines. As far as 
distortion and linearity of delay is concerned the most useful portion of the outputs of 
the delays is selected by proper biasing of an inverter. The leading edge of the inverted 
output gates a SSMV adjustable from 0.300 to 0.500 Msec. Stability and independence 
are achieved by using Zener diodes on each SSMV and the Inverter to derive the voltages 
required. 

To climate the need to phase the cabinets, the clock is generated in the Input- 
Output cabinet and each phase is distributed to the five cabinets on separate equal length 
coaxial cables. (See figure 13.) 

The oscillator used is the original P271 package. Its output is clipped and 
clamped and applied as the clock input of a standard pulse amplifier. The pulse ampli¬ 
fier in conjunction with a standard signal driver-is used to drive delay lines. The delay 
lines establish fixed time differences between phases. The signal drivers serve to isolate 
the phases and minimize their interdependence. The delay lines are the standard positive 
short delay lines. The outputs of the delay lines and the output of the fifth signal driver, 
the undelayed pulse, are then inverted. The inverter is biased to select the section of 
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the output of the delay lines which will minimize problems caused by delay line distortion. 
The inverted delayed pulses, which are reshaped by the inverter, gate the clock multi¬ 
vibrator (CMV). The input to the CMV is a ringing circuit which generates a pulse when 
gated by the leading edge of the inverter output. The CMV is a single shot multivibrator, 
adjustable from 0.300 to 0. 500 ^sec. The clock multivibrators drive the cable drivers 
which can drive up to seven coaxial cables. 

The outputs of the coaxial cables drive the inputs of the clock drivers. From this 
point on the distribution is unchanged except for terminations needed to eliminate ringing 
caused by the improved rise and fall times of the clock pulses. 

b. ) Timing Pulse System 

The computer Timer, as it is called, generates the sequences of timing pulses 
that indicate distinct times within a minor cycle of computer operation. A minor cycle in 
the UDOFT computer is 5. 0 microseconds in duration, during which time thirty distinctly 
timed pulses are generated. 

The mechanism for generating the thirty pulses is a cascaded arrangement of 
thirty pulse amplifiers, very much resembling a multi-tapped delay line (figure 14). Pulse 
amplifiers, rather than a multi-tapped delay line are used in order to ac^ur^cy of 
timing* each pulse amplifier is synchronized by means of clock pulse. The first output 
from the Timer is timing pulse 6.0. A pulse will appear at this output every 5. 0 micro¬ 
seconds at a time designated as 6. 0. The outputs of subsequent pulse amphfiers have 
designations which are 0. 2 greater than the preceding output. The two-tenths figure 
designates an absolute separation between successive timing pulse chains jdeirtical to Aat 
used in identifying the five phases of the clock. The sequence of outputs stoti^ with the 
first is 6. 0 to 6.8, then 1. 0 to 5.8. Since the pulse amplifiers are arranged in a closed 
loop a single pulse, once injected into the loop will continue to traverse the loop until 

stopped manually. 

3.4.2 Arithmetic Unit 

The Arithmetic Unit contains the Accumulator and two registers, the Multiplicand- 
Divisor Register (M-D Register) and the G-Register. 

a.) Accumulator 

The Accumulator contains the logic necessary for perform!^ the "add, sub- 
tract " "shift, " and "complement" operations, one or more of which are required to 
execute all of the arithmetic instruction. More specifically, the Accumulator consists of 
twenty identical stages, a partial twenty-first stage, and logic to detect carries out of the 
twentieth stage. 

Each of the twenty stages of the accumulator functions identically in sensing the 
state of the corresponding bit positions of the M-D Register, the G-Register, and the Ac¬ 
cumulator itself. The Accumulator appears to be a purely parallel unit, due to mere 
being an individual adder, adder-subtractor, and recirculation loop for each of Ihe twenty 
stages. However, the operation of the Accumulator is not purely parallel, but is better 
described as parallel-sequential. 

Although only one bit is operated upon by each stage, and although each bit appears 
on an independent output line, successive stages of the Accumulator are time-separated by 
one clock phase (0. 167 /isec). This separation in time is to allow the formation altó the 
propagation of carries as the arithmetic operation sequentially from the least significan 
bits to the most significant bits of the operands. 

A single Accumulator stage (figure 15) is composed of an adder, an adder-sub- 
tractor, a shift amplifier, and a recirculation amplifier. Several dispatcher lines intro¬ 
duce the control pulses which determine, the operations to be performed by the Accumu- 
lator stage. 

The heart of the Accumulator stage is the adder-subtractor. It is here where 
quantities from memory or the G-Register are added to or subtracted from the quantity 
stored in the Accumulator. The complement feature of this element is re<^f 
instances where a true subtraction of the form (A-B), where /B/WA/, is performed. 
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Figure 14. Block Diagram of Timing Pulse Generator Loop 
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Figure 15. Block Diagram of Single Accumulator, Stage N 
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initial difference as determined by the Accumulator is in two's complement form, thereby 
necessitating a complement and a sign reversal operation. 

The recirculation amplifier provides the means by which the retention of data in 
the Accumulator is controlled. As long as the amplifier is enabled, the single bit of data 
in each Accumulator stage is allowed to circulate around the major loop consisting of the 
adder-subtractor, the adder, and the recirculation amplifier. Inhibiting or disabling the 
recirculation amplifier prevents the recirculation, thereby effectively clearing the Ac¬ 
cumulator stage. 

The adder provides a second level of addition to the Accumulator stage. Shifting 
a number to the left in the Accumulator is performed by progressively adding the number 
to itself; this operation is effected by the adder. This operation could have been performed 
in the adder-subtractor; however, it would have resulted in increased complexity of the 
adder-subtractor logic. The primary reason for the inclusion of the second level adder, 
however, was to accelerate the execution of the multiply instruction. 

Multiplication of two binary numbers in a simple digital computer consists of ad¬ 
dition and shifting operations. Multiplication is accomplished by adding or not adding the 
multiplicant to the content of the accumulator depending upon the condition of the multi¬ 
plier bit. An addition would occur if the multiplier bit were a 1, no addition, if the bit 
were a 0. Subsequent to this operation the content of the Accumulator is shifted one place 
to the right and the next multiplier bit is examined. This operation continues until all 
bits of the multiplier have been examined. The resulting sum in the accumulator is the 
product of the multiplication operation. In UDOFT, multiplication speed is effectively 
doubled by examining two multiplier bits at a time and shifting the partial sums two 
places to the right. In order to do this two adders are required; thus, the reason for the 
secondary adder. 

The shift amplifier allows the quantity in the accumulator to be added to itself in 
the adder in order to effect a shift left of one place. Further, the shift amplifier provides 
entry to the adder for the multiplicand during the multiply instruction. 

b. ) Multiplicand-Divisor Register 

The Multiplicand-Divisor Register is a 22-bit (20 data bits, sign, and parity) 
dynamic flip flop buffer - storage register, which acts as: 

1. A buffer between the Number Memory Output Register and the 
Accumulator. Upon being transferred into the M-D Register 
from memory, the data words are checked for parity. 

2. A buffer between the G-Register and the Accumulator 

3. A storage register for the multiplicand during the 
multiplication operation. 

4. A storage register for the divisor during the Division 
operation. 

c. ) G-Register 

The G-Register is a special-purpose storage register with a capacity of twenty 
binary bits plus the sign bit. It differs from the M-D Register in that it does not consist 
of distinct storage flip-flops for eaóh of the data bits; radier, it consists of five serial 
storage loops, similar to delay line storage loops (figure 16). Serial storage loops are 
used primarily to save hardware. By using one pulse amplifier and a long delay line, it 
is possible to store several bits serially. The opportunity to employ this technique does 
not occur often in UDOFT due to timing restrictions. Bits from stages of the 
accumulator having the same clock timing are serialized and injected into the appropriate 
storage loop. When access is made to the G-Register, the bits are extracted from the 
loops in serial-parallel fashion. In conjunction with the Multiply and Add G-Register 
(MAD) and the Shift and Add G-Register (SHLA, SHRA) instructions, the G-Register 
performs in the manner just indicated. 
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During the divide operation, the G-Register stores the individual quotient bits as 
they are formed from the operations occurring in the accumulator. Division requires 
twenty-one complete addition or subtraction operations in the accumulator. Since each 
complete arithmetic operation requires five microseconds, the Divide instruction re¬ 
quires 105 microseconds for its complete execution. During this period twenty quotient 
bits are generated. In order for the G-Register to store the quotient bits during the 
execution of the instruction, the capacity of the register must be increased. This is 
affected by opening the five serial loops and tieing them together to form one large loop 
which has-a circulation time slightly in excess of twenty-five microseconds. A quotient 
bit is injected into the G-Register every five microseconds; at the end of the process 
another five microseconds is required to transfer the twenty quotient bits into the 
accumulator. 

Because of timing restrictions the twentieth bit is not injected into the G-Register. 
Instead, it is injected in the low order stage of the accumulator directly, 

3.4.3 Control Unit I 

The control element of the UDOFT computer system performs three basic 
functions: sequence determining, arithmetic, and input-output control. The control 
element specifies a given instruction, identifies the operation to be performed, and 
identifies the operand to be used. Upon identifying the operation and the operand, the 
control element then provides the Arithmetic Unit with sequenced control pulses which 
effect the execution of the instruction. 

The control element of the UDOFT computer system is subdivided, due to physical 
limitations, into two units, Control Unit I and Control Unit II. Control Unit I is described 
as follows and Control Unit II is described in 3.4.4. 

Control Unit I is concerned primarily with the arithmetic control function. It is 
here that the five instruction word bits that specify the order type are decoded and the 
order type is identified. The identification of the order type initiates the generation and 
the propagation of the pulses that control the Arithmetic Unit. The groupings of logic 
elements that perform this function are defined as Dispatcher Lines. 

In addition to satisfying the arithmetic control function, Control Unit I contains 
two registers; the Transfer Register and the Interval Timer. The Transfer Register is 
rightfully an integral part of the Arithmetic Unit; however, it is contained within Control 
Unit I simply because there was insufficient space in the Arithmetic Unit for its inclusion. 

a. ) Transfer Register 

The Transfer Register is a 22-bit (22 data bits, sign and parity) non-addressable, 
dynamic flip-flop, buffer-storage register which acts as a buffer between the output of 
the Accumulator and various terminal units in the computer system. The particular 
terminal units are the Number and the Instruction Memory rewrite registers, the Multi¬ 
plexer Output Register, the Tally Register, and the Print Register. During the card 
read-in process it acts as a buffer between the card reader and the two memories. 

At the beginning of each instruction, except STO and MLXO, the Transfer Register 
is cleared and the contents of the Accumulator are read into the Transfer Register. Thus, 
the Transfer Register lags the Accumulator by one instruction. This feature imposes a 
programming restriction, namely, that a STO instruction will not store the results of the 
preceding or (J-l)st instruction. Rather, it will store the results of the (J-2)nd instruc¬ 
tion. This feature usually causes no inconvenience to the programmer and if the program¬ 
mer is careful there is no time lost due to the use of extra instructions. The problem 
can also be overcome by inserting a NOP instruction prior to the STO instruction, there¬ 
by allowing the proper quantity to be in the Transfer Register at the time the STO instruc¬ 
tion is executed. However, this is not an economical method of programming. 

b. ) Interval Timer 

The Interval Timer is provided specifically as a means for equalizing the time 
interval between successive iterations of the flight simulation program. More generally 
it is a program-controlled real-time clock. 
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In detail, the timer is a modified fourteen stage subtracting binary counter. It is 
settable, in increments of five microseconds, to a maximum value of 81.915 milliseconds 
by means of the SIT instruction. The count in the timer is decremented each instruction 
minor cycle (five microseconds) until the count is zero, after which time no change is 
made to the count unless a SIT instruction is performed. 

As originally conceived, the SENIT instruction was capable only of sensing a zero 
condition in the Interval Timer. Thus, if fifteen milliseconds remained in the timer at 
the time the SENIT instruction was decoded, no other instruction could be performed 
until the timer ran down to zero. This feature seemed to be wasteful of valuable time 
which could be used to perform auxiliary programs. For this reason the SENIT instruc¬ 
tion was modified to be a conditional transfer of control type instruction. If the timer is 
identically zero at the time the SENIT instruction is executed, the next instruction in 
sequence will be executed; if the timer is not identically zero, there is a transfer of con¬ 
trol to the instruction specified by the address field of the SENIT instruction. Concurrent¬ 
ly, the count in the timer is transferred to the Accumulator where it can be examined to 
determine if there is sufficient time remaining to perform the auxiliary programs. It is 
also useful for determining timing of routines or program segments. The original facility 
of the SENIT Instruction is retained simply by assigning the address of the SENIT Instruc¬ 
tion to the address field. This forms a one instruction loop which is exited when the in¬ 
terval timer reaches zero. 

c. ) Dispatcher Lines 

The ten Dispatcher Lines, identified as ODL through 9DL, generate the pulses 
that order the arithmetic unit of the computer to perform the arithmetic operations. A 
brief functional description of each Dispatcher Line follows. 

1. ODL 

Dispatcher line 0 serves two purposes. In those arithmetic 
operations which use the contents of the G-Register as the 
operand, or one of the operands, it gates the contents of the 
G-Register into the Multiplicand-Divisor Register. In all 
other instructions which check number memory parity, it 
isused in conjunction with 1DL to provide gating pulses for 
the parity checking circuitry. 

2. 1DL 

Dispatcher Line 1 causes the contents of the Number Memory 
Output Register to be gated into the Multiplicand-Divisor Regis¬ 
ter. 1DL is pulsed therefore for all arithmetic operations in¬ 
volving an operand, the address of which is not that of the G- 
Register, 

3. 2DL 

Dispatcher Line 2 causes the Multiplicand-Divisor Register 
to be cleared to zero. 2DL is pulsed therefore for all opera¬ 
tions which read or transfer data into the Multiplicand-Divisor 
Register. 

4. 3DL 

Dispatcher Line 3 causes the contents of the Multiplicand- 
Divisor Register to be gated into the adder-subtractors of 
the Accumulator. 3DL is pulsed therefore for ail operations 
which cause the content of the Accumulator to be simply 
augmented or decremented. In addition to this most basic 
function, 3DL is pulsed sequentially as a function of the odd 
multiplier bits during the Multiply instruction, and is pulsed 
twenty-one times during the Divide instruction in order to 
introduce the divisor and the quotient into the Accumulator. 
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5. 4DL 

Dispatcher Line 4 causes the contents of the Multiplicand- 
Divisor Register, shifted left one place, to be gated into 
the upper adder of each of the Accumulator stages. It 
functions only during the Multiply instruction, at which 
time it is pulsed sequentially as a function of the even 
multiplier bits. Dispatcher Lines 3 and 4, primarily, 
cause the Accumulator to perform the multiplication 
function; Dispatcher Line 7 contributes also to the multi¬ 
plication function. 

6. 5DL 

Dispatcher Line 5 causes the contents of the Accumulator 
to be shifted to the left. Each time 5DL is pulsed, a single 
shift to the left of one pulse is effected. Dispatcher Line 5 
functions during the right shifts as well as left shifts because 
single-place shifts to the right or odd numbered shifts to the 
right are performed by first shifting left one place and then 
shifting right two places at a time. It functions also during 
the Divide instruction in which it shifts the remainder left 
one place after each addition or subtraction operation. 

7. 6DL 

Dispatcher Line 6 causes the contents of the Accumulator 
to be cleared to zero. 6DL is pulsed for all instructions, 
such as CLA and CLAA, which explicitly require a cleared 
Accumulator and for other instructions, such as SHR, and 
DIV, which implicitly require a cleared Accumulator. 

8. 7DL 

Dispatcher Line 7 causes the contents of the Accumulator 
to be shifted two places to the right. 7DL is pulsed only 
during the Shift Right (SHR, SHRA ) instructions and during 
the Multiply instruction. 

9. 8DL 

Dispatcher Line 8 causes the two's complement of thé con¬ 
tents of the Accumulator to be performed. 8DL is pulsed 
therefore as the result of a true subtraction of the form 
(A-B) where |B|>|A|. It is pulsed also in order to establish 
the maximum quantity in the Accumulator after an overflow 
has occurred and truncation of the result is indicated. (8DL 
is not used during divide, since the subtract performed as a 
part of the divide, is not a true subtract. ) 

10. 9DL 

Dispatcher Line 9, causes the adder-subtracters of the 
Accumulator to function as subtractors. 9DL is pulsed 
therefore whenever a true subtraction is performed. A 
true subtraction will occur during an Add instruction when¬ 
ever the signs of the operands are different, during a Sub¬ 
tract Instruction whenever the signs of the operands are 
similar, and during the divide instruction in accordance 
with the division algorithm. 

d. ) Order Type Selectors 

Control Unit I also contains the Order Type Selectors. The Order Type selectors 
decode the five bits of the order type of the instruction word which is read out of the In¬ 
struction Memory. These five bits uniquely define the thirty-two different instructions 
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which the computer is capable of executing. The results of the decoding operation is the 
generation of a series of pulses on one of thirty-two control lines, each line specifying one 
of the orders. In addition to specifying the macro-operation (Add, Subtract, Divide, etc. ) 
that is to be executed, the control pulses, through logical combining with other condition¬ 
ing signals, specify and initiate the micro-operations that constitute an instruction cycle. 

e.) Sign Logic 

The last major control function implemented in Control Unit I is the determination 
and the storage of the sign of the quantity in the Accumulator. Determination of the Ac¬ 
cumulator sign is dependent upon the particular arithmetic operation and the signs of the 
operands. Therefore the signs of the quantities in the Multiplicand-Divisor Register and 
the G-Register are stored in Control Unit I as well as the sign of the quantity currently in 
the Accumulator. 

3.4.4 Control Unit II 

Control Unit II performs the major functions of instruction sequencing, memory 
control, and, to some extent, input-output control. Instruction sequencing relates specif¬ 
ically to the Sequence Counter and the start and halt controls; memory control relates 
specifically to the Number Address Storage Register, the Relative Address Register, the 
Tally Register, and the Sequence Counter; input-output control relates specifically to the 
Number Address Storage Register. It is apparent from the preceding statement that some 
of the registers, such as the Sequence Counter and the Number Address Storage Register, 
serve a multiplicity of functions. This characteristic will be exposed further in the follow 
ing brief functional descriptions of each register. 

a. ) Sequence Counter 

The Sequence Counter is properly atwelve stage, parallel, storage register Its 
primary function is to specify to the Instruction Memory the address of the nextinstruction 
which is to be executed. In order to be able to specify the next instruction the Sequence Counter 
must be capable of being augmented by a single count or being set to a specific count. Normally, 
after each instruction, the counter is simply augmented; however, after the execution of a 
transfer of control type instruction, the counter may be set to a specific count. 

It is interesting to note that the twelve dynamic flip-flops that comprise the Se¬ 
mence Counter are simply storage flip-flops; they are not interconnected to form a true 
jinary counter. The augmenting of the count in the storage flip-flops is performed by a 
serial adder. The twelve bits of the register are serialized and applied least significant 
jit first, to a serial adder in which one is added to the least significant bit. The augmen e 
jount then is read back into the storage register. 

b. ) Number Address Storage Register 

The Number Address Storage Register is a twelve stage, parallel storage register. 

Its functions are as follows: 

1. In shifting instructions it specifies the direction and number of shifts 
to be performed. 

2. In control transfer instructions, it specifies the count to which 
the sequence counter may be set. 

3. In the TIM instruction, it specifies an instruction memory address. 

4. In the MLXI instruction, it specifies an analog input channel. 

5. In conjunction with the discrete input, it specifies a discrete 
input. 

6. In the output instructions, Multiplex Analog Output (MLXO) and 
and Multiplex Discrete Output (MXDO), it specifies the particular 
output channel to be processed. 

The Number Address Storage Register actually does not address the number mem¬ 
ory, it indicates which number memory register is being addressed. 
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In addition to the multiplicity of uses of the outputs of the Number Address Storage 
Register, there are multiple inputs to the Register. Normally the input to the register is 
derived from the instruction word address field as formed by the Number Address Serializ¬ 
ing Register. However, under the condition of using relative address, the input to the 
Number Address Storage Register is derived from the Relative Address Register. 

c. ) Relative Address Register 

The Relative Address Register is a twelve-bit storage register, which stores the 
relative address that may be used by the succeeding instruction. In reality, the register 
is two, six-stage, serial storage registers which operate in parallel in order to facilitate 
rapid access to the relative address data. The output of the Relative Address Register is 
applied to the Number Memory Address Register and the Number Address Storage Regis¬ 
ter; the input is always derived from the Relative Address Former. 

The Relative Address Former consists of two, two-operand, serial adders with 
carry propagation capabilities. It is here that the serialized contents of the Tally Register 
are added to the serialized address field bits of the instruction words. The address fiel 
bits are serialized in the Number Address Serializing Register. 

The Number Address Serializing Register consists of two six-bit serial registers. 
The address field of the instruction word is applied in parallel form to the input of the 
total register - the six even bits of the address field being applied to one six-bit register 
and the six odd bits being applied to the other register. The Number A^dr®ss Sto^f£e 
Register thus converts the address field from a twelve-bit parallel word into two six-bit 

serial words. 

The output of the Number Address Serializing Register is applied to both the 
Relative Address Former and the Number Address Storage Register. For those instruc¬ 
tions for which relative address is not specified, the output of the register is gated into 
the Number Address Storage Register. 

d.) Tally Register 

The Tally Register of the UDOFT computer is comparable to an index register in 
the common computer. It stores the quantity by which the instruction-specified operand 
address is modified if relative address is specified. In keeping with the serial-parallel 
philosophy of the address control function, the Tally Register consists of two six bit se 
storage loops; one loop stores the six odd bits and the other, the six even bits. 

The output of the Tally Register is applied only to the Relative Address Former. 
The inputs to the Tally Register are derived from the following sources. 

1. The Transfer Register. This register provides the input 
during the execution of the Tally Arithmetic Unit (TAU) 
instruction. 

2. The Relative Address Register. This register provides the 
input during the execution of the Relative Tally Number 
Address (RTAN) instructions. 

3. The Number Address Serializing Register. This register 
provides the input during the execution of the conventional 
Tally Number Address (TAN) instruction. 

4. Console Switches. 



3. 5 Memory Unit 

The UDOFT computer contains two coincident-current, magnetic-core memories; 
the Instruction Memory for instruction words and the Number Memory for data words. 
The two memories are identical in design ana construction; but differ slightly in operation. 
The similarity between the two memories is readily apparent. Each memory consists of 
an array of twenty-two magnetic core memory planes each of which contains 4096 ferrite 
cores, an address register, an output register, and a rewrite register (figure 17). 

A cycle of memory operation is initiated by the transfer of the twelve bits of 
address information into the Memory Address Register. The twelve bits of the address 
are divided into four groups of three bits each. This is done in order to allow the matrix 
transformation of each three binary bit group into eight (2^) distinct control functions. 
The sixteen distinct control signals that are derived from the two low order three-bit 
groups of the address are transformed into 64 (82) distinct control signals. These 64 con¬ 
trol, signals are defined as the selection signals for one coordinate of the memory plane 
array. Similarly the sixteen distinct signals, derived from the two high order three-bit 
groups of the address,are converted into 64 distinct control signals which are defined as 
the selection signals for the other coordinate of the memory plane array. Since the 
magnetic core memory plane is, in reality, a 64 X 64 matrix, pulses appearing on a single 
selection line of each coordinate will disturb one and only one magnetic core, namely, the 
core that lies at the intersection of the two lines that have been selected. 

The core, when sufficiently disturbed, will exhibit a change in its magnetic field. 
The change in the magnetic field causes a voltage to be induced onto a third signal line or 
winding that passes through the magnetic core. This voltage signal is amplified and dis¬ 
criminated to determine if a binary one had been stored in the selected core. If a one had 
been sensed, a flip-flop will be set. Since there is a sense amplifier and an output register 
storage flip-flop associated with each bit- or plane of the array, the Number Memory re¬ 
quires twenty-two sense amplifiers and a twenty-two stage static flip-flop storage register; 
for the Instruction Memory this requirement is decreased to twenty of each. 

As a result of the selection process, the magnetic core loses the binary data that 
it was storing. It is necessary, therefore, to provide a means by which the data extracted 
from the disturbed cores may be returned or rewritten for future use; the rewrite register 
and the inhibit drivers provide this means. The selection process is reinitiated and the 
same core in each plane is selected; however, the polarity of the disturbing signals is re¬ 
versed, The information stored in the rewrite register determines which of the selected 
cores will be disturbed. If a binary one had been extracted from the particular core, the 
core is disturbed totheONE state; if a binary ZERO had been extracted, the core is undisturbed. 
The process of preventing certain cores from being disturbed, or rewritten, is controlled 
by the inhibit drivers. For those cores where no rewrite is necessary, a pulse will occur 
on a fourth line or winding which passes through the cores. The signal on this line, the 
inhibit winding, will be equal to, but opposite in polarity from one of the two disturbing 
or select signals, thereby reducing the net effect of the selection signals to the extent that 
the rewrite process is inhibited. 

With the termination of the rewrite process one complete memory cycle is accom¬ 
plished. Insofar as the related operation of the two memories is concerned, it is sufficient 
to state that the cyclic operation of each is identical. The only difference is the one-half 
memory cycle time separation between identical operations in each memory. 

One major problem with the UDOFT memory scheme arises from the fact that the 
two memories are isolated from each other; neither can communicate directly with the 
other. Instruction words from the Instruction Memory cannot be introduced at all into the 
Number Memory. Data words from the Number Memory, however, can be introduced into 
the Instruction Memory, indirectly, by means of the Transfer to Instruction Memory (TIM) 
instruction. This limitation on intercommunication between the memories is a decided dis¬ 
advantage. In the particular case of the UDOFT computer, for which each memory consists 
of 4096 storage registers, the instruction and data storage capability is limited to 4096 
words of each type. It is impossible, therefore, to handle a total program in which the 
quantity of either of these types of words exceeds 4096, even though the total number of 
words in the program is less than 8192 words. 
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3. 6 Input-Output Unit 

The Input-Output Unit is the buffer between the main frame of the computer and 
the real-world as typified by the aircraft flight compartment mockup. Fundamentally, 
the Input-Output Unit processes the four forms of real-time communication available 
to the computer system. Further, when the computer system is used for research or 
testing purposes, the Input-Output Unit expedites the accumulation and outputting of numer¬ 
ical data that is normally not required during or after the time such a system would be 
used as a training device. 

The four forms of real-time communication were first introduced in Section 2. 2 
of this report. Any further description of the role of these control signals is deemed 
unnecessary at this point. However, a brief description of the manner in which these in¬ 
puts and outputs are processed will be presented. 

3. 6.1 Discrete Inputs 

The computer can accept control information from as many as sixty-four switches 
that may be situated in the synthetic flight compartment or at the simulator instructor’s 
station. Each of the inputs generated by these sixty-four switches has a particular register 
in the Number Memory associated with it. The fact that a given discrete-input switch is 
open causes the "masking11 of the contents of the associated number register. Thus, when 
the computer executes an instruction, the operand address of which specifies a masked 
register, the normal transfer of information from the addressed Number Memory Register 
into the Multiplicand-Divisor is suppressed. As a result nothing is read into the M-D 
Register which, at the initiation of the instruction, had been cleared to zero. The contents 
of the masked memory register are not altered in any way and can be read out once the as¬ 
sociated discrete-input switch is closed. 

The information in the controllable registers may be of a quantitative nature or a 
control nature. An example of quantitative data being stored in the register would be the 
weight of external stores. If external stores are applicable to the vehicle configuration 
being simulated, the controlling switch is closed and the weight of external stores is added, 
during the weigh* calculation, to the total weight of the vehicle. If external stores are not 
applicable, the switch is opened, and zero is added to the total weight of the vehicle. This 
is a very simple example and does not consider any other ramifications resulting from the 
introduction of external stores. 

The more common use of the switch-controlled registers is program control by 
external means. In this case the registers would contain information'of a qualitative 
nature. A common sequence of instructions that typifies this use would be CLA X, TOM Y. 
The quantity stored in X which is a discrete input controlled register, would be some 
negative number; its magnitude is immaterial. If the discrete-input switch is in the open 
condition at the time the CLA X instruction is executed, all zero's will appear in the 
Accumulator at the time the succeeding instruction, TOM Y, is executed. Thus, with a 
positive quantity (zero is always positive) in the Accumulator, no transfer of control 
will be performed by the TOM instruction and the succeeding instruction will be executed. 
If the discrete input switch had been closed, a negative quantity would appear in the 
Accumulator, and there would be a transfer of control to instruction Y. In this application, 
the discrete input function is analogous to the sense flip-flop function in a general purpose 
digital computer. 

For the F-100A aircraft simulation program, approximately forty of the discrete- 
input channels are used (Table III). The majority of these discrete inputs perform program 
control functions. 

3. 6. 2 Discrete Outputs 

There are twenty-four discrete output channels implemented in the UDOFT computer. 
Each output channel consists basically of a dynamic flip-flop which controls a relay. 

The discrete outputs are selected and controlled by the Multiplex Discrete Output 
(MXDO) instruction. The bits of the address field of the instruction determine which out¬ 
put flip-flop is to be selected. Once selected, the state of the flip-flop is determined by 
the sign of the quantity currently residing in the Accumulator. If the quantity is negative 
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TABLE HI 

NMAD 

0400 

0401 

0402 

0403 

0404 

0405 

0406 

0407 

0410 

0411 

0412 

0413 

0414 

0415 

0416 

0417 

0420 

0421 

0422 

0423 

0424 

0425 

0426 

0427 

0430 

0431 

0432 

0433 

0434 

0435 

0436 

0437 

DISCRETE INPUT ASSIGNMENTS FOR 
F-IOOA SIMULATION PROGRAM 

USE DI NMAD 

NOZZLE FAIL CLOSED 40 0440 

NOZZLE FAIL OPEN 41 0441 

ZERO 42 

START ENGINE CRANK 43 

START ENGINE FIRE 44 

EMERGENCY FUEL REGULATOR 45" 
ON 

TEMPERATURE HOT (0. 934% 46 
THRUST) - 

DEFROST 47 

DROP TANK PRESSURE 50 

DROP TANK JETTISON 51 

DROP TANK REFUEL 52 

WINDSHIELD ANTI-ICE 53 

SPEED BRAKE IN 54 

SPEED BRAKE OUT 55 

SPEED BRAKE DUMP 56 

PILOT ICE 57 

DRAG CHUTE INFLATED 60 

CABIN PRESSURE 2. 75 PSI 61 

AFTERBURNER ON 62 

EMERGENCY HYDRAULIC FLIGHT 63 
CONTROL SYSTEM 

HYDRAULIC NUMBER 1 FAIL 64 

HYDRAULIC NUMBER 2 FAIL 65 

HYDRAULIC NUMBER 1 TO AO 66 

HYDRAULIC NUMBER 2 TO AO 67 

FREEZE 70 

NOSEWHEEL STEERING 71 

UTILITY HYDRAULIC FAIL 72 

CABIN PRESSURE 5. 00 PSI 73 

0442 

0443 

0444 

0445 

0446 

0447 

0450 

0451 

0452 

0453 

0454 

0455 

0456 

0457 

046 0 

0461 

0462 

046 3 

0464 

0465 

0466 

0467 

0470 

0471 

0472 

0473 

YAW DAMPER 

MAIN TANK REFUEL 

MAIN TANK DUMP 

74 0474 

75 0475 

76 0476 

LANDING GEAR IN MOTION 77 0477 

USE 

ROUGH AIR 

GUIDE VANE ANTI- 
ICE 

INCREASE ALTITUDE 

DECREASE ALTITUDE 

AUTO PILOT 

FUEL REGULATOR 
FAIL 

F9F-2 

ALTITUDE LOCK 

ROLL ANGLE LOCK 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

NO FUEL 
DEPLETION 

F9F-2 

F9F-2 

TRUE AIRSPEED 
CONSTANT 

FIX CENTER OF 
GRAVITY 
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the flip-flop is set to the ONE state; the ONE state implies pulses circulating around the 
flip-flop storage loop. If already set to the ONE state, the flip-flop will remain set until 
cleared. If the quantity in the Accumulator is positive, the flip-flop will be cleared to 
the ZERO state. 

Approximately fifteen discrete output channels are required for the F-100A 
problem (table IV). Had the radio aides functions been implemented in the computer, 
this quantity would have increased noticeably. 

3.6.3 Analog Inputs 

There are twenty-four analog input channels implemented in the UDOFT computer. 
Each input channel consists of a bit-serializing circuit. It is by means of these circuits 
that the ten-bit parallel output of the Gray-coded binary, shaft-angle converter is con¬ 
verted into serial form, the most significant bit appearing first. The output of each of 
the twenty-four serializing circuits forms a data input to a selection matrix. The other 
inputs to the selection matrix are the number memory address bits which control the 
selection of the appropriate data line. When an analog input channel is addressed, one 
control line of the matrix is activated and the serialized analog input data appearing on 
the associated data line is gated into the Gray code-to-binary converter. 

The Gray code-to-binary converter would not be necessary had conventional binary 
coded shaft angle converters been used. However, at the time UDOFT was developed 
unambiguous read-out shaft-angle converters were very costly. Therefore, it appeared 
sound to use converters utilizing conventional disc and brush techniques, attaining the 
unambiguous read-out feature by using Gray coded discs. 

As the serialized data is converted to conventional binary form, it is also trans¬ 
ferred to the Accumulator. Although most of the communication between registers in 
the computer is performed in a parallel manner, the transfer of analog input data to the 
Accumulator is performed in a serial manner. The converted data bits are introduced 
serially into the eleventh stage of the Accumulator and shifted successively to the left 
until stages eleven through twenty contain the ten analog data bits. Since ten shifts are 
required, approximately nine microseconds are consumed just for transferring the data 
into the Accumulator. This is one of the factors which necessitates that two instruction 
minor cycles, ten microseconds, be provided for the execution of the Multiplex Analog 
Input (MLXI) instruction. 

Once the quantity has been entered into the Accumulator, it can be operated upon 
as though it had been entered into the Accumulator from the Number Memory or the G- 
Register. Thus, the quantity may be processed immediately or it may be transferred to 
memory for later use. 

Only nine analog input channels are used in the F-100A problem (table V). Of 
this only six inputs are obtained from the flight compartment; the three remaining inputs 
are control inputs established by the instructor. As in the case of both the discrete in¬ 
puts and the discrete outputs, the inclusion of the radio aids functions would have a marked 
effect upon the utilization of the unused channels. 

3.6.4 Analog Outputs . 

There are sixty-four analog output channels implemented in the UDOFT computer. 
The conversion of the binary quantities to voltage levels, and the outputting of the voltage 
level for each of the sixty-four channels is performed in the Input-Output Unit. 

The conversion function is performed by a static flip-flop storage register and a 
digital-to-analog converter. The output quantity is obtained from the sign and the eleven 
high order stages of the Transfer Register and is transferred to the analog output storage 
register. The output of the register is applied to the digital-to-analog converter. The 
output of the converter is a D.C. voltage level, in the range of zero to ten volts, which 
is directly proportional to the digital quantity appearing at the input to the converter. 

The converter consists of precision resistors interconnected to form a ladder net- 
work(figure 18), inwhichthe seriesresistorshave half the value ofthe shuntresistors. Each 
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TABLE IV 

DO NMAD 

01 1005 

02 1006 

03 1011 

04 1012 

05 1021 

06 1022 

07 1024 

08 1030 

09 1041 

10 1042 

11 1044 

12 1050 

DISCRETE OUTPUT ASSIGNMENTS FOR 
F-IOOA SIMULAITON PROGRAM 

USE DO NMAD 

STABILIZER MOTION NOT O. K, 13 1101 

AILERON MOTION NOT O. K. 14 1102 

CRASH 15 1104 

DROP TANKS 

SPEED BRAKES IN 

SPEED BRAKES OUT 

SPEED BRAKES IN MOTION 

HYDRAULIC NUMBER 1 FAIL 

LAND INDICATOR 

STALL 

STALL WARNING 

LANDING GEAR NOT DOWN 

16 1110 

17 1120 

18 1140 

19 1201 

20 1202 

21 1204 

22 1210 

•23 1220 

24 1240 

USE_ 

LANDING GEAR NOT 
UP 

HYDRAULIC NUMBER 
2 FAIL 

DYNAMIC PRESSURE 
HIGH 

SPARE 

SPARE 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-2 

F9F-1 

TABLE V 

ANALOG INPUT ASSIGNMENTS FOR 
F-100A SIMULATION PROGRAM 

AI NMAD USE 

01 0161 

02 0151 

03 0131 

04 0071 

05 0162 

06 0152 

07 0132 

08 0072 

09 0164 

10 0154 

11 0134 

12 0074 

THROTTLE POSITION 

AILERON 

ELEVATOR 

RUDDER 

RIGHT BRAKE 

LEFT BRAKE 

BAROMETRIC PRESSURE 

AIRPORT ELEVATION 

ICING RATE 

SPARE 

SPARE 

SPARE 

M NMAD USE 

13 0047 F9F-2 

14 0143 F9F-2 

15 0145 F9F-2 

16 0146 F9F-2 

17 0027 F9F-2 

18 0123 F9F-2 

19 0125 F9F-2 

20 0126 F9F-2 

21 0017 F9F-2 

22 0113 F9F-2 

23 0115 F9F-2 

24 0116 SPARE 
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shunt resistor is returned to ground and to plus ten volts D. C. through switching transistors. 
The îwo switching transistors connected to each leg of the ^dd- ^sler“ Whefthe storage 
the two outputs from the associated flip-flop of the output storage register. When the storag 
flio-floD is in the ONE state, the transistor connected to the plus ten volt supply is closed and 
fhe other transfstor is open When the flip-flop is in the ZERO state, the tranststor connected 
togrourrf inclosed and the other transistor is open. Thus, the shunt resistors are returned 
to either ground potential or ten volts depending upon the state of the driving flip-flop. 

Transistor drive, rather than direct drive from the static flip-flops was used to 
control the ladder network because of the near-perfect switch qualities exhibited by the 
transistor When the transistor is saturated (closed) the effective resistance between t 
emitter and the collector is negligible; when the transistor is cut-off (open) the effecttve 
resistance between the emitter and the collector is extremely high. 

The output of the converter is applied to the input of the sixty-four channel multi¬ 
plexer which acts basically as 64 addressable switches. When addressed a switch is closed, 
and the output of the converter, which is applied to the input of the switch, is impressed 
upon an aS output storage ¿apacitor. The switch must provide ^^^d r^dly ^ ' 
path for the capacitor in order that the voltage on the capacitor can be ch^ed r^idly. 
Conversely when the switch is open, a very high resistance discharge path must be pro 
vided otherwise the charge on the capacitor will not be maintained during the interval be 
^een successfve addressings of the sine output channel. Since the time interval in question 
is approximately fifty milliseconds, a discharge time constant of approximately five secón 

is required. 

The use of the addressable switches or a multiplexer eliminates the need for in' 
dividual Sai-to-analog converters for each output. This affords conmderab^ s gS 
in circuit elements, power consumption, and space requirements. A further effect of 
component reduction is increased reliability. 

Of the sixty-four available analog output channels, approximately forty are required 

for the F-10 OA problem (table VI). 

3.7 Computer Console Unit 

The computer console provides manually controllable means of access to the com- 

within the computer in addition to indicating the status of computer performance. 

The UDOFT console consists of five major sub-units, of which three are the m- 

function. Three major classes of functions were considered: 

1. Mode selection and primary status indication. 

2. Manual access and secondary status indication. 

3. Maintenance aids, power control, and tertiary status indication. 

The two remaining sub-units of the console unit are the (input) card reader and the 
/ Th^c^rd reader provides the means by which bulk information is read 
rlpidly into the'computer. The printer provides the means by which bulk information is 
read out of the computer and converted into hard copy. 

The following sections describe in detail the control and monitoring features 
available at the console and the two computer non-real time input-output devices, the 

card reader and the printer. 

3. 7. 1 Console Panel A 

The "A" panel is physically the center panel of the three console panels. It pro- 
vide. J. »4«* »““» ..l^.hl.i ”od« .1 «P«»««” 
and for monitoring status while the computer is operating (see figure 19). 
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AO 

11 

12 

13 

14 

15 

16 

17 

18 

21 

22 

23 

24 

25 

26 

27 

28 

31 

32 

33 
34 

35 

36 

37 

38 

41 

42 

43 

44 

45 

46 

47 

48 

TABLE VI 

NMAD 

0000 

0001 

0002 

0003 

0004 

0005 

0006 

0007 

0010 

0011 

0012 

0013 

0014 

0015 

0016 

0017 

0020 

0021 

0022 

0023 

0024 

0025 

0026 

0027 

0030 

0031 

0032 

0033 

0034 

0035 

0036 

0037 

EXHAUST TEMPERATURE 52 

ACCELERATION 53 

INDICATED AIRSPEED 54 

FUEL QUANTITY 55 

PITCH ANGLE 56 

ROLL ANGLE + SINE 57 

ROLL ANGLE - SINE 58 

ROLL ANGLE + COSINE 61 

ROLL ANGLE - COSINE 62 

RATE OF CLIMB 63 

TURNING RATE 64 

BALL ANGLE 65 

HYDRAULIC PRESSURE #1 OR #2 66 

TRUE HEADING + SINE 67 

TRUE HEADING - SINE 68 

TRUE HEADING + COSINE 71 

TRUE HEADING - COSINE 72 

FUEL FLOW 73 

GROUND SPEED 74 

RUDDER CONTROL LOADING 75 

INDICATED ALTITUDE + SINE 76 

INDICATED ALTITUDE - SINE 77 

INDICATED ALTITUDE + COSINE 78 

INDICATED ALTITUDE - COSINE 81 

TRUE AIRSPEED 82 

ALTITUDE ABOVE GROUND + 83 
SINE 

ALTITUDE ABOVE GROUND - 84 
SINE 

ALTITUDE ABOVE GROUND 85 
+ COSINE 

ALTITUDE ABOVE GROUND 86 
- COSINE 

ANGLE OF ATTACK (F151 ) 87 

PITCHING RATE (F151) 88 

USE 

ROLUNG RATE 
(F151) 

MACH NUMBER 

CABIN ALTITUDE 

F9F-2 

F9F-2 

ELEVATOR CONTROL 
LOADING 

ICE QUANTITY 

F9F-2 

RATE OF CLIMB 
(F151) 

SPARE 

SPARE 

SPARE 

SPARE 

SPARE 

SPARE 

SPARE 

F9F-2 

F9F-2 

F9F-2 

DROP TANK FUEL 
QUANTITY 

F9F-1 

SPARE 

SPARE 

SPARE 

SPARE 

SPARE 

SPARE 

0073 SPARE 

0074 SPARE 

0075 SPARE 

0076 SPARE 

0077 SPARE 

ANALOG OUTPUT CHANNEL ASSIGNMENTS FOR 
F-100A SIMULATION PROGRAM 

USE 

RPM 

AO NMAD 

51 0040 

0041 

0042 

0043 

0044 

0045 

0046 

0047 

0050 

0051 

0052 

0053 

0054 

0055 

0056 

0057 

0060 

0061 

0062 

0063 

0064 

0065 

0066 

0067 

0070 

0071 

0072 

53 
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3. 7.1. 1 Mode Selection 

The UDOFT computer has eight distinct modes of operation: 

1. Fast Comp - the normal, high-speed mode of operation. 

2. Slow Comp - the mode in which a fixed interval of ten microseconds 
is added to the normal execution time of each instruction. This mode 
is used primarily during program debugging because errors due to 
forbidden sequences of instructions are eliminated. 

3. Single Order - the mode in which only a single instruction is executed. 
Instruction sequencing is effected manually by means of the Start 
switch. 

4. Card Read-In - the mode which must be established in order to allow 
reading data from the card-reader into the computer memories. 
Read-in of information from the card reader is under manual control, 
unlike the read-in process in more conventional computers which is 
under program control. 

5. Slow Print - the mode in which the computer is in the halted state (the 
program halt switch is on) and the output writer is enabled. The slow 
print has two modes of operation, normal mode and dump mode. In 
the normal mode each time the start switch is pressed the computer 
performs an instruction in the normal manner, and prints out a line of 
information. In the dump mode the computer augments the sequence 
counter by one, addresses both memories with the content of the sequence 
counter and prints a line of information each time the Start switch is 
pressed - no instructions are performed during this operation. 

Two formats are presently available in both the normal mode and the 
dump mode. The short format prints NMAD and NMAR at a rate of 
twenty lines per minute. The long format prints IMAD, IMR, NMAD, 
NMR, and AC at a rate of seven lines per minute. Both formats print 
the octal equivalent of the contents of the register. 

In the near future an additional format will be installed which will 
interpret the contents of the number memory registers as binary coded 
decimal and printout the decimal equivalent of the register. This 
format will increase the efficiency of the octal to decimal conversion 
routines used on the computer. 

6. Continuous Print - an extension of the slow print mode. In this mode 
the task of pressing the start switch for each line of print is eliminated 
by automatically actuating the start relay at the end of each line of 
print. Once started the output writer will print until stopped in either 
mode or either format. 

7. One Cycle Divide - a highly specialized mode of computer operation 
established to execute the multi-minor cycle divide instruction a 
single minor cycle or quotient bit cycle at a time. The single cycle 
division operation is under the control of the twenty-four position 
rotary switch located in the lower right corner of the panel. The 
quotient bit resulting from each minor cycle of the division process 
is displayed by the One Cycle Quotient Digit indicator. This feature 
is used only during periods of preventive and corrective maintenance. 

8. Ready Simulate - in reality not a specialized mode of operation. 
This mode is essentially the fast computation mode with the added 
requirements so that console switches which might exert undesired 
influence over the computer during flight simulation must be off. 

Originally most of the console switches were included in this group. 
However, this proved to be too much of a restriction. At present, 
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due to the expanded use of the ÜDOFT Computer, only a few switches 
must be off. Examples are: stop comp, program halt, one cycle divide, 
and continuous cycle single order. 

Once the desired mode has been selected, operation is initiated by actuating the 
Start switch. Operation will continue until it is stopped by any of the means available for 
halting computer operation. Achievement of these modes of operation is dependent upon 
a number of conditions. To assist in establishing the necessary conditions, a flow diagram 
indicating the required states of the mode control switches was devised. This was neces¬ 
sary, also, because there is no interlocking of the mode control switches which would have 
allowed direct set-up of the modes of operation. 

There are eight switches that control the modes of computer operation. They are 
located in the lower left corner of the panel. Explicitly, they are: 

1. Timer Start — a momentary contact switch which causes a pulse to 
be injected into the Timer loop, thus starting the Timer. 

2. Stop Comp - an alternate action sv/itch causes the operation of the 
computer to be halted in an orderly manner at the end of the instruc¬ 
tion which is being executed at the time the control is actuated. 

3. One Cycle Divide — an alternate action switch which establishes the 
necessary conditions for the one cycle divide mode of operation. 

4. Card Read-In - an alternate action switch which establishes the neces¬ 
sary conditions for the card read-in mode of operation. 

5. Cont. Cycle Single Order — an alternate action switch which establishes 
the final conditions for a sub-mode of computer operation not mentioned 
previously;, namely, the continuous cycle single order mode. In this 
mode, established primarily for aiding corrective maintenance, the com¬ 
puter will execute the same instruction continuously. 

6. Fast/Slow Comp. — an alternate action switch w'hich establishes the 
necessary conditions for the slow' computation mode of operation. 
Operation in the fast mode is the normal mode of operation; the ab¬ 
normal mode, slow comp, is controlled by this switch. 

7. Slow Print — an alternate action switch w'hich enables the output 
printer and the computer mechanism wiiich actuates the printer, and 
causes the computer to enter the slow' print mode of operation. It 
is also a necessary condition, if the continuous print mode of opera¬ 
tion is to be entered. 

8. Cont. Print — an alternate action switch W'hich establishes the neces¬ 
sary conditions for the continuous print mode of operation. 

The four remaining switches do not directly affect the selection of operational 
modes. Since their functions are so varied and so singular in nature, it is not possible 
to classify them as a group. Therefore, the function of each switch is described 
separately as follows: 

1. Timer Stop — a momentary contact switch winch disables the com¬ 
puter Timer. The use of this control is so limited that there is no 
apparent reason for its inclusion in the system. 

2. Clear TR Reg. — a momentary contact switch which causes the 
contents of the accumulator to be gated into the Transfer Register. 
If the accumulation is zero during card read-in, the switch effectively 
clears the transfer register by gating the accumulator (zero) into the 
Transfer Register. This operation is usually performed immediately 
prior to card read-in to ensure that the Transfer Register, W'hich is 
used as the buffer between the card reader and the computer memories, 
will not introduce erroneous data into the first memory location ad¬ 
dressed. The necessity for this function is eliminated w?hen the initial 

i 

i». 

56 



data read in from the card reader is control data which serves only 
to clear the Transfer Register. 

3. Fast Print - an alternate action switch which enables the high-speed 
Printer Buffer Register. This control has been temporarily disabled, 
due to the extensive use of the Print Instruction and the Print Register. 

4. Use TIM Inst. — an alternate action switch which, when enabled, causes 
the computer to execute the TIM instruction when it is decoded. Other¬ 
wise, the TIM instruction is executed as a NOP instruction. 

3. 7.1. 2 Secondary Control 

Two secondary control functions are included on this console panel. They deal 
primarily with the operation of the Accumulator: 

1. Truncate on Overflow - three alternate action switches which, when 
enabled, cause the truncation of the quantity in the Accumulator if 
an arithmetic overflow occurred as a result of the instruction being 
executed. Selective control is afforded by having three switches, one 
for each type of instruction (Add, Divide, and Shift Left) that could 
cause an arithmetic overflow. The resulting truncation process causes 
the maximum quantity, ±(1 - 2~20), to be inserted into the Accumulator; 
the sign of the quantity being truncated is retained. 

2. Suppress Precision - five alternate action switches which inhibit the 
normal operation of the five low order stages of the Accumulator. 
Although the computer operates normally with numbers whose magnitude 
is twenty binary bits, it is possible to reduce arbitrarily the precision 
of computation to as low as fifteen binary bits, by means of the five 
switches. This feature was incorporated for the purpose only of evalu¬ 
ating the fidelity of simulation as a function of word length. 

3. 7.1. 3 Status Indication 

Two distinct forms of status indication are available on the nAn panel of the con¬ 
sole. The first form is discrete in nature and indicates the occurrence of a phenomenon. 
The second form of indication provides a means of monitoring the contents of the 
Accumulator and the three registers which communicate with it. 

The discrete status indicators indicate primarily the occurrence of undesirable 
results. There are nine such indicators: 

1. Add Overflow - indicates the occurrence of an arithmetic overflow in the 
Accumulator resulting from an add operation (which may occur as the 
result of an add, subtract, shift add or multiply add instruction). 

2. Divide Overflow — indicates at the beginning of a divide operation that 
the dividend is larger than the divisor. 

3. Shift Left Overflow - indicates the occurrence of an overflow in 
the Accumulator due to a shift left instruction. 

4. Non Exist Instr. — indicates the decoding of the unused order type 
NOT. 

5. - G-Reg. Error — indicates that the address of the G-Register has 
been used with an order type 'which may not refer to the address of 
the G-Register. 

6. PNM Error - indicates a number memory parity error. 

7. PIM Error - indicates an instruction memory parity error. 

8. Divide Trouble — indicates improper handling of the quotient digits 
or timing marker pulses in the G-Register. This is usually caused 
by failure to clear the G-Register before a divide instruction. 
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9. RAR Overflow — indicates an arithmetic overflow has occurred in 
the relative address former as a result of adding two addresses whose 
arithmetic sum is greater than (7777)8. ™s is a verT common occur- 
rance, since it is often convenient to effectively decrement the address 
by causing an overflow. 

A tenth status indicator is included with these fault indicators. However, it does 
not indicate the occurrence of an error in either the program or the operation of the 
computer. It simply indicates that the programmed halt instruction, PHT, has been de¬ 
coded. 

In the case of all ten of these indicators, the occurrence of a fault is acknowledged 
by the computer operator simply by depressing the switch-type indicator which indicated 
the fault. 

It was possible through the design of the computer to allow the occurrence of cer¬ 
tain of these faults to halt the computer. The faults selected were Non-Existant Instruc¬ 
tion, G-Register Error, and Instruction and Number Memory Parity Errors. By means 
of the associated Stop on Error switches located immediately above the error indicators, 
the operator has the facility for causing the computer to halt when any of these errors 
are committed, A Stop on Error control, in this case a misnomer is associated also with 
the Programmed Halt indicator. It allows the execution of a programmed halt instruc¬ 
tion to halt computer operation. During normal use of the computer, the Stop on Error 
controls are disabled; thus, the occurrence of errors, though they may interfere with the 
accuracy of the computed results, will not interrupt the execution of a program. 

Although Stop on Error controls are not associated with the three overflow indicators, 
it is possible for the occurrence of an overflow to halt the execution of the program. This 
feature has been implemented in the computer hardware. However, a halt on overflow will 
occur only if the instruction immediately following the arithmetic instruction that caused 
the overflow is not a transfer on overflow instruction, TOV. 

An overflow not followed by a transfer on overflow instruction is an invalid over¬ 
flow and as such will cause the appropriate indicator to light. A divide overflow will 
always cause the divide overflow indicator to go on. 

In slow mode every invalid overflow will halt the computer; while in fast mode the 
HOVW (Halt on overflow) switch must be on to cause an invalid overflow to halt the com¬ 
puter. 

There are three banks of indicators used for displaying the contents of four 
registers. The four register displays are: 

1. M-D Register — a bank of twenty-two indicators to display the binary 
contents of the Multiplicand-Divisor Register. 

2. Accumulator — a bank of twenty-one indicators to display the binary 
contents of the Accumulator. 

3. Transfer Register - a bank of twenty-two indicators to display the 
binary contents of the Transfer Register. 

4. G-Register - the contents of the G-Register, twenty binary bits and 
sign, are displayed on the M-D Register indicators. Whereas the 
three registers mentioned previously are monitored continuously and 
automatically, observation of the contents of the G-Register is pos¬ 
sible only when the computer is halted and the G-Register read-out 
control switch is activated. 

3. 7. 2 Console Panel B 

The "B" panel of the computer console affords the means for continuously 
monitoring the contents of the Instruction Memory Output Register, the Sequence Counter, 
and the Interval Timer; for manually inserting data into the Tally Register, the Relative 
Address Register, the Sequence Counter, the Interval Timer, and any register in either 
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the Instruction Memory or the Number Memory; and for manually calling forth data for 
display from any register in either the Instruction Memory or the Number Memory (see 
figure 20), 

• 3, 7. 2. 1 Status Indication 

Four banks of indicators continuously indicate the status of the following computer 
registers: 

9 

1. Instruction Memory Output Register — a bank of twenty indicators to 
display the binary contents of the Instruction Memory Output Register- 

2. Number Address Storage Register — a bank of twelve indicators to 
display the binary contents of the Number Address Storage Register. 

3. Sequence Counter — a bank of twelve indicators to display the binary 
contents of the Sequence Counter. 

4. Interval Timer - a bank of fourteen indicators to display the binary 
contents of the Interval Timer. 

In addition there are ninety-two indicators which indicate the status of ninety-two 
dynamic flip-flops not otherwise monitored by any other indicator on the console. These 
indicators are useful to maintenance personnel by providing an additional degree of 
trouble-shooting capability at the console. 

3.7.2.2 Control Functions 

Manual control over four computer registers and the two computer memories is 
exercised by the switches situated in the center section of console panel B. 

1. Tally and Relative Address Registers - Twelve alternate action switches 
are available for establishing the binary quantity to be read into either 
the Tally or the Relative Address Register. If the quantity is to be read 
into the Tally Register, the Set Tally Register switch is actuated; if 
into the Relative Address Register, the Set Relative Address switch is 
actuated. Regardless of the register being set, it is necessary first to 
clear the register by means of actuating the Clear Ta Rar switch. If, 
during operation in the single order mode, it is desired to use relative 
addressing in conjunction with an instruction for which relative addressing 
is not specified in the program, actuating the Use Relative Address switch 
will enable the use of relative addressing. 

2. Sequence Counter — Twelve alternate action switches are available for 
establishing the binary quantity to be read into the Sequence Counter. 
The quantity is read into the Sequence Counter upon actuation of the 
associated Reset Switch. The reset function both clears the Sequence 
Counter and sets it to the desired state. 

t 
3. Interval Timer — Fourteen alternate action switches are available for 

establishing the binary quantity to be read into the Interval Timer. 
The read-in process is identical to that of the Sequence Counter as 
described above. 

4. Instruction and Number Memory - Twelve alternate action switches 
are available for establishing the binary address of the memory reg¬ 
ister into or out of which information is to be read. Similarly, twenty- 
two alternate action switches are available for establishing the binary 
word that is to be read into the memory. In the case of reading into 
the Instruction Memory, only the first twenty of the twenty-two switches 
are effective. Selection of the memory to be read into or out of is con¬ 
trolled by the NM-EM switch. Selection of read-in or read-out is con¬ 
trolled by the Read In-Out switch. Initiation of the process is controlled 
by the Manual Oper switch. Information read into the Instruction Memory 
is displayed immediately upon the Instruction Memory Output Register 
indicators; information read into the Number Memory may be displayed 
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Figure 20. Computer Console Panel B 
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upon the M-D Register indicators by manually reading-out from the 
same register into which the information was stored. The same 
two registers display the contents of the respective memories during 
the manual read-out process. 

It should be noted that any of the previously mentioned manual operations may be 
performed only when the computer is in a stopped or halted condition; otherwise, proper 
execution of the computer may be jeopardized. 

3.7.3 Console Panel C 

The MCn panel of the computer console provides the means for initiating and 
monitoring the application of prime power to the computer, for directing and controlling 
the application of the marginal checking voltage, and for minor function control and 
status monitoring, (see figure 21), 

3. 7. 3. 1 Prime Power Application 

Large pushbutton switches are provided for connecting and for disconnecting the 
computer from the source of prime power. Three indicators indicate, in sequence, the 
application of prime power to the power supplies (Power On); the application of full fila¬ 
ment voltage to all the vacuum tubes (Filament On); and the application of regulated D. C. 
power to the computer circuits (D. C. On). 

3. 7. 3. 2 Marginal Checking Voltage 

Three banks of eight alternate action switches are provided to allow the selection 
of a particular bay of the computer to be marginally checked. Eighteen of the twenty- 
four switches connect the +80 marginal check voltage to the pulse amplifiers in the as¬ 
sociated bay. Actuation of any one of these switches will illuminate the +80 MCV indicator 
which serves to indicate that the associated voltmeter is used to monitor the variation in 
the marginal checking voltage. The two forms of application of the marginal checking 
voltage are controlled by the MCV Selector Switch. One form is the application of a fixed 
increment of voltage; the other form is the application of a variable increment of voltage 
which is controlled by the MCV Variation Control. The remaining six bay selector 
switches connect the +150 marginal check voltage to the sense amplifiers and the static 
flip-flops in the Memory Unit. Selectors 1E1-MS and 1E4-MS select the sense amplifiers; 
selectors 1E1-MBR and 1E4-MBR select the Memory Output Register flip-flops and the 
Memory Rewrite Register flip-flops; and selectors 1E2-MAR and 1E3-MAR select the 
Memory Address Register flip-flops. 

3. 7. 3. 3 Status Indication 

Three different forms of status indication are provided: 

1. Cabinet Power or Blower Failure. At each of the major units of the 
computer, an indication of power failure or cooling-air blower failure 
for that unit is provided. Since not all of these units are visible from 
the computer console, it w'as deemed necessary to provide a single 
indicator at the console which would indicate a power or a blower failure 
anywhere in the system. The single Cabinet Blo-wer-Power Failure in¬ 
dicator at the console flashes a red warning wrhen such a condition exists. 
A buzzer sounds simultaneously to make the warning more prominent. 
The operator acknowledges the presence of a failure by disabling the audible 
alarm; however the red warning continues to flash as long as the failure 
exists. 

2. Error Counters. Electro-mechanical counters are provided to main¬ 
tain an account of errors that occur in the computer. Since a con¬ 
sistently made error could recur at a very high rate, the circuitry re¬ 
quired for accounting for such errors would be extravagent. Therefore, 
the counters are simply activated by the error acknowledge switches. 
As a result the quantities displayed by these counters represent con¬ 
servative estimates of system failures. Operating experience has 
shown that these error counters contribute little to improving the opera¬ 
tion of the system. 
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3. Discrete Output. Twenty-four pairs of indicators indicate the status 
of the twenty-four discrete output channels. During the execution of 
a simulation program, the indications are meaningless to the un¬ 
initiated. However, to the experienced programmer, they provide 
means, at the console, for indicating the occurrence of special events 
which are pertinent to the problem being solved. Also, they are used 
to indicate proper and improper operation during the conduct of some 
of the preventive maintenance programs. 

3. 7. 3. 4 Control Functions 

Since the discrete inputs of the UDOFT computer provide a feature which is 
similar, in a small way, to the addressable flip-flop feature of the more conventional 
general-purpose digital computers, it was considered that control of some of these in 
puts from the computer console would enhance the utility of the computer. Thus, con 
trois for twenty-four of the sixty-four discrete inputs were provided. Like the discrete 
outputs, the discrete inputs find their greatest use during the execution of some at the 
preventive maintenance programs. 

3. 7. 4 Input Card Reader 

The device used for reading punched-card information into the UDOFT computer 
is an IBM 514 Reproducing Punch. The reader is capable of reading cards, one line at a 
time, at the rate of approximately one hundred cards per minute. 

Originally, the UDOFT binary cards were arranged with only five words per card. 
With this configuration of punched-card data, it required approximately fifteen minutes 
to load the F-100A simulation program into the computer. The word configuration has 
since been improved so that twelve words may be punched into a single card, thus de¬ 
creasing read-in time for the F-100A simulation program to approximately six and a 
half minutes. In addition, the improved word packing density results in a 60% savings 
in punched cards, thereby minimizing card handling and storage problems. 

In addition to its use as the input card reader, the reproducing punch is also used 
to reproduce and verify decks of punched cards. This feature is highly desirable since 
continued use of a single deck results in excessive card wear which will lead ultimately 
to erroneous read-in and possible fouling of the card reader mechanism. 

3. 7. 5 Output Printer 

The UDOFT computer uses an IBM electric typewriter for the output printer- 
facility. Actuation of the printer is controlled manually by the Slow Print and Continuous 
Print mode selection switches located on the console "A" panel, ha order to form a 
single line of copy for printing, the following steps are taken: 

1. The Sequence Counter is reset to the address of the desired in¬ 
struction. 

2. The Slow Print selection switch is actuated. 

3. The mode of printing, normal or dump, is selected. 

4. The format short or long is selected. 

5. The Start switch is actuated. 

The computer will execute the single instruction and halt. Immediately upon 
halting, the typewriter will print a single line of copy, at the completion of which the 
carriage of the typewriter will be returned and all operation will cease until the Start 
switch is again actuated. In the Continuous Print mode of operation, the return of the 
carriage will automatically initiate the next cycle. This will continue so long as the 
computer remains in the Continuous Print mode. The form of the copy for the normal, 
mode, long form is shown on the following page. 

tK 
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7761 
7762 
7763 
7764 
7765 
7766 
7767 
7770 
7771 
7760 
7761 

r340001 7041 
r340002 7042 
r340003 7043 
r340004 7044 
r340005 7045 
r340006 7046 
r340007 7047 

340000 7050 
037760 7760 

rllOOlO 0010 
r340001 7051 

0034640 0024640 
0475006 0475006 
0250560 0250560 

-0413570 -0413570 
0057674 0057674 
0000000 0000000 
0000000 0000000 
0000000 ooooooo 
0632700 OOOOOOO 
0001000 OOOOOOO 

-0267760 -0267760 

7766 r340006 7056 7777776 7777776 

The five columns of the print-out are, respectively, the Instruction Memory 
Address (IMAR), the Instruction Word (MR), the effective Number Memory Address 
(NMAR), the quantity read out of the addressed Number Memory Register (NMK), and 
the content of the Accumulator. 

When one desires to obtain only numerical results which have been stored in 
memory during the execution of a program, the repetitious clear-add instructions serve 
only to address the desired data words in memory and place them in the Number Memory 
Output Register(NMR) where they may be sampled by the print-out system. Since the 
maximum speed of the typewriter is only seven lines per minute, an excessive amount of 
time is consumed in obtaining the desired data which is contained in only two of the ñve 
columns of the print-out. 

For this reason a short form of print-out was added, in which only the third and 
fourth columns (NMAR and NMR) of the long-form print-out are generated. This results 
in the print-out form which is shown below, (normal mode, short form) 

0024640 
0475006 
02 50 560 

-0413570 
ooooooo 
ooooooo 
ooooooo 
0632700 
0001000 

-0267760 
7777776 

7041 
7042 
7043 
7044 
7046 
7047 
7050 
7760 
0010 
7051 
7056 

As a result of the reduction in the amount of data required to be printed out, the 
effective print-out speed was tripled, (about twenty lines of copy per minute). This im¬ 
provement has recently been carried one step further by adding a dump mode. In the 
dump mode the contents of the memories can be displayed without performing instructions. 
During the dump mode in either short or the long format, the sequence counter is augmented 
by one at the end of each Une of print and the contents of the sequence counter is forced 
into both the Number Memory Address Register and the Instruction Memory Address 
Register making the information in the addressed registers available to the printer. 



SECTION IV 

COMPUTER HARDWARE DEVELOPMENT HISTORY 

4.1 Introduction 

tpi * previously, the design oí UDOFT was conceived at the Moore School of 
Electrical Engineering of the University of Pennsylvania. This design resulted from a 
study of the feasibility of a digital flight trainer. 

An evaluation study of the MSEE computer design and programming approach was 
performed by Remington Rand Univac, Division of the Sperry Rand Corporation for the 

1743(0¾ alnÍng DeviCe Center at Port Washingt™. New York, under contract number 

The purpose of this study was to determine whether the computer logic circuitry 
and general approach to the simulation problem as proposed by MSEE were adequate for 
digitally simulating the performance of an aircraft in real-time. 

- ., The following sections, though only of a summary nature, presented factually some 
of the modifications and recommendations made before and during the computer development 
istage. Reasons for the modifications and important considerations involved are evaluated 
objectively. 

4. 2 Logic Design Problems 

The following account discusses the more prominent changes and improvements 
implemented in the logic design of the UDOFT computer. These modifications resulted 
from the Remington Rand Univac study and from the efforts of design engineers at 
Syl vania and at MSEE. es 

4. 2.1 Number Memory 

As a result of the programming activity at MSEE, it was soon realized that the 
originally planned number memory, with capacity for only 1024 words, could not accom¬ 
modate the figures and constants required by a complete flight simulation program 
Since the coincident-current magnetic core memories had not at that time been developed 
for the computer, it was later a simple task to alter the capacity' requirement for the 
number memory to 4096 words, thereby making it identical to the instruction memory. 
The change eased the memory design problem to some extent, calling for the development 
of only a 4096 word memory, rather than two memories with different capacities. 

The necessity for a larger memory was proved when the complete F-100A simula¬ 
tion program, without any consideration for temporary storage or test data was found to 
use approximately 3350 number words. 

The increased capacity of the number memory affected the instruction memory. 
For a number memory of 1024 words, the operand address field was ten bits: for 4096 
words, this field had to be increased to twelve bits. 

Although the design of core-memories was not included in the initial computer 
design formulated at MSEE, the memory for both instruction and number memory con¬ 
trol functions had been determined. A part of the memory control function controls the 
memory cycle. After access to a memory register, the initial design indicated the 
memory would continue to cycle at memory address (0000)g until a new address was pre¬ 
sented. It was found desirable, primarily for maintenance purposes, to allow this to take 
place; maintenance personnel can readily' examine memory drive current waveforms with¬ 
out having the computer execute an instruction. 

. The memory logic, as well as the logic of the rest of the computer, was developed 
with the intent to design a powerful computer to meet the demanding application. The 
programmer, ultimate user of the computer, was as a result forgotten in many’cases. A 
significant area where this occurred was the manually controlled access to tim memories; 
no provision had been made originally' for manually writing into or reading out of either 
memory. This was remedied by adding the manual read-write provision, whereby' access 
to any memory storage register is available to the programmer by' means of computer 
console switches. 
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4. 2. 2 Parity Formation — Card Reader Input 

Originally it was necessary, when preparing punched cards for the entry of informa¬ 
tion into the computer memories, to enter the parity data into the punched cards,. It would 
have been difficult enough to punch a r sry large amount of binary input cards without the 
added burden of determining parity. How eve:, a striking relief from this burden was ob¬ 
tained by having the computer determine parity during the card read-in process. By 

.-utilising the modified Number Parity Former, parity is formed automatically for a word 
written into either memory from the punched card input equipment. 

In retrospect, a superior approach would have been a comparison check of the 
punched card parity bit with the automatically formed parity of the inserted word. This 
feature would maintain a constant check on the validity of the information being read into 
the computer from the card reader. As things are, it is quite possible for erroneous 
information to be read into the computer unnoticed. The requirement for parity data on 
the punched cards, the original reason for modifying the Number Parity Former, is no 
longer a problem; the assembly program, TJD3, is capable of determining parity and can 
be modified to cause the punching of the parity bit in addition to the currently required 
information. 

A bonus feature would be the inclusion of automatic parity formation for data in¬ 
serted manually from the computer console. At present, parity must be determined and 
inserted manually. 

4. 2. 3 Interval Timer 

The performance of an iterative real-time program requires the availability of 
a real-time clock or some other means by which arbitrary intervals of real time can be 
established. In drum-type computers there is little need for such a device, since the 
feature is part and parcel of the rotating magnetic drum's mode of operation. Her//ever, 
in a random-access core memory digital computer, there is no device which is cyclic 
with respect to relatively long intervals of real time. To fill this need, the Interval 
Timer was introduced. Like any timer, this device must be set for some arbitrary in¬ 
terval of time and must indicate that the fixed interval has passed. Thus the Interval 
Timer required the addition of two computer instructions, SIT and SENIT. 

The SIT instruction retains its original function, namely, to set the Interval Timer 
to some arbitrary count. The SENIT instruction, on the other hand, has been modified. 
Originally the SENIT instruction was a conditional transfer of control instruction which 
functioned only when the Interval Timer had run down to zero. If the count in the timer 
were not zero when the SENIT instruction was decoded, the computer would remain in an 
idle state until the timer had run down to zero. This seemed wasteful of valuable time 
that could be devoted to some worthwhile, though not mandatory, computing function. 
Therefore the SENIT instruction was modified to its current form. 

4. 2. 4 Additional Instructions — SCRNM and TIM 

The use of two memories, one for instruction words and the other for number 
words, not only effectively doubled the computer speed but also isolated instruction words 
from number words. This isolation was carried through the computer design to such an 
extent that no means was provided for the modification of instructions. The only program- 
modification facility available in the computer was the cumbersome relative-addressing. 
This was thought initially to be sufficient. Since the computer was to handle only one class 
of problems, involving real-time flight simulation, there seemed no need to incorporate 
such a feature, even though it is found in nearly aÚ contemporary digital computers. 
Further, it was felt that the lack of instruction modification enhanced the reliability^ of the 
computer. This conclusion was based on the premise that, with no modification of instruc¬ 
tions, the instruction program is inviolate; that is, the probability of disrupting the instruc¬ 
tion program in memory is decreased greatly because nothing may be done, either cor¬ 
rectly or incorrectly, to disturb the identity of any instruction word once it has been read 
into the memory. 

This barrier was relaxed, though never removed, to allow the addition of two 
pro gram-modification instructions, SCRNM and TIM. The SCRNM instruction is not a 
program-modification instruction, but in a limited way provides some of the features of 



a complete form of program-modification. It contributes a degree of flexibility to program 
formulation that otherwise could not exist, with the two memories isolated as they are. 

The TIM instruction provides a form of program modification to the extent that, 
during the execution of a program, it is able to store new information (instruction words) 
in any location in the instruction memory. 

Until recently, the use of this feature had been limited to maintenance and test 
program; real-time simulation programs did not utilize it. However, in some of the 
simulation programs larger instruction memory capacity was needed and effectively ob¬ 
tained by using the TIM instruction. The underlying doubt as to the advisibility of this 
feature has all but disappeared. 

4. 2. 5 Sequence Counter 

The primary function of this device is to provide a sequence of addresses for the 
instruction memory. A parallel register, all stages having the same clock phase and having 
the information available at the same time is required for this task; it must be capable of 
being augmented by one in five microseconds. These requirements led to the development 
of a register producing a non-standard count; e. g., the sequence followed by the first two 
stages was 00, 01, 11, 10, 00. Although assembly programs could be written to use such 
a count, this placed an unnecessary burden on computer programmers and users by im¬ 
posing the use of conversion tables. To eliminate this burden a standard binary counter 
with improved control logic was developed. The technique employed was the serializing 
of the parallel register's contents in two groups, odd bits and even bits, and the setting 
of the count two bits, one odd and one even, at a time. This effectively halved the normal 
counting time. The counter actually interrogates the bits two at a time, beginning with 
the least significant two, and changing all ONEs to ZEROs until the first ZERO is encountered. 
The first ZERO is changed to a ONE and all the remaining bits are left unchanged, there¬ 
by effectively adding one to the contents of the register. 

4. 2. 6 General Purpose Computation 

The GPC, or slow mode of computation, was established to allow the complete 
execution of an instruction prior to the initiation of the next instruction. In the fast mode 
of computation, it is possible for three successive instructions to be in various phases 
of execution simultaneously. This precludes rapid computer maintenance; hence the 
selection of the slow mode. Originally, five microseconds was the extension to each in¬ 
struction when executed in the slow mode. Five microseconds was found to be insufficient 
because some instructions, such as MAD, extend their advertised execution times beyond 
that time period. The resultant modification increased the five microsecond extension to 
ten microseconds. 

4. 2. 7 Non-Existent Instruction 

Before the SIT, SENIT, SCRNM, TIM, TOZ, and MOP instructions were added to 
the computer repertoire, there were available a number of unused order codes. With 
expansion in mind, the computer designers implemented the order-type decoders for the 
unused order codes. Since the order codes were unusable, the decoding of such an order 
code would indicate some type of memory malfunction. Therefore the outputs of the un¬ 
used decoders were combined to signal the occurrence of a non-existent instruction, and 
if desired, to halt the computation thereon. Subsequently added instructions depleted the 
number of unused order-type decoders until only one remains. It is still referred to as 
NOT, Non-existent Order Type. Since it functions identically to the programmed halt 
instruction, the progrmmers use it as another form of controllable program halt; the 
maintenance engineers use it to validate the loading of instruction memory from punched 
cards. 

A great many modification have been made and are still being made to the UDOFT 
computer. To record them would require a voluminous report and would lend nothing to 
the state-of-the-art of computer logic design. To reiterate a previous statement, the 
details of the logic are secondary to the function of the logic. Since many of the logic 
modifications involve the details of computer logic and are concerned with only the UDOFT 
computer, the discussion of logic design problems will be terminated at this point. 
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4. 3 Circuits 

This section gives information on the more complex circuits used in the UDOFT 
computer. Theory of operation, problems encountered, and means used to solve these 
problems are briefly discussed for each circuit. Each circuit is categorized under the 
computer section where its function is most significant. For instance, the pulse amplifier 
appears under the heading of Main Frame Circuitry; the sense amplifier appears under the 
heading of Memory Circuitry. 

4. 3.1 Main Frame Circuitry 

The pulse amplifier is the basic circuit used to implement the computer logic; 
pulse amplifier assemblies comprise approximately 40% of the total number of plug-in 
assemblies in the computer system. 

A careful evaluation of the original MSEE de^'gn was undertaken (see figure 22). 
Several breadboard models were used in this study. Although the models functioned adequ¬ 
ately, modifications were deemed necessary to increase the operational tolerances. 

4. 3.1. 1 Pulse Amplifier Modifications 

The 1N118A diode, the universal logic diode used for such purposes in computers 
as AND gates, OR gates, isolation and clamping, was replaced by the S403G diode. This 
diode's characteristics, such as forward voltage drop, are superior to those of the 
1N118A. Furthermore, groups of these diodes showed more uniform characteristics 
than did the 1N118A when tested in groups. 

A design tolerance of ±10% was required on bias voltages to account for variation 
in decoupling drop, power supply regulation, transients on the input lines, noise pickup, 
and prime power variation. This tolerance required changing the -2.1 volts and -3. 0 volts 
supplies to -3. 0 volts and -4. 5 volts respectively. The ±18.9 volt suppKes were changed 
to ±20 volts for convenience only. The -1.3 volt biasing level was found to be high. The 
+45 volt plate supply was changed to +80 volts, to reduce screen dissipation and to provide 
larger output pulses for driving the revised gating structures. 

Discrete output and console indicators were to be controlled by relays in the plate 
circuit of the pulse amplifiers. This method was discarded because the average pulse 
current could not be maintained sufficiently constant from tube to tube. A low-frequency 
transistor, connected as an inverter, was used instead of the relay. The output of the 
pulse transformer drives the base of the transistor which, because of its poor character¬ 
istics and the lack of a speed-up capacitor, averages the pulses and stays saturated. 
Relays or indicator lamps may then be placed in series with the transistor's collector. 
The transistor adds only a negligible load to the pulse amplifier. 

The pulse transformer design was changed because attempts to manufacture J 
satisfactory transformers by the MSEE method ended in 60 percent failures. I 

4. 3.1. 2 Operation of Pulse Amplifier I 

The pulse amplifier is a "logic" package, having one or more input AND gates 
of varying configurations. Such an AND gate, when coincidentally presented with a 
clock pulse and the proper input signals, will produce an output pulse of standard dihien- 
sions. The output pulse is a replica of the input clock pulse, delayed a specified tinpe by 
the pulse amplifier circuit. This delay is compatible with the overall timing of the com¬ 
puter; it is measured with respect to the input clock pulse, and is considerably less than 
one clock phase (0.167 psec). Thus the output can be applied to other logic circuits, and 
will arrive at the load before the start of the next clock pulse. The design of the pulse 
amplifier permits some timing discrepancy between the input pulses, with the exception 
of the clock pulse. The only requirements are that the input pulses arrive before the clock 
pulse and that they are present for at least a portion of the clock pulse. 

The following four types of output are provided: 

a. Positive Clamped — Most commonly used output; used to drive other 
pulse amplifier packages in the same cabinet 
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b. Positive Undamped - Larger amplitude than positive clamped output; 
required to combat the effect of signal losses in OR gates, coaxial 
cables, and delay lines 

c. Double Amplitude — Used to drive long delay lines where pulse attenu¬ 
ation becomes an important factor 

d. Negative Unclamped — Used as an inhibit pulse to prevent an AND gate 
from being turned on 

The pulse amplifier circuit (figure 23) contains one or more input AND gates and 
a recirculation AND gate, which, through an OR gate, controls the grid of a vacuum tnbe 
amplifier. When coincidence occurs at all the inputs to any AND gate, (figure 24) the 
tube changes from a state near cutoff to a state of high conduction. The latter state is 
maintained as long as one of the input AND gates or the recirculation AND gate is ON. 

All pulse amplifier circuits contain the recirculation gate, which is a two-diode 
AND circuit. One of the inputs to this gate is the clock pulse; the other is pulse amplifier 
output feedback from the output transformer shown in figure 24. The recirculation cir¬ 
cuit helps shape the output pulse by making it approximately the same duration as the 
clock pulse. 

The output pulses are developed across the two secondary windings of the pulse 
transformer in the plate circuit of the tube. The manner in which the secondary windings 
are connected and the clamping applied determines the types of output provided. In addi¬ 
tion, some of the pulse amplifier circuits are provided with a transistor in the output 
circuit to provide a D. C. output when the circuit is used as a dynamic flip-flop. The 
transistor averages the output pulse current and provides a D. C. voltage level to control 
external circuits. 

When the logic requires inhibiting an input to a particular AND gate, an additional 
input to that gate must be supplied. This input is the clock phase preceding the normal 
clock phase. An examination of figure 25 explains the reason for the added clock pulse. 
The inhibit pulse is approximately the same width as the normal clock pulse and, since 
the inhibit pulse arrives first, there is an unblanked portion of the clock pulse that could 
allow the pulse amplifier to produce an output. To remove this possibility, the clock 
pulse of the previous phase is fed to the gate. When the inhibit pulse goes positive, the 
gate is held negative by the added input. Addition of this clock pulse input in no way 
alters the normal operation of the gate. 

The pertinent timing characteristics of the pulse amplifier circuit are: 

Circuit delay (at 1. 6-volt level) 0.115 /isec max 

Pulse width (between 1. 6-volt points) 0. 317 psec max 

Rise time (to 90% of amplitude) 0. 05 psec max 

Fall time 0.05 psec max 

4. 3.1. 3 Pulse Amplifier in Dynamic Flip-Flop Configuration 

To satisfy the logic requirements of the computer, it is often necessary that a 
chain of pulses be provided. The pulse amplifier is designed to perform this function, 
i. e., that of a dynamic flip-flop. By definition, when the pulse amplifier in the 
dynamic flip-flop configuration is in the one state, it produces an output pulse for every 
clock pulse period (0. 833 micro-second); when in the zero state it has no output. The 
dynamic flip-flop has several advantages over the static type; faster operation, less 
critical circuit values, no resetting, availability of varied outputs, lower power re¬ 
quirements, and increased reliability. 

Figure 26 depicts a pulse amplifier in the dynamic flip-flop configuration. The 
circuit is started normally, with pulses present at inputs A and B of Gate No. 1 
coincidental with the appearance of a clock pulse. The output pulse is available 
0.115 psec later; it is then delayed an additional 0. 8 of a clock period, or 0. 667 psec, 
before appearing at one of the inputs to Gate No. 2. Since the total delay encountered" is 
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CLOCK INPUT 2 
PULSE 

INPUT 1 

AND GATE ON 

(A) INPUT AND GATE 

CLOCK 
PULSE 

RECIRCULATION 
r PULSE 

AND GATE ON 

(B) RECIRCULATION AND GATE 

DELAY— 

(D) OUTPUT 

Figure 24. Pulse Amplifier Timing 
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Figure 25. Inhibit Pulse Configuration 
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equal to the time between two successive clock pulses, the output arrives at Gate No. 2 co- 
incidently with the second clock pulse. The second input to Gate No. 2 is held positive by 
the reference voltage of the inhibit pulse, and the third diode is held positive by the previ¬ 
ous clock phase. The always-present normal clock phase is also an input to Gate No. 2. 
Thus, the second AND gate is ON every time the clock pulse arrives, once the circuit is 
started by Gate No. 1. The circuit is stopped by applying an inhibit pulse to Gate No. 2. 

4. 3. 2 Input-Output Circuitry 

The method of implementing the digital-to-analog conversion, the information 
sampling rate, and the distribution of this information in a prescribed time interval to 
a control system are important factors in accomplishing successful design for digital 
flight simulation. A detailed description of the problems involved in the development 
of the digital-to-analog conversion system used in UDOFT is accordingly presented. 

This analog output system for UDOFT is shown in block diagram form in 
figure 27. The system includes a 12-bit number storage register, a digital-to-analog 
converter, a 16-bit address selection register,and 64 multiplexer channels. The 
converter consists of switching transistors and a precision resistance ladder network 
whose output becomes the voltage input for each multiplexer channel. Basically, each 
of these channels consists of selection diodes, a diode bridge, a storage capacitor, and 
two cathode followers. 

The flip-flops of the selection matrix provide inputs to the selection diodes which 
enable the diode bridge. This bridge provides isolation of the storage capacitor from 
the input in the OFF condition, and allows the storage capacitor to charge or discharge 
when the bridge is enabled. The cathode followers isolate the storage capacitor from 
the load and provide drive capability. 

When a Multiplex Analog Output (MLXO) instruction is decoded, the number- 
register sets the converter to the new value of the variable and the address selection 
register enables the multiplexer channel assigned to that address. Each channel output 
is stored capacitively, eliminating the need for an individual digital-to-analog con¬ 
verter for each output. The time-sharing of the one converter among the 64 multi¬ 
plexer channels is determined by the program. The only restriction imposed upon the 
program is that each multiplexer channel used must be re-established every 50 milli¬ 
seconds and each channel must be addressed for a minimum of 100 microseconds to 
insure complete charging of the storage capacitor. 

4.3.2.1 Analog Output Multiplexer 

The sixty-four multiplexer channel circuits provide the means by which the 
output of the digital-to-analog converter is applied to one of the sixty-four external 
loads specified by the address stored in the analog output selection register (see 
figure 28). The channel circuits are arranged in an 8 X 8 array, and have eight flip- 
flops associated with each co-ordinate. The outputs of the flip-flops are connected to 
the gate diodes of the multiplexer channels so that when one flip-flop along each co¬ 
ordinate is in the one state, the corresponding multiplexer channel is selected. 

The multiplexer and the associated reference packages were primarily designed 
to control servo-mechanisms, although in more recent applications they have driven a 
variety of devices without using the reference packages. 

Each multiplexer channel circuit must satisfy four basic requirements: 

The output must follow in linear fashion the input from the digital-to- 
analog converter. (The linearity of the multiplexer is practically perfect, 
since all nonlinearities are second order. Unbalance in the currents 
and I2 (figure 29) causes a current to flow in the input, which adds a 
linear inaccuracy term. Discharge (or charge) of the capacitor adds 
a linear inaccuracy term, but causes no non-linearity. Unbalance in 
the diode characteristics causes an offset but no non-linearity. ) 

The output must be offset from the input as little as possible. 
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64 OUTPUTS 

Figure 27. Block Diagram of Analog Output System 
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SELECTION REGISTER 

Figure 28. Block Diagram of Multiplexer Arrangement 
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+150V±l/2% 

-150V±l/2% 

Figure 29. Schematic of Multiplexer Bridge Circuit 
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The change in charge on the output storage capacitor, or droop, must be 
less than one percent during the 50-millisecond discharge period. 

The drift in the output must not exceed one percent over an eight- 
hour period. 

a. Current Unbalance. Currents and I2 are initially equalized by 
means of ft3 (figure 29) for ein = ei0, where e¿0 is any particular 
voltage within the voltage range of e[n. Any other input causes 
an unbalance in the currents that flow in the input circuit, resulting 
in a Alin. 

Flow of the current A^n will create a linear inaccuracy of 

Ae » Ae. « 2R. (e. - e. )/R. o in in 10 m ' 1 (1) 

assuming the transformation from Vin to e0 is linear, and 
R^ » R2 + Rg << back resistance of the two gating diodes, 

CR^ and CR2. 

As an example, 

0 volts < e. < + 10 volts 
- in — 

R. « 100 ohms (output impedance of d-a converter 
m cathode follower) 

Rx = 75K 

and let e^, the voltage for e¿n at the time of calibration, 
be 0 volts. Then when e^n = einjma.x - 10. 0 volts 

Ae w Ae. 
o in 

r, (2)(100)(0 - 10) 

75 X 103 

Ae » - 25 mv o 

or a maximum linear error term of approximately +0. 25%. 

Since Ae is a linear function of R. , the error can be reduced by 
minimizing the output impedance oPthe d-a converter cathode 
follower. The output impedance of 100 which has been postulated 
is readily attainable if a tube with a transconductance of 10, 000 
micromhos or higher is used. Since the JW5847 vacuum tube 
has an average transconductance of 13, 500 micromhos, a 
minimum output impedance was attained. 

b. Capacitor Discharge — A serious cause of output droop is the 
discharge (or charge) of the capacitor through the silicon diodes 
when the multiplexer is OFF. The discharge (or charge) path 
consists of a resistive component and a constant-current com¬ 
ponent. The former causes only a linear error; the latter is 
the result of leakage current in the diodes. The leakage current 
will be opposite in diodes CR5 and CR6; it is the difference 
between them which causes the discharge (or charge) of the 
capacitor. Tests performed on these diodes (1N138B) indicated 
that the leakage currents ranged from 0. 001 to 0. 008 micro¬ 
amperes with 20 volts across the diode in the reverse 
direction. Thus, the average difference was less than 
0. 007 microamperes, and the droop for a 0. 04 uf capacitor 
with the current flowing for 50 msec would be less than 10 
millivolts. 
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The linear inaccuracy arising from the change in charge on the 
capacitor, due to the loading of the storage capacitor C by the 
load (see figure 29), is described by 

From this expression, Ae0 will be minimal when RT is very 
large. The resistance Rl is the leakage of the capacitor and the 
input impedance of the load. The use of high quality capacitors 
will maximize leakage resistance, and the use of a cathode fol¬ 
lower with extremely good grid current characteristics will maxi¬ 
mize the load impedance. A cathode follower has good grid 
characteristics when it draws a minimum amount of positive grid 
current over the range of the input. Experimentation determined 
that the inverse grid current drawn by the cathode follower was 
more troublesome than the positive grid current. 

Using the expression 

(2) 

Avc 4 At <3) 

where: 

Avc - change in voltage of storage capacitor 

C = capacity of storage capacitor = 0. 04 ¿¿f 

I = inverse grid current of the cathode follower 

At = time interval in which storage capacitor voltage 
will change; = 50 msec. 

yields: 

“ 6 
I_ = c = 0- 04 X 10 . = 8 X 10-7 amps/volt = 8 X 10~10 amps/millivolt (4) 

AVc At 50X10'3 

-9 
Thus a tube with an inverse grid current of 8 X 10 amperes 
flowing for 50 msec will cause the storage capacitor to charge by 
10 millivolts. Ordinary tubes such as the 5814, 5965, 2C51, etc. 
can be operated with inverse grid currents of 1 X 10-? to 1 X 10"8 
amperes. The JW5847, on the other hand, can be operated with 
inverse grid current approaching^ 1 X 10" 10 amperes. The amount 
of capacitor discharge or droop in the D. C. voltage that the servos 
can tolerate was determined by experiment to be approximately 
30 millivolts; thus it is certain that the servos would not function 
properly with the hundreds of millivolts of droop that would result 
from using ordinary vacuum tubes. Thus the JW5847 was selected 
as the one tube, other than an electrometer tube, that would satisfy 
the droop or discharge requirements. An electrometer was not 
selected because, although it possesses favorable grid character¬ 
istics, it cannot provide the signal power required to drive the 
servos. An additional disadvantage to an electrometer tube is that 
it requires closely regulated low voltage D. C. for the filament. 

Diode Unbalance. The most serious factor contributing to an offset 
between the input and the output of the multiplexer is diode unbalance. 

The diodes are checked for forward voltage drop when the current 
through them is one milliampere, and then ranked in order of volt¬ 
age drop. Any group of four successively ranked diodes may be 
used to make up one multiplexer circuit, provided that the overall 



spread of drops is no greater than 20 millivolts, and no difference 
between two adjacent drops is greater than 10 millivolts. It proved 
best to use successively ranked diodes for CR3, CR5, CR4, and 
CR6, in that order. The resulting offset will be limited to less than 
10 millivolts. In an actual test, Va was 610 millivolts; V^, 618 milli¬ 
volts; Vc, 622 millivolts; Vd, 630 millivolts. The difference, 
I eo " Vin| j was 4. 7 millivolts, with the diodes arranged as suggested. 

d. Power Supply Drifts. The third cause of offset is small shifts, in 
the same direction, in the +150 and the -150 volt power supplies. This 
offset is described by: 

Aeo = (AV1 +AV2) (R-h/Rj) (5) 

For an Rin of 100 ohms and a supply unbalance of 1/2%, the offset 
will be 2 millivolts. 

The drift requirement for the analog outputs was specified to be less 
than one percent, or 100 millivolts. As mentioned previously, the 
converter is cathode-follower-coupled to the multiplexer, and the 
multiplexer is cathode-follower-coupled to the external load. Each 
cathode follower will introduce drift equivalent to approximately l/¿t 
of the drift in the power supplies from which it draws current. The 
cathode followers are supplied from the +150 volt and the -150 volt 
supplies, which are regulated to one half of one percent; 60 millivolts 
of drift can be introduced by the cathode followers alone. Additional 
drift from the power supplies is introduced through the converter, 
the multiplexer, and the level adjustment of the storage capacitor 
output cathode follower. 

Intolerable drift in the output, due to power supply drift, was elimi¬ 
nated in the overall system by supplying the answer potentiometers 
of the positioning servos with reference voltages derived from the 
converter supply voltage, in exactly the same manner in which the 
analog output signal is derived (figure 30). As a result, this form 
of drift will not affect the error signal, which is the difference be¬ 
tween the input voltage applied to the chopper-amplifier and the 
voltage generated by the answer pot of the positioning servo, and 
which causes rotation of the servo. 

The two reference voltage generators can supply a number of an¬ 
swer pots, the number depending upon the resistance of the potentio¬ 
meters. It was determined that at least five answer pots can be 
supplied from one pair of reference generators. With approximately 
20 answer pots requiring reference supplies in the system, a total 
of five pairs of reference voltage generators was sufficient. 

To compensate further for drift, it was decided that two cathode 
followers in series would be used to read out from the storage 
capacitor. The combination of the two would provide the effective 
high input impedance required by the capacitor, and would allow 
the incorporation of a gain and a level adjustment to compensate 
for emission variation in the vacuum tubes. The gain and level ad¬ 
justments would also permit matching all outputs, even though the 
cathode follower tubes do not have identical characteristics. 

e. Vacuum Tube Drift. The one source of drift which appeared only 
after considerable testing time had been accumulated was the 
random average velocity change, present in all high-vacuum elec¬ 
tron tubes. This drift is difficult to describe, since it varies con¬ 
siderably from tube to tube, and sometimes is not present over a 
long interval of time. Measurement made on a sample of new tubes 
showed a variation of several hundred millivolts (figure 31). As the 
tube aged, however, the variations become less eratic (figure 32). 
Although the average drift of the older tubes over a 200-hour interval 
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can be expected to be less than one millivolt per hour, the short 
term drift is variable; thus it is virtually impossible to guarantee 
less than 20 millivolts (two tenths of one percent) drift over any 
reasonable period of time. 

f. Final Circuit Configuration. A complete multiplexer circuit is 
illustrated in figure 33. A brief description of its operation follows. 

When CR1 and CR2 are at +20 volts and CR7 and CR8 are at -4. 5 
volts, the capacitor C charges to the voltage at point A. When 
diodes CR1 and CR2 are at -4. 5 volts and CR7 and CR8 are at +20 
volts, the voltage on C will change at a rate determined by the 
difference in the reverse currents of CR5 and CR6 and by the grid 
current of vacuum tube VI. The 10-K adjustable resistor previously 
in series with resistor R2 was eliminated because the shift in level 
for which it compensated can be adjusted in the cathode follower. The 
main requirements of the bridge portion of the circuit are that diodes 
CR5 and CR6 have less than 10 millimicroamperes of reverse current 
at 20 volts and that CR5 and CR6 exhibit fast recovery, less than 
1 microsecond, or be matched for recovery time. Tube VI is a triode- 
connected JW5847 and was selected because of its low reverse grid 
current, less than 1 millimicroampere. Resistor R6, in the cathode 
of VI, provides a 6-volt level adjustment and is necessary for the 
adjustment of all outputs to the same zero level. Resistor R8 pro¬ 
vides the necessary gain adjustment to bring all channels to the same 
gain. The zener diode CR9 across R6 reduces by a factor of five 
the gain change caused by varying R6. This reduction is necessary 
since the gain adjustment causes a level shift; without the diode, the 
interaction of the two adjustments would have made the procedure a 
time-consuming process. With the diode, the level adjustment alone 
may be used to compensate for tube drift, once the gain has been set. 
The particular zener diode used is a 1N429. This diode has a 
temperature coefficient of 0.0006 percent per degree C; ordinary 
zener diodes have temperature coefficients ranging up to 0. 05 per¬ 
cent and would introduce a drift due to temperature outweighing their 
usefulness in reducing the gain change caused by level adjustment. 
The two-section, resistor-capacitor, low pass filter (160K resistors 
and 0.1 /¿mfd capacitors) was added to filter the multiplexed signal. 
Experimentation showed that a good instrumentation servo would 
follow the incremental steps in the multiplexed signal. The simple 
filter has a response which is down 3 db at 4 cps, 14 db at 10 cps, 
and 18 db at 20 cps. Tube V2A is used to provide a low impedance 
output to the instrumentation circuits, and diode CRIO limits the out¬ 
put voltage in the event of tube failure. 

4.3.2.2 Static Flip-Flop 

The static flip-flop is used in both the Memory Unit and the Input-Output Unit. 
Since the original design was intended for use in the multiplexer address register and in 
the analog-to-digital converter storage register, it is being discussed as a circuit 
pertinent to the input-output circuitry. 

The schematic diagram of the static flip-flop breadboarded initially for evaluation 
was obtained from the MSEE (figure 34). Considerable effort was expended evaluating 
this flip-flop and several disadvantages of the design were indicated. Since the require¬ 
ments imposed upon the flip-flop had meanwhile changed as a result of the development 
of the memory, a new design possessing characteristics needed for UDOFT was adopted 
(figure 35). The problems associated with the original static flip-flop were complementing, 
marginal screen grid operation, slow rise and fall times, and poor drive capability of the 
output cathode followers. 

a. Complementing. The flip-flop was found to complement on posi¬ 
tive input pulses, due to the reverse recovery time of the input 
diode. When a positive pulse was applied to the input of the 
conducting half of the flip-flop, a large grid current was drawn 
through the diode. When the pulse ended, the grid was forced 
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negative by the diode until the diode had recovered. The effect was 
essentially that of a capacitor across the diode. The flip-flop then 
triggered on a small negative signal at the ON grid, due to the cap¬ 
acitive coupling from the ON plate to the OFF grid, and triggered 
readily since the OFF tube was not completely off, being clamped 
to only -2.1 volts. 

Revision of the flip-flop eliminated this problem, since the AND gate 
inputs to the flip-flop are clamped by diodes to the cathodes of the 
flip-flop tubes. This arrangement also limits the grid current. 

b. Screen Grid Operation. It was considered bad practice to have the 
screen grids of the flip-flop tubes connected to +46 volts. A small 
sample of tubes measured under this condition indicated dissipations 
ranging from 65 to 80 percent of maximum rating. 

Operation of the screen grid was improved by returning it to +150 
volts through a selected resistor with value such that the screen 
grid dissipates approximately 0. 6 watts. As a result, the maximum 
dissipation cannot be exceeded by any tube. The revised design also 
uses the screen to provide dynamic coupling to the grid of the cathode 
follower, to improve the output rise and fall times. 

c. Rise and Fall Times. The rise time for a 12-volt output signal was 
measured to be 0. 25 /isec; a 25-volt output signal, which was now 
needed, would have a rise time of 0. 50 jxsec. This rise time did 
not satisfy the UDOFT requirements. The fall time in the original 
circuit is determined by the cathode follower, the cathode resistance 
and the capacitive loading. Again a fast fall time was necessary, 
particularly for generating the read and write signals in the memory. 

In the revised circuit, the rise time is determined by the screen 
resistance and the input capacity of the cathode follower. This occurs 
because the coupling to the grids of the flip-flop is taken from the 
output of the cathode follower. 

The fall time of the positive pulse was shortened and made more in¬ 
dependent of capacitive loading by capacitively coupling the flip-flop 
plates to the respective cathode follower grids. 

d. Cathode Follower. It was discovered that the cathode follower output 
was incapable of accepting or supplying the current required for 
either the digital-to-analog converter or the multiplexer. To relieve 
this situation the cathode follower was changed from a 12AT7 to a 
5687. In order to limit the output signal at +20 volts, the grid is clamped 
to +20 volts. The output is clamped to -4. 5 volts to limit the output 
signal at -4. 5 volts. 

e. Final Specifications. The specifications of the redesigned flip-flop 
are: 

Trigger Amplitude 

Output Signals 

Rise Time 

Fall Time 

Delay 

Load Capabilities 

4 volts (-3 volts to +1 volts) 

-4. 5 volts to +20 volts 

120 nanoseconds 

50 nanoseconds (unloaded) 
200 nanoseconds (with 100 picofarads 

of loading) 

100 nanoseconds 

-12 ma at -4. 5 volts 
20 ma at +20 volts 
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4. 4 Logic Circuit Packaging 

In addition to conceiving the logic design of the U^T compute^ M^E studied 

¡Ä0if£ÄS» 
delay times, 

Svlvania conducted an analysis of the proposed packaging techniques developed by 
MSEE inyan attempt to consolidate the proposed package types mto fewer and mor 
flexible packages. The following sections discuss the results of the analysis. 

4. 4. 1 Pulse Amplifier Plug-in Package Assemblies 

The first column of Table VII indicates the seven originally proposed pulse 
amplifie?pacäeswTthe AND-OR input configurations of each; the second column 
indicates the five-pulse amplifier packages that were finally used. 

TABLE VII 

COMPARISON OF PROPOSED AND FINAL 
PULSE AMPLIFIER PACKAGE CONFIGURATION 

Proposed 

Type A (2) 

Type B (5) 

Type C (3 + 2) 

Type D (6 + 3) 

Type E 

Type F 
Type G (5 + 5 + 5 + 4) 

(4 + 3 + 3) ) 

(4 + 4 + 3) ) 

Final (figure 36) 

Type 1 (2) 

Type 2 (6 + 3) 

Í Type 3 (4 + 2 + 2 + 2) 

^ Type 4 (5+ 5 + 4 + 3) 

Type 5 (5+ 4 + 3 + 2) 

Pulse amplifiers Types 1 through 4 are capable of producing the three output 

ESsSSSSSa-S-Ä 
where drive is required for long delay lines. 

The following are the expUcit reasons for the modified pulse amplifier package 

configurations: 

a. To reduce the number of package types, in order to 
package replacement problem, parts identification, pr 
preparation, and fabrication time. 

b 1 To allow the use of a 32-pin printed circuit connector m order 
to minimize card breadth and allow better space utilization 

2. To decrease the cost from that of a 36-pin connector wtoch 
would have been necessary had the proposed G-type pulse 
amplifier package been used 

4. 4. 2 OR Gate Plug-in Package AssembUes 

a«, cTpÄg™ 
basic packages that replaced them. 
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CP CP 

CP 

Figure 36. Logic Diagrams of Five Pulse Amplifier Package Types 
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TABLE VIII 

COMPARISON OF PROPOSED AND FINAL 
OR GATE PACKAGE CONFIGURATIONS 

Proposed Final (figure 37) 

Type 1 (2 - 2 - 2 - 2) 

Type 4 (5 - 5 - 5 - 5) 

Type 2 (2-2 - 2- 2- 2- 2- 2 - 2) 

Type 3 (2 - 2 - 3 - 5 - 5) 

OR Gate Type 3 is used in those places where Type 2 is inadequate (number of inputs 
per gate), or Type 4 is inadequate (number of gates). 

The primary reason for adopting these four configurations was to allow a more 
economical use of the diodes, as indicated by the flexibility of the logic, (figure 37, ) 

4. 4. 3 Delay Line Plug-in Package Assemblies 

The first column of Table IX indicates the four originally proposed basic delay 
line packages; the second column indicates the five basic packages that replaced them. 

TABLE IX 

COMPARISON OF PROPOSED AND FINAL 
DELAY LINE PACKAGE CONFIGURATION 

Proposed Final (figure 38) 

Positive Delay, Single Input (short/long) Type DP-1 Delay Line-Positive (Short only) 

Type DP-2 Delay Line-Long (5. 6) 

Type DP-3 P235 Delay Line-Long (5. 0) 

Type DP-4 Delay Line-Long (3.0 and 2. 0) 

Positive Delay, Multiple Input Type DP-1 Delay Line-Positive and 

Type 1 OR Gate 

Negative Delay, Single Input Type DN-1 Delay Line-Negative 

Negative Delay, Multiple Input Type DN-1 

Due to the different physical requirements of the long delay lines, it was not 
possible to utilize the same basic configuration used for the short positive delay lines. 
Since there are only eleven long delay lines in the system, the exception is minor. 

The following are the explicit reasons for the modified delay line configurations: 

a. To increase the flexibility of the package by allowing the package to 
accept a number of different delays. 

b. To make all short positive delay line packages and all short negative 
delay line packages identical, resulting in "location insensitive" delay 
line packages; i. e., any such package may be used in any delay line 
location in the computer without considering the values required at 
that location. 

c. To reduce the cost of delay line fabrication by accepting a large 
number of one type. 

Type A (5) 

Type B (2) 

Type C (2 - 2 - 2) 

Type D (5 - 5 - 5 - 5) 

Type E (2 - 2 - 2 - 2 - 2) 
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OTHER POSSIBLE 
CONFIGURATIONS 

2-2-4 
4-4 
2-6 

-o 9—o —o 9 — 0 0 — 9 9—9 — 

lŸŸŸŸyyÿy 
— 9 9— 

I_ O —— 0— —9 — —ó — —ó — —ó — -J 
TYPE 2 (2-2-2-2-2-2-2-2) 

2-2-2-2-9 
2-2-2-5-6 
2-2-2-3-6 

9 9 9 9 9*“ ”“99 

I_ 

» 9— ■“ ““Ç 9 9 9 9— —— —0 9999 

\\7 \7 X7 \7 
- J 

TYPE 4 (5-5-5-5) 

2-2-8-8 
2-5-5-8 

Figure 37, Logic Diagrams of Four OR-Gate Package Types 
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TYPE DP-4 
DELAY LINES-POSITIVE INPUT-LONG 

Figure 38. Logic Diagrams of Six Delay-Line Package Types 
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d. To take advantage of the 32-pin connector required by the pulse 
amplifier packages, and to pack maximum delay into one delay 
line package (thereby arriving at the delays of0.2-0.2-0.2- 
0» 4 - 0» 4 pulse periods of delay per assembly). 

4. 4. 4 Plug-in Package Fabrication Problems 

As is typical in most computers, the main frame circuit packaging technique 
establishes the circuit packaging plan for the rest of the computer system. A typical 
UDOFT main frame plug-in package assembly is shown in figure 39. 

I 
Two major problems were encountered during the fabrication of the printed 

circuit plug-in assemblies; board warp and copper delamination. The board warp 
occurred because the cloth-base phenolic material yielded under the high temperatures 
encountered and the forces exerted on the large board during the dip-soldering operation. 
By changing to glass-base epoxy material, by improving the jigging of the card for dip¬ 
soldering, and by improving the solder dipping techniques, the problem of board warpage 
was solved. Copper delamination, or the parting of the copper from the base material, 
was the second problem. When the change to the glass base epoxy was made, the 
problem all but disappeared, leaving only minor delaminations which occurred from 
caustic cleaning agents used in preparing the etched copper tabs for plating. 

4. 4. 5 Classification of Printed Circuit Plug-in Package Assemblies 

Almost all the digital circuitry of the UDOFT Computer is mounted on printed 
circuit plug-in packages, a design concept with many obvious advantages including 
economy of fabrication and ease of maintenance. Table X, a listing of the package types, 
indicates the number of each type used in the various units that comprise the computer. 

4, 5 Main Frame Development 

4. 5. 1 Main Frame Cabinets 

The three cabinets of the main frame are identical in size, shape, and con¬ 
struction. Each cabinet is composed of four bays (figure 40), and each bay contains a 
package rack assembly accommodating ten rows of twelve packages each. This pro¬ 
vides a maximum capacity of 120 packages per bay or 480 per cabinet. 

The interconnect section is in the uppermost portion of the cabinet; it is the 
junction point for all power and signal cables, except coaxial cables, entering and 
leaving the cabinet. Barrier strips, power circuit breakers, fuses, and the marginal 
check voltage control chassis are located in this section of the cabinet. 

Above the interconnect section is the removable blower section. This area 
houses the blowers which supply cooling air. 

4. 5. 2 Package Racks I 

The package racks are structural assemblies that provide mechanical support 
and cooling air for the printed circuit plug-in packages, and sustain the printed-circuit 
connectors to which all electrical connections are made (see figure 41). The three 
sections of a rack are the vertical air duct, the horizontal shelves, and the connector 
panels. 

The vertical air duct channels the cooling air from the blower into the hollow 
shelves. The shelf is a prime functional part of the rack structure; it is hollow, and 
forms the final section of the ducting system for directing air to the individual packages. 
Holes through the upper surface of the shelf direct cooling air to the packages. The 
shelf carries a slot which guides the package over its entire length during insertion and 
withdrawal. A metal block in this guide slot, in conjunction with the polarizing feature 
built into the package, prevents a package from being inserted upside down (figure 42). 

The connector panels which hold the plug-in packages are fabricated from high- 
grade linen phenolic. The openings for the printed circuit connectors are accurately 
punched in the panels to assure proper alignment of connector and package in their 
complete assembly. 

i*. 
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TABLE X 

PACKAGE TYPES USED IN THE UDOFT COMPUTER 

Package 
No. Description 

Handle 
Requirements Color Code 

AU Cl cn MEM 1-0 Spare Total Upper Lower 

P211 
P212 
P213 
P214 
P215 
P221 
P222 
P223 
P224 
P231 
P232 
P233 
P234 
P235 
P236 
P237 
P241 
P242 
P243 
P244 
P251 
P252 
P253 
P255 
P256 
P257 
P258 
P261 
P262 
P263 
P264 
P265 
P266 
P271 
P272 
P273 
P274 
P275 
P281 
P282 

63 80 
86 67 
42 28 
53 31 

3 2 
9 10 

6 
4 3 
1 1 
1 1 

33 18 
114 87 

2 

1 
1 1 

Pulse Amplifier Type 1 66 
Pulse Amplifier Type 2 82 
Pulse Amplifier Type 3 7 
Pulse Amplifier Type 4 83 
Pulse Amplifier Type 5 6 
OR Gate Type 1 15 
OR Gate Type 2 8 
OR Gate Type 3 l 
OR Gate Type 4 
Variable Delay i 
Negative Delay 22 
Positive Delay Type 1 100 
Positive Delay Type 2 2 
Positive Delay Type 3 2 
Positive Delay Type 4 2 
Clock Pulse Delay 1 
Static Flip-Flop Type 1 
Static Flip-Flop Type 2 
Signal Driver 12 20 20 
Crutch Card 
Gate Generator Amp. 
Array Driver Amp. 
Inhibit Driver Amp. 
Sense Amplifier 
Diode Matrix 
Memory Address Driver 
Memory Diode 
Discrete Output 
Digital-Analog Converter 
Multiplexer 
Slow Speed Print 
Multiplexer-Driver 
Multiplexer Reference 
Clock Oscillator 
Clock Amplifier 2 2 2 
Clock Repeater 30 34 25 
Clock Driver i i i 
Clock Master 
-3.0 Volt Sink (VR-l) 4 4 4 
-4. 5 Volt Sink (VR-2) 2 2 2 

24 

1 
88 
32 

32 
32 
44 
22 

8 
8 

72 

2 
18 

1. 

2 
1 

67 
40 

63 

2 
32 

8 
1 
3 

34 

1 
28 

12 
6 

32 
3 
1 
8 
1 
2 

27 
1 
3 
3 
2 

38 
27 
14 
4 
4 
5 
5 
2 
2 
4 

10 
27 

1 
1 
0 
2 

10 
5 
9 

10 
3 
5 
4 
4 
2 
2 
7 
3 
2 
4 
1 
1 
1 
2 
5 

20 
2 
1 
2 
3 

314 Red Brown 
302 Red Red 
115 Red Orange 
234 Red Yellow 

15 Red Green 
41 Green Brown 
53 Green Red 
10 Green Orange 
12 Green Yellow 

9 Blue White 
86 Yellow Brown 

362 Yellow Red 
5 Yellow Orange 
3 Yellow Yellow 
3 Yellow Green 
7 Blue Green 

126 Orange Brown 
37 Orange Red 
62 Black Brown 
10 
35 Gray Brown 
37 Gray Red 
48 Gray Orange 
26 Gray Yellow 
10 Gray Green 
10 Gray White 
79 Gray Clear 
15 White Orange 

8 White Brown 
36 White Red 

4 White White 
2 White Green 
9 White Yellow 
3 Blue Brown 

15 Blue Red 
154 Blue Orange 

7 Blue Yellow 
4 Blue Clear 

19 Brown Brown 
12 Brown Red 

Totals 449 474 391 390 381 254 2339 

Less Spares 254 

TOTAL UDOFT PACKAGES 2085 
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Figure 40. Typical Main Frame Cabinet 
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Figure 41. Card Rack with Shelves in Place 
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4. 5. 3 Rack Layout 

The main frame logic layout was prepared by both development engineers and 
design engineers. The latter were used extensively for determining the logical 
groupings of the various registers and control logic. Since three cabinets constitute 
the main frame, an extensive analysis was conducted to effect a layout that would 
minimize the signal connections between them. Basic rules were established, such as 
laying out the registers wherever possible with the most significant digit on the left and 
the least significant digit on the right. An attempt was made also to group the pulse 
amplifiers in certain columns of the bays, to reduce the time needed for marginal 
checking of the pulse amplifier packages. 

In laying out the logic in the cabinets, great consideration was given to main¬ 
tainability, reliability, and maximum utilization of package space. 

The following is a list of decisions and compromises in view of the problems 

involved: 

a. A random wiring pattern (or point-to-point wiring) technique would be 
used to reduce problems arising from cross-talk and capacitive loading. 

b. Coaxial cable would be used for the transmission of high frequency pulses 
between cabinets, and in some cases between bays in the same cabinet. 

c. Signal drivers, or transistor emitter followers, would be used to drive 
the coaxial cables, to alleviate loading of the pulse amplifiers. 

d. Clock pulse signal leads would be terminated, to reduce ringing due 
to excessively long leads. 

e. OR Gate and Delay Line packages would be loaded as close as possible 
to the pulse amplifiers they feed. A maximum spacing of three 
horizontal spaces or one diagonal space was maintained between 
these critical units and their associated amplifiers. 

f. The cabinets of the computer system would be arranged to eliminate 
excessively long coaxial cables, since even coaxial cables introduce 
delay and cause pulse deterioration. 

The physical arrangement of the computer cabinets was an important factor in^ 
the logical organization of each cabinet. Control Unit II is adjacent to the Memory Unit. 
Since Control Unit I contains the Timer, it is strategically located for the distribution 
of timing pulses to all other units. (Figures 43, 44, 45 and 46. ) 

4. 5. 4 Test System 

Early in the development of UDOFT, a breadboard evaluation bay was con¬ 
structed to test and study various packaging techniques. The prime areas of interest 
were: 

a. Signal lead lengths, such as coaxial, package to package, and the 
interaction between them 

b. Methods of wiring 

c. Distribution of cooling air 

d. Fabrication problems 

e. Marginal checking 

f. Actual packaged circuit operation 

g. Components, such as diodes, pulse transformers, tubes, 
and delay lines 
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In summary, the test system consisted of 38 printed circuit packages arranged 

delayTne cab^cut'tofte'pXrSe clock ^S^/^ory- 
the system presenüy in the computer. The power supply consisted of nine laboratory 
type d-c supplies with varying regulation characteristics. 

After assembly of the system, approximately five weeks was consumed putting it 

transformers'^ select one for the pulse amplifier olrcnlte, and checking hoi .pot 

temperatures. 

The test orocedure established consisted of routine daily checks on the different 
inrriral subsystems while varying the marginal checking voltage. During the period 

Logical system 3 (catastrophic) 
1 (marginal) 

Power supplies ? 

Clock system 7 

None of the failures involved the JW5847 vacuum tube, used as P^lse ampimer 
tube which was being evaluated. As can be seen, only four out of eighteen (approxi 
matelv 22 percent) of the failures occurred in the logical system. Primarily bec^u 
of thenlarge percentage of power supply failures and the increasing number of 
that weregoccurring in the obsolete clock system, it was necessary to . 
breadboard life test after 4030 hours of operation, although it was intended to c n 

a 10, 000 hour life test. 

Although the life test ended in apparent failure, much had been gained from the 

breadboard. 

a The positive clamped output of the pulse amplifier was found 
critical when driving a remote load by means of a single long 
wire. When the lead length approaches twenty feet, the pulse 
is so badly distorted that it is unusable. 

b. The marginal check voltage limits for the various packaged 
circuits were established. 

c. It was evident that the clock system had to be revised; passing 
a square wave through a delay line resulted in a pulse distorted 
beyond recognition. The system was revised and a sine wave, 
rather than a square wave,, was delayed then amplified and 
squared for use as a phase of the clock. 

d. The initial ground rules for circuit packaging and plug-in 
package interwiring were substantiated. 

4. 6 Memory Development 

As part of the UDOFT design, MSEE specified a random-access magnetic-core 
type of memory. At the time of the logic design, magnetic core memories were just 
becoming an acceptable method of storage. MSEE felt that by the tune 
UDOFT computer design was developed into a working system the u e g1 
storage having a 5 microsecond cycle time, would be feasible. M^E therefore 
specified only the timing operations, the address register and rewrite register logic, 
and suggested an approach to the development of this new type of memory. Circuit 
design^and core specifications were the responsibility of the development contractor. 
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4, 6. 1 Memory Design and Development 

The short time allowed for memory development necessitated the use of proven 
techniques wherever possible. Originally, it was proposed by MSEE to use a magnetic 
switch core matrix for the current driving devices. This approach was viewed un- 

; favorably, due to the memory speed requirement (5 /¿sec) and the many disadvantages 
inherent in the magnetic switch core. The decision was made to use pulse transformers 
and to improve upon a system developed at M. L T. 

4. 6. 1.1 Introduction to Coincident-Current Memories 

In a coincident-current, magnetic-core memory of the type pioneered by M. I. T. 
Lincoln Laboratory, it is necessary to pulse two lines to a single core simultaneously to 
affect a read-out of the information stored in the core. The information, in the binary 
form of ONEs and ZEROs is contained in the remanent magnetic state of the square- 
loop-characteristic ferrite material of the core. A half-amplitude current pulse will not 
cause the core to change state, and the resultant voltage due to the disturb pulse is of a 
few millivolts' amplitude. Two half-read pulses produce sufficient magnetomotive force 
to drive the core into saturation. When the contents of the core (before the pulse) is a 
ZERO, the pulse causes only a 15 or 20 millivolt output from the selected core; when the 
contents of the core is a ONE, the output voltage is considerably larger in the order of 
100 or 200 millivolts. 

Information read-out is a destructive process; i. e., at the end of a full read, 
regardless whether a ONE or a ZERO was contained in the core, the core has been * 
driven into the ZERO remanent state. A full write, which normally follows every full 
read, then drives the core back into the ONE state. Means must be provided to prevent 
or inhibit the full write from occurring when it is required to write a ZERO into the 
core. The inhibit pulse is, therefore, a half-read overlapping the two coincident half- 
writes, resulting in a net half-write applied to the selected core. 

4. 6. 1.2 Description of the UDOFT Memory 

The UDOFT memory is composed of two identical units, one for number storage 
and one for instruction storage. Each memory unit has 4096 registers: each register 
contains 22 bits. Parallel readout of a register is affected by pulsing 22 cores 
simultaneously, thus reading-out the entire contents of that register. Each memory is 
comprised of 22 planes; each plane contains 64 X 64 cores for a total of 4096 cores per 
plane. The X and Y lines are those 64 lines running horizontally and vertically, 
respectively, in each plane. Each core has one X and one Y line through its center, 
in addition to a Z inhibit and a Sense or read-out wire. Each of the 64X lines is con¬ 
tinued through the entire stack of 22 planes by external connections between each plane 
and the immediately adjoining plane; the 64 Y lines are similarly joined Word 
selection is accomplished by simultaneously pulsing the X and Y lines which intersect 
at the location of the desired word. 

4. 6. 1. 3 X and Y Drive Requirement 

The core load on the X and Y Driver consists of 22 lines of 64 cores each, or a 
total of 1408 cores. Of the 1408 cores, 1386 receive a half-read and are not switched 
during the read-out. The other 22 cores simultaneously receive a half-read from the 
X-Driver and a half-read from the Y Driver. This action switches these fully-selected 
cores into saturation during the pulse; they return to the ZERO remanent state after the 
pulse. The back voltage seen by the X-Y Driver then is the sum of 1386 disturb 
voltages, which, because of their reversible nature, occur during the rise time of the 
drive current pulse. An average of 20 millivolts for 1386 cores would therefore cause 
a peak of approximately 27. 7 volts. That amplitude actually was observed The 22 
fully selected cores will contribute a back voltage varying anywhere between the 
extremes which occur when either 22 ZERO or 22 ONES are selected The former 
extreme would contribute about one-half volt, mostly during the rise time; the latter, 
about 22 times 220 millivolts, or 4. 4 volts, occurring later than the rise time by about 
half-the nominal switching time of the cores. For the UDOFT cores, the ONES peak 
occurs about 0. 6 microsecond after the start of the drive current pulse. 

Within five microseconds the X-Y Driver must be addressed, drive a pulse of 
fixed amplitude and width into its load, and closely follow that pulse with one of opposite 
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polarity but equal amplitude. Furthermore changes m toadmgca 2 coreg 

remanent states of the 1408 cores rec^vl"| , ^ to change appreciably in rise time or 
addressed for read-out, must not “^P^^^^reduced ONE output with a 
amplitude. Excessive reduction of amplitude r ^ avoided in order to have a 

longer switching time; “ ^[¿^"irtremely^mportant since it must occur at the right 

S“! mS~m ZEBÔ”"d included «E. 

4. 6. 1. 4 Word Selection 

A Memory Address Register MAR, ^S^/aTsed fothe 
flops, is addressed by the computer to ^same ipacity employed 64 
twelfth power equals 4096. Earlier men or^ ^ fminiature tubeS as Driver Amplifiers 
current driver tubes (twin trl°deJ^L d Word selection was accomplished by 
for each coordinate X and .¾ j^^the 64 in the X line and one amplifier of the 64 in 
lowering the grid of one ampl . h 0f which had an input of six input pairs 
the Y line through X and Y diode matrice di te) In addition to the 128 tubes 
(from the six MAR flip-flop3 addressi^ ^ o for read and write pulsing were re- 
per coordinate listed above and two smaller tubes. An alternative to this 
quired, each consisting of two tubes and t ^ cathodes of the driver tubes in an 
method was suggested by Papian g P h |m ufier could control eight 5998 s. (Fig- 
8-by-8 matrix arrangement so that . Amplifier cathodes by 112, involving 56 
ure 48. ) But in reducing the number of Pb g8 for an overall saving of 2 times 
tubes the Gate Generator cathode count increases, ^ memorY The 56 tubes elimi- 
14 (112 minus 98), or 28 cathodes, memo'ry, 28 tubes are "giants" 
nated are of the miniature van y, s h an overall reduction is inconspicu 
(5998), 14 are pentodes, and 14 are miniatures. 

ous. 

4. 6. 1, 5 Evolution of the Transformer Matrix 

A step t.,.sd • mote P™‘“¡S 
Gate Generator, which mPapian s scheme t 40 ^ each in *e steady state 
each write half, a total of four tu^, c°”^e transformer. Considerably less 
and interrupted only when current is Generator tubes if current flowed only 

ÄS»«t o, ,0.0, m ..0. -o 

Generator from 2 to 1. 

Current regulation is accomplished by the gr^fa^be^w 
Generator cathodes and -150 volts. Under quiescen when palses are applied 

cutoff and current flows only m *eai^ode¿^ndG¿erator, current flows simultaneously 
coincidentally to an Array and tL tube cathodes. When the sum of these 
into the 1. 2K resistor from the diodes and « cathode voltage rises slightly 

r d™"-pi*“ 
from increasing appreciably above that level. 

A disadvantage still in evidence was the use^of^64 large tubes for^ ^ ^ _ 

It was suggested that transformer pnmarmat^^mm^«d, ^ o,;e out of 
between the Array Driver cathodes and the Ga^ G P bes would ^iquely select 
eight Array Driver tubes and one out G^e ^ ^ memory core array. A 
one out of 64 transformers and hence energiz twQ imaries not electrically 

After examination and breadboard this 

system was adopted. 

I. Papian, W^., "New Ferrite Core Memory Uses Pulse Transformers", Electronics, 

March 1955, p. 194. 
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TOTAL CATHODE COUNT = 270 

CKT QTY 

CATHODES 

5998 5965 7AK7 

ADA 

GG 

64 

1 

128 

8 

128 

4 2 

TOTAL 136 132 2 

ADA - ARRAY DRIVER WITH AMPLIFIER 
GG - GATE GENERATOR 
MAR - MEMORY ADDRESS REGISTER 

Figure 47. Common Coordinate Driving Technique 
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4. 6. 1. 6 Transformer Matrix 

The block diagram of figure 50 shows the application of the transformer matrix 
in the present X-coordinate driver system. Only the read section is shown; an identical 
arrangement is necessary for write. Series diodes are necessary to block sneak paths. 
Two diodes instead of one are used so as to minimize the capacitive loading of the 
transformers. 

4. 6. 1. 7 Circuit Description 

The quiescent bias levels of the Array Drivers and Gate Generators must be 
sufficiently negative to insure cutoff at all times, particularly during the time the 
selected pair is pulsed. For the 7236 tube, which has replaced the 5998, this means a 
bias of about -60 volts on the Gate Generator; -40 volts is sufficient for the Array Driver, 
since the pulse on the selected Array Driver tends to raise all Array Driver cathodes.^ 
Figure 51 shows the circuit for an Array Driver and Gate Generator and their respective 
amplifiers. The operation is as follows: 

The Address Register has been set to one of the 64 addresses for X and one for 
Y. Only one coordinate needs to be discussed, since the operation of X and of Y is 
identical. Of the eight outputs from each diode matrix, seven are at +20 volts and one 
is at -4. 5 volts. Each of the eight outputs is routed through two diode AND gates to its 
read and write amplifiers. The other inputs to the AND gates are static flip-flop out¬ 
puts which determine the read and write pulse widths. The -4. 5 volt level selects the 
amplifiers to receive the flip-flop output pulses, which are negative. 

The Gate Generator Amplifier consists of the two sections of a 5965 tube, one 
section as voltage amplifier and the other as cathode follower. The amplifier section is 
normally conducting, so that a negative 60 volts is applied to the grid of the Gate 
Generator 7236 tube. The negative input pulse cuts off the amplifier, causing its plate 
to rise to ground; the peaking coil shortens the rise time and the delay time, and causes 
overshoot of about ten volts. The overshoot is useful in turning on the Gate Generator, 
since lowest plate voltage occurs at the beginning of plate current, indicating the need 
for a more positive grid bias at that time. 

Simultaneously with the turning-on of the Gate Generator, an Array Driver must 
become active if any current is to flow in the selected transformer. The Array Driver 
Amplifier operation is similar to that of the Gate Generator Amplifier. The quiescent 
output voltage is about -40 volts, but during pulsing this must increase to +150 volts 
to bring both the Array Driver and Gate Generator tubes to the proper operating point. 
The larger voltage swing ruled out the use of a 5965 tube, because of power dissipation 
limitations; therefore a 5687 was used. At first it was thought feasible to connect the 
grids of thé read Array Driver and the write Array Driver and turn on both for the 
duration of the five microsecond minor cycle, pulsing only the Gate Generators 
separately for read and write. However, this proved impracticable because of the 
coupling between the two primaries of the transformer, which resulted in unacceptable 
current waveforms. 

4. 6. 1. 8 Sense Amplifier 

The Sense Amplifier is a device designed to sense and amplify the information 
signals derived from an interrogated magnetic-core memory plane. The output of this 
amplifier, when used in conjunction with a strobing pulse, is sufficient to trigger a 
static flip-flop. Thus the amplifier must be able to distinguish between ZERO and ONE 
signals induced on the sense winding, to eliminate all common mode disturbances, and 
to shape the information signal for strobing. The Sense Amplifier circuit consists of 
three sub-circuits whose functions are differentiation, discrimination and pulse 
shaping. (See figure 52. ) 

a. Differentiation. The differential circuit consists of that portion 
encompassed by the input terminals and transformer Ti. It is 
the function of this circuit to amplify difference inputs, and to 
eliminate common mode signals. Common mode signals are 
disturbances that originate due to coupling between the drive 
lines and the sense winding of the memory plane. Such inputs 
raise both ends of the sense winding simultaneously and cause 
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Figure 51. Schematic of X-Coordinate Driver Circuit 

114 



F
ig

u
re
 
5

2
. 

S
c
h

e
m

a
ti

c
 
o

f 
S

e
n
s
e
 A

m
p
li

fi
e
r 

C
ir

c
u

it
 



transistors Qi and Qo to conduct equally. Since the transformer 

tolerances of ±1 percent. 

i j -+^0 71? RO ONE or Inhibit induced output from 

The «eenhery o»,«., oí T,, 

however show none of this wide variation, since either Qi or 
Q2 is Liven into saturation by the stronger inputs. 

b. Discrimination. A variable ^^f^^v^tVge on thíbfses 
tapped secondary fa“ tha ^tVmaUy c^nd^cting, the 
of transistors Q3 and W4- wun .^5 J, f ahout +0. 28 volts, 
emitters of Q3 and Q4 have a qui transistors 
Any positive voltage above + . u levels 0f ONE signals are greater 
in the OFF condition^ Smce ^dV^plaVcedonAbases of Q3 and Q4 
than those of z^RO sig ' levels^of ONE signals will cause them 
can be set ^X onlyt^M levels 0 ^ gn ^ The 

lUal appearing acrossThe secondarV tends to make one base 
3 negaUve agnd the other more positive If ^gruil « 
large enough to overcome the dc bias on either base, 
cause that transistor to conduct. As volt on the 

SÄ»^^Ä«t=,andwUI 

rejeï f« mV^aiS Ul nasSr ough, Vt now 
vmuld^ésult in°a wÄput signal since conduction of either 
Q3 or Q4 begins before the 100 mv level. 

Pn1qe Shaoine The remaining circuitry shapes the signal from 

QVr QH4s°,h«‘ SIÄmÄ ”>• P“1” 
El“ voli .VÄ, hmamuin .»«t™ p.lM Hat « 

is 3 volts. 

4. 6. 1. 9 Inhibit Driver and Amplifier 

The function of the inhibit circuitry U to produce a half-read current^ 

wrüe f one into a core it is necessary to have currents 1 /21^^ / 

occurring simultaneously; either current alonéis the°l/2 ^ current, since 

present, Jbe ‘ ' 
me Li ¿ i-v ví uic X/« —- - 

-■— clnpp**i7?"i or 1/21 alone is insufficient to switch the c , 
it is equal and opposite. Since 1/2 ly or i/ ¿ix ^ 
a zero is written into the core. 

The inhibit driver power amplifier, - 0. 4 
inhibit current pulse of 410 milliampères pe^ p ^^ure ^ ) The amplitude of the 
microseconds and 0. 7 microseconds respectively. ^ cathode degeneration 
“¿put from the inhibit driver is neÆe fecdteck from the cathode of the 
in the 5965 feedback amplifier tube ^^^^^„dtctance in the 7236 current 
7236 current driver tube. Sm^e e rrpasinu transconductance in the 5965 feedback 

iSs^ÄsssÄiiru» "w* 7 
minimized. 
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4. 6. 1. 10 Breadboard System 

A breadboard of a partial memory system was constructed to evaluate doubtful 
components such as the matrix transformers and the magnetic-core memory planes, for 

- verifying the design of the drive circuits and for determining the optimum timing of the 
various control functions that occur during a 5 jisec memory cycle. Since it would have 
been economically unwise to use twenty-two costly magnetic-core memory planes in the 
breadboard system, the apparent loads carried by the current pulse generators 
(Array Drivers and Gate Generators) had to be simulated. 

The loads for a single X-coordinate and a single Y-coordinate were simulated by 
means of two additional memory planes, one for each coordinate, wired to provide tiie 
same effect as an additional 21 planes (figure 54). Memory Plane 1 contains the fully 
selected core which may be sensed and written into as in the ultimate memory. Memory 
planes 2 and 3 simulate the loads for the X-driver and the Y-driyer, respectively. 
Twenty drive lines of each simulated load plane were connected in series (figure 54); 
those used were lines 1 through 10 and 12 through 21. Line 11 is omitted, so that half of 
the cores along the fully selected line receive bucking current pulses and the other half 
receive aiding current pulses. If all 20 cores were to receive aiding current pulses, the 
back voltage seen by the transformer due to switching 20 ONES would have been twice 
that actually encountered in the memory, since each fully selected core would have 
effectively two lines (one X-line and one Y-line) in which the back voltage would be 
induced. 

Variations in loading between switching 22 ONES and 22 ZEROs for an ideal 
coordinate driver should produce no observable difference in output current. In the 
actual coordinate driver, however, the ALL-ONEs load caused a slight dip immediately 
after the drive current pulse had peaked; conversely, the ALL-ZERO’s load caused an 
overshoot on the leading edge of the drive current pulse. It was found that the insertion 
of approximately 50 microhenries of inductance in the cathode of each Gate Generator 
helped to regulate the overshoot and the dip in the two extremes of load conditions, so 
that switching and peaking times remained nearly constant regardless of the load con¬ 
figuration. The inductance was later relocated to the constant current sources which 
are connected to the cathodes of the Gate Generator tubes for the X and Y coordinates, 
(figure 51). 

As breadboard testing advanced, it became important to be able to switch between 
two cores, rather than being limited to a single selectable core. The switching was 
accomplished by selecting one of two X-coordinate lines, a single Y-coordinate Une 
being pulsed simultaneously with either X-coordinate line. Since each coordmate line 
had its simulated loading distributed in another memory plane, a fourth memory plane 
was required. 

The reasons for this development were: 

a. To observe further the writing-in and reading-out 
of the memory cores in 5 microseconds. 

b. To observe and rectify any transients that might occur 
when switching from one coordinate to another. 

c. To determine whether inhibit noise or other transients would 
affect core read-out. 

Results of extensive breadboard testing indicated that a memory could be addressed to 
read and write within 5. 0 microseconds. As a matter of fact, satisfactory operation 
was obtained with a memory cycle of 4. 6 microseconds. No transients or any 0J“er 
difficulties due to stray capacitive or inductive effects in or among the wires in the 
memory planes were encountered. 

4. 6. 2 Memory Planes 
I 

Memory planes were procured for the UDOFT memory in accordance with a 
carefully prepared specification; both electrical and mechanical requirements were 
specified. No electrical problems were encountered with the planes accepted from the 
Vendor. However, the planes could not satisfy the specified shock and vibration 
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requirements. Under these test conditions, the X and Y drive lines tended to break at 
the point where the line was soldered to lug on the frame of the memory plane. Also, 
the cores would rotate about the four wires through them, abrading the insulation of 
these wires. If this had been allowed to continue, the wires themselves could very well 
have been cut. To remedy the problem, each memory plane was backed or reinforced 
with a layer of glass cloth held in place by a coating of Polyweld. 

Since temperature is a critical factor to be considered in the design of a 
magnetic-core memory system, temperature tests were conducted using the memory 
breadboard. The results indicated that satisfactory operation could be achieved for 
±5° C variation about +20° C. However, it was still believed that an absolute maximum 
of Io C difference in temperature should be maintained between any two cores in the 
memory array. Experieire with the memory system during phases of total system 
operation proved these stringent temperature requirements were desirable and indeed 

necessary. 

4. 6. 3 Memory Unit Cabinet 

Great care was taken in laying out the Memory Unit and in packaging the 
memory planes, to determine the optimum design from both electro-mechanical and 
environmental standpoints and to utilize standard hardware wherever possible. It was 
decided that the Memory Unit Cabinet would consist of four bays similar to the Arith- 
metic Unit Cabinet, except that the two inside bays should have a 24-mch width rather 
than the standard 19-inch width. (Figure 55). 

The memory plane arrays and associated components, of which there are 512 
per memory plane array, had to be packaged physically as separate units, yet located 
close together to maintain the short lead lengths dictated by the minimum tolerable 
stray capacity. The memory plane assembly is secured in a plenum chamber which 
supplies the necessary air for maintaining the operating temperature ofthe magnetic 
cores and for cooling the components and core-driving vacuum tubes. The complete 
assembly is located midway up the 24-inch-wide bay, to allow maximum access to the 
unit. 

The two outside bays, each of which is the standard 19 inches wide, contain the 
remainder of the control circuits, standard plug-in packages for which lead length is 

not critical. 

The memory plane assembly and the driver tube chassis, located above and below 
the assembly, constitute the only non-standard items in the Memory Unit Cabinet. These 
non-standard parts must be used because of the nature of the planes, the necessity for 
short leads between drivers and planes, and the different cooling problems. 

From the electrical design and the characteristics of the Type 5998 tubes used 
for the core drivers, it was estimated that each of the two 24-inch wide bays of the 
Memory Unit Cabinet would dissipate approximately 2300 watts. To maintain the 
specified operating temperatures with this amount of heat, it was necessary to divide 
the bay into two isolated sections for the purpose of cooling because for one end of the 
duplex blower could not handle the entire bay. One section, served by one end of the 
blower contains the memory plane assembly and the driver tubes. This section 
dissipates approximately 1200 watts. The remainder of the bay, which contains the 
standard packages and is located above and below the memory plane and driver tube 
assembly, is cooled by the other end of the blower, dissipating the rest of the heat 
generated. 

Information gathered from the operation of the memory breadboard helped 
establish ground rules for the layout of the logic packages in the Memory Unit Cabinet. 
Each memory was so packaged as to satisfy the critical requirements imposed upon the 
lead lengths of the X and Y coordinates. Since the X-coordinate circuits are identical 
to the Y-coordinate circuits, the package layout for the center bays of the cabinet 
is symmetrical about the magnetic-core memory arrays. Further, since the Number 
Memory circuits are identical to the Instruction Memory circuits, the layout of the two 
outside bays of the cabinet is symmetrical about the centerline of the cabinet. 
(Figure 56). 
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4. 7 Input-Output Development 

4. 7. 1 Input-Output Unit Cabinet 

The Input-Output Unit Cabinet consists of five bays. Four of these contain the 
control circuitry, logic, and circuits required for processing the discrete and analog 
outputs and inputs. The fifth bay houses the stepping switches and control relays for 
the output printer, or electric typewriter. This bay also contains a large number of 
spare package slots for any additional logic that may be added in the future. (Figure 57. ) 

The ground rules for emplacing the packaged circuits in this cabinet were 
identical to those established for the Memory Unit cabinet. 

4. 7. 2 Computer Console 

4. 7. 2. 1 Console Cabinet 

The console cabinet as originally planned was made of three commercial console 
sections permanently joined to form one unit approximately 64 inches long. A side 
elevation view of this cabinet design is shown in figure 58. After much consideration it 
was decided that the writing surface was too shallow, being only 10 inches deep; the well 
in the writing surface was disadvantageous, as it might become a receptacle for pencils, 
cigarettes et cetera; the working areas of the control panels were below the writing 
surface as a result of the well, making the controls located at the bottom of the panels 
more difficult to operate and leaving them unprotected against accidental operation by 
notebooks or other items sliding across the writing surface; the slope of the panel was 
too shallow; controls and indicators at the tops of the panels were at an uncomfortable 
distance from the operator; and esthetically, the balance between the sections above and 
below the writing surface was poor. 

These major objections were overcome by redesigning the upper section of the 
console. A side elevation of the redesigned cabinet also appears in figure 08. The 
writing surface was increased by covering the well; tue control panels were raised above 
the writing surface; the slope of the control panel was increased to provide better vision 
of controls and the esthetic balance was improved by revising the upper section. 

In addition, it was necessary to add to the console a structure to accommodate 
the output printer. Numerous schemes were considered-, the best and most acceptable 
was the addition of a section, similar to the lower section of the commercial console 
units, at the right end of the console. This addition provided a broad surface to receive 
the electric typewriter, and the continuity of design and appearance was retained, 
pictorial view of the finished console unit is shown in figure 59. 

4. 7. 2. 2 Console Panels 

The details of the layout of each of the three console panels were discussed in 
Section 3. 7. However, one item not discussed is the apparently misguided arrangement 
of register status indicators and register read-in switches. 

The layout of these indicators and switches was made with regard for the pro¬ 
grammer and the maintenance engineer. Since programmers prefer to use octal 
notation rather than the cumbersome binary notation, this group of status indicators and 
read-in switches were grouped and labeled to facilitate working with the octal form. 

If the indicators are arranged as in Part a of figure 60, the transcription of the 
binary number is not too difficult, but there is a high probability of error, especially 
f the number contains many bits. Arrangement as in Part b facilitates reading *hem 
iirectly in octal form, by the use of yellow and green indicators to group the binary bits 
nto octal characters. A further improvement is made in Part c, by providing a visual 
indication of the octal weight of each binary bit and thereby increasing the speed and 
reliability of data translation and transcription by the human mind. 

A similar logical argument has been formed for the arrangement of the register 
read-in switches, of which there may be as few as twelve or as many as twenty-two. 
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Figure 58. Original and Revised Computer Console Designs 
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Graphie examples of this argument are shown in figure 61. From Part a it can be seen 
that translating the octal information into the appropriate switch positions is probably 
more difficult than using the binary representation of the samedata, since there is no aid 
provided for grouping the binary switches into octal groups. The representation of 
Part b is an improvement, but still lacks clarity. The representation of Part c as was 
true for the indicator lamps, is the best; however, one unfavorable characteristic 
common also to Parts a and b remains: the switches are placed in a long horizontal 
row making manipulation more difficult. To overcome this difficulty the octa. gr<mps 
or triads were placed vertically as in Part d, thereby reducing the length of the register 
switch bank. 

All switches are of the pushbutton type, whether maintained contact or momentary 
contact with lighted buttons to indicate the position of the switch. Because of the large 
number of switches on the panel, it was determined that lighted pushbutton switches 
would be more desirable than toggle switches for the following reasons: 

a. They are easier to operate, requiring a force in only one direction. 

b. They provide a relatively large control surface, allowing markings 
to be placed right on the switch. 

c. Illumination and color coding simplify identification and operation. 

d. The switches used for setting up new information can be arranged 
in adding-machine keyboard fashion. 

4. 8 Power Supplies and Power Control 

4. 8. 1 A-C Power 

The input power to the computer is 208/120-volts, 3-phases 60-cycle, 4-wire Y. 
This a-c power is subdivided into four types according to use. (Figure 

4. 8. 1. 1 Utility Power 

This portion of the a-c line is distributed to the various cabinets to provide 
120-volt single-phase utility power at the convenience outlets. 

4. 8. 1. 2 Unregulated Power 

This portion of the a-c line is distributed to the various cabinets to provide 
208-volt three-phase power for the blower motors. Each.cabinet has a circuit breaker 
ahead of the blower to protect the line in case of motor-winding short circuits. 

4. 8. 1. 3 Regulated Power 

This portion of the a-c line is regulated by three single-phase a-c line regulators 
to provide three single phases of regulated 120 volts to the filament transformers in the 
cabinets. The filament power is applied in two steps when the computer is first turned 
or by using a line-dropping resistor in each line of the regulated 120-volt lines, and 
shorting them out after a time delay of approximately 40 seconds. This somewhat 
gradual application of the filament power is expected to increase the life of the vacuum 
tubes by removing the thermal shock on each tube if full filament voltage were applied 
instantaneously. 

4. 8. 1. 4 Delayed Power 

This portion of the a-c line is applied to the d-c power supplies as 208/120 volts, 
3 phase, 4-wire Y. It is delayed in order to allow all vacuum tubes in the computer 
sufficient time to warm up before d-c power is applied 

4. 8. 2 D-C Power 

D-C power is supplied independently to each cabinet from the power supply.^ The 
prime reason for these independent cables was to allow the use of smaller gauge wire 
without increasing the voltage drop between the supply and the load, due to cab e 
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resistance and high currents that must be supplied. Similarly, to minimize the 
fluctuations of ground potential due to heavy transient currents that may occur during 
computer operation, the d-c power supply grounds or returns are not commonly joined. 
Separate ground wires for each supply are carried as far as the distribution point, where 
they are grouped together to form three independent grounds. These independent lines 
are carried to each cabinet, where they are commonly joined; cabinet ground is made 
at this same point. In addition, the cabinets of the system are interconnected to form 
one continuous cabinet ground. Through this rather complex scheme, it was hoped, a 
clean ground system would exist in the computer. 

As d-c power control, a large contactor is located in each cabinet. If for any 
reason any of the d-c or filament supply voltages should be missing, this contactor 
opens, automatically disconnecting all d-c power from the cabinet 

In case of any power failure, a-c or d-c, major or minor, an alarm is sounded. 

4. 8. 3 D-C Power Supplies 

Seventeen magnetically regulated d-c power supplies supply all d-c voltages 
required by the computer (Table XI). A simplified block diagram of a typical three- 
phase magnetically regulated supply is shown in figure 61 An item of interest is the 
use of a fuse shunted by an indicator in series with each bank of storage capacitors. 
If a capacitor shorts, the fuse blows and the indicator lamp indicates the blown fuse; 
however, the power supply does not shut down. It continues to operate, but with higher 
ripple and poorer regulation. Thus a shorted capacitor will not cause unscheduled 
computer downtime. 

4. 9 Computer Unit Testing 

4. 9. 1 Arithmetic Unit 

The first phase of unit testing consisted of checking the wiring of the unit, which 
required two men for approximately throe weeks. During the next phase, which lasted 
one to two weeks, corrections were made of the wiring mistakes detected during the 
first phase. The third and final phases consisted of the actual operational testing of the 

For testing purposes, the Arithmetic Unit was subdivided into a number of 
logical sections: the Multiplicand-Divisor register, the stages of the Accumulator, the 
Control Dispatcher lines, and the Clock Pulse system. Each subsystem was thoroughly 
checked before any packages were inserted for the next stage of operations. During the 
dynamic testing a number of problems were encountered. 

4. 9. 1. 1 Clock Repeater Oscillation 

When all Clock Repeater packages were inserted for distribution of the clock 
pulses, severe oscillations resulted. After eliminating the ground system, power 
supplies, lead dress, supply voltage decoupling networks, and cross-coupùng between 
the etched conductors on the Clock Repeater package as possible causes, it was 
determined that the parasitic suppressor grid resistors of the repeater cathode followers 
were inadequate. 

4. 9. 1. 2 Clock Pulse Distribution 

Ringing appeared on the clock pulses at the ends of the distribution lines from 
the load-driving Clock Repeater packages. Invesügation showed that the length of 
these lines (10 to 18 feet) was the cause. By altering the distribution of the clock pulses 
so that no clock line was longer than ten feet, and by terminating the end of each line 
with a resistor-diode network, the ringing was eliminated and the transmission delays 
along the lines were decreased 

4. 9. 1. 3 Short Delay Lines 

It was observed during the testing of the stages of the Accumulator, that the 
output signals from the short delay lines in many instances were marginal: that is, 
distortion and attenuation of the pulses passing through the delay lines were so great 
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TABLE XI 

MAXIMUM D-C POWER REQUIREMENTS FOR UDOFT œMPUTER 

Nominal Supply Current 
Voltage (Volts)_(Amperes) 

-4. 5 25 

-10 15 

-20 115 

-150 1-0 

-150 7.0 

-300 0.75 

+6 25 

+10 0. 25 

+20 40 

+48 2* 5 

+80 25 

+ 150 1-0 

+150 25 

+250 3.0 

+80MCV ±25V 1-0 

+ 150MCV ±25V 0. 7 

-150MCV +60V, -10 

Total Regulation* 

20% To Full Load 0 To 20% 

2. 5% 5. 0% 

2. 5% 5- 0% 

1.0% 2.0% 

0,5% 1.0% 

1.0% 2.0% 

2. 5% 5. 0% 

2. 5% 5.0% 

0.5% 1-0% 

2.5% 5.0% 

2. 5% 5. 0% 

2.5% 5.0% 

0.5% l.°% 

2.5% 5.0% 

2. 5% 5' 

2. 5% 2- 5% 

2. 5% 2* 5% 

2.5% 5.0% 

^Including peak-to-peak ripple and noise 
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that the output pulse was barely able to control the succeeding circuit. The problem was 
the result of reflections at the end of the delay line. 

The characteristics oí the delay lines were investigated; some exhibit capacitive 
characteristics, while others exhibited inductive characteristics. The ^«^wce m the 
reactive characteristics of these lines was found to depend on dressing of the ground 
braid of the distributed delay Une at the terminating end. If the braid extended over the 
helically wound center conductor and was taped tightly, the delay £ectlon wa® <:^"'. 
lively terminated; if the braid did not extend over the center conductor, the delay section 
was inductively terminated. 

It would have been highly inefficient to correct this by reartively trimming each 
delay line section* the problem had to be solved by accepting the physical quirks of the 
lines and attempting to overcome their effects. This was accomplished by increasing 
the pulse amplifier plate and screen voltages from +75 volts to +3° volts, to supply 
larger driving pulses and to decrease the relative amount of delay line distortion, and 
by providing a form of termination between the two 0. 4 delay line sections that comprise 

the 0. 8 delay line. 

4. 9. 1. 4 Long Delay Lines 

During the testing of the G-Register stages, it was found that the 5. 0 cl^k 
neriod and the 5. 6 clock period delay lines, specified to be 4. 8 and o. 4 clock periods 
long respectively could not be trimmed by the addition of 0. 2 clock period delay tines. 
Pulse distortion and attenuation in the long delay lines were too great to^owf “"T*cting 
the delays in series. The addition of repeater pulse amplifiers compensated for the 
difference of 0. 2 clock period and reshaped the distorted piuse to one wib be -e-.r-d 
characteristics. 

4. 9. 2 Control Unit II 

This was the second computer unit to be delivered for test Testing foUowed the 
same general plan established for the Arithmetic Unit: namely, wirmg check, wiring 
correction and unit test Because improvements had been made affecting this as 
a result of*the extensive dynamic testing conducted on the Arithmetic Unit, no significant 

problems were encountered 

4. 9. 3 Control Unit I 

This was the third computer unit to be delivered for test. Again, no significant 
problems appeared. However, Control Unit I could not be completely tested 
dvnamically, without the thirty timing pulses of the five-microsecond minor cjcle. 
Since the timing pulses are generated in Control Unit H, the first major unit -nter 
corím;ction was^made between the two control units. When they had been tested together, 
all the necessary controUing functions for the Arithmetic Unit were available, the 
Arithmetic Unit was then connected to the Control Unit I - Control Unit H combination. 

4. 9. 4 Main Frame Test 

The next step was the dynamic testing of the Main Frame, consisting of the 
Arithmetic Unit, Control Unit II, and Control Unit L Since the Computer Console ana 
the Memory Unit were not available, it was necessary to substitute for these two 
units a simulator panel which contained all the functions otherwise normally available. 
As a result, the execution of the following instructions were checked on a single in¬ 
struction basis: Add, Absolute Add, Clear Add, Clear Absolute Add, Subtract 
Absolute Subtract, Clear Subtract, Clear Absolute Subtract, Mulhpiy, Multiply Add 
Divide Shift (Left and Right), and Shift Add. Testing the remaining tnstructions which 
involve Program Control, Storage, and Input-Output, haa to be deferred until both the 
Memory Unit and the Console were available. 

4. 9. 5 Memory Unit Test 

After the Memory Unit wiring had been checked and corrected dynamic testing 
was begun in very limited form. Enough packages were inserted to allow the operation 
of a complete read-write cycle for a single core in a single memory plane- 
results were encouraging in that the operation of the single core was wholly adequate. 
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Eventually packages were inserted to allow the testing of a single core in each of the 
other memory planes. Finally the packages for the memory addressing function were 
inserted, thereby allowing the testing of whole words anywhere in either memory. 

At this stage considerable difficulty was encountered with the operation of the 
number memory. With the Sense Amplifier and the Inhibit Driver Amplifiers adjusted 
properly for reading and rewriting the contents of a particular number-memory storage 
register, it was not possible to read out of or write into another storage location without 
making minor adjustments to the two amplifiers. Also, within the same storage location, 
variation in the ONE and ZERO content of the stored number affected the reading out of 
the number. It was quite certain that a wrong temperature did not cause the hindrance 
from location to location or within the same location, since the air conditioner was 
functioning properly. This avenue had been investigated because the first diagnosis 
indicated that the cores were switching much too rapidly. There was also a noticeable 
increase in the noise level on the sense winding, caused by partially selected cores and 
by selected cores storing ZEROs. 

Examination of the X-Drive and the Y-Drive lines threading the planes revealed 
drive current variations as the pattern of ONEs and ZEROs in the stored word was 
changed. The drive current is affected by the reactive load on the drive line, and this 
reactive load varies proportionately with the number of ONEs being stored. Thus the 
driver has a high impedance load when a majority of ONEs is being stored, and a low 
impedance load when a majority of ZEROs is being stored. As a result, the variable 
load on the driver causes variation in the drive current waveform generated by the 
driver. When the impedance is low, the driver output is essentially underdamped, 
allowing considerable overshoot on the leading edge of the current waveform. If the 
overshoot is great enough, there is sufficient drive in this half-select signal to cause 
only partially selected cores to switch, and to cause greater noise output from cores 
storing ZEROs. In addition, it causes the one wholly selected core to switch much 
more rapidly. The overshoot under worst load conditions was found to be in the order 
of 60 percent. 

The addition of a shunt RL circuit in the supply line between the constant current 
sources and the cathodes of the Gate Generator Tubes (type 5998) corrected the overshoot. 
The effect was that of introducing a fixed reactive load without causing current wave¬ 
form deterioration, such that variations in the reactive load of the cores became a less 
significant load determinant Effectively, the driver impedance was increased to make 
it more nearly a true constant-current source. Though overshoot could not be 
eliminated completely, it was reduced to approximately 10 percent in the case of the 
worst load; this reduction appeared adequate for proper memory operation. 

A similar change was incorporated in the Instruction Memory: no difficulties were 
encountered during its unit-testing. 

4. 9. 6 Input-Output Unit 

Delivery to test of the last major computer section, the Input-Output Unit, was 
delayed a number of months beyond the scheduled date, due to more pressing items associated 
directly with the Main Frame. To prevent this lateness from harming the overall 
program, the unit test phase was accelerated by eliminating the dynamic test portion. 
Rather than to check the unit independently of the rest of the system, it was tested 
dynamically as an integral part of the computer system. 

Testing of the Discrete Outputs revealed that, although ample signals were 
routed to the console for driving the discrete output indicator lamps, the d-c bias 
level was too positive. This problem was resolved by introducing voltage dividers at 
the inputs to the transistors driving the console indicator lamps. 

The main problem in the input-output area concerned the actuation of the slow'- 
speed printer. The operation of the steering switch which selects the stages of the 
registers to be printed out was inadequate and required modification. In addition, 
actuation of the stepping switch and the binary-to-octal converter relays introduced 
transients into the system sufficient to affect some of the registers. The judicious use 
of decoupling networks and the terminating of the register outputs at the stepping switch 
resolved these problems. 
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4. 9, 7 Computer Console Unit 

Only a minimum amount of testing, other than checking the “uld be 
performed on the Console Unit by itself. Therefore the unit was connected into the 

system. 

Immediately apparent were problems caused by the contact bounce of me 
switch the Manual Memory switch, the Sequence Counter Reset switc^ and me In, 
Timer Reset switch. The problem caused by the latter two switches was sol/ed bJ 
utilizing a relay with sequential transfer contacts. In this way, the clear «8”* w . 
be removed prior to removal of the set signal, thereby 
nrnhlpm caused by the Start and Manual Memory switches differed radically m max, m 
^ach Tne swUch conict actuated two different pulse amplifiers, and unless the mput 
and triggering characteristics of the two amplifiers were identical switch bounce could 
causae'improper operation. The solution required both changes in the computer logic 
and the addition of relays with mercury-wetied contacts. 

Another problem area, somewhat more general in sc0Pe' 
interaction between console switches and the computer circuitry which drives the console 
indicator lamps The solution was the separation of switch voltage buses and investor 
voltage busesP and sufficient decoupling of each to minimize bom the transients that 
occur as a result of switches being operated and the effect of these transients on the 
driving sources in the central computer. 

4. 10 Computer System Testing 

The first system test was that of the manual control of the two core memories 
from thfTconsole üTs had been carried out successfully, the instructions bhat 
constitute the computer instruction repertoire were checked on a 
basis! ¿her than a major logic problem concerning the Transfer on Overflow <TOV> 
instruction, no serious problems were encountered 

The next stage of testing involved loading an entire f 
ooeration in the fast mode. The first difficulty encountereo during this phase was 
incorrect program read-in. The causes for improper card read-m were f^ed to 
caoacitive*coupling between the high impedance card reaaer input Imes and agam 

gave rise to the large signals being coupled into physically adjacent 
the two t^es of network! had been added, no trouble was encountered in obtammg re- 

rewrS-^== output 

Finally, on 22 January 1959, successful operation of the computer sy^em under 
program control was attained The control program was Memory Test 
Program Although the program consists of only forty or fifty' mstructions it is 
executed for each number memory register. Thus, the gross program length is 
approximately 200, 000 instructions. Since the instructions are predominan j 
requiring only five microseconds, the program was executed in approximately one 

second 

The next sten was to attempt the Computer Diagnostic Program. During the time 

^.erfoU0owtegharePsome of toe" ^Son or^^er “nritions^Mth occurred in the 

computer as the result of wiring errors: 

a. Incorrect Accumulator sign generated for product if multiplicand negative 

b. NOP order decoded improperly 
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c. Number Memory parity formation incorrect when 02TRR = 1 
(The second least significant bit of the transfer register was a 1) 

d. Incorrection determination of NSN, which is essential for MXDO 
instructions; NSN is the amplifier which anticipates the next sign 
of the accumulator 

e. G-Register Error indicator failing indicate errors 

f. Two discrete input switches controlling the same number-memory 
register 

g. Number parity error incorrectly determined 

On 23 April, 1959, the computer executed successfully the complete Computer 
Diagnostic Program. Ironically, the last problem was a loose plug-in pulse amplifier 
package in the Arithmetic Unit This pulse amplifier was the last stage of Dispatcher 
Line 5 which controls the shift-left operations. Once tbia fault had been cleared, the 
Diagnostic Program was run for two and one half error-free hours, before operation 
was terminated arbitrarily. 

Due to the noticeably unreliable operation of the Number Memory, it had been 
decided to revise the Number Memory Test Program in order to yield a more stringent 
test of the memory. The revised program checks each number memory location for its 
abiUty to store forty different bit configurations; twenty configurations of a single URL, 
and twenty configurations of nineteen ONEs. The program consumes approximately 
nineteen seconds of operating time. 

'The program is quite simple and was so prepared in order to eliminate as many 
programming problems as possible. The brute-force aspect of the program is borne 
out by the fact that it required but two hours to debug the program completely and to 
make it operational. During the latter part of April, after the successes with the 
Diagnostic Program and the revised Number Memory Test Program, the analogoutpul 
system was checked by means of the Analog Output Precision Test Program^ The 
program causes a test servo to assume ten discrete positions, 325 apart. The position 
of the shaft (encoder) is read into the computer via an analog input channel, and die 
difference between the actual shaft position and the desired shaft position is determined 
and stored for print-out when the routine is complete. A number of output cnannels were 
checked and adjusted as necessary. Due to the element of time, not all output channels 
were checked prior to the commencement of aircraft simulation program check-ou, on 
5 May 1959. As time was available the remaining output channels were checked 

During the month of August 1959, at a time when the programmers were involved 
with an F-100A simulation program problem, the complex Instruction Memory Te 
Program was attempted. After a few program modifications, lf.a 
computer could execute the program flawlessly, stopping only at IMAD 7171 due to a 
bad core in the seventeenth plane. This situation was remedied by replacing the 
defective plane. 

As a result of the successful execution of the Instruction Memory Test Program, 
four service programs (Number Memory Test, Diagnostic, Number Memory Test - 
Revised, and Instruction Memory Test) were now available for periodic confidence 
checking of the computer. As time permitted, effort was applied to the debugging of die 
Number Memory Checkerboard Program. Ultimately the checkerboard program was 
debugged and added to the group of available computer service programs. 

4. 11 Trainer Modification and Static Test 

To minimize the costs of developing the digital flight simulator system, the 
government provided to Sylvania two flight simulators: an F-100A Simulator Tramer, 
Type MB-3, and an F9F-2 Operational Flight Trainer, Device 2-F-13. Furtiier, the 
government directed Sylvania to make use of the analog simulators, the use being 
limited only to the extent that all aerodynamic, powerplant, and aircraft systems 
calculations be performed by the digital computer. Thus extensive use was made of 
such items as the trainer cockpits, the instructor's stations, the operator s stations, 
the integrating servos and the radio-navigational aids. 
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The trainer cockpits were modified to allow their use with the digital computer; 
potentiometer transducers were replaced with shaft-position-to'digital encoders and a 
number of cockpit switches and indicators were disconnected from the analog computer 
and rewired to the digital computer. Similar modiftcations were made to the instructor's 
stations and the operator's stations. The analog computer integrating servos were 
modified to function as conventional positioning servos; however, a synchro transmitter 
was added to each servo which was used to position similar instruments in each cockpit. 
The radio-navigational aids sections of the analog devices were left unmodified. The 
majority of the parts and assemblies which found use in the final UDOFT system were 
obtained from the F-100A analog simulator. 

Initial testing of the modified trainer cockpits was limited to a continuity check of 
the lines of communication between the trainer and the computer, and a static operating 
check of the transducers and the indicators with the trainer cockpits. To facilitate the 
check-out, a small test panel was developed which ultimately became an integral part of 
the trainer. (Figure 64. ) The 24 toggle switches grouped in two rows of 12 switches 
each, at the top of the panel, simulate the discrete outputs (relay closures) from the 
computer; the ten indicators immediately below the discrete output switches and to the 
left of center are used to indicate the state of the ten-bit analog input derived within the 
trainer; the ten indicators to the right of center are used to indicate the states of single 
discrete inputs derived within the trainer. The test leads, the two rows of test jacks, 
and the two AN connector receptacles provide the means for connecting the test panel 
to the trainer. The 20 test leads are associated with the ten analog input indicators and 
the ten discrete input indicators. No test leads are associated with the 24 simulated 
discrete inputs; the reason will be apparent from the material that follows. The test 
points are connected permanently to the left-hand AN connector receptacle. This 
allows the "patching" of the indicator to the appropriate signal lead within the trainer 
cable assembly. The right-hand AN connector receptacle is not connected to the test 
jacks; it is wired permanently to the twenty-four discrete output switches. This was 
done because there are only 24 discrete output lines from the computer to the trainer 
all of them grouped within a single cable assembly. Therefore the right-hand receptacle 
is used only for checking trainer components actuated by discrete outputs from the 
computer. 

In order to check the output from any shaft-position-to-digital encoder or 
trainer discrete input switch, the trainer cable assembly carrying these signals is 
disconnected from the computer's Input/Output unit and connected to the left-hand 
receptacle on the test panel. After determining, from a posted reference list, the 
designation of the connector pins carrying the desired signal, the appropriate status 
indicator is connected, via the test jacks to the connector. 

The only items not checked directly by the test panel are the computer analog 
outputs. The instrument-positioning servos, which are activated by those outputs, 
may be checked either by connecting a variable d-c voltage source to the appropriate 
cable assembly connector pins or by using the manual servo-positioning facility which 
was retained when the F-100A simulator-integrating servos were modified to simple 
positioning servos. 

4. 12 Review 

This documentary report cannot relate the pertinent facts of the development 
of the UDOFT system in a single logical series of report sections, because the 
development of the UDOFT system involved the concurrent development and integration 
of two major items, system hardware and system software. The three preceding 
sections have related the prominent aspects of hardware development, namely, the 
UDOFT digital computer. The two sections that follow relate the prominent aspects 
of software, or computer programming, development At the conclusion of these 
sections, the two major items of consideration, system hardware and software are 
integrated and the remainder of the report is devoted to various aspects of the UDOFT 
system as a whole. 
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Figure 64. Trainer Static Test Panel 
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SECTION V 

SIMULATION PROGRAM DEVELOPMENT 

A review in the year 1962 of the development of the computer programs for the 
UDOFT computer is in many respects a study of the ancient history of the computer in¬ 
dustry. The UDOFT programming tasks were initiated in 1956, comparatively early for 
attempting the real-time simulation of a dynamic system on a digital computer. Many 
of the problems encountered in preparing a satisfactory flight simulation program have no 
similarity to those encountered in the more usual applications of digital computers; a dis¬ 
cussion of these problem areas is necessary if one is to appreciate their implications. 

The following sections delineates the history of the programming task for the 
UDOFT computer. Detailed descriptions of selected aspects of the simulation program 
for the F-100A aircraft are presented in Section VI, RESULTANT PROGRAM. 

5. 1 Simulation of the UDOFT Computer 

At the outset of the UDOFT project, the need for a readily available digital com¬ 
puter to simulate the UDOFT computer was apparent, because the operational flight- 
simulation programs were scheduled to be prepared and debugged shortly after the com¬ 
puter was made available. This meant that initial check-out and trial verification runs 
had to be conducted on another digital computer. Further, UDOFT computer test and 
exercise programs were being prepared to facilitate the verification of computer operation. 
Confidence had to be established in both the computer and the associated programs before 
they could be of use. 

Accordingly, a program to simulate the UDOFT computer on an IBM 704 Computer 
was prepared. The IBM 704 was selected primarily because it was probably the most 
popular general-purpose digital computer readily available throughout the country at the 
time the UDOFT simulator program was undertaken. This simulator program, known as 
PSEUDOFT (PSEUDO-UDOFT) is a control program that instructs the IBM 704 to execute 
a program written for the UDOFT computer in UDOFT language. 

The original PSEUDOFT program was divided into three main sections: the loader, 
the simulator, and the reporter. The loader controls the insertion of UDOFT instruction 
and number words from magnetic tape into the 704 magnetic core memory. The simula¬ 
tor, which forms the bulk of the PSEUDOFT program, translates each UDOFT instruction 
into 704 instructions which then cause the desired operation to be performed. Finally, the 
reporter interrogates each instruction to determine if any output is required, and if so, 
causes an on-line print-out of information on magnetic tape. The rest of the data is 
printed off-line. 

The intent of the program was to simulate all operations of interest to the program¬ 
mer, rather than all pulse-by-pulse actions of the UDOFT computer. Simulating the 
UDOFT instructions required subroutines for the 704 which varied from two to thirty-five 
704 instructions, those for the more basic UDOFT instructions and for the UDOFT Shift 
and Add instruction. As a result of this and the speed disparity between the 704 and 
UDOFT, the time ratio for simulation was approximately 150:1 when using PSEUDOFT to 
run a UDOFT routine. This ratio increased even more when output was required from 
PSEUDOFT. 

In preparing the PSEUDOFT program the problem was not so much in deciding how 
to do a certain thing but rather what needed to be done. The preparation of the first ver¬ 
sion of PSEUDOFT was hampered by the limited 8000 word memory capacity of the 704. 
This imposed heavy restrictions on the programs to be run on PSEUDOFT, since the full 
8, 000 words of the 704 memory would not be available to simulate the UDOFT computer 
memory. Furthermore, the memory limitation complicated the coding of PSEUDOFT, 
because care had to be taken to conserve the 704 memory in order to minimize the re¬ 
strictions on the UDOFT programs. Efficiency of the PSEUDOFT program was critical 
also, since many passes through PSEUDOFT would be required to effect a few seconds of 
real-time simulation. This requirement became more important when it was realized 
that the UDOFT routines had to be run several times on PSEUDOFT before they were con¬ 
sidered adequately debugged. 
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When the 709 replaced the 704, the same PSEUDOFT program continued in use. 
However, it was not as efficient because programs written for the 704 were not directly 
applicable to the 709. Since many users of the 709's were former 704 users, an input 
compatability program was made available by means of which 704 programs could be read 
into the 709. The resultant inefficiency was tolerable. However, the use of the 704- 
PSEUDOFT program on the 709 would have continued had it not been for a desire to aug¬ 
ment the PSEUDOFT program with other program preparation and checkout aids. Since 
these programs were to be written for the 709, it was decided to rewrite PSEUDOFT for 
the 709 to achieve maximum efficiency. 

The 704 PSEUDOFT program has not been discarded. It was used recently by a 
user of the UDOFT computer system who had a 704. The use of PSEUDOFT allowed him 
to debug his UDOFT programs rapidly because PSEUDOFT was able to provide him with 
data concerning the progress of problem solution. 

If the computer to be used in a system is the first of a kind, a simulator program 
such as PSEUDOFT is essential. Also, if the computer is highly specialized and its input- 
output facility is severely limited, as is the case with the UDOFT computer, a simulator 
program is highly desirable. 

The use of PSEUDOFT had several side effects which are mentioned in a succeed¬ 
ing section, "Checkout and Test." During the course of preparing these programs, vari¬ 
ous additions were made to the PSEUDOFT program to increase its capability. The 
finished PSEUDOFT program offers tracing, timing, variable output, overflow indication, 
and programming-error detection capabilities. 

5.2 Use of Automatic Programming Techniques 

The use of automatic programming techniques was essential to the successful com¬ 
pletion of the operational simulation programs for UDOFT. It would have been virtually 
impossible to complete the programs without the help of an assembly program. This 
point is emphasized because, although the desirability of an assembly program is self- 
evident now, it was by no means obvious at the time the work was begun. A brief history 
of this aspect of the programming task follows. 

At the beginning of the programming task it was assumed that all programs were 
to be written in binary. Thus, if an instruction read "clear and add the contents of number 
memory register four, " the instruction would be entered onto a UDOFT coding sheet as 
340004. This required a knowledge of the binary (or octal) representations of the( UDOFT 
order code. It required also that the numerical data, such as might be stored in "number 
memory register four" would have to be entered in binary (or octal) form. The task of 
converting decimal data to binary would be done manually. Accordingly, PSEUDOFT was 
written to accept program and numerical data in octal form. 

During the summer of 1958, the programming task became overpowering. Valu¬ 
able time was lost to converting decimal data to octal form. As a recourse, the standard 
IBM 704 Assembly Program (SAP) was modified to convert numbers from decimal to fixed 
point binary, using a scale factor selected by the program. As an example, consider the 
conversion of Sin 4° to octal. Without any scale factor indication. Sin 4° = (0.069756)10 = 
(0. 043556)g . With a scale factor of Bl, the octal representation will be shifted one binary 
place to the left (equivalent to shifting the radix point one binary' place to the right) result¬ 
ing in (0. 0216670)g. Thus, (0. 069756) jq is transformed into (1).0216670)8. 

In this way, all numerical data was assembled. The modified assembly program 
was used for this purpose only. PSEUDOFT was, in turn, modified to accept the binary 
cards processed by the assembly program. 

Up to this time no thought had been given to the preparation of binary input cards 
for the UDOFT computer. The UDOFT punched card format is unique, and as such posed 
a problem. This problem was alleviated by preparing a program that would manipulate 
bits, as they appeared in 704 core memory, and punch them out on cards suitable for entry 
into the UDOFT computer. This meant that anything that had been used as input to PSE¬ 
UDOFT, whether numbers assembled by the modified assembly program or program in¬ 
structions coded in octal, could be punched on cards in accordance with the UDOFT punch¬ 
ed card format. 
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These modest innovations were a great advance, but still did not alleviate the 
problem of writing instructions; instructions still were coded in binary form. In the spring 
of 1959, it became apparent that it was possible, with very little effort, to further modify 
SAP, the 704 Assembly Program, so that it would assemble all parts of the UDOFT pro¬ 
gram. From input consisting of mnemonic coding using symbolic addresses, the modified 
SAP could produce absolute coded programs in accordance with the UDOFT format, suit¬ 
able for running on PSEUDOFT and for subsequent punching on UDOFT format cards. 
Writing a working assembly program was accomplished in a few weeks. This first assem¬ 
bly program known more commonly as UDAP (UDOFT Assembly Program), provided two 
forms of output; a 704 binary deck suitable for use with PSEUDOFT and an assembly listing 
in UDOFT language. 

The conversion of 704 PSEUDOFT binary cards to UDOFT binary cards required 
the use of the punch program mentioned previously in this section. In order to eliminate 
this extra step, UDAP was modified again to punch UDOFT binary cards suitable for direct 
entry into the UDOFT computer. In addition, the assembly was modified further to write a 
magnetic tape, an equivalent of the 704 PSEUDOFT binary deck. This modification elimi¬ 
nated the time-consuming task of on-line punching of cards for PSEUDOFT; further, the 
resultant tape could be read into the 704 more rapidly than the punched cards. A final 
modification was the incorporation of parity determination for the assembled UDOFT in¬ 
struction and number words and the subsequent print-out of parity as part of the UDOFT 
assembly. 

The designation of the program, since it had been modified to such an extent, was 
changed to UD2 (considering the original UDAP as UD1). 

Shortly after UD2 had been prepared and was being used, the decision to rewrite 
PSEUDOFT for the IBM 709 was made. At this time a review of the many utility programs 
was undertaken. Since the assembly program had become such a powerful tool, and the 
need for PSEUDOFT was declining, it was decided to revamp UD2. However, now that the 
709 had replaced the 704, the 709 Assembly Program (9AP) was to be modified to cater to 
the needs of UDOFT, and continued modifications of the 704 Assembly Program (SAP) 
were terminated. The resultant UDOFT assembly program became UD3. Aside from 
using the 709 more efficiently, UD3 incorporated the forbidden sequence tester which un¬ 
til this time had been a separate program used in conjunction with PSEUDOFT. A still 
later version UD4 is now in use. UD4 is used with the 7090 computer, and prepares the 
12-word per card binary cards. 

A sample print-out of a UDOFT routine assembled by UD3 is presented in figure 
65; the example selected is the Governing Control Program for the F-100A simulation 
program. The information appearing in four of the first five columns (IMAD, R, OT, 
NMAD) is punched onto UDOFT binary cards; the remaining columns are printed on the 
assembly listing to facilitate visualization of the assembled program. 

The use of an assembly program to aid in program-preparation for future simulators 
is strongly recommended. A compiler for flight-simulation programs may even be more 
useful; it is well known that the computer industry as a whole is moving in the direction of 
compilers. However, in making the decision on compilers, the following aspects must be 
considered: 

1. The validity and efficiency of the object programs produced by a compiler. 

2. The ratio of time spent in writing a compiler to time saved in writing flight- 
simulation programs. 

There is no question in the mind of most people in the computer field with regards 
to the usefulness of compilers in general. Most experienced people say that compilers cut 
programming time to about one quarter of the time required for symbolic coding of the type 
suitable for assembly programs. On the other hand, for a large system,compilers have an 
inherent disadvantage in that it is difficult to insert temporary check points or to make 
small changes to a completed program. It is also difficult to minimize running time, or 
even simply to keep track of running time. These disadvantages become more pronounced 
when preparing flight-simulation programs; however, they may not be intolerable. 

The time required to write a compiler is another disadvantage. There is no way 
to simply and easily modify one compiler so that it can be used on a different machine 
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:hasSperíormed on'sAP toi reatfuDlp "oald TORTRAN into" com'terfo r anothe r 

computer. 

In the long ran it might be useful to ^r^^reLrlbfe'however^toVaU until 
grams, perhaps a sperialiy-wrltt^ c°.simulation have been evolved before the use 
generally acceptable techniques of digital flight simulation na e required to pro- 
of a compiler is attempted. This conclusion phased P^VshouS be written carefully 

at'first^and^that from this process, guidelines for a special-purpose compiler can be ex- 

pected to emerge. 

5. 3 Checkout and Test 

' Ch,ck„«t 
iirfit. on the 704 (or the 708l”s»í i.ll, .itheot any pro- 
will be described, and second, 0I^thepseUDOFT but it was not a universal 
gramming aids. The primary debuggi g nrntTram's inability to handle interface prob- 
tool because of costliness and the simula ° P ^ UDOFT impeded the meeting 
lems. The absence of programming aids for ^eckout^on the uuu^ compuieTi 

of the development schedule. Also the inP P already operational, are inade- 
while adequate for flight simulation programs which are already op 

quate for the debugging process. 

oo^r rr 
culating the values of the functions on a straight 704 program. same as that 
possible because the card input used for thet 7°4 *aS^se th¿ major source of 
used on UDOFT Using the sa“®hC^dEu^oFT checking out the workings of the function 
gX^Lb^Se? thelxPensL^se o°his simulator program for function data check- 

out was thus eliminated. 

Foiio-i.!ihe rkr^a?s*Ä" --1“ “ä” p 
««h »¿fr “c., .» O^r .. hy-p... «h. ».cion „..«or Ppr íppc- 

tiens of'these variables and thus conserve computer time. 

5.3.1 Trace Facility 

The facility By^Srly6 

piete^trace t^o^co^e o^^us getting the maximum possible amount 

of information from a single run on PSEUDOFT. 

An example o. a UDOFT r.n.in. ^líSSÍn" 
of the sine and the cosine of the ang^ a^ÆS1 gine and the coSine of the angular position 
determined that linear approximations of t ired accuracy. Thus, the routine 

roCÄ-liSed^^nnl theW"linearized" cosine of the angle to which the 

indicator should position. 

Prior to entry into this routine, altitude^has^tee^tCompute^^o ^ per revolution> 

Since the altitude indicator is a multi-t tMs rangf> of jooo feet the variable is 

L^teratdthln^cX^r-Unelrized'' sine and cosine (figure 66). 

The flow diagram of the routine 
the UDOFT computer evaluates the sme and the « transfers. The four-digit 
points in the routine that are att^in^ ^ . recorded on the program coding sheets 
numbers in each block indicate the instruct ons. contained within 
(figure 68), that cause the computer to perform the macro oper 

that block. 
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The program coding sheets (figure 69) contain all the program information that ^ 
must be entered into PSEUDOFT for this program. This information includes instruction 
words print-out requirements (I), and number words. Where possible a brief description 
of each instruction, or a group of instructions, is given. .Th!fe 
of the effort that must be expended to prepare a program rn absolute form The expenditure 
of effort is reduced greatly when the programs are prepared in symbolic form and the 
assembly program is used to prepare the assembly Listings which ^11 
parable to that contained on the absolute coding sheets. An assembly hstmg of this same 
routine (figure 69), assembled as a part of the total F-100A program, provides a realistic 
indication of the extent to which an assembly program relieves the programmer of an inor¬ 
dinate amount of clerical work. 

As has been stated previously, the purpose of PSEUDOFT waa to mähe possible 
a certain amount of checkout of the operational flight programs prior to 
UDOFT computer. A simulator should provide exactly the same output as computer 
bein« simulated Fortunately, however, PSEUDOFT provided much more output than the 
UDOFT computer, specifically, it provided a means for tracing tiie exact operaUon of any 
program run on it. During the course of checking out the aircraft simu^tion progrès, 
it became obvious that a selective trace facility was of the greatest value in debugging 
programs.° (Since the completion of the UDOFT project the simulator-tracer technique of 
program checkout has been successfully used with a large data processing program.) 

In both these cases, the full trace facility was used because it came as an adjunct 
to the simulator, and the simulator was deemed to be absolutely necessary. Most com 
puling facilities do not provide full tracers as part of their debugging program package, 
it is generally thought to beawaste of money. The usual Une of argumen ^that a full 
trace8 pro gram means an interpreter*; an interpreter is expensive to write and to 
the advantages do not justify the expense. It is true that a real tracing program requires 
an interpreter. It is not true that an interpreter is expensive to write; an interpreter ca 
be written in about four man-weeks for a medium size (32 instruction) computer. K is true 
that an interpreter is expensive to use; it is more expensive to run a program on an inter 
prêter than to free-running it on a computer. Note, however, that interpreters are e g 
considered for debugging runs, not production runs. Therefore, one should not calculate 
cost per run but cost per piece of information, since meeting a schedule mid documenta¬ 
tion of test results are'also prime considerations. The criterion for an effective de 
buggîng iïn drifts even further away from cost per run. When these other factors are 
taken into consideration, the utility ofdebugging runs using a trace increases even more. 

For future applications of digital computers to the real-time simulation P^lem, 
it is strongly recommended that an interpretive routine be written which allows tracing 
to be impllmentedõn the final operational computer, especially if the computer is avail- 
able at the beginning of the project. 

* A simulator is one form of interpretive program. 
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5.3.2 Dump Facility 

A routine was written to dump certain sections of the 709 core memory in a form 
compatible with UDOFT notation. It was designed to assist the programmer in debugging 
a UDOFT program being test-run with the PSEUDOFT program. The contents of special 
registers in the 709 head the dump listing followed by the contents of special registers 
used by the UDOFT computer and simulated by PSEUDOFT (figure 70). 

The first line printed out by this program indicates the contents of the 709 Accu¬ 
mulator (AC), the three Index Registers (X REGS A, B, C), and the status of the four 
Sense Lights. The second line of the printout contains the status of the six 709 Sense 
Switches; the Accumulator and the MQ Register Overflow lights; and the Divide Check and 
Tape Check flip-flops. The third line of print-out indicates the address of the last UDOFT 
instruction that was simulated, the instruction, and the contents of the Tally Register and 
the Interval Timer. The fourth line indicates the status of the UDOFT Accumulator (AU), 
Transfer Register, and the G-Register. The fifth line indicates the status of the sixty- 
four Discrete Inputs, which, even in the simulator, are accessible to the programmer. 
The non zero contents of those registers which simulate the UDOFT Analog Inputs are 
printed and identified on successive lines. In the case of the example of figure 70, only 
one analog input channel, A109, is nonzero. 

Following the aforementioned print-out of special registers, the contents of the 
locations reserved for the "cockpit" program (a program to control input parameters to 
the UDOFT program) are printed out in 709 format. The 709 control program for the 
example of figure 70 occupies memory registers 24000 - 24040 (the reader is reminded 
again that octal notation is used throughout). UDOFT instruction memory registers 
(lOOOOg - 20000g, 709; OOOOg -7777g, UDOFT) are then dumped in UDOFT format, by¬ 
passing eight or more successive registers whose content is identically ZERO. At the 
completion of the instruction memory dump, the number memory is dumped in the same 
manner. 

The sample dump shown in figure 70 should provide a clear picture of the form 
and the content of a dump from PSEUDOFT. The particular example is a preliminary 
program for F9F-2 ice quantity. It should be noted that the number memory dump is not 
duplicated in its entirety; it has been terminated arbitrarily at number memory location 
2030 in order to facilitate its inclusion in this report. Normally, the entire number 
memory is dumped and printed. 

It is the majority opinion of the programmers that although the dump facility should 
be included, it should not be substituted for tracing in order to f^ave computer time,11 
since, in general, it is the trace which saves running time over the long run. It is felt 
also that a more convenient method of ordering a trace should be incorporated in the 
simulator package; the method of indicating "printout desired" on the same cards as the 
program input offers an obvious disadvantage ih that the program input cards themselves 
must be changed from run to run. In contrast, for a recent simulator implemented at 
Sylvania, a trace is commanded by console switch settings, a more desirable method. A 
further refinement is to indicate that certain segments of memory only are to be traced, 
or that the program is to be traced from the time the Program Counter contains a^ to the 
time it contains a2. Either approach would be simple to implement, as long as an inter¬ 
pretive program is available. 

5.3.3 Other Checkout Aids 

As more and more programs were assembled and dynamically tested on PSEUDOFT 
it became apparent that a truly flexible means of control should be provided in addition to 
the fixed control program incorporated in PSEUDOFT. This control was provided by 
coding extra control orders with the UDOFT instruction words which cause PSEUDOFT to 
break off the simulation and transfer control to one of seven predetermined 704 addresses 
(for the 709 version, this was reduced to four addresses). At this address the program¬ 
mer can place a 704 (709) program to accomplish the desired control. After the execution 
of the control program, control is transferred back to PSEUDOFT and the simulation 
continues from the point where it was interrupted by the initial transfer of control. 
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0000000 
0000020 
4000000 

4000000 

ooooooo 
ooooooo 
0000240 

ooooooo 
ooooooo 
ooooooo 

-0006200 
ooooooo 
0741216 

1714630 
4143366 
ooooooo 
ooooooo 
5320172 

-0660422 
2663146 
2231462 
4631462 
1250000 
3220000 
ooooooo 
0160506 
1324772 
0207034 

0000002 
0000022 
ooooooo 
4000000 

4000000 

ooooooo 
1000000 
ooooooo 
ooooooo 

■0000002 
■0006200 

0000560 

5050356 

0546314 
ooooooo 
ooooooo 
ooooooo 
3100000 
6727262 
0605074 
3600000 
2663146 
5174264 
0372000 
7776000 
6662200 

-0254020 
5204742 

00 0000 
07 0000 

12 0164 

22 6160 

10 6223 

34 6422 

10 6226 

34 6422 

03 6226 

23 6432 

0000004 

0000024 

ooooooo 
ooooooo 
ooooooo 
ooooooo 
1400000 

ooooooo 
0001440 

-3330000 
OOOOOOO 

1651400 
0146314 

2352224 
0571370 

-0054500 

2400000 
4663016 
0372000 
0266314 
4540000 
1700000 
1463146 
OOOOOOO 

3376756 
-0277272 

4463146 
4061114 

00 0000 
00 0000 
25 0005 
34 6422 

23 6422 

03 6226 

2 3 6422 
31 6423 
34 6427 

03 6000 

0000006 

0000026 

OOOOOOO 
ooooooo 
ooooooo 
OOOOOOO 
3600000 

ooooooo 
0001440 

-5552000 

ooooooo 
ooooooo 
0006200 

0062000 
0663146 
OOOOOOO 

1200000 
3314630 
0705430 
7020000 
017 5000 
7652632 
0764000 
OOOOOOO 

-0365604 
2643656 
0314630 
1463146 

00 0000 
00 oooo 
10 6174 

30 6423 

03 6226 

31 6426 

03 6226 
10 6217 

14 OOOO 

07 OOOO 

0000010 
0000030 

4652506 

OOOOOOO 
OOOOOOO 
7777776 
0006200 

OOOOOOO 
0004000 

4340000 

0540000 

0025750 

1200000 
0152200 
0776030 
0620000 
0204700 
1320712 
0030242 
3100000 

-5347564 
2631462 
OOOOOOO 

0075340 
0111564 
4543000 
7776000 

00 oooo 

00 oooo 

31 6420 

10 6223 
34 6422 

22 6212 

34 6442 

23 6422 

23 6422 

00 OOOO 

0000012 
OOOOOOO 
1000000 
4000000 

ooooooo 
ooooooo 
0024000 

ooooooo 
ooooooo 
ooooooo 
ooooooo 
5300406 
0125604 

3453004 

5341216 
OOOOOOO 

5000000 

0136152 
6034332 

0144000 
5643504 

1463146 
1212000 
OOOOOOO 

1031462 
2143222 

3231462 

3376756 

00 oooo 
00 oooo 

22 6172 

23 6422 

30 6425 
31 6421 

31 6424 

03 6226 

23 0246 

00 OOOO 

0000014 

OOOOOOO 
1000000 
OOOOOOO 
OOOOOOO 
7776000 

0651630 

-777 3750 

0372000 

OOOOOOO 
OOOOOOO 
4600000 

2400000 

0646314 
0300400 
1000000 
3032400 
5320172 
3431462 
0024760 
00 507 52 
4472166 
7400000 
OOOOOOO 

0431462 
5300406 

-0162020 
0006200 

Figure 70. Sample of UDOFT Dump 

156 

i*. 

OOOOOOOO 00 

00 oooo 

00 oooo 

31 6421 

03 6226 

10 6223 
22 6205 

10 6217 

35 6427 

27 6430 
00 OOOO 

0000016 

OOOOOOO 
OOOOOOO 
OOOOOOO 
OOOOOOO 
OOOOOOO 
1022040 

ooooooo 
2000000 
ooooooo 
ooooooo 
0076400 

0470400 
0724600 

OOOOOOO 

OOOOOOO 

5500000 

4300000 

4246456 
5174264 

1034530 
1063470 
0706314 

OOOOOOO 
-4314630 

4773716 

01657 54 
5174264 



The simulation of a SENIT instruction (Sense Interval Timer) results also in the 
automaUc transfer of control to a predetermined 704 (709) address. This feature facil¬ 
itates the changing of aircraft parameters at the end of the 50 millisecond iteration cycle. 
If no control program is encountered at the address to which program control has been 
transferred, PSEUDOFT continues to the next UDOFT instruction. 

Usually, the control program, to which control is transferred by the SENIT 
instruction, contains a special output program in addition to, or in the place of, the para¬ 
meter-changing program. The basic output routine designated 9 out, was prepared to 
set-up and print on-line (72 or 120 column print-out), or to output a complete line of 
information to a specified magnetic tape, or both. Any desired format may be used, and 
conversion from floating binary to fixed decimal, floating binary to floating decimal, or 
fixed binary to fixed decimal can be performed as desired. 

A sample of the form of print-out which may be obtained through the use of this 
routine is depicted in figure 71; the program undergoing test was the F9F-2 stick force 
computations. The print-out control program required that, in addition to the count in 
the Interval Timer, the following parameters be printed out in decimal; dynamic pressure, 
Mach number, aileron control loading, elevator control loading, rudder control loading, 
aileron deflection, elevator deflection, and rudder deflection. 

From the preceding discussions, it must be apparent that there were adequate 
automatic programming aids for the debugging tasks which were performed on the 704 and 
709 When it came time for final integration and system checkout using the UDOFT com 
puter the complexion changed. The great deterrent to expeditious flight-simulator system 
checkout was the UDOFT input-output capability, which had not been designed with pro¬ 
gram checkout needs in mind. 

The only printed output available from the UDOFT computer was obtained by means 
of the IBM electric typewriter, which was able to print out the contents 
in octal notation and under program control. However, it was necessary to halt the sim 
latión program in order that this process could occur. This feature did provide a trace 
facility on*the UDOFT computer, but did not provide decimal output. The use of strip re¬ 
corders actuated by the analog outputs provided yet another output facility. This feature 
was most heSl during acceptance testing of the total system as a flight simulator but 
was inadequate during the program debugging phase of the project. 

In retrospect it can be stated that the checkout and the testing of program directly 
on the UDOFT computer were the least successful tasks of the total programming task. 
With due respect for computer design engineers, it is apparent that this shortcoming was 
due to lack ofPforesíghUnPdeSigninggtha UDOFT computer, particularly the computer-s 
non-real-time input-output facility. 

5.4 Operational Program Considerations 

The development of the UDOFT system offered an opportunity to improve the 
fidelity of flight simulation. If used properly, the UDOFT computer can provide a sim 
lation of a dynamic system which is superior to an analog simulation of the same syste 

in the following respects: 

1. Improved static and dynamic accuracy. 

2. Improved small-signal response. 

3. Freedom from drift,, 

4. Flexibility of "implementation1 ' allowing rapid change incorporation. 

The major aspects of the program which most noticeably affect these character- 

istics are: 

1. The method of data reduction and subsequently the form of function generation 
used within the operational simulation program. 

2. The mathematics for describing the position and orientation of the aircraft. 
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3, The solution rate; i.e. the rate at which the input parameters are sampled 
and the mathematics describing the response of the aircraft are solved. 

4. The form of numerical integration. 

5, The critical use of real-time. 

6. The modularity of the organization of the flight-simulation program. 

The following sections are devoted to a discussion of these aspects and an exposi¬ 
tion of the associated problems that developed during the formulation of the flight-simula¬ 
tion programs for the UDOFT system. 

5.4.1 Data Reduction and Function Generation 

Function generation is a subject of considerable importance for two reasons; first, 
it constitutes the single largest portion of a total flight-simulation program; and second, 
the accuracy of the simulation depends upon the fidelity with which the shape of the measur - 
ed data is represented in the computer program.* 

There are two basic methods by means of which single variable functions may be 
generated: 

1. Use of piecewise-linear approximations to the nonlinear functions with inter¬ 
polation between stored data points which describe the breakpoints of the piecewise-linear 
functions. 

2. Use o? polynomial approximations to the nonlinear functions. 

For the former method there are at least two approaches to the selection of the 
stored data points; namely, the use of breakpoints which are freely chosen to best suit 
each function, and the use of standard or fixed sets of breakpoints for each independent 
variable. 

a. ) Freely Chosen Breakpoints 

increment) in one program iteration cycie, 
still be contained in the same straight-line se. 
adjoining segments. 

Time Flight Simulation, Massachusetts institute ofTechnology7 

August 1961. 
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To further minimize computation time, the function generation program 
relies on a stored value of the slope of each line segment at each breakpoint. Even though 
the value of the slope represents redundant information, the storage of this data eliminated 
the need for the computer to evaluate Ay/Ax for each line segment. This was essential 
because the divide process in the UDOFT computer is extremely slow (105 microseconds). 

Thus, once the appropriate segment has been located, slope, breakpoint, 
and intercept data are extracted from memory for use in the simple computation. 

y = mb(x - Xfa)+bb (6) 

where b^ is the ordinate of the function at the breakpoint, not the value of the y-intercept 
if the straight-line segment had been extended to the y-axis (x = o). 

b . ) Fixed Breakpoints 

A much less time-consuming computation scheme would result if fixed 
or standardiïsed breakpoints were selected for functions of the same variable. This would 
result in a considerable reduction in the time required for breakpoint searching. Since 
this approach was not considered for the UDOFT flight-simulation programs, it is not 
known what problems might arise from its use; Krashy'f concludes there are no real 
problems associated with the approach and that the use of standardized breakpoints will 
not detract from the accuracy of the overall simulation. Even though these conclusions, 
which appear valid on the surface, have not been verified experimentally, there is insuf¬ 
ficient reason to deny them. However, one area of doubt does prevail; namely, will the 
overall simulation remain stable when the independent variables are identical to the break¬ 
points, thereby resulting in all functions of these variables becoming discontinuous simu¬ 
ltaneously. 

c. ) Polynomials in One Variable 

Current studies indicate that fourth order polynomial approximations are 
adequate for describing the majority of single-variable functions that are encountered in 
the flight-simulation problem. The advantages of using polynomials are the greatly re¬ 
duced data storage requirement and the smoother approximation of functions, thereby 
eliminating the discontinuities that are an inevitable result of the table look-up scheme. 

Early in the UDOFT program, attempts were made to derive polynomial 
approximations for some of the F-100A aerodynamic functions. The results were so poor 
that this approach was dropped; subsequently, the decision was made to use piecewise- 
linear approximations throughout the program. 

e d. ) Conclusions 

A summary comparison of the single-variable methods of function genera¬ 
tion reveals that the freely-chosen breakpoint scheme requires more computation time 
than does either the fixed-breakpoints per independent variable (provided the number of 
breakpoints is held to a reasonable number) or the polynomial scheme. All of these 
methods share in the difficulty in data reduction that is encounterd when using combina¬ 
tions of functions of one variable to approximate a bivariant function. In addition, the 
use of polynomial approximations requires increased effort for data reductions. However, 
since computer programs for obtaining least squares polynomial fits are commonplace, 
this task may not be so overwhelming. 

Of the two variable methods (freely chosen breakpoints and polynomial fits) 
one cannot say apriori which is the better, since the ultimate selection depends to a great 
extent on the behavior of the data to be used. The surface fit provides a more nearly 
continuous approximation than does the table-lookup scheme, but it is not always success¬ 
ful in producing a polynomial of reasonable degree which adequately represents the data. 

*L.M. Krashy, The Functional Design of a Special Purpose Digital Computer for Real- 
Time Flight Simulation, Massachusetts Institute of Technology, Report ESL-R-118. 
August IWTT 
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The profusion of possible methods, together with the many possible trade- 

digital computer f Æ there was no 
ireneration. In the case of tnc F lUUA g ^ *.* aoUAmo T'hp data nrovided 

'fpTÂSÏ Sr.r.Ä£ • 

£”S, ”o^ « rÄKÄÄÄÄ ,., dictated « 

the F-100A program adhere to the same scheme. 

Up to this point, no comments have been made regardi^ the generation^ 

(sinceTthe'data'had^eerfréduœd'to'monovar^nt funcUonsl^Bivariant function generation 

is useful if: 

1) It reduces the complexity of data reduction. 

2) It reduces the total number of functions to be evaluated. 

3) It reduces the number of arithmetic operations which must 
be performed in evaluating the functions. 

The above statements are 
takes toevaluate three single- variable gingi/two-variable function, which might 
to combine them m the forrnJ " (/^(f|>< i3x>’sine!e Variable functions, may be evaluated. 

sä,. ,> ,» —. ** 
a number of monovariant functions may be impractical. 

5.4.2 Method of Describing Position and Orientation 

The equations «J motio," °f ^ "‘^^si^pím^tiorrestífsVomtte'facttíiat lathis 
set of axes attached to the rigid body . J inertia are negiigible. The body axes 
axis system, the body axes, the cro p vehicle center of gravity: the x-axis 

SsaföÄongetthef Srtneof tSrhicle; the y-axls points sideward; the s-axis 

points downward. 

Since the hnd, i..c.p.b.e S.Ï.SoÏSÏ.' S“ 
position of the vehicle with respect to ^ eart J (heading). The three angles 
^ specified by the three Euler ^ Juh resect to a reference plane which 
describe the orientation of the fll earth) or, more precisely, normal to 

ÂÎTs ^cTort^^c^roV^S and passes through the vehicle at its center 

of gravity. 

respectively, attS1followingÍthreVdiE¿iÍnt¿requatp)ns JndiSte the interrelations bet^em^ 

the Euler angles and the components of angular velocity. 

g = cos - r sin 

1 -, _ 1 ... (p cose + q, sin e sin 4 + r sin B cos ¢) 
” COS9 1 

1 
cos I 

=__Lr7r- (q^ sin^ +r cos^) 

(7) 

(8) 

(9) 

. , , a - arp (nrxzñ - 0) two of these equations are indeterminate. 
It is obvious that when J?os0 ) u values 0f 0 and i is desirable without 

re^o^tin^t^tri^ery^^dUfe^rent approach to the problem is necessary. As indicated by 
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afní|.the University of Pennsylvania**, this problem is completely eliminated by 

cosines arStífied^T body axes to ** earth axes. If the direction 

tion cosines as functions o/&,%lnd7'ar2é:3’ h 2’ 3' ^ expre88ion8 for 016 direc- 

1^ = cos Ô 

lg - cos 0 

13 = -sin 0 

nij = sin 0 

m2 = sin 0 

nig = cos 0 

= sin 0 

Hg = sin 0 

Hg = cos 0 

cos 4/ 

sin ip 

sin ^ cos \jj - cos 4 sin ip 

sin ÿ sin 0 + cos $ cos ip 

sin ^ 

cos 4 cos tp + sin 4 sin ip 

cos ÿ sin \p - sin ^ cos 0 

cos ÿ 

(10) 

(ID 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

. ,, ,S. , ? the velocities, p, qj and r are readily available from the calculations 
of the total forces and moments acting about the vehicle body axes, it is desirable to use 
misinformation in determining the aircraft orientation in terms of 0, i and ¢. Re Latina 
the three anguiar velocities to the direction cosines produces nine differential equations 
of the following form: ^ 

11, 2, 3, = ml, 2, 

ml, 2, 3, = nl, 2, 

nl, 2, 3, = 11, 2, 

3, r ‘ nl, 2, 3, ql 

S, P'1!, 2, 3r 

3, ql, " ml, 2, 3P 

(19) 

(20) 

(21) 

These diff^-ential equations have no indeterminate points; they have other desirable 
properties also. The direction cosines form a redundant system, using nine quantities 
where, in general, only three are required, and therefore a program using these differen¬ 
tial equations may apply certain corrections to minimize drift due to truncation of the 
finite computation. *** The program to normalize and orthogonalize these quantities is 
described in Section VI, Simplified Description of the F-100A Simulation Program. 

a.) Angular Position 

Aside from their use in the classical equations of motion, the Euler 
angles 0, and ^are displayed untimately on cockpit indicators. The use of direction 
cosines, rather than Euler angles, as the descriptors of vehicle orientation, leads to 
problems in the actuation of the gyro-horizon and the heading indicators. A simplified 
diagram of the implementation of those indicators is shown in figure 72. The voltages Vi 
and V2 are analog outputs whose values are the sine and cosine, respectively, of the 1 
quantity to be read on the instrument. Pi and Pn are consinusoidally and sinusoidally 
wired potentiometers, respectively. The output of the motor amplifier is 

*R.M. Howe, Coordinate Systems for Solving the lliree Dimensional Flieht Eouations 
WADC Tech Note 55-747, June, 1956. - ----- 

**Flight Trainer Digital Computer Study University of Pennsylvania, Moore School of 
Electrical Engineering Research Division Report 51-28, 21 March, 1951. 

***Flight Trainer Digital Computer Study, University of Pennsylvania, Moore School of 
Electrical Engineering Research Division Report 51-28, 1957. 
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cos a' - V2 sin a1 

However, 

Vj = E sin a and V2 x E cos a 

Therefore, 

cos a' - V2 sin a1 = E [ sin a cos a’ - cos a sin a'] (22) 

= E sin (a - a1) 

where a is the quantity to be read on the instrument and a1 is the angular position of the 
servo motor. It is clear that the servo will seek a position that causes the output of the 
motor amplifier to be zero. Thus, a’ = a, providing the desired indication on the instru¬ 
ment. Therefore, for the form of analog implementation used in UDOFT, it is sometimes 
necessary to generate ± sine and ± cosine of the angular quantities that are to be displayed. 
The heading indicator and the gyro-horizon therefore may be actuated by: 

±1^ = ± cos 0 cos Ip 

±12 = ± cos 0 sin ip 

±m3 = ± cos 6 sin <p 

±n3 = ± cos 0 cos <p 

13 = - sin G 

Heading 

Roll angle 

Pitch angle 

(23) 

(24) 

(25) 

Since the pitch attitude indicator does not rotate more than ±9CP , cos 6 is not required; 
therefore pitch angle is the direct function of -1^. 

It is apparent then that the problem arises in the heading and the roll angle outputs, 
as 0 approaches 909 , f i>f 2' and n3 aPPr°ach zero, thereby reducing the effective 
cos ip, sin ip , sin 0 ana cos ^ Àgnals to the instrument positioning servos. However, by 
shifting the quantities/., f 2> iru and n to the left, while they are still in binary form, as 

approaches unity, these quantities are increased proportionally by a factor of two for 
each left shift, thereby maintaining the ratio of the sines to the cosines and compensating 
for the signal degeneration resulted from cos ¡9 diminishing to zero. 

The compensation is accomplished in the program by inspecting the absolute 
value of i«, determining the number of single phase left-shifts required to raise Ip *2* 
m3, and rig to significant values, and finally, performing the required number on ip i 2, 
m3 and n^. 

The range of values of l \ for which the quantities I f 2, m^, and are adjusted 
is : 

0.000000 <U3I <0.366578 

0.866578 <|f3 l<0.968691 

0.968691 < |¿3 I <0.992272 

0.992272 < |i3 |<0. 998103 

0.998103 <U3 I <0.99541 

0.999541 <[l3 |<1.00000 

shift left 0 

shift left 1 

shift left 2 

shift left 3 

shift left 4 

shift left 5 

i*. 
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b.) Ground Position 

In the F-IOOA MB-3 analog flight simulator, it is necessary only to pro¬ 
vide ground speed and heading information to the cross-country and approach recorders 
(plotting boards). Ground speed is resolved by means of the associated recorder electron¬ 
ics into north and east components as a function of heading. The resultant velocities are 
integrated in the plotting board drive mechanism. 

Since heading data is obtained from the heading instrument servo, only 
ground speed had to be computed: 

Ground Speed - ucos 9 + wsin 9 (26) 

However, since cos 0 was not available readily, it was obtained from a Taylor series 
expansion in powers of sin 0. Thus, 

cos 0 »1 - l/2 sin^0 + 1/8 sin 0 (27) 

Since sin 0 is available as the final form of the ground speed calculation becomes: 

Ground Speed » u^i-1/2 lg + i/s ijj wl. (28) 

The approximation for cos 0 is satisfactory for 0 < 5(F ; beyond this 
point, the error in the resulting ground track is intolerable. However, if it is unlikely 
that flight will be sustained at these relatively high pitch angles, the long term error 
resulting from the short term inaccuracy of the approximation will be negligible. 

A much improved record of ground track would be possible by using a 
conventional positioning-type recorder rather than an integrating-type recorder, and re¬ 
quiring the computer to calculate the coordinates of ground position. Since the direction 
cosines are available, the calculations would be simply 

(ulj + vnij + wnj) dt 

(ul2 + vm2 + wQg) dt 

(29) 

(30) 

5.4.3 Solution Rate 

The most desirable program iteration rate for the solution of the various aircraft 
parameters would be infinitely high. 

An infinitely high solution rate, to be effective, requires infinite precision. Since 
this is not easy to achieve without using an infinitely fast and large computer, some com¬ 
promise in the solution rate must be made. The solution rate may be reduced until one 
or more of the following appears: 

1. An inordinate amount of phase lag occurs between successive iterations of the 
simulation program, resulting in a simulation which does not adequately approximate the 
dynamic characteristics of the vehicle. 

2. The inaccuracy of the numerical integration method becomes intolerable. 

3. Rapid changes in inputs are lost due to the low input data sampling rate. 

4. Instrument movement is noticeably discontinuous due to low output multiplexing 
rate. 

The solution rate of twenty program iterations per second selected by the Moore 
School has proven to be adequate for the simulation of the F-100A aircraft. (It appears 
that the selection of this solution rate resulted from the initial studies concerned with 
the determination of the most suitable method of numerical integration*). This is not 

¿Flight Trainer Digital Computer Study, University of Pennsylvania, Moore School of 
Electrical Engineering Research Division Report 54-08, 1 July 1963. 
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meant to imply that a selection of a twenty cycles per second solution rate is unimpeach¬ 
able, For the simulation of models characterized by higher or lower natural resonant 
frequencies, this iteration rate may be much too low (e.g. simulation of the X-20 adaptive 
flight control system indicates the necessity for a solution rate as high as 320 iterations 
per second) or much too high (e.g. simulation of a submarine indicates a solution rate 
of four iterations per second is acceptable). Even for the F-100A program it was not 
mandatory to recompute all variables every twentieth of a second. The power plant pro¬ 
gram could just as well have been executed at a considerably slower rate, such as five 
solutions per second. However as the solution rate is changed, the integrity of the numeri¬ 
cal integration method must be retained. This may well require a modification to the form 
of numerical integration in order to make it applicable, within tolerance, at the different 
solution rate. 

Thus far, the comments regarding solution rate have concerned themselves with 
the problems associated with a low solution rate, tacitly assuming that as the solution 
rate is increased toward infinity the problems are minimized. Unfortunately this has not 
been found to be true. The effect of the iteration interval on reaching the proper velocity 
for steady-state straight and level flight equilibrium is a case in point. It is conceivable 
that with a very high solution rate (i. e. At very small) the cumulative effect of a very 
small forward acceleration, Ú, would be lost long before the steady-state velocity was 
attained. The problem arises not only from the short iteration interval but also from the 
fact that the binary number word length in the computer is finite, in the case of UDOFT, 
twenty binary bits. Therefore,if a very high solution rate is required (because of the high 
natural resonant frequencies of the physical system being simulated), consideration must 
he given to increasing precision and therefore the length of the numbers that are used in 
the calculations. 

5,4.4 Method of Numerical Integration 

In the numerical integration of a set of differential equations, the values of the 
dependent variables, x. are obtained in a step-by-step manner. Assume that the past 
values of and their first derivatives with respect to time, dx^ or more simply are 

known for all instances of time t up to and including the instaStt of time t^. These values 
may be used to "guess" at the values of x. one time interval later, i.e. at tn + i which 
is equal to t + At. The formula used for "guessing" is referred to as an "open quadra¬ 
ture formula, " symbolized by the letter "O. M 

The "guessed" value of thus obtained is ued to obtain an approximate value 
of the derivative x^, at the time tn + Tliis approximate derivative is then used to ob¬ 
tain a better approximation of the true value of x- at tn . j using a "closed quadrative 
formula, " symbolized by letter "C." By recalculating the derivative of the improved 
approximation, and using it in the closed quadrative formula, a second improved approxi¬ 
mation is obtained. This short looping process is usually repeated until successive 
values of x¿ at time tn + i remain unchanged; these values should then constitute the solu¬ 
tion to be differential equations for time tn + i. 

For example, consider the case of the differential equation 

-£f- = x = f(x,t) (31) 

whose solution is known for t<tn. Let the following open quadrature formula O31, using 
three past values of the ordinate x and one past value of the derivative x, be employed to 
guess the value of x at time t^ + 1 = tn + At - + h: 

x 
n + 1 

a,x + a9X . + aQx In ¿ n — 1 «3 n — 
(32) 

The prime (*) indicates that x'n + 1 is only approximate. The first guess at the derivative 
is then the corresponding value. 

1331 

, Next, let the following closed quadrative formula C21» using two past values of x and the 
derivative just computed be employed to refine the approximation of xn + ^ derived from 
the open quadrature formula. 
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(34) 
x"n+l'Vn + Vn-l+h(dl¿'n + l) 

The double prime (") indicates that xMn + ! is an improved but not necessarily the final 
accepted value. The two latter equations are then used repeatedly until successive values 
of X1* , . are identical, 

n + 1 

From the example it can be seen that in the symbolic designation of an open 
quadrature formula xmn, the subscript m indicates the number of past values of the 
ordinate that are to be summed and the subscript n indicates the number of past values 
of the derivative that are to be summed. In the symbolic designation of the closed quad¬ 
rature formula, CDa, the subscript p, like the subscript n, indicates the number of past 
values of the ordinate, and the subscript q indicates the number of past values of the 
derivative, including the present estimated value of the derivative. Thus, 041 C41 would 
use four ordinates and one derivative in both the open and the closed quadrature formulas, 
while O33 C33 would use three ordinates and three derivatives in each quadrature formula. 

The mixed quadrature formula Omrj Cpf. consists of the open formula Omn followed 
bv a single application of the closed formula CDQ, the result of this being the accepted 
value of xn .,. All the ordinates, i. e. the xn _ j.g (j = 0, 1, 2, . . . n), in both the open and 
the closed parts of this mixed formula are the filial values computed from the .closed quad¬ 
rature formula at previous instants of time, and all the derivatives, i.e. the xn-j's» 
are computed using the values of the ordinates derived from the open quadrature formula. 

In connection with their design and feasibility studies of UDOFT, the Moore School 
investigators developed a technique which enabled them to choose a numerical integration 
method, with a compatible integration interval, which would produce the desired solution. 
This technique employed a graphical method for displaying the characteristics °i ^ny 
specified integration formula in a "stability" chart, « from which the accuracy and the 
stability of the numerical solution obtained by using the formula could be estimated m 
advance. By means of the stability charts and a shifting technique, ** two formulas, hav¬ 
ing the same stability chart, were obtained from the classical mixed quadrature formula 
O10 Ci 9 namely the open formula, O33 mod Gurk, and the mixed formula, O3Q C32 
mod Gurk Although the open formula is preferable from the standpoint of computational 
simplicity, it causes the actual solution to lag slightly behind the desired solution. Ap¬ 
parently the lag was not appreciable enough to cause any serious concern; therefore, the 
quadrature formula O33, mod Gurk was established as the numerical integration method 
for UDOFT. 

The operational F-100A flight simulation program using O33 mod Gurk with an 
integration interval of 50 milliseconds provides adequate simulation for aircraft frequen¬ 
cies ranging from 1 cps {snap roll) to one cycle in two minutes (phugoid). A current 
study, utilizing the UDOFT F-100A simulation as the model, conducted by the Moore 
School tends to uphold the applicability of O33 mod Gurk to the F-100A simulation problem. 
However some doubt has been cast by Kase*** on the basis that the results using O33 mod 
Gurk with different quadrature intervals were not compared with another independent 
solution not using Ooo mod Gurk. Regardless of what has been said and what is being 
said about the validity of O33 mod Gurk as an applicable numerical integration method for 
real-time flight simulation, no operating problems have arisen from its use to date. 

5.4.5 Use of Time in the Operational Program 

Of all the aspects of the simulation programming task, the use of computer time 
is probably the most critical; it is also difficult to control. This difficulty, aa experienced 
during the formulation of the F-100A program, was increased by the absence of not only 
pre-established programming techniques, but also a clear concept (from the beginning of 
the task) of the proportions of the overall program. The brute-force but effective approach 
was to minimize time through the program at all costs (i. e. at the cost of computer stor¬ 
age, the cost of clarity or organization, and the cost of program test points) until it was 
apparent that the simulation program could be executed within the iteration interval. 

* MSEE Report 54-09 

** MSEE Report 54-25 

***MSEE Report 61-19 
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Since it represents the single largest portion of the total program prime attention 
was given to the function generator. The approach, already presented in 4 
though cumbersome, reduced function generation time to a minimum. Aside from this 
very important segment of the program, no spectacular efforts were made to speed-up 
the program. At the beginning of program, formulation, instructions were used judicious* 
ly toward the end, as it became evident that the running time would not exceed the oO 
millisecond interval and as the deadline for acceptance testing was approached, less 
care was taken to minimize the program. The penurious use of time, though necessary 
(since this type of program had never been attempted before), had its repercussions 
Had some of the program units been allowed to consume more running time, they could 
have been programmed in a more straightforward manner, also, more intermediate 
results could have been stored. As a result, checkout would have proceeded at a faster 
rate - perhaps as much time as a month would have been saved. However, there was no 
way of knowing in the beginning how much, if any, unused computation time would be 
available after the complete program had been assembled. 

The following conclusions may be drawn from this experience: 

1. When simulating one computer on another computer for the purpose of checking 
out a program written for the simulated computer, provision should be made m the sim 
lation computer program to record elapsed time for the simulated computer. 

2. Special attention should be given to optimizing (time-wise) the subroutines which 
are used repeatedly, to arrangement of tables, etc. 

3 When a choice must be made between saving a few microseconds of computa¬ 
tion time and storing an intermediate result which might be useful, the decision should 
favor the latter. These "unnecessary" instructions may be so identified on the as^embi} 
listing to facilitate their deletion if and when necessary. 

4 Time estimates of the various program units should be made before any pro¬ 
gramming is undertaken. The critical program units should be written firs, ,o allow 
mnple time for improvements resulting from the programmer s increased know.edge of 

the problem. 

5 Time estimated and time consumed should be monitored constantly at the 
highest level both to ensure the formulation of a computer program which can do all 
fhí it must do in the required time interval and to allow improvements m the program 

if running time permits. 

4s a result of the programmers being extremely time-conscious, the F:100'4 
program is executed in less than 50 milliseconds. The actual running time varies between 
thirty and thirtv-five milliseconds. As a result, however, there is very Uttle excess 
capacity in either the instruction memory or the number memory. This bas made 
cult to include automatic testing and monitoring programs in the High simu a PS 
Usually the F-100A icing routine, which is unimportant when research s 
than training is being conducted, is removed to allow the insertion of .hese programs. 

4.6 Control of Precision in the Operational Program 

The basic precision problem is the same for all digital computers and all computa 

ional programs written for them: if p f ^.Äere «he 

S^ÄTÄ1 mW«»„i», i.... 
ippear to be equal to zero. 

The difference in the precision problem between fixed point and floating point 

rsshiiz == -»-äSHSSE 
dthough there is still a restriction on the “f allowable value of 

r" whL^^sTquTto^erTthe rTünmun^alue of k which affects the computation 

/ , j io n s; V i ¡í?^m ) where m is the number of bits in in floating point (normalized mode) is 0. o X 1/U ), wnere m 
the exponent of the floating point word. 
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As p approaches its maximum value, the minimum value of k which can affect the computa¬ 
tion approaches p x/2n, where n is the number of bits in the fractional part of the float¬ 
ing point word. In contrast, using fixed point computation, the minimum value of k which 
can ever affect the computation is Pmax/2n (actually a somewhat larger number since the 
numerator is not truly Pmax, but the next greater power of two). 

These considerations affect programming in several ways, and the way in which 
they are handled determines, within the natural limits of the computer, the precision 
which is ultimately obtained from the system as a whole (assuming that the mathematical 
model is adequate). For example, suppose the problem is to add a series of numbers of 
widely varying magnitudes. In floating point, the program would be organized to add the 
small numbers first, otherwise they would have no effect, even though their sum is 
relatively large. In straight fixed point computation, the same order of computation will 
not have the same result since the scaling is predetermined; the best solution is a shift 
in scale factor (really a species of programmed floating point). Another method of control 
available to the programmer is to assure that no partial sums will be larger than the 
final sum; otherwise an artifically high scaling factor must be chosen and an unnecessarily 
high minimum increment will be the result. The magnitude of the partial sums is, of 
course, affected by the order of the computation. 

Insofar as this affects the generation of the aerodynamic coefficients and similar 
parameters, the controlling factor is the accuracy with which the programmer knows the 
maximum values of these parameters and the intermediate values in their calculation. 
On the basis of the estimated maximum values, the scale factors are chosen, and this 
choice in turn determines the minimum increment which will affect the calculation. The 
order in which, for example, the forces due to different control surfaces are summed 
determines the maximum intermediate value of this addition. 

This problem was handled successfully in the F-100A operational program; it is 
disappointing to note, however, that no methodology emerged for expeditious handling of 
the required analysis in the future. 

Occasionally, a choice of methods of computation presents itself. For example, 
given the representation: 

f o 

There is a choice of interpolating between and f2 to determine f, or one can 
extend the line f1 fo to the y-axis and interpolate between f and f2. It is possible that 
this procedure would be faster given a certain computer instruction repertoire. How¬ 
ever, it would, in general, result in decreased precision in the result since a wider range 
of numbers is involved in the compuvation. Accordingly, the first method was used in the 
UDOFT programs. 

The integration interval affects precision also. Reconsider the general example 
of Section 5.4.3 where it was desirable to calculate u + Atû. For a given scale factor for 
u and a given u, the value of At will determine whether ù will ever affect the computation. 
Thus, the selection of a very small At imposes even greater precision problems. A 
simple acceptance test like attaining a steady-state true airspeed for a given thrust may 
not bs possible if lù ! decreases rapidly and At is very small, even though all parameters 
involved--lift, drag, and thrust--are computed with extreme precision. 

iX 
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5 5 Simulation Program Organization 

preparing a Urge,.c* real-.i», .i™!»»« W». «» 
mer) must exercise care to insure ta., 

1 Program debugging is facilitated. 

2. Programs ,or aob-program.i *« bm.« « 

,. For..,« -1,0,,8.. land mo., «nior.s.en one.) are «»pi« » “P1™'"'' 

4. Computational time is used efficiently. 

Some of these exemplary qualities^have - 

leni 77,bintegratio7efunction generation,^ vehicle^omentation,^ etc 

coherent the mathematics and receive the same level of consideration, 

Sherbwisf rnfuítimateVogram will lack the integrity demanded of it. 

The following general description of program design is given to indicate an ap¬ 

proach to'developing real-time simulation programs. 

5 5 1 General Simulation Program Formulation 

ent computational tasks. 

1. Vehicle dynamics 

2. Propulsion system 

3. Vehicle subsystem 

4. Guidance and control systems 

5. Airborne systems 

„ „ r«r0Sm..d »»"• »< ffpfSr’S»;* Ä? Ä 
.«hm,. L ip"Ä. »I d... .«b »»* f.ï"“ .r.mb*d 

SC“progrLn. ,%¾. U d^cd Ü, ligdr. dl. 

control The function of these sub co ^ blocks are used and to supply e^\ 
the manner in which their respective computational ^ ^ figure 73 1S a program 
computational block with the necessary mp.it dat^. ^ contro, within the simulation Program, 
control block which encompasse^.he high l ^ other blocks within the program and 

“d tte real-WOrW- k lts 

Tte g,,,.,» o, . ,.«88» .»o ~P»*“ 

i0: ,. 
does not affect another. 

2 Simplified debogging-fi.. prog.™, =» •* 

3' Mb„l.;-^. - - ».d, ,. O» e-P.»»» 
one block without affecting the other blocks. 

The concept .1 dividi« 0.. SocíSrMÍwflSSÍiÓV*.;», 

SS -rr ÂZÂSnr édb- -..,..,. —- - 
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available computation time (program cycle time), because the sequence and the extent of 
the computations can be varied with the existing conditions. 

5. 5. 2 Programming Procedures 

The simulation program must be capable of reproducing the actions of the vehicle 
and all its subsystems under abnormal as well as normal operating conditions. Accord¬ 
ingly each system of the vehicle must be analyzed on an individual basis The purpose 
ofgthe analysis is to describe, by means of mathematical and Logical equations the normal 
response of the system to each of the pertinent independent variables. J^ effect of mal 
functions at various levels within the system must then be analyzed m order to allow the 
incorporation of these effects into the descriptive equations. The resulting equaUons re¬ 
flect the operation of the particular system under all conditions. These same equation* 
form the starting point for the preparation of the subroutine. 

Once th» equations are known, a subroutine flow chart is prepared. The flow chart 
represents diagramaticaliy the program, or flow of mathematical zná logic operwonz 
that are necessary in order to solve the descriptive equations. The next step is to fix tins 
flowchart in the overall system organization flow charts. 

due to improper ordering of subroutines is presented in Section 6.2, Program Control. 

Notwithstanding these subtle considerations, the task of preparing the program- 
control routine is somewhat mechanical in nature. The purpose of the routine is singlar 
and its preparation is straightforward. However, if programming problems are to be 
mini mixed ? consideration should be given to more than just the development of a single 
commuer routine Bv approaching the preparation of this routine with an appreciation iO. 
the task of overall program preparation and integration, standards may be derived to 

facilitate : 

a. ) Program coding. 

b. ) Program debugging. 

c ) Communication between programmers %'ho are assigned to 
individual parts of the total simulation program. 

d.) Communication between computer development engineers 
and programmers. 

Concurrent with the development of the program-control routine individual 
computational subroutines are coded by the programmers using only the descriptive 
equations and the flow charts. 

The next step is subroutine checkout, using either the ultimate computer, or as 
in the case of the UDOFT program, a general-purpose digital computer simulation oi , 
ultimate computer Upon completion of subroutine checkout, the programmer ^ re- 
quir“d to “corporate any changes made during the coding and checkout phases which dtd 
not appearTn the initial subroutine flow chart. This material- the-ncorporaved mto a 
detailed subroutine write-up, which when completed, contains the ioUoAing. 

1. Subroutine name. 

2. Purpose. 

3. Detailed coding flow* chart. 

4. Calling sequence (entry and exit designations used by die program-control 

routine). 
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5. Inputs and outputs (including required scaling). 

6. Outside constants to be used within the subroutine. 

7. Outside library routines necessary for successful subroutine operation. 

8. Simulation mathematics and logic. 

9. Subroutine description (narrative). 

10. Checkout results (to avoid inefficient use of computer time during the debugging 
or checkout phase, all subroutines should be hand-traced before being run on the computer. 
The same inputs used in the hand-trace are used in the machine checkout. Results of 
both methods must be consistent. Both sets of results should be listed in the program 
write-up). 

11. Symbolic program listing. 

Some techniques and procedures presented in the preceding discussion were not 
used during the development of the UDOFT simulation programs. The material repre¬ 
sents those precepts that extensive experience with digital real-time simulation program 
development has fostered. Had this approach been utilized at the beginning of the analysis 
and programming task, the task undoubtedly would have been executed more effectively 
and efficiently. 

Initially, the analysis and programming task was not approached systematically. 
Each of the subroutines was prepared in vacuo, i.e., each subroutine was considered as 
a separate entity. As such, the routines were checked out on anindividual basis; little 
attention was paid to the checkout of interrelated groups of routines. It was apparent, 
midway through the task, that control and checkout programs were needed to facilitate 
such an operation. This deficiency was rectified by the deveiopmem of the program- 
control concept. However, during the latter stages of the programming task, it could 
not right all the wrongs that had been committed. 

One other major aspect of the program organization which was not approached in 
a systematic manner and could not be changed because of the disruptive effect it would 
have had, was the separation of the logical expressions and the computations within the 
subroutines Consequently, the checkout task was more difficult than necessary. If the 
logic and the computational tasks had been separated, a more flexible program could have 
been developed, and the debugging and checkout procedures would have been simplified. 
This is the reason for the inclusion of program sub-control routines, as well as the more 
general program-control routine, in the idealized approach to the development of real¬ 
time digital simulation programs. 
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SECTION VI 

SIMPLIFIED DESCRIPTION OF THE F-IOOA SIMULATION PROGRAM 

The discussion of the UDOFT system thus far has been limited to the development 
of the digital computer and to fundamental real-time simulation program problems. This 
section treats aspects of the computer’s application to a specific real-time simulation 
problem, the simulation of the F-100A. 

Valid real-time digital simulation requires a program that will accept the real- 
world commands of the pilot and introduce these inputs into a system of nonlinear differ¬ 
ential equations. The coefficients ot these equations are a function of the basic aerody¬ 
namic parameters (a, ¡p, Mach, hp, etc. ) which are the result of past computational 
history. The integration of these differential equations establishes new parameters from 
which the coefficients for the next cycle and the data for the cockpit displays are generated. 
Thus, pilot control movement results in changes in the linear and angular accelerations 
which are, in turn, integrated to yield new cockpit indications of airspeed, attitude, etc. 
In brief, this is what the aerodynamics portion of the simulation program accomplishes. 
In addition, the simulation includes the engine and a number of other flight systems (flight 
control, hydraulic systems, landing gear, speed brakes, and flaps). 

6.1 Aerodynamic Equations of Motion (Logitudinal Plane) 

The simulation of the aerodynamic properties of an aircraft describes the motion 
and the orientation of the aircraft in terms of the translation velocities, u, v, and w; the 
angular velocities, p, q^, and r, which are a result of the forces acting upon the physical 
aircraft structure; and the parameters which describe the structure. The aerodynamic 
forces and moments are defined in terms of dimensionless coefficients which are func¬ 
tions of such basic parameters as Mach number, angle of attack, and yaw angle. 

As a case in point, consider the equations for ù, w, and q^ which describe the 
motion of the aircraft in the longitudinal plane. 

6. 1. 1 Longitudinal Acceleration (ü) 

The acceleration along the longitudinal axis of the aircraft, ii, is defined as: 

M, - g Sin 0 - w + vr 
qj 

where 

where 

X = Total forces along the airplane X axis 
cl 

X Cos a - Z Sin a + T - D s s wn 

Xg = Total drag force along the stability X axis 

= 376q[C¿ + CD + CD + CD + C i 
dt 6J de ulJ. G 

(35) 

(36) 

(37) 

The equation for ù describes the longitudinal acceleration of the aircraft relative to 
the earth in terms of body axis parameters. However, since the coefficient data for the 
forces are given in terms of the airplane stability axis parameters, it is necessary to 
transform the total forces from the stability to the body axis. 

The coefficients utilized in the equations represent the simulator manufacturer’s 
interpretation of the airframe manufacturer's estimated behavior of the particular coeffi¬ 
cient as a function of the basic parameters. The interpretation, in the case of the FIDO 



simulation, resulted in piecewise linear approximations which yielded the coefficient when 
evaluated for the basic parameters. The coefficients given in the equation for Xg are: 

= basic airframe drag force coefficient 

fg(Ma) + C^fjgiMa) + 

= 1 - C^f^Ma) 
(38) 

= drag coefficient due to drop tanks 

= Cn (Ma) 
Udt 

C = drag coefficient due to speed brakes 
DÔJ 

= Cn (Ma) 
ubJ 

C = drag coefficient due to inflated drag chute 
'D 

dc 

0.30585, 6dc = 1 or 0 

(39) 

(40) 

(41) 

C = drag coefficient due to landing gear 

DL.G 

= 0.0278 

6. 1.2 Normal Acceleration (w) 

The normal acceleration, w, is defined as: 

Z 

* = ' IT + g Cos e Cos ^ • vp+ uqi 

(42) 

(43) 

where 

where 

Z = total forces along the airplane Y Axis 

- Z Cos a + X_ Sin a - 0, 053T 
s 5 

Z = total lift force along the stability Y axis 
s 

= 376ql CT + CT + C, + CL 1 
hv LH bdt 

(44) 

(45) 

The coefficients for this equation are: 

C 
h* 

coefficient of lift due to wings 

[C (Ma) - f1(aWR)f5(Ma)1£4(Ma) + 

^1.1 ( 

(46) 
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Coefficient of lift due to stabilizer 

CT = Coefficient of lift due to speed brakes 
oJ 

= Cf (Ma) 
õJ 

CT = Coefficient of lift due drop tanks 
Ldt 

(47) 

(48) 

= fjia )fg(Ma) (49) 

The basic problem with this equation for Zg is that neither Cj^ nor C^ is stated 

explicitly in terms of Mach number and angle of attack. RatheTj they are stated in terms 
of rigid wing angle of attack (aWR) and rigid stabilizer angle of attack (a^). The solution 

of a,irr> and is further complicated in that the equations implicitly define the depend- 
W rí HK 

ent variables: 

aWR = ri^d win£ an^ie attac^ 

= ja - [C (Äfa) - f1(aWR)]f4(Ma)f4(q)f3(Ma)| f2(Ma) (50) 

^1. 1 

= rigid stabilizer angle of attack 
lirv 

= a + 6H - f2(aWR)f6(Ma) - [ 0. 00233q r ^(qJf^Äfe)] C^ (51) 

In order to overcome the problems associated with the real-time digital solution oi implic¬ 
itly stated functions (Section 7. 5. 3, Short Period Longitudinal Response), the equations 
for a„rT1 and are restated in terms of Mach and the slopes and intercepts of the fimc- 

W K rirv 
tion of and aRR- 

an-! " [bl ‘ b2f2<Ma)if4(Ma)il(cl)f3(Ma)í f2ÍMa) (52) 
WR ) 1 - f4{Ma)f1(q)f3(Ma)f2(Ma)[a1 - a^LiMa)] 

HR 

Qn-1 ' 5H * ’ [f8{Ma) i0-00233cl * ib: 

[1 + fg(Ma) \ 0. 00233q + f2(q)f7(Ma)} a3J 
(53) 

This requires a program which solves for the variables a WR and in the various re¬ 

gions of the functions C (a WR), and f^a^). The solution is valid only 

W1 1 
when the values computed for aWR and a HR are within the interval for which the data was 

substituted The new coefficients a and b are the slopes and the intercepts, respectively, 
of the functions C (a WR), f^a^h and îl (aHR). The intercept data lor these iunc- 

. . . . .. 
tions, unlike the intercept data for interpolation purposes in the iunction generator, are the 

i*. 
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-,. ( -«rí n when extended to the ordinate, 
values of the piecewise linear functions of aWR and HR 
The data for the above functions are: 

CLW (°WR) 
Wl. 1 

fl(aWR 

Range of aWR 

-24 

-18 5 aWR < '6 

<aWR<+8'25 

8.25 <aWR< 12,25 

12.25 <aWR<18.00 

al 

000000 

0.461666 

0.1151578 

0.0600000 

0.0095652 

U1 

-1.2450 

-0.4140012 

-0.0000580 

+ 0.45500 

1.0728698 

0.000000 

■0.1583333 

0.3298245 

-0.025000 

-0.03130434 

°2 

0.00000 

-0.2849998 

0.00789470 

0.48625 

0.56347817 

Range of aRR 

-40 <qHr < '20 

-20<aKR< + 14 

-»<“HR< 20 

20<aHR< 40 

a3 

0.0078 

0.05570588 

0.033333333 

0.0145 

3 

0.05800 

0.0001176 

0.31333338 

0.690000 

value of aWR and aHR. 

6.1.3 Pitching Acceleration (^) 

„„ilün. equation necen.nry to de.erib. the «oUon ol the nircr.lt in the 
lot*,..^!” VnogolT acceleration about the Í »... 4,. 

Ma + 54200 rp 
^1 = -1 

y 

(54) 

where 

where 

Ma = total pitching moment about the airplane Y axis 

M + Zod " 33T s s 

Mg = total pitching moment about the stability Y axis 

= 376 cq )C 'M 
+ — C 
+ 2V M ql + 2V. CM. a 

(55) 

(56) 

a 

+ 99q u5qiP- 

WL.G LG 

where ^ = throttle angle 

178 



The coefficients for this equation are: 

'M 
basic flexible pitching moment coefficient 

= CM - f^íMa^íhpKgíi^) (57) 

where 

'M 
rigid pitching moment coefficient 

The equations describing takes on different forms for different intervals of 

R 
and is given as follows: 

-24 < aWR < -18 

'18 5 < *6 

-8 <aWR<5 

5 <aWR<8 

8 - aWR < 12 

12 < a WR < 18 

18 — aWR < 24 

CM = 'iB^s5 
aR 

(58) 

= f17(Ma) - f18(Ma) + fls(Ma) / aWR+ is\ 
\-T2-J 

= f16(Ma) - f17(Ma) ]+ f17(Ma) 

f,c(Ma) - fle(Ma) [ 15 16 
f16(Ma) 

= f14(Ma) - f15(Ma) ^4 )+ f15<Ma) 

= f13(Ma) - f14(Ma) (—|   ) + f14(Ma 

= f13(Ma) 

CM s pitching moment coefficient due to pitching rate 

= f25(Ma)f9<hp) - f0fi(Ma) 26 
(59) 

CM = pitching moment coefficient due to rate of change of angle of attack 
a 

f (Ma) - 62 J 000 ~ = f (Ma) (60) 
I27lMa; 64,000 28V / 

CM = pitching moment coefficient due to air entering engine inlet duct 
WQ a 

= (Ma) a (61) 
Mw a 

C„ = pitching moment coefficient due to drop tanks 
Mdt 

The equation for pitching moment due to drop tanks takes on different forms for different 
ranges of angle of attack as follows. 
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(62) 
-40° < a < 0o 

0o < a < 10° 

10° < a < 20° 

20° < a < 40° 

cMat - MM») 22 

= f23(Ma)^+ f22<Ma) 

= (f24(Ma) - f23(Ma)] 

= f24(Ma) + f22(Ma) 

I - pitching moment coefficient due to speed brakes. 

+ f23(Ma) + f22(Ma) 

= f20(Ma)+ f21(Ma)f2(a) 

’ = pitching moment coefficient due to landing gear 

lL. G 

= C 
ml.g (awR> 

M. H 
pitching moment due to horizontal stabilizer 

= CT <w(Ma) 
lh h 

(63) 

(64) 

(65) 

L f is defined as the distance from the airplane center of gravity to the horizontal 

solution of the aHR equations. 

The remaining moment to be described in the pitching moment equation is the in- 

fluence of a deployed drag chute: 

= pitching moment due to inflated drag chute 
dc 

= 115q fp(a) 
(66) 

axis 
dy coeiiicients wmcn reqmic - f 
equation 62. In either case, the evaluation of the coeffi 

Mdt' 

HR/ 
respec 

cient^varies in accordance with the interval of the present value of aWR and 

interval equation are solved. This requires that f^Ma) through f18<Ma) be evaluated 

outside of the function generator program. Thus, a maximum of only two functmns 
Mach are ever calculated rather than six. 
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6. 2 Program Control 

The* three basic longitudinal equations described in the preceding section form one 

âÆïw «'Sä' f«’" 

the next cycle. 

In r\r*Hpr in maintain the cycle time fixed at 50 milliseconds, the Governing Control 

Program is not initiated until the count in 

for ^ly'of^he^hree ope rating mo'des, the time required for the computation is less than 

50 milliseconds. ) 

The control aspect of the Governing Control Program selects the mode of operation 
for the next computation cycle. (Mode changing is ^rforme^oidy^t fte^nit^ion of a 

above three flags are off. 

following ground rules when preparing the individual subroutines. 

1. 
During any one cycle there is only one entrance to and one exit from a sub- 

routine. 

9 -FVit from a subroutine is accomplished by a SCRNM instruction. (This in- 
.«J„ ™S S S,*u," » tec..«™ .. ... addressed ..teer „.mor, 

register. ) 

3 The exit from one subroutine is the direct entrance to the next subroutine; that 
is, the contents of theTgister addressed by lhe SCRNM instruction is the effective ad- 

dress of the entrance to the next subroutine. 

trol. 

The list of starting addresses of all siforoutines to be us^d is stored twice^ ^ ^ 

individual lists are in consecutive locations triable Changes are made in the variable ., —* -— 
data for the required sequence of operations from the f 
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rnmolete list of addresses can then be transferred to the variable table, thereby 
economizing on instructions (since this procedure can be coded in loop fashwn). Figure 
74 exemplifies the relation of the fixed and the variable tables to the subroutines. 

To illustrate the operation of a subroutine router, assume that the sequence of sub - 
routines to befollowedTn the next cycle is C. D, A, B (figure 74). The following would 
be the subroutine router to effect this sequence: 

CLA 2002) 
NOP 0000 J Place C as first subroutine 
STO 1002 ) 

CLA 
NOP 
STO 

2003 
0000 
1003 

Place D as second subroutine 

CLA 2000) 
NOP 0000> Place A as third subroutine 
STO 1004) 

CLA 
NOP 
STO 

2001 
0000 
1005 

Place B as fourth subroutine 

CLA 
NOP 
STO 

2005 
0000 
1006 

Place return to Governing Control 

This table of variables then becomes: 

Variables Table 

NMAD Contents 
1002 0011700 
1003 0014600 
1004 0005000 
1005 0006700 
1006 Address of G. C. Entry 

In the case of the F-100A simulation program, the Normal mode of operation 
rpnrosents not only the most used mode but also the mode specifying the maximum number 
of avalóle sub^utines Thus the fixed table for the Governing Control Program contins 
the entrance addresses of all subroutines used in the Normal mode of operation. In thi 
mode the subroutines and the order in which they are performed are. 

Governing Control 
Function Generator 
Permute 
Convert Input Variables 
Aerodynamic Coefficients 
Moments and Forces-Stability Axes 
Moments and Forces-Airplane Axes 
Accelerations 
Velocity Vectors 
Direction Cosines 
Etcetera 
Altitude 
RPM 
Icing 
Percent Thrust 
Total Thrust and Fuel Flow 
Tailpipe Temperature 
Mass of Fuel 
Mass, Moments of Inertia, Center of Gravity 
Hydraulic Pressure 
Instruments 
Decisions (Land, Air, Crash) 

182 



N MAD CONTENTS 

2000 0005000 

2001 0006700 

2002 0011700 

2003 0014600 

2004 0017000 [ 

2005 ADDRESS OF 
GOVERNING 
CONTROL 

FIXED TABLE 

N MAD CONTENTS 

1002 0005000 

1003 0006700 

1004 0011700 

1005 0014600 

1006 0017000 

1007 ADDRESS OF 
GOVERNING 
CONTROL 
ENTRY 

VARIABLE TABLE 

SCRNM 1002 
FROM 
GOVERNING 
CONTROL 

0050 

SUBROUTINE A 

SCRNM 1003 

0067 

SUBROUTINE B 

SCRNM 1004 

0117 

SUBROUTINE C 

SCRNM 1005 

0146 

SUBROUTINE D 

SCRNM 1006 

THIS VARIABLE TABLE THEN BECOMES: 

1002 0011700 

1003 0014600 

1004 0005000 

1005 0006700 

1006 ADDRESS OF 
GOVERNING 
CONTROL 
ENTRY 

0170 

SUBROUTINE E 

SCRNM 1007 

TO 
GOVERNING CONTROL 

Figure 74. Diagram of Simplified Governing Control Program 

183 



In the Zero mode the specific order in which subroutines are performed is: 

Governing Control 
Function Generator 
Permute 
Convert Input Variables 
Aerodynamic Coefficients 
Moments and Forces-Stability Axes 
Moments and Forces-Airplane Axes 
Accelerations (under Zero Control) 
Velocity Vectors 
Direction Cosines (under Zero Control) 
Etcetera 
Altitude (under Zero Control) 
RPM 
Icing 
Percent Thrust 
Thrust and Fuel Flow 
Tailpipe Temperature 
Hydraulic Pressure 
Instruments 
Decisions (Land, Air, Crash) 

In the Freeze or Crash mode the specific order in which the subroutines are 
performed is: 

Governing Control 
Function Generator 

From the preceding description of Governing Control, it is apparent that the 
flight simulation program is sub-divided into a number of subroutines whose order of 
execution is controlled by the Governing Control Program (figure 75). The order of 
subroutine execution is not arbitrary, but is consistent with the flow of calculations which 
comprise the differential equations. 

The order in which the equations are solved (the dependent variables are computed) 
and the resultant parameters are introduced into other equations has a significant effect 
upon the fidelity of the digital simulation. It was found that a delay as short as 50 milli¬ 
seconds (one iteration cycle), introduced by improper ordering of subroutes, could intro¬ 
duce enough phase lag to cause the system of equations to become unstable in regions 
where the stability phase margin of the actual system of equations was quite small. 

An instance of this arose during the testing of the simulation program for an oper¬ 
ational, high performance aircraft (not the F-100A). The scheduled checkout of this simu¬ 
lation program was delayed seriously due to the presence of vehicle longitudinal instability 
at high supersonic speeds. Based on a detailed examination of the available computer out¬ 
put, familiarity with the computer program, and knowledge of the aircraft dynamics, it 
was hypothesized that the instability was due to a 50 millisecond time delay introduced 
into the program by the particular ordering of subroutines that was employed. This time 
delay would appear as a phase lag to the vehicle dynamics and could cause instability at 
the high Mach numbers where the aircraft stability phase margin is quite small. At low 
Mach numbers the aircraft is normally quite stable with a relatively large stability phase 
margin, and the added phase lag would not have any serious effect. An analysis of the 
vehicle longitudinal mode was performed to confirm the hypothesis. 

As a first step in testing this hypothesis it was necessary to examine the ordering 
of subroutines in the program to determine the particular order of computation. Figure 
76 indicates the original subroutine sequence. The block titles refer to the subroutine 
titles (similar but not identical to the subroutines of the F-100A simulation program which 
are described later in Section VI). The computations performed within each subroutine 
which pertain to the longitudinal instability problem are shown within the appropriate 
blocks. 

Examination of the ordering of subroutines indicated that the current value of a 
is computed early in the cycle (Velocity Vectors Subroutine); however, the value of the lift 
coefficient, corresponding to the current a is not computed until the end of the cycle 
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OF CL, Ma, h 

INTEGRATE TO 

OBTAIN a, qi 

VELOCITY VECTORS 

I COMPUTE A7 

1 ZA 

LINEAR ACCELERATIONS 

COMPUTE My 
FORES & MOMENTS - STABILITY AXES 

COMPUTE Ô 
ACCELERATIONS - WIND AXES 

COMPUTE q, 
ACCELERATION - STABILITY AXES 

COMPUTE DIRECTION COSINES 
DIRECTION COSINES 

COMPUTE qj, qsc, 

sin a, cos a, C^, and C^ 

ETCETERA 

COMPUTE STABILIZER 
CONVERT INPUT VARIABLES 

DEFLECTION 

Figure 75. Governing Control Flow Diagram 
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START 
OF 

.CYCLE, 

1 IN 1 1 u U, w,, • — 

OBTAIN a, qj 

ETCETERA 
CUMrUic qj, tpt., 2 

sin a, cos a / and 

fîFIsIFRATE FUNCTIONS OF 
FUNCTION GENERATOR 

CL, Ma, h 

COMPUTE Az 
0 

LINEAR ACCELERATIONS 

COMPUTE M 
ys 

MOMENTS AND FORES-STABILITY 

COMPUTE a 

ACCELERATIONS-WORD AXES 

COMPUTE q, 

ACCELERATION - STABILITY AXES 

COMPUTE _iec 

DIRECTION COSINES 

r DIRECTION COSINES 

roMPUTE 
CONVERT INPUT VARIABLES 

STABILIZER DEFLECTION 

Figure 76. Initial Ordering of Subroutines 
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(Etcetera Subroutine). Consequently, the computation of à and q. (Angular Accelerations- 
Wind Axis - Subroutine and Angular Accelerations-Stability Axis - Subroutine, respectively) 
use and old value of CL rather than the present value. The problem is compounded further 
by recognizing that the functions of Cl which are computed at the beginning of the cycle 
(Function Generator Subroutine) are based on the past value of CT rather than the current 
value of Cl for that cycle. 

On the basis of this examination it appeared that the value of Cl had been delayed 
by one iteration cycle of 50 milliseconds before being used in the computations of ¿ and 
qi. In order to determine the effects of this delay on the aircraft dynamic response and 
stability, a detailed analysis of the system of equations for the longitudinal mode was 
performed. 

The equations that were examined were considered to be solved continuously, rather 
than periodically, in order to simplify the analysis. The next step was the formulation of 
a signal flow graph of the longitudinal dynamics which, in turn, was reduced to its simplest 
form. Conventional servo analysis procedures were used to determine that the open-loop 
gain and phase shift of the closed-loop system of equations were a function of frequency. 
The result was simply that the system of equations, without consideration of the 50 milli¬ 
second time delay introduced by Cl was stable for all conditions. However, when the 
delay factor was considered, the analytical results were identical to the experimental re¬ 
sults obtained from UDOFT. It was reasonable to conclude, therefore, that the instability 
problem was caused by the unwanted inclusion of a time lag in the simulation. This lag 
could be due only to the particular order in which the equations were solved. 

Consequently, a new ordering of the subroutines was recommended (figure 77). 
In the revised sequence, the value of Cl corresponding to the current value of a is com¬ 
puted early in the cycle and is then used for all subsequent computations during that cycle. 
In addition, the functions of Cl are now based on the current value rather than the past 
value of Cl- 

This recommended ordering of subroutines was implemented on UDOFT. As 
expected, the simulated vehicle is now stable over the entire flight regime and faithfully 
reproduces the desired longitudinal behavior. 

6.3 Function Generator Subroutine 

The primary purpose of the Function Generator subroutines is to evaluate the 
piecewise linear functions by solving the equation: 

yn = mb(xn-xb)+yb <67> 

where: xn is the independent variable 

x^ is the breakpoint nearest to but smaller than the independent variable. 

is the slope of the segment 

y^ is the value of the ordinate at the breakpoint 

For the example of figure 78: 

Breakpoints, slopes, and intercepts for each function are stored in a block in 
the following format. 



Figure 77. Recommended Ordering of Subroutines 

t*. 
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Figure 78. Plot of Typical Piecewise Linear Function Approximation 



Xq minimum x 

m, 

1 

104 

n-1 

mn-l 

yn-i 

maximum x 

As indicated, the data block will contain 3n + 1 data words for a function consisting 
of n straight-line segments. The number of straight-line segments in the functions that 
were used in the F-100A simulation program ranges from one to nine; thus, the data block 
lengths would vary from four to twenty-eight data words. If separate subroutines were 
used to evaluate each group of functions that consisted of a different number of segments, 
nine subroutines would be required. In order to simplify the program the following three 
data word block lengths were selected: 10 words, 16 words, and 28 words for functions 
with three, five, and nine straight-line segments respectively. Therefore, only three 
subroutines are required. If a particular function does not consist of three, five or nine 
segments exactly, the data words for that function must be introduced into the next higher 
data word block with the unused data words being made identically zero. As an example, 
a function with four segments would be placed at the beginning of the section of number 
memory reserved for functions with five segments (16 data words) in which the fourteenth, 
fifteenth, and sixteenth data words are made identically zero. An examination of the por¬ 
tion of number memory reserved for function data words will show that the data words for 
the functions of each independent variable are stored sequentially in order of increasing 
number of segments. This is essential if the function generator routine, as conceived 
and developed for the F-100A simulation program, is to maintain control of the program. 
This will become apparent as the discussion proceeds. 

79). 
The function generator routine consists basically of five major operations (figure 

1 FGENT-entry into the program and initialization of Tally Register and return 
address, FGEND, for evaluation of functions of Mach. 

2. FG2, FG7, and FG8-setting-up Tally Register and return address, FGEND 
for cyclic evaluation of functions with five, three, and nine straight-line segments 
respectively. 

3 FG3-search of function data block for appropriate line segment, extraction of 
line segment data, and evaluation of function. 

4. FGEND-storage of ordinate of evaluated function and supplementary operations 
if desired. 
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FGEND FGEND 

STORE ORDINATE 

TRANSFER CONTROL TO 
CONTROL PORTION AT 

FUNCTION GENERATOR PROGRAM 

ACQÜIRE INDEPENDENT AND 
VARIABLE, MACH, AND 

INITIALIZE RETURN ADDRESS, 
FGENT, AND TALLY REGISTER 

FOR PORTIONS OF MACH 

STORE ORDINATE 

ACQUIRE QUANTITY TO 
IE MULTIPLEXED OUT 

MULTIPLEX-OUT 
QUANTITY 

ACQUIRE C 
FOR INC REM EL 

ADDRESS 

OUNT OF 5 
ITING RETURN 

FGEND 

TRANSFER CONTROL TO CON¬ 
TROL PORTION OF FUNCTION 

GENERATOR PROGRAM 

ACQUIRE NEW INDEPENDENT 
VARIABLE SET-UP TALLY, 
REGISTER TO ADDRESS OF 
FIRST BREAKPOINT OF FIRST 
FUNCTION TO BE EVALUATED 

SET-UP RETURN ADDRESS, FGEND 
AND TALLY REGISTER FOR FUNCTIONS 

WITH 16 DATA WORDS 

BREAKPOINT SEARCH AND 
FUNCTION EVALUATION 

STORAGE OF ORDINATE, AND 
SUPPLEMENTARY OPERATIONS 

SET-UP & STORE RETURN ADDRESS 
FGEND, AND TALLY REGISTER 
FOR FUNCTION WITH 10 DATA 
WORDS 

SET-UP 4 STORE RETURN ADDRESS, 
FGEND, AND TALLY REGISTER 

FOR FUNCTION WTTH » DATA 

WORDS 

Figure 79. Function Generator Control Flow Diagram 



5. G( )ENT-reentry to program for initialization of control for evaluation of 
functions of remaining independent variables. 

A more detailed flow diagram is shown in figure 80. A better understanding of the opera¬ 
tion of the function generator routine may be gained from an example showing the process 
by which a function is evaluated. 

The program is entered initially at FGENT. The first operation is to acquire the 
independent variable for which functions are to be evaluated. Since the first functions to 
be'evaluated are functions of Mach, the most current value of a Mach is extracted from its 
normal storage location in number memory and stored in the independent variable working 
location, FGIV. The next operation is to set the Tally Register equal to the address of the 
first function of Mach which will be evaluated. However, because the routine which follows 
increments the Tally Register by 16, the Tally Register is set initially to the first break¬ 
point address less 16. The return address, FGEND, by means of which the cyclic program 
can jump out to a multitude of two and five instruction routines, is likewise established. 
Normally, the short routines just mentioned are two instructions in length, containing both 
a store instruction (510) and an unconditional transfer of control instruction (SCR). The 
store instruction stores the ordinate of the evaluated function in the proper address in 
number memory, and the transfer of control instruction returns program control to either 
FG2, FG7, or FG8 for evaluation of the next function of the same independent variable. 
As with the setting of the Tally Register, the return address is set to an address which 
differs from the desired return address. The difference between addresses is a count of 
two, because the following routine, FG2, increments the return address by a count of two. 
At this point, the Tally Register is incremented by 16 and the return address, FGEND, 
is incremented by two. This apparent inefficiency of operation occurs because the normal 
incrementing of the Tally Register and the return address is performed by the routine 
entered at FG2 which is used for evaluation of functions with four and five breakpoints, 
respectively, (Considering the program as a whole, greater consistency of program design 
would have been maintained had the initialization process for functions of Mach been made 
similar to the initialization routine for the evaluation of functions of the remaining inde¬ 
pendent variables, which routine enters the main flow at FG3 rather than FG2.) Entry 
is made initially to the control program (FG2) which is used for evaluating functions with 
four or five breakpoints rather than to the control program for evaluating functions with 
three or fewer breakpoints (FG7), because there are no functions of Mach with fewer than 
three breakpoints, (A minor exception is one linear function of Mach which is evaluated 
immediately after entry is made into the function generator and the independent variable 
is acquired. ) 

With the establishment of the address of the first breakpoint of the first function 
(of Mach) to be evaluated, the search for the straight-line segment within which the inde¬ 
pendent variable (Mach) lies is initiated. The search is initiated with a test to determine 
if the independent variable is less than the breakpoint initially extracted from the function 
data block. If it is not, the Tally Register is incremented by three, thereby establishing 

-the address of the next breakpoint of the function. The testing is continued until the first 
breakpoint greater than the independent variable is found. At this point, the next lower 
breakpoint is extracted from the function data block and the variable is again tested to 
determine if it is greater than or equal to this breakpoint. For the first search of the 
first function, only one of these tests will be performed. When the condition of the second 
test is satisfied, the search terminates. At this point, the Tally Register conveniently 
contains the address of the breakpoint that defines one parameter of the straight-line seg¬ 
ment within which the independent variable lies. By modifying this address by factors of 
one and two the applicable slope and intercept data, respectively, are readily extracted 
from the function data block and the function is evaluated. This terminates the breakpoint 
search and function evaluation routine. 

In the preceding discussion it was indicated that two breakpoint-independent vari¬ 
able tests were performed. Undoubtedly, some question may arise as to the need for the 
second test. (Is the independent variable greater than or equal to the breakpoint preceding 
that one which passed the first test?) The second test is unnecessary, as already pointed 
out, when the first function of each independent variable is evaluated. However, it may 
be necessary when evaluating all other functions. This will become apparent from the 
following discussion. 

Assume that the first function, f^Ma), of the independent variable has been evalu¬ 
ated. Further, assume that the function consists of five straight-line segments and that 

i*- 
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Figure 80. Function Generator Control Flow Diagram 
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the independent variable (FGIV) lies within the fourth segment (figure 81). When the 
evaluation of the first function is complete and program control is restored to FG2 or 
FG2 + 1 (because functions with five breakpoints are being evaluated), the Tally Register, 
which contains the address of the breakpoint, d., defining the straight-line segment for 
the previous function, is incremented by 16; thereby establishing the address of the 
breakpoint, d, of the next function, f2(X), tobe evaluated. In the example of figure 81, it 
is apparent that the independent variable, FGIV, does not lie within the fourth segment of 
fo(X), but lies within the first segment. As a result, the first test of the search process 
(the independent variable less than the breakpoint) will be satisfied. However, if it were 
tacitly assumed then that the next lower breakpoint is less than the independent variable, 
the function will be computed using the wrong segment. In these cases, testing of the lower 
breakpoint ensures the proper evaluation of the functions. These cases do not occur fre¬ 
quently, but there are a few cases where there is considerable disparity in the ordinate of 
the breakpoints of consecutive functions. 

Function data points are grouped according to the number of breakpoints. (There is 
not necessarily any correlation between the ordinate of the breakpoint.) Grouping by order 
of breakpoint is necessary due to the substitution of zero for breakpoints which do not 
exist-for example, in a function having 4 breakpoints, the fifth breakpoint is made equal 
to zero since there is no group of four breakpoint functions. If the previous function had 
five breakpoints and was being evaluated in the fifth segment the fifth breakpoint, zero, 
would be tested against the value of the independent variable. If this zero value were less 
than the value of the independent variable, the Tally Register would automatically be incre¬ 
mented, and the next data point-an erroneous one-wouldbe tested. Under these circum¬ 
stances the program could lose control. 

The main program associated with the Function Generator subroutine serves as a 
convenient device to space MLXO instructions. A time delay of 400/3 /¿sec. is necessary 
between any two multiplex-out commands. It was determined that the minimum time to 
generate any two functions would satisfy the demands of this time delay. Thus every 
second time the Function Generator returns control to the main program, an MLXO opera¬ 
tion is effected. In order to compensate for the additional instructions used in this opera¬ 
tion, the main program causes the Accumulator to be set to the count of five and returns to 
the Function Generator at the desired entrance location plus one. At this point, the Ac¬ 
cumulator will be added to the previous return address, and the result will be the proper 
return address for the next function. 

6.3.1 Extra Function Generator 

When the independent variable ranges from minus to plus, the Extra Function 
Generator Subroutine (figure 82) is used to compensate for the possibility of an overflow 
occurring within the breakpoint search routine. The overflow occurs when the independent 
variable is at or near the maximum negative value, and positive breakpoints are subtracte 
from it during the search for the proper segment. This routine functions the same as the 
Function Generator Subroutine with the following exceptions: 

1. The input variable must be shifted one place to the right and stored in EFGIV. 

2. The symbolic entrances to the routine are preceded by an E as follows: 
EFG1, EFG2, etc. 
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6. 3. 2 Calculation of û*^ and û^r 

The subroutines for obtaining explicit solutions of and <*rr are an adjunct to 
the function generator. Immediately preceding the generation of function of and QftR, 
control is transferred from the Function Generator program to the o^r program 
(figure 83). 

The program selects an arbitrary interval of the independent variable and evaluates 
the variable using slopes and intercepts corresponding to this interval. The solution is 
checked to determine if the calculated result is within the interval. The program calcula¬ 
tion continues until the independent variables and interval correspond. 

The program performs the ff\vR calculation first, since ûtrr is a function of both 
û^vr and ûrr. When the program has established a legitimate value for <*wr, all functions 
of ffwR are calculated before the program proceeds to the orr computation. The same 
procedure is employed for the computation (figure 84). 

6. 3. 3 Accuracy of Function Generation 

Using the method of interpolation 

yn = mb(xn - V + yb (68) 

rather than the method 

yn = mb(xn) + yb (69) o 

where is the Y-axis intercept of the segment b which is characterized by the slope m^, 

produces a more accurate interpolation. This results because the interval interpolation is 
added to the value of the function at the preceding breakpoint, which acts to limit the error 
in the interpolation. The problems in scaling of the function are, in general, controlled by 
the value of the largest slope. This is especially true of Mach functions which vary con¬ 
siderably in the transonic region. This is a significant problem in the F-100A simulation 
program, so the functions of Mach were expanded in the transonic region. By expanding 
the functions in this manner, the values of the slopes were reduced, thereby offsetting the 
loss of accuracy due to the use of large scaling factors. For functions of Mach, the in¬ 
terpolation is in terms of Map, as follows: 

0. 0 Mach < 0. 9 Map = Mach (70) 

0. 9 < Mach <1.1 Map = 0. 9 + 3 (Mach - 0. 9) (71) 

1.1 < Mach < 2. 133 Map - Mach + 0. 4 (72) 

6. 4 Convert Input Variables Subroutine 

From the description of the longitudinal equations, it is evident that the present- 
cycle solution of the differential equations requires the coefficients to be interpreted in 
terms of past-cycle computations of the independent variables (Mach, a, hp, etc. ) and the 
present cycle longitudinal control disturbances. These control disturbances could be 
interpreted as a new flight control position, a gradual change in the longitudinal equation 
as influenced by a change in the center of gravity resulting from fuel consumption, a thrust 
change, deployment of speed brakes, etc. The status of the external controls are repre¬ 
sented by numbers stored in memory. 

It is apparent that, as the computation is continued indefinitely, the coefficients 
will be modified accordingly and the resultant computation will reproduce the short and 
long term response of the longitudinal equations. The computations for the present cycle 
must, therefore, reflect recent changes caused by external means before the computation 
can be allowed to continue. The subrouting which updates the flight program to the in¬ 
fluences of the real-world is identified as Convert Input Variables. This subroutine con¬ 
verts analog inputs to the polarity and scaling required by the F-100 program; makes 
decisions relating to the utility hydraulic system, the landing gear, the speedbrakes, etc; 
and stores appropriate numbers in memory. 

W». 
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Figure 83. aWí^ Calculation Flow Diagram 
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Figure 84. aHR Calculation Flow Diagram 

K*. 
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a) Analog Inputs 

The encoded quantities representing the positions of the flight controls are 
multiplexed-in as binary numbers. A typical example of such an input is the 
flightrcontrol. The multiplexed-in quantity is converted to stabilizer position and stored 
as some deflection. The conversion of flight control displacement to stabihzer deflection 
is accomplished by subtracting the binary quantity representing zero stabilizer pos on 
from the multiplexed-in value. The resultant quantity is converted to stabilizer deflection 
in degrees. A positive «h indicates forward displacement oi the flight control. Símil 
processes are applied to the other analog inputs. 

b) Discrete Inputs 

The use of the discrete input is as varied as the number of times it ^ 
use of a discrete input is typified by the landing gear program fl^eS5>. The landing 
gear program within the convert input variable program actually ¿ 
the 1 andine eear being extended or retracted. It does this by checking the status of a dis 
cre+e input ^LANDING GEAR IN MOTION, which is activated whenever the landmg gear 
handlers in a position other than that shown by the indicator. The real-time delay is 
effected by keeping track of the number of program cycles completed before gmng an m 
dication of gear up/gear down. To minimize the added computational burden .he count 
“difiedlnly every fourth, 50 millisecond cycle. With the gear in tne down position the 
various aerodynamic coefficients related to the extended landing gear are ca-culated. 

With the completion of the Convert Input Variables program, the flight program is 
updated with new input from the real-world and the equations making up the coefficient can 
be evaluated. 

6. 5 Aerodynamic Coefficients Subroutine 

The function of the Aerodynamic Coefficient Subroutine is the evaiuatton of the 
coefficient equations which are given in terms of the functions computed m the Function 
Generator Program. 

With the functional data and the real-world input defined it becomes a simple task 
to calculate and to store the various coefficients employed m the flight program. The 
coefficients í e ¿ouped together such that all coefficients due to the same real-world 
input1 are*1 either fomp'uted 4 not computed as a function of the state of ^ mpuh Ex- 
arrmles of this are drop tanks speed brakes, and landing gear. Thus, the coemdenxs 
Ct P Cn Cy, , and CM,. are computed when the drop tanks are on, but are ignor 
when the drop taSts are off. The other coefficients which are not so influenced are com¬ 
puted each cycle. 

Thf* nroeram also performs a number of decision-making functions such as 
selecting thePp™ aerodynamic coefficient equations in cases where these equations 
vS asga funPctioPn of scrJ independent variable. An example of an ae-d^c coef¬ 
ficient so manipulated is the rigid pitching moment coefficient, CMffR (équation 58, 
section 6.1.3). 

The computation continues with the summation of the coefficients to establish the 
forces the foments along and about the airplane stability axis. For the longitudinal 
equations, this summation is limited to Xs, and 

6. 6 Total Forces and Moments - Stability Axes-Subroutine 

As the name implies, this program coUects the stored aerodynamic coefficients 
and sums them in accordance with the equations for Xg, Ys, ¿s, - iXs> 

The coefficients related to the forces and moments are suaTef 

multiplication factor. In this case, however, the factor 
pressure and wing area but also the proper moment arm. Moment arm C is tne mean 
aerodynamic chord, and b is the wing span. 
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6. 7 Total Forces and Moments — Airplane Axes -Subroutine 

The next step in the computation is the development of the forces and moments as 
a function of the airplane axes. This involves the conversion of the forces and moments 
as related to the stability axes into forces and moments related to the airplane axes. It 
also involves the addition of engine thrust which is fixed at an angle relative to some 
fuselage reference line. 

This subroutine takes the results obtained from the summation of forces and 
moments of the stability axes and sums them relative to the airplane axes. The quantities 
are stored for the Acceleration Routine. 

6. 8 Accelerations Subroutine 

The description of subroutines thus far describes only the forces and moments 
acting on the airplane. The next routine yields the resultant linear and angular accelera¬ 
tions along and about the airplane axes as influenced by the computed forces and moments, 
respectively. The linear accelerations along the airplane axes are simply derived from 
F = Ma. Longitudinal equations Xa/M¿ and Za/Mi, where Mi is the instantaneous mass, 
are the simple translational accelerations. However, the component of acceleration due 
to gravity interpreted along the particular axis and also the sum of a number of accelera¬ 
tions resulting from the cross products of a linear and angular velocity modify the simple 
accelerations to produce the actual accelerations. The angular accelerations are summed 
in a similar manner with the exception that the terms are multiplied by the products of 
the moments of inertia. 

The routine computes the six accelerations involved in the six differential equations 
describing u, v, w, and p, q1# r. The routine also performs a number of tests to deter¬ 
mine whether or not a discrete input is activated. The discrete inputs checked are: True 
Airspeed Lock, Roll Angle Lock, and Autopilot. (These functions and their use are de¬ 
scribed in section 7. 1, Special Test Controls). A test is made also for land/air conditions. 
Under landed conditions the acceleration equations are modified extensively. 

6. 9 Velocity Vectors Subroutine 

The generation of the accelerations along and about the airplane axes concludes 
the aerodynamic computations that must be performed using data that defines the behavior 
of the aircraft to describe the aircraft in space. The succeeding program. Velocity 
Vectors, computes the linear and angular velocities by integrating the accelerations. 

Since integration is required also for the Direction Cosines Subroutine, it was 
more convenient to establish the integration process as a separate subroutine which could 
be entered freely. The Velocity Vectors Subroutine exists only to the extent that an entry 
is made into the Integration Subroutine immediately following the Accelerations Subroutine 
for the purpose of computing the linear and angular velocities (for the analog outputs). 

6. 9.1 Integration Subroutine 

Numerical integration in the UDOFT real-time simulation programs is performed 
by applying the mixed quadrature formula, modGURK. This process requires that a 
past history of the accelerations that are being integrated and the resultant velocities be 
maintained for the three most recent computation cycles. This is apparent from the inte¬ 
gration formula: 

X = 2 [Ãx . + Bx 0 + Cx « + Dx .+ Ex „ + Fx Jl n [Vl n-2 n-3 n-1 n-2 n-sj (73) 

where the coefficients A, B, C, D, E, and F are the modified O33 modGURK coefficients 
a, b, c, d, e, and f: 

A = l/2a = 0. 5731042 D = 1/2 jlh • d = 0. 0410397 

B = l/2b = -0.1005435 E = 1/2 Ah • e = 0. 0252003 

C = l/2c = 0. 0274394 F = 1/2 Ah • f = 0. 0068774 

l*. 
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The modGURK Integration Subroutine selects the table of past values (¾ and it) for the 
specified variable and performs the integration in accordance with the quadrature formula 
(figure 86). The integrated result is stored over the current cycle *--3 value. The table 
of past values is never permuted; thus, for four successive computation cycles, the table 
of past values would be: 

x_ < _ x_ „ _ X o X « n-l-► n-¿ m n-3 n~l 

n-2-► n-3 n-l -► n-2 

K 7 X 1 n-J n-l 

xn «_k , 
tl-¿ ^ n-3 

n-3 n-l 

Both the determination of the oldest past values that can be discarded and the permuting 
of the coefficients are performed by the Permute Subroutine. 

6.9.2 Permute Subroutine 

The Permute Subroutine (figure 87) rotates the coefficients A, B, C, and D# E, 
and F so that in every cycle, coefficient A is multiplied by the n-lst value of the variable, 
B by the n-2nd, and C by the n-3rd, etc. A control word in the permute routine is modi¬ 
fied each cycle so that the new values of the variable and its derivative are stored over the 
oldest value. 

To illustrate, consider the initial storage of the table of past values and coef¬ 
ficients to be: 

Coefficients 

L(D A 

M2) B 

M3) C 

M4) D 

Ms) E 

M6) F 

where MD is defined to be storage register 1. 

The modGURK program then computes: 

Past Values 

U7) Vl 

^ V2 

n-3 

MIO) X , 
n~x 

Lin) k , n-3 

L(12) k . 
n-3 

L(l) . W) + U2) ■ US) + L(3) • L(9) + L<4) • L(10) + IX5) • iXll) + 1X6) • 1X12) 

The result is: 

A(x -) + B(x „) + C(x J + D(x n-l n-2 n-3 n* ,) + E(x „) + F(x _) = X 1 n-2 n-3 n 
(74) 

X is stored in M9) and the new derivative which is computed by the Acceleration Sub¬ 
routine is stored in Ml2). The permute routine then rotates the coefficient by storing 
ClL(3)] in M2), C[M2)]in MD, and Cl Ml )3 in M3); MM4)] in M6), ClM6)] in M5), 
and ClM5)] in M4). (ClM3)] is defined to the contents of storage register 3). The two 
tables now appear as: 
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0 
STORE 
RETURN 

ADDRESS 

COMPUTE* = 

SELECT 
PROPER 

STORAGE 
BRANCH 

STORE 
RESULT 
INTO 
TABLE 

Figure 86. Modgurk Integration Formula Flow Diagram 



Figure 87. Permute Subroutine Flow Diagram 
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Coefficients 

Ul) B 

1X2) C 

1X3) A 

1X4) E 

1X5) F 

1X6) D 

Past Values 

W V2 

XX8) xn.3 

LO) xn.1 

iXio) in.2 

Ldi) ¿n.3 

1X12) xn.j 

Applying the Integration Subroutine, the result is 

B<V2> + + ^^n-l5 + E<in-2> + F(V3> + ^^n-l» = xn (75) 

The reason the coefficients are permuted each cycle rather than the past values is the fact 
that there exists twelve sets of variable past values which are integrated each cycle (six 
sets to obtain velocities and six sets in the Direction Cosines Subroutine) and each one of 
the twelve sets would have to be permuted each cycle. 

6. 10 Direction Cosines Subroutine 

The next step in the computation cycle is the generation of the Euler angles. As 
previously indicated (section 5. 4. 2), direction cosines are employed to determine the an¬ 
gular position of the aircraft with respect to the ground. The program associated with 
establishing these values is called the Direction Cosines Routine. 

The program (figure 88) computes six of the nine kinematic differential equations 
forthe direction cosines and performs the integration. (The equations are the result of 
the projection of cross products of the rate vectors of one axes system onto another system 
of orthogonal coordinates. ) The nine differential equations are as follows: 

lj = m^r - n^q^ (76) 

*2 = mir - Vl (77) 

V m3r - n3ql (78> 

^1 " nlP " *lr 

m2 = n2p - l2r 

“3 = n3p ' V l81) 

ñj = (82) 

"2 = 12ql ‘ m2p (83) 

n3 = l3q - m3p (84) 

The program integrates I2, m2, ¿2, and Í3, m3, ¿3 (sets two and three using O33 Mod 
Gurk) to obtain the direction cosines (only six equations are necessary with this method 
of orthogonalizing the integrated direction cosines). However, since these integrated 
values may not necessarily be orthogonal, orthogonality is obtained by using an iterative 
process in conjunction with six of the twenty-one direction cosine identities. The identi¬ 
ties used are the following six equations: 85, 86, 90, 91, 92, and 93. 

The identity 1 = Ij + m3 + n3 

is used to describe the 1^, m3, and ng direction cosines of set three. 

(85) 
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The identity 0 = 1213 + m2mZ + n2n3 (36) 

is used to obtain one component oí set two, perpendicular to set three. The method as¬ 
sumes that a minimum of error exists in the other two direction cosines of set two. 
Equation 66 is solved for one of the three direction cosines using that equation which has 
the largest component of the set three in the denominator: 

- m2m'3 
(37) 

for n'3 > 1'3 or m'3 

V2 = 
"m2m3 " 12l3 

(88) 

for 1'3 > m'3 or n'3 

m2 = 
n2n3 - (39) 

for m'3 > 13 or n'g 

The primes denote that the component of the direction cosine matrix has been orthogonalized 
with respect to one of the identities. The program then uses the same process as in set 
three using the following identity: 

i 12 , 2,2 
1 =12 + m2 + n2 

(90) 

where the equation employs one of the direction cosines found by the use of either equation 
37, 88, or 89. 

The orthogonalized direction cosines of sets two and three are used in equations 
91, 92, ajid 93 to obtain the orthogonalized direction cosines of set one. 

i'l = m'2n'3 - m'3n2 

m'j = n^lg - n3 Tg 

n' = l'2m'3 - l'3m'2 

(91) 

(92) 

(93) 

The process of orthogonalizing the integrated values is based on the following 
derivation. The integrated direction cosines of set three are substituted in equation 85 
which yields the following: 

^ + m3 + n3 = 1 + e (94) 

where € indicates the lack of orthogonality. 

Normalizing each term of equation 94 with respect to (1 + ¢), 

i2 „2 
+ m3 h n3 , 1 + € _ t 

1 + € 1 + € 1 + € 1 + € 

where now the orthogonalized direction cosines for set three are: 

(95) 
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Wv/prr 

m'g = mg/v^T+T 

n3 = 

(96) 

(97) 

(98) 

Another form which is more suited to digital computer programming is utilized for UDOFT 
(figure 88). The derivation of this form follows. The term l/^/T + c can can be determined 
with sufficient accuracy by means of the first two terms of the binomial expansion: 

(99) 

Let 

£3 = 1 - 

then 

€ = 2 - 2c' 

Let 

e3 = 2£3 

then 

e = 2 - e3 <100) 

Substituting equation 100 into equation 94 gives the following orthogonalizing expression 
which is used in the program: 

<3 = 3 - (13 + m3 + ^ (101) 

The orthogonalized direction cosines in terms of c g can be derived by substituting 
equations 99 and 100 into the expressions for the orthogonalized direction cosines, 
equations 96, 97, and 98. The resultant equations are as follows: 

1- s_!i 1 (102) 
3 2 3 

m' m 3 
(103) 

n 3 
(104) 

Therefore, orthogonalizing set three becomes a simple matter of using the integrated 
values of I3, m3, and substituting these values into equation 101 to solve for €3; and 
finally evaluating the orthogonalized direction cosines using equations 102, 103, and 104. 

6. 11 Output Processing Subroutines 

By evaluating the direction cosines, the flight simulation program has completely 
defined the attitude of the simulated vehicle in space with respect to the earth. The re¬ 
maining requirement is to exhibit the end results to the person in the cockpit. This is ac¬ 
complished by means of instrument displays, flight control pressures, etc.- To provide 
these indications the Etcetera and the Instruments Subroutines programs must be per¬ 
formed. Within the Etcetera Subroutine the new variables which resulted from the current 
cycle of computation are computed. These quantities will be used not only for the genera¬ 
tion of the inputs to the instrument displays in the present cycle, but also will form a part 
of the past history for the next cycle of computation. The Instruments Subroutine takes 



V. = 1/2 (v +¿^±^V(u2 + v2+w2)1;2 (air) 

‘n yin-D Vl) / 

these values, evaluates the necessary equations defining the particular instrument, and 
prepares the results for analog output instrument display . 

6.11.1 Etcetera Subroutine 

The Etcetera Subroutine performs 
the values of the linear and angular rates computed in the curren* cy 

computed are: 

(105) 

(106) 

(107) 

(108) 

(109) 

(110) 

(111) 

(n-1) 

= u (land) 

sina - 

cos« = 

tan?/) 

w 

vt n 

w 

-V 
u 

Mach = _i (where a is the speed of sound) 
a 

_ da (sijl g^n ^Sin a^n-l (where T = 50 milliseconds) 
a - 

(112) 

(113) 

(114) 

df T 

= « 57. 3 tan ip 

= a° » 57.3 sina (for 0° < ]ot| <20°) 

= a° » 58 sina (for 20° < |a| <39.9°) 

where the following limits are applied to the variables. 

\a\ <39.9° 

0 I <15.9° 

Ià I < 1. 96 rad/sec 

vt < 1183 feet/sec 

6.11.2 Instruments Subroutine 

The Instruments Subroutine solves the equations t^t process ^ 
ment displays. The resuitant data is convert^ and^to^r^lufim^^ 

positioning servos durmg the exeeution of the ^describe the accelerometer, indicated 
the Instruments Subroutine solv^s te 0f climb ground speed, gyro horizon, and 

true^heading. “'deserve equations consider the peculiarities, such as non-hneamty, 

of the respective instruments. 

The gyro horizon and the heading indicator employ the Section cosineSiÇiirectly 

as inputs. A problem is “^^^^^the ^-0 horizon and the heading indicator 
this occurs, the level of one of the this problem by shifting the 
servos diminishes to insipifi canee. PJjT in 0 approaches unity (ñgure 89 and 
appropriate direction cosines prior to outputting as sm » 

section 5. 4. 2). 
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6.12 Decisions Subroutine 

Once the program computation has been completed, the resultant solution must be 
checked to establish whether any of the structural limits of the aircraft have been violated, 
both in the air and on the ground. The following additional tests are f 
stall warning, land/air, crash, and a determination as to whether or not the mode of com 

putation has been modified. 

The Decisions Subruoutine performs a series of tests and, based upon the results, 
controls the states of various discrete outputs or program flags. 

a. ) Land/Air (figure 90) 

The aircraft is on the ground when 

1. H < 0, or 

2. H s 0 and the lift is less than the gross weight 

The aircraft is in the air when 

1. H > 0, or 

2. H - 0 and the lift is greater than the gross weight, 

b. ) Crash (figure 91) 

The aircraft is crashed if, when on the ground, 

1. Landing gear is not down and locked. 

2. Rate of descent is greater than 10 ft/sec. 

3. 0° > 0 > 13° 

4. -10° > 0 > 10° 

The aircraft is crashed if, when in the air, 
2 

1. dynamic pressure > 1663 lbs/ft 

2. -3 >g's >7.33 

3. v1 > 600 kts and -3 > g‘s > 6. 

c. ) Stall and Stall Warning (figure 92) 

A stall warning will be indicated if 

1. CT > 0.85 

A stall condition will occur if 

1. a !WR 
14c 

This completes the description of the computation cycle for the Wudinal 
At this ooint the program returns to the Governing Control program and starts 

a\ew cycle. (Actually, in the F-100A flight simulation program, the complete pro^am 
considers flight systems, engine, and altitude before returning to the mi p gr , 

Governing Control. ) 

i». 
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Figure 90. Land/Air Decisions Flow Diagram 
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Figure 92. Stall and Stall Warning Decisions Flow Diagram 



SECTION VII 

TECHNIQUES FOR ESTABLISHING THE PERFORMANCE 
OF THE SIMULATED F-100A 

Í 

i 

Many problems, the more significant of which have been discussed in preceding 
sections, were encountered during the development of both the UDOFT computer and the 
aircraft simulation programs employed to determine the feasibility of digital flight simu¬ 
lation. Once the computer and the programs had been dealt with, the problems did not 
cease, for the success of the UDOFT project depended upon the ability of the integrated 
system to perform as a flight simulator. The final proof of the feasibility of this new 
approach to simulation therefore could not be established until the performance and the 
flying qualities of the simulated aircraft had been exhaustively tested. 

Techniques used in the testing of analog flight simulators were not directly 
applicable to the digital counterpart; there were no servo shafts that could be locked or 
manually positioned. Special controls and computer programs had therefore to be 
established. The following discussion illustrates the specialized testing facilities that 
were incorporated into the UDOFT and the F-100A simulation program. 

7. 1 Special Test Controls 

In order to force the simulation program into certain prescribed operating flight 
conditions, or to lock the program at certain current conditions, a number of specialized 
control functions were introduced into the aircraft simulation program. These control 
functions were designed primarily to facilitate testing and not essentially as aids to train¬ 
ing. The following were established prior to, and were used during, the acceptance test¬ 
ing of the F-100A model: 

Control Function Discrete Input 

02LWT 
30LWT 
42LWT 
43LWT 
44LWT 
47LWT 
50LWT 
73LWT 
76LWT 
77LWT 

Zero 
Freeze 
Altitude Increase 
Altitude Decrease 
Autopilot 
Altitude Lock 
Roll Angle Lock 
No Fuel Depletion 
True Airspeed Lock 
Center of Gravity Lock 

The following sections contain brief descriptions of these controls. Where inadequacies 
have been noticed during the time elapsed since acceptance testing, modifications have 
been made to the control functions and are noted. 

7.1.1 Zero; 02LWT 

Once a crash condition has occurred, a method of initializing the variables and 
the instruments to their ground values must be available. Also, during a simulated 
flight, the Zero Control will land the aircraft and force all variables to their ground 
values. 

Initializing the variables is accomplished by forcing the equations of motion and 
position to their original on-the-ground values. Zeroing these equations is performed by 
introducing negative rates into the integration tables of the past values of the derivative 
terms for the calculations of the linear and the angular rates and the direction cosines. 
Typically, the angular rates are zeroed as a result of making 

Í 

i 

(115) 

(116) 

(117) 

216 



This substitution process occurs in the course of each successive integration cycle, main¬ 
tained as long as the Zero Control is actuated The result of the integrations performed 
with these parameters returns the equations of motion exponentially to the ZERO state at 
a rate determined by the time constant of the intergration formula Zeroing the equations 
in this manner does not necessarily force all parameters identically to zero, this m due to 
both the fixed scaling of the quantities used in the integration formula and the fact that the 
integration formula can regress to ground level conditions for values of certain variables 

other than zero. 

Since this can occur, an additional routine was inserted in the Zero program to 
make all pertinent parameters identically zero. The procedure involves examining Mach 
and altitude to determine if both are within prescribed minimum values; when they are, 
zeros are inserted into the registers storing the pertinent parameters. 

Exceptions to the zeroing process are the altitude and power plant computations. 
Altitude is slewed to zero at a rate determined by the dynamic characteristics of the Analog 
Altitude Indicator System. For the F-100A altimeter, the maximum slew rate is 25 feet 
per iteration cycle (500 feet per second). The power plant equations are in no way affected 
when the simulation program is under the influence of Zero Control. 

In addition to its normal use of returning the simulated aircraft to the ground 
condition the Zero Control may be used to relinquish a crash condition without returning 
the aircraft to the ground. This is possible because the time required to achieve the zero 
state varies for the different linear and angular rates as a function of the maximum scaling 
of these quantities. Thus it is possible, if flight speed is safely above stall, to clear a 
crash condition by momentarily actuating the Zero Control. 

7. 1.2 Freeze; 30 LWT 

The Freeze Control in the digital simulation program serves the same purpose as 
the Problem Freeze Control in the analog flight simulators. It serves to suspend the 
progress of the simulated flight and to maintain the currently computed conditions Entry 
into a Freeze condition may be automatic or manual. Automatic Freeze occurs when a 
crash condition exists; Manual Freeze is exercised by the instructor. 

In the case of testing the simulation program on the UDOFT computer. Manual 
Freeze is used extensively. Under this condition, the computation can be halted, allow¬ 
ing stored test datatobe retrieved automatically from the computer memory by print-out, 
or manually by means of the computer console controls and indicators. Removal of the 
Freeze condition will cause the resumption of computation, commencing at the point 
where the Freeze condition had been injected. 

The simplest method for freezing the computations would be to halt the computer, 
but this cannot be done in UDOFT without seriously affecting the cockpit instrument read¬ 
ings This peculiar circumstance arises from the tendency of the analog output voltages 
to drift rapidly with time if not updated periodically. Therefore, it seems, only those 
instructions which serve to maintain the analog outputs would have to be executed. Initia y, 
however, this approach to implementing the Freeze mode in the F- 100A simulation pro¬ 
gram was not taken. The technique used was to by-pass the routines for Aerodynamic 
Coefficients, Total Moments and Forces (stability and airplane axes). Direction Cosines, 
Mach Number, Dynamic Pressure, Altitude, Mass of Fuel, and Center of Gravity, and to 
set the six angular and translational accelerations equal to zero. The velocity vectors 
computed as usual, remained constant since the second derivatives had been set equal to 
zero. Later, this approach was deemed needlessly complex; it was replaced by a very 
simple modification to the Governing Control routine which causes only the Function 
Generator routine, which contains the analog output multiplexing instructions, to be 
executed. 

One precaution must be observed, however, when preparing to extract test data 
from the computer. In order to maintain system status quo while the program is halted, 
the instrument positioning servos must be deactivated before halting the program. 

7.1.3 Altitude Increase/Decrease; 42LWT/43LWT 

The Altitude Increase and Decrease Controls permit manual modification of air¬ 
craft altitude while the simulation program is being executed. When either discrete input 
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is actuated, a maximum slew rate of 25 feet per cycle (500 feet per second) is introduced 
into the altitude program. The altitude will continue to change so long as the control is 
ON. 

Aside from the use made of this control by an instructor, it serves as an aid to 
testing. Since most of the acceptance tests were performed from the cockpit, the altitude 
change controls provided a rapid means for altering test altitudes without the need of 
simulating flight to the new test altitude. 

This facility has been used infrequently of late, due to the availability of a superior 
technique for attaining desired altitudes (see 7. 1. 5, Altitude Lock). 

7. 1.4 Autopilot; 44LWT 

The term autopilot is a misnomer; its application to the F-100A simulation program 
belies its name. The F-100A autopilot is merely an aid to establishing flight equilibrium 
conditions in the longitudinal equations; it is not capable of automatically forcing the longi¬ 
tudinal equations to equilibrium. 

The problem encountered in attaining longitudinal equilibrium revolves about the 
longitudinal stability of the aircraft. Any attempt to change readily from one altitude to 
another, or from one airspeed to another, is balked by the short-term oscillations that 
result from disrupting longitudinal equilibrium. The autopilot function overcomes this 
objectionable response by increasing longitudinal damping, due to pitch rate fCm X qA, 

\ ql / 
to such an extent that the aircraft becomes extremely stable in terms of longitude. 

The damping is increased by artifically stepping up the value of pitch rate, qj , as 
a function of the difference between the instantaneous rate of climb and the desired rate of 
climb. Thus the succeeding computation of pitch moment. My, exhibits increased damp¬ 
ing due to the large qj term. This aids in damping the short-term oscillation, but, be¬ 
cause the artificial damping diminishes as the desired rate of climb is approached, pilot¬ 
ing skill is still required to damp out the long-term oscillation (phugoid). 

The autopilot function was used extensively to minimize the set time for achieving 
a steady-state straight and level flight or a specific climb condition. For straight and 
level flight, the desired rate of climb is set equal to zero; for specific climb conditions, 
the desired rate of climb is set according to the following table. 

Rate of Climb Octal Representation 
Feet per Minute Feet per Second, Scaled B12 

-1000 
- 500 

0 
+ 500 
+1000 
+2000 
+5000 
+7000 

+10,000 
+15, 000 

-0020524 
-0010252 
0000000 
0010252 
0020524 
0041252 
0123252 
0164524 
0246524 
0371776 

Once the octal representation of the desired rate of climb has been entered into the com¬ 
puter and the autopilot control function has been enabled, equilibrium is obtained by flying 
the simulator in the conventional manner and allowing the longitudinal equations to stabi¬ 
lize. One precaution must be observed, because if the difference between the actual and 
the desired rates of climb is too great when the autopilot input is actuated, the artificial 
damping term may assume the proportions of a forcing function, thereby causing excessive 
11G" loading which may result in a crash condition. 

Since a true autopilot function is invaluable to the rapid creating of requisite 
conditions for nearly all flight testing, and because the original F-100A autopilot was 
lacking in so many respects, a more satisfactory automatic means for establishing 
steady-state straight and level flight equilibrium has been developed. (See Section 7.5. 1, 
SSLFE Program. ) 

I*. 
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7.1.5 Altitude Lock; 47LWT 

The purpose of the Altitude Lock Control is to maintain altitude consent at the 
value which existed when the control was actuated. Since altitude is obtained from simple 
expression 

kPn’ hpn-l +At(R/Cn) 
(118) 

it is necessary only for the altitude routine to omit the incremental change in altitude due 
to the average rate of climb. 

When this lock is used in conjunction with the Altitude Increase/Decrease Conta101, 
the altitude can be slewed to any desired quantity and locked. The term At(R/Cn) is re¬ 
placed bv ±25 feet. Since the Altitude Lock function precedes the Altitude Change function 
in the program, the Lock must be disabled in order to change aircraft altitude. 

Achieving a particular altitude accurately by following this procedure i elf lres 
considerable manual dexterity. Also, since altitude is incremented by 25 ifet per computa¬ 
tion cycle, the actual altitude may be in error by as much as ±25.feeJ ev®"1f ^e ^tl^e 
Increase/Decrease switch is deactivated immediately upon reaching the desired altitude. 
In light of the improvements being made to the other special test control functions, it was 
decided to automate the achievemlnt of a particular altitude. It then ^omf necessary 
only to read into the computer the desired altitude, and to enable the Altitude Lock Con 
trol The altitude will be incremented (or decremented) at the rate of 25 feet per cycle 
(500 feet per second) until the actual altitude is within 25 feet of the desired altitude at 
which time the required adjustment will be made to bring the aircraft to the altitude e 
sired. If the Altitude Lock Control is used strictly for locking at its current 
value it is necessary only to read 25 feet into the register to which desired altitude is 
assigned. When the Altitude Lock program examines desired altitude and finds it at 25 
feet, it will lock altitude at the current value. 

7.1.6 Roll Angle Lock; 50LWT 

The Roll Angle Lock function forces the aircraft to assume a constant zero-degree 
roll angle This Lock is used frequently to zero-out the lateral equations thereby reduc- 
ing the nunVoer of degrees of freedom and permitting the longitudinal equations to be 
stabilized more readily for a straight and level flight condition. 

When the Roll Angle Lock Control is actuated, the direction cosine ~m3, i.e. -cos 
9 sin i(i, is substituted info the integration table of past values for p and p for e^ succeed- 
ing cycle of computation. The result is that the roll angle, ¢, is forced to zero degrees. 

Because the Roll Angle Lock function has no effect on turn rate, 
from the cockpit is often required to zero-out yaw angle in “ Ar^Ie L^ck 
«itrflight and level flight condition. As a result of this inadequacy, the Roll Angle lock 
function has been augmented with a Yaw Angle Lock function which is effected by f rodu^ 
ing the negative of theturn rates, r, into the integration table of past values of the turning 
acceleration term, r, for each succeeding cycle of computation. 

7.1.7 No Fuel Depletion; 73LWT 

The purpose of the No Fuel Depletion function is to maintain the constant ““S of the 
aircraft and consequently its moments of inertia. Since the only significant quantities that 
makeup the mass of the aircraft are the mass of the empty aircraft and the mass of fuel 
obviously preventing any change in the mass of fuel willkeepthe gross massofthe^amc^ 
constant When the No Fuel Depletion function is activated, the fuel flow CWf) calculations 
are performed as usual; however, the effect of fuel flow on fuel quantity (¾) is ignored. 

By means of the instructor inputs. Main Tank Refuel, 35LWT, ^ Main Tank Dump, 
opi WT fuel mav be added to or depleted from the aircraft, thereby providing a manual 
Ss for^Ühlng aircraft gross weight. The following data i* included ^ illustrate 
the extent to which fuel quantity may be used to adjust the weight of the aire af . 
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Aircraft, Empty 

Maximum Fuel, Main Tanks 

Drop Tanks, Empty 

Maximum Fuel, Drop Tanks 

Mass (slugs) 

591 

153 

12.4 

111 

Weight (pounds) 

19, 030 

4,927 

393 

3, 574 
IVlctAiiiium -^ 1 i.’ r1 n- 

Once the appropriate weight has been Ator AiÏ’techrliÏÏ had°been 
° ol will freeze the aircraft weight or that ^^ be tQ read directly into 

*‘""R ”18M “ 
for the particular test. 

7.1.8 True Airspeed Lock; 76LWT 

The purpose of the True Airspeed Lock function vllue.^The imple- 
changing; it is used whenever airspeed 1 h t { ny other locking functions, 

S“““ 2 ÂíínSÍrs Ä SÄ. 

.hi. function I». be«» .“„I', “sSLFE Proscm. 
is described more completely m becuon 

7 1 9 Center of Gravity Lock; 77LWT 

The purpose of the Cent., of "lift 11^2) f^Wheiftte^ortrol is 

Manual control of the position of this centee qu^ center of gravity is established^ This 

“repeat th: Ä«! w^tkin the 

TO —c .«-«p .r;h^«ÄC»\Ä'S0Ä' SÄr1 

2S‘ÄS'ÄS, ÄS - - -» »■*- ““ 
F-IOOA program for fixing this position. 

Center of Gravity 

29% MAC 

30% MAC 

32% MAC 

34% MAC 

35% MAC 

Octal Representation in jeetjcaledjQ 

5340000 

4417300 

2560100 

0720300 

ooooooo 
3 57o MAL. 

w,i ,,.„iB 0,0 h, ... independently of ». » op-« » — ** — —* 

gross weight. 
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7,2 Accumulation and Extraction of Test Data 

Since performance testing of an aircraft flight simulator involves performing static 
tests, (the test results being indicated by parameter-values when the system has stabilized) 
the accumulation of test data in a digital flight simulator system is a trivial problem. The 
values of nearly all computed parameters are stored in memory immediately after their 
calculation. Therefore, if a significant parameter has been computed and stored, there 
is no data accumulation problem; the data is merely extracted and presented to an observer 
in readily understandable form. Extracting the data is performed by a very simple com¬ 
puter program; the form of output is hard copy from the output printer. 

On the other hand, testing the flying qualities of the simulated aircraft requires 
data to be accumulated as a function of time, in many cases over a considerable period of 
time. Since the computer is constantly updating all variable parameters at a rate of twenty 
times a second, capacious data storage would be required to accept all data computed dur ¬ 
ing the interval between initiation and completion of the particular dynamic test. The 
UDOFT computer is not endowed with unlimited data storage; therefore, another means for 
storing time-variant data is needed. This is readily taken care of by using the unused ana¬ 
log output channels. By inserting only two instructions into the program, the recorded 
behavior of a parameter can be extracted by means of an analog output. Ultimate storage 
of the data is accomplished by a strip recorder accepting the analog output. 

7.2.1 Output Printer 

This means of data extraction generates a permanent record of computed quantities 
in numerical form. The chief advantage of this method is that the data is presented in its 
most accurate form, i. e. that form in which it was used within the simulation program. 
The method has the disadvantage that the data cannot be extracted in real-time; therefore, 
due to the limited computer storage available for test results, only a limited amount of 
data can be extracted. 

A simple printout program extracts data from the computer memories. In reality 
the program does not effect printout, but merely calls-out data from the number memory 
so that it can be acquired by the output printer control mechanism. The program consists 
of a sequence of Clear and Add (CLÃ) instructions which address the number registers 
storing the desired quantities. 

An unlimited variety of such programs can be established; however, a most useful 
program calls out the following parameters: 

Quantity 

Instantaneous Mass 

True Airspeed 

Thrust 

Percent Thrust 

Pressure Altitude 

Fuel Flow 

Fuel Flow Afterburner 

Engine Speed 

Tailpipe Temperature 

Dynamic Pressure 

Mach Number 

Force Along X-Stability Axis 

Rate of Climb 

Distance to Center of Gravity 

Angle of Attack 

Stabilizer Angle of Attack 

Sin 6 

Symbol Units Scaling 

MI slugs B17 

VTK knots B12 

T pounds B18 

FN percent B9 

HP feet B18 

WF lbs./hr. B15 

WFP lbs. /hr. B18 

RPM percent B9 

TPT degrees C B12 

Q lbs./ft2 B12 

MACH - B3 

XS pounds B21 

RC feet/min B12 

D feet BO 

ALP degrees B6 

AHR degrees B6 

L3 - B1 
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Th, d.U extraction pro*,.», Su'S'Ä' 
a table, performing appropriate shifts ^0^ the ac ^ g 0 . .everEire oí the 

The print-out procedure is as follows: 

1. Halt the computer. 

2. Set the Sequence Counter to 7532 (first instruction of call-out program). 

3. Set Mode Control switches for Continuous Print Mode. 

4. Depress Start Switch. 

The output printer will print out (using the long form) the data as 

(IMAD) (OTNMAD) 

7532 346335 

7533 346336 

7534 346337 

(NMAD) (SANUMBER) 

6335 1273600 

6336 0776006 

6337 015457 0 

typified by the following: 

(ACCUMULATOR) 

1273600 

0776006 

0154570 

7535 

7536 

7537 

7540 

7541 

7 542 

7 543 

7544 

7545 

7546 

7547 

7550 

7551 

346340 

346341 

346342 

346343 

346344 

346345 

346346 

346347 

343263 

344714 

340043 

341640 

341661 

6349 

6341 

6342 

6343 

6344 

6345 

6346 

6347 

2363 

4714 

0043 

1640 

1661 

1440000 

0005632 

1720660 

0000000 

1445242 

1012426 

1543610 

0612664 

-0011000 

-0001004 

-2234572 

0173600 

-0067000 

144000Ü 

0005632 

1720660 

0000000 

1445242 

1012426 

1543610 

0612664 

-0011000 

-0001004 

-2234572 

0173600 

-0067000 

7 552 340062 0062 0062240 -0062240 

The data presented in the example was take“ e^rel 
7-100A performance testing to establish the tti (Military) and altitudes above 

a function of true airspeed, for to convert the 

iato^to^ecimal form for tiie ^)urpose°of data plotting. ¿^scade^actors^f the 

reason an octal-to decimal convers p 6 ^ result of the conversion was a very neat 

StC^hfuDÄul q™tgy. the UDOFT scale factor, the decimal equivalent, and 

the symbolic representation of the parameter. 
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The following demonstrates such a conversion using the same data as that presented 
in the preceding example: 

Scale Decimal 
Qctal Factor Equivalent Parameter 

1273600 

776006 

154570 

1440000 

5632 

1720660 

1445242 

1012426 

1543610 

612664 

-11000 

-1004 

-2234572 

126300 

-67000 

62240 

17 

12 

18 

9 

18 

15 

18 

9 

12 

12 

3 

21 

12 

6 

6 

1 

22392.00000000 

510.01171875 

6959.00000000 

100.00000000 

371.25000000 

7814.75000000 

0.00000000 

100.66455078 

522.54296875 

867.76562500 

0.77119445 

-4608.00000000 

-1.00781250 

-0.28826618 

1.47460937 

-0.85937500 

0. 02456664 

MI 

VTK 

T 

FN 

HP 

WF 

WFP 

RPM 

TPT 

Q 

MA 

XS 

RC 

D 

ALP 

AHR 

L3 

7.2.2 Analog Outputs 

The analog output method of data extraction provides a permanent record of time- 
varying quantities in graphical form. This method is used primarily for time-history 
recordings, and indicates excellently the behavior of various parameters with respect to 
each other as a function of real-time. It has the advantage that data can be extracted while 
the simulation program is being performed. The computer need not be halted; needless to 
say, were the computer halted, no time-varying quantities would be available. The dis¬ 
advantage, however, is that the recorded data is presented with decreased accuracy, as 
compared with the accuracy of the data obtained via the output printer. This is especially 
true for those cases where the parameters of interest have a large dynamic range and it 
is important to distinguish small changes. 

To activate a particular analog output channel, a simple three instruction program 
is needed. The first instruction is a CLA instruction, to extract the current value of the 
parameter from number memory and introduce it into the Accumulator. The second 
instruction gates it into the Transfer Register. The third instruction, an MLXO instruc¬ 
tion, moves the quantity in the Transfer Register to the analog output channel specified 
in the number memory address field of the MLXO instruction. If scale changes are 
desired, the appropriate shift instruction is inserted between the CLA and the following 
instruction. Due to the limitations of the analog output system, another MLXO instruction 
must not follow within 133 microseconds and the analog output channel must be updated at 
least once during every 50-millisecond interval. 



7. 3 Supplementary Test Programs 

Special programs were generated to facilitate setting-up various flight tests and for 
correlating data. They were not significant in themselves; however, considering the 
variety and the quantity of programs that had been prepared, there is very little that can¬ 
not be done with the digital simulator to expedite the testing phase. Typical programs are: 

a. ) A program to actuate console discrete output indicators when certain pre- 
established flight conditions have been satisfied 

b. ) A program for converting data in UDOFT octal notation to BCD (binary coded 
decimal) 

c. ) A program to examine the dynamic behavior of selected parameters and to 
store their minimum and maximum values for printout after test; used as backup to the 
time-history recordings in an attempt to improve the accuracy to which the recordings 
may be read 

The pressures of UDOFT acceptance testing did not allow further pursuit of this 
promising area of automatic aids to testing. Many supplementary programs were prepared 
after the completion of acceptance testing. Experimentation with the F-100A program, 
after formal completion of the project, has provided the impetus for consolidating the 
many minor test programs into complete testing packages applicable to the performance of 
a broad spectrum of acceptance tests. The steady-state straight and level flight equilibrium 
program (SSLFE) is a result of such consolidation. 

7. 4 Procedure for Performance Testing 

In order to demonstrate the use of the discrete inputs in establishing test conditions, 
a typical test procedure will be reviewed. The test selected for this example covers 
Thrust Available and Required Vs. True Airspeed. 

This test, one of the basic performance tests, provides a graphic indication of the 
thrust available at specific power settings and also the minimum thrust required to main¬ 
tain a steady, straight and level flight for various true airspeeds. The test is conducted 
for several altitudes and configurations. 

There are a number of reasons why this test is performed. For performance, it 
indicates the thrust available for climb and acceleration purposes, and the minimum thrust 
required to sustain level flight. To the simulator developer it indicates the degree of 
success with which the basic drag and lift of the aircraft have been simulated and, of . 
equal importance, the accuracy with which engine performance for specific power settings 
has been simulated. Good results from this test aid in diagnosing problems that may arise 
in achieving acceptable climb and time-to-accelerate performance. 

The nature of this test allows the accumulation of additional test data pertinent to 
other longitudinal tests. Tests such as Static Longitudinal Stability and Speed-Power may 
be performed concurrently with the Thrust Required section of the test. In general, a 
number of engine parameters such as fuel flow, tailpipe temperature (exhaust gas 
temperature), and pressure ratio can be obtained concurrently from the Thrust Available 
section. 

7. 4.1 Test Requirements 

The following relates the conditions for which this test was performed on the 

F-100A model. 

7. 4. 1. 1 Thrust Available Vs. True Airspeed 

Tests were conducted to determine the thrust available as a function of true air 
speed for the power settings and altitudes given on the following page: 

l*. 
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Power Setting 

Afterburner (augmented thrust) 

Military- 

Normal 

Idle 

Altitude 

Sea Level 

15, 000 feet 

25, 000 feet 

35, 000 feet 

45, 000 feet 

55, 000 feet 
j 

7. 4.1. 2 Thrust Required Vs. True Airspeed 

Under steady, straight and level flight conditions, tests were conducted to deter¬ 
mine the minimum thrust required to maintain these conditions as a function °i true air¬ 
speed for the gross weights, center of gravity positions, configurations, and altitudes 
listed below: 

Clean Configuration No. 1 (drop tanks off) 

Gross weight: 24, 000 lbs 

Altitude : Sealevel; 15,000, 25,000, 35,000, 45,000 
and 55, 000 feet 

Clean Configuration No. 2 (drop tanks on) , 

Gross weight: 24, 000 lbs 

Altitude : Sealevel; 15,000, 25, 000, 35,000, 45,000 
and 55, 000 feet 

• - i 

Clean Configuration No. 3 (drop tanks off) i 

Gross weight: 20, 000 lbs 

Altitude : Sea level and 35, 000 feet 

Clean Configuration No. 4 (drop tanks on) 

Gross weight: 28, 000 lbs 

Altitude : Sea level and 35, 000 feet 

Landing Configuration 

Gross weight : 28, 000 lbs 

Altitude : Sea level 

Configurations: Gear down, speed brakes open, drag chute 
deployed 
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Geai down, speed brakes open 

Gear down 

Speed brakes open 

Clean 

7 4 2 Procedure for Conducting Thrust Available Tests 

lo«.,», «« F-1« program *o »mp»,« «d computer opera«.», 
the procedure for conducting the tests was as follows: 

a, ) Actuate Boll Angle Lock control. 

b. ) Perform a normal engine start, and accelerate the engine to Military power 

plus afterburner. 

c. ) Accelerate to takeoff speed. 

d. ) When the simulator is airborne, actuate Altitude Ix>ck control. 

e. ) Retract landing gear. 

data point; pí^S Ä 
airspeed. 

g. ) Clear the Freeze condition and Fly Simulator to maximum speed; may reqmre 

placing simulator in a dive attitude. 

Output Printer. 

i. ) Read in value of next desired airspeed. 

, C1.» 1h. Freeze co»dl«on „d decre». «repeed ,o ,h. »er. de.lr«, ,«»• »Y 
placing simulator in a sUght climb attitude. 

k. ) Repeat steps h, i, and j for all airspeeds. 

1. ) When tests for this power setting are complete, reduce power setting to 
Military power and repeat steps f through k. 

m. ) When tests for this power setting are complete, reduce power setting to Norm 

and repeat steps f through k. 
, When tests for this power setting are complete, reduce power setting to Idle 

power and repeat steps f through k. 

o., W».»..... .or .1«. pmeer .«mg comp.,.., for «. ««.»de 

also complete. 

to Military power plus afterburner. 

q. ) Repeat steps f through p for all altitudes. 

At the completion of the tests, the accurnulated data is converted to decimal form 
and plotted on the appropriate acceptance test data sheets. 
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7 4 3 Test Procedure for Conducting Thrust Required Tests 

tions of the simulated aircraft be str et y . f stabilizing the longitudinal equations; 
are very time-consuming due to f e ¿°T^f£™fcUmh and longitudinal 

Sngm'ment Car°e borh equq¿ torero. To establish these exact equilibrim conditxons 

from the simulated cockpit even with the aid of t^specid^ P“ablished 

2 
Ù = 0 ± 0.0625 ft/sec 

R/C = 0 ± 1 ft/sec 

q1 = 0 ± 0.000732 rad/sec 

the simulator until straight and \ehvel^eXmed by the same print-out program 

“Â-ÍHheá" C0nVer8f0n' teSt data ^ plotted on the same Thrust Available and Required data sheets. 

An indication oi ito an « ol th. ODOW »»ola«»« “'“““X'".““ 

íUSÃalSaííÍSls SÏ4) for altitudes of IS, ¿00 »d 25.000 fe*. raapeofi.e!,. 

7.5 Dynamic Testing of the UDOFT F-100A Simulation Model 

” Static or performance testing of 
some than dynamic testing. Dynamic testing in possible problem areas. Many 
of the aircraft, thereby of Pthe aircraft even with 
neríect moíSlíig;* however, erroneous ^suHsrnay^iccrue from i^roperoexec^on^^^e^ 

of tests as mechanical as the performance tests. 

^d“' 

7, 5.1 Steady-State Straight and I^vel FUght Equilibrium (SSLFE) Program 

To minimize the time and effort squired for estabUsM^ ^ns 
and level flight equilibrium a program ^ ^ ? ssary not only for eliminating the 
to a SSLFE condition. Such a progr^ appeared ne ry, ^ |or rapidiy and ac- 
tedious process of establishing require i nuroose of displaying the ability to 
curately reestablishing the same condition ,. P? s burden of establishing a 
repeat test results. Further this program^eatlystatic longitudinal 

Sr« °A^g^McIndication “the large number of data points that can be obtained 

readily is presented in figure 95. 

Bringing .5, locnj !» ^ïSd“" ÄUcd 
The lateral directional equations must first be zeroed, men eq 
in the longitudinal plane at the proper airspeed. 
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Since the aircraft is symmetrical about the vertical plane passing through the 
longitudinal axis, i. e., the plane defined by theX and the Z body axes, it is necessary 
only to zero the accelerations p, v, and r in order to establish lateral-directional 
equilibrium. However, it is possible that the aircraft will stabilize in some nonzero 
orientation; that is, roll angle and yaw angle will not necessarily be zero. Therefore, 
it is necessary to zero the flight control positions da and ór. 

Static equilibrium in the lateral-directional planes is achieved by ignoring the 
calculated accelerations p, v, and r, and by substituting for them, in the integration table 
of past values, the negative of the associated rates: 

(119) 

(120) 

(121) 

The system of lateral-directional equations will therefore return exponentially to zero, at 
the rate determined by the inherent time constant of the numerical integration formula. 
As mentioned previously in section 7.1, Special Test Controls, the rates may not be forced 
identically to zero. Since it is desirable to have them identically zero, the program in¬ 
cludes a brief routine that makes the rates and the accelerations identically zero when 
they have approached zero to within some predetermined tolerance. When equilibrium is 
achieved for the lateral-directional equations, it is maintained by setting both <5a and ôr 
equal to zero. If a lateral-directional test is to be initiated from the SSLFE condition, 
5a and ôr must be reactivated because aileron and rudder flight controls in the simulator 
cockpit have been made ineffective. 

The next step is the establishment of equilibrium in the longitudinal plane, which 
requires that the desired rate of climb be specified to the SSLFE program. In addition, 
to allow the program to achieve an approximate rather than an exact equilibrium condition, 
tolerance must be specified for qj, R/C, and ú (see section 7. 4, Procedure for Performance 
Testing). 

7. 5.1. 1 Description of the SSLFE Program 

Control of the simulated aircraft by the SSLFE program is effected by three 
Discrete Input switches; one for zeroing the lateral-directional equations, one for zeroing 
the longitudinal equations, and one for establishing the required airspeed. The SSLFE 
program is not entered during the normal simulation program computation cycle unless the 
Discrete Input switch which controls lateral-directional equilibrium is actuated. Exceptions 
to this are the integration tables of past values for stabilizer and throttle position which are 
maintained, though not used, during the normal program cycle. The reason for this will 
become apparent later in this discussion. Upon actuation of the lateral-directional equili¬ 
brium control, the associated equations are zeroed. When the lateral-directional equations 
are identically zero, the longitudinal equilibrium control may be actuated. The longitudinal 
equations are forced to zero by controlling the stabilizer as follows: 

(122) 

where 

33 

and 

S âH " aH . n n-1 

231 



The only restriction imposed upon the use of this approach is that the simulator must be m 
I condmon of longitudinal equilibrium; i. e., the rate of climb must be constant. Tins 
restriction is necessary in order that the rate damping term. 

-¾ lo 
U33 

k4(mh). 

fion of ¿y toe constant for achieving steady-state straight and level fhght equilibrium. 

When the longitudinal equilibrium control is in the deactivated state, the past values 
for ¿h ancl appearing in the tables for the integration 

6„ and l 

' O33 ')( 

k4(aóh) 
'33 

are made identically zero. However, the current values of stabilizer position, «H , are 
stored in the table of past values for the integration 

f o 'H 
33 

so that there will be no discontinuity in stabilizer position when the longitudinal equilibrium 
control isactuated. When the control is actuated, the stabilizer commands from the cock 
pit are ignored and stabilizer control is effected completely by these equations. 

Once longitudinal equilibrium has been achieved, the required airspeed control 
may be a"“'^ Acceleration to the proper airspeed is accomplished in a manner similar 
to that used for achieving level flight except that thrust, T, is integrated: 

(123) 

33 

where 

K(Man - MaD) - K3 ( k4(at) 

33 

and 

(AT) = Tn - T^ 

of computed thrust are retained in the table of past values for the intégrât. 

Î. 
'33 

craft. 
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The remainder of the SSLFE program provides a means for monitoring, from the 
computer console, the progress of the SSLFE program. Two console Discrete Output 
indicator lights are associated with each of the four parameters, qj, R/C, Ma and Ma. 
One light indicates that the value of the particular parameter is greater than the required 
value; the other light indicates that it is less than that value. When the value of a partic¬ 
ular parameter reaches the required value, within the specified tolerance, both indicator 
lights are turned on. 

The monitoring function of these indicators is important to the attainment of initial 
conditions for a number of acceptance tests. Since the SSLFE program is as yet not com¬ 
pletely automatic, the Discrete Output lights indicate that a required condition has been 
achieved and that the next step of the process may commence. Because the lateral- 
directional equations are zeroed rapidly, no indication is required; therefore the longitudi¬ 
nal equilibrium control may be actuated immediately after the lateral-directional equilib¬ 
rium control. The required airspeed control may not be actuated until satisfactory 
longitudinal equilibrium is signaled by the indicators for q, and R/C. Achievement of 
the required airspeed is displayed by the indicator for Ma; the Ma indicator shows that 
the airspeed is constant. Thus, if both the Ma and Ma pairs of indicators are turned on, 
then airspeed has stabilized at the required value. At this point the initial conditions 
have been established and the test may now be commenced. 

If a particular altitude is also to be established, entry of the SSLFE program is 
deferred until the simulated aircraft has been taken to the desired altitude by means of 
the modified Altitude Lock Control. (See section 7.1.5, Altitude Lock.) 

7. 5. 2 Dynamic Response Testing 

To demonstrate the dynamic response of a flight simulator to a sudden change in 
the flight controls requires that the related parameters be available for recording as a 
function of time. In the UDOFT scheme, the recording of the transient responses of 
these parameters is accomplished by means of Analog Output channels which provide 
voltage signals for recording (refer to section 7.2,2, Analog Outputs). To aid in the 
recording of dynamic test data, the Main Test Pattern (MTP) program was devised. 

The SSLFE program, together with the MTP program, enables all dynamic tests 
to be conducted semi-automatically from the computer console. The SSLFE program 
establishes the required initial conditions and the MTP program introduces the forcing 
function into the simulation program and causes the response to be recorded. Automation 
of the process of dynamic testing could have been extended to include analysis of the 
results. Automatic determination of the period and the time to damp to half-amplitude 
of the resultant oscillation would require a program that performs the calculation indicated 
in Section VI, Direct Determination of Damping and Natural Frequency from Time Re¬ 
sponses, of Technical Report NAVTRADEVCEN 318-1, Dynamic Test Program for Weapon 
System Trainers. However appealing this may be, it has not been and probably will not 
be done. 

7. 5. 2. 1 Main Test Pattern (MTP) Program 

The purpose of the MTP program is to aid in the calibration of the recording 
equipment, to initiate the dynamic tests, and to output the transient behavior of selected 
parameters to the recording equipment. 

Calibration of the recording equipment is aided by the program generation of a 
square wave pattern of diminishing amplitude immediately preceding the initiation of the 
dynamic test and again immediately following the completion of the test (figure 96). The 
recorded pattern also gives scale significance to the transient response data recorded sub¬ 
sequently. The grid is formed by drawing lines which connect like cycles of the patterns 
that are recorded before and after the test is conducted; this implements reading the 
transient response data directly from the recording. The grid lines also provide some in¬ 
dication of the short-term drift of the Analog Output channels and the recorder amplifiers, 
and the linearity of the recording mechanism. 

The MTP program (see flow chart, figure 97, and diagram, figure 98) is fairly 
simple and straightforward. Entry into the program is made at the beginning of each 
50 millisecond iteration cycle. If both the pattern flag (program controlled) and the test 
Discrete Input are positive, the program is short circuited and entry into the main simula¬ 
tion program is made immediately. If, however, the test Discrete Input is negative (test 
Discrete Input has been activated), the program commences immediately to computer the 
amplitudes of the pattern for each channel. 
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I 
The pattern constants (amplitudes) are derived from the knowledge of the anticipated 

steady-state and maximum values of the parameters to be recorded. Numerical data des¬ 
cribing the mid-range value and the maximum value of each parameter to be recorded is 
inserted into the computer prior to the execution of the test. The value of the parameter is 
essentially its steady-state value. In many cases, particularly those cases involving 
lateral-directional tests, the steady-state values of the pertinent parameters are zero; 
thus the mid-range value of the parameter, for pattern generation purposes, is specified 
as zero. For those cases where the steady-state values deviate only slightly from zero, 
the mid-range value is still specified to be zero. The program compares the specified mid 
range and maximum values for each parameter to obtain the anticipated dynamic range of 
the parameter, which is designated A. From this, the program computes and stores sequ¬ 
entially for each output channel the following fourteen pattern data points: mid-range, mid¬ 
range, mid-range + A, mid-range - A, mid-range + 0. 8A, mid-range - 0. 8A, mid-range + 0.6A, 
mid-range - 0.6A, mid-range + 0.4A, mid-range - 0.4A, mid-range + 0.2A, mid-range - 0. 2A, 
mid-range, and mid-range. Each of these points is passed to the recorder for a period of 
one-half second. Upon completion of the first pattern, program control is returned via 
the main program to the beginning of the MTP program. For a period of one second, the 
steady-state values of the selected parameters are passed to the recorder, followed im¬ 
mediately by the actual test. During the test, the'behavior of the selected parameters is 
passed to the recorder, and also examined by the maximum routine, which extracts and 
stores the maximum and minimum values of each selected parameter. This numerical data 
and the values of the parameters at the end of the test are subsequently extracted and printed 
out by the output printer. This additional data provides another quantitative means of cali¬ 
brating or verifying the scaling of the recorded parameters. 

The test is terminated manually by means of the test Discrete Input switch. Im¬ 
mediately thereafter the second test pattern is recorded, at the completion of which the 
simulation problem is forced into a crash condition in order to freeze the program. 

Once the data for the MTP program has been generated, the execution of the test 
problem is relatively simple. The procedure followed for a short-term longitudinal 
stability test is briefly: 

a. Initialize simulator to required altitude, airspeed, and rate-of-climb using 
Altitude Lock control and Steady-State Straight and Level Flight Equilibrium control. 

b. Freeze the simulator. 

c. Read in Main Test Pattern program along with parameter selection and scaling 
information, pattern constant data storage locations for steady-state and test values of the 
selected parameters and the test program. 

d. Printout initial steady-state values. 

e. Return simulator to normal mode, - 

f. Start recorder and align channels. 

g. When recorder is aligned and gain controls are set, activate test Discrete Input. 

h. When recording indicates that the steady-state conditions have been regained 
(test complete) disable the test Discrete Input. 

i. Wait for recording of final test pattern; disable recorder paper feed mechanism. 

j. Printout maximum, minimum, and final steady-state values. 

k. In order to conduct another test at a different altitude or airspeed return to 
Step a; Step c may be omitted if some scaling information is adequate. 

The only problems encountered with the use of the MTP program are the derivation 
of the scaling data and the gain settings of the recorder. With regard to the scaling of the 
parameters to be recorded, it must be remembered that only the sign and the eleven most 
significant bits of number words in the UDOFT computer are converted to analog form. 
Thus, if a quantity to be recorded is described predominantly by the nine low order bits, 
it must be shifted to the left in order to attain any degree of significance. The extent of 
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shifting is determined, ÄTÄ 
parameter. The parameter is sh^ted so . Care mUst be taken to prevent the 
ficant bits of the quantity to ^erted to J overnow. The quantity actually con- 
maximum values of the parameter frorn caus ^ ^ parameter. U, however, toe 

verted represents ^ parameter varies about zero, the maxxmum 
initial value of the parameter 'mines the extent of scaling. 
absolute value of the parameter regult of Uging shift instructions 

Since the scaling is effected inpower o J>rovideg only coarse control of the am- 
rather than multiply instructions, the MTP progr p ^ ^ ^ recordingi8 effected by 
plitude of the plot to be made by the ^corder F wutviut causing the subsequent 

««SÄ»» '“«* ^ ir““' 
recording linearity. 

7.5.2.2 Recording Equipment ^ 

Test equipment devel<)ped i^ Corneii Aercmautic^I^t wasydevel'oped originally 
tensively for coUecting the real-time test data tm eqp trainers. The equipment has 
to aid in evaluating the dynamic respo function was used in conducting simulator 
many functions: however, s^tem The recording function is implemented with 
dÄannll CEC^Tl9pl os™ography. a CEC 5-036C Datarite unit, and ten osciUogr P 

LÍipUfiers designed by the same Laboratory. 

The oscillograph mechanism is ^ 
each galvanometer using the same incandescent ^ “^te P°spac J at one-inch intervals, 
cilio graph used contains te". gain and bias control are established by 
There are no amplifiers in the osciilograph umi, g ^ The Datante unit con- 
means of the specially built d'= he ero^sed in the oscillograph, the mechanism for 
tains the recording paper which wiU be e^°s^ it once exposed. Since the paper feed 
advancing the paper, and the means for devei p g , calibration marks are provided on 
mecí«»»» o.» b. ™ JJ P ■ ^ ^ ^,11, ,srf cnsürnUy to 

•r,rpra&?.;™^.a.^..oond,- 

A viewing window ot gromi-gUs. pMe th, 

A, eng oilier piece ., ironic egnip»».. ».in pr.cenüo». -n« 1» 

in the use of the recording oscillograph. 

a.) The test equipment d-c amplifiers Power be on for at least 

to evaporate^sinc^its^feed"meciwuds^and^ïeserve^supply^ï^ 

and ultimate^ tear when the recorder is started. 

Th, procedure ior ..dig ... recording „«ipcen. » r«l.«v..S- .«i^.r.»* 

„ Apply power to the «eat equipment and ihe recording oscillograph 

one-half hour prior to time of intended use. 

N- ' ■ 
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b.) Check to see that Simulator Signal ON light, on test equipment, is lit. This 
light signifies that the signals displayed on the ground-glass viewing window are the 
signals to be recorded. When the Zero Signal light is lit, the galvanometers project the 
ground signal associated with the test equipment. This signal can differ considerably 
from the simulator signal, even to the extent of driving one or more of the galvanometers 
off-scale. The Simulator Signal ON light is controlled by the Signal Control pushbutton 
switch. 

c. ) Adjust gain for each channel to be used. Some previous knowledge of the be¬ 
havior of the parameter to be recorded is required, since recordings of significant am¬ 
plitude must be obtained without exceeding the plus-or-minus one-half inch maximum 
linearity constraints of the individual channels. 

d. ) Adjust the bias controls for each channel to be used. These controls are varied 
until the recordings of the parameter mid-range outputs from the UDOFT computer, as 
generated by the MTP program, are centered on the inch marks in the ground-glass viewing 
window. Channels 1 through 4 should be aligned to the left of the time-mark channel; 
channels 6 through 10, to the right. 

e. ) Start the recorder, (recording paper feed mechanism.) 

f. ) Adjust the developer solution feed mechanism to make contact with the record¬ 
ing paper. Allow sufficient paper to be fed through the Datarite unit to insure proper 
developing. 

g. ) Test may be initiated at this time. 

h. ) Upon completion of the test run, disengage the developer solution feed mechanism 
and allow additional paper to be fed through the Datarite ronit before stopping the recorder. 

7. 5. 3 Short Period Longitudinal Response 

As part of the original F-100A acceptance testing program conducted on the UDOFT 
system, the response of the longitudinal equations to an abruptly changing input was 
demonstrated in a series of dynamic longitudinal stability tests. The initial conditions for 
which these tests were conducted were established manually; i. e., the simulator was 
hypothetically flown to the required altitude and airspeed, and trimmed-out from the cock¬ 
pit. The longitudinal equations were forced to oscillate by establishing the conditions as 
prescribed by the initial values presented in the approved data sheets (see figure 99); i. e., 
the longitudinal flight control was displaced aft until the required acceleration was achieved 
and then returned rapidly to the original trim condition. The resultant oscillation was re¬ 
corded and transferred to the approved data sheets. It is readily apparent from the test 
results (see the first and third columns of table XII) that the dynamic longitudinal perform¬ 
ance of the simulated F-100A vehicle was unacceptable. Further study in this area was 
therefore undertaken. 

The first problem undertaken was the elimination of inconsistencies in results ob¬ 
tained from different runs of the same test. This brought about the development of the 
Steady-State Straight and Level Flight Equilibrium program, by means of which it became 
possible to reestablish the same initial steady-state conditions from one test run to the 
next. In addition., a program means for automatically inserting a standardized forcing 
function (in this case a horizontal stabilizer deflection pulse) was developed. Although 
test results were far more consistent, there was no improvement in their acceptability. 
If anything, the test results deviated even more from the approved data. (cf. columns 1, 
3, and 4 of table X. ) 

Since the data used to construct the F-100A digital simulation program had been 
reduced for the purpose of developing a special-purpose analog computer, it appears 
fruitless to attempt to improve the dynamic longitudinal performance below Mach 1.0 
without reworking the original data. Neither time nor funding allowfîd such ap under¬ 
taking, so the discrepancies in performance below Mach 1. 0 were attributed to the data 
and not to the shape and nature of the program. However, such an obvious discrepancy 
as that which appeared at Mach 1.25 and 35, 000 feet could not be passed over so lightly. 

In an attempt to isolate the cause of these erroneous results, the aid of North 
American Aviation Inc., was solicited. N. A. A. was requested to undertake a brief 
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TABLE XII 

COMPARISON OF RESULTS OF DYNAMIC LONGITUDINAL 
STABILITY TESTS FOR THREE FLIGHT CONDITIONS 

CONDITION I Mach = 0. 8; Altitude * 10, 000 ft. ; Weight = 24, 150 lbs. 

TEST 

(1) 

NAA 

Approved 
Data 

(2) 

Melpar 

Accept. 
Test 
Results 

(3) 

UDOFT 

Accept. 
Test 
Results 

(Cockpit 
Control) 

(4) 

UDOFT 

Accept. 
Test 
Results 

(Pro¬ 
gram 
Con¬ 
trol) 

(5) 

NAA 

Verifica¬ 
tion 
Test 
Results 

(6) 

UDOFT 

Accept. 
Test 
Results 

(Improved) 

PERIOD (SEC.) 2.4 2.0 1.7 1.35 .7261 1.4 

TIME TODAMP(SEG) 0.8 1.4 1.0 0.4 .4326 0.6 

CONDITION II Mach =1.0; Altitude = 10, 000 ft. ; Weight = 24, 500 lbs. 

PERIOD (SEC. ) 1.0 -- 1.0 0.65 .4652 0.65 

TIME TO DAMP(SEC) 0.5 -- 0.35 0.35 .3519 0.45 

CONDITION III Mach = 1.25; Altitude = 35, 000 ft. ; Weight = 24, 150 lbs. 

PERIOD (SEC.) 1.0 1.4 1.0 0. 95 .9173 0. 92 

TIME TO DAMP(SEG) 1.1 0.8 2.5 7.2 1.385 1.1 



Droeram to verify the flight dynamics of the F- 100A as simulated on the UDOFT system. 
That verification progra¿ was conducted on the basis of the data used to develop ^ digi¬ 
tal simulation program and the digital computer programs* developed by Et.A.A. tor 
verifying th"real-time response of analog simulators. Nine tests were conducted for 
this experimental verification, involving three flight conditions and three modes for eac 
rondit^ The flight conditions were: low speed?low altitude, transome and mtonmum 
cruise; the modes tere: short period longitudinal mode uncoupled, directional mode u 
coupled, and five-degrees-of-freedom transient mode. 

The comparative results of the nine tests varied considerably. Agreement in the 
mil and the vaw responses was fair; the differences can probably be accounted for by a 
small differeCe In aUeron ^ffectiveness. Agreement in the longitudinal mode was poor 
(cf columns 4 and 5 of table X). No consistent pattern was evident which would indicate 
a specific problem area. For the first two conditions, the damping is acceptable, how 
eve^ ihe S>ds dfffer by from 4:3 to 2:1. For the third condition, the period is accept- 
able but the damping times differ by a factor of 5:1. 

It aooears on the surface, that the contribution of the horizontal stabilizer to the 
lift and moment equations was not being simulated properly. This f 
investigated further. Consideration was given to the equations for a„R and owr, ithad 
been observed that the Melpar equations resulted in an implicit solution for ohR- 1116 
UDOFT program however, considered the equation as though it explici y e l e 
time n bv using the value of aHR at time n-1 within the equation. Under steady-state con 
ditions Rie effect of using the past value within the equation is insignificant; however, 
under hiS dynamic conditions, such as are exhibited in the third test conditio^ the use 
of the past value can contribute appreciable phase shift to the 
The first step then was to convert the implicit solutions of “HR and °WR t0 explicit som 

tions. 

Secondly, during the conduct of tests by N.A.A., it was found that the UDOFT 

Cl", iu im pr'.yrh m.ltlpü.d b, tb, .,bg .re. r.tt.r Ih.n by 0» 

stabilizer area This error, obvious only in retrospect, would have been detected far 
sooner had static longitudinal stability tests been conducted; however, this had never bee 
done for the F-100A aircraft. 

Thirdly incorrect stabilizer flexibility data, the stabilizer being assumed exces- 
sively flexible^ was use'd in the simulation. The correct data was ultimately obtained and 
incorporated in the simulation program. 

The net effect of these three changes on the longitudinal performance of the simu 
lator is^ielîÆ^Scolumn of title XL The most -üceable ch^ge occur^ 

in the maximum cruise condition. If any improvement ^^ ^unLtelv hTwever the 
to be expected, this is the condition most likely to benefit. Unfortunately, however, me 
final results in some cases are still not acceptable, and it is quite unlikely that any 
further improvement will be attempted because of the obstacle imposed by the inapprop 
ate data used to develop the digital simulation program. 

7. 6 Conclusions 

From the preceding discussion of the UDOFT system may üiink that the 
quality of aircraft simulation derived from a digital system is inferior to that dertved 
fTom L equivalent analog system. Because of togh-^rma^e^u bo et airc«R 
used in this program, the quaUty of simulation achieved by the UDOFT system is superi 
to that achieved by the analog counterpart This ev^uaUon of tee diptal^system is^ ^ 
suDDorted by comparative data for three flight simulators, the F • . , » 
Fifl?01 In every case the digitally simulated model was tested more extensively, and 
íheVst resuîte^ere ^*xamineefmore critically In som^nstances 
simulator was unable to perform, the same model simulated on the UDOFT system, 

played the desirable qualities. 

♦"An IBM Check-Out Program for Analog Mechanization of Up to Five Degrees of 
Aerodynamic Freedom, K. J. Dyda, Report No. NA59-854, North American Aviation 
Inc., Los Angeles, California, June 1, 1959. 
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Opponents of the digital approach criticize the superior quality of simulation 
achieved with a digital system and the ability of the digital system to represent the com¬ 
plex dynamics of an aircraft. These criticisms are derived from insufficient knowledge 
of the capability of the digital computer and partiality for using the time-honored analog 
approaches to the simulation of complex, real-time, man-machine systems. Just as 
adverse criticism was cast at the all electronic analog system when it was introduced as 
an improvement upon the electro-mechanical analog system, so too is the digital system 
being received cautiously. The same care exercised for developing an analog simulator 
must be exercised when preparing the simulation program that will be executed by the 
digital computer. Analog system design considerations of phase shift, drift, scaling, 
torques, inertias, and calibration have their counterparts in the digital environment. 
However, experience gained to date from the variety of flight simulation programs that 
have been developed for the UDOFT system indicates that developing a digital computer 
program from a complex mathematical model of an aircraft is accomplished more readily 
and more economically than the development of a comparable special purpose analog 
system. 

The only apparent limitation to the use of the digital system is the simulation of 
system parameters that exhibit high dynamic characteristics. Operating at a twenty 
cycle per second solution rate the UDOFT computer, and in all probability any other 
digital computer with comparable computing speed, can reproduce dynamic responses up 
to two cycles per second. In order to reproduce responses of higher frequencies, a higher 
solution rate worn be required. However, the solution rate cannot be increased greatly 
before practical 1 mit at ions of computer speed and word length are encountered. Thus, 
there are limitations on the practicality of using the digital system. These limitations, 
however, are encountered only for a relatively small percentage of the simulation problems 
that are undertaken at the present. 

It is the earnest opinion of those who have been associated with the UDOFT pro¬ 
ject that digital simulation of a high performance aircraft is feasible and practical. 
Further, the problems of this beginning art are no different from those encountered when 
developing any new technique in the scientific field and will be ov rcome as more re¬ 
search and development are performed, as is presently with the UDOFT system. 
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SECTION VIII 

UDOFT SYSTEM UTILIZATION AND RELIABILITY 

Since its installation in April 1960, the UDOFT system has been used for a v ^ 
of projects, ranging from the simulation of a submarine and a surface shlP to that °f “" 
orbiting re-entry vehicle. The success of these projects has been somewhat dependent 
upon the reliability of the UDOFT computer. For those periodswhencoir.puteroperation 
haq hppn flawless significant results have been achieved from the research progra s 
?h¿heavne “d'thefomputer. Conversely, for those periods when co-Puterope ration 
has been sporadic, much valuable time has been lost io repairing the system and to re 
running the problems until valid results have been achieved. 

In order to indicate the degree of success attained by the UDOFT system in ful¬ 
filling its intended role of real-time simulation research system, the °f!rat“" 
maintenance logs that are maintained by the system operating personnel have been sum- 
marized and thfresults are presented in the following sections. Two ^riods °f 
operation are reviewed: namely, the first twenty months of operation (May 1960 through 
December 1961) and the twelve months of 1962. Before drawing any decisive conclusions 
from the material that follows, it must be remembered that the UDOFT computer is a 
unique device employing outmoded techniques. No radical or extensive system modifica- 
™ ns have been made since the initiation of the UDOFT system development in 19o6 
whereby it would have been possible to improve the system operation due to the rapid ad- 
vanees in digital computer technology. 

8. 1 System Reliability - May 1960 through December 1961 

During this twenty month period, the UDOFT system was actively manned for 
3335 5 hours? Figure 100 indicates system usage wherein each major category of syste 
utilization is plotted as a function of percent of total time. The terms presented in the 
graph ar«> self-explanatory. However, because only the first category is defined as 
^available" time, one should not be led to believe that the computer system «“P^ative 
for the remaining 46%of the manned time. The system was operable and could have been 
used for the activities comprising "scheduled downtime. 

The graph is interesting from a cost viewpoint because it dramatically indicates 
those activities where costly maintenance effort has been applied. It also indicates those 
areas of computer oiration which must be improved in order to reduce the effective cost 
of stern operation by increasing the level of available time (available time is defined as 
that time during which the system is operated for the purpose for which it was intended). 
Ideally, this level should be 100% however, this is a practical impossibihty since such 
activities as system checkout and periodic preventive maintenance must be Pf 
In addition, time must be allowed to incorporate minor system improvements and otiier 
necessities. The time consumed by these categories of activity, as depicted on the 
graph, are reasonable and do not differ significantly from the levels anticipated at the 
time the system was installed. 

The two disproportionate time consumers are unscheduled downtime due to cor¬ 
rective maintenance, and unscheduled downtime due to air conditioning system failure. 
Downtime must be anticipated on a large electronic system, however, the amount of 
unscheduled downtime required to perform UDOFT system repair £fxcessive^ Th 
total time lost by air conditioner was 8. 5%, however, many more hours of unusable time 
rnay be indirectly attributed to the sporadic operation of the air conditioner, ta ma y 
instances consistent high ambient temperature has been the known cause of computer 
system component failures. 

The graph of figure 101 depicts on a weekly basis, the percentage of total manned 
system time that was available to a system user. When integrated over the Period of. 
twenty months, the data appearing in this graph, forms the bases for the Available Time 
entry in the graph of figure 100. The graph of figure !00 can be misieadmg from a reh- 
ability viewpoint. For this reason the term Operating Ratio (defined as the ratio of good 
time to attempted running time expressed in percent) referred to 111 10^s “s*d_ 
Usable time which is utilized for preventive maintenance, system checkout, and system 
modifications, and unscheduled downtime which is attributable to the air conditioning 
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Figure 100. Total Hours 3335. 5 During Period 15 May 1960 to 31 December 1961 
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system are not considered as a part of attempted running time. Taking this into consid¬ 
eration, Operating Ratio can be defined also as the ratio of available time to the sum of 
available time and unscheduled downtime, expressed in percent. Using this form for a 
figure of merit for computer system operation, the average Operating Ratio for the entire 
period was 76%. 

The graph of figure 102 depicts the weekly Operating Ratio for the same period. 
With the exception of the four periods of excessive downtime, the Operating Ratio was 
between 80% and 90%. The periods of excessive downtime were caused by several factors 
which are explained as follows: 

1. October-November, 1960 - unreliable operation attributed to malfunctioning 
of computer discrete inputs. 

2. February, 1961 - unreliable operation followed by inoperability attributed 
to misalignment of the five phases of the clock pulse. 

3. August-September, 1961 - unreliable operation and inoperability attributed 
to improper memory drive currents and again misalignment of the five phases 
of the clock pulse and to insufficient preventive maintenance. 

From the preceding it can be seen that excessive downtime was attributable qualitatively 
to the clock pulse system, memory drive currents, and computer discrete inputs. In 
order to indicate the quantitative contributions made by the major unreliable components 
of the computer system, the graph of figure 103 has been prepared. The graph very clear¬ 
ly indicates that the primary cause of system downtime was the clock pulse generation 
and distribution system. 

A list of the major problem areas encountered, in order of importance, is as 
follows: 

8.1. 1 Clock Pulse Generation and Distribution 

Misalignment of the five phases of the clock pulse was due to the aging of clock 
pulse system components. Field changes allowed improvement in operation of the sys¬ 
tem but only for a short time. Design of a new clock pulse system was initiated in late 
1961 for installation in 1962. 

8.1.2 Memory Drive Current 

Improper writing into and reading out-of-memory due to inconsistant memory drive 
currents. This problem was eliminated by using higher quality diodes in the memory 
drive constant current source. - ^ . 

8.1.3 Discrete Inputs 

The problem was not so much with improper operation of the discrete inputs as it 
was the difficulty of locating the faulty components. This was overcome by adding a 
maintenance control whereby all discrete inputs can be checked automatically under 
program control. 

8. 1.4 Memory Address Flip-Flops 

Undesirable resetting of one or more address flip-flops during a memory cycle 
resulting in improper rewriting of information into memory. The resetting of the flip- 
flops was due to excessive loading of the aging triode vacuum tube used as address reg¬ 
ister flip-flop output cathode follower. The short-term remedy was the use of selected 
high-transconductance triodes in these places; further investigation in order to find a 
satisfactory solution was required. 

8. 1. 5 Indicator Transistors 

Inoperability of computer console indicators due to failure of transistor drivers. 
Due to the high mortality rate of the 2N35 transistor, it has been replaced by the 2N1304 
transistor which has performed commendably. 
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8. 1. 6 Console Switches 

Failure of push-pull console switches. This problem has been overcome 
by replacing the switches, which had phosphor bronze spring actuators, with similar 
switches using a superior actuating mechanism. 

8.1.7 Output Writer 

Sporadic operation due to inadequate maintenance of the electric typewriter and the 
use of inferior relays in the output writer mechanism. This problem has been overcome 
only partially by improved maintenance of the typewriter and replacement of the relays. 

8. 1. 8 Input Card Reader 

Sporadic operation due to inadequate maintenance of the card reader. This pro¬ 
blem has been overcome by improved maintenance of the card reader. 

8.2 System Reliability - January 1962 through December 1962 

In 1962 the UDOFT system performed well with the exception of one extended 
period early in the year. The graph of figure 104 indicates that the system was available 
for use 73% of the time that the system was manned, a marked improvement over the 
54% level attained during the preceding twenty-month period. The graph of figure 1 
depicts, on a weekly basis, the percentage of total manned system time that was available 
to the user. Compared with the similar graph of available time depicted in figure 101 
for the preceding twenty-month period, it can be seen that available time has increased 
noticeably and the periods of totally excessive downtime have decreased. Except for the 
two periods of excessive downtime, the system was available for approximately 80% of 
the time The graph of figure 106 depicts, on a weekly basis, the Operating Ratio of the 
computer's system. With the exception of the period early in the year, system Operating 

Ratio averaged over 90%. 

The extended problem period was attributed to a combination of factors including 
trouble with the modified card read-in system, clock phasing, and inexpenence of new 
maintenance personnel. In addition there were three rather persistent problem areas, 
marginal operation of the transistorized print register buffer packages excessive drift 
in the analog output circuits, and intermittent problems with the output writer. Ihe 
graph of figure 107 depicts the quantitative contribution of the major problem areas. 

The following are explanations of the problem areas and corrections to them: 

8.2. 1 Clock Pulse Generation and Distribution 

During this period, the clock system was modified to improve rebability aria 
simplify adjustment. A transistorized central clock was instaUed which uses well iso ated 
fixed delays to establish phase differences, single shot multivibrations to establish [wise 
widths and cable drivers to drive equal length coaxial cables which distribute the clock 
phases to each cabinet. The only adjustment now required is the width of the pulses meas¬ 
ured at the output of the clock repeaters in the Input-Output Unit. 

8.2.2 Card Read-In 

In July 1961 the card read-in system was modified to provide twelve words per 
card read-in. A critical parameter of this modification was a correctly timed gating 
pulse To obtain this pulse the summary punch emitter contacts were used and the 
correct timing was obtained by displacing the rotor of the summary punch emitter on tile 
shaft. This method proved erratic and was discarded due to the bounce of the contacts 
and the timing of the gating pulse. A one shot multivibrator and additional logic were 
added to replace the summary punch emitter in generating the gating pulse for card read- 
in. This method proved to be reliable. 

8.2.3 Analog Outputs 

The drift of the analog outputs, which is normally compensated for by the refer¬ 
ence supplies, was found to be excessive for use with the Electric Boat Company and 
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Sperry Rand Corporation equipment. The chief source of drift was found to be the output 
triodes of the multiplexer packages. Furthermore, it was found that all exhibited erratic 
drifting could often be associated with the time of day. From this fact it was concluded 
that small changes in filament voltages were responsible for the drift. To correct this, 
the filament voltage was increased by reducing the voltage drops in the filament leads by 
using buses; this helped considerably. Also tests were conducted on 12 of the multiplexer 
stages (six package locations) using a constant voltage transformer. The tests showeo 
that these stages, independent of the package used, exhibited less drift. (The constant 
voltage transformers also produced a higher output voltage, 6. 8V as compared to 6. 3V.) 
In the near future all the filaments of the analog output packages will be supplied by con¬ 
stant voltage transformers. By using these transformers, the drift is reduced to a point 
where it does not present a problem to any of the users - less than 25 millivolts over 
an extended period. 

8. 2.4 Transistor Print Register Packages 

Difficulty was encountered in the print register packages by the users, Electric 
Boat and Sperry, quite often shorting the outputs to ground and thus destroying the tran¬ 
sistors of the output stage while checking out their equipment. In addition, the transistor 
print register packages displayed a certain amount of unreliability which was traced to 
poor grounding on the transistor packages. This was corrected by adding a jumper wire 
between the two sections of the ground bus on the package. Since this change, these 
packages have proved to be very reliable. 

8.2.5 Address Flip-Flops 

The memory address flip-flops performed reasonably well during this period. 
However, they contributed an unreasonably high percentage of downtime considering 
there are only twenty-four such memory address flip-flops in the computer. Because of 
the success of improving the analog outputs by increasing filament voltage, the filaments 
of the address flip-flops will be increased bv using constant voltage transformers. This 
change should eliminate the need to choose hot" tubes for the output cathode followers of 
the flip-flop. In addition, the output load may be reduced by increasing the size of the 
cathode resistor of the output stages. 

8.2.6 Output Writer 

The output writer was a problem source during the year. The typewriter itself 
is badly in need of overhaul. In addition, the relays of the control circuits are in poor 
shape due to excessive use. The control circuitry is to be replaced with a redesigned 
system using new components and it is hoped that time will permit an overhaul of the 
typewriter. 

8.2.7 Conclusion 

The remaining problem areas at the end of 1962 are the memory address flip- 
flops and the slow print system. Measures have been planned to correct both of these in 
the near future - as soon as the schedule permits. 

Although the system has operated over ten thousand hours no trends have been 
noticed in component failure or in types of troubles. Therefore, it appears safe to assume 
that no large scale preventitive maintenance effort is needed now or in the near future. 
However, to insure a continued high Operating Ratio, maintenance effort must be kept up 
especially in the areas of maintaining good spare packages, weeding out marginal tubes 
in the computer, and grading tubes for the multiplexer output stage. 

8. 3 Conclusion 

The evident conclusion drawn from the UDOFT program is that a digital computer 
is a highly flexible machine which when effectively programmed, can perform the task of 
real-time flight simulation. With another avenue of application open to the digital com¬ 
puter, economies in the development of simulator-trainer systems should grow. A 
single digital computer may be applicable to many simulator-trainer problems, thereby 
obviating the need for costly development of special-purpose control computers. The 
availability of such a machine, as an off-the-shelf item, can effect more rapid develop¬ 
ment of the whole simulator-trainer system. 
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These factors are important because delivery schedules for current simulator-trainer 
systems are very short and time is not available for sophisticated development programs. 
Flexibility is also important when it is realized that the development of a simulator- 
trainer system often is interrupted because of changes in the simulated system and train¬ 
ing systems utilizing special purpose devices are not readily altered. 

A digital simulator-trainer system has other attributes. 

1. It provides a more accurate solution to the problem, partic¬ 
ularly for small changes in the independent variables. 

2. It is more reliable, due to the dependence of the computer 
upon the qualitative rather than the quantitative content of 
internal information signals. 

3. It is a system which is more easily maintained because 
of its inherent characteristics of go no-go operation. 

Flexibility of application has been demonstrated dramatically when one considers 
the various projects currently using the UDOFT system. Reliability of operation is de¬ 
monstrated by the fact that approximately 10, 000 hours of operating time have been logged 
on the computer without a failure of major proportions. As a result the Operating Ratio 
of the computer is approaching 95%, based upon average utilization of seventy-five (7 5) 
hours per week. Compared to the Operating Ratios for the better-known general purpose 
digital computers, 95% does not indicate outstanding performance by the computer. 
However, it must be remembered that the UDOFT computer is a unique device, whose 
operation has not been improved to any significant degree since the day it was installed. 

Unfortunately, the present UDOFT system is burdened with some severe physical 
and logical limitations which restrict its potential application to real-time simulation of 
vehicular systems. These limitations include: 

1. Unwieldy size and large power dissipation due to the use 
of vacuum tubes. 

2. Lack of adequate program input-output facilities, rendering 
difficult the obtaining of computer-originated data required in 
system testing, acceptance testing, trouble-shooting, and 
system analysis. 

3. Insufficient control instructions to utilize effectively the high¬ 
speed capabilities of the arithmetic unit. 

4. An instruction repertoire plague with programming restrictions. 

5. A fixed-point number word which is limited to twenty-one bits. 

6. Lack of true index registers. 

7. Inability to modify instruction words. 

The UDOFT computer, although a product of the past and infested with restrictions 
that hamper its use, has been instrumental in proving the feasibility of real-time digital 
simulation and in the development of techniques to be applied to the design of future digi¬ 
tal simulator-trainer systems. 
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APPENDIX I 

1. 

2. 

GLOSSARY 

Physical Parameters 

a Speed of sound in feet per second 

b Characteristic wing span, 36,-6 feet 

c Mean aerodynamic chord 

d Distance from reference point {35%/MAC) to center of gravity in feet 
Center of gravity is positive aft of reference point 

2 
g Acceleration of gravity, 32. 3 feet/sec at sea level 

H Altitude above field in feet 

hp True pressure altitude in feet 

hp. 'v Indicated pressure altitude in feet 

Ahp^ Indicated altitude position error correction in feet 

Moment of inertia about airplane X axis in slug-feet' 

z 

% 

Ma 

M, 

M 
ef 

M. 
i 

M 

H 

t 

Moment of inertia about airplane Y axis in slug-feetZ 

2 Moment of inertia about airplane Z axis in slug-feet 

Distance from center of gravity to center of pressure of horizontal 
stabilizer in feet 

Mach number 

Mass of drop tanks in slugs 

Mass of external fuel in slugs 

Mass of internal fuel in slugs 

Instantaneous total mass of airplane in slugs 

Empty weight of airplane in slugs 

Normal acceleration in G's 

2 
Incompressible dynamic pressure, l/2pVt 

2 
Characteristic wing area, 376 feet 

2 
Characteristic stabilizer area, 99 feet 

Velocity of mass center in feet per second 

Weight of airplane in pounds W 

P 

Angles and Angular Rates and Moments 

Mass density of air in slug/feet' 

Angle of attack in degrees; the angle between the X-Y wind plane and the 
airplane X-body axis measured in the plane of symmetry, a is positive 
for a nose up angle. 

Rate of change of angle of attack in degrees/second 
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lwr 

lhr 

* 

0 

SH 

sa 

pr 

H 

at 

Rigid wing compressed angle of attack in degrees. 

Rigid stabilizer angle of attack in degrees. 

Si«1 - 
a nose right angle. 

fhfairS X-S ixiíEired Ä 
for a nose up angle. 

Pitching rate; angular velocity about the airplane Y-body axis in radians/ 

second. 

Pitching acceleration; angular acceleration about the airplane Y-body axis 

in radians/second2 - -... 

Euler angle Wbang ln Hegreea; the *»£»"*““ 'ï5“°‘ÎÂi'“‘ 
the airplane Y-body axis measured in the Y Z plane. P 
right wing down condition. 

Rolling ,.,.1 angular velocl., about tb. airplane X-bod, aal. r.dlanal 

second. 

Rolling acceleration; a 
in radians/ second . 

ngular acceleration about the airplane X-body axis 

Turbibg ,...1 angular about tb. airplane ^ ax» In radian./ 

second- 

Turning acceleration; angular acceleration about the airplane Z-body axis 

in radians / second . 

Control stick deflection in inches for-rd and aft^ neutca1 at a radius of 
22. 75 inches, 6gH is positive when the stick is forwar . 

Control stick deflection in inches ^ ^ 
22.75 inches; i>sa is positive when the stick is right. 

Rudder pedal deflection from neutral; 6pr is positive when the left pedal 

is forward. 

Stabilizer deflection from neutral, in degrees; óH is positive w 

leading edge is up. 

Total aileron deflection from neutral in degrees, ôat positive wh 

left aileron is down. 
. . i un aperrees- 6 is positive when the rudder 

Rudder deflection from neutral in degrees, »r F 

is left. 

Speed brake deflection in degrees. 

Throttle position in degrees. 

3. Linear Velocities, Accelerations and Forces 

Longitudinal velocity along X-body axis in feet per second; u is positive 

when it is in a forward direction. 
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•ft 

Longitudinal acceleration along X-body axis in feet per second . 

Lateral velocity along Y-body axis in feet per second; v is positive when 
it is to the right. 

Lateral acceleration along Y-body axis in feet per second2. 

Normal velocity along Z-body axis in feet per second; w is positive when 
it is down. 

o 
Normal acceleration along Z-body axis in feet per second . 

Velocity along line of flight path feet per second. 

Total force along X-body axis in pounds; Xa is positive when it is in a forward 
direction, 
Total force along X-stability axis in pounds; Xg is positive when it is in a 
forward direction. 

Total force along Y-body axis in pounds; Ya is positive when it is to the 

right. 

Total force along Y-stability axis in pounds; Yg is positive when it is to 
the right. 

Total force along the Z-body axis in pounds; Za is positive when it is down. 

Total force along the Z-stability axis in pounds; Zs is positive when it is 
down. 

Thrust in pounds 

4. Aerodynamic Coefficients and Derivatives (Stability axis) 

r1» 
UD 

ClW 

% 

Basic drag coefficient 

Coefficient of drag due to drop tanks 

Rate of change of drag coefficient with speed brake deflection 

Coefficient of drag due to drag chute 

Coefficient of drag due to landing gear 
ac 

Rate of change of sideforce coefficient with yaw angle, 
ac 

Rate of change of sideforce coefficient with rudder deflection, 

Rate of change of sideforce^coefficient with yaw angle when drop tanks 
are attached 

Rate of change of sideforce coefficient with roll velocity parameter, 

»V 
Coefficient of lift due to wings 

Coefficient of lift due to horizontal stabilizer 

Rate of .change of lift coefficient with speed brake deflection. 

acT 
w 



m. a 

m Wa 

m dt 

m, 

m dc 

m L.G 

m G.C 

C 
ór 

'óa 

‘Wa 

np 

Coefficient of lift due to drop tanks 

Rate of change of rolling moment coefficient with aileron deflection. 

Rate of change of rolling moment coefficient with rudder deflection, 

aci 
*¡7 
9¾ 

S7~ 
or 

Rate of change of rolling moment coefficient with yaw angle, 

Rate of change of rolling moment coefficient with roll velocity parameter, 
, fbíp + r sin a) 1 

8Ci/e [ —J 
Rate of change of rolling moment coefficient with turning velocity 

. / Tb(r - p sin a)"! 
parameter, öC|K -^- 

Flexible pitching movement coefficient 

Rate of change of pitching moment coefficient with pitching velocity 

parameter, 8Cm/g [JH] 

Rate of change of pitching moment coefficient with a rate of change of 

angle of attack, [fyj 

Rate of change of pitching moment coefficient with throttle position, 

8Cm/3 4 

Pitching moment coefficient due to drop tanks 

Rate of change of pitching moment coefficient with speed brake deflection, 

9C / ax ml 96j 

Pitching moment coefficient due to drag chute 

Pitching moment coefficient due to landing gear 

Rate of change of pitching moment coefficient with altitude H close to 
ground (ground effects) 

Rate of change of turning moment coefficient with yaw angle, ^ 

Rate of change of turning moment coefficient with rudder deflection, 

Rate of change of turning moment coefficient with aileron deflection, 

Rate of change of turning moment coefficient with throttle deflection, 

acn/a * 
Rate of change of turning moment coefficient with rolling velocity 

parameter, dCj ÿ [b(p 

Rate of change of turning moment coefficient with turning velocity 
~ ° . |~b(r - p sin a )“| 
parameter, ^ -fy J 
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APPENDIX U 

EQUATIONS FOR VELOCITIES, FORCES AND MOMENTS 
RELATIVE TO AIRCRAFT AXES 

This appendix supplies various data and formulaè used in the UDOFT Program. 
Illustrations included display the various axes, moments, vectors and other forces 
necessary to the mathematics involved. 

Figure n-1. Linear Velocities Along Airplane Axes 

Longitudinal Velocity 

u = VT cos a 

where 

VT = j'u dt 

Logitudinal Acceleration 

X 
¿ = ^ - wqj + vr (ground) 

Xa U = ^ - g sin 0 - wqx + vr (air) 

(124) 

(125) 

(126) 

i». 
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Lateral Velocity 

(ground) 

(air) 

(127) 

(128) 

V = 0 

dt 

Lateral Acceleration 

V = ^ + g cos 0 sin $ - ur + wp 
i 

w - VT sin a 

Normal Velocity 

= VT 

w = ^ w dt 

Normal Acceleration 

w = - ^ + g cos 0 cos $ - vp + uq1 

(ground) 

(air) 

(129) 

(130) 

(131) 

(132) 

Figure E-2. Summation of Forces Along Airplane Axes 

X = Total Force Along Airplane X Axis (+ Forward) 

Xa = Xs cos « + T - Dwm - (Fbr - Fbl) - 600 

= Xg cos a - Zg sin a + T - 

where 

r^WM = Engine windmilling drag along airplane X axis 

= 10, 000 f48(Ma)f5(hp) 

Wheel Friction = 6 00# 

(ground) 

(air) 

(133) 

(134) 

(135) 
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(136) 

Ya = Total Force Along Airplane Y Axis (+ Right) 

Ya s Ys 

Z = Total Force Along Airplane Z Axis (+ Down) 

Z = Z cos a + X sin a - 0. 053T 
as s 

X = Total Drag Force Along the Airplane X Stability Axis In Pounds 
s 

where 

D-o = Basic drag in pounds 
D 

Db = 376 qC'D = qSC'D 

CJ-j = Basic drag coefficient 

= fg(Ma) + C'Lf10(Ma) + C^C'^^Ma) + C'L2f]2(Ma) 

where 

C'T = Clean lift coefficient formula 
F 

= CT + o. 263 CT 
ljw 

(Note: see page 267 for CL and ) 

(137) 

(138) 
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D = Drag due to drop tanks in pounds 

dt = 376 qCDdt = SqCDdt 

Cod = Drop tanks drag coefficient 

= CDdt(Ma) 

Ddt = 0 (Dr0P fanks 
D = Drag due to speed brake deflection in pounds 

ÍJ = 376 qCDôjíj = SqCDajäj 

c = Speed brake drag coefficient 

% 

= CD (Ma) 

ÄJ 

í = Speed brake deflection degrees 

D = Drag due to drag chute in pounds 
dc 

= 376 qC =SqC 
ac dc 

C = Drag force coefficient due to drag chute 

Ddc 

= 0. 30585 

X) = 0 (Drag chute deflated or jettisoned) 
dc 

D = Drag due to landing gear in pounds 
L, G 

= 10, 2 q = SqCy-i 
L. G 

L. G 

Drag coefficient due to landing gear 

L. G 

= 0. 0278 

= 0 (Landing gear up) 

y , Total Side Force Along the Airplane Y Stability Axis inPoundg 

= Y . + Y, + Y,, + Yn ^ dt p 

where 

Y = Side force due to yaw angle in pounds 

= 376 qC * = SqC ^ ^ in deS* 

^ i i 
C = Side force coefficient due to yaw angle 

= C (Ma) 

Y = Side force due to rudder deflection in pounds 

4r 
= 376 qCy «R = SqCy6 0R 6R in deg. 

R tv 

(139) 
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i 
P 

.: 

EKE* ' 

1 

C = Side force coefficient due to rudder deflection 
y6 

R = 1. 238 jo. 002 - f3(hp)]^29<Ma) ' l- OoJ + f3(hp) (Mach 

= f3(hp)f29(Ma) (Mach 

Ydt = Side force due to drop tanks in pounds 

= 376 qC * = SqC * 
ydt ydt 

C = Side force coefficient due to drop tanks 
ydt 

= 0. 002 

Yp = Side force due to rolling rate in pounds 

= 6880 qC (P + yiH-g) = 1¾.. C (p + r sin a) 
yp VT jp 

C = Side force coefficient due to rolling rate 

yP 
= C (a) 

Z = Total lift Force Along the Airplane Z Stability Axis in Pounds 
s 

= Lw + LH + LÄj + Ldt 

Lw + LH + LÄj + Ldt 

= —070532 H + ÜT593 

when 

where 

H < 25 feet 

= Lift due to wings in pounds 

= 376 qCT = SqCT 

CT = Coefficient of lift due to wings 

CLW ' 
1. 1 

f .(Ma) + C. 
4 IjW, 

where 

aWR = Ri6icl winS compressed angle of attack in degrees 

={ a -[Cl - f^a^WgíMaJjf^JJaJf^qífgtMa^Ma) 

- Lift due to horizontal stabilizer in pounds 
H 

= 376 qCT = SqCT 

CT = Coefficient of lift due to the stabilizer 
LH 

= 0. 263 ^(«^JfgiMa) 

265 
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where 

Buo - Rigid stabilizer angle of attack 
Hxt 

= ff + SH - f2(a'WR)f6(Ma) -I 0- 00233q + tyqJtyMa)] 

L - Lift due to speed brake deflection in pounds 
aj 

= 376 qC «J = SqC ij 

6J 

C = Coefficient of lift due to speed brake deflection 

Lsj 
= CL (Ma) 

L , = Lift due to drop tanks in pounds 
dt 

= 376 qCT = SqCT 
Ldt dt 

C = Coefficient, of lift due to drop tanks 
Ldt 

L = 0 (Drop tanks off) 

Figure H-4. Angular Velocities Along Airplane Axes 
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where 

where 

p = Rolling Rate About the Airplane X Axis in Rad/Sec 

= fcdt 
p = Rolling Acceleration About the Airplane X Axis in Rad/Sec' 

= 0 (ground) 

r (air) 

~ Pitching Rate About the Airplane Y Axis in Rad/Sec 

= |q1 dt 

t 

^ = Pitching Acceleration About the Airplane Y Axis in Rad/See4 

Ma + 54, 200 rp - 1250(g - Z /M.) + AM 
ä 1 

Ma + 54, 200 rp 
-j' --- -c. 

y 

(ground) 

(air) 

(141) 

(142) 

(143) 

(144) 

(145) 

(146) 

AM = Pitching moment due to nose wheel contact with the ground 

= 25, 200(5 - 0 ) - K 9 when 0 < 5° 

AM = 0 when 0 > 5° 

K é nose wheel damping factor 

0 Pitch angle in degrees 

K Experimentally determined quantity 

r = Turning Rate About the Airplane Z Axis in Rad/Sec 

=iidt 
r = Turning Rate About the Airplane Z Axis Due to Nose Wheel Steering 

in Rad/Sec 

- Vu* V 
r = 0 

when 0 < 4° 

when 0 > 4° 

r = Turning Acceleration About the Airplane Z Axis in Rad/Sec' 

Na - 41, 300 pq1 + 6. 21(FBR - FßL) - 1250 ur + 420 v 

(147) 

(148) 

(149) 

(ground) (150) 

N - 41, 300 pq, + 420 v 
-!- (air) (151) 

267 



where 

and 
6. 21(Fbr - Fbl) = Turning acceleration due to foot brakes 

420 V = Turning rate acceleration damping 

= 0 (when yaw damper is off) 

Figure n-5. Summation of Moments About Airplane Axes 

L = Total Rolling Moment About the Airplane Z Axis in pound-feet 
a 

= L cos a - N sin a 
S s 

Ma = Total Pitching Moment About the Airplane Y Axis in pound-feet 

= M + Z d - 1.33 T 
s s 

N s Total Turning Moment About Airplane Z Axis in pound-feet 
a 

= N cos a + L sin a + Y d 
S S o 

(152) 

(153) 

(154) 
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ctv. 
Figure n-6. Summation of Moments About Airplane Stability Axes 

Lg = Total Rolling Moment About the Airplane Stability X Axis in pound-feet 

= L. +1--. +L.+L +L 
Ôa -5r Í P r 

where 

= Rolling moment due to aileron deflection in pound-feet 

= 13750 qCj = SbqC^ 

C = C. (Ma, a, q, Ö ) rolling moment coefficient as a function 

)1.Ma, a , q and f'*"*-’ « » --'J 

C<a (1 -f4(q>f41(Ma)]'f46(Ma)+f47(Ma>f6<q)}f2(i! 

where 

Cf = + f8(^)f40(^) + 0. 796 
5a 

= f4Q(Ma) + 0.796 

0 < Ma < 1. 1 

1. 1 < Ma < 1. 73 

Lj = Rolling moment due to rudder deflection in pound-feet 

13, 750 qC^ Ôrfg(cr) = sbqCf 5rfg(a) 
(5 6 
r r 

j 

(155) 
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C = Coefficient of rolling moment due tc rudder deflection 

l6r 

L = Rolling moment due to yaw in pound-feet 
*l> 

= 13750 qC. - SbqC * 

Cjt = Coefficient of rolling moment due to yaw 

* - WMa) + f36<Ma) + 64,000 36 

L = Rolling moment due to rolling rate in pound-feet 

P = 252. 000 (IL±JLSÍ™)-^-qC^(P +r sina) 

C = Rolling moment coefficient due to rolling rate 

P 

= f5(a)f38(Ma)^l -f3(q)f39(Ma)] 

L = Rolling moment due to yawing rate in pound-feet 
r 

= 252, 000 ‘ P ^ a) 

C = Rolling moment coefficient due to yawing rate 

r = C| (a) 

1 r 

[ , Total Pitching Moment About the Airplane StabOit^^^K^fee! 

= Ma + Mql + MH + Ma + Mw^ +Mdt + M¿j + Mdc + ML_ G + E 

here 

M = Pitching moment due to angle of attack in pound-feet 
a 

= 4260 qC m 
ScqC m 

C = Flexible pitching moment coefficient due to angle of attack 
m 

aF 

= Cmx ' f19<iIa)fl(hp)f3(“WR) 

/here 

C = Rigid pitching moment coefficient due to angle of attack 

ra<2R 
= f13(Ma) " 

= ^i13(Ma) - fu(Majj(- 

= fl4(Ma)-f15(Ma)]( 

WR gd!) + fH(Ma) 

“WR ' 8 Vi )+ f. -(Ma) 4 lo 

24°>«wr>18c 

18.° >œwr > 12° 

12° > “WR > 8' 

(156) 
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= JyiUa) - f16(Ma)J 

= jf16(Ma) - i17(Ma)](^—)+f17(Ma) 

fî6<Ma) 

+ 6 

cl' 

j^17(Irfa) - f18(^)]( WR+ 18) + 

= flg(Má) 

80 5 “Wß 5 5< 

5” > ori.p 5 - 6' 

-6° > «WR 5 - 18° 

-18° > -24° 

M = Pitching moment due to pitching rate in pound-feet 

i C 
Mq 2 

= 24, 133 q-lr-1q1 = qCM Qj 
T ^ 

C = Pitching moment coefficient due to pitching rate 
M 
V 

= f25(Ma)f2<hp) - f26(Ma) 

M = pitching moment due to horizontal stabilizer in pound-feet 
H 

= -99qCL^lH = - SH¿lCLHí H 

CT = Coefficient of left due to stabilizer (see page 267)- 
LH 

i „ = Distance from c. g. to c. p. of horizontal stabilizer in feet 
H 

= lH(Ma) 

M- - Pitching moment due to rate of change of angle of attack in pound-feet 

CM • ¿ c 2 
= 24,133 q(^-)=2^qCMaa 

C = Pitching moment coefficient due to rate of change of angle of attack 

OL 

- f (Ma) - (62,000 zilR-)f (Ma) -t^UWaj t 64,000 ' 28v 

M = Pitching moment due to air entering the duct in pound-feet 
Wa 

= 4260 qCM fx{4 h = ScqCM f^ he 
Wa 

C = Pitching moment coefficient due to air entering the inlet engine duct 
M Wa 

(Ma) Wa 

<) = Thrust selector in degrees 
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M ., = Pitching moment due to drop tanks in pound-feet 
dt 

= 4260 qCM = ScqC^ (Drop tanks ON) 

(Drop tanks OFF) dt dt 

Mdt = ° 

Gw = Pitching moment coefficient due to drop tanks 
Mdt 

= f24(Ma) + f22(Ma) 40° >a> 20° 

= [f24(Ma) - f23(Ma)](- 

= fgsíMa)^ + 

= 

1^) + f23(Ma) + f22(Ma) 20° lallW 

10° >a> 0s 

0C > a > -40’ 

M = Pitching moment due to speed brake deflection in pounds-feet 

áJ 
= 4260 qCM ij^ScqCj, ij 

äJ äJ 

C = Pitching moment coefficient due to speed brake deflection 

Maj 
= f20(Ma) + f21{Ma)f2(a) 

M , = Pitching moment due to drag chute in pounds-feet 
dc 

= 115 qi. 

Mdc ' ° (Dra£ chute jettisoned or not inflated) 

Ip = Drag chute moment arm in feet 

Í =ija) 
P P 

M = Pitching moment due to landing gear in pound-feet 
L. G 

= 4260 qCM = ScqCM (Landing gear down) 
L.G G (Landing gear up) 

M = O 
L. G 

= Pitching moment coefficient due to landing gear 

‘ CMLG(aWR‘ 

Wl = Pitching moment due to ground effects in pound-feet 
GE 

(13. 1H - 328)q H < 25 ft 

H > 25 ft 
GE 

N = Total Turning Moment About the Airplane Z Stability Axis in pound-feet 

= N, + Ni + N6a + NWa + Np + Nr 
T r 

where 

(157) 
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N = Turning moment due to yaw angle in pound-feet 

= 13750 qCn * = sbqC^* 

C = Turning moment coefficient due to yaw angle 

$ h + 2000 

= ^30(Ma) ' f31(Ma) “ ?4, ÖÖ0 f32(Ma) 

N ' = Turning moment due to rudder deflection in pound-feet 
a 

= 13750 qC «„ = SbqC 5 
ni r ri r r r 

C = Turning moment coefficient due to rudder deflection 

nör h + 2000 

= -f33(Ma)-Hhreõ-f34(Ma) 

N = Turning moment due to aileron deflection in pound-feet 
aa 

* 13, 750 qC = SbqC 
nóa n5a 

C = C (ôa, a) Turning moment coefficient as a function of aileron 
n<5a n6a 

deflection and angle of attack 

= f^(<5a)fg{a) 

N = Turning moment due to inlet air momentum is pound-feet 
^$1 a 

= 13750 C ÎJA) ^ = SbqC 
nWa 1 nWa 

C - Turning moment coefficient due to inlet air momentum 
Wa 

= C (Ma) 
nWa 

N - Turning moment due to rolling rate is pound-feet 
P . _ n r sin a, bb 

= 252, 000 qC (E )= c (p + r sin a) 
np' VT ' 2VT np 

C = Turning moment coefficient due to rolling rate 
np 

= cnpte> 

N - Turning moment due to turning rate in pound-feet 
r 

= - 23, 900 q(r '^?TS"—) = - Cn^(r - p sin a) 

C = Turning moment coefficient due to turning rate 
nr 

= 0, 0948 
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APPENDIX III 

MASS MOMENT OF INERTIA AND LOCATION OJ 
mass uf gravity equations 

= Total Instantaneous Mass in SUigs 

+Mef+ Mdt 
(158) 

I = 

1 = 

1 = 

where 

M = Weight of airplane empty in slugs 
o 

= 591 

= Weight of internal fuel in slugs 

= 153 

M - Weight of external fuel in slugs 
ef 

= ni 

M = Weight of drop tanks in slugs 
dt 

= 12.4 

Moment of Inertia About Airplane X Axis in Slug-Feet 3--uared 

10, 200 + 100 Mef 

Moment of Inertial About Airplane Y Axis in Slug-Feet Squared 

57, 000 

Moment of Inertia About Airplane Z Axis in Slug-Feet Squared 

60, 000 + 75. 0 (Mf + Mef) 

Distance from Reference Point (35% MAC) to Center of Gravity, in Feet 
d = 

(Positive if c.g. is aft of Re*. - - 

- 46.7 +0.453 M f - ^ (Mf) + K1 

TT 

where 

Kx = 28.4 in slug-feet, drop tanks ON 

= 0 in slug-feet, drop tanks OFF 

f^M.) = Mass of internal fuel 
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APPENDIX IV 

DISPLACEMENT ABOUT AXES EQUATIONS 

Q = Pitch Angie with Respect to X Axis in Degrees 

= 57. sj é dt 

G = Rate of Change of Pitch Angle in Radians per second 

= cos $ - r sin $ 

4» =-'Bank Angle with Respect to Y Axis in Degrees 

= 57. 4 dt 

$ = Rate of Change of Bank Angle in Radians per second 

= p + ^ cos e 

¥ = Heading Angle with Respect to Z Axis in Degrees 

= 57. 3 \ 9 dt 
•J 

V = Rate of Change of Heading Angle in Radians per second 

= Sec 0 r[cos sin 4*] 
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APPENDIX V 

AUXILIARY AERO EQUATIONS 

Ma - Mach Number (160) 

where a = speed of sound in speed per second. 

a = Angle of Attack in degrees 

= 57.3w/Vt 

¡f¡ = Yaw Angle in degrees 

.. - = » 57. 3 v/VT = - ß 

where (3 = Side slip angle in degrees. 

R/C = Rate of Climb in feet /min 

= 60, 0[u sin 6 - cos 0 (v sin $ + w cos 4»)]= hp = H 

where hp = Rate of change of pressure altitude in feet/min 

H = Rate of change of altitude above use field in feet/min. 

n = Normal Acceleration in G's ' 

Landing and Take off indications 

Landed 

Z 
H = 0 and < 1 G 

B = Ball Angle in degrees 

= 57. 3 V /Z (air) 
a' a 

= - 57. 3 rVT/G (ground) 

1^(V^) = Indicated Airspeed (shaft position in degrees) 

= log + log p - A log +1.93X 10 ^ Ahp (162) 

hp^ = Indicated Pressure Altitude in feet 

= hp - Ahp + 855 Apo 
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where 

Ahp = f42(hp)f4(hp) 

Ap = Departure from standard barometric pressure (29. 92 indies of H^) 

Ma = Rotation of Mach Dial Counter Clockwise from the Mach = 1. 0 
1 opposite " Vi = 661 knots' Position in degrees 

= fg(hp) - 0. 00278 Ahp 

where 

Ah = Indicated altitude position error correction in feet 
P 

= Magnetic Heading in Degrees - Position Eastward 

= ♦ + A’t 

where 

^ = True heading in degrees - position eastward 

A* = Magnetic variation in degrees - West variation positive. 
East variation negative 
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APPENDIX VI 

AERODYNAMIC HINGE MOMENT EQUATIONS 

hmh 

HM a 

Cha 

HM r 

= Stabilizer Hinge Moment in Inch-Pounds 

= 4050 qC 
nH 

= Stabilizer hinge moment coefficient 

= -[o. 0111 af53(Ma) + 0. 025 í Hf54(Ma)j935f8(q) 

= Aileron Hinge Moment in Inch-Pounds 

5°o qCha 

= Aileron hinge moment coefficient 

= 0. 0136 afõ2(Ma) + 0, 013| óaj f51(Ma) 

= Rudder Hinge Moment in Inch-Pounds 

= 123 qCh 
r 

= Rudder hinge moment coefficient 

- 0. 0225 6 (1 r 
f43(Ma>f7(q) 

(IS4) 

(165) 

(166) 
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CONTROL FORCES AND TRIM TERMS AND EQUATIONS 

^SH C Forward and Aft Neutral (positive when forward) 

(5^ = Sticks Deflection Left and Right of Neutral (positive when right) 

ôjj - Stabilizer Deflection from Neutral (positive with leading edge up) 

= Total Aileron Deflection from Neutral (positive with left aileron down) 

öpR = Rudder Pedal Deflection from Neutral (positive with left pedal 
forward) 

0D = Rudder Deflection from Neutral (positive with rudder left) 
rv 

H 
Total Stabilizer Stick Force Measured at a radius of 22. 75 

T inches in pounds 

= FH + 2. 85 (n - 1) 

where 

n = load factor in G's 

(167) 

1. Stick limits from rig 10° forward to 13° aft 

2. Trim limits from rig 85° forward to 29° aft 

3. Trim speed 1. 5° / sec of stick 

4. Moment of inertia around the stabilizer stick pivot point 0. 422 slug - ft 
2 

F-p = Total Pedal Force at a Radius of 15 inches in pounds 
F m r~ -ï 

1 1 HM, 
2 I - R| 

FP 15 HMr 
HMd I - 4330 

K 
when > 4330 (168) 

= Fn when HMr ^ 4330 

Fp + HMr (utility hydraulic system failed) 

where 

1. Pedal limits from rig 12. 5° forward to 12. 5° aft 

2. Trim limits from rig 3. 8° forward to 3. 8° aft 

3. Trim speed 0. 86° /sec of pedal 

4. Moment of inertia around the rudder pedal pivot point, 

0. 365 slug-ft2 

öj = Speed Brake Deflection in Degrees 

= f44(Ma) - f5(q) 

<5j maximum - 50° 
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APPENDIX VH! 

s 
w 

PLOTTING BOARD TERMS AND EQUATIONS 

Ej - Eastward Position of Interceptor for Plotting Board Reference Point in feet 

r . (169) 

= 3Eidt+\ 

where E, = Rate of change of interceptor eastward position in feet/second 

= (u Cos 0 + w Sin 0 )Sin ♦ 

Ej = Initial position in feet 
o 

Ni = Northward Position of Interceptor for Plotting Board Reference Pound in feet 

r . (170) 
= V N, dt + Nj 

^ 1 o 

where Nj = Rate of change of interceptor Northward position in feet per second 

= [u Cos e -f w Sin 0 )Cos * 

Nj = Initial position in feet 

w. 
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