
UNCLASSIFIED

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, sped*
fleet ions or other date are used for any purpose
other than In connection with a definitely related
government procurement operation, the U. S.
Government thereby Incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern¬
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data Is not to be regarded by implication or other¬
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

Ift

¢4

r-*

CO

AMRL-TDR-63-1.33

o

o

>”
CD

a:x
UJ
CD
O

i

I—
<c
o

CO
<c

THE UDOFT

FLIGHT SIMULATION SYSTEM

TECHNICAL DOCUMENTARY REPORT No. AMRL-TDR-63-133

DECEMBER 1963

10
o
iH
CO

BEHAVIORAL SCIENCES LABORATORY
6570th AEROSPACE MEDICAL RESEARCH LABORATORIES

AEROSPACE MEDICAL DIVISION
AIR FORCE SYSTEMS COMMAND

WRÍGHT-PATTERSON AIR FORCE BASE, OHIO

Contract Monitor: William B. Goeckler
Project No. 6114, Task No. 611413

n r

U mi 19S4

TiSlA B

(Prepared under Contract No. AF 33(657)-7065 by
Sylvania Electric Products, Inc., Needham, Massachusetts)

i*.

1

NOTICES

When US Government drawings, specifications, or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the'govemment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other data is not to be regarded
by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies from the Defense Documentation Center
(DDC), Cameron Station, Alexandria, Virginia. Orders will be expedited if
placed through the librarian or other person designated to request documents
from DDC formerly AST I/O .

Do not return this copy. Retain or destroy.

Stock quantities available at Office of Technical Services, Department of Commerce,
Washington 25, D, C, Price per copy is $4.00.

Change of Address

Organizations receiving reports via the 6570th Aerospace Medical Research
Laboratories automatic mailing lists should submit the addressograph plate stamp
on the report envelope or refer to the code number when corresponding about
change of address.

700 - Febmary 1964 - 162-27-515

FOREWORD

This report contains a review of the UDOFT program from June 1956 to December
1962. This period of approximately six and one-haif years comprises system development
(June 1956 to April 1960), installation (April 1960 to September 1960) and operation (Sep¬
tember 1960 to December 1962). The work was sponsored jointly by the U. S. Air Force
and the U. S. Navy under Contracts N61339-40, N61339-853 and N61339-1150. This sum¬
mary report has been prepared for the Behavioral Sciences Laboratory of the Aerospace
Medical Division, Wright-Patterson Air Force Base, by the Electronics Systems Division
of Sylvania Electric Products, Inc., Needham, Massachusetts, under Air Force Contract
No. AF33(657)-7605 and is in support of Project 6114, "Simulator Techniques for Aero¬
space Crew Training" and Task No. 611413, "Digital Computers. " Mr. William B
Goeckler, Simulation Techniques Branch, Training Research Division, Behavioral Sci¬
ences Laboratory, 6570th Aerospace Medical Research Laboratories, served as contract
monitor.

Mr, Julian Wargo, Manager of Sylvania's Digital Simulation Systems Department,
was principal investigator and directed the preparation of this report. Other key Sylvania
personnel who contributed include F. Kearney, K. Rago, and H. Wychorski of the Com¬
puter Laboratory; Mrs. F. MacNair and J. Prutsalis of the Programming and Analysis
Laboratory, and D. Rush of the Product Support Organization.

ABSTRACT

UDOFT (Universal Digital Operational Flight Trainer) represents the first full-
scale application of a high-speed, general-purpose digital computer to the real-time
flight simulation problem. Through the use of the stored program digital computer, sim¬
ulation of different aircraft is accomplished by changing the computer program. This
flexibility is the key to the realization of the full advantages of the digital control system,
as compared to the conventional analog control system, in this application. Basically a
high-speed, general-purpose digital computer, the UDOFT computer represents an ad¬
vancement in the design of real-time control computers. With the use of dual, 4096-word,
random-access, magnetic core memories, the basic instruction time for the UDOFT com¬
puter is five microseconds. To interface with the analog environment of a flight compart¬
ment, the UDOFT computer is equipped with a special-purpose, real-time input-output
capability.

Use of the computer in a simulation system demanded the preparation of programs
for applying the computer to the solution of the mathematical model of the real-world sys¬
tem under consideration. Such programs were written for the F-100A and the F9F-2.
Extensive qualification testing was performed to ensure proper and complete simulation
of these aircraft.

PUBLICATION REVIEW

This technical documentary report is approved.

WALTER F. GRETHER
Technical Director
Behavioral Sciences Laboratory

iii

TABLE OF CONTENTS

Page

SECTION I: INTRODUCTION . !
1. 1 Purpose. i
1. 2 Background Information..... i
1. 3 Program History. 2
1. 4 General Program Requirements. 3
1. 5 Organization of this Report. 4

SECTION II: SYSTEM DESCRIPTION. 5
2. 1 Introduction to Basic Digital Computers. 5

2. 1. 1 Numbering System.... 5
2. 1. 2 The Fundamental Computer. 5
2. 1. 3 Definition of Terms. Î
2. 1. 4 Computer Programming. 8

2. 2 Introduction to UDOFT. 8
2. 2. 1 UDOFT Computer Operation—Simplified . 12
2.2.2 UDOFT System Operation-Simplified. 12

SECTION HI: UDOFT COMPUTER DESCRIPTION. 16
3. 1 Introduction. 16
3. 2 Word Format . 16
3.3 Instruction Repertoire. 18

3. 3. 1 Arithmetic Instructions . 18
3. 3. 2 Clerical Instructions. 18
3. 3. 3 Control Instructions. 19
3.3.4 Input-Output Instructions. 21
3. 3. 5 Special Purpose Instructions. 23
3. 3. 6 UDOFT Registers and Symbolic Description of

UDOFT Instructions . 23
3. 3. 7 Address Modification (Relative Addressing). 28

3. 4 Main Frame. 28
3. 4. 1 Master Timing System. 31
3. 4. 2 Arithmetic Unit. 35
3. 4. 3 Control Unit I. 40
3. 4. 4 Control Unit H . 43

3. 5 Memory Unit. 45
3. 6 Input-Output Unit. 47

3. 6. 1 Discrete Inputs. 47
3. 6. 2 Discrete Outputs . 47
3.6.3 Analog Inputs . 49
3.6.4 Analog Outputs. 49

3. 7 Computer Console Unit . 52
3. 7. 1 Console Panel A. 52
3. 7. 2 Console Panel E. 58
3. 7. 3 Console Panel C. 61
3.7.4 Input Card Reader. 63
3.7.5 Output Printer . 63

SECTION IV: COMPUTER HARDWARE DEVELOPMENT HISTORY. 65
4. 1 Introduction. 65
4. 2 Logic Design Problems . 65

4. 2. 1 Number Memory . 65
4. 2. 2 Parity Formation-Card Reader Input. 66
4. 2. 3 Interval Timer. 66
4. 2. 4 Additional Instructions-SCRNM and TIM. 66
4. 2. 5 Sequence Counter.. 67
4. 2. 6 General Purpose Computation... 67
4. £. 7 Non-Existent Instruction .. 67

4. 3 Circuits. 68
4.3.1 Main Frame Circuitry. 68
4. 3. 2 Input-Output Circuitry. 75

i».

IV

TABLE OF CONTENTS (Cont.)

Page

4, 4 Logic Circuit Packaging. 90
4. 4. 1 Puise Amplifier Plug-in Package Assemblies. 90
4. 4. 2 OR Gate Plug-in Package Assemblies. 90
4. 4. 3 Delay Line Plug-in Package Assemblies. 92
4. 4. 4 Plug-in Package Fabrication Problems. 95
4. 4, 5 Classification of Printed Circuit Plug-in. 95

Package Assemblies.
4. 5 Main Frame Development..... 95

4, 5. 1 Main Frame Cabinets. 95
4. 5. 2 Package Racks. 95
4. 5. 3 Rack Layout. 101
4. 5. 4 Test System. 101

4. 6 Memory Development. 106
4. 6. 1 Memory Design and Development.. 107
4.6.2 Memory Planes. 118
4. 6. 3 Memory Unit Cabinet. 120

4. 7 Input-Output Development. 123
4.7.1 Input-Output Unit Cabinet. 123
4.7.2 Computer Console. 123

4, 8 Power Supplies and Power Control. 128
4.8. 1 A-C Power.;. 128
4. 8. 2 D-C Power. 128
4. 8. 3 D-C Power Supplies. 131

4. 9 Computer Unit Testing. 131
4. 9. 1 Arithmetic Unit.131
4. 9. 2 Control Unit II.134
4. 9. 3 Control Unit I. 134
4. 9. 4 Main Frame Test. 134
4. 9. 5 Memory Unit Test. 134
4. 9. 6 Input-Output Unit. 135
4. 9. 7 Computer Console Unit. 136

4. 10 Computer System Testing. 136
4. 11 Trainer Modification and Static Test.137
4. 12 Review.138

SECTION V: SIMULATION PROGRAM DEVELOPMENT. 140
5. 1 Simulation of the UDOFT Computer. 140
5. 2 Use of Automatic Programming Techniques. 141
5. 3 Checkout and Test.144

5. 3. 1 Trace Facility. 144
5. 3. 2 Dump Facility.155
5. 3. 3 Other Checkout Aids.155

5. 4 Operational Program Considerations.157
5. 4. 1 Data Reduction and Function Generation.162
5. 4. 2 Method of Describing Position and Orientation.* 162
5. 4. 3 Solution Rate. 166
5. 4. 4 Method of Numerical Integration.167
5. 4. 5 Use of Time in the Operational Program. 168
5. 4. 6 Control of Precision in the Operational Program.169

5. 5 Simulation Program Organization.171
5. 5. 1 General Simulation Program Formulation. 171
5. 5. 2 Programming Procedures. 173

SECTION VI: SIMPLIFIED DESCRIPTION OF THE F-100A SIMULATION.175
PROGRAM

6. 1 Aerodynamic Equations of Motion (Longitudinal Plane).175
6. 6. 1 Longitudinal Acceleration (ii).175
6. 1. 2 Normal Acceleration (w).176
6. 1. 3 Pitching Acceleration (q.). 178

6. 2 Program Control. 181
6. 3 Function Generator Subroutine.187

V

TABLE OF CONTENTS (Cont.)

Section

6. 3. 1 Extra Function Generator.
6.3,2 Calculation of and .

6. 3. 3 Accuracy of Function Generation .
6. 4 Convert Input Variables Subroutine.
6. 5 Aerodynamic Coefficients Subroutine.-v''**;* *
6. 6 Total Forces and Moments—Stability Axes—Subroutine
6. 7 Total Forces and Moments-Airplane Axes-Subroutine
6. 8 Accelerations Subroutine.* * * ’
6. 9 Velocity Vectors Subroutine^.

6.9.1 Integration Subroutine .
6.9.2 Permute Subroutine.

6. 10 Direction Cosines Subroutine.
6.11 Output Processing Subroutines .

6.11.1 Etcetera Subroutine.
6. 11. 2 Instruments Subroutine .

6. 12 Decisions Subroutine .

SECTION VII* TECHNIQUES FOR ESTABLISHING THE PERFORMANCE
OF THE SIMULATED F-100A.

7. 1 Special Test Controls..
7. 1. 1 Zero; 02LWT.. • • .
7. 1. 2 Freeze; 30LWT.....
7.1.3 Altitude Increase/Decrease; 42LWT/43LWT.

7. 1. 4 Autopilot; 44LWT..
7. 1. 5 Altitude Lock; 47LWT .*.
7. 1. 6 Roll Angle Lock; 50LWT.
7. 1. 7 No Fuel Depletion; 73LWT.
7. 1. 8 True Airspeed Lock; 76LWT.
7. 1.9 Center of Gravity Lock; 77LWT .

7. 2 Accumulation and Extraction of Test Data ..
7. 2. 1 Output Printer.
7. 2. 2 Analog Outputs .

7. 3 Supplementary Test Programs ..
7. 4 Procedure for Performance Testing.

7. 4. 1 Test Requirements.I * * VVW U ..
7. 4. 2 Procedure for Conducting Thrust Available Tests....
7 4 3 Test Procedure for Conducting Thrust Required Tests

7. 5 Dynamic Testing of the UDOFT F-100A Simulation Model
7. 5. 1 Steady-State Straight and Level Flight

Equilibrium (SSLFE) Program.
7. 5. 2 Dynamic Response Testing.
7.5.3 Short Period Longitudinal Respond.

7. 6 Conclusions .

SECTION VIII: UDOFT SYSTEM UTILIZATION AND RELIABILITY
8 1 System Reliability - May 196C through December 1961.

8. 1. 1 Clock Pulse Generation and Distribution.
8. 1. 2 Memory Drive Current .
8. 1. 3 Discrete Inputs . ..
8.1.4 Memory Address Flip-Flops .
8.1.5 Indicator Transistors.
8. 1. 6 Console Switches...
8.1.7 Output Writer.*.

194
197

197
197
200
200
202
202
202
202
203
206
209
210
210
212

216
216
216
217
217
218
219
219
219
220
220
221
221
223
224
224
224
226
227
227

227
233
239
242

244
244
248
248
248
248
248
250
250

vi

TABLE OF CONTENTS (Cont.)

Section
Page

8.1.8 Input Card Reader.
8. 2 System Reliability - January 1962 through December 1962’ 250

8 9* 9 Ulfe, Generation and Distribution . 250 8. 2. 2 Card Read-In. ^
8. 2. 3 Analog Outputs. ..•'
8. 2. 4 Transistor Print Register Packages ! ! ' .
8.2.5 Address Flip-Flops. .
8.2.6 Output Writer. z™
8.2.7 Conclusion. 255

8. 3 Conclusion . . 255
. 255

APPENDIX I; GLOSSARY.
1. Physical Parameters.. n57
2. Angles and Angular Rates and Moments !.. Ill
3. Linear Velocities, Accelerations and Forces .. 1. ill

Aerodynamic Coefficients and Derivatives (Stability Axis)’ !.' .*.’ ! ! ! .* .* .* 259

APPENDIX H: EQUATIONS FOR VELOCITIES, FORCES AND MOMENTS
RELATIVE TO AIRCRAFT AXES.. 9fi1

1. Linear Velocities Along Airplane Axes .. .
2. Summation of Forces Along Airplane Axes .* ’ " ÍÂ
I Sum mai ion of Forces Along Airplane Stability Axes'!. «3
4. Angular Velocities Along Airplane Axes ... Ill
5. Summation of Moments About Airplane Axes . orb
6. Summation of Moments About Airplane StabUity Axes'1i 269

APPENDIX III: MASS MOMENT OF INERTIA AND LOCATION OF
CENTER OF GRAVITY EQUATIONS.,. 274

APPENDIX IV: DISPLACEMENT ABOUT AXES EQUATIONS. 275

APPENDIX V: AUXILIARY AERO EQUATIONS. 276

APPENDIX VI: AERODYNAMIC HINGE MOMENT EQUATIONS. 278

APPENDIX VU: CONTROL FORCES AND TRIM TERMS AND
EQUATIONS. 27g

APPENDIX VIH: PLOTTING BOARD TERMS AND EQUATIONS. 280

vil

LIST OF ILLUSTRATIONS AND TABLES

Figure Page

1 Block Diagram of Fundamental Computer. 5
2 UDOFT System. 9
3 Block Diagram of UDOFT Computer. 13
4 Flow Diagram of F-100A Aircraft Simulation Program. 14
5 Number Word Format. 16
6 Number Word Translation from Binary to Octal. 16
7 Instruction Word Format . 17
8 Instruction Word Translation from Binary to Octal . 17
9 UDOFT Installation . 29

10 UDOFT Computer. 30
11 Five Phase Clock Pulse Characteristics. 32
12 Block Diagram of Original Clock Pulse Generation and Distribution . 33
13 Modified UDOFT Clock System. 34

• 14 Block Diagram of Timing Pulse Generator Loop. 36
15 Block Diagram of Single Accumulator, Stage N. 37
16 Block Diagram of G-Register . 39
17 Block Diagram of a UDOFT Magnetic Core Memory System . 46
18 Schematic of Digital-to-Analog Converter . 51
19 Computer Console Panel A. 54
20 Computer Console Panel B. 60
21 Computer Console Panel C. 62
22 MSEE Pulse Amplifier Circuit. 69
23 Revised Pulse Amplifier Circuit. 71
24 Pulse Amplifier Timing. 72
25 Inhibit Pulse Configuration. 73
26 Logic Configuration of Dynamic Flip-Flop. 74
27 Block Diagram of Analog Output System. 76
28. Block Diagram of Multiplexer Arrangement. 77
29 Schematic of Multiplexer Bridge Circuit. 78
30 System for Eliminating Effect of Power Supply Drift. 82
31 Drift Characteristics of New JW5847 Tubes. 83
32 Drift Characteristics of Aged JW5847 Tubes. 84
33 Multiplexer Circuit Schematic. 86
34 Schematic of Moore School Static Flip-Flop. 87
35 Schematic of Redesigned Static Flip-Flop. 88
36 Logic Diagrams of Five Pulse Amplifier Package Types . 91
37 Logic Diagrams of FourOR-Gate Package Types. 93
38 Logic Diagrams of Six Delay-Line Package Types. 94
39 Representative Printed Circuit Plug-in Package. 96
40 Typical Main Frame Cabinet. 98
41 Card Rack with Shelves in Place. 99
42 Finished Shelf. 100
43 UDOFT System Layout.102

*44 Layout of Arithmetic Unit Cabinet.103
45 Layout of Control Unit I Cabinet. 104

. 46 Layout of Control Unit II Cabinet. 105
47 Common Coordinate Driving Technique. 109
48 Alternate Coordinate Driving Technique {Papian).110
49 . , Schematic of a Preliminary Coordinate Driver Circuit.Ill
50 Simplified Block Diagram of Present X-Coordinate Driving Technique 113
•51 Schematic of X-Coordinate Driver Circuit.H4
52 ‘Schematic of Sense Amplifier Circuit. H5
53 Schematic of Memory Z (Inhibit) Drive Circuit.117
54 Simulated Load for Coordinate Drivers. 119
55 t Memory Cabinet.121
56 Layout of Memory Cabinet. 122
57 ’ Layout of Input-Output Cabinet. 124
58 Original and Revised Computer Console Designs.125
59 Computer Console. 126
60 Indicator Lamp Arrangements. 127
61 Read-in Switch Arrangements. 129
62 Block Diagram of A-C Power System. 130

vui

i».

LIST OF ILLUSTRATIONS AND TABLES (Cont.)

Figure Page

63 Block Diagram of Magnetically Regulated Power Supply. 133
64 Trainer Static Test Panel. 139
65 Sample Print-out of Assembled UDOFT Program. 143
66 Curves of Linearized Sine hp. and Cosine hp. 145
67 Diagram of Routine for Computing Linearizea Sine hp. and Cosine hp.146
68 Absolute Coding Sheets for Linearized Sine hp. and cásine hp. Routines ... 147
69 Assembly Listing of Linearized Sine hp. and Cosine hp. Routines.. 152
70 Sample of UDOFT Dump].\. 156
71 Print-out of PSEUbOFT Checkout of F9F-2 Stick Force Computation.158
72 Diagram of Servo System Controlling Full Rotational Indicator, V-27A ... 164
73 Block Diagram of Flight Simulation Program.,. 172
74 Diagram of Simplified Governing Control Program Control'. 183
75 Governing Control Flow Diagram. 185
76 Initial Ordering of Subroutines .. 186
77 Recommended Ordering of Subroutines. 188
78 Plot of Typical Piecewise Linear Function Approximation.189
79 Function Generator Control Flow Diagram. . 191
80 Function Generator Control Flow Diagram. 193
81 Two, Five-Break-Point Functions. 195
82 Extra Function Generator Flow Diagram . 196
83 qwr Calculation Flow Diagram. 198
84 aHR Calculation Flow Diagram. 199
85 Landing Gear Subroutine Flow Diagram .201
86 Mod Gurk Integration Formula Flow Diagram.204
87 Permute Subroutine Flow Diagram. 205
88 Direction Cosines Subroutine Flow Diagram. 207
89 Gyro Horizontal Heading Flow Diagram .211
90 Land/Air Decisions Flow Diagram.213
91 Land/Air Crash Decisions Flow Diagram... 214
92 Stall and Stall Warning Decisions Flow Diagram.215
93 Performance Curves —Thrust Available and Required, 15,000 . 228
94 Performance Curves —Thrust Available and Required, 25,000 . 229
95 Performance Curves—Static Longitudinal Stability.230
96 Main Test Pattern Recording. 234
97 Main Test Pattern Program Flow Diagram.235
98 Main Test Pattern Program Flow Diagram. 236
99 Short Period Longitudinal Stability.240

100 Total Hours 3335. 5 During Period 15 May 1960 to 31 December 1961 . 245
101 Available Time versus Total Time of System Manning. 246
102 Operating Ratio. 247
103 Causes of System Downtime. 249
104 Total Hours 3615 . 251
105 Available Time versus Total Time of System Manning. 252
106 Operating Ratio. 253
107 Cause of System Downtime. 254

Table Page

I Basic Characteristics of UDOFT Computer. 11
II Symbolic Description of UDOFT Instructions.26

HI Discrete Input Assignments for F-100A Simulation Program ..48
IV Discrete Output Assignments for F-100A Simulation Program.50
V Analog Input Assignments for F-100A Simulation Program.50

VI Analog Output Channel Assignments for F-100A Simulation Program.53
VII Comparison of Proposed and Final Pulse Amplifier Package Configuration . 90

VIH Comparison of Proposed and Final OR Gate Package Configurations.92
IX Comparison of Proposed and Final Delay line Package Configuration 92
X Package Types Used in the UDOFT Computer97

XI Maximum D-C Power Requirements for UDOFT Computer..132
XII Comparison of Results of Dynamic Longitudinal Stability Tests for Three

Flight Conditions.241

t*.

IX

UDOFT FINAL REPORT

SECTION I

INTRODUCTION

1. 1 Purpose

The purpose of this document is to summarize and evaluate the UDOFT {Universal
Digital Operational Flight Trainer) program in a concise, coherent and objective manner.
This report analyzes the UDOFT system covering both computer hardware and computer
programming aspects of real-time digital simulation. A significant portion of this docu¬
ment is devoted to the numerous problems encountered during the program, the approach¬
es taken to solve these problems, and an appraisal of solution techniques. . . •

Based upon the experience of Sylvania personnel, test data, and performance char¬
acteristics of the UDOFT system, recommendations are proposed and documented for
reference with regard to future digital flight simulation systems'.

1.2 Background Information

Aircraft simulators for pilot and aircrew training have experienced widespread
use and acceptance during the past fifteen years. During this period of time they have
evolved from comparatively crude, unsophisticated devices to the highly complex electron¬
ic and electro-mechanical devices that now exist. Although the scope and magnitude of
the simulation has been expanded greatly, the purpose of the simulator-trainer has remain¬
ed the same; namely, that of providing to the senses of the pilot-trainee the illusion of
actual aircraft behavior. Basically, this is accomplished by causing the controls and the
instruments in a reproduction of the aircraft cockpit to govern and to indicate aircraft'
behavior exactly as they do in the actual aircraft. If the simulation requirement is limit¬
ed to this form of illusion, instrument and control simulation is sufficient; this degree of
realism is adequate for most forms of simulator training. If, however, more detailed
training is required, the senses of the pilot-trainee must be influenced to a greater degree.
This is effected by simulating characteristic aircraft sounds, aircraft motion, and the
environment in which the real aircraft would be operating.

A simple simulator-trainer consists of a reproduction of the cockpit section of an
aircraft, an instructor’s station, and a computing element. The cockpit and the instruc¬
tor's station provide inputs to and accept outputs from the computing element. As the
pilot-trainee goes through the motions of flying, the cockpit controls, through appropriate
transducers, provide input signals to the computing element. On the basis of the current •
positions of the controls and the past history of the mock flight, the computing element
determines the current status of the aircraft’s behavior (e.g., rate of climb, velocity,
altitude, etc.) and feeds these computed values to instruments and indicators of pilot-trainee
and instructor. At the same time, the instructor may arbitrarily introduce various condi¬
tions, such as heavy icing, rough air, or engine failures, by means of controls located at
his station. These inputs are assimilated by the computing element and the resulting
effects on the simulated behavior of the aircraft are produced. Thus the pilot-trainee can
be trained in the command and control of a particular type of aircraft under both normal
and abnormal operating conditions.

Simulator-trainers, in the same manner as the actual aircraft they simulate, have
become more complex, more costly, and vastly different from their predecessors. The
major reasons, in both instances, have been the rapid advancement in engineering tech¬
nology and the keen competition among manufacturers in the respective industries. Thus
relatively few of the same components are ever utilized in the different classes of systems,
most all of them being of a special-purpose nature. In the case of the simulator-trainers,
each different device that has ever been built has been a special-purpose analog system,
the function of which has been to simulate one, and only one, particular type of aircraft.
As a result, aircraft obsolescence has causedsimulator-trainer obsolescence; the lack of
flexibility has sounded the knell for the special-purpose system.

1

1. 3 Program History

In order to minimize the obsolescence rate of the ever more costly analog
simulator-trainers, the possible application of a general purpose digital computer to the
flight simulator-trainer problem was taken under consideration at the U.S. Naval Training
Device Center, Port Washington, New York. Since the digital computer art was relatively
new in 1950, U.S.N.T.D.C., known then as the U.S. Navy Special Devices Center, award¬
ed a study contract to the Moore School of Electrical Engineering (MSEE) at the University
of Pennsylvania. The evolution of the program at MSEE can best be summarized by using
the words of Morris Rubinoff, an individual deeply involved in the development of real¬
time digital flight simulation. (Ref. 1).

The results of the first year of this study contrasted markedly with the prevalent
optimism of the digital computer field, then in its infancy, which had overestimated the
capabilities of the computer of that day and underestimated the mathematical problems
associated with digital real-time simulation.

The fastest computer under’development at that time was Raydac, which had a 4 me
clock rate. The Moore School study estimated that even with Raydac the flight simulation
problem would require 0.22 seconds to advance the computation of airplane flight by one
quadrature step. Unfortunately, it could only be conjectured what step size was acceptable
for numerical methods of solution of the differential equations of motion. Hand computa¬
tions and intuition led to a guess that 1/8 second was the largest possible step which would
avoid introducing spurious instabilities.

Thus, even the most optimistic estimates indicated that real-time digital airplane
simulation was not yet feasible because computers were too slow by at least a factor of
two. The Moore School then addressed itself to the two basic problems: that of discovering a
mathematical criterion or criteria for predicting the stability of numerical solutions re¬
gardless of the actual flight path taken by the simulated airplane; and that of improving
the logical structure of the digital computer to increase speed by about one order of mag¬
nitude. The computer improvements had to come from logical design because it was felt
that only switching circuits with proven reliability could be incorporated into a demonstra¬
tion operational flight trainer. An early decision was made to base all calculations on the
1 me SEAC circuits, the latter running reliably since 1947.

A breakthrough on the mathematical problem was made by Dr. H. J. Gray, Jr.,
with his development of a "stability chart" for numerical solution of differential equations.
The stability chart is a digital counterpart of the Nyquist diagram, and permits a mathe¬
matician to specify, in advance, a quadrature step in size for which stable simulation is
assured.

The stability chart made it possible for the Moore School to find a "best" formula
to use in stable real-time airplane simulation'of high performance airplanes using real¬
time steps of 1/20 second or shorter. This provided a quantitative goal for the improve¬
ment required in computer speed. Certain preliminary computer modifications led im¬
mediately to a four-fold improvement, sufficient to imply feasibility of real-time airplane
simulation although without any margin of safety. The most significant change was the use
of separate high-speed memories for instructions and data, considered (at that time) to
be a backward step, but one which gave a full factor-of-two improvement.

Still other logical improvements were incorporated into the computer design; the
final result was a computer about 100 times the speed of SEAC, with a 5 microsecond add
time and r 10 microsecond multiply time.

This computer along with all the analog and switch inputs, the analog and switch
outputs and displays, the real-time clock, and the multiplexed digital-to-analog converter
was christened "Universal Digital Operational Flight Trainer" (UDOFT). In 1954 the
Moore School informed NT DC that it firmly believed that digital simulation of even super¬
sonic aircraft was feasible using a computer such as UDOFT and advised them to proceed
to have the simulator built.

On 30 January, 1956, the Training Device Center issued a specification for "The
Development and Construction of a Digital Computer System for Actuation of Operational
Flight Trainers." The purpose of the procurement intended by this specification was to

2

i».

demonstrate that a digital computer system could be utilized to simulate a subsonic F9F-2
jet fighter and a supersonic F-100A jet fighter by actuating suitable cockpit reproductions
and instructor control stations in real-time.

A contract to undertake this program was awarded to Sylvania Electric Products,
Inc. on 29 June, 1956. The scope of the work dictated that the equipment, specifically the
digital computer system, should be designed, developed, and constructed in accordance
with the logical computer structure and preliminary circuit design prepared by the Moore
School. Although Remington Rand Univac had conducted an evaluation study of the Moore
School design, resulting in numerous recommendations, many areas of the design required
further effort. These included but were not limited to:

1. Design and development of the dual five-microsecond coincident-current magnetic
core memories

2. Design and development of the five phase 1.2 megacycle clock pulse system

3. Design and development of the computer operation and maintenance console

4. Development of the plug-in circuit modules

5. Integration of the computer system and the two government furnished analog
simulators

6. Programming of the computer for the two aircrafts

7. Performance testing of the integrated system (computer systems aircraft simu- .
lation program aircraft cockpit mockup, and simulator instructor station)

After nearly four years of concerted effort and the expenditure of approximately
two million dollars of Navy and Air Force funds, the UDOFT system was delivered to its
permanent installation at the U.S, Naval Training Device Center Annex, Garden City,
Long Island, New York. The formal unveiling of the system to the public occurred at the
U. S. Navy - U.S. Air Force - UDOFT Conference and Demonstration on 13 September,
1960. At this time it was clearly stated that the UDOFT system would be utilized as a
research tool to investigate problems encountered in the use of digital simulation tech¬
niques and to support the study of psychological engineering, and mathematical applications
of simulation to military training.

These words have born fruit, for in nearly three years of operation, approximately
10, 000 operating hours have been logged on the system for such applications as extensive
testing and evaluation of the F-100A simulation model, simulation of the dynamics of a
submarine (ref. 2), simulation of the dynamics of a surface ship (ref. 2), experimentation
with the significance and the required accuracy of coefficients in aerodynamic equations
of motion, investigation of the problems in the use of a digital computer for simulating a
hypersonic earth orbital and re-entry vehicle, and the ever-present study of improved
numerical procedures for maximizing the real-time simulation capability of a digital com¬
puter system. Awareness and availability of the UDOFT system is starting to permeate
the military research organization; as a result it is expected that the research load placed
on the UDOFT system will increase greatly in the future. The results of the current re¬
search projects and of the many now in the planning stages will provide invaluable infor¬
mation for the improvement of the real-time digital simulation art.

1. 4 General Program Requirements

As prescribed by the original system specification, the simulation equipment shall
consist of a digital computer with input-output devices and all components and circuits
necessary for solving, in real-time, the basic equations of motion, position,and flight
dynamics of either of two specific high performance jet aircraft. The equipment shall also
present to the cockpit displays of the appropriate aircraft, the solutions of these equations
as a function of aircraft control movements in terms of the aircraft's performance and
flying qualities. The system shall be sufficiently flexible to simulate any one of several
types of single-engine jet fighter aircraft. The computer system shall consist of a digital
computer, a computer control console, a punched-card handling input mechanism, an

3

output printer, analog-digital and digital-analog converters, multiplexers, servos, and
all associated equipment needed to accept pilot and instructor commands and to provide the
instrument and control reactions to the mock F9F-2 and F-100A cockpits.

As the program progressed, it was realized that additional items, not considered
at the time the specification was prepared, were necessary. The most important item by
far was the computer program for the simulation of the F- 100A aircraft; of lesser profun¬
dity but equal importance were programs for aiding operating personnel in the maintenance
of the computer system. Further, and again in the area of programming, there existed
the need to develop programs to aid the programming personnel to create the aircraft
simulation programs. As may be evident from these examples, the art and the understand¬
ing of programming was not even as advanced as the understanding of digital computer
hardware which, although these statements refer to a period of time only six short years
ago, was rather limited.

And of course, as with any prototype development program, requirements existed
for such supplementary items as reports, drawings, and handbooks on training, installa¬
tion and maintenance.

These, in brief, are the basic requirements that guided the development of the
UDOFT system. Throughout the program, minor changes and additions were made to the
specification; however, the intent of the specification never changed and UDOFT was devel¬
oped very much as originally planned.

1.5 Organization of this Report

The body of this document, though divided into seven sections, covers four primary
topics: the hardware system particularly the computer; computer programming; testing
of the system as a flight simulator; and a brief evaluation of UDOFT and its use to date.

The hardware system is discussed in three sections. Section II, System Descrip¬
tion, presents the fundamentals of digital computers, leading into an introduction to the
UDOFT computer; Section III, UDOFT Computer Description, presents in some detail the
various units of the computer and their functions; Section IV, Computer Hardware Develop¬
ment History, treats the more prominent design considerations and problems encountered
during the development of the computer.

Computer programming is discussed in two sections. Section V, Simulation Pro¬
gram Development, presents the programming aids that were evolved to effect efficient
programs development and checkout, and the prominent factors that influenced the organ¬
ization of the flight simulation programs; Section VI, Simplified Description of the F-100A
Program traces briefly the organization of a flight simulation program.

Delineation of the aids, programs, and procedures that were developed to expedite
testing of a complete flight simulation program is presented in Section VII, Testing Aids,
Programs, and Procedures Used in Establishing the Performance and Flying Qualities of
the Simulated F-100A Aircraft.

The final section of the report. Section VIII, Summary, presents a brief objective
evaluation of the UDOFT system, its design and its use to date.

4

SECTION II

SYSTEM DESCRIPTION

2. 1 Introduction to Basic Digital Computers

The material in this section has been included for providing background information
on the basic aspects of digital computers, which may be beneficial to persons not familiar
with the vocabulary and thought patterns of the digital computer engineer. It is hoped that
this material will be sufficiently informative to the uninitiated reader so that he may read
this document without being overwhelmed by the bulk of specialized language and ideas
contained herein.

2.1.1 Numbering System

Since digital computers manipulate electrical signals which discretely define the
numerical magnitudes of a body or quantities, some notice must be taken of the numbering
system employed by them. The binary system, utilizing only the digits 1 and 0, was
found far more suitable for use within the computer than the familiar decimal notation with
its ten digits. The octal system is then applied, to condense the bulky form of the binary
into a shape readily spoken or written.

The design of digital computers has dictated the use of binary notation. The reason
for this is quite simple, the components used in digital computers are inherently binary in
nature. For example, the relay used extensively in the early digital computers and still
used in telephone switching computers, exhibit binary qualities. When activated, its con¬
tacts assume one state; when deactivated, its contacts can assume only one alternate state.
Thus, with its characteristic of two stable states of operation, the simple relay constitutes
a basic digital computer element. Examples of other so-called two-state elements are
vacuum tubes and transistors, which may be maintained either saturated (fully-conducting)
or cut-off (non conducting), and magnetic materials in which the magnetic field may be
changed from one direction to the opposite direction. Thus it can be understood why the
components dictated the use of the binary numbering system rather than the converse.
Were it possible to develop inexpensive and reliable deca-state elements, digital computers
would, in all probability, use the decimal system.

Some computers do operate with decimal numbers; however, the technique used is
that of manipulating the quantities as binary coded decimal (BCD). The basic mechanisms
of these computers are still binary in nature, and such a device is over-complex.

2.1.2 The Fundamental Computer

The fundamental computer is composed of four major elements, an Arithmetic Unit,
a Control unit, a Memory Unit, and an Input-Output Unit. This arrangement is depicted
in Figure 1.

Figure 1. Block Diagram of Fundamental Computer

The Arithmetic Unit is the computational core of the computer. It is here that the
basic arithmetic operations of addition, subtraction, multiplication and division are per¬
formed. In reality it is nothing more than an adding machine capable of performing multi-
bit additions at extremely high speed. This limited capability is adequate, since the other

p.

5

basic arithmetic operations may be performed by multi-step additions conforming to an
algoritism which will achieve the desired result.

The Arithmetic Unit of a digital computer may be likened to the counting wheels in
a desk calculator. The mechanism for performing the additions is present, the means
of activating such a mechanism is some externa] influence or control, in this case the
Control Unit.

The function of the Control Unit is to manipulate the Arithmetic Unit in an orderly
sequence of operations, to achieve a usable result. The Control Unit may be likened to
the mechanism of the desk calculator which connects the operate or control keys to the
counting wheels. When the add key is depressed, the positions of the counting wheels are
simply augmented by the quantity which has been entered on the calculator keyboard. When
the multiply key is depressed, the operation becomes more complex. The result is a
number of successive additions accompanied by an apparently erratic movement of the
calculator-carriage. It is the control mechanism within the calculator that determines
when the proper number of additions has been performed, when the carriage should be
moved, and when the operation is complete. The Control Unit of the computer performs
a similar function. However, since a digital computer is capable of executing a far greater
variety of commands than a desk calculator, its Control Unit is considerably more com¬
plex than its counterpart in the desk calculator.

A digital computer consisting of only an Arithmetic Unit and a Control Unit would
have no greater value than the desk calculator sitting unused on a table. It is not until
someone enters data in the calculator keyboard and depresses an operation key that the
value of the machine is realized. So it would be also with a two-unit digital computer. It
requires something to direct the control unit to add or to subtract; it requires something
also to provide the quantities that are to be added or subtracted ■ This task falls to the
third unit oí the fundamental computer, namely the Memory Unit.

The primary function of the Memory Unit is precisely what the name implies, it
remembers information which is inserted in at and makes this information available when
requested. The basic unit of information is called a word. A word may be tersely de¬
fined as an ordered set of characters or bits, stored and transferred as a unit. The im¬
port of the information-unit takes on many forms; in one instance the memory word may
represent a directive or instruction, in other instances it may represent a numerical
quantity.

More precisely then, the Memory Unit stores both the instruction type of word and
the operand type of word. The instruction words when withdrawn from the memory
activate the Control Unit, causing a sequence of micro-operations to occur The operand
words are withdrawn as called for by the instruction words and are manipulated as di¬
rected by the instructional content of the instruction word-

Using again the analogy of the desk calculator, the Memory Unit of the fundamental
computer represents the human operator of the calculator. The operator processes a
sequence of instructions that will cause the calculator to solve the problem; he introduces
the numerical data that is to be acted upon, and performs the temporary storage of inter -
mediate results as required, by means of his own memory or by means of some aid such
as paper and pencil.

The development of the fundamental computer has now progressed to the point
where it can substantially govern its own performance. However this fundamental com¬
puter, now consisting of three units, is still incomplete. Without the fourth unit, the
Input-Output unit, it is comparable to a desk calculator on which the number wheels have
been masked. One major function of the Input-Output Unit of the digital computer is to
make available to the user of the computer the results of certain computations This out¬
put may take any of several different forms, ranging from a single indication of satis-
factory problem completion to extensive numerical print-outs or to the packaged control
of a complex electro-mechanical system. Of equal importance is the input capability o
the Input-Output Unit. It is by this means that the instructional program and the numerical
operands are entered into the computer memory. On a higher level of utilization, the In¬
put-Output Unit provides the means for entering new or additional data while the computer
is operating. The nature of these inputs may range from magnetic tape to punched cards
to real-time data describing the condition of a complex electro-mechanical system is be¬
ing controlled by the computer.

6

The description of the fundamental four-unit computer is now complete. All
digital computers may be dissected into these four identifiable units. The ensuing de¬
scriptions of the UDOFT computer are so sub-divided, in order to maintain organization
and continuity.

2.1.3 Definition of Terms

However, before proceeding to a description of the UDOFT computer, it is
desirable to define some of the other terms peculiar to a discussion of digital computers.
The terms to be covered are register, address, program, serial, parallel and synchro¬
nous.

Regardless of the form of storage media in a digital computer, any device which
is capable of storing or holding information for a period of time is referred to as a
register In the case of the Memory Unit, there may be a considerable number of reg¬
isters^ Each register is uniquely identified by a numerical designator. This designator
is referred to as an address, because, just as a street address denotes a particular loca¬
tion on that street, this designator denotes the location of a particular register within the
memory storage device. When information is withdrawn from or entered into a register,
reference must be made to this designator or address.

Computer instructions normally serve a twofold purpose. First, the instruction
word denotes a particular arithmetic or logical operation that is to be performed. Second,
if an operand is involved in the operation, the instruction word denotes the address of
this operand. Instruction words vary in length and complexity depending upon the particu¬
lar computer. The simplest form of instruction word is the single-address type, which
consists of a single operation or order and a single operand address.

Computers usually have also the capability of address modification. When address
modification is specified-by a bit of the instruction word-the address of the operand is
the address portion of the instruction word incremented or decremented by the contents of
another register usually called an index register. Computers may have more than one
index register.

The solution of a problem by a digital computer is accomplished by executing many
successive instructions at a high rate of speed. The complete set of instructions devisea
to cause the computer to solve the problem forms a computer program. If the program is
entered into and stored in the internal memory of the computer, it is referred to as a
stored program. Normally, instructions are executed in sequence; however it is possible,
by means of the program itself, to modify the normal instruction sequence.

Just as there are several ways of implementing an analog computer (AC, DC, etc.)
there are at least two basic forms that the implementation of a digital computer may as¬
sume; these are serial and parallel. In a serial computer, data transmission between
registers is effected one bit at a time, on a single transmission line. Consequently the
bits of a word in a serial computer are operated upon one at a time. This results in
minimum hardware but has the disadvantage of low computational speed. On the other
hand, the individual bits of a word in a parallel computer are transmitted simultaneously
between registers on parallel transmission lines. Consequently entire words are operated
upon in a parallel computer. This results in high effective computational speed but has
the disadvantage of requiring much more hardware than the serial computer to perform
the identical operations.

The remaining significant term that requires definition is the word synchronous,
which refers to the strict time dependency of computer operations. A computer^performs
synchronously when each micro-operation of an instruction is performed at a distinct
instant of time during the execution of that instruction and when the sequence of micro-
operations is fixed for each instruction, regardless of the configuration of the operands.
If on the other hand, there is no synchronization between the execution of the micro-
operations and a fixed timing cycle, the computer performs asynchronously. Asynchronous
operation has the advantage of increased computational speed. This results from the
fact that the computer performs simple calculations rapidly, just as a human performs
simple calculations rapidly. Asa case in point, it requires less time to multiply a
quantity by 3 than it does to multiply the same quantity by 17, 395. However, the system
logic is more complex for an asychronous computer than it is for a synchronous computer.
As in the case of serial versus parallel, the tradeoff is between speed of computation and
complexity of the hardware.

HofinpH mav now be used to describe briefly the
These basic terms having been deUned. may n™ „eneral_purpose digital

form of a computer. The most common typ 1 dd ’ggbinary synchronous com-

“Ä "Äi«..«». d.». oooFT c»m-

puter.

2.1.4 Computer Programming

■ in the digital fundamental computer there is but a an analog

Arithmetic Unit, which must^ carry out ^JiXiements. 'each element i laving one and
computer consists of many distinct ® multifarious inputs and operates upon
only one function. The analog computer computing elements are

- *- —■

The common digital computer, wlth °[‘Xie thf ule omis^lement. This pro¬
element, demands a computer from the "wired-program" (which results
gram may take a number of forms, g g M ¿ program" {which is prevalent in the
in a special purpose digital computer) to t ^ ^ ^ acts aS the intermediary

“4“ ■i“81'
tional element to perform the myriad operations. • ., •

Basically, .1>«, » n«. «cr.nc,
program and the planning that mus e t of & sequence of operations, the in-

Each program or P1^1 ^^e temporary storage of intermediate data,and the output of
sertion of numerical data, the témpora y * , f this planning is informal,
the final results. In the case of ^Xnt commuÍc“^n with each step® of the problem,
since the human intelligence 18 ^ Xl Computer program must be a strictly formal plan, •
On the other hand, the required d^8l"°“P"htee orPoblgem during the execution of the pro-

‘¡AS’ »”> ta ,he “mPU'" :
can operate.

2.2 Introduction to UDQFT

" The UDOFT system consists of a general-purpose ^o^ole^ computer-

cockpit mockups (an F-100A and a F9F > nd two real-time simulation computer pro-

pW“*' “
depicted in figure 2,

The function of the digitai c^^XjXing^pretended^Ughtr and t0 report data
gram, the behavior of the simuiated-amcraft d^cockpit instru^entation. The behavior
reflecting this behavior to the Pilot-trainee via t thePockpit controis and by the in-
of the aircraft, which is affected y P .. , anaiytically by a system of equations,
structor Ts supplementary contr(^?t^t LawS 0f Motion to the particular aircraft in
This system of equations rentes Newton s La u derivatiVes. These terms

EAbi r“'““
of the aircraft.

In essence then, the digitutX^^computerl^he coíkpU^runientation. and
system consisting of the cockpit controls, ^omp^^ ^ closed.ioop system is a band-
the pilot-trainee. A basic re^Xhilh frequency signals that characterize the dynarn-
width which will adequately pass the high applies directly to the band¬
ies of the system. In the analog sciie“'ufi rs tbat constitute the computers. Bandwidth
width characteristic of the servos or amphñe tti t em solution rates rather than

requirements, as appUed to the X^th collideraüons. An analogy would be the con-
the common electrical circuit bandwidth co ima.ae to an electrical signal in a
sidérations that are given to the tjansformatm ^ fieêldí is not obtained instantanously;
television system. In teievision a complete m g^, The scanning transforms the

S.Í .» • »■>.- »< ^ I",”n

8

.

V :]

\

¡

\

i

F
T
O
O

 A

C
O
C
K
P
I
T

bits. As a higher degree of resolution is required, the scanning rate must be increased;
consequently the bandwidth of the system must be broadened. This is one of the most
basic problems encountered when using a sampled-data device in an environment which
is characteristically continuous, rather than discrete, in nature.

By analyzing the dynamic characteristics of the aircraft system, the degree of
resolution required for faithful simulation, the rate at which discrete motions appear
continuous to the viewer, and the characteristics of the processes that would be used to
obtain numerical solutions of the differential equations, it was determined that twenty
complete solutions of the instantaneous behavior of the simulated aircraft must be perform¬
ed every second. With the solution rate specified it was determined that a digital computer
for this application must be capable of extremely high computation speeds, namely twenty
binary bit additions or subtractions in five microseconds, and multiplication in ten micro¬
seconds. These two rates are the most important because these arithmetic operations
constitute most of the operations in the simulation programs. A digital computer was
designed on the basis of these rates and of the role the computer would assume in the real¬
time closed loop system. The machine that resulted is explicitly a special-purpose, high¬
speed, parallel, single-address, binary, fixed point, synchronous digital computer. It
is inherently a general-purpose computer and may be used as such; however, in its current
application the computer lacks a certain degree of general utility, since only specialized
input-output capabilities are provided.

The basic characteristics of the UDOFT computer are shown in table I. The
fundamental order time of 5 microseconds enables the computer to perform complete
additions, including memory accesses for the instruction and the operand, at 5 micro¬
second intervals. This high computation speed is a'ccomplished through the use of two
independent time-phased core memories, each with a capacity of 4096 words.

Number words are 22 binary bits in length, fixed point and fractional (i.e., the
binary point is to the left of the most significant bit). The least significant 20 bits of the
word are the magnitude of the number; the 21st bit is the sign of the number and the 22nd
bit is an "odd-ones" parity check bit. instruction words are only 20 binary bits in length
and contain but one instruction per word. The least significant 12 bits of the instruction
word designate the operand address, the next six bits designate the order type, the follow¬
ing bit specifies whether or not relative addressing is to be used and the last bit is again
an "odd-ones" parity check bit.

Of the 64 order types that could be specified by six order-type bits, only 32 such
types have been mechanized in the machine. Most of the instructions can be executed in
5 or 10 microseconds; only the divide instruction, which is infrequently used, is much
longer.

The specialized UDOFT input-output system consists of five basic channels of
information flow. The analog inputs, of which there are 24, are generated by 10-bit
shaft-position encoders linked to the continuously variable controls in the cockpit in the
cockpit mockup or at the instructor's'console; examples of such controls are the throttle,
the stick, the rudder pedals and the instructor's wind speed control. The analog out-
outs, of which there are 64, are analog voltages generated by a single 12-bit digital-to-
analog converter and multiplexed to the appropriate output device located either in the
cockpit mockup or at the instructor's console; examples of these devices are the altimeter,
the airspeed indicator, the rate-of-climb indicator and the control forces mechanism. The
discrete inputs, 64 in all, are analogous to the sense switches of a truly general purpose
digital computer. These inputs, which also originate either in the cockpit mockup or at
the instructor's console, include, for example, the main battery switch, the landing gear
controller, the after-burner switch, and the hydraulic system fail switch. The discrete
outputs, of which there are 24, are binary outputs generated by the computer in accordance
with the arithmetic sign of the number in the accumulator at the time the discrete output
instruction is executed. Examples of indicators that are actuated by the discrete outputs
are landing gear, up/down indicators, stall warning, and crash. The fast print facility
is a 22-bit register which can be loaded under program control. The individual stages
of the register control transistorized flip flops which control output devices.

Other input-output equipment which is part of the computer system consists of an
IBM 514 Card Reader/Punch and an IBM Output Writer (electric typewriter). The IBM
514 provides the means for reading punched card information into the computer; the
electric typewriter provides an output of printed information in non-real time.

i»-

10

TABLE I

BASIC CHARACTERISTICS OF THE UDOFT COMPUTER

Mode of Operation

Internal Number System

Word Length

Arithmetic System

Parallel and Synchronous

Binary

20 bits

Fixed point, fractional

Memory

Cycle Time
Capacity^

.Order Code

■ .Arithmetic Speeds’

. ‘ * AdcfV' ./ •
** '-Subtract *•• ‘

$ Multiply ’.' ; ■
.., *. . "Divide ,f ; *..

■ .'Input-Output • ■

* ' .Discrete.' * • ...

* • ■ ” Analog- -,- '

* * • Card’Reader * • ‘

Output-Writer ‘ • •

Fast P-rint Facility

Coincident current, magnetic core

5. 0 Msec.
2 X 4096 words

32 orders

5. 0 Msec. ï
5. 0 Msec.
10. 0 Msec.
1Ò5. 0 Msec.

64 inputs
24 outputs

24 inputs (10 bit inverted gray code)
64 outputs (12 bit precision)

converted to a-voltage

1200 words/minute

20,lines/minute (short form)

6 line/minute (long form)

22 bit output register

11

2.2.1 UDOFT Computer Operation-Simplified

A simplified block diagram of the UDOFT computer is shown in figure 3. The
instructions of the simulation program are stored in the instruction memory; the operands
or numbers specified by the address portion of these instructions are stored in the number
memory In general the output of the instruction memory specifies both the number loca-
UonTn number memory and the operation to be performed.
is being performed in the Arithmetic Unit, access is being made to the instruction memory
for the next instruction to be performed. By the time the arit metic opera ion in^ca
by the first instruction is completed, both the operation and number specified by the second
instruction are available to the Arithmetic Unit. Thus fast computations are achieved
since computer dead-time, normally experienced due to memory access time, ^ effe
ly reduced to zero by using separate overlapping memories^ This “Wrease in spe d
necessary to perform the problem in real-time, is achieved at the cost of greater system
and programming capabilities.

In the normal instruction cycle, the instruction sequence counter, a twelve-stage
binary counter contains the address of .the instruction to be performed This address is
transferred to the instruction memory address register and the instruction memory read-
write cycle is initiated. ■ When the instruction is extracted from the memory, it is read
into the7instruction memory output register. The five bits of ^hen initiates •

' operation to be performed are transferred to the order-type decoder, which then initiates
the execution of the instruction. * * •

The address portion of the instruction may be routed to the number memory ad¬
dress register in the .direct mode or to a modified address, called a relative address,
The reason for providing this address modification feature is to permit the application of ■
the same program sub-routine to several sets of data stored in the number memory. When
using address modification, both the internal operation of thf m.a^e ■ g''
differ .considerably from that required by the direct mode. (Refer to section .2. 1. 3 for . .
discussion of address identification.)

In the direct mode of operation, the address portion of the .instruction is transferred
directly to the number memory address register, and the number memory read-write^
cycle is initiated. The number specified by the address is read into the nurnber,memo y
output register and then transferred to the Arithmetic Unit. When the arithmetic operation. _
has been completed, the results are routed to the transfer register. Data in this-register
may then be transferred under program control to the number memory, the analog, output _
multiplexer, .the print register, the instruction memory or the-tally register. ~ _

.2.2.2 UDOFT System Operation-Simplified . ‘ ^ ‘ ' V.;

The availability of a high-speed digital computer capable of performing the. air craft
simulation program in real-time represents only a portion of the total simulation problem.
The necessary adjuncts to the computer system are the real-world- environment, con
sisting primarily of a replica of the aircraft cockpit, and the computer program vdnch
provides the inètructions and numerical data that will enable the computer to solve t
logical and the mathematical equations representing the condition of the aircraft ana its

associated subsystems.

The computer system communicates with the "real world" represented by the air¬
craft cockpit through the computer input-output unit. The five types of intercommunica¬
tions v/“Te described superficially in Section 2.2. The control of these interconnecting
links ^"exercised by the computer through its control unit, as directed by the simulation

program.

More and more, the essential importance of the computer program becomes
evident. It is by means of the program that not only the immediate problem is solved
but also the flexibility of the digital computer system is most readily exploited The
Structure of such a program must be initially organized to allow program modification
with a minimum of effort and time. The minimum extent of organization ^ ^pmted m
the simplified flow diagram of the F-100A simulation program, figure 4 Each block ol
he d represents the computation of a particular set of inter-related variables;

there if Minimal program dependence between blocks. As a result, modifying any program
block has relatively little effect on the other program blocks.

12

n

13

F
ig

u
re

3
.

B
lo

c
k

D

ia
g
ra

m
 o

f
U

D
O

F
T

C

o
m

p
u

te
r

. N
O

R
M

A
L
;-

Z
E

R
O

;
1

'
*

F
R

E
E

Z
E

/C
R

A
S

H

•
•

F
ig

u
re

4
.

F
lo

w

D

ia
g

ra
m

 o
f

F
-1

0
0

A

A

ir
c
ra

ft
 S

im
u

la
ti

o
n

P

ro
g
ra

m

There are essentially three modes of program execution, as shown in figure 4:
normal, freeze/crash and zero. Normal mode operation accomplishes real-time flight
simulation. Freeze mode operation permits suspension of the training problem to allow
the instructor to criticize a pilot-trainee's efforts. When the freeze mode is entered,
the instruments are maintained at their last computed value, and simulation is suspended.

If, during a simulated flight, a trainee maneuvers in a manner which the decision
routine recognizes as a crash condition, a crash is indicated and operation is automatically
transferred from the normal mode to the freeze mode, thereby allowing a post mortem of
the conditions that caused the crash to occur. To leave the crash mode the zero mode
must be entered returning variables and instruments to their earlier values. Also, if the
instructor desires to land the aircraft artificially the zero mode will effect this in a matter
of seconds.

The complete simulation program for the F-100A requires approximately 3850
instructions and 3400 numbers. While operating in the normal mode, it requires ap¬
proximately 35 milliseconds to obtain one complete solution of the problem. With the
less complex F9F-2 aircraft, the complete solution is executed in approximately a
20-millisecond interval. In order to maintain a constant time interval, which is essential,
the computer idles until the interval timer indicates that the 50 millisecond interval has
been consumed, at which time the computation scheme is resumed.

15

SECTION III

UDOFT COMPUTER DESCRIPTION

3. 1 Introduction

The UDOFT computer*- though designed and developed specifically for solving

computer, figure 3.

Thi« «potion of the report delineates the UDOFT computer's four functional units and esshs-œSsPHsh;,
be discussed however, a description of the UDOFT "language" ts essential.

3, 2 Word Format

In the UDOFT computer the word or basic unit of information consists of twenty-
two bits. Words may represent instructions or numbers.

a. Number Word

less than zero, *e Ü 20) to -’(1 - 2-20). If numbers outside of this range computer can understand is U ¿) w u / ,
are to be represented, they must De scaled appropriately.

The bit nattern of the number word is shown in figure 5.

PS 20ll9ll8ll7|i6|l5|l4|l3|l2|ll|lOl9|8|7lI|iR3{2[

Figure 5. Number Word Format

The P position represents the parity bit; the S position, the sign bit; and positions

1 - 20, the magnitude of the quantity.

Since it is cumbersome to think of the numbers in their binary form, the binary

ísSsÍ-SSISSSsiai
bit bLary groups into decimal form. The method of grouping and an example of a
translation is shown in figure 6.

BIT POSITION P s 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

BINARY REPRESENTATION 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1

OCTAL WEIGHT FACTORS 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2

OCTAL REPRESENTATION - 3 5 0 6 2 7 2
_

Figure 6. Number Word Translation from Binary to Octal

t*.

16

A "one” in the sign position indicates a negative quantity and a "zero" indicates a
positive quantity. The parity bit serves as an error checking device by detecting the
most common types of memory failure, gaining or losing single bits. The parity bit
contributes nothing to the value of the word, but makes the word’s total number of ones
odd, hence the term odd parity. As each word is stored in memory, parity is formed
and the appropriate value of the parity bit, flonen or "zero", is stored with it as part of
the memory word. Parity is checked each time a word is used. Incorrect parity will
indicate an error. In the example of figure 6, the parity bit assumed the value of "one"
in order to satisfy this condition.

b. Instruction Word

The instruction word in the UDOFT computer consists of twenty binary bits (two
of the twenty-two available bits are not used). ■ The instruction word is divided into two
"fields", the order type field (OT) and the number memory address field (NMAD).

BIT POSITION

FIELD

Figure 7. Instruction Word Format

p R 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l

REL ! 0 T N M A D

The bit pattern and the division into field of the instruction word is shown in
figure 7. The number memory address occupies the twelve low order bit positions of
the word and the order* type, the next*six bit positions. What.would normally be the
nineteenth bit is defined as the relative bit. In general, the relative bit indicates
whether relative addressing will be used by the next instruction. Last but not least is
the parity bit, serving the same function as the parity bit for the number word.

The order type specifies any one of the thirty-two different orders that the
computer can execute. Thirty-one instructions perform the basic program functions;
clerical, arithmetic, control, input/output and special purpose. These functions and
the individual instructions will be discussed in detail in Section 3. 3.

The number memory address field also serves a variety of purposes.

1. In clerical and arithmetic instructions, it specifies the location
(address) of the operand in memory or the direction and number of
places a quantity is to be shifted in the arithmetic unit.

2. In the control instructions, it specifies primarily an instruction
sequence counter setting. •

3. In the input/output instructions it specifies an input/output
channel.

As in the case of the number words, the instruction words are also thought of
in octal form rather than the binary form. The grouping of the bits and an example of
the binary-to-octal translation is shown .in figure 8.

BIT POSITION P R 18 17 16 15 14 13 12 M 10 9 8 7 6 5 4 3 2 1

BINARY REPRESENTATION 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 l 0 0 0

OCTAL WEIGHT FACTORS 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1

OCTAL REPRESENTATION R 3 4 3 0 3 0

Figure 8, Instruction Word Translation from Binary to Octal

The instruction represented in figure 8 is R343030g. The subscript eight
indicates that the word is in octal form.

17

3. 3 Instruction Repertoire

This section contains:

. a listing of UDOFT computer's thirty-two instructions categorized into
groups according to their functions

• a brief description of the function of each group of instructions

• definitions of terms used in conjunction with the instructions

• a table of symbolic descriptions of each instruction, and

. a description of address modification as implemented in the UDOFT computer.

3. 3. 1 Arithmetic Instructions

There are nine arithmetic instructions in the UDOFT instruction rePe^fre.

á5S!r=«sr 'ws&tsHSsäÄS -
both the addition and subtraction operations, a^onî^°n ^¿tlong Jc considered as

aritemetic opaeraüonsns1nce they perform" in reality, multiplication and division by
powers of two. These and the other UDOFT instructions appear in table U.

ADD Add

ADM Add magnitude

SUB Subtract

SBM Subtract Magnitude

MPY Multiply

DIV Divide

Shift Left. Shift Ri£ht SHK)

SHLA 1 Shift Left and Add, Shift Right and Add
SERA)

MAD Multiply and Add

3 3. 2 Clerical Instructions

compútelas;. *'^

.instructions are available.

CLA Clear and Add

CLS Clear and Subtract

CLA A Clear and Add Magnitude

18

CLAS Clear and Subtract Magnitude

STO Store

TCA Transfer (store) Clear and Add

TIM Transfer to (Store in) instruction memory

Use of TIM Instruction

The use of two independent magnetic core memories, one exclusively for in-
indenend^ntTn^f ,the number words, has advantages and disadvantages. An
independent Instruction Memory was expected to increase system reUability in addition
to gain in computer speed despite the use of relatively low-speed memories This
conclusion is drawn from the premise that no writing of new information into the

of df^liniTAîh^1p^1SfreqUlred 0nCK pr°£ram ¿s Vitiated, therefore, the likelihood
of damaging the computer program becomes almost non-existant. This premise is only
half true since m magnetic core memory read-out of information is destructive thereby
withThÄ 4°f+the immediately following the read-out is necessary.' Even ^
with this fact it was still felt that loss of program control would be reduced if pro¬
grammed access to the Instruction Memory were not allowed. This is the prime

mthrUDOFTecompuíeríaCÍ1Íty ^ modification’ other than relative addressing.

Without any programmed access to the Instruction Memory, the automatic testine
f this memory becomes impossible. For this reason, more than any other the TIM

instruction (Transfer-to-Instruction-Memory) was introduced into the computer. The
TiM instruction allows the transfer of information from the Transfer Register into the
Instruction Memory. To ensure that this instruction is used only on test programs a
console switch is instaHed to enable the execution of this instruction. This switch must

. condltlon when simulation programs are being performed. When dis¬
abled, the TIM instruction is interpreted as a no-operation (NOP) instruction.

3. 3. 3 Control Instructions

The seven control instructions in the ÜDOFT computer, allow the sequence of
instruction execution to be modified. By the use of these instructions it is not
necessary therefore to prepare the computer program such that an unalterable sequence
of instructions must be followed. In addition to easing the program preparation task
it also allows more efficient use of computer instructions and time. Were it not for '
these instructions, it would be virtually impossible to utilize subroutines within the
total program. The utilization of such sub-routines eliminates repetitive programming
which results m savings of instruction storage.

Control instructions are sub-divided into three classes; unconditional control
conditional control and programmed HALT. Unconditional control instructions ex¬
ercise arbitrary control of the program. The UDOFT computer has two such control
instructions; Sequence Counter Reset and Sequence Counter Reset to Content of Number
Memory. Each and every time one of these instructions is encountered in the program
positive transfer of control to some other portion of the program is affected.

ihe conditional control instructions on the other hand provide the computer wii
a degree of decision-making capability. The transfer of control is dependent on or
conditional to some previous action. For this reason they are differentiated from the
unconditional control instructions. The UDOFT computer has four such instructions-
Transfer on Minus, Transfer on Overflow, Transfer on Zero, and Sense Interval
lime. Whenever these instructions are encountered in the program the transfer of
program control may or may not be affected, depending upon the results of the pre¬
ceding instruction. p

Programmed HALT instruction will, if enabled by a console switch halt
the computer.

19

The control instructions are; .

SCR Sequence Counter Reset to NMAD

SCRNM Sequence Counter Reset to Content of Number Memory

TOV Transfer on Overflow

TOZ Transfer on Zero

TOM Transfer on Minus

SENIT Sense Interval Timer

HALT Halt _ • *

20

3.3.4 Input-Output Instructions

The UDOFT input-output capability, as noted previously in Section II, is quite lim¬
ited, having been designed with the intent of optimizing the transmission of data or infor¬
mation between the computer and the real-world represented by the mockup of the aircraft
flight compartment. The real-world of the flight compartment is predominantly analog in
nature as opposed to the distinctively digital nature of the computer. The input-output
instructions of the UDOFT computer therefore must be capable not only of performing the
basic task of data transfer but also of transforming or converting the data from one form
to another.'

The first form of computer communication with the external analog environment is
the analog input. The analog inputs to the UDOFT computer are identical to those inde¬
pendent-variable inputs that are implemented with potentiometers in analog flight simula¬
tors. It would have been possible to retain this input form in the digital system by using
an analog-to-digital converter to provide the necessary interface compatibility. The con¬
verter would have been a single channel device, capable of operating upon a single input at
a time. At the time that UDOFT was developed, available analog-to-digital converters
were both slow and costly. To circumvent these two problems it was decided that, since
each input was a mechanical shaft of one form or another, digital shaft encoders would be
used. Further, to attain an acceptable level of accuracy and to minimize ambiguity of
reading the shaft angle, the encoders to be used would be ten bit. Gray-coded binary.

Using the encoders eliminates the need for the analog-to-digital converter; however,
the Gray-coded binary encoders requires the use of a Gray-coded binary-to-conventional¬
binary-comrerter. This type of converter is relatively simple to implement; further, its
resolution time is considerably short.

The Multiplex Analog Input instruction provides the means by which the computer
is instructed to process the analog inputs. Since there are twenty-four kinds of analog
input that may be examined, this instruction must be capable of designating a particular
input in addition to enabling the converter, and transferring the converted quantity to the
ten high order bit positions of the Accumulator. The designation of the particular input to
be processed is contained in the low order seven bits of the address field of the instruction.
Once the data has been entered into the Accumulator, it may be handled like any other
number in the computer.

Just as there is the need for the capability to process real-time input data, there
is the need also for processing real-time output data. The ultimate form of the outputs
which-represent continuously varying quantities is a D.C. voltage. This requires the
conversion, within the computer, of digital data to a proportional D.C. voltage.

For reasons of economy it was decided to use a single time-shared digital to * mig ^
log converter rather than individual converters for each of the sixty-four analog output
channels. However, using a single converter, it was necessary to provide means for
storing or holding each of the analog voltages during the time the remaining analog output
channels were being serviced. The individual holding device is simply a capacitor in a
network which allows for the rapid change of the charge on the capacitor during the time
when the particular channel is being serviced, yet provides an extremely high impedance
discharge path during the off-time when the other output channels are being serviced.

The function of the Multiplex Analog Output instruction is to transfer the quantity,
in the Transfer Register to the digital-to-analog converter and to enable the analog output
channel which is specified by the six low order bits of the address field of the instruction.
Only the sign bit and the eleven most Significant bits of the Transfer Register are involved
in the transfer of data to the converter. Thus, the numbers that may be converted to
analog outputs are limited to the range from (-7776)g to (*7776)3. The number (-7776)g
represents an analog output which is equivalent to zero; the number (0000)g is equivalent
to a mid-range output; and the number (+7776)g is equivalent to maximum possible output.

An added feature of the instruction is the ability to store the quantity in Number
Memory simultaneously with the outputting process; the storage location is derived from
the full address.

In addition to the processing of continuously varying data between the computer and
the real-world, the computer must be able to process discrete data. Discrete data defines

21

such limitecl variables as ^"y a two-wlf process? inputs and outputs of

íhtTyÍarelseÍtS ThL inputs are'referred to as discrete inputs; the outputs, as

discrete outputs.

instruction.

' The function of the Multiplex Discrete OutpuUnstn.ction
discrete output channel to the appropriate ^att The^disc^ unU1 di.

mented with locking type relays, °nce /¿Erected to assume is controlled by the sign
reeled, to open. The state rel y d instruction is performed. If tne .

âKï ^V!?Ä*SÄSÄSSiX* ■■ i—« •» - ”
order bits of the address field.

■ Th. «h-« input-output tu,.™«».. <ii=d
rily with the communication of information betwe rface P The Print instruction is
representing the simulation system ma - computer This instruction represents
the fourth input-output instruction in the UooFT compter. ^ communicate

the only attempt, in the design of the ¡“/¿i pUrpoSe digital computers this

" äirÄÄS— ;s¿ .¿i. .. —•»'»
Though UDOFT was developed with Í^tea^itls^^us^d^as a

training device, it has not been s° ,P^ j compUter is used for research purposes of
simulation research tool. Anytime a digi p t t the expeditious execution of a

•sir/ —
The Print Instruction transfers the buffer^betweeithe computer

register, the Print Register The Print ^ originally conceived, was to be
and other output devices. The P"nt‘out "\ech Rather tharfusing a few movable styii,
a variation of the conventional strip rec°^, ee fixed gt üë The marks made by
the UDOFT printer would have contained twe ty in binary form. Due to the

activating the styii would ha^e pr°vhldedina ^is form Íf output, the on-line printout scheme
many disadvantages associated with g the print Register are implemented m
was discarded. However the Print instructio „ister wh|el which in turn controls
the computer, and are used to control Actions are;
the computer's peripheral equipment. The input P

MLXI Multiplex In analog inputs

MXLO ’ Multiplex Out analog output

fyjXDO Multiplex discrete outputs , ’

PRNT Print (Fast) - •

ln enden fe pne.id, some mean,
an output printer is provided. Alt^^ ^ th punter capabiUty is quite limited. .No

sÄÄÄÄsrsfÄi. “> w“ r fr "
ping of the operation is exercised manually.

The initial loading or reading-mof the “ P ™ ^ ^ e m in the compiler

sr^S/tÂ tnto the computer; control of the
operation is exercised manually.

22

■>

SS

3.3.5 Special Purpose Instructions

The preceding instructions that have been implemented in the UDOFT computer
are representative of the types of instructions found in most general purpose digital
computers. The five remaining instructions are SIT, TAN, TAU, NOP and NOT whose
functions are listed as follows:

Instruction Function

SIT Set Interval Timer - Load the interval timer

TAN Tally Number Memory Address - Load the Tally
Register

TAU Tally Arithmetic Unit - Load the Tally Register

NOP No Operation - Mark the time

NOT Non Existant Order Type - A spare

Although the No Operation Instruction (NOP) appears to be an inefficient instruc¬
tion, it is a necessity in the‘UDOFT computer. It does nothing but allow five microseconds
to pass before execution of the next instruction can be initiated and transfer the contents
of the Accumulator to the Transfer Register. It is used primarily to over come the
problem of programming a forbidden sequence of instructions, (forbidden sequences are
explained in Section 3. 3. 6) to transfer the quantity in the Accumulator to the Transfer
Register in order that it can be stored in Number Memory by a following Store Instruc¬
tion. It also provides a simple means for generating a relative address for the succeed¬
ing instruction. It is apparent then that the NOP instruction provides a means to an end;
it is not an end in itself.

The NOT Instruction serves no real useful purpose; it is a spare or extra instruc¬
tion. Because the computer will treat this Non-Existant Order Type instruction in a
manner similar to the Programmed Halt instruction, it may be used as another manually-
controlled program halting mechanism.

3.3.6 UDOFT Registers and Symbolic Description of UDOFT Instructions

Symbolic Notations

Refers to the contents of the Accumulator

Refers to the contents of the G-Register

Denotes the contents of location Y, where Y refers to some
generalized location in Number Memory #

Denotes the absolute value of (Y)
Subscripts will be used to denote specific bit positions in a
register. For example, C(AC)g ¡_2 denotes the contents of
the Accumulator involving only bit positions sign, one, and
two.

The negative of a number is the number with its sign reversed.
Similarly, the magnitude of a number is the number with its
sign made positive.

instruction means, in general, that instruction being
performed or the instruction in question.

means the second instruction following the instruction

means the instruction preceding the instruction

C(AC)

C(G)

C(Y)

MAG(Y)

Similarly:
nd

(J + 2)

(J > Dst

23

Forbidden Sequences

One of the methods employed ln U DO FT ^IsVesuUs
use of independent instructions and number memo In sœf.ial cases this over-

ÎâpÏing may^sult in erroneoufsXions. For this reason some sequences of instructions

are forbidden.

Accumulator (AC)

1. • register t»..ng . C*«, of 20 b.ts gl» •" foOei*"-""1

sign, It is used in all arithmetic operations.

\C Overflow

Most arithmetic operations can ^„Aoeomulator overflo ^ ^ occurs. The

”S"sSÏ^:S“S’ “i nntii'an'arithmetic opera,,- is P.rtorm.0.

at which time it is reset to zero.

some cases an AC overflow is

puter has a transfer on ove(rflofwt‘n8^^f *taee The usuai method of programming is
(TOV) dependent on the state of the overdo g • rflow An AC overflow immediate-
to have the TOV immediately follow the anticip {er oj corltrol(reset the overflow
ly followed by a TOV instruction will pe ,. t from being set. An overflow not
stage to a "zero," and prevent the overflow indica orsfrom^ ^ & „one„ and
immediately followed by a TOV instruction will ^hADD) to be getg A TOv instruction
cause one of the three overflow indicators <DI ■ if the overflow has not been
not immediately following an °^erflowH ne of the overflow indicators will oe set.

I^slmv confputaticm^a^overfhrw10^! immediately followed by a TOV instruction will halt

the computer.

AC Truncation

Since it is possible to lose ADD ^FL
AC wiilbe cleared and ail ones will be inserted.

Truncation is possible on Add, Shift Left, and Divide OVFL.

AC Positive Zero

The Accumulator is a positive zero accumulator (i.e. no matter what the method

of obtaining zero is, when the accumulator is zero the sign post -

Transfer Register (TR)

The Transfer Register is a register having a capacity of twenty-two bits, includ¬
ing: a twin; bit number,Pan independent sign bit, and an independent parity bit.

The Transfer Register serves the following purposes:

1. A buffer between the Accumulator and the memory

2. A buffer for the Multiplexer Output Register

3. A buffer for the fast print facility

4. A buffer between the card reader and the memory

5. In conjunction with the parity former to form the correct parity to be

stored with the number.

24

The contents of the Transfer Register at the end of the J**1 instruction are the

C(AC)<J-1)St instruction, unless the J**1 instruction is an STO or an MLXO, the previous
C(TR) is erased. The STO and MLXO instructions do not change the contents of the TR.

G-Register

The G-Register is a special-purpose register having a capacity of 20 bits plus
sign (no parity). The G-Register is used in conjunction with the shift add, multiply add,
and divide instructions. It may be used as an intermediate register for many computa¬
tions since it is directly addressable. Information is stored in the G-Register by the
shift add and multiply add instructions.

The contents of the G-Register Address {1000)o can be made available by the
following instructions; ADD, ADM, CLA, CLAA, GLAS, CLS^ MPY, MAD, SBM, and
SUB. The G-Register is automatically cleared following all of these instruction with the
exception of MAD and SHA. In addition, the G-Register contents may be displayed on the
MD Registers as indicated by a switch on the console. There is also a G-Register Clear
Switch on the console to clear the G-Register.

Due to the G-Register address being (lOOO)g, the address <1000)g of the number
memory is not available, i.e. (lOOOJg is reserved for the G-Register. Also, NMAD
(1000)8 may not be used with DIV, SCRNM, SIT, STO and TCA

Sequence Counter

The "sequence counter" is a 12-bit binar}'' register which determines the instruction
memory location from which the next instruction is to be taken. The counter functions
basically as an add one binary counter which can be reset.

Tally Register

The Tally Register is a register having a capacity of 12 bits, which is used in
conjunction with relative addressing. (For use of Tally Register see section on relative
address.) It is addressable by the TAU and TAN instructions as well as manually from
the console.

Interval Timer

The Set Interval Timer (SIT) and the Sense Interval Timer (SENIT) instruction
are very special purpose instructions that serve an important function on the UDOFT
computer; they exercise control over the Interval Timer. The Interval Timer is in
essence a real-time clock which counts down from some specified quantity to zero. The
process of counting down is performed automatically and occurs in real-time. Thus, if
a quantity which is proportional to 50 milliseconds is set into the interval timer, it will
require 50 milliseconds for the timer to run down to zero. The purpose of the timer is
to provide a "settable" and "sensible" real-time clock which can be used to establish
fixed intervals of time. The requirement for fixed time intervals is generated by the fact
that the numerical integration and other time dependent functions become extremely
cumbersome if a variable time interval between successive solutions (iterations) is allow¬
ed. The Set Interval Timer facilitates the "settable" function; the Sense Interval Timer
facilitates the "sensible" function.

25

t».

TABLE II

SYMBOUC DESCRIPTION OF U DO FT INSTRUCTIONS

MN K MON JC OCTAL TTMK
I**CJBFTtMI fYMWOUt DOCRIPnCMi

AMU m*G T»S TO

m
i

AC
JVERFtXM1

mr, THE ISBT

TR • 0*0°
IM/*7 OWTRCCTyjR MAT SOT BE

MIM AOO K S ADO REPLACE «T» WITH OACr',r re» re»

AUM SI » AI» MACNftUW: REPLACE CfTM MITM CUOw

AM) MAG. CW TO CÍAO

TR ■ C(AC>U',:irîT

AC .CÍAO“ '11^1- MAG
cm

re* ce» MME AN ADO

eu M S CUCAR ANU AfXJ replace err» wrm cue»“

REPLACE Cl AO ■ITH CW

TR • OAOu '

ac • cm

res » MALI

u-îf17 aaTSBCTWIN MAT NOT iiE
MAD. JW RA. a*iU ,

CUA M i CUCAR ARO AI»
MAO« mit*

REPLACE CtTJP wrrH OACIU't,S1 TR • CIACr4;',ft
AC • MAG. CÍT1

TES NO MME AJ CU

eus 31 s CUCAR AND .SUB¬
TRACT MACNmiOK

(i.fA*
replace err ■ »im ciao“
REPLACE CLACI »ITH -MAG CITÍ

ij.|K*'
Tr ■ einer
ne < -mag. ein

re» NO SAME A3 CU

CL» JS s CUCARAND
u-

REPLACE CIT» »UH CLACj TR «emo6
ac . -cm

TK» NO SAME A3 CU

DIV la IOS. nvtvr. u-u57
REPLACE err» WITH C(AO

MY CLACI BY C(TJ

TR.CÎAOW','îrf

AC - QUOTIENT OP ^¡2

so m J-fl37 mût. MAT NOT BE WLU
GW JOE

I-sr‘ INST MAT SOÏ LIE » HAJD
({iMilll,

J-lC7 saaT MAT NCI KE WAD.
JWCA. IK LA

U-»*7' »«7. MAT NEW BE MAD.
SHEA. 3HU

MAO 1« 10 MULTIPLY ANDADO
G fUCCISTEK

u-u*7
REPLACE CfTRJ »ITH CÍAO
MULTIPLY C(T) BY THE CÍAO AND
ADO THE OG! TO THE PMJOCCT

It.ClAC,»'*”
ne > 1
G - REG ■ |CCTI ' CIAO)

.era“'“”

res TK U-JÍ47 MAY NOY ±- Sit GW lHt .
CU. CLAA. CLE, CLAY, SHOT. II< Si.
WT, MtDO. TOT. TOM. MLEÎ. Oft
ANT WFTM.'OIC*» AE04SIHKDG G

THE S-lí10 MAT NOJ BE .KU». ULAÍ.
TOÍ TOM. MT.*ÏO. PENT. WUJD.
VCA, 3TO PENT, MHO MAY BE IStS

«•M77 gr.T NOT THE M-3V*W

MLXt ¡2 10 MULTIPLEX IN
ANALOG INPUT

u-u57
REPLACE err» WITH ClAO
CLEAR AC. ADC THE BINARY REP-
RESENTATJON OP THE ANALOG
INPUT SELECTED TO (AO,. ,4

TR> CUOU',,î7
AC ■ Bt>AAT REPRESEN-

7AT5£Ä OP THE
ANALOG »PUT

TEJ NO U- (/1-7 ENST. MAT SOT' BE ANY
ARSJHMETSC OR CLERIC AL SWÏ •
JJX»

U-ä»57 DKST MAY NOS BEitSJJ

U-Î»75 MAT NOT BE 570 1CA. O*
MLXO

MUCO It s MULTIPLEX OUT
ANALOG OUTPUT

CONVERT C(T»S ,, TO AN ANALOG

VOLTAGE AMD APPLY TO THE
SELECTED MULTIPLEXER CHANNEL
IP BIT 11 OP THE 1NSTRECTYON B A

CMS, THE CtTR^ , ^ WILL BE

STORED IN THE LOCATION SPECIFIED

TR ■ »O CHANGE
AC • MO CHANGE
MULTIPLEXE» CP-TPI.T
REG. B SET BY

O-i,^7
^*5.1.1

res NO U.ll MAT NOT BE MLK

U - B-'° »U . MAY NOS BE HAD.
JHU. G* ÄRA

MFY n 10 MULTIPLY
J-IJ57

REPLACE err» BY CÍAO
MULTIPLY Cm BY CLACI

TR-CLAO“^
AC ■ PROCCCT OF cm

AND CLAO

TI2 NO V-'-r~ MAT .NOT BE TOE. SOM.
MLXS. 0« MXSO

MX DO 04 s MULTIPLEX DB-
CRETE OUTPUTS

REPUCE CCT» BT OAO
IP SIGN OP AC B NEGATIVE. TURN
ON SELECTED DtSCRETE OUTPUT.
IF SIGN OF AC B PCETnVE. TURN

TR • CLAa“'3^7
AC ■ »O CHANGE

res VO SAME AS TOM

SO P 14 5 NO OPERATION
U-1J**

REPLACE err» WITH ClAO TR-cua0"'” TES NO

PHT 00 S PROGRAMMED
HALT

U-U57
REPLACE err» WITH CIAO“
HALTS THE COMPUTER IF ENABLED
BY ITS STOP ON ERJOR SWITCH

TR.CUOü,'ÎT
AC • SO CHANGE

TES NO

PHST os PRINT GATES ClAO 0 11 INTO PRINT
REGISTER BIT 11 OP THE INST ÎS
USED AS A MAMIE A rr

REPLACE CCT» WITH CIAQU '1
PRINT MUST BE ENABLED BT THE
PRINT SWITCH. OTHERMBE TT IS THE
SAME AS NOP

PKVT REG. ‘ Cf?»0",,r

II-3/^7
TR ■ CIAO“
AC ■ NO CHANGE

TES NO ■J-arD OKST. MAT NOT BE MAD. Si IRA
OR SHU

SBM j] 5 SUBTRACT
U-Ii57

REPUCE err» WITH CLAO
SUB. MAG. CY1 FROM CLAO

TR - aAOSJîfS
AC ‘ CTACJ - MAG Cm

TES TES SAME AS ADO

SCR OJ »
SEQUENCE COUNTER
RESET

repuce err» »mi c(aciu',,ST
RESET SEQUENCE COO TER TO Y

tr-ciaqu'>5T
AC * NO CHANGE
SEQ. COUNTER • T

TES NO

SCRSM 01 10 SEQUENCE COUNTER
RESET TO CONTEXT

U. 1JÄ^
REPUCE err» WITH CLAO“
SET SEQ. COUNTER TO 011,.,5

TR-CUQ“-“51
AC - NO CHANGE
SEQ. COOTE« ■ Cniwi

NO NO

SEN IT 01 S SENSE INTERVAL
TIMER

(j . if* *
REPUCE CUM XTTU CLACI
AJ IF INTERVAL TIMER ■«. PERFORM

THE NEXT INSTRUCTION IN
SEQUENCE.

B) IF INTERVAL TUB* (TT) 1 o
CLEAR AC. ADO COT] TO (ACT

RESET SEQ. COUNTER TO CT)

tr.c(aqu,,ST
aí if rr - c
AC * NO CHANGE

B) IF JT * t

AC = C«TlW'l,ST -1
S-l*

SEQ. CtXINTXR ■ T

NO SAME AS CU

26

TABLE II (ConO

SYMBOLIC DESCRIPTION OF UDOFT INSTRUCTIONS
srnouc mcmmo* or uoorr ammcnom

MENIMONIC
COM

OCTAI.
mot

Twr
MUOU^TK* fYMROUC DCRCRZPTKM

RZPULT?
AMttotaK, Tm TO

M. TM. j™ wax.

9 MAD

VAL»

AC OVER
PLOW
roosaLa

FiMMMMM «QtmcRS
AJMJMHG rm TO

m rm Jlm tan.

9HLA
sun/.

u Win «JMT ADO
o* narr cica
anrxmos amad

a.hüso. or w
-1.ULQSS_OCTAL
KICKT 1 «414

2 »12
T MM
4 MJ2
V wm
4 6071
7 «174
4 6172

¡y.rr o »y»
1 «401
2 «01.1
1 «ÚJ1
4 6071
« om

REPLACE 0(7» *0« OAC,12 ^
SHIFT AC
ADO era TO THE 3HIFTEO(AO AMD
5TO r* c

T« • cwo*,',II*T
AC • 4
g ■ sum or uRirrro ciao

AND Cra0'111**

TIBI ra lAm AS MAD

SHL
9 UK

.¾ sum Ltrr
OR WGHT
cnttcnofi .’iMAu

AUI) HO. OF HI
PLACES OCTAL

JUCKT 1 6014
2 «012
1 0034
« «012
S 0074
< 6072
7 4174
i 4172

L»:n o omo
1 «nos
2 «ou
ï «CK
« «075
i om

REPLACE CfTKi »7TH C(AClU ^
SHUT AC

TR . CÍAOü-1>JT
,, , 37

AC • OilPTEO CCAO '

TE» YES J-U57 RBT. MAY SOT RC MLW.
■EDO, TOM. TOZ

J'll** am. MAT SOT SE MAD. SHRA.
MLA

SIT ■ i to SET Ï.VÎT.ÂVAL
TÍMEÂ

REPLACE Cri» ArrlK ClAOW i|r1'
SIT TO C(Y)| l4

ü-ir*
T* ■ ClACT
AC • no CHANGE
n * ecTi,.^

•o NO

3T0 23 STORE REPLACE Cm »TCK CfTR TR . NO CHAUtt
AC ■ NO CHANGE

cm • crrÄo-ir*-

to SO LAME M MLXO

SUB jt *
SL'BT RA CT REPLACE err» TTTTK CLAO '

SUB. cm PROM CLAO
TR • CtAOÜ',,î
AC * CIAO -cm

res rzs MME Ad ADD

TA?* 11 20 TALLY > UMBER
ADDRESS

REPLACE CCT» «77« C(AO ‘i-
IP SEITHER TAS SCR THE tl-lf
L'lST. S JtELATrVE. REPLACE
CfTALLY REO *TTH Y „
IF F-TTHER TASO» THE (J-tr1
ESST. 1= RELATIVE, REPLACE
CfTALLY REO BY SUM OF CfTALLY

RECI ' AND Y.

SOTT
CONSULT Szene« OR REL¬
ATIVE ADORES3ÍSC FOR
FURTHER tSFORMATW»

TR . COO“ «”
AC ■ JtOŒASGE _
IP ROP JrH ORU-UU
> L
TALLY «G. > T

fP R or 1TH oru-u37
■ 1. TALLY REG ■ Y

•CCTALLY RRD.I U'i>,T

TO so

TAU 10 TALLY A KÍTH MET IC
usn

U-ll” REPLACE err» WITH CtAOu
REPLACE CfTALLY REO «ITH

CU04-Ii
IF BIT II OF THE DETRUCTlOR E
A OME. THE Cm ARE REPLACED

9ÏCtA05.l»

SOTE
CONSULT SECrXW ON REL-
ATm ADDRESSING FOR
FURTHER INFORMATION

T*.C«QUl)F
CIAO NO CHANGE
CITALLY REG. 1 _

• cuci0-1” "•'♦-is
IP SJT II B ACRE

«W * c^J;i

ns so

ICA 2! 10 T RAMPER CLEAR
ARD ADO REPLACE Cm WITH CtTt0U '

REPLACE Cd» »rrHCUo“"“1

REPLACE CLAO «ITH Cm0’1^

INITIAL FINAL
LOCATION L0CATS0«

T* Y
Y AC

AC 7R

VD so
O'tr17 SLAY SOT EE MLM.
U-ti*7 O«.«-B* MAY SOT AC MAD.
«RA. SHLA. OR MLjC

TIW TRASS EER TO
L\ST RUCTION
MEMORY

TUI MUST SE ENABLED BY THE USE
TUI SWITCH. OTHE ir*3E fT «ILL
BE THE SAME AS SOP
REPLACE CtY) OF INST. MEMORY
•ATTH

TR 317 2 CORRESPCNEfi TO THE
RELATIVE an «HILE BITS TR^ ^

CORRESPOND TO BITS [-11 OF THE
INST RUCTION . lVST
REPLACE C1T» « UH CLAO

TR.CIAO-^
AC • NO CHANGE
E46T MEMORY

CLAO, 1S|

ro so .

TOM 21 5 rP-ViSFERO«
ML’.US

REPLACE en» «mi ct*ou’0
IF CLAO IS NEGATIVE. RESET
SEQUENCE COUNTER TO Y.
IF CLAO IS JOemVE. PERFORM
NEXT INSTRUCTIO« IN SEQUENCE

ra * clao '
AC • SO CHANGE
CF CIAO E NEGATIVE
SEQUENCE COUNTER
■ T.

TES so U-O*7 SUT SOT BE M.4Q MPT. SML
SRI. SHLA OR SHEA

U-B*D MAY SOT BE MAD. at LA.
at SA

roz 0*5 1 TRANSFER CHS ZERO
,. ,ST

REPLACE OT» «1TH CUOU
IF CLAO » ¢. RESET SEQUENCE
COUNTER TO Y.
IF CIAO » 4. PERFORM THE NEXT
«5TRUCTKÄ IN SEQUENCE

T«.CUOUSjír ■
AC ■ SO CHANGE
IF CLAO > a
SEQUENCE COUNTER
■ Y

TO . so U-IX" MAT sot IE OPT. MAD. MPT.
SHU SHE. at LA. SCRA

U-a*0 MAT NOT ME MAD. SHLA. SHEA

TOY 10 10 TRANSFER OM
OVERFLOW

REPLACE OT» «ITH CLAO .
IF THE ACCUMULATOR C5 IN THE .
OVERFLOW CTWUmO« THE
SEQUENCE COUNTER IS RESET TO

.Y. IF NOT. THE NEXT EMSTRCCnC«
Di SEQUENCE 5 PERFORMED

TR.CUO00®
AC ■ NO CHANGE
(AO OVERFLEW
SEQUENCE COCSTER
* T.

YES so

3.3,7 Address Modification (Relative Addressing)

UDOFT makes use of an index register, called the Tally Register, to
modify the address of instructions. Address modification facilitates toe programming of
iterative programs or subroutines. A program subroutine is defined looselyas a set o
instructions which is used repeatedly to solve toe same problem only each time using a
different set of-variables. A prime example of a UDOFT program subroutine 15 the
numerical integration subroutine. In all,, this subroutine is used twelve times, to integrate
the three translational accelerations (ii, v, and w) and the three rotational acceleratio ,

(P.
inertial axis (lt

z-inertial axi:

SicUiUtiai a.i.awh-' •> - , —

q1 and r), and to integrate the three derivatives of the direction cosines for the y-

2\
(1

in and n0) and the three derivatives of the direction cosines for the
u ¿

3'
m and n^)

It would be extremely wasteful of computer instructions (that must be stored in the
Instruction Memory) if each of the twelve integrations required its own explicit program or
routine Since the only difference between the individual programs is the independent van-
able a means for using the same set of instructions with the facility of modifying the ad¬
dress of the variable. This facility is provided in the UDOFT computer by the feature of
relative addressing; in contemporary computers this feature is normally referred to as

’'indexing. "

Address modifications is possible with ail 32 UDOFT instructions^ If Address
modification is to occur the relative bit of the previous instruction must be a one When
this condition is met the address used is the content of the relative address registe

The relative address register always contains the arithmetic sum of the number
memory address or the previous instruction and the contents of the Tally Register at th
beginning of the previous instruction.

The Tally Register is loaded by the TAN and the TAU instructions. TAN in-
struction loads the Tally Register with the number memory address c^e^wlt^ r1®
instruction. The TAU instruction loads the Tally Register with toe contents of toe Ac
cumulât or bits six through seventeen.

In addition the TAN instruction has a special feature which expedites the
Tally Register If the relative bit coded with the TAN instruction, °r Pr®vlou+s instI^c-
Uon is a "one" the contents of the Tally Register at toe beginmng of the TAN mstruction
will'be augmented by the number memory address coded with the TAN instruction.

The number memory address of the previous instruction is used in relatiye addressing
to allow time for the Tally Register to be added to the number memory address.

3.4 Main Frame

The Arithmetic Unit, Control Unit I, and Control Unit II, taken collectiX®1^ ^“n
orise what is commonly referred to as the Main Frame, (figures 9 and 10). The function
of the Main Frame is to perform all the internal operations of the computer system and
to control the operation of the remaining computer units, the Memory Umt and the Input
¿tout Unit Had the implementation of the arithmetic and the control functions in the
UDOFT computer been more efficient, there would not have been these three separate
units Instead, a single physical unit, the Main Frame, requiring iess physical volume
for the hardware, would have been evolved. The main reason for
units as a single operating entity is the interdependence between the units. There is more
communication among these units than there is between these units and the Memory a

the Input-Output Units.

Briefly the Arithmetic Unit functions as the computational element of the Main
Frame Control Unit I performs all the control functions associated with the Arithmetic
Unit Control Unit II performs all the control functions associated with the Memory and
(he input O^Sut Units in addition to the supervisory control of the total computem This
section of tlufreport will treat superficially each of the three units, detineating ttemajoi

constituent elements and indicating their functions. Hor*X" e^^a brieVdescripti™ of
operation and some of the idiosyncrasies of these major elements, a brief descriptio
the master timing system of the computer is presented first.

28

29

F
ig

u
re

 9
.

U
 D

O
P

T
 I

n
st

a
ll

a
ti

o
n

30

3.4. 1 Master Timing System

The UDO FT computer is a synchronous machine which uses dynamic logic. Nearly
all large scale digital computers are synchrous, but few contemporary computers use
dynamic logic. Dynamic logic enjoyed great popularity in the early 1950's, prior to the
appearance of the high-frequency junction transistor. The advent of this transistor made
it possible to produce large-scale computers with static logic for less cost than computers
with dynamic logic which depended upon vacuum tubes with exceptional transconductance
characteristics.

The UDOFT computer was designed during this period of digital computer evolu¬
tion. Therefore, it might be expected that the type of logic used in the machine would be w.
dynamic. This is further supported by the fact that the design of the computer was per¬
formed at the Moore School of Electrical Engineering of the University of Pennsylvania,
at that time a practitioner of dynamic logic.

In a computer using static logic, the basic communicator of information or data is
a voltage level. Usually a voltage level approximating ground potential indicates a logical
zero; a voltage level which is considerably more positive or more negative than that zero
state level indicates a logical one. Such signals are obtained initially from static flip-
flops. The outputs of the flip-flops may then be combined logically in passive networks
commonly referred to as AND and OR gates. The combining process does nothing more
than exercise a form of arbitrary control over the output of the network as a function of
the inputs and the structure of the network. It is through the combining process that the
capabilities of the simple bi-stable elements are exploited and combined into a powerful
computing mechanism.

The presence of pulse in a computer using static flip-flops and level logic is neces¬
sary to establish the time sequence by which the micro-operations that comprise the
machine execution of an instruction are performed. The pulses, unlike the voltage levels,
do not convey any information; their function is supervisory in nature. In the dynamic
logic scheme, these same pulses are required. In addition, however, pulses rather than
voltage levels are generated by the bi-stable elements. In the logical combining process
pulses rather than voltage levels are combined.

An unfortunate characteristic-of any physical element which is used to transmit
electrical energy is that it is electrically imperfect. To cite a few examples of electrical
imperfection, wires do not have zero resistance, resistors do not have zero reactance,
and vacuum tubes do not exhibit perfect transfer characteristics. These deviations from
the theoretical result in one characteristic common to all electrical elements, namely,
time delay. Time delay is nearly always the factor that limits the speed of a digital com¬
puter. In a computer using dynamic logic, time delays are of paramount importance.
This is most apparent when considering the logical combining of information pulse signals.
A pulse will appear at the output of an AND gate if, and only if, all inputs are pulsed simul¬
taneously. Some degree of intolerance is allowed on the simultaneity of the incident pulses;
however, it is usually quite small.

The clock pulse or master timing system of a computer using dynamic logic per¬
forms the function of synchronizing the information pulse signals to a common time refer¬
ence. Without such a slaving capability the computer would be totally dependent upon the
variations in the electrical characteristics of the myriad elements that comprise the com¬
puting system, resulting, undoubtedly in extremely sporadic and unpredictable operation.
In addition, a secondary source of timing pulses is required, as in the static logic machine,
for controlling the starting and the stopping of the computer micro-operations. The con¬
trolling pulses are referred to as timing pulses; the synchronizing pulses, as clock pulses.

a.} Clock Pulse System

' The UDOFT computer, like all dynamic machines, uses a multi-phase clock
pulse system. This means that a number of timing.pulse chains is derived from a single
source, each pulse chain having the same frequency as the source, but being displaced in
phase from it by some fraction of the pulse repetition period. In the UDOFT computer
there are five phases of the 1.2 megacycle clock. The separation between successive
clock pulse chains is one-fifth of the period or 167 nanoseconds (figure 11). The width
of the clock pulses is approximately one-half of the period or 417 nanoseconds. The five
phases are identified as 00 (phase zero), 02, 04, 06, and 08.

i*.

31

tr^oXe8eS;1er ofÄ3 oW 0.4 ^croseconds and OSUgged^ 0.«^-

desig'nations^were'noraltered.Cl^U83phase 04 now lags 00 by 0.333 microseconds and 08

lags 00 by 0.667 microseconds.

A logical question that arises at this point is, why the muitiphased clock? Why

»SrBSirir. «jas- *• “*-
¢0

¢2

*4

¥>

¢8

rn_r~i-r

1 v_J^a_

V-J Un
^ l^^O.SQpSEe—_/V^"'

’ t-LuTpSEC ' ^^o.aaapSEC-^' ^

Figure 11. Five Phase Clock Pulse Characteristics

c^..jsaarwS5iràî^S5Â^^Â.
1. 2 megacycle sine wave was distributed to eacn “ neak-to-oeak The amplified
where it is amplified to a signal of C^inUneac^ cabinet.
signal was passed through a variable y ipmrths of the transmission cables between
Even though care had been taken to equalize the lengths of to adjust
the source and the computer units, t e h lit i t the vari0us phases by a
for unequal delays The T ^“^^P^^^^^.j.^^ljp^igT^lanoseconds more d'elay than
number of fixed delay lines eacn ot signal still in the form of a sine.wave,
the previous one. ,The flve p.hasef °fp^Ded and clapped The signals were then in the
were then amplified, symmetrical! ctiPP » inserted at this point to allow heavy

SSÍSCSK SS^ÄSÄS - -. -«* ■»'**
tion and distribution system is shown m figure 12.

' It is vital, as has been stated previously, that the ^solute arri the relative timing

of the clock pulse chains be exacx. As ^ c°“p0^eh”tSb° luteCt°mil^ since it is dependent

32

considerably and frequently. For this reason adjustment potentiometers were inserted at
the outputs of the fixed delay lines.

Under normal operating conditions (approximately 80 hours a week), the clock
system required realignment every two or three months. On numerous occasions the
clock pulse chains drifted sufficiently, between scheduled realignment periods, to cause
operating difficulties. The operating difficulties materialize as sporadic and random
failures of the computer, making it extremely difficult to determine the source of the
trouble. Even when it has been determined that clock pulse timing was the cause, many
hours were required to realign the clock pulse chains in each of the five cabinets. Since
the clock pulse system was so critical an element and represented one of the more trouble¬
some areas in the computer, it became necessary to redesign the system for both the
generation and the distribution of the clock pulses.

Figure 12. Block Diagram of Original Clock Pulse Generation and
Distribution

The modified clock system improves the method of generating the five clock
phases by climating adjustment of phasing, minimizing adjusting of clock pulse widths
and eliminating the necessity of phasing the cabinets.

The widths of the clock pulses are made independent of phase separation by
using single shot multivibrators (SSMV) and well isolated fixed delay lines. As far as
distortion and linearity of delay is concerned the most useful portion of the outputs of
the delays is selected by proper biasing of an inverter. The leading edge of the inverted
output gates a SSMV adjustable from 0.300 to 0.500 Msec. Stability and independence
are achieved by using Zener diodes on each SSMV and the Inverter to derive the voltages
required.

To climate the need to phase the cabinets, the clock is generated in the Input-
Output cabinet and each phase is distributed to the five cabinets on separate equal length
coaxial cables. (See figure 13.)

The oscillator used is the original P271 package. Its output is clipped and
clamped and applied as the clock input of a standard pulse amplifier. The pulse ampli¬
fier in conjunction with a standard signal driver-is used to drive delay lines. The delay
lines establish fixed time differences between phases. The signal drivers serve to isolate
the phases and minimize their interdependence. The delay lines are the standard positive
short delay lines. The outputs of the delay lines and the output of the fifth signal driver,
the undelayed pulse, are then inverted. The inverter is biased to select the section of

c
m

v
T

I
c
b
d

F
ig

u
re

1
3
.

M
o

d
if

ie
d

U

D
O

F
T

C

lo
c
k
 S

y
s
te

m

the output of the delay lines which will minimize problems caused by delay line distortion.
The inverted delayed pulses, which are reshaped by the inverter, gate the clock multi¬
vibrator (CMV). The input to the CMV is a ringing circuit which generates a pulse when
gated by the leading edge of the inverter output. The CMV is a single shot multivibrator,
adjustable from 0.300 to 0. 500 ^sec. The clock multivibrators drive the cable drivers
which can drive up to seven coaxial cables.

The outputs of the coaxial cables drive the inputs of the clock drivers. From this
point on the distribution is unchanged except for terminations needed to eliminate ringing
caused by the improved rise and fall times of the clock pulses.

b.) Timing Pulse System

The computer Timer, as it is called, generates the sequences of timing pulses
that indicate distinct times within a minor cycle of computer operation. A minor cycle in
the UDOFT computer is 5. 0 microseconds in duration, during which time thirty distinctly
timed pulses are generated.

The mechanism for generating the thirty pulses is a cascaded arrangement of
thirty pulse amplifiers, very much resembling a multi-tapped delay line (figure 14). Pulse
amplifiers, rather than a multi-tapped delay line are used in order to ac^ur^cy of
timing* each pulse amplifier is synchronized by means of clock pulse. The first output
from the Timer is timing pulse 6.0. A pulse will appear at this output every 5. 0 micro¬
seconds at a time designated as 6. 0. The outputs of subsequent pulse amphfiers have
designations which are 0. 2 greater than the preceding output. The two-tenths figure
designates an absolute separation between successive timing pulse chains jdeirtical to Aat
used in identifying the five phases of the clock. The sequence of outputs stoti^ with the
first is 6. 0 to 6.8, then 1. 0 to 5.8. Since the pulse amplifiers are arranged in a closed
loop a single pulse, once injected into the loop will continue to traverse the loop until

stopped manually.

3.4.2 Arithmetic Unit

The Arithmetic Unit contains the Accumulator and two registers, the Multiplicand-
Divisor Register (M-D Register) and the G-Register.

a.) Accumulator

The Accumulator contains the logic necessary for perform!^ the "add, sub-
tract " "shift, " and "complement" operations, one or more of which are required to
execute all of the arithmetic instruction. More specifically, the Accumulator consists of
twenty identical stages, a partial twenty-first stage, and logic to detect carries out of the
twentieth stage.

Each of the twenty stages of the accumulator functions identically in sensing the
state of the corresponding bit positions of the M-D Register, the G-Register, and the Ac¬
cumulator itself. The Accumulator appears to be a purely parallel unit, due to mere
being an individual adder, adder-subtractor, and recirculation loop for each of Ihe twenty
stages. However, the operation of the Accumulator is not purely parallel, but is better
described as parallel-sequential.

Although only one bit is operated upon by each stage, and although each bit appears
on an independent output line, successive stages of the Accumulator are time-separated by
one clock phase (0. 167 /isec). This separation in time is to allow the formation altó the
propagation of carries as the arithmetic operation sequentially from the least significan
bits to the most significant bits of the operands.

A single Accumulator stage (figure 15) is composed of an adder, an adder-sub-
tractor, a shift amplifier, and a recirculation amplifier. Several dispatcher lines intro¬
duce the control pulses which determine, the operations to be performed by the Accumu-
lator stage.

The heart of the Accumulator stage is the adder-subtractor. It is here where
quantities from memory or the G-Register are added to or subtracted from the quantity
stored in the Accumulator. The complement feature of this element is re<^f
instances where a true subtraction of the form (A-B), where /B/WA/, is performed.

35

TIMER
START

SWITCH

¢8 ¢0 *4

PULSE
^AMPLIFIER

±
PULSE

AMPLIFIER
PULSE

AMPLIFIER
PULSE

AMPLIFIER

6.2 6.4
6.6

PULSE
AMPLIFIER

PULSE
AMPLIFIER

PULSE _
¡AMPLIFIER

1.2
1.0

4° ¢8

1_TA—
Figure 14. Block Diagram of Timing Pulse Generator Loop

L*

36

I OKUh

Figure 15. Block Diagram of Single Accumulator, Stage N

37

initial difference as determined by the Accumulator is in two's complement form, thereby
necessitating a complement and a sign reversal operation.

The recirculation amplifier provides the means by which the retention of data in
the Accumulator is controlled. As long as the amplifier is enabled, the single bit of data
in each Accumulator stage is allowed to circulate around the major loop consisting of the
adder-subtractor, the adder, and the recirculation amplifier. Inhibiting or disabling the
recirculation amplifier prevents the recirculation, thereby effectively clearing the Ac¬
cumulator stage.

The adder provides a second level of addition to the Accumulator stage. Shifting
a number to the left in the Accumulator is performed by progressively adding the number
to itself; this operation is effected by the adder. This operation could have been performed
in the adder-subtractor; however, it would have resulted in increased complexity of the
adder-subtractor logic. The primary reason for the inclusion of the second level adder,
however, was to accelerate the execution of the multiply instruction.

Multiplication of two binary numbers in a simple digital computer consists of ad¬
dition and shifting operations. Multiplication is accomplished by adding or not adding the
multiplicant to the content of the accumulator depending upon the condition of the multi¬
plier bit. An addition would occur if the multiplier bit were a 1, no addition, if the bit
were a 0. Subsequent to this operation the content of the Accumulator is shifted one place
to the right and the next multiplier bit is examined. This operation continues until all
bits of the multiplier have been examined. The resulting sum in the accumulator is the
product of the multiplication operation. In UDOFT, multiplication speed is effectively
doubled by examining two multiplier bits at a time and shifting the partial sums two
places to the right. In order to do this two adders are required; thus, the reason for the
secondary adder.

The shift amplifier allows the quantity in the accumulator to be added to itself in
the adder in order to effect a shift left of one place. Further, the shift amplifier provides
entry to the adder for the multiplicand during the multiply instruction.

b.) Multiplicand-Divisor Register

The Multiplicand-Divisor Register is a 22-bit (20 data bits, sign, and parity)
dynamic flip flop buffer - storage register, which acts as:

1. A buffer between the Number Memory Output Register and the
Accumulator. Upon being transferred into the M-D Register
from memory, the data words are checked for parity.

2. A buffer between the G-Register and the Accumulator

3. A storage register for the multiplicand during the
multiplication operation.

4. A storage register for the divisor during the Division
operation.

c.) G-Register

The G-Register is a special-purpose storage register with a capacity of twenty
binary bits plus the sign bit. It differs from the M-D Register in that it does not consist
of distinct storage flip-flops for eaóh of the data bits; radier, it consists of five serial
storage loops, similar to delay line storage loops (figure 16). Serial storage loops are
used primarily to save hardware. By using one pulse amplifier and a long delay line, it
is possible to store several bits serially. The opportunity to employ this technique does
not occur often in UDOFT due to timing restrictions. Bits from stages of the
accumulator having the same clock timing are serialized and injected into the appropriate
storage loop. When access is made to the G-Register, the bits are extracted from the
loops in serial-parallel fashion. In conjunction with the Multiply and Add G-Register
(MAD) and the Shift and Add G-Register (SHLA, SHRA) instructions, the G-Register
performs in the manner just indicated.

i».

38

U
(ü

+->
M

•H
U3
O

Dh

Ü

O

6 rt
Jh
bD
aï

•fi

Q
¿à
ü
O

r—i

ffl

«3

O
Îh
3
uo

•H
b

39

During the divide operation, the G-Register stores the individual quotient bits as
they are formed from the operations occurring in the accumulator. Division requires
twenty-one complete addition or subtraction operations in the accumulator. Since each
complete arithmetic operation requires five microseconds, the Divide instruction re¬
quires 105 microseconds for its complete execution. During this period twenty quotient
bits are generated. In order for the G-Register to store the quotient bits during the
execution of the instruction, the capacity of the register must be increased. This is
affected by opening the five serial loops and tieing them together to form one large loop
which has-a circulation time slightly in excess of twenty-five microseconds. A quotient
bit is injected into the G-Register every five microseconds; at the end of the process
another five microseconds is required to transfer the twenty quotient bits into the
accumulator.

Because of timing restrictions the twentieth bit is not injected into the G-Register.
Instead, it is injected in the low order stage of the accumulator directly,

3.4.3 Control Unit I

The control element of the UDOFT computer system performs three basic
functions: sequence determining, arithmetic, and input-output control. The control
element specifies a given instruction, identifies the operation to be performed, and
identifies the operand to be used. Upon identifying the operation and the operand, the
control element then provides the Arithmetic Unit with sequenced control pulses which
effect the execution of the instruction.

The control element of the UDOFT computer system is subdivided, due to physical
limitations, into two units, Control Unit I and Control Unit II. Control Unit I is described
as follows and Control Unit II is described in 3.4.4.

Control Unit I is concerned primarily with the arithmetic control function. It is
here that the five instruction word bits that specify the order type are decoded and the
order type is identified. The identification of the order type initiates the generation and
the propagation of the pulses that control the Arithmetic Unit. The groupings of logic
elements that perform this function are defined as Dispatcher Lines.

In addition to satisfying the arithmetic control function, Control Unit I contains
two registers; the Transfer Register and the Interval Timer. The Transfer Register is
rightfully an integral part of the Arithmetic Unit; however, it is contained within Control
Unit I simply because there was insufficient space in the Arithmetic Unit for its inclusion.

a.) Transfer Register

The Transfer Register is a 22-bit (22 data bits, sign and parity) non-addressable,
dynamic flip-flop, buffer-storage register which acts as a buffer between the output of
the Accumulator and various terminal units in the computer system. The particular
terminal units are the Number and the Instruction Memory rewrite registers, the Multi¬
plexer Output Register, the Tally Register, and the Print Register. During the card
read-in process it acts as a buffer between the card reader and the two memories.

At the beginning of each instruction, except STO and MLXO, the Transfer Register
is cleared and the contents of the Accumulator are read into the Transfer Register. Thus,
the Transfer Register lags the Accumulator by one instruction. This feature imposes a
programming restriction, namely, that a STO instruction will not store the results of the
preceding or (J-l)st instruction. Rather, it will store the results of the (J-2)nd instruc¬
tion. This feature usually causes no inconvenience to the programmer and if the program¬
mer is careful there is no time lost due to the use of extra instructions. The problem
can also be overcome by inserting a NOP instruction prior to the STO instruction, there¬
by allowing the proper quantity to be in the Transfer Register at the time the STO instruc¬
tion is executed. However, this is not an economical method of programming.

b.) Interval Timer

The Interval Timer is provided specifically as a means for equalizing the time
interval between successive iterations of the flight simulation program. More generally
it is a program-controlled real-time clock.

40

In detail, the timer is a modified fourteen stage subtracting binary counter. It is
settable, in increments of five microseconds, to a maximum value of 81.915 milliseconds
by means of the SIT instruction. The count in the timer is decremented each instruction
minor cycle (five microseconds) until the count is zero, after which time no change is
made to the count unless a SIT instruction is performed.

As originally conceived, the SENIT instruction was capable only of sensing a zero
condition in the Interval Timer. Thus, if fifteen milliseconds remained in the timer at
the time the SENIT instruction was decoded, no other instruction could be performed
until the timer ran down to zero. This feature seemed to be wasteful of valuable time
which could be used to perform auxiliary programs. For this reason the SENIT instruc¬
tion was modified to be a conditional transfer of control type instruction. If the timer is
identically zero at the time the SENIT instruction is executed, the next instruction in
sequence will be executed; if the timer is not identically zero, there is a transfer of con¬
trol to the instruction specified by the address field of the SENIT instruction. Concurrent¬
ly, the count in the timer is transferred to the Accumulator where it can be examined to
determine if there is sufficient time remaining to perform the auxiliary programs. It is
also useful for determining timing of routines or program segments. The original facility
of the SENIT Instruction is retained simply by assigning the address of the SENIT Instruc¬
tion to the address field. This forms a one instruction loop which is exited when the in¬
terval timer reaches zero.

c.) Dispatcher Lines

The ten Dispatcher Lines, identified as ODL through 9DL, generate the pulses
that order the arithmetic unit of the computer to perform the arithmetic operations. A
brief functional description of each Dispatcher Line follows.

1. ODL

Dispatcher line 0 serves two purposes. In those arithmetic
operations which use the contents of the G-Register as the
operand, or one of the operands, it gates the contents of the
G-Register into the Multiplicand-Divisor Register. In all
other instructions which check number memory parity, it
isused in conjunction with 1DL to provide gating pulses for
the parity checking circuitry.

2. 1DL

Dispatcher Line 1 causes the contents of the Number Memory
Output Register to be gated into the Multiplicand-Divisor Regis¬
ter. 1DL is pulsed therefore for all arithmetic operations in¬
volving an operand, the address of which is not that of the G-
Register,

3. 2DL

Dispatcher Line 2 causes the Multiplicand-Divisor Register
to be cleared to zero. 2DL is pulsed therefore for all opera¬
tions which read or transfer data into the Multiplicand-Divisor
Register.

4. 3DL

Dispatcher Line 3 causes the contents of the Multiplicand-
Divisor Register to be gated into the adder-subtractors of
the Accumulator. 3DL is pulsed therefore for ail operations
which cause the content of the Accumulator to be simply
augmented or decremented. In addition to this most basic
function, 3DL is pulsed sequentially as a function of the odd
multiplier bits during the Multiply instruction, and is pulsed
twenty-one times during the Divide instruction in order to
introduce the divisor and the quotient into the Accumulator.

41

5. 4DL

Dispatcher Line 4 causes the contents of the Multiplicand-
Divisor Register, shifted left one place, to be gated into
the upper adder of each of the Accumulator stages. It
functions only during the Multiply instruction, at which
time it is pulsed sequentially as a function of the even
multiplier bits. Dispatcher Lines 3 and 4, primarily,
cause the Accumulator to perform the multiplication
function; Dispatcher Line 7 contributes also to the multi¬
plication function.

6. 5DL

Dispatcher Line 5 causes the contents of the Accumulator
to be shifted to the left. Each time 5DL is pulsed, a single
shift to the left of one pulse is effected. Dispatcher Line 5
functions during the right shifts as well as left shifts because
single-place shifts to the right or odd numbered shifts to the
right are performed by first shifting left one place and then
shifting right two places at a time. It functions also during
the Divide instruction in which it shifts the remainder left
one place after each addition or subtraction operation.

7. 6DL

Dispatcher Line 6 causes the contents of the Accumulator
to be cleared to zero. 6DL is pulsed for all instructions,
such as CLA and CLAA, which explicitly require a cleared
Accumulator and for other instructions, such as SHR, and
DIV, which implicitly require a cleared Accumulator.

8. 7DL

Dispatcher Line 7 causes the contents of the Accumulator
to be shifted two places to the right. 7DL is pulsed only
during the Shift Right (SHR, SHRA) instructions and during
the Multiply instruction.

9. 8DL

Dispatcher Line 8 causes the two's complement of thé con¬
tents of the Accumulator to be performed. 8DL is pulsed
therefore as the result of a true subtraction of the form
(A-B) where |B|>|A|. It is pulsed also in order to establish
the maximum quantity in the Accumulator after an overflow
has occurred and truncation of the result is indicated. (8DL
is not used during divide, since the subtract performed as a
part of the divide, is not a true subtract.)

10. 9DL

Dispatcher Line 9, causes the adder-subtracters of the
Accumulator to function as subtractors. 9DL is pulsed
therefore whenever a true subtraction is performed. A
true subtraction will occur during an Add instruction when¬
ever the signs of the operands are different, during a Sub¬
tract Instruction whenever the signs of the operands are
similar, and during the divide instruction in accordance
with the division algorithm.

d.) Order Type Selectors

Control Unit I also contains the Order Type Selectors. The Order Type selectors
decode the five bits of the order type of the instruction word which is read out of the In¬
struction Memory. These five bits uniquely define the thirty-two different instructions

i*.

42

which the computer is capable of executing. The results of the decoding operation is the
generation of a series of pulses on one of thirty-two control lines, each line specifying one
of the orders. In addition to specifying the macro-operation (Add, Subtract, Divide, etc.)
that is to be executed, the control pulses, through logical combining with other condition¬
ing signals, specify and initiate the micro-operations that constitute an instruction cycle.

e.) Sign Logic

The last major control function implemented in Control Unit I is the determination
and the storage of the sign of the quantity in the Accumulator. Determination of the Ac¬
cumulator sign is dependent upon the particular arithmetic operation and the signs of the
operands. Therefore the signs of the quantities in the Multiplicand-Divisor Register and
the G-Register are stored in Control Unit I as well as the sign of the quantity currently in
the Accumulator.

3.4.4 Control Unit II

Control Unit II performs the major functions of instruction sequencing, memory
control, and, to some extent, input-output control. Instruction sequencing relates specif¬
ically to the Sequence Counter and the start and halt controls; memory control relates
specifically to the Number Address Storage Register, the Relative Address Register, the
Tally Register, and the Sequence Counter; input-output control relates specifically to the
Number Address Storage Register. It is apparent from the preceding statement that some
of the registers, such as the Sequence Counter and the Number Address Storage Register,
serve a multiplicity of functions. This characteristic will be exposed further in the follow
ing brief functional descriptions of each register.

a.) Sequence Counter

The Sequence Counter is properly atwelve stage, parallel, storage register Its
primary function is to specify to the Instruction Memory the address of the nextinstruction
which is to be executed. In order to be able to specify the next instruction the Sequence Counter
must be capable of being augmented by a single count or being set to a specific count. Normally,
after each instruction, the counter is simply augmented; however, after the execution of a
transfer of control type instruction, the counter may be set to a specific count.

It is interesting to note that the twelve dynamic flip-flops that comprise the Se¬
mence Counter are simply storage flip-flops; they are not interconnected to form a true
jinary counter. The augmenting of the count in the storage flip-flops is performed by a
serial adder. The twelve bits of the register are serialized and applied least significant
jit first, to a serial adder in which one is added to the least significant bit. The augmen e
jount then is read back into the storage register.

b.) Number Address Storage Register

The Number Address Storage Register is a twelve stage, parallel storage register.

Its functions are as follows:

1. In shifting instructions it specifies the direction and number of shifts
to be performed.

2. In control transfer instructions, it specifies the count to which
the sequence counter may be set.

3. In the TIM instruction, it specifies an instruction memory address.

4. In the MLXI instruction, it specifies an analog input channel.

5. In conjunction with the discrete input, it specifies a discrete
input.

6. In the output instructions, Multiplex Analog Output (MLXO) and
and Multiplex Discrete Output (MXDO), it specifies the particular
output channel to be processed.

The Number Address Storage Register actually does not address the number mem¬
ory, it indicates which number memory register is being addressed.

43

In addition to the multiplicity of uses of the outputs of the Number Address Storage
Register, there are multiple inputs to the Register. Normally the input to the register is
derived from the instruction word address field as formed by the Number Address Serializ¬
ing Register. However, under the condition of using relative address, the input to the
Number Address Storage Register is derived from the Relative Address Register.

c.) Relative Address Register

The Relative Address Register is a twelve-bit storage register, which stores the
relative address that may be used by the succeeding instruction. In reality, the register
is two, six-stage, serial storage registers which operate in parallel in order to facilitate
rapid access to the relative address data. The output of the Relative Address Register is
applied to the Number Memory Address Register and the Number Address Storage Regis¬
ter; the input is always derived from the Relative Address Former.

The Relative Address Former consists of two, two-operand, serial adders with
carry propagation capabilities. It is here that the serialized contents of the Tally Register
are added to the serialized address field bits of the instruction words. The address fiel
bits are serialized in the Number Address Serializing Register.

The Number Address Serializing Register consists of two six-bit serial registers.
The address field of the instruction word is applied in parallel form to the input of the
total register - the six even bits of the address field being applied to one six-bit register
and the six odd bits being applied to the other register. The Number A^dr®ss Sto^f£e
Register thus converts the address field from a twelve-bit parallel word into two six-bit

serial words.

The output of the Number Address Serializing Register is applied to both the
Relative Address Former and the Number Address Storage Register. For those instruc¬
tions for which relative address is not specified, the output of the register is gated into
the Number Address Storage Register.

d.) Tally Register

The Tally Register of the UDOFT computer is comparable to an index register in
the common computer. It stores the quantity by which the instruction-specified operand
address is modified if relative address is specified. In keeping with the serial-parallel
philosophy of the address control function, the Tally Register consists of two six bit se
storage loops; one loop stores the six odd bits and the other, the six even bits.

The output of the Tally Register is applied only to the Relative Address Former.
The inputs to the Tally Register are derived from the following sources.

1. The Transfer Register. This register provides the input
during the execution of the Tally Arithmetic Unit (TAU)
instruction.

2. The Relative Address Register. This register provides the
input during the execution of the Relative Tally Number
Address (RTAN) instructions.

3. The Number Address Serializing Register. This register
provides the input during the execution of the conventional
Tally Number Address (TAN) instruction.

4. Console Switches.

3. 5 Memory Unit

The UDOFT computer contains two coincident-current, magnetic-core memories;
the Instruction Memory for instruction words and the Number Memory for data words.
The two memories are identical in design ana construction; but differ slightly in operation.
The similarity between the two memories is readily apparent. Each memory consists of
an array of twenty-two magnetic core memory planes each of which contains 4096 ferrite
cores, an address register, an output register, and a rewrite register (figure 17).

A cycle of memory operation is initiated by the transfer of the twelve bits of
address information into the Memory Address Register. The twelve bits of the address
are divided into four groups of three bits each. This is done in order to allow the matrix
transformation of each three binary bit group into eight (2^) distinct control functions.
The sixteen distinct control signals that are derived from the two low order three-bit
groups of the address are transformed into 64 (82) distinct control signals. These 64 con¬
trol, signals are defined as the selection signals for one coordinate of the memory plane
array. Similarly the sixteen distinct signals, derived from the two high order three-bit
groups of the address,are converted into 64 distinct control signals which are defined as
the selection signals for the other coordinate of the memory plane array. Since the
magnetic core memory plane is, in reality, a 64 X 64 matrix, pulses appearing on a single
selection line of each coordinate will disturb one and only one magnetic core, namely, the
core that lies at the intersection of the two lines that have been selected.

The core, when sufficiently disturbed, will exhibit a change in its magnetic field.
The change in the magnetic field causes a voltage to be induced onto a third signal line or
winding that passes through the magnetic core. This voltage signal is amplified and dis¬
criminated to determine if a binary one had been stored in the selected core. If a one had
been sensed, a flip-flop will be set. Since there is a sense amplifier and an output register
storage flip-flop associated with each bit- or plane of the array, the Number Memory re¬
quires twenty-two sense amplifiers and a twenty-two stage static flip-flop storage register;
for the Instruction Memory this requirement is decreased to twenty of each.

As a result of the selection process, the magnetic core loses the binary data that
it was storing. It is necessary, therefore, to provide a means by which the data extracted
from the disturbed cores may be returned or rewritten for future use; the rewrite register
and the inhibit drivers provide this means. The selection process is reinitiated and the
same core in each plane is selected; however, the polarity of the disturbing signals is re¬
versed, The information stored in the rewrite register determines which of the selected
cores will be disturbed. If a binary one had been extracted from the particular core, the
core is disturbed totheONE state; if a binary ZERO had been extracted, the core is undisturbed.
The process of preventing certain cores from being disturbed, or rewritten, is controlled
by the inhibit drivers. For those cores where no rewrite is necessary, a pulse will occur
on a fourth line or winding which passes through the cores. The signal on this line, the
inhibit winding, will be equal to, but opposite in polarity from one of the two disturbing
or select signals, thereby reducing the net effect of the selection signals to the extent that
the rewrite process is inhibited.

With the termination of the rewrite process one complete memory cycle is accom¬
plished. Insofar as the related operation of the two memories is concerned, it is sufficient
to state that the cyclic operation of each is identical. The only difference is the one-half
memory cycle time separation between identical operations in each memory.

One major problem with the UDOFT memory scheme arises from the fact that the
two memories are isolated from each other; neither can communicate directly with the
other. Instruction words from the Instruction Memory cannot be introduced at all into the
Number Memory. Data words from the Number Memory, however, can be introduced into
the Instruction Memory, indirectly, by means of the Transfer to Instruction Memory (TIM)
instruction. This limitation on intercommunication between the memories is a decided dis¬
advantage. In the particular case of the UDOFT computer, for which each memory consists
of 4096 storage registers, the instruction and data storage capability is limited to 4096
words of each type. It is impossible, therefore, to handle a total program in which the
quantity of either of these types of words exceeds 4096, even though the total number of
words in the program is less than 8192 words.

45

i».

ir g

á
0£

46

I

F
ig

u
re

1
7
.

B
lo

c
k

D

ia
g

ra
m

o
f

a
 U

D
O

F
T

M

a
g
n
e
ti

c
 C

o
re

M

e
m

o
ry

 S
y

s
te

m

3. 6 Input-Output Unit

The Input-Output Unit is the buffer between the main frame of the computer and
the real-world as typified by the aircraft flight compartment mockup. Fundamentally,
the Input-Output Unit processes the four forms of real-time communication available
to the computer system. Further, when the computer system is used for research or
testing purposes, the Input-Output Unit expedites the accumulation and outputting of numer¬
ical data that is normally not required during or after the time such a system would be
used as a training device.

The four forms of real-time communication were first introduced in Section 2. 2
of this report. Any further description of the role of these control signals is deemed
unnecessary at this point. However, a brief description of the manner in which these in¬
puts and outputs are processed will be presented.

3. 6.1 Discrete Inputs

The computer can accept control information from as many as sixty-four switches
that may be situated in the synthetic flight compartment or at the simulator instructor’s
station. Each of the inputs generated by these sixty-four switches has a particular register
in the Number Memory associated with it. The fact that a given discrete-input switch is
open causes the "masking11 of the contents of the associated number register. Thus, when
the computer executes an instruction, the operand address of which specifies a masked
register, the normal transfer of information from the addressed Number Memory Register
into the Multiplicand-Divisor is suppressed. As a result nothing is read into the M-D
Register which, at the initiation of the instruction, had been cleared to zero. The contents
of the masked memory register are not altered in any way and can be read out once the as¬
sociated discrete-input switch is closed.

The information in the controllable registers may be of a quantitative nature or a
control nature. An example of quantitative data being stored in the register would be the
weight of external stores. If external stores are applicable to the vehicle configuration
being simulated, the controlling switch is closed and the weight of external stores is added,
during the weigh* calculation, to the total weight of the vehicle. If external stores are not
applicable, the switch is opened, and zero is added to the total weight of the vehicle. This
is a very simple example and does not consider any other ramifications resulting from the
introduction of external stores.

The more common use of the switch-controlled registers is program control by
external means. In this case the registers would contain information'of a qualitative
nature. A common sequence of instructions that typifies this use would be CLA X, TOM Y.
The quantity stored in X which is a discrete input controlled register, would be some
negative number; its magnitude is immaterial. If the discrete-input switch is in the open
condition at the time the CLA X instruction is executed, all zero's will appear in the
Accumulator at the time the succeeding instruction, TOM Y, is executed. Thus, with a
positive quantity (zero is always positive) in the Accumulator, no transfer of control
will be performed by the TOM instruction and the succeeding instruction will be executed.
If the discrete input switch had been closed, a negative quantity would appear in the
Accumulator, and there would be a transfer of control to instruction Y. In this application,
the discrete input function is analogous to the sense flip-flop function in a general purpose
digital computer.

For the F-100A aircraft simulation program, approximately forty of the discrete-
input channels are used (Table III). The majority of these discrete inputs perform program
control functions.

3. 6. 2 Discrete Outputs

There are twenty-four discrete output channels implemented in the UDOFT computer.
Each output channel consists basically of a dynamic flip-flop which controls a relay.

The discrete outputs are selected and controlled by the Multiplex Discrete Output
(MXDO) instruction. The bits of the address field of the instruction determine which out¬
put flip-flop is to be selected. Once selected, the state of the flip-flop is determined by
the sign of the quantity currently residing in the Accumulator. If the quantity is negative

47

DI

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

TABLE HI

NMAD

0400

0401

0402

0403

0404

0405

0406

0407

0410

0411

0412

0413

0414

0415

0416

0417

0420

0421

0422

0423

0424

0425

0426

0427

0430

0431

0432

0433

0434

0435

0436

0437

DISCRETE INPUT ASSIGNMENTS FOR
F-IOOA SIMULATION PROGRAM

USE DI NMAD

NOZZLE FAIL CLOSED 40 0440

NOZZLE FAIL OPEN 41 0441

ZERO 42

START ENGINE CRANK 43

START ENGINE FIRE 44

EMERGENCY FUEL REGULATOR 45"
ON

TEMPERATURE HOT (0. 934% 46
THRUST) -

DEFROST 47

DROP TANK PRESSURE 50

DROP TANK JETTISON 51

DROP TANK REFUEL 52

WINDSHIELD ANTI-ICE 53

SPEED BRAKE IN 54

SPEED BRAKE OUT 55

SPEED BRAKE DUMP 56

PILOT ICE 57

DRAG CHUTE INFLATED 60

CABIN PRESSURE 2. 75 PSI 61

AFTERBURNER ON 62

EMERGENCY HYDRAULIC FLIGHT 63
CONTROL SYSTEM

HYDRAULIC NUMBER 1 FAIL 64

HYDRAULIC NUMBER 2 FAIL 65

HYDRAULIC NUMBER 1 TO AO 66

HYDRAULIC NUMBER 2 TO AO 67

FREEZE 70

NOSEWHEEL STEERING 71

UTILITY HYDRAULIC FAIL 72

CABIN PRESSURE 5. 00 PSI 73

0442

0443

0444

0445

0446

0447

0450

0451

0452

0453

0454

0455

0456

0457

046 0

0461

0462

046 3

0464

0465

0466

0467

0470

0471

0472

0473

YAW DAMPER

MAIN TANK REFUEL

MAIN TANK DUMP

74 0474

75 0475

76 0476

LANDING GEAR IN MOTION 77 0477

USE

ROUGH AIR

GUIDE VANE ANTI-
ICE

INCREASE ALTITUDE

DECREASE ALTITUDE

AUTO PILOT

FUEL REGULATOR
FAIL

F9F-2

ALTITUDE LOCK

ROLL ANGLE LOCK

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

NO FUEL
DEPLETION

F9F-2

F9F-2

TRUE AIRSPEED
CONSTANT

FIX CENTER OF
GRAVITY

48

the flip-flop is set to the ONE state; the ONE state implies pulses circulating around the
flip-flop storage loop. If already set to the ONE state, the flip-flop will remain set until
cleared. If the quantity in the Accumulator is positive, the flip-flop will be cleared to
the ZERO state.

Approximately fifteen discrete output channels are required for the F-100A
problem (table IV). Had the radio aides functions been implemented in the computer,
this quantity would have increased noticeably.

3.6.3 Analog Inputs

There are twenty-four analog input channels implemented in the UDOFT computer.
Each input channel consists of a bit-serializing circuit. It is by means of these circuits
that the ten-bit parallel output of the Gray-coded binary, shaft-angle converter is con¬
verted into serial form, the most significant bit appearing first. The output of each of
the twenty-four serializing circuits forms a data input to a selection matrix. The other
inputs to the selection matrix are the number memory address bits which control the
selection of the appropriate data line. When an analog input channel is addressed, one
control line of the matrix is activated and the serialized analog input data appearing on
the associated data line is gated into the Gray code-to-binary converter.

The Gray code-to-binary converter would not be necessary had conventional binary
coded shaft angle converters been used. However, at the time UDOFT was developed
unambiguous read-out shaft-angle converters were very costly. Therefore, it appeared
sound to use converters utilizing conventional disc and brush techniques, attaining the
unambiguous read-out feature by using Gray coded discs.

As the serialized data is converted to conventional binary form, it is also trans¬
ferred to the Accumulator. Although most of the communication between registers in
the computer is performed in a parallel manner, the transfer of analog input data to the
Accumulator is performed in a serial manner. The converted data bits are introduced
serially into the eleventh stage of the Accumulator and shifted successively to the left
until stages eleven through twenty contain the ten analog data bits. Since ten shifts are
required, approximately nine microseconds are consumed just for transferring the data
into the Accumulator. This is one of the factors which necessitates that two instruction
minor cycles, ten microseconds, be provided for the execution of the Multiplex Analog
Input (MLXI) instruction.

Once the quantity has been entered into the Accumulator, it can be operated upon
as though it had been entered into the Accumulator from the Number Memory or the G-
Register. Thus, the quantity may be processed immediately or it may be transferred to
memory for later use.

Only nine analog input channels are used in the F-100A problem (table V). Of
this only six inputs are obtained from the flight compartment; the three remaining inputs
are control inputs established by the instructor. As in the case of both the discrete in¬
puts and the discrete outputs, the inclusion of the radio aids functions would have a marked
effect upon the utilization of the unused channels.

3.6.4 Analog Outputs .

There are sixty-four analog output channels implemented in the UDOFT computer.
The conversion of the binary quantities to voltage levels, and the outputting of the voltage
level for each of the sixty-four channels is performed in the Input-Output Unit.

The conversion function is performed by a static flip-flop storage register and a
digital-to-analog converter. The output quantity is obtained from the sign and the eleven
high order stages of the Transfer Register and is transferred to the analog output storage
register. The output of the register is applied to the digital-to-analog converter. The
output of the converter is a D.C. voltage level, in the range of zero to ten volts, which
is directly proportional to the digital quantity appearing at the input to the converter.

The converter consists of precision resistors interconnected to form a ladder net-
work(figure 18), inwhichthe seriesresistorshave half the value ofthe shuntresistors. Each

49

i».

TABLE IV

DO NMAD

01 1005

02 1006

03 1011

04 1012

05 1021

06 1022

07 1024

08 1030

09 1041

10 1042

11 1044

12 1050

DISCRETE OUTPUT ASSIGNMENTS FOR
F-IOOA SIMULAITON PROGRAM

USE DO NMAD

STABILIZER MOTION NOT O. K, 13 1101

AILERON MOTION NOT O. K. 14 1102

CRASH 15 1104

DROP TANKS

SPEED BRAKES IN

SPEED BRAKES OUT

SPEED BRAKES IN MOTION

HYDRAULIC NUMBER 1 FAIL

LAND INDICATOR

STALL

STALL WARNING

LANDING GEAR NOT DOWN

16 1110

17 1120

18 1140

19 1201

20 1202

21 1204

22 1210

•23 1220

24 1240

USE_

LANDING GEAR NOT
UP

HYDRAULIC NUMBER
2 FAIL

DYNAMIC PRESSURE
HIGH

SPARE

SPARE

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-2

F9F-1

TABLE V

ANALOG INPUT ASSIGNMENTS FOR
F-100A SIMULATION PROGRAM

AI NMAD USE

01 0161

02 0151

03 0131

04 0071

05 0162

06 0152

07 0132

08 0072

09 0164

10 0154

11 0134

12 0074

THROTTLE POSITION

AILERON

ELEVATOR

RUDDER

RIGHT BRAKE

LEFT BRAKE

BAROMETRIC PRESSURE

AIRPORT ELEVATION

ICING RATE

SPARE

SPARE

SPARE

M NMAD USE

13 0047 F9F-2

14 0143 F9F-2

15 0145 F9F-2

16 0146 F9F-2

17 0027 F9F-2

18 0123 F9F-2

19 0125 F9F-2

20 0126 F9F-2

21 0017 F9F-2

22 0113 F9F-2

23 0115 F9F-2

24 0116 SPARE

i

o
+

51

F
ig

u
re

1
8
.

S
c
h

e
m

a
ti

c
 o

f
D

ig
it

a
l-

to
-A

n
a
lo

g
 C

o
n
v
e
rt

e
r

shunt resistor is returned to ground and to plus ten volts D. C. through switching transistors.
The îwo switching transistors connected to each leg of the ^dd- ^sler“ Whefthe storage
the two outputs from the associated flip-flop of the output storage register. When the storag
flio-floD is in the ONE state, the transistor connected to the plus ten volt supply is closed and
fhe other transfstor is open When the flip-flop is in the ZERO state, the tranststor connected
togrourrf inclosed and the other transistor is open. Thus, the shunt resistors are returned
to either ground potential or ten volts depending upon the state of the driving flip-flop.

Transistor drive, rather than direct drive from the static flip-flops was used to
control the ladder network because of the near-perfect switch qualities exhibited by the
transistor When the transistor is saturated (closed) the effective resistance between t
emitter and the collector is negligible; when the transistor is cut-off (open) the effecttve
resistance between the emitter and the collector is extremely high.

The output of the converter is applied to the input of the sixty-four channel multi¬
plexer which acts basically as 64 addressable switches. When addressed a switch is closed,
and the output of the converter, which is applied to the input of the switch, is impressed
upon an aS output storage ¿apacitor. The switch must provide ^^^d r^dly ^ '
path for the capacitor in order that the voltage on the capacitor can be ch^ed r^idly.
Conversely when the switch is open, a very high resistance discharge path must be pro
vided otherwise the charge on the capacitor will not be maintained during the interval be
^een successfve addressings of the sine output channel. Since the time interval in question
is approximately fifty milliseconds, a discharge time constant of approximately five secón

is required.

The use of the addressable switches or a multiplexer eliminates the need for in'
dividual Sai-to-analog converters for each output. This affords conmderab^ s gS
in circuit elements, power consumption, and space requirements. A further effect of
component reduction is increased reliability.

Of the sixty-four available analog output channels, approximately forty are required

for the F-10 OA problem (table VI).

3.7 Computer Console Unit

The computer console provides manually controllable means of access to the com-

within the computer in addition to indicating the status of computer performance.

The UDOFT console consists of five major sub-units, of which three are the m-

function. Three major classes of functions were considered:

1. Mode selection and primary status indication.

2. Manual access and secondary status indication.

3. Maintenance aids, power control, and tertiary status indication.

The two remaining sub-units of the console unit are the (input) card reader and the
/ Th^c^rd reader provides the means by which bulk information is read
rlpidly into the'computer. The printer provides the means by which bulk information is
read out of the computer and converted into hard copy.

The following sections describe in detail the control and monitoring features
available at the console and the two computer non-real time input-output devices, the

card reader and the printer.

3. 7. 1 Console Panel A

The "A" panel is physically the center panel of the three console panels. It pro-
vide. J. »4«* »““» ..l^.hl.i ”od« .1 «P«»««”
and for monitoring status while the computer is operating (see figure 19).

52

AO

11

12

13

14

15

16

17

18

21

22

23

24

25

26

27

28

31

32

33
34

35

36

37

38

41

42

43

44

45

46

47

48

TABLE VI

NMAD

0000

0001

0002

0003

0004

0005

0006

0007

0010

0011

0012

0013

0014

0015

0016

0017

0020

0021

0022

0023

0024

0025

0026

0027

0030

0031

0032

0033

0034

0035

0036

0037

EXHAUST TEMPERATURE 52

ACCELERATION 53

INDICATED AIRSPEED 54

FUEL QUANTITY 55

PITCH ANGLE 56

ROLL ANGLE + SINE 57

ROLL ANGLE - SINE 58

ROLL ANGLE + COSINE 61

ROLL ANGLE - COSINE 62

RATE OF CLIMB 63

TURNING RATE 64

BALL ANGLE 65

HYDRAULIC PRESSURE #1 OR #2 66

TRUE HEADING + SINE 67

TRUE HEADING - SINE 68

TRUE HEADING + COSINE 71

TRUE HEADING - COSINE 72

FUEL FLOW 73

GROUND SPEED 74

RUDDER CONTROL LOADING 75

INDICATED ALTITUDE + SINE 76

INDICATED ALTITUDE - SINE 77

INDICATED ALTITUDE + COSINE 78

INDICATED ALTITUDE - COSINE 81

TRUE AIRSPEED 82

ALTITUDE ABOVE GROUND + 83
SINE

ALTITUDE ABOVE GROUND - 84
SINE

ALTITUDE ABOVE GROUND 85
+ COSINE

ALTITUDE ABOVE GROUND 86
- COSINE

ANGLE OF ATTACK (F151) 87

PITCHING RATE (F151) 88

USE

ROLUNG RATE
(F151)

MACH NUMBER

CABIN ALTITUDE

F9F-2

F9F-2

ELEVATOR CONTROL
LOADING

ICE QUANTITY

F9F-2

RATE OF CLIMB
(F151)

SPARE

SPARE

SPARE

SPARE

SPARE

SPARE

SPARE

F9F-2

F9F-2

F9F-2

DROP TANK FUEL
QUANTITY

F9F-1

SPARE

SPARE

SPARE

SPARE

SPARE

SPARE

0073 SPARE

0074 SPARE

0075 SPARE

0076 SPARE

0077 SPARE

ANALOG OUTPUT CHANNEL ASSIGNMENTS FOR
F-100A SIMULATION PROGRAM

USE

RPM

AO NMAD

51 0040

0041

0042

0043

0044

0045

0046

0047

0050

0051

0052

0053

0054

0055

0056

0057

0060

0061

0062

0063

0064

0065

0066

0067

0070

0071

0072

53

»~0 KtXTtM

®00®©®©©©©O©©O@©O©©©©©O@©
R0 ©©©©©©0©©©©©©®©©©©©©©
— nÄmft* ***rrui
0 0 ©©©©©©©©©©©©©©©©©©©©©©

«

p ucao <Jt*crri

1_

pfVitC

1

»■L

J

1Ç
Ht» TO »COKXIO« -J-

] ü^lüf

rrr CD
turnen Tiwwamo*

CDzazi
i—i i "i

SS - «r«

SSr
»MT

HMTI

4-
«T

Murr 75?
aXM

T* ■**

Figure 19. Computer Console Panel A

" .ífcaas

5
<

3. 7.1. 1 Mode Selection

The UDOFT computer has eight distinct modes of operation:

1. Fast Comp - the normal, high-speed mode of operation.

2. Slow Comp - the mode in which a fixed interval of ten microseconds
is added to the normal execution time of each instruction. This mode
is used primarily during program debugging because errors due to
forbidden sequences of instructions are eliminated.

3. Single Order - the mode in which only a single instruction is executed.
Instruction sequencing is effected manually by means of the Start
switch.

4. Card Read-In - the mode which must be established in order to allow
reading data from the card-reader into the computer memories.
Read-in of information from the card reader is under manual control,
unlike the read-in process in more conventional computers which is
under program control.

5. Slow Print - the mode in which the computer is in the halted state (the
program halt switch is on) and the output writer is enabled. The slow
print has two modes of operation, normal mode and dump mode. In
the normal mode each time the start switch is pressed the computer
performs an instruction in the normal manner, and prints out a line of
information. In the dump mode the computer augments the sequence
counter by one, addresses both memories with the content of the sequence
counter and prints a line of information each time the Start switch is
pressed - no instructions are performed during this operation.

Two formats are presently available in both the normal mode and the
dump mode. The short format prints NMAD and NMAR at a rate of
twenty lines per minute. The long format prints IMAD, IMR, NMAD,
NMR, and AC at a rate of seven lines per minute. Both formats print
the octal equivalent of the contents of the register.

In the near future an additional format will be installed which will
interpret the contents of the number memory registers as binary coded
decimal and printout the decimal equivalent of the register. This
format will increase the efficiency of the octal to decimal conversion
routines used on the computer.

6. Continuous Print - an extension of the slow print mode. In this mode
the task of pressing the start switch for each line of print is eliminated
by automatically actuating the start relay at the end of each line of
print. Once started the output writer will print until stopped in either
mode or either format.

7. One Cycle Divide - a highly specialized mode of computer operation
established to execute the multi-minor cycle divide instruction a
single minor cycle or quotient bit cycle at a time. The single cycle
division operation is under the control of the twenty-four position
rotary switch located in the lower right corner of the panel. The
quotient bit resulting from each minor cycle of the division process
is displayed by the One Cycle Quotient Digit indicator. This feature
is used only during periods of preventive and corrective maintenance.

8. Ready Simulate - in reality not a specialized mode of operation.
This mode is essentially the fast computation mode with the added
requirements so that console switches which might exert undesired
influence over the computer during flight simulation must be off.

Originally most of the console switches were included in this group.
However, this proved to be too much of a restriction. At present,

55

due to the expanded use of the ÜDOFT Computer, only a few switches
must be off. Examples are: stop comp, program halt, one cycle divide,
and continuous cycle single order.

Once the desired mode has been selected, operation is initiated by actuating the
Start switch. Operation will continue until it is stopped by any of the means available for
halting computer operation. Achievement of these modes of operation is dependent upon
a number of conditions. To assist in establishing the necessary conditions, a flow diagram
indicating the required states of the mode control switches was devised. This was neces¬
sary, also, because there is no interlocking of the mode control switches which would have
allowed direct set-up of the modes of operation.

There are eight switches that control the modes of computer operation. They are
located in the lower left corner of the panel. Explicitly, they are:

1. Timer Start — a momentary contact switch which causes a pulse to
be injected into the Timer loop, thus starting the Timer.

2. Stop Comp - an alternate action sv/itch causes the operation of the
computer to be halted in an orderly manner at the end of the instruc¬
tion which is being executed at the time the control is actuated.

3. One Cycle Divide — an alternate action switch which establishes the
necessary conditions for the one cycle divide mode of operation.

4. Card Read-In - an alternate action switch which establishes the neces¬
sary conditions for the card read-in mode of operation.

5. Cont. Cycle Single Order — an alternate action switch which establishes
the final conditions for a sub-mode of computer operation not mentioned
previously;, namely, the continuous cycle single order mode. In this
mode, established primarily for aiding corrective maintenance, the com¬
puter will execute the same instruction continuously.

6. Fast/Slow Comp. — an alternate action switch w'hich establishes the
necessary conditions for the slow' computation mode of operation.
Operation in the fast mode is the normal mode of operation; the ab¬
normal mode, slow comp, is controlled by this switch.

7. Slow Print — an alternate action switch w'hich enables the output
printer and the computer mechanism wiiich actuates the printer, and
causes the computer to enter the slow' print mode of operation. It
is also a necessary condition, if the continuous print mode of opera¬
tion is to be entered.

8. Cont. Print — an alternate action switch W'hich establishes the neces¬
sary conditions for the continuous print mode of operation.

The four remaining switches do not directly affect the selection of operational
modes. Since their functions are so varied and so singular in nature, it is not possible
to classify them as a group. Therefore, the function of each switch is described
separately as follows:

1. Timer Stop — a momentary contact switch winch disables the com¬
puter Timer. The use of this control is so limited that there is no
apparent reason for its inclusion in the system.

2. Clear TR Reg. — a momentary contact switch which causes the
contents of the accumulator to be gated into the Transfer Register.
If the accumulation is zero during card read-in, the switch effectively
clears the transfer register by gating the accumulator (zero) into the
Transfer Register. This operation is usually performed immediately
prior to card read-in to ensure that the Transfer Register, W'hich is
used as the buffer between the card reader and the computer memories,
will not introduce erroneous data into the first memory location ad¬
dressed. The necessity for this function is eliminated w?hen the initial

i

i».

56

data read in from the card reader is control data which serves only
to clear the Transfer Register.

3. Fast Print - an alternate action switch which enables the high-speed
Printer Buffer Register. This control has been temporarily disabled,
due to the extensive use of the Print Instruction and the Print Register.

4. Use TIM Inst. — an alternate action switch which, when enabled, causes
the computer to execute the TIM instruction when it is decoded. Other¬
wise, the TIM instruction is executed as a NOP instruction.

3. 7.1. 2 Secondary Control

Two secondary control functions are included on this console panel. They deal
primarily with the operation of the Accumulator:

1. Truncate on Overflow - three alternate action switches which, when
enabled, cause the truncation of the quantity in the Accumulator if
an arithmetic overflow occurred as a result of the instruction being
executed. Selective control is afforded by having three switches, one
for each type of instruction (Add, Divide, and Shift Left) that could
cause an arithmetic overflow. The resulting truncation process causes
the maximum quantity, ±(1 - 2~20), to be inserted into the Accumulator;
the sign of the quantity being truncated is retained.

2. Suppress Precision - five alternate action switches which inhibit the
normal operation of the five low order stages of the Accumulator.
Although the computer operates normally with numbers whose magnitude
is twenty binary bits, it is possible to reduce arbitrarily the precision
of computation to as low as fifteen binary bits, by means of the five
switches. This feature was incorporated for the purpose only of evalu¬
ating the fidelity of simulation as a function of word length.

3. 7.1. 3 Status Indication

Two distinct forms of status indication are available on the nAn panel of the con¬
sole. The first form is discrete in nature and indicates the occurrence of a phenomenon.
The second form of indication provides a means of monitoring the contents of the
Accumulator and the three registers which communicate with it.

The discrete status indicators indicate primarily the occurrence of undesirable
results. There are nine such indicators:

1. Add Overflow - indicates the occurrence of an arithmetic overflow in the
Accumulator resulting from an add operation (which may occur as the
result of an add, subtract, shift add or multiply add instruction).

2. Divide Overflow — indicates at the beginning of a divide operation that
the dividend is larger than the divisor.

3. Shift Left Overflow - indicates the occurrence of an overflow in
the Accumulator due to a shift left instruction.

4. Non Exist Instr. — indicates the decoding of the unused order type
NOT.

5. - G-Reg. Error — indicates that the address of the G-Register has
been used with an order type 'which may not refer to the address of
the G-Register.

6. PNM Error - indicates a number memory parity error.

7. PIM Error - indicates an instruction memory parity error.

8. Divide Trouble — indicates improper handling of the quotient digits
or timing marker pulses in the G-Register. This is usually caused
by failure to clear the G-Register before a divide instruction.

57

9. RAR Overflow — indicates an arithmetic overflow has occurred in
the relative address former as a result of adding two addresses whose
arithmetic sum is greater than (7777)8. ™s is a verT common occur-
rance, since it is often convenient to effectively decrement the address
by causing an overflow.

A tenth status indicator is included with these fault indicators. However, it does
not indicate the occurrence of an error in either the program or the operation of the
computer. It simply indicates that the programmed halt instruction, PHT, has been de¬
coded.

In the case of all ten of these indicators, the occurrence of a fault is acknowledged
by the computer operator simply by depressing the switch-type indicator which indicated
the fault.

It was possible through the design of the computer to allow the occurrence of cer¬
tain of these faults to halt the computer. The faults selected were Non-Existant Instruc¬
tion, G-Register Error, and Instruction and Number Memory Parity Errors. By means
of the associated Stop on Error switches located immediately above the error indicators,
the operator has the facility for causing the computer to halt when any of these errors
are committed, A Stop on Error control, in this case a misnomer is associated also with
the Programmed Halt indicator. It allows the execution of a programmed halt instruc¬
tion to halt computer operation. During normal use of the computer, the Stop on Error
controls are disabled; thus, the occurrence of errors, though they may interfere with the
accuracy of the computed results, will not interrupt the execution of a program.

Although Stop on Error controls are not associated with the three overflow indicators,
it is possible for the occurrence of an overflow to halt the execution of the program. This
feature has been implemented in the computer hardware. However, a halt on overflow will
occur only if the instruction immediately following the arithmetic instruction that caused
the overflow is not a transfer on overflow instruction, TOV.

An overflow not followed by a transfer on overflow instruction is an invalid over¬
flow and as such will cause the appropriate indicator to light. A divide overflow will
always cause the divide overflow indicator to go on.

In slow mode every invalid overflow will halt the computer; while in fast mode the
HOVW (Halt on overflow) switch must be on to cause an invalid overflow to halt the com¬
puter.

There are three banks of indicators used for displaying the contents of four
registers. The four register displays are:

1. M-D Register — a bank of twenty-two indicators to display the binary
contents of the Multiplicand-Divisor Register.

2. Accumulator — a bank of twenty-one indicators to display the binary
contents of the Accumulator.

3. Transfer Register - a bank of twenty-two indicators to display the
binary contents of the Transfer Register.

4. G-Register - the contents of the G-Register, twenty binary bits and
sign, are displayed on the M-D Register indicators. Whereas the
three registers mentioned previously are monitored continuously and
automatically, observation of the contents of the G-Register is pos¬
sible only when the computer is halted and the G-Register read-out
control switch is activated.

3. 7. 2 Console Panel B

The "B" panel of the computer console affords the means for continuously
monitoring the contents of the Instruction Memory Output Register, the Sequence Counter,
and the Interval Timer; for manually inserting data into the Tally Register, the Relative
Address Register, the Sequence Counter, the Interval Timer, and any register in either

i».

58

S
S

S
R

il
?«

the Instruction Memory or the Number Memory; and for manually calling forth data for
display from any register in either the Instruction Memory or the Number Memory (see
figure 20),

• 3, 7. 2. 1 Status Indication

Four banks of indicators continuously indicate the status of the following computer
registers:

9

1. Instruction Memory Output Register — a bank of twenty indicators to
display the binary contents of the Instruction Memory Output Register-

2. Number Address Storage Register — a bank of twelve indicators to
display the binary contents of the Number Address Storage Register.

3. Sequence Counter — a bank of twelve indicators to display the binary
contents of the Sequence Counter.

4. Interval Timer - a bank of fourteen indicators to display the binary
contents of the Interval Timer.

In addition there are ninety-two indicators which indicate the status of ninety-two
dynamic flip-flops not otherwise monitored by any other indicator on the console. These
indicators are useful to maintenance personnel by providing an additional degree of
trouble-shooting capability at the console.

3.7.2.2 Control Functions

Manual control over four computer registers and the two computer memories is
exercised by the switches situated in the center section of console panel B.

1. Tally and Relative Address Registers - Twelve alternate action switches
are available for establishing the binary quantity to be read into either
the Tally or the Relative Address Register. If the quantity is to be read
into the Tally Register, the Set Tally Register switch is actuated; if
into the Relative Address Register, the Set Relative Address switch is
actuated. Regardless of the register being set, it is necessary first to
clear the register by means of actuating the Clear Ta Rar switch. If,
during operation in the single order mode, it is desired to use relative
addressing in conjunction with an instruction for which relative addressing
is not specified in the program, actuating the Use Relative Address switch
will enable the use of relative addressing.

2. Sequence Counter — Twelve alternate action switches are available for
establishing the binary quantity to be read into the Sequence Counter.
The quantity is read into the Sequence Counter upon actuation of the
associated Reset Switch. The reset function both clears the Sequence
Counter and sets it to the desired state.

t
3. Interval Timer — Fourteen alternate action switches are available for

establishing the binary quantity to be read into the Interval Timer.
The read-in process is identical to that of the Sequence Counter as
described above.

4. Instruction and Number Memory - Twelve alternate action switches
are available for establishing the binary address of the memory reg¬
ister into or out of which information is to be read. Similarly, twenty-
two alternate action switches are available for establishing the binary
word that is to be read into the memory. In the case of reading into
the Instruction Memory, only the first twenty of the twenty-two switches
are effective. Selection of the memory to be read into or out of is con¬
trolled by the NM-EM switch. Selection of read-in or read-out is con¬
trolled by the Read In-Out switch. Initiation of the process is controlled
by the Manual Oper switch. Information read into the Instruction Memory
is displayed immediately upon the Instruction Memory Output Register
indicators; information read into the Number Memory may be displayed

s»-

59

Figure 20. Computer Console Panel B

60

upon the M-D Register indicators by manually reading-out from the
same register into which the information was stored. The same
two registers display the contents of the respective memories during
the manual read-out process.

It should be noted that any of the previously mentioned manual operations may be
performed only when the computer is in a stopped or halted condition; otherwise, proper
execution of the computer may be jeopardized.

3.7.3 Console Panel C

The MCn panel of the computer console provides the means for initiating and
monitoring the application of prime power to the computer, for directing and controlling
the application of the marginal checking voltage, and for minor function control and
status monitoring, (see figure 21),

3. 7. 3. 1 Prime Power Application

Large pushbutton switches are provided for connecting and for disconnecting the
computer from the source of prime power. Three indicators indicate, in sequence, the
application of prime power to the power supplies (Power On); the application of full fila¬
ment voltage to all the vacuum tubes (Filament On); and the application of regulated D. C.
power to the computer circuits (D. C. On).

3. 7. 3. 2 Marginal Checking Voltage

Three banks of eight alternate action switches are provided to allow the selection
of a particular bay of the computer to be marginally checked. Eighteen of the twenty-
four switches connect the +80 marginal check voltage to the pulse amplifiers in the as¬
sociated bay. Actuation of any one of these switches will illuminate the +80 MCV indicator
which serves to indicate that the associated voltmeter is used to monitor the variation in
the marginal checking voltage. The two forms of application of the marginal checking
voltage are controlled by the MCV Selector Switch. One form is the application of a fixed
increment of voltage; the other form is the application of a variable increment of voltage
which is controlled by the MCV Variation Control. The remaining six bay selector
switches connect the +150 marginal check voltage to the sense amplifiers and the static
flip-flops in the Memory Unit. Selectors 1E1-MS and 1E4-MS select the sense amplifiers;
selectors 1E1-MBR and 1E4-MBR select the Memory Output Register flip-flops and the
Memory Rewrite Register flip-flops; and selectors 1E2-MAR and 1E3-MAR select the
Memory Address Register flip-flops.

3. 7. 3. 3 Status Indication

Three different forms of status indication are provided:

1. Cabinet Power or Blower Failure. At each of the major units of the
computer, an indication of power failure or cooling-air blower failure
for that unit is provided. Since not all of these units are visible from
the computer console, it w'as deemed necessary to provide a single
indicator at the console which would indicate a power or a blower failure
anywhere in the system. The single Cabinet Blo-wer-Power Failure in¬
dicator at the console flashes a red warning wrhen such a condition exists.
A buzzer sounds simultaneously to make the warning more prominent.
The operator acknowledges the presence of a failure by disabling the audible
alarm; however the red warning continues to flash as long as the failure
exists.

2. Error Counters. Electro-mechanical counters are provided to main¬
tain an account of errors that occur in the computer. Since a con¬
sistently made error could recur at a very high rate, the circuitry re¬
quired for accounting for such errors would be extravagent. Therefore,
the counters are simply activated by the error acknowledge switches.
As a result the quantities displayed by these counters represent con¬
servative estimates of system failures. Operating experience has
shown that these error counters contribute little to improving the opera¬
tion of the system.

61

3. Discrete Output. Twenty-four pairs of indicators indicate the status
of the twenty-four discrete output channels. During the execution of
a simulation program, the indications are meaningless to the un¬
initiated. However, to the experienced programmer, they provide
means, at the console, for indicating the occurrence of special events
which are pertinent to the problem being solved. Also, they are used
to indicate proper and improper operation during the conduct of some
of the preventive maintenance programs.

3. 7. 3. 4 Control Functions

Since the discrete inputs of the UDOFT computer provide a feature which is
similar, in a small way, to the addressable flip-flop feature of the more conventional
general-purpose digital computers, it was considered that control of some of these in
puts from the computer console would enhance the utility of the computer. Thus, con
trois for twenty-four of the sixty-four discrete inputs were provided. Like the discrete
outputs, the discrete inputs find their greatest use during the execution of some at the
preventive maintenance programs.

3. 7. 4 Input Card Reader

The device used for reading punched-card information into the UDOFT computer
is an IBM 514 Reproducing Punch. The reader is capable of reading cards, one line at a
time, at the rate of approximately one hundred cards per minute.

Originally, the UDOFT binary cards were arranged with only five words per card.
With this configuration of punched-card data, it required approximately fifteen minutes
to load the F-100A simulation program into the computer. The word configuration has
since been improved so that twelve words may be punched into a single card, thus de¬
creasing read-in time for the F-100A simulation program to approximately six and a
half minutes. In addition, the improved word packing density results in a 60% savings
in punched cards, thereby minimizing card handling and storage problems.

In addition to its use as the input card reader, the reproducing punch is also used
to reproduce and verify decks of punched cards. This feature is highly desirable since
continued use of a single deck results in excessive card wear which will lead ultimately
to erroneous read-in and possible fouling of the card reader mechanism.

3. 7. 5 Output Printer

The UDOFT computer uses an IBM electric typewriter for the output printer-
facility. Actuation of the printer is controlled manually by the Slow Print and Continuous
Print mode selection switches located on the console "A" panel, ha order to form a
single line of copy for printing, the following steps are taken:

1. The Sequence Counter is reset to the address of the desired in¬
struction.

2. The Slow Print selection switch is actuated.

3. The mode of printing, normal or dump, is selected.

4. The format short or long is selected.

5. The Start switch is actuated.

The computer will execute the single instruction and halt. Immediately upon
halting, the typewriter will print a single line of copy, at the completion of which the
carriage of the typewriter will be returned and all operation will cease until the Start
switch is again actuated. In the Continuous Print mode of operation, the return of the
carriage will automatically initiate the next cycle. This will continue so long as the
computer remains in the Continuous Print mode. The form of the copy for the normal,
mode, long form is shown on the following page.

tK

63

7761
7762
7763
7764
7765
7766
7767
7770
7771
7760
7761

r340001 7041
r340002 7042
r340003 7043
r340004 7044
r340005 7045
r340006 7046
r340007 7047

340000 7050
037760 7760

rllOOlO 0010
r340001 7051

0034640 0024640
0475006 0475006
0250560 0250560

-0413570 -0413570
0057674 0057674
0000000 0000000
0000000 0000000
0000000 ooooooo
0632700 OOOOOOO
0001000 OOOOOOO

-0267760 -0267760

7766 r340006 7056 7777776 7777776

The five columns of the print-out are, respectively, the Instruction Memory
Address (IMAR), the Instruction Word (MR), the effective Number Memory Address
(NMAR), the quantity read out of the addressed Number Memory Register (NMK), and
the content of the Accumulator.

When one desires to obtain only numerical results which have been stored in
memory during the execution of a program, the repetitious clear-add instructions serve
only to address the desired data words in memory and place them in the Number Memory
Output Register(NMR) where they may be sampled by the print-out system. Since the
maximum speed of the typewriter is only seven lines per minute, an excessive amount of
time is consumed in obtaining the desired data which is contained in only two of the ñve
columns of the print-out.

For this reason a short form of print-out was added, in which only the third and
fourth columns (NMAR and NMR) of the long-form print-out are generated. This results
in the print-out form which is shown below, (normal mode, short form)

0024640
0475006
02 50 560

-0413570
ooooooo
ooooooo
ooooooo
0632700
0001000

-0267760
7777776

7041
7042
7043
7044
7046
7047
7050
7760
0010
7051
7056

As a result of the reduction in the amount of data required to be printed out, the
effective print-out speed was tripled, (about twenty lines of copy per minute). This im¬
provement has recently been carried one step further by adding a dump mode. In the
dump mode the contents of the memories can be displayed without performing instructions.
During the dump mode in either short or the long format, the sequence counter is augmented
by one at the end of each Une of print and the contents of the sequence counter is forced
into both the Number Memory Address Register and the Instruction Memory Address
Register making the information in the addressed registers available to the printer.

SECTION IV

COMPUTER HARDWARE DEVELOPMENT HISTORY

4.1 Introduction

tpi * previously, the design oí UDOFT was conceived at the Moore School of
Electrical Engineering of the University of Pennsylvania. This design resulted from a
study of the feasibility of a digital flight trainer.

An evaluation study of the MSEE computer design and programming approach was
performed by Remington Rand Univac, Division of the Sperry Rand Corporation for the

1743(0¾ alnÍng DeviCe Center at Port Washingt™. New York, under contract number

The purpose of this study was to determine whether the computer logic circuitry
and general approach to the simulation problem as proposed by MSEE were adequate for
digitally simulating the performance of an aircraft in real-time.

- ., The following sections, though only of a summary nature, presented factually some
of the modifications and recommendations made before and during the computer development
istage. Reasons for the modifications and important considerations involved are evaluated
objectively.

4. 2 Logic Design Problems

The following account discusses the more prominent changes and improvements
implemented in the logic design of the UDOFT computer. These modifications resulted
from the Remington Rand Univac study and from the efforts of design engineers at
Syl vania and at MSEE. es

4. 2.1 Number Memory

As a result of the programming activity at MSEE, it was soon realized that the
originally planned number memory, with capacity for only 1024 words, could not accom¬
modate the figures and constants required by a complete flight simulation program
Since the coincident-current magnetic core memories had not at that time been developed
for the computer, it was later a simple task to alter the capacity' requirement for the
number memory to 4096 words, thereby making it identical to the instruction memory.
The change eased the memory design problem to some extent, calling for the development
of only a 4096 word memory, rather than two memories with different capacities.

The necessity for a larger memory was proved when the complete F-100A simula¬
tion program, without any consideration for temporary storage or test data was found to
use approximately 3350 number words.

The increased capacity of the number memory affected the instruction memory.
For a number memory of 1024 words, the operand address field was ten bits: for 4096
words, this field had to be increased to twelve bits.

Although the design of core-memories was not included in the initial computer
design formulated at MSEE, the memory for both instruction and number memory con¬
trol functions had been determined. A part of the memory control function controls the
memory cycle. After access to a memory register, the initial design indicated the
memory would continue to cycle at memory address (0000)g until a new address was pre¬
sented. It was found desirable, primarily for maintenance purposes, to allow this to take
place; maintenance personnel can readily' examine memory drive current waveforms with¬
out having the computer execute an instruction.

. The memory logic, as well as the logic of the rest of the computer, was developed
with the intent to design a powerful computer to meet the demanding application. The
programmer, ultimate user of the computer, was as a result forgotten in many’cases. A
significant area where this occurred was the manually controlled access to tim memories;
no provision had been made originally' for manually writing into or reading out of either
memory. This was remedied by adding the manual read-write provision, whereby' access
to any memory storage register is available to the programmer by' means of computer
console switches.

4*.

65

4. 2. 2 Parity Formation — Card Reader Input

Originally it was necessary, when preparing punched cards for the entry of informa¬
tion into the computer memories, to enter the parity data into the punched cards,. It would
have been difficult enough to punch a r sry large amount of binary input cards without the
added burden of determining parity. How eve:, a striking relief from this burden was ob¬
tained by having the computer determine parity during the card read-in process. By

.-utilising the modified Number Parity Former, parity is formed automatically for a word
written into either memory from the punched card input equipment.

In retrospect, a superior approach would have been a comparison check of the
punched card parity bit with the automatically formed parity of the inserted word. This
feature would maintain a constant check on the validity of the information being read into
the computer from the card reader. As things are, it is quite possible for erroneous
information to be read into the computer unnoticed. The requirement for parity data on
the punched cards, the original reason for modifying the Number Parity Former, is no
longer a problem; the assembly program, TJD3, is capable of determining parity and can
be modified to cause the punching of the parity bit in addition to the currently required
information.

A bonus feature would be the inclusion of automatic parity formation for data in¬
serted manually from the computer console. At present, parity must be determined and
inserted manually.

4. 2. 3 Interval Timer

The performance of an iterative real-time program requires the availability of
a real-time clock or some other means by which arbitrary intervals of real time can be
established. In drum-type computers there is little need for such a device, since the
feature is part and parcel of the rotating magnetic drum's mode of operation. Her//ever,
in a random-access core memory digital computer, there is no device which is cyclic
with respect to relatively long intervals of real time. To fill this need, the Interval
Timer was introduced. Like any timer, this device must be set for some arbitrary in¬
terval of time and must indicate that the fixed interval has passed. Thus the Interval
Timer required the addition of two computer instructions, SIT and SENIT.

The SIT instruction retains its original function, namely, to set the Interval Timer
to some arbitrary count. The SENIT instruction, on the other hand, has been modified.
Originally the SENIT instruction was a conditional transfer of control instruction which
functioned only when the Interval Timer had run down to zero. If the count in the timer
were not zero when the SENIT instruction was decoded, the computer would remain in an
idle state until the timer had run down to zero. This seemed wasteful of valuable time
that could be devoted to some worthwhile, though not mandatory, computing function.
Therefore the SENIT instruction was modified to its current form.

4. 2. 4 Additional Instructions — SCRNM and TIM

The use of two memories, one for instruction words and the other for number
words, not only effectively doubled the computer speed but also isolated instruction words
from number words. This isolation was carried through the computer design to such an
extent that no means was provided for the modification of instructions. The only program-
modification facility available in the computer was the cumbersome relative-addressing.
This was thought initially to be sufficient. Since the computer was to handle only one class
of problems, involving real-time flight simulation, there seemed no need to incorporate
such a feature, even though it is found in nearly aÚ contemporary digital computers.
Further, it was felt that the lack of instruction modification enhanced the reliability^ of the
computer. This conclusion was based on the premise that, with no modification of instruc¬
tions, the instruction program is inviolate; that is, the probability of disrupting the instruc¬
tion program in memory is decreased greatly because nothing may be done, either cor¬
rectly or incorrectly, to disturb the identity of any instruction word once it has been read
into the memory.

This barrier was relaxed, though never removed, to allow the addition of two
pro gram-modification instructions, SCRNM and TIM. The SCRNM instruction is not a
program-modification instruction, but in a limited way provides some of the features of

a complete form of program-modification. It contributes a degree of flexibility to program
formulation that otherwise could not exist, with the two memories isolated as they are.

The TIM instruction provides a form of program modification to the extent that,
during the execution of a program, it is able to store new information (instruction words)
in any location in the instruction memory.

Until recently, the use of this feature had been limited to maintenance and test
program; real-time simulation programs did not utilize it. However, in some of the
simulation programs larger instruction memory capacity was needed and effectively ob¬
tained by using the TIM instruction. The underlying doubt as to the advisibility of this
feature has all but disappeared.

4. 2. 5 Sequence Counter

The primary function of this device is to provide a sequence of addresses for the
instruction memory. A parallel register, all stages having the same clock phase and having
the information available at the same time is required for this task; it must be capable of
being augmented by one in five microseconds. These requirements led to the development
of a register producing a non-standard count; e. g., the sequence followed by the first two
stages was 00, 01, 11, 10, 00. Although assembly programs could be written to use such
a count, this placed an unnecessary burden on computer programmers and users by im¬
posing the use of conversion tables. To eliminate this burden a standard binary counter
with improved control logic was developed. The technique employed was the serializing
of the parallel register's contents in two groups, odd bits and even bits, and the setting
of the count two bits, one odd and one even, at a time. This effectively halved the normal
counting time. The counter actually interrogates the bits two at a time, beginning with
the least significant two, and changing all ONEs to ZEROs until the first ZERO is encountered.
The first ZERO is changed to a ONE and all the remaining bits are left unchanged, there¬
by effectively adding one to the contents of the register.

4. 2. 6 General Purpose Computation

The GPC, or slow mode of computation, was established to allow the complete
execution of an instruction prior to the initiation of the next instruction. In the fast mode
of computation, it is possible for three successive instructions to be in various phases
of execution simultaneously. This precludes rapid computer maintenance; hence the
selection of the slow mode. Originally, five microseconds was the extension to each in¬
struction when executed in the slow mode. Five microseconds was found to be insufficient
because some instructions, such as MAD, extend their advertised execution times beyond
that time period. The resultant modification increased the five microsecond extension to
ten microseconds.

4. 2. 7 Non-Existent Instruction

Before the SIT, SENIT, SCRNM, TIM, TOZ, and MOP instructions were added to
the computer repertoire, there were available a number of unused order codes. With
expansion in mind, the computer designers implemented the order-type decoders for the
unused order codes. Since the order codes were unusable, the decoding of such an order
code would indicate some type of memory malfunction. Therefore the outputs of the un¬
used decoders were combined to signal the occurrence of a non-existent instruction, and
if desired, to halt the computation thereon. Subsequently added instructions depleted the
number of unused order-type decoders until only one remains. It is still referred to as
NOT, Non-existent Order Type. Since it functions identically to the programmed halt
instruction, the progrmmers use it as another form of controllable program halt; the
maintenance engineers use it to validate the loading of instruction memory from punched
cards.

A great many modification have been made and are still being made to the UDOFT
computer. To record them would require a voluminous report and would lend nothing to
the state-of-the-art of computer logic design. To reiterate a previous statement, the
details of the logic are secondary to the function of the logic. Since many of the logic
modifications involve the details of computer logic and are concerned with only the UDOFT
computer, the discussion of logic design problems will be terminated at this point.

í¿

I

;
!
V
ü

4. 3 Circuits

This section gives information on the more complex circuits used in the UDOFT
computer. Theory of operation, problems encountered, and means used to solve these
problems are briefly discussed for each circuit. Each circuit is categorized under the
computer section where its function is most significant. For instance, the pulse amplifier
appears under the heading of Main Frame Circuitry; the sense amplifier appears under the
heading of Memory Circuitry.

4. 3.1 Main Frame Circuitry

The pulse amplifier is the basic circuit used to implement the computer logic;
pulse amplifier assemblies comprise approximately 40% of the total number of plug-in
assemblies in the computer system.

A careful evaluation of the original MSEE de^'gn was undertaken (see figure 22).
Several breadboard models were used in this study. Although the models functioned adequ¬
ately, modifications were deemed necessary to increase the operational tolerances.

4. 3.1. 1 Pulse Amplifier Modifications

The 1N118A diode, the universal logic diode used for such purposes in computers
as AND gates, OR gates, isolation and clamping, was replaced by the S403G diode. This
diode's characteristics, such as forward voltage drop, are superior to those of the
1N118A. Furthermore, groups of these diodes showed more uniform characteristics
than did the 1N118A when tested in groups.

A design tolerance of ±10% was required on bias voltages to account for variation
in decoupling drop, power supply regulation, transients on the input lines, noise pickup,
and prime power variation. This tolerance required changing the -2.1 volts and -3. 0 volts
supplies to -3. 0 volts and -4. 5 volts respectively. The ±18.9 volt suppKes were changed
to ±20 volts for convenience only. The -1.3 volt biasing level was found to be high. The
+45 volt plate supply was changed to +80 volts, to reduce screen dissipation and to provide
larger output pulses for driving the revised gating structures.

Discrete output and console indicators were to be controlled by relays in the plate
circuit of the pulse amplifiers. This method was discarded because the average pulse
current could not be maintained sufficiently constant from tube to tube. A low-frequency
transistor, connected as an inverter, was used instead of the relay. The output of the
pulse transformer drives the base of the transistor which, because of its poor character¬
istics and the lack of a speed-up capacitor, averages the pulses and stays saturated.
Relays or indicator lamps may then be placed in series with the transistor's collector.
The transistor adds only a negligible load to the pulse amplifier.

The pulse transformer design was changed because attempts to manufacture J
satisfactory transformers by the MSEE method ended in 60 percent failures. I

4. 3.1. 2 Operation of Pulse Amplifier I

The pulse amplifier is a "logic" package, having one or more input AND gates
of varying configurations. Such an AND gate, when coincidentally presented with a
clock pulse and the proper input signals, will produce an output pulse of standard dihien-
sions. The output pulse is a replica of the input clock pulse, delayed a specified tinpe by
the pulse amplifier circuit. This delay is compatible with the overall timing of the com¬
puter; it is measured with respect to the input clock pulse, and is considerably less than
one clock phase (0.167 psec). Thus the output can be applied to other logic circuits, and
will arrive at the load before the start of the next clock pulse. The design of the pulse
amplifier permits some timing discrepancy between the input pulses, with the exception
of the clock pulse. The only requirements are that the input pulses arrive before the clock
pulse and that they are present for at least a portion of the clock pulse.

The following four types of output are provided:

a. Positive Clamped — Most commonly used output; used to drive other
pulse amplifier packages in the same cabinet

68

69

i

F
ig

u
re

2
2
.

M
S

E
E

P

u
ls

e

A

m
p
li

fi
e
r

C
ir

c
u

it

b. Positive Undamped - Larger amplitude than positive clamped output;
required to combat the effect of signal losses in OR gates, coaxial
cables, and delay lines

c. Double Amplitude — Used to drive long delay lines where pulse attenu¬
ation becomes an important factor

d. Negative Unclamped — Used as an inhibit pulse to prevent an AND gate
from being turned on

The pulse amplifier circuit (figure 23) contains one or more input AND gates and
a recirculation AND gate, which, through an OR gate, controls the grid of a vacuum tnbe
amplifier. When coincidence occurs at all the inputs to any AND gate, (figure 24) the
tube changes from a state near cutoff to a state of high conduction. The latter state is
maintained as long as one of the input AND gates or the recirculation AND gate is ON.

All pulse amplifier circuits contain the recirculation gate, which is a two-diode
AND circuit. One of the inputs to this gate is the clock pulse; the other is pulse amplifier
output feedback from the output transformer shown in figure 24. The recirculation cir¬
cuit helps shape the output pulse by making it approximately the same duration as the
clock pulse.

The output pulses are developed across the two secondary windings of the pulse
transformer in the plate circuit of the tube. The manner in which the secondary windings
are connected and the clamping applied determines the types of output provided. In addi¬
tion, some of the pulse amplifier circuits are provided with a transistor in the output
circuit to provide a D. C. output when the circuit is used as a dynamic flip-flop. The
transistor averages the output pulse current and provides a D. C. voltage level to control
external circuits.

When the logic requires inhibiting an input to a particular AND gate, an additional
input to that gate must be supplied. This input is the clock phase preceding the normal
clock phase. An examination of figure 25 explains the reason for the added clock pulse.
The inhibit pulse is approximately the same width as the normal clock pulse and, since
the inhibit pulse arrives first, there is an unblanked portion of the clock pulse that could
allow the pulse amplifier to produce an output. To remove this possibility, the clock
pulse of the previous phase is fed to the gate. When the inhibit pulse goes positive, the
gate is held negative by the added input. Addition of this clock pulse input in no way
alters the normal operation of the gate.

The pertinent timing characteristics of the pulse amplifier circuit are:

Circuit delay (at 1. 6-volt level) 0.115 /isec max

Pulse width (between 1. 6-volt points) 0. 317 psec max

Rise time (to 90% of amplitude) 0. 05 psec max

Fall time 0.05 psec max

4. 3.1. 3 Pulse Amplifier in Dynamic Flip-Flop Configuration

To satisfy the logic requirements of the computer, it is often necessary that a
chain of pulses be provided. The pulse amplifier is designed to perform this function,
i. e., that of a dynamic flip-flop. By definition, when the pulse amplifier in the
dynamic flip-flop configuration is in the one state, it produces an output pulse for every
clock pulse period (0. 833 micro-second); when in the zero state it has no output. The
dynamic flip-flop has several advantages over the static type; faster operation, less
critical circuit values, no resetting, availability of varied outputs, lower power re¬
quirements, and increased reliability.

Figure 26 depicts a pulse amplifier in the dynamic flip-flop configuration. The
circuit is started normally, with pulses present at inputs A and B of Gate No. 1
coincidental with the appearance of a clock pulse. The output pulse is available
0.115 psec later; it is then delayed an additional 0. 8 of a clock period, or 0. 667 psec,
before appearing at one of the inputs to Gate No. 2. Since the total delay encountered" is

70

“
I

E
X

T
E

R
N

A
L

.L

O
A

D

71

F
ig

u
re

2
3
.

R
e
v
is

e
d

P

u
ls

e

A

m
p
li

fi
e
r

C
ir

c
u

it

CLOCK INPUT 2
PULSE

INPUT 1

AND GATE ON

(A) INPUT AND GATE

CLOCK
PULSE

RECIRCULATION
r PULSE

AND GATE ON

(B) RECIRCULATION AND GATE

DELAY—

(D) OUTPUT

Figure 24. Pulse Amplifier Timing

72

B

S CLOCK
PHASE 2

CLOCK CLOCK

INHIBIT PHASE 0 OR 1

i 1

PHASE 2

-- Fj'

1 i ''n'i

_ZJÍ
(B) INHIBIT PULSE WITH PREVIOUS CLOCK PHASE

1
Figure 25. Inhibit Pulse Configuration

i

73

i*-

74

EX
T

E
R

N
A

L

T

O

P
.A

.

-
0
.
8

D

E
L

A
Y

)
-

(0
.6

6

S
E

C
)

F
ig

u
re

2
6
.

L
o
g
ic

C

o
n

fi
g

u
ra

ti
o

n

o

f
D

y
n
a
m

ic

F

li
p

-F
lo

p

equal to the time between two successive clock pulses, the output arrives at Gate No. 2 co-
incidently with the second clock pulse. The second input to Gate No. 2 is held positive by
the reference voltage of the inhibit pulse, and the third diode is held positive by the previ¬
ous clock phase. The always-present normal clock phase is also an input to Gate No. 2.
Thus, the second AND gate is ON every time the clock pulse arrives, once the circuit is
started by Gate No. 1. The circuit is stopped by applying an inhibit pulse to Gate No. 2.

4. 3. 2 Input-Output Circuitry

The method of implementing the digital-to-analog conversion, the information
sampling rate, and the distribution of this information in a prescribed time interval to
a control system are important factors in accomplishing successful design for digital
flight simulation. A detailed description of the problems involved in the development
of the digital-to-analog conversion system used in UDOFT is accordingly presented.

This analog output system for UDOFT is shown in block diagram form in
figure 27. The system includes a 12-bit number storage register, a digital-to-analog
converter, a 16-bit address selection register,and 64 multiplexer channels. The
converter consists of switching transistors and a precision resistance ladder network
whose output becomes the voltage input for each multiplexer channel. Basically, each
of these channels consists of selection diodes, a diode bridge, a storage capacitor, and
two cathode followers.

The flip-flops of the selection matrix provide inputs to the selection diodes which
enable the diode bridge. This bridge provides isolation of the storage capacitor from
the input in the OFF condition, and allows the storage capacitor to charge or discharge
when the bridge is enabled. The cathode followers isolate the storage capacitor from
the load and provide drive capability.

When a Multiplex Analog Output (MLXO) instruction is decoded, the number-
register sets the converter to the new value of the variable and the address selection
register enables the multiplexer channel assigned to that address. Each channel output
is stored capacitively, eliminating the need for an individual digital-to-analog con¬
verter for each output. The time-sharing of the one converter among the 64 multi¬
plexer channels is determined by the program. The only restriction imposed upon the
program is that each multiplexer channel used must be re-established every 50 milli¬
seconds and each channel must be addressed for a minimum of 100 microseconds to
insure complete charging of the storage capacitor.

4.3.2.1 Analog Output Multiplexer

The sixty-four multiplexer channel circuits provide the means by which the
output of the digital-to-analog converter is applied to one of the sixty-four external
loads specified by the address stored in the analog output selection register (see
figure 28). The channel circuits are arranged in an 8 X 8 array, and have eight flip-
flops associated with each co-ordinate. The outputs of the flip-flops are connected to
the gate diodes of the multiplexer channels so that when one flip-flop along each co¬
ordinate is in the one state, the corresponding multiplexer channel is selected.

The multiplexer and the associated reference packages were primarily designed
to control servo-mechanisms, although in more recent applications they have driven a
variety of devices without using the reference packages.

Each multiplexer channel circuit must satisfy four basic requirements:

The output must follow in linear fashion the input from the digital-to-
analog converter. (The linearity of the multiplexer is practically perfect,
since all nonlinearities are second order. Unbalance in the currents
and I2 (figure 29) causes a current to flow in the input, which adds a
linear inaccuracy term. Discharge (or charge) of the capacitor adds
a linear inaccuracy term, but causes no non-linearity. Unbalance in
the diode characteristics causes an offset but no non-linearity.)

The output must be offset from the input as little as possible.

75

64 OUTPUTS

Figure 27. Block Diagram of Analog Output System

76

SELECTION REGISTER

Figure 28. Block Diagram of Multiplexer Arrangement

77

+150V±l/2%

-150V±l/2%

Figure 29. Schematic of Multiplexer Bridge Circuit

78

The change in charge on the output storage capacitor, or droop, must be
less than one percent during the 50-millisecond discharge period.

The drift in the output must not exceed one percent over an eight-
hour period.

a. Current Unbalance. Currents and I2 are initially equalized by
means of ft3 (figure 29) for ein = ei0, where e¿0 is any particular
voltage within the voltage range of e[n. Any other input causes
an unbalance in the currents that flow in the input circuit, resulting
in a Alin.

Flow of the current A^n will create a linear inaccuracy of

Ae » Ae. « 2R. (e. - e.)/R. o in in 10 m ' 1 (1)

assuming the transformation from Vin to e0 is linear, and
R^ » R2 + Rg << back resistance of the two gating diodes,

CR^ and CR2.

As an example,

0 volts < e. < + 10 volts
- in —

R. « 100 ohms (output impedance of d-a converter
m cathode follower)

Rx = 75K

and let e^, the voltage for e¿n at the time of calibration,
be 0 volts. Then when e^n = einjma.x - 10. 0 volts

Ae w Ae.
o in

r, (2)(100)(0 - 10)

75 X 103

Ae » - 25 mv o

or a maximum linear error term of approximately +0. 25%.

Since Ae is a linear function of R. , the error can be reduced by
minimizing the output impedance oPthe d-a converter cathode
follower. The output impedance of 100 which has been postulated
is readily attainable if a tube with a transconductance of 10, 000
micromhos or higher is used. Since the JW5847 vacuum tube
has an average transconductance of 13, 500 micromhos, a
minimum output impedance was attained.

b. Capacitor Discharge — A serious cause of output droop is the
discharge (or charge) of the capacitor through the silicon diodes
when the multiplexer is OFF. The discharge (or charge) path
consists of a resistive component and a constant-current com¬
ponent. The former causes only a linear error; the latter is
the result of leakage current in the diodes. The leakage current
will be opposite in diodes CR5 and CR6; it is the difference
between them which causes the discharge (or charge) of the
capacitor. Tests performed on these diodes (1N138B) indicated
that the leakage currents ranged from 0. 001 to 0. 008 micro¬
amperes with 20 volts across the diode in the reverse
direction. Thus, the average difference was less than
0. 007 microamperes, and the droop for a 0. 04 uf capacitor
with the current flowing for 50 msec would be less than 10
millivolts.

79

The linear inaccuracy arising from the change in charge on the
capacitor, due to the loading of the storage capacitor C by the
load (see figure 29), is described by

From this expression, Ae0 will be minimal when RT is very
large. The resistance Rl is the leakage of the capacitor and the
input impedance of the load. The use of high quality capacitors
will maximize leakage resistance, and the use of a cathode fol¬
lower with extremely good grid current characteristics will maxi¬
mize the load impedance. A cathode follower has good grid
characteristics when it draws a minimum amount of positive grid
current over the range of the input. Experimentation determined
that the inverse grid current drawn by the cathode follower was
more troublesome than the positive grid current.

Using the expression

(2)

Avc 4 At <3)

where:

Avc - change in voltage of storage capacitor

C = capacity of storage capacitor = 0. 04 ¿¿f

I = inverse grid current of the cathode follower

At = time interval in which storage capacitor voltage
will change; = 50 msec.

yields:

“ 6
I_ = c = 0- 04 X 10 . = 8 X 10-7 amps/volt = 8 X 10~10 amps/millivolt (4)

AVc At 50X10'3

-9
Thus a tube with an inverse grid current of 8 X 10 amperes
flowing for 50 msec will cause the storage capacitor to charge by
10 millivolts. Ordinary tubes such as the 5814, 5965, 2C51, etc.
can be operated with inverse grid currents of 1 X 10-? to 1 X 10"8
amperes. The JW5847, on the other hand, can be operated with
inverse grid current approaching^ 1 X 10" 10 amperes. The amount
of capacitor discharge or droop in the D. C. voltage that the servos
can tolerate was determined by experiment to be approximately
30 millivolts; thus it is certain that the servos would not function
properly with the hundreds of millivolts of droop that would result
from using ordinary vacuum tubes. Thus the JW5847 was selected
as the one tube, other than an electrometer tube, that would satisfy
the droop or discharge requirements. An electrometer was not
selected because, although it possesses favorable grid character¬
istics, it cannot provide the signal power required to drive the
servos. An additional disadvantage to an electrometer tube is that
it requires closely regulated low voltage D. C. for the filament.

Diode Unbalance. The most serious factor contributing to an offset
between the input and the output of the multiplexer is diode unbalance.

The diodes are checked for forward voltage drop when the current
through them is one milliampere, and then ranked in order of volt¬
age drop. Any group of four successively ranked diodes may be
used to make up one multiplexer circuit, provided that the overall

spread of drops is no greater than 20 millivolts, and no difference
between two adjacent drops is greater than 10 millivolts. It proved
best to use successively ranked diodes for CR3, CR5, CR4, and
CR6, in that order. The resulting offset will be limited to less than
10 millivolts. In an actual test, Va was 610 millivolts; V^, 618 milli¬
volts; Vc, 622 millivolts; Vd, 630 millivolts. The difference,
I eo " Vin| j was 4. 7 millivolts, with the diodes arranged as suggested.

d. Power Supply Drifts. The third cause of offset is small shifts, in
the same direction, in the +150 and the -150 volt power supplies. This
offset is described by:

Aeo = (AV1 +AV2) (R-h/Rj) (5)

For an Rin of 100 ohms and a supply unbalance of 1/2%, the offset
will be 2 millivolts.

The drift requirement for the analog outputs was specified to be less
than one percent, or 100 millivolts. As mentioned previously, the
converter is cathode-follower-coupled to the multiplexer, and the
multiplexer is cathode-follower-coupled to the external load. Each
cathode follower will introduce drift equivalent to approximately l/¿t
of the drift in the power supplies from which it draws current. The
cathode followers are supplied from the +150 volt and the -150 volt
supplies, which are regulated to one half of one percent; 60 millivolts
of drift can be introduced by the cathode followers alone. Additional
drift from the power supplies is introduced through the converter,
the multiplexer, and the level adjustment of the storage capacitor
output cathode follower.

Intolerable drift in the output, due to power supply drift, was elimi¬
nated in the overall system by supplying the answer potentiometers
of the positioning servos with reference voltages derived from the
converter supply voltage, in exactly the same manner in which the
analog output signal is derived (figure 30). As a result, this form
of drift will not affect the error signal, which is the difference be¬
tween the input voltage applied to the chopper-amplifier and the
voltage generated by the answer pot of the positioning servo, and
which causes rotation of the servo.

The two reference voltage generators can supply a number of an¬
swer pots, the number depending upon the resistance of the potentio¬
meters. It was determined that at least five answer pots can be
supplied from one pair of reference generators. With approximately
20 answer pots requiring reference supplies in the system, a total
of five pairs of reference voltage generators was sufficient.

To compensate further for drift, it was decided that two cathode
followers in series would be used to read out from the storage
capacitor. The combination of the two would provide the effective
high input impedance required by the capacitor, and would allow
the incorporation of a gain and a level adjustment to compensate
for emission variation in the vacuum tubes. The gain and level ad¬
justments would also permit matching all outputs, even though the
cathode follower tubes do not have identical characteristics.

e. Vacuum Tube Drift. The one source of drift which appeared only
after considerable testing time had been accumulated was the
random average velocity change, present in all high-vacuum elec¬
tron tubes. This drift is difficult to describe, since it varies con¬
siderably from tube to tube, and sometimes is not present over a
long interval of time. Measurement made on a sample of new tubes
showed a variation of several hundred millivolts (figure 31). As the
tube aged, however, the variations become less eratic (figure 32).
Although the average drift of the older tubes over a 200-hour interval

81

82

F
ig

u
re

3

0
.

S
y

s
te

m

fo

r
E

li
m

in
a
ti

n
g
 E

ff
e
c
t

o
f

P
o

w
e
r

S
u

p
p

ly
 D

ri
ft

-L

I

i

\
‘

:

5

f ' !

Sii

83

5*.

T
IM

E

IN

H
O

U
R

S

CO

N.

o*
ao

rs.

o

V)

O'

00

rs

«o

cs

8

LU

5

84

F
ig

u
re

3

2
.

D
ri

ft

C

h
a
ra

c
te

ri
s
ti

c
s

o
f

A
g
e
d
 J

W
5
8
4
7

T

u
b

e
s

can be expected to be less than one millivolt per hour, the short
term drift is variable; thus it is virtually impossible to guarantee
less than 20 millivolts (two tenths of one percent) drift over any
reasonable period of time.

f. Final Circuit Configuration. A complete multiplexer circuit is
illustrated in figure 33. A brief description of its operation follows.

When CR1 and CR2 are at +20 volts and CR7 and CR8 are at -4. 5
volts, the capacitor C charges to the voltage at point A. When
diodes CR1 and CR2 are at -4. 5 volts and CR7 and CR8 are at +20
volts, the voltage on C will change at a rate determined by the
difference in the reverse currents of CR5 and CR6 and by the grid
current of vacuum tube VI. The 10-K adjustable resistor previously
in series with resistor R2 was eliminated because the shift in level
for which it compensated can be adjusted in the cathode follower. The
main requirements of the bridge portion of the circuit are that diodes
CR5 and CR6 have less than 10 millimicroamperes of reverse current
at 20 volts and that CR5 and CR6 exhibit fast recovery, less than
1 microsecond, or be matched for recovery time. Tube VI is a triode-
connected JW5847 and was selected because of its low reverse grid
current, less than 1 millimicroampere. Resistor R6, in the cathode
of VI, provides a 6-volt level adjustment and is necessary for the
adjustment of all outputs to the same zero level. Resistor R8 pro¬
vides the necessary gain adjustment to bring all channels to the same
gain. The zener diode CR9 across R6 reduces by a factor of five
the gain change caused by varying R6. This reduction is necessary
since the gain adjustment causes a level shift; without the diode, the
interaction of the two adjustments would have made the procedure a
time-consuming process. With the diode, the level adjustment alone
may be used to compensate for tube drift, once the gain has been set.
The particular zener diode used is a 1N429. This diode has a
temperature coefficient of 0.0006 percent per degree C; ordinary
zener diodes have temperature coefficients ranging up to 0. 05 per¬
cent and would introduce a drift due to temperature outweighing their
usefulness in reducing the gain change caused by level adjustment.
The two-section, resistor-capacitor, low pass filter (160K resistors
and 0.1 /¿mfd capacitors) was added to filter the multiplexed signal.
Experimentation showed that a good instrumentation servo would
follow the incremental steps in the multiplexed signal. The simple
filter has a response which is down 3 db at 4 cps, 14 db at 10 cps,
and 18 db at 20 cps. Tube V2A is used to provide a low impedance
output to the instrumentation circuits, and diode CRIO limits the out¬
put voltage in the event of tube failure.

4.3.2.2 Static Flip-Flop

The static flip-flop is used in both the Memory Unit and the Input-Output Unit.
Since the original design was intended for use in the multiplexer address register and in
the analog-to-digital converter storage register, it is being discussed as a circuit
pertinent to the input-output circuitry.

The schematic diagram of the static flip-flop breadboarded initially for evaluation
was obtained from the MSEE (figure 34). Considerable effort was expended evaluating
this flip-flop and several disadvantages of the design were indicated. Since the require¬
ments imposed upon the flip-flop had meanwhile changed as a result of the development
of the memory, a new design possessing characteristics needed for UDOFT was adopted
(figure 35). The problems associated with the original static flip-flop were complementing,
marginal screen grid operation, slow rise and fall times, and poor drive capability of the
output cathode followers.

a. Complementing. The flip-flop was found to complement on posi¬
tive input pulses, due to the reverse recovery time of the input
diode. When a positive pulse was applied to the input of the
conducting half of the flip-flop, a large grid current was drawn
through the diode. When the pulse ended, the grid was forced

85

i*.

ff' I

5
a.

3
O

86

F
ig

u
re

3
3
.

M
u

lt
ip

le
x

e
r

C
ir

c
u
it
 S

c
h

e
m

a
ti

c

Ç

87

F
ig

u
re

3
4
.

S
c
h

e
m

a
ti

c
 o

f
M

o
o
re

 S
c
h

o
o

l
S

ta
ti

c

F

li
p

-F
lo

p

88

: I

F
ig

u
re

3
5
.

S
c
h

e
m

a
ti

c

o

f
R

e
d

e
s
ig

n
e
d
 S

ta
ti

c

F

li
p

-F
lo

p

negative by the diode until the diode had recovered. The effect was
essentially that of a capacitor across the diode. The flip-flop then
triggered on a small negative signal at the ON grid, due to the cap¬
acitive coupling from the ON plate to the OFF grid, and triggered
readily since the OFF tube was not completely off, being clamped
to only -2.1 volts.

Revision of the flip-flop eliminated this problem, since the AND gate
inputs to the flip-flop are clamped by diodes to the cathodes of the
flip-flop tubes. This arrangement also limits the grid current.

b. Screen Grid Operation. It was considered bad practice to have the
screen grids of the flip-flop tubes connected to +46 volts. A small
sample of tubes measured under this condition indicated dissipations
ranging from 65 to 80 percent of maximum rating.

Operation of the screen grid was improved by returning it to +150
volts through a selected resistor with value such that the screen
grid dissipates approximately 0. 6 watts. As a result, the maximum
dissipation cannot be exceeded by any tube. The revised design also
uses the screen to provide dynamic coupling to the grid of the cathode
follower, to improve the output rise and fall times.

c. Rise and Fall Times. The rise time for a 12-volt output signal was
measured to be 0. 25 /isec; a 25-volt output signal, which was now
needed, would have a rise time of 0. 50 jxsec. This rise time did
not satisfy the UDOFT requirements. The fall time in the original
circuit is determined by the cathode follower, the cathode resistance
and the capacitive loading. Again a fast fall time was necessary,
particularly for generating the read and write signals in the memory.

In the revised circuit, the rise time is determined by the screen
resistance and the input capacity of the cathode follower. This occurs
because the coupling to the grids of the flip-flop is taken from the
output of the cathode follower.

The fall time of the positive pulse was shortened and made more in¬
dependent of capacitive loading by capacitively coupling the flip-flop
plates to the respective cathode follower grids.

d. Cathode Follower. It was discovered that the cathode follower output
was incapable of accepting or supplying the current required for
either the digital-to-analog converter or the multiplexer. To relieve
this situation the cathode follower was changed from a 12AT7 to a
5687. In order to limit the output signal at +20 volts, the grid is clamped
to +20 volts. The output is clamped to -4. 5 volts to limit the output
signal at -4. 5 volts.

e. Final Specifications. The specifications of the redesigned flip-flop
are:

Trigger Amplitude

Output Signals

Rise Time

Fall Time

Delay

Load Capabilities

4 volts (-3 volts to +1 volts)

-4. 5 volts to +20 volts

120 nanoseconds

50 nanoseconds (unloaded)
200 nanoseconds (with 100 picofarads

of loading)

100 nanoseconds

-12 ma at -4. 5 volts
20 ma at +20 volts

89

4. 4 Logic Circuit Packaging

In addition to conceiving the logic design of the U^T compute^ M^E studied

¡Ä0if£ÄS»
delay times,

Svlvania conducted an analysis of the proposed packaging techniques developed by
MSEE inyan attempt to consolidate the proposed package types mto fewer and mor
flexible packages. The following sections discuss the results of the analysis.

4. 4. 1 Pulse Amplifier Plug-in Package Assemblies

The first column of Table VII indicates the seven originally proposed pulse
amplifie?pacäeswTthe AND-OR input configurations of each; the second column
indicates the five-pulse amplifier packages that were finally used.

TABLE VII

COMPARISON OF PROPOSED AND FINAL
PULSE AMPLIFIER PACKAGE CONFIGURATION

Proposed

Type A (2)

Type B (5)

Type C (3 + 2)

Type D (6 + 3)

Type E

Type F
Type G (5 + 5 + 5 + 4)

(4 + 3 + 3))

(4 + 4 + 3))

Final (figure 36)

Type 1 (2)

Type 2 (6 + 3)

Í Type 3 (4 + 2 + 2 + 2)

^ Type 4 (5+ 5 + 4 + 3)

Type 5 (5+ 4 + 3 + 2)

Pulse amplifiers Types 1 through 4 are capable of producing the three output

ESsSSSSSa-S-Ä
where drive is required for long delay lines.

The following are the expUcit reasons for the modified pulse amplifier package

configurations:

a. To reduce the number of package types, in order to
package replacement problem, parts identification, pr
preparation, and fabrication time.

b 1 To allow the use of a 32-pin printed circuit connector m order
to minimize card breadth and allow better space utilization

2. To decrease the cost from that of a 36-pin connector wtoch
would have been necessary had the proposed G-type pulse
amplifier package been used

4. 4. 2 OR Gate Plug-in Package AssembUes

a«, cTpÄg™
basic packages that replaced them.

90

i».

CP CP

CP CP

CP

Figure 36. Logic Diagrams of Five Pulse Amplifier Package Types

91

TABLE VIII

COMPARISON OF PROPOSED AND FINAL
OR GATE PACKAGE CONFIGURATIONS

Proposed Final (figure 37)

Type 1 (2 - 2 - 2 - 2)

Type 4 (5 - 5 - 5 - 5)

Type 2 (2-2 - 2- 2- 2- 2- 2 - 2)

Type 3 (2 - 2 - 3 - 5 - 5)

OR Gate Type 3 is used in those places where Type 2 is inadequate (number of inputs
per gate), or Type 4 is inadequate (number of gates).

The primary reason for adopting these four configurations was to allow a more
economical use of the diodes, as indicated by the flexibility of the logic, (figure 37,)

4. 4. 3 Delay Line Plug-in Package Assemblies

The first column of Table IX indicates the four originally proposed basic delay
line packages; the second column indicates the five basic packages that replaced them.

TABLE IX

COMPARISON OF PROPOSED AND FINAL
DELAY LINE PACKAGE CONFIGURATION

Proposed Final (figure 38)

Positive Delay, Single Input (short/long) Type DP-1 Delay Line-Positive (Short only)

Type DP-2 Delay Line-Long (5. 6)

Type DP-3 P235 Delay Line-Long (5. 0)

Type DP-4 Delay Line-Long (3.0 and 2. 0)

Positive Delay, Multiple Input Type DP-1 Delay Line-Positive and

Type 1 OR Gate

Negative Delay, Single Input Type DN-1 Delay Line-Negative

Negative Delay, Multiple Input Type DN-1

Due to the different physical requirements of the long delay lines, it was not
possible to utilize the same basic configuration used for the short positive delay lines.
Since there are only eleven long delay lines in the system, the exception is minor.

The following are the explicit reasons for the modified delay line configurations:

a. To increase the flexibility of the package by allowing the package to
accept a number of different delays.

b. To make all short positive delay line packages and all short negative
delay line packages identical, resulting in "location insensitive" delay
line packages; i. e., any such package may be used in any delay line
location in the computer without considering the values required at
that location.

c. To reduce the cost of delay line fabrication by accepting a large
number of one type.

Type A (5)

Type B (2)

Type C (2 - 2 - 2)

Type D (5 - 5 - 5 - 5)

Type E (2 - 2 - 2 - 2 - 2)

92

OTHER POSSIBLE
CONFIGURATIONS

2-2-4
4-4
2-6

-o 9—o —o 9 — 0 0 — 9 9—9 —

lŸŸŸŸyyÿy
— 9 9—

I_ O —— 0— —9 — —ó — —ó — —ó — -J
TYPE 2 (2-2-2-2-2-2-2-2)

2-2-2-2-9
2-2-2-5-6
2-2-2-3-6

9 9 9 9 9*“ ”“99

I_

» 9— ■“ ““Ç 9 9 9 9— —— —0 9999

\\7 \7 X7 \7
- J

TYPE 4 (5-5-5-5)

2-2-8-8
2-5-5-8

Figure 37, Logic Diagrams of Four OR-Gate Package Types

r “i

TYPE DP-4
DELAY LINES-POSITIVE INPUT-LONG

Figure 38. Logic Diagrams of Six Delay-Line Package Types

94

d. To take advantage of the 32-pin connector required by the pulse
amplifier packages, and to pack maximum delay into one delay
line package (thereby arriving at the delays of0.2-0.2-0.2-
0» 4 - 0» 4 pulse periods of delay per assembly).

4. 4. 4 Plug-in Package Fabrication Problems

As is typical in most computers, the main frame circuit packaging technique
establishes the circuit packaging plan for the rest of the computer system. A typical
UDOFT main frame plug-in package assembly is shown in figure 39.

I
Two major problems were encountered during the fabrication of the printed

circuit plug-in assemblies; board warp and copper delamination. The board warp
occurred because the cloth-base phenolic material yielded under the high temperatures
encountered and the forces exerted on the large board during the dip-soldering operation.
By changing to glass-base epoxy material, by improving the jigging of the card for dip¬
soldering, and by improving the solder dipping techniques, the problem of board warpage
was solved. Copper delamination, or the parting of the copper from the base material,
was the second problem. When the change to the glass base epoxy was made, the
problem all but disappeared, leaving only minor delaminations which occurred from
caustic cleaning agents used in preparing the etched copper tabs for plating.

4. 4. 5 Classification of Printed Circuit Plug-in Package Assemblies

Almost all the digital circuitry of the UDOFT Computer is mounted on printed
circuit plug-in packages, a design concept with many obvious advantages including
economy of fabrication and ease of maintenance. Table X, a listing of the package types,
indicates the number of each type used in the various units that comprise the computer.

4, 5 Main Frame Development

4. 5. 1 Main Frame Cabinets

The three cabinets of the main frame are identical in size, shape, and con¬
struction. Each cabinet is composed of four bays (figure 40), and each bay contains a
package rack assembly accommodating ten rows of twelve packages each. This pro¬
vides a maximum capacity of 120 packages per bay or 480 per cabinet.

The interconnect section is in the uppermost portion of the cabinet; it is the
junction point for all power and signal cables, except coaxial cables, entering and
leaving the cabinet. Barrier strips, power circuit breakers, fuses, and the marginal
check voltage control chassis are located in this section of the cabinet.

Above the interconnect section is the removable blower section. This area
houses the blowers which supply cooling air.

4. 5. 2 Package Racks I

The package racks are structural assemblies that provide mechanical support
and cooling air for the printed circuit plug-in packages, and sustain the printed-circuit
connectors to which all electrical connections are made (see figure 41). The three
sections of a rack are the vertical air duct, the horizontal shelves, and the connector
panels.

The vertical air duct channels the cooling air from the blower into the hollow
shelves. The shelf is a prime functional part of the rack structure; it is hollow, and
forms the final section of the ducting system for directing air to the individual packages.
Holes through the upper surface of the shelf direct cooling air to the packages. The
shelf carries a slot which guides the package over its entire length during insertion and
withdrawal. A metal block in this guide slot, in conjunction with the polarizing feature
built into the package, prevents a package from being inserted upside down (figure 42).

The connector panels which hold the plug-in packages are fabricated from high-
grade linen phenolic. The openings for the printed circuit connectors are accurately
punched in the panels to assure proper alignment of connector and package in their
complete assembly.

i*.

9-5

96

TABLE X

PACKAGE TYPES USED IN THE UDOFT COMPUTER

Package
No. Description

Handle
Requirements Color Code

AU Cl cn MEM 1-0 Spare Total Upper Lower

P211
P212
P213
P214
P215
P221
P222
P223
P224
P231
P232
P233
P234
P235
P236
P237
P241
P242
P243
P244
P251
P252
P253
P255
P256
P257
P258
P261
P262
P263
P264
P265
P266
P271
P272
P273
P274
P275
P281
P282

63 80
86 67
42 28
53 31

3 2
9 10

6
4 3
1 1
1 1

33 18
114 87

2

1
1 1

Pulse Amplifier Type 1 66
Pulse Amplifier Type 2 82
Pulse Amplifier Type 3 7
Pulse Amplifier Type 4 83
Pulse Amplifier Type 5 6
OR Gate Type 1 15
OR Gate Type 2 8
OR Gate Type 3 l
OR Gate Type 4
Variable Delay i
Negative Delay 22
Positive Delay Type 1 100
Positive Delay Type 2 2
Positive Delay Type 3 2
Positive Delay Type 4 2
Clock Pulse Delay 1
Static Flip-Flop Type 1
Static Flip-Flop Type 2
Signal Driver 12 20 20
Crutch Card
Gate Generator Amp.
Array Driver Amp.
Inhibit Driver Amp.
Sense Amplifier
Diode Matrix
Memory Address Driver
Memory Diode
Discrete Output
Digital-Analog Converter
Multiplexer
Slow Speed Print
Multiplexer-Driver
Multiplexer Reference
Clock Oscillator
Clock Amplifier 2 2 2
Clock Repeater 30 34 25
Clock Driver i i i
Clock Master
-3.0 Volt Sink (VR-l) 4 4 4
-4. 5 Volt Sink (VR-2) 2 2 2

24

1
88
32

32
32
44
22

8
8

72

2
18

1.

2
1

67
40

63

2
32

8
1
3

34

1
28

12
6

32
3
1
8
1
2

27
1
3
3
2

38
27
14
4
4
5
5
2
2
4

10
27

1
1
0
2

10
5
9

10
3
5
4
4
2
2
7
3
2
4
1
1
1
2
5

20
2
1
2
3

314 Red Brown
302 Red Red
115 Red Orange
234 Red Yellow

15 Red Green
41 Green Brown
53 Green Red
10 Green Orange
12 Green Yellow

9 Blue White
86 Yellow Brown

362 Yellow Red
5 Yellow Orange
3 Yellow Yellow
3 Yellow Green
7 Blue Green

126 Orange Brown
37 Orange Red
62 Black Brown
10
35 Gray Brown
37 Gray Red
48 Gray Orange
26 Gray Yellow
10 Gray Green
10 Gray White
79 Gray Clear
15 White Orange

8 White Brown
36 White Red

4 White White
2 White Green
9 White Yellow
3 Blue Brown

15 Blue Red
154 Blue Orange

7 Blue Yellow
4 Blue Clear

19 Brown Brown
12 Brown Red

Totals 449 474 391 390 381 254 2339

Less Spares 254

TOTAL UDOFT PACKAGES 2085

97

Figure 40. Typical Main Frame Cabinet

98

Figure 41. Card Rack with Shelves in Place

99

100

F
ig

u
re

4
2
.

F
in

is
h
e
d
 S

h
e
lf

4. 5. 3 Rack Layout

The main frame logic layout was prepared by both development engineers and
design engineers. The latter were used extensively for determining the logical
groupings of the various registers and control logic. Since three cabinets constitute
the main frame, an extensive analysis was conducted to effect a layout that would
minimize the signal connections between them. Basic rules were established, such as
laying out the registers wherever possible with the most significant digit on the left and
the least significant digit on the right. An attempt was made also to group the pulse
amplifiers in certain columns of the bays, to reduce the time needed for marginal
checking of the pulse amplifier packages.

In laying out the logic in the cabinets, great consideration was given to main¬
tainability, reliability, and maximum utilization of package space.

The following is a list of decisions and compromises in view of the problems

involved:

a. A random wiring pattern (or point-to-point wiring) technique would be
used to reduce problems arising from cross-talk and capacitive loading.

b. Coaxial cable would be used for the transmission of high frequency pulses
between cabinets, and in some cases between bays in the same cabinet.

c. Signal drivers, or transistor emitter followers, would be used to drive
the coaxial cables, to alleviate loading of the pulse amplifiers.

d. Clock pulse signal leads would be terminated, to reduce ringing due
to excessively long leads.

e. OR Gate and Delay Line packages would be loaded as close as possible
to the pulse amplifiers they feed. A maximum spacing of three
horizontal spaces or one diagonal space was maintained between
these critical units and their associated amplifiers.

f. The cabinets of the computer system would be arranged to eliminate
excessively long coaxial cables, since even coaxial cables introduce
delay and cause pulse deterioration.

The physical arrangement of the computer cabinets was an important factor in^
the logical organization of each cabinet. Control Unit II is adjacent to the Memory Unit.
Since Control Unit I contains the Timer, it is strategically located for the distribution
of timing pulses to all other units. (Figures 43, 44, 45 and 46.)

4. 5. 4 Test System

Early in the development of UDOFT, a breadboard evaluation bay was con¬
structed to test and study various packaging techniques. The prime areas of interest
were:

a. Signal lead lengths, such as coaxial, package to package, and the
interaction between them

b. Methods of wiring

c. Distribution of cooling air

d. Fabrication problems

e. Marginal checking

f. Actual packaged circuit operation

g. Components, such as diodes, pulse transformers, tubes,
and delay lines

.«—I

102

I
!
'

L».

F
ig

u
re

4
3
.

U
D

O
F

T
 S

y
s
te

m

L

a
y
o
u
t

103

F
ig

u
re

4
4
.

L
a
y

o
u

t
o
f

A
ri

th
m

e
ti

c
 U

n
it
 C

a
b

in
e
t

!

;

S

»D9HD Aimvd a3flWnN

fcz
50 xu
I—
St
<z

D

û£ o¿
tu tu
LL. i_

!C?2
Z0

s
fcz
50
xu
ï—
St
<z

D

d3VNü0d AllWd d3flWnN

oo

<°

u2
|z
Io

2 b
<z

D

dOL^13S 3dAi M3QdO

LU
Q_ û£

wR
m ^
d iri

o1/1

u
2
U

104

F
ig

u
re

 4
5

.
L

ay
o

u
t

o
f

C
o

n
tr

o
l

U
n

it
 I
 C

a
b

in
e
t

t

I

ï
::

; I
!
:

105

I
F

ig
u
re
 4

G
.

L
ay

o
u

t
o

f
C

o
n

tr
o

l
U

n
it
 1

1
C

a
b

in
e
t

In summary, the test system consisted of 38 printed circuit packages arranged

delayTne cab^cut'tofte'pXrSe clock ^S^/^ory-
the system presenüy in the computer. The power supply consisted of nine laboratory
type d-c supplies with varying regulation characteristics.

After assembly of the system, approximately five weeks was consumed putting it

transformers'^ select one for the pulse amplifier olrcnlte, and checking hoi .pot

temperatures.

The test orocedure established consisted of routine daily checks on the different
inrriral subsystems while varying the marginal checking voltage. During the period

Logical system 3 (catastrophic)
1 (marginal)

Power supplies ?

Clock system 7

None of the failures involved the JW5847 vacuum tube, used as P^lse ampimer
tube which was being evaluated. As can be seen, only four out of eighteen (approxi
matelv 22 percent) of the failures occurred in the logical system. Primarily bec^u
of thenlarge percentage of power supply failures and the increasing number of
that weregoccurring in the obsolete clock system, it was necessary to .
breadboard life test after 4030 hours of operation, although it was intended to c n

a 10, 000 hour life test.

Although the life test ended in apparent failure, much had been gained from the

breadboard.

a The positive clamped output of the pulse amplifier was found
critical when driving a remote load by means of a single long
wire. When the lead length approaches twenty feet, the pulse
is so badly distorted that it is unusable.

b. The marginal check voltage limits for the various packaged
circuits were established.

c. It was evident that the clock system had to be revised; passing
a square wave through a delay line resulted in a pulse distorted
beyond recognition. The system was revised and a sine wave,
rather than a square wave,, was delayed then amplified and
squared for use as a phase of the clock.

d. The initial ground rules for circuit packaging and plug-in
package interwiring were substantiated.

4. 6 Memory Development

As part of the UDOFT design, MSEE specified a random-access magnetic-core
type of memory. At the time of the logic design, magnetic core memories were just
becoming an acceptable method of storage. MSEE felt that by the tune
UDOFT computer design was developed into a working system the u e g1
storage having a 5 microsecond cycle time, would be feasible. M^E therefore
specified only the timing operations, the address register and rewrite register logic,
and suggested an approach to the development of this new type of memory. Circuit
design^and core specifications were the responsibility of the development contractor.

106

4, 6. 1 Memory Design and Development

The short time allowed for memory development necessitated the use of proven
techniques wherever possible. Originally, it was proposed by MSEE to use a magnetic
switch core matrix for the current driving devices. This approach was viewed un-

; favorably, due to the memory speed requirement (5 /¿sec) and the many disadvantages
inherent in the magnetic switch core. The decision was made to use pulse transformers
and to improve upon a system developed at M. L T.

4. 6. 1.1 Introduction to Coincident-Current Memories

In a coincident-current, magnetic-core memory of the type pioneered by M. I. T.
Lincoln Laboratory, it is necessary to pulse two lines to a single core simultaneously to
affect a read-out of the information stored in the core. The information, in the binary
form of ONEs and ZEROs is contained in the remanent magnetic state of the square-
loop-characteristic ferrite material of the core. A half-amplitude current pulse will not
cause the core to change state, and the resultant voltage due to the disturb pulse is of a
few millivolts' amplitude. Two half-read pulses produce sufficient magnetomotive force
to drive the core into saturation. When the contents of the core (before the pulse) is a
ZERO, the pulse causes only a 15 or 20 millivolt output from the selected core; when the
contents of the core is a ONE, the output voltage is considerably larger in the order of
100 or 200 millivolts.

Information read-out is a destructive process; i. e., at the end of a full read,
regardless whether a ONE or a ZERO was contained in the core, the core has been *
driven into the ZERO remanent state. A full write, which normally follows every full
read, then drives the core back into the ONE state. Means must be provided to prevent
or inhibit the full write from occurring when it is required to write a ZERO into the
core. The inhibit pulse is, therefore, a half-read overlapping the two coincident half-
writes, resulting in a net half-write applied to the selected core.

4. 6. 1.2 Description of the UDOFT Memory

The UDOFT memory is composed of two identical units, one for number storage
and one for instruction storage. Each memory unit has 4096 registers: each register
contains 22 bits. Parallel readout of a register is affected by pulsing 22 cores
simultaneously, thus reading-out the entire contents of that register. Each memory is
comprised of 22 planes; each plane contains 64 X 64 cores for a total of 4096 cores per
plane. The X and Y lines are those 64 lines running horizontally and vertically,
respectively, in each plane. Each core has one X and one Y line through its center,
in addition to a Z inhibit and a Sense or read-out wire. Each of the 64X lines is con¬
tinued through the entire stack of 22 planes by external connections between each plane
and the immediately adjoining plane; the 64 Y lines are similarly joined Word
selection is accomplished by simultaneously pulsing the X and Y lines which intersect
at the location of the desired word.

4. 6. 1. 3 X and Y Drive Requirement

The core load on the X and Y Driver consists of 22 lines of 64 cores each, or a
total of 1408 cores. Of the 1408 cores, 1386 receive a half-read and are not switched
during the read-out. The other 22 cores simultaneously receive a half-read from the
X-Driver and a half-read from the Y Driver. This action switches these fully-selected
cores into saturation during the pulse; they return to the ZERO remanent state after the
pulse. The back voltage seen by the X-Y Driver then is the sum of 1386 disturb
voltages, which, because of their reversible nature, occur during the rise time of the
drive current pulse. An average of 20 millivolts for 1386 cores would therefore cause
a peak of approximately 27. 7 volts. That amplitude actually was observed The 22
fully selected cores will contribute a back voltage varying anywhere between the
extremes which occur when either 22 ZERO or 22 ONES are selected The former
extreme would contribute about one-half volt, mostly during the rise time; the latter,
about 22 times 220 millivolts, or 4. 4 volts, occurring later than the rise time by about
half-the nominal switching time of the cores. For the UDOFT cores, the ONES peak
occurs about 0. 6 microsecond after the start of the drive current pulse.

Within five microseconds the X-Y Driver must be addressed, drive a pulse of
fixed amplitude and width into its load, and closely follow that pulse with one of opposite

107

polarity but equal amplitude. Furthermore changes m toadmgca 2 coreg

remanent states of the 1408 cores rec^vl"| , ^ to change appreciably in rise time or
addressed for read-out, must not “^P^^^^reduced ONE output with a
amplitude. Excessive reduction of amplitude r ^ avoided in order to have a

longer switching time; “ ^[¿^"irtremely^mportant since it must occur at the right

S“! mS~m ZEBÔ”"d included «E.

4. 6. 1. 4 Word Selection

A Memory Address Register MAR, ^S^/aTsed fothe
flops, is addressed by the computer to ^same ipacity employed 64
twelfth power equals 4096. Earlier men or^ ^ fminiature tubeS as Driver Amplifiers
current driver tubes (twin trl°deJ^L d Word selection was accomplished by
for each coordinate X and .¾ j^^the 64 in the X line and one amplifier of the 64 in
lowering the grid of one ampl . h 0f which had an input of six input pairs
the Y line through X and Y diode matrice di te) In addition to the 128 tubes
(from the six MAR flip-flop3 addressi^ ^ o for read and write pulsing were re-
per coordinate listed above and two smaller tubes. An alternative to this
quired, each consisting of two tubes and t ^ cathodes of the driver tubes in an
method was suggested by Papian g P h |m ufier could control eight 5998 s. (Fig-
8-by-8 matrix arrangement so that . Amplifier cathodes by 112, involving 56
ure 48.) But in reducing the number of Pb g8 for an overall saving of 2 times
tubes the Gate Generator cathode count increases, ^ memorY The 56 tubes elimi-
14 (112 minus 98), or 28 cathodes, memo'ry, 28 tubes are "giants"
nated are of the miniature van y, s h an overall reduction is inconspicu
(5998), 14 are pentodes, and 14 are miniatures.

ous.

4. 6. 1, 5 Evolution of the Transformer Matrix

A step t.,.sd • mote P™‘“¡S
Gate Generator, which mPapian s scheme t 40 ^ each in *e steady state
each write half, a total of four tu^, c°”^e transformer. Considerably less
and interrupted only when current is Generator tubes if current flowed only

ÄS»«t o, ,0.0, m ..0. -o

Generator from 2 to 1.

Current regulation is accomplished by the gr^fa^be^w
Generator cathodes and -150 volts. Under quiescen when palses are applied

cutoff and current flows only m *eai^ode¿^ndG¿erator, current flows simultaneously
coincidentally to an Array and tL tube cathodes. When the sum of these
into the 1. 2K resistor from the diodes and « cathode voltage rises slightly

r d™"-pi*“
from increasing appreciably above that level.

A disadvantage still in evidence was the use^of^64 large tubes for^ ^ ^ _

It was suggested that transformer pnmarmat^^mm^«d, ^ o,;e out of
between the Array Driver cathodes and the Ga^ G P bes would ^iquely select
eight Array Driver tubes and one out G^e ^ ^ memory core array. A
one out of 64 transformers and hence energiz twQ imaries not electrically

After examination and breadboard this

system was adopted.

I. Papian, W^., "New Ferrite Core Memory Uses Pulse Transformers", Electronics,

March 1955, p. 194.

108

TOTAL CATHODE COUNT = 270

CKT QTY

CATHODES

5998 5965 7AK7

ADA

GG

64

1

128

8

128

4 2

TOTAL 136 132 2

ADA - ARRAY DRIVER WITH AMPLIFIER
GG - GATE GENERATOR
MAR - MEMORY ADDRESS REGISTER

Figure 47. Common Coordinate Driving Technique

110
I

I

F
ig

u
r
e

4
8
.

A
lt

e
r
n
a
te

C

o
o
r
d
in

a
te

D

ri
v

in
g

T

e
c
h

n
iq

u
e

(
P

a
p

ia
n

)

0
+

1
5
0
V

I
-
E

T
O

X
-P

L
A

N
E

O
F

C
O

R
E

S

a
c
•H
-a
u
o
o
u

i? rt
c

u
'H

13
a
0)
£
c;

03

o
u
3
bO

111

V.

4. 6. 1. 6 Transformer Matrix

The block diagram of figure 50 shows the application of the transformer matrix
in the present X-coordinate driver system. Only the read section is shown; an identical
arrangement is necessary for write. Series diodes are necessary to block sneak paths.
Two diodes instead of one are used so as to minimize the capacitive loading of the
transformers.

4. 6. 1. 7 Circuit Description

The quiescent bias levels of the Array Drivers and Gate Generators must be
sufficiently negative to insure cutoff at all times, particularly during the time the
selected pair is pulsed. For the 7236 tube, which has replaced the 5998, this means a
bias of about -60 volts on the Gate Generator; -40 volts is sufficient for the Array Driver,
since the pulse on the selected Array Driver tends to raise all Array Driver cathodes.^
Figure 51 shows the circuit for an Array Driver and Gate Generator and their respective
amplifiers. The operation is as follows:

The Address Register has been set to one of the 64 addresses for X and one for
Y. Only one coordinate needs to be discussed, since the operation of X and of Y is
identical. Of the eight outputs from each diode matrix, seven are at +20 volts and one
is at -4. 5 volts. Each of the eight outputs is routed through two diode AND gates to its
read and write amplifiers. The other inputs to the AND gates are static flip-flop out¬
puts which determine the read and write pulse widths. The -4. 5 volt level selects the
amplifiers to receive the flip-flop output pulses, which are negative.

The Gate Generator Amplifier consists of the two sections of a 5965 tube, one
section as voltage amplifier and the other as cathode follower. The amplifier section is
normally conducting, so that a negative 60 volts is applied to the grid of the Gate
Generator 7236 tube. The negative input pulse cuts off the amplifier, causing its plate
to rise to ground; the peaking coil shortens the rise time and the delay time, and causes
overshoot of about ten volts. The overshoot is useful in turning on the Gate Generator,
since lowest plate voltage occurs at the beginning of plate current, indicating the need
for a more positive grid bias at that time.

Simultaneously with the turning-on of the Gate Generator, an Array Driver must
become active if any current is to flow in the selected transformer. The Array Driver
Amplifier operation is similar to that of the Gate Generator Amplifier. The quiescent
output voltage is about -40 volts, but during pulsing this must increase to +150 volts
to bring both the Array Driver and Gate Generator tubes to the proper operating point.
The larger voltage swing ruled out the use of a 5965 tube, because of power dissipation
limitations; therefore a 5687 was used. At first it was thought feasible to connect the
grids of thé read Array Driver and the write Array Driver and turn on both for the
duration of the five microsecond minor cycle, pulsing only the Gate Generators
separately for read and write. However, this proved impracticable because of the
coupling between the two primaries of the transformer, which resulted in unacceptable
current waveforms.

4. 6. 1. 8 Sense Amplifier

The Sense Amplifier is a device designed to sense and amplify the information
signals derived from an interrogated magnetic-core memory plane. The output of this
amplifier, when used in conjunction with a strobing pulse, is sufficient to trigger a
static flip-flop. Thus the amplifier must be able to distinguish between ZERO and ONE
signals induced on the sense winding, to eliminate all common mode disturbances, and
to shape the information signal for strobing. The Sense Amplifier circuit consists of
three sub-circuits whose functions are differentiation, discrimination and pulse
shaping. (See figure 52.)

a. Differentiation. The differential circuit consists of that portion
encompassed by the input terminals and transformer Ti. It is
the function of this circuit to amplify difference inputs, and to
eliminate common mode signals. Common mode signals are
disturbances that originate due to coupling between the drive
lines and the sense winding of the memory plane. Such inputs
raise both ends of the sense winding simultaneously and cause

i».

112

D
IO

D
E
 A

N
D

H
A

LF

O
F

F
ig

u
re

5
0
.

S
im

p
li

fi
e
d

B

lo
c
k

D

ia
g
ra

m
 o

f
P

re
s
e
n

t
X

-C
o

o
rd

in
a
te

D

ri
v

in
g

T

e
c
h

n
iq

u
e

Figure 51. Schematic of X-Coordinate Driver Circuit

114

F
ig

u
re

5

2
.

S
c
h

e
m

a
ti

c

o

f
S

e
n
s
e
 A

m
p
li

fi
e
r

C
ir

c
u

it

transistors Qi and Qo to conduct equally. Since the transformer

tolerances of ±1 percent.

i j -+^0 71? RO ONE or Inhibit induced output from

The «eenhery o»,«., oí T,,

however show none of this wide variation, since either Qi or
Q2 is Liven into saturation by the stronger inputs.

b. Discrimination. A variable ^^f^^v^tVge on thíbfses
tapped secondary fa“ tha ^tVmaUy c^nd^cting, the
of transistors Q3 and W4- wun .^5 J, f ahout +0. 28 volts,
emitters of Q3 and Q4 have a qui transistors
Any positive voltage above + . u levels 0f ONE signals are greater
in the OFF condition^ Smce ^dV^plaVcedonAbases of Q3 and Q4
than those of z^RO sig ' levels^of ONE signals will cause them
can be set ^X onlyt^M levels 0 ^ gn ^ The

lUal appearing acrossThe secondarV tends to make one base
3 negaUve agnd the other more positive If ^gruil «
large enough to overcome the dc bias on either base,
cause that transistor to conduct. As volt on the

SÄ»^^Ä«t=,andwUI

rejeï f« mV^aiS Ul nasSr ough, Vt now
vmuld^ésult in°a wÄput signal since conduction of either
Q3 or Q4 begins before the 100 mv level.

Pn1qe Shaoine The remaining circuitry shapes the signal from

QVr QH4s°,h«‘ SIÄmÄ ”>• P“1”
El“ voli .VÄ, hmamuin .»«t™ p.lM Hat «

is 3 volts.

4. 6. 1. 9 Inhibit Driver and Amplifier

The function of the inhibit circuitry U to produce a half-read current^

wrüe f one into a core it is necessary to have currents 1 /21^^ /

occurring simultaneously; either current alonéis the°l/2 ^ current, since

present, Jbe ‘ '
me Li ¿ i-v ví uic X/« —- -

-■— clnpp**i7?"i or 1/21 alone is insufficient to switch the c ,
it is equal and opposite. Since 1/2 ly or i/ ¿ix ^
a zero is written into the core.

The inhibit driver power amplifier, - 0. 4
inhibit current pulse of 410 milliampères pe^ p ^^ure ^) The amplitude of the
microseconds and 0. 7 microseconds respectively. ^ cathode degeneration
“¿put from the inhibit driver is neÆe fecdteck from the cathode of the
in the 5965 feedback amplifier tube ^^^^^„dtctance in the 7236 current
7236 current driver tube. Sm^e e rrpasinu transconductance in the 5965 feedback

iSs^ÄsssÄiiru» "w* 7
minimized.

116

■

:

F
ig

u
re

5

3
.

S
c
h

e
m

a
ti

c

o

f
M

e
m

o
ry

 Z

(I

n
h

ib
it

)
D

ri
v
e
 C

ir
c
u
it

4. 6. 1. 10 Breadboard System

A breadboard of a partial memory system was constructed to evaluate doubtful
components such as the matrix transformers and the magnetic-core memory planes, for

- verifying the design of the drive circuits and for determining the optimum timing of the
various control functions that occur during a 5 jisec memory cycle. Since it would have
been economically unwise to use twenty-two costly magnetic-core memory planes in the
breadboard system, the apparent loads carried by the current pulse generators
(Array Drivers and Gate Generators) had to be simulated.

The loads for a single X-coordinate and a single Y-coordinate were simulated by
means of two additional memory planes, one for each coordinate, wired to provide tiie
same effect as an additional 21 planes (figure 54). Memory Plane 1 contains the fully
selected core which may be sensed and written into as in the ultimate memory. Memory
planes 2 and 3 simulate the loads for the X-driver and the Y-driyer, respectively.
Twenty drive lines of each simulated load plane were connected in series (figure 54);
those used were lines 1 through 10 and 12 through 21. Line 11 is omitted, so that half of
the cores along the fully selected line receive bucking current pulses and the other half
receive aiding current pulses. If all 20 cores were to receive aiding current pulses, the
back voltage seen by the transformer due to switching 20 ONES would have been twice
that actually encountered in the memory, since each fully selected core would have
effectively two lines (one X-line and one Y-line) in which the back voltage would be
induced.

Variations in loading between switching 22 ONES and 22 ZEROs for an ideal
coordinate driver should produce no observable difference in output current. In the
actual coordinate driver, however, the ALL-ONEs load caused a slight dip immediately
after the drive current pulse had peaked; conversely, the ALL-ZERO’s load caused an
overshoot on the leading edge of the drive current pulse. It was found that the insertion
of approximately 50 microhenries of inductance in the cathode of each Gate Generator
helped to regulate the overshoot and the dip in the two extremes of load conditions, so
that switching and peaking times remained nearly constant regardless of the load con¬
figuration. The inductance was later relocated to the constant current sources which
are connected to the cathodes of the Gate Generator tubes for the X and Y coordinates,
(figure 51).

As breadboard testing advanced, it became important to be able to switch between
two cores, rather than being limited to a single selectable core. The switching was
accomplished by selecting one of two X-coordinate lines, a single Y-coordinate Une
being pulsed simultaneously with either X-coordinate line. Since each coordmate line
had its simulated loading distributed in another memory plane, a fourth memory plane
was required.

The reasons for this development were:

a. To observe further the writing-in and reading-out
of the memory cores in 5 microseconds.

b. To observe and rectify any transients that might occur
when switching from one coordinate to another.

c. To determine whether inhibit noise or other transients would
affect core read-out.

Results of extensive breadboard testing indicated that a memory could be addressed to
read and write within 5. 0 microseconds. As a matter of fact, satisfactory operation
was obtained with a memory cycle of 4. 6 microseconds. No transients or any 0J“er
difficulties due to stray capacitive or inductive effects in or among the wires in the
memory planes were encountered.

4. 6. 2 Memory Planes
I

Memory planes were procured for the UDOFT memory in accordance with a
carefully prepared specification; both electrical and mechanical requirements were
specified. No electrical problems were encountered with the planes accepted from the
Vendor. However, the planes could not satisfy the specified shock and vibration

118

LU

Z
5
a.

>

X

119

F
ig

u
re

5
4
.

S
im

u
la

te
d

L

o
a
d

fo

r
C

o
o
rd

in
a
te

D

ri
v
e
rs

requirements. Under these test conditions, the X and Y drive lines tended to break at
the point where the line was soldered to lug on the frame of the memory plane. Also,
the cores would rotate about the four wires through them, abrading the insulation of
these wires. If this had been allowed to continue, the wires themselves could very well
have been cut. To remedy the problem, each memory plane was backed or reinforced
with a layer of glass cloth held in place by a coating of Polyweld.

Since temperature is a critical factor to be considered in the design of a
magnetic-core memory system, temperature tests were conducted using the memory
breadboard. The results indicated that satisfactory operation could be achieved for
±5° C variation about +20° C. However, it was still believed that an absolute maximum
of Io C difference in temperature should be maintained between any two cores in the
memory array. Experieire with the memory system during phases of total system
operation proved these stringent temperature requirements were desirable and indeed

necessary.

4. 6. 3 Memory Unit Cabinet

Great care was taken in laying out the Memory Unit and in packaging the
memory planes, to determine the optimum design from both electro-mechanical and
environmental standpoints and to utilize standard hardware wherever possible. It was
decided that the Memory Unit Cabinet would consist of four bays similar to the Arith-
metic Unit Cabinet, except that the two inside bays should have a 24-mch width rather
than the standard 19-inch width. (Figure 55).

The memory plane arrays and associated components, of which there are 512
per memory plane array, had to be packaged physically as separate units, yet located
close together to maintain the short lead lengths dictated by the minimum tolerable
stray capacity. The memory plane assembly is secured in a plenum chamber which
supplies the necessary air for maintaining the operating temperature ofthe magnetic
cores and for cooling the components and core-driving vacuum tubes. The complete
assembly is located midway up the 24-inch-wide bay, to allow maximum access to the
unit.

The two outside bays, each of which is the standard 19 inches wide, contain the
remainder of the control circuits, standard plug-in packages for which lead length is

not critical.

The memory plane assembly and the driver tube chassis, located above and below
the assembly, constitute the only non-standard items in the Memory Unit Cabinet. These
non-standard parts must be used because of the nature of the planes, the necessity for
short leads between drivers and planes, and the different cooling problems.

From the electrical design and the characteristics of the Type 5998 tubes used
for the core drivers, it was estimated that each of the two 24-inch wide bays of the
Memory Unit Cabinet would dissipate approximately 2300 watts. To maintain the
specified operating temperatures with this amount of heat, it was necessary to divide
the bay into two isolated sections for the purpose of cooling because for one end of the
duplex blower could not handle the entire bay. One section, served by one end of the
blower contains the memory plane assembly and the driver tubes. This section
dissipates approximately 1200 watts. The remainder of the bay, which contains the
standard packages and is located above and below the memory plane and driver tube
assembly, is cooled by the other end of the blower, dissipating the rest of the heat
generated.

Information gathered from the operation of the memory breadboard helped
establish ground rules for the layout of the logic packages in the Memory Unit Cabinet.
Each memory was so packaged as to satisfy the critical requirements imposed upon the
lead lengths of the X and Y coordinates. Since the X-coordinate circuits are identical
to the Y-coordinate circuits, the package layout for the center bays of the cabinet
is symmetrical about the magnetic-core memory arrays. Further, since the Number
Memory circuits are identical to the Instruction Memory circuits, the layout of the two
outside bays of the cabinet is symmetrical about the centerline of the cabinet.
(Figure 56).

121

i»-

} l
1

122

F
ig

u
re

5

6
.

L
a
y
o
u
t

o
f

M
e
m

o
ry

 C
a
b

in
e
t

4. 7 Input-Output Development

4. 7. 1 Input-Output Unit Cabinet

The Input-Output Unit Cabinet consists of five bays. Four of these contain the
control circuitry, logic, and circuits required for processing the discrete and analog
outputs and inputs. The fifth bay houses the stepping switches and control relays for
the output printer, or electric typewriter. This bay also contains a large number of
spare package slots for any additional logic that may be added in the future. (Figure 57.)

The ground rules for emplacing the packaged circuits in this cabinet were
identical to those established for the Memory Unit cabinet.

4. 7. 2 Computer Console

4. 7. 2. 1 Console Cabinet

The console cabinet as originally planned was made of three commercial console
sections permanently joined to form one unit approximately 64 inches long. A side
elevation view of this cabinet design is shown in figure 58. After much consideration it
was decided that the writing surface was too shallow, being only 10 inches deep; the well
in the writing surface was disadvantageous, as it might become a receptacle for pencils,
cigarettes et cetera; the working areas of the control panels were below the writing
surface as a result of the well, making the controls located at the bottom of the panels
more difficult to operate and leaving them unprotected against accidental operation by
notebooks or other items sliding across the writing surface; the slope of the panel was
too shallow; controls and indicators at the tops of the panels were at an uncomfortable
distance from the operator; and esthetically, the balance between the sections above and
below the writing surface was poor.

These major objections were overcome by redesigning the upper section of the
console. A side elevation of the redesigned cabinet also appears in figure 08. The
writing surface was increased by covering the well; tue control panels were raised above
the writing surface; the slope of the control panel was increased to provide better vision
of controls and the esthetic balance was improved by revising the upper section.

In addition, it was necessary to add to the console a structure to accommodate
the output printer. Numerous schemes were considered-, the best and most acceptable
was the addition of a section, similar to the lower section of the commercial console
units, at the right end of the console. This addition provided a broad surface to receive
the electric typewriter, and the continuity of design and appearance was retained,
pictorial view of the finished console unit is shown in figure 59.

4. 7. 2. 2 Console Panels

The details of the layout of each of the three console panels were discussed in
Section 3. 7. However, one item not discussed is the apparently misguided arrangement
of register status indicators and register read-in switches.

The layout of these indicators and switches was made with regard for the pro¬
grammer and the maintenance engineer. Since programmers prefer to use octal
notation rather than the cumbersome binary notation, this group of status indicators and
read-in switches were grouped and labeled to facilitate working with the octal form.

If the indicators are arranged as in Part a of figure 60, the transcription of the
binary number is not too difficult, but there is a high probability of error, especially
f the number contains many bits. Arrangement as in Part b facilitates reading *hem
iirectly in octal form, by the use of yellow and green indicators to group the binary bits
nto octal characters. A further improvement is made in Part c, by providing a visual
indication of the octal weight of each binary bit and thereby increasing the speed and
reliability of data translation and transcription by the human mind.

A similar logical argument has been formed for the arrangement of the register
read-in switches, of which there may be as few as twelve or as many as twenty-two.

123

124

i».

F
ig

u
r
e

5
7
.

L
a
y

o
u

t
o
f

In
p

u
t-

O
u

tp
u

t
C

a
b
in

e
t

i

Figure 58. Original and Revised Computer Console Designs

125

F
ig

u
re

5
9
.

C
o

m
p

u
te

r
C

o
n

s
o

le

o
o
o
o

o
o
o

o
o

©
o
0
©

h

r

127

i».

F
ig

u
re

6
0
.

In
d
ic

a
to

r
L

a
m

p

A

rr
a
n

g
e
m

e
n

ts

Graphie examples of this argument are shown in figure 61. From Part a it can be seen
that translating the octal information into the appropriate switch positions is probably
more difficult than using the binary representation of the samedata, since there is no aid
provided for grouping the binary switches into octal groups. The representation of
Part b is an improvement, but still lacks clarity. The representation of Part c as was
true for the indicator lamps, is the best; however, one unfavorable characteristic
common also to Parts a and b remains: the switches are placed in a long horizontal
row making manipulation more difficult. To overcome this difficulty the octa. gr<mps
or triads were placed vertically as in Part d, thereby reducing the length of the register
switch bank.

All switches are of the pushbutton type, whether maintained contact or momentary
contact with lighted buttons to indicate the position of the switch. Because of the large
number of switches on the panel, it was determined that lighted pushbutton switches
would be more desirable than toggle switches for the following reasons:

a. They are easier to operate, requiring a force in only one direction.

b. They provide a relatively large control surface, allowing markings
to be placed right on the switch.

c. Illumination and color coding simplify identification and operation.

d. The switches used for setting up new information can be arranged
in adding-machine keyboard fashion.

4. 8 Power Supplies and Power Control

4. 8. 1 A-C Power

The input power to the computer is 208/120-volts, 3-phases 60-cycle, 4-wire Y.
This a-c power is subdivided into four types according to use. (Figure

4. 8. 1. 1 Utility Power

This portion of the a-c line is distributed to the various cabinets to provide
120-volt single-phase utility power at the convenience outlets.

4. 8. 1. 2 Unregulated Power

This portion of the a-c line is distributed to the various cabinets to provide
208-volt three-phase power for the blower motors. Each.cabinet has a circuit breaker
ahead of the blower to protect the line in case of motor-winding short circuits.

4. 8. 1. 3 Regulated Power

This portion of the a-c line is regulated by three single-phase a-c line regulators
to provide three single phases of regulated 120 volts to the filament transformers in the
cabinets. The filament power is applied in two steps when the computer is first turned
or by using a line-dropping resistor in each line of the regulated 120-volt lines, and
shorting them out after a time delay of approximately 40 seconds. This somewhat
gradual application of the filament power is expected to increase the life of the vacuum
tubes by removing the thermal shock on each tube if full filament voltage were applied
instantaneously.

4. 8. 1. 4 Delayed Power

This portion of the a-c line is applied to the d-c power supplies as 208/120 volts,
3 phase, 4-wire Y. It is delayed in order to allow all vacuum tubes in the computer
sufficient time to warm up before d-c power is applied

4. 8. 2 D-C Power

D-C power is supplied independently to each cabinet from the power supply.^ The
prime reason for these independent cables was to allow the use of smaller gauge wire
without increasing the voltage drop between the supply and the load, due to cab e

128

129

F
ig

u
re

 6
1

.
R

e
a
d
-i

n
 S

w
it

ch
 A

rr
a
n
g
e
m

e
n
ts

V)
a.—
o -
ow
u>z

10 —

a
o*
tv

o —
o ™
*0 lii

+■= m -I

V. —

® ï
2*

O
W K*-

Í o^a:
-j > 5 u
«

5 I
S£2

° _j
«Í ^ a o.
-Í « 0 Û.
lii o u =3 a iv o tn

o
id ñ

-o \

>

X
O ^ ï
»- Ç o
< > a.
-i _ 3 ° (C
C rv w
id ^ ï
K « O
2 ° * 3 tv ®

O
~ (C

Id

È I
-i a.

130

i
w*-

F
ig

u
re

6
2
.

B
lo

c
k
 D

ia
g

ra
m

 o
f

A
-*

C

P

o
w

e
r

S
y
st

e
m

resistance and high currents that must be supplied. Similarly, to minimize the
fluctuations of ground potential due to heavy transient currents that may occur during
computer operation, the d-c power supply grounds or returns are not commonly joined.
Separate ground wires for each supply are carried as far as the distribution point, where
they are grouped together to form three independent grounds. These independent lines
are carried to each cabinet, where they are commonly joined; cabinet ground is made
at this same point. In addition, the cabinets of the system are interconnected to form
one continuous cabinet ground. Through this rather complex scheme, it was hoped, a
clean ground system would exist in the computer.

As d-c power control, a large contactor is located in each cabinet. If for any
reason any of the d-c or filament supply voltages should be missing, this contactor
opens, automatically disconnecting all d-c power from the cabinet

In case of any power failure, a-c or d-c, major or minor, an alarm is sounded.

4. 8. 3 D-C Power Supplies

Seventeen magnetically regulated d-c power supplies supply all d-c voltages
required by the computer (Table XI). A simplified block diagram of a typical three-
phase magnetically regulated supply is shown in figure 61 An item of interest is the
use of a fuse shunted by an indicator in series with each bank of storage capacitors.
If a capacitor shorts, the fuse blows and the indicator lamp indicates the blown fuse;
however, the power supply does not shut down. It continues to operate, but with higher
ripple and poorer regulation. Thus a shorted capacitor will not cause unscheduled
computer downtime.

4. 9 Computer Unit Testing

4. 9. 1 Arithmetic Unit

The first phase of unit testing consisted of checking the wiring of the unit, which
required two men for approximately throe weeks. During the next phase, which lasted
one to two weeks, corrections were made of the wiring mistakes detected during the
first phase. The third and final phases consisted of the actual operational testing of the

For testing purposes, the Arithmetic Unit was subdivided into a number of
logical sections: the Multiplicand-Divisor register, the stages of the Accumulator, the
Control Dispatcher lines, and the Clock Pulse system. Each subsystem was thoroughly
checked before any packages were inserted for the next stage of operations. During the
dynamic testing a number of problems were encountered.

4. 9. 1. 1 Clock Repeater Oscillation

When all Clock Repeater packages were inserted for distribution of the clock
pulses, severe oscillations resulted. After eliminating the ground system, power
supplies, lead dress, supply voltage decoupling networks, and cross-coupùng between
the etched conductors on the Clock Repeater package as possible causes, it was
determined that the parasitic suppressor grid resistors of the repeater cathode followers
were inadequate.

4. 9. 1. 2 Clock Pulse Distribution

Ringing appeared on the clock pulses at the ends of the distribution lines from
the load-driving Clock Repeater packages. Invesügation showed that the length of
these lines (10 to 18 feet) was the cause. By altering the distribution of the clock pulses
so that no clock line was longer than ten feet, and by terminating the end of each line
with a resistor-diode network, the ringing was eliminated and the transmission delays
along the lines were decreased

4. 9. 1. 3 Short Delay Lines

It was observed during the testing of the stages of the Accumulator, that the
output signals from the short delay lines in many instances were marginal: that is,
distortion and attenuation of the pulses passing through the delay lines were so great

131

TABLE XI

MAXIMUM D-C POWER REQUIREMENTS FOR UDOFT œMPUTER

Nominal Supply Current
Voltage (Volts)_(Amperes)

-4. 5 25

-10 15

-20 115

-150 1-0

-150 7.0

-300 0.75

+6 25

+10 0. 25

+20 40

+48 2* 5

+80 25

+ 150 1-0

+150 25

+250 3.0

+80MCV ±25V 1-0

+ 150MCV ±25V 0. 7

-150MCV +60V, -10

Total Regulation*

20% To Full Load 0 To 20%

2. 5% 5. 0%

2. 5% 5- 0%

1.0% 2.0%

0,5% 1.0%

1.0% 2.0%

2. 5% 5. 0%

2. 5% 5.0%

0.5% 1-0%

2.5% 5.0%

2. 5% 5. 0%

2.5% 5.0%

0.5% l.°%

2.5% 5.0%

2. 5% 5'

2. 5% 2- 5%

2. 5% 2* 5%

2.5% 5.0%

^Including peak-to-peak ripple and noise

132

F
ig

u
re
 6

3
.

B
lo

c
k
 D

ia
g

ra
m
 o

t'
M

a
g
n
e
ti

c
a
ll

y

R

e
g

u
la

te
d
 P

o
w

e
r

S
u
p
p
ly

that the output pulse was barely able to control the succeeding circuit. The problem was
the result of reflections at the end of the delay line.

The characteristics oí the delay lines were investigated; some exhibit capacitive
characteristics, while others exhibited inductive characteristics. The ^«^wce m the
reactive characteristics of these lines was found to depend on dressing of the ground
braid of the distributed delay Une at the terminating end. If the braid extended over the
helically wound center conductor and was taped tightly, the delay £ectlon wa® <:^"'.
lively terminated; if the braid did not extend over the center conductor, the delay section
was inductively terminated.

It would have been highly inefficient to correct this by reartively trimming each
delay line section* the problem had to be solved by accepting the physical quirks of the
lines and attempting to overcome their effects. This was accomplished by increasing
the pulse amplifier plate and screen voltages from +75 volts to +3° volts, to supply
larger driving pulses and to decrease the relative amount of delay line distortion, and
by providing a form of termination between the two 0. 4 delay line sections that comprise

the 0. 8 delay line.

4. 9. 1. 4 Long Delay Lines

During the testing of the G-Register stages, it was found that the 5. 0 cl^k
neriod and the 5. 6 clock period delay lines, specified to be 4. 8 and o. 4 clock periods
long respectively could not be trimmed by the addition of 0. 2 clock period delay tines.
Pulse distortion and attenuation in the long delay lines were too great to^owf “"T*cting
the delays in series. The addition of repeater pulse amplifiers compensated for the
difference of 0. 2 clock period and reshaped the distorted piuse to one wib be -e-.r-d
characteristics.

4. 9. 2 Control Unit II

This was the second computer unit to be delivered for test Testing foUowed the
same general plan established for the Arithmetic Unit: namely, wirmg check, wiring
correction and unit test Because improvements had been made affecting this as
a result of*the extensive dynamic testing conducted on the Arithmetic Unit, no significant

problems were encountered

4. 9. 3 Control Unit I

This was the third computer unit to be delivered for test. Again, no significant
problems appeared. However, Control Unit I could not be completely tested
dvnamically, without the thirty timing pulses of the five-microsecond minor cjcle.
Since the timing pulses are generated in Control Unit H, the first major unit -nter
corím;ction was^made between the two control units. When they had been tested together,
all the necessary controUing functions for the Arithmetic Unit were available, the
Arithmetic Unit was then connected to the Control Unit I - Control Unit H combination.

4. 9. 4 Main Frame Test

The next step was the dynamic testing of the Main Frame, consisting of the
Arithmetic Unit, Control Unit II, and Control Unit L Since the Computer Console ana
the Memory Unit were not available, it was necessary to substitute for these two
units a simulator panel which contained all the functions otherwise normally available.
As a result, the execution of the following instructions were checked on a single in¬
struction basis: Add, Absolute Add, Clear Add, Clear Absolute Add, Subtract
Absolute Subtract, Clear Subtract, Clear Absolute Subtract, Mulhpiy, Multiply Add
Divide Shift (Left and Right), and Shift Add. Testing the remaining tnstructions which
involve Program Control, Storage, and Input-Output, haa to be deferred until both the
Memory Unit and the Console were available.

4. 9. 5 Memory Unit Test

After the Memory Unit wiring had been checked and corrected dynamic testing
was begun in very limited form. Enough packages were inserted to allow the operation
of a complete read-write cycle for a single core in a single memory plane-
results were encouraging in that the operation of the single core was wholly adequate.

134

Eventually packages were inserted to allow the testing of a single core in each of the
other memory planes. Finally the packages for the memory addressing function were
inserted, thereby allowing the testing of whole words anywhere in either memory.

At this stage considerable difficulty was encountered with the operation of the
number memory. With the Sense Amplifier and the Inhibit Driver Amplifiers adjusted
properly for reading and rewriting the contents of a particular number-memory storage
register, it was not possible to read out of or write into another storage location without
making minor adjustments to the two amplifiers. Also, within the same storage location,
variation in the ONE and ZERO content of the stored number affected the reading out of
the number. It was quite certain that a wrong temperature did not cause the hindrance
from location to location or within the same location, since the air conditioner was
functioning properly. This avenue had been investigated because the first diagnosis
indicated that the cores were switching much too rapidly. There was also a noticeable
increase in the noise level on the sense winding, caused by partially selected cores and
by selected cores storing ZEROs.

Examination of the X-Drive and the Y-Drive lines threading the planes revealed
drive current variations as the pattern of ONEs and ZEROs in the stored word was
changed. The drive current is affected by the reactive load on the drive line, and this
reactive load varies proportionately with the number of ONEs being stored. Thus the
driver has a high impedance load when a majority of ONEs is being stored, and a low
impedance load when a majority of ZEROs is being stored. As a result, the variable
load on the driver causes variation in the drive current waveform generated by the
driver. When the impedance is low, the driver output is essentially underdamped,
allowing considerable overshoot on the leading edge of the current waveform. If the
overshoot is great enough, there is sufficient drive in this half-select signal to cause
only partially selected cores to switch, and to cause greater noise output from cores
storing ZEROs. In addition, it causes the one wholly selected core to switch much
more rapidly. The overshoot under worst load conditions was found to be in the order
of 60 percent.

The addition of a shunt RL circuit in the supply line between the constant current
sources and the cathodes of the Gate Generator Tubes (type 5998) corrected the overshoot.
The effect was that of introducing a fixed reactive load without causing current wave¬
form deterioration, such that variations in the reactive load of the cores became a less
significant load determinant Effectively, the driver impedance was increased to make
it more nearly a true constant-current source. Though overshoot could not be
eliminated completely, it was reduced to approximately 10 percent in the case of the
worst load; this reduction appeared adequate for proper memory operation.

A similar change was incorporated in the Instruction Memory: no difficulties were
encountered during its unit-testing.

4. 9. 6 Input-Output Unit

Delivery to test of the last major computer section, the Input-Output Unit, was
delayed a number of months beyond the scheduled date, due to more pressing items associated
directly with the Main Frame. To prevent this lateness from harming the overall
program, the unit test phase was accelerated by eliminating the dynamic test portion.
Rather than to check the unit independently of the rest of the system, it was tested
dynamically as an integral part of the computer system.

Testing of the Discrete Outputs revealed that, although ample signals were
routed to the console for driving the discrete output indicator lamps, the d-c bias
level was too positive. This problem was resolved by introducing voltage dividers at
the inputs to the transistors driving the console indicator lamps.

The main problem in the input-output area concerned the actuation of the slow'-
speed printer. The operation of the steering switch which selects the stages of the
registers to be printed out was inadequate and required modification. In addition,
actuation of the stepping switch and the binary-to-octal converter relays introduced
transients into the system sufficient to affect some of the registers. The judicious use
of decoupling networks and the terminating of the register outputs at the stepping switch
resolved these problems.

135

4. 9, 7 Computer Console Unit

Only a minimum amount of testing, other than checking the “uld be
performed on the Console Unit by itself. Therefore the unit was connected into the

system.

Immediately apparent were problems caused by the contact bounce of me
switch the Manual Memory switch, the Sequence Counter Reset switc^ and me In,
Timer Reset switch. The problem caused by the latter two switches was sol/ed bJ
utilizing a relay with sequential transfer contacts. In this way, the clear «8”* w .
be removed prior to removal of the set signal, thereby
nrnhlpm caused by the Start and Manual Memory switches differed radically m max, m
^ach Tne swUch conict actuated two different pulse amplifiers, and unless the mput
and triggering characteristics of the two amplifiers were identical switch bounce could
causae'improper operation. The solution required both changes in the computer logic
and the addition of relays with mercury-wetied contacts.

Another problem area, somewhat more general in sc0Pe'
interaction between console switches and the computer circuitry which drives the console
indicator lamps The solution was the separation of switch voltage buses and investor
voltage busesP and sufficient decoupling of each to minimize bom the transients that
occur as a result of switches being operated and the effect of these transients on the
driving sources in the central computer.

4. 10 Computer System Testing

The first system test was that of the manual control of the two core memories
from thfTconsole üTs had been carried out successfully, the instructions bhat
constitute the computer instruction repertoire were checked on a
basis! ¿her than a major logic problem concerning the Transfer on Overflow <TOV>
instruction, no serious problems were encountered

The next stage of testing involved loading an entire f
ooeration in the fast mode. The first difficulty encountereo during this phase was
incorrect program read-in. The causes for improper card read-m were f^ed to
caoacitive*coupling between the high impedance card reaaer input Imes and agam

gave rise to the large signals being coupled into physically adjacent
the two t^es of network! had been added, no trouble was encountered in obtammg re-

rewrS-^== output

Finally, on 22 January 1959, successful operation of the computer sy^em under
program control was attained The control program was Memory Test
Program Although the program consists of only forty or fifty' mstructions it is
executed for each number memory register. Thus, the gross program length is
approximately 200, 000 instructions. Since the instructions are predominan j
requiring only five microseconds, the program was executed in approximately one

second

The next sten was to attempt the Computer Diagnostic Program. During the time

^.erfoU0owtegharePsome of toe" ^Son or^^er “nritions^Mth occurred in the

computer as the result of wiring errors:

a. Incorrect Accumulator sign generated for product if multiplicand negative

b. NOP order decoded improperly

136

c. Number Memory parity formation incorrect when 02TRR = 1
(The second least significant bit of the transfer register was a 1)

d. Incorrection determination of NSN, which is essential for MXDO
instructions; NSN is the amplifier which anticipates the next sign
of the accumulator

e. G-Register Error indicator failing indicate errors

f. Two discrete input switches controlling the same number-memory
register

g. Number parity error incorrectly determined

On 23 April, 1959, the computer executed successfully the complete Computer
Diagnostic Program. Ironically, the last problem was a loose plug-in pulse amplifier
package in the Arithmetic Unit This pulse amplifier was the last stage of Dispatcher
Line 5 which controls the shift-left operations. Once tbia fault had been cleared, the
Diagnostic Program was run for two and one half error-free hours, before operation
was terminated arbitrarily.

Due to the noticeably unreliable operation of the Number Memory, it had been
decided to revise the Number Memory Test Program in order to yield a more stringent
test of the memory. The revised program checks each number memory location for its
abiUty to store forty different bit configurations; twenty configurations of a single URL,
and twenty configurations of nineteen ONEs. The program consumes approximately
nineteen seconds of operating time.

'The program is quite simple and was so prepared in order to eliminate as many
programming problems as possible. The brute-force aspect of the program is borne
out by the fact that it required but two hours to debug the program completely and to
make it operational. During the latter part of April, after the successes with the
Diagnostic Program and the revised Number Memory Test Program, the analogoutpul
system was checked by means of the Analog Output Precision Test Program^ The
program causes a test servo to assume ten discrete positions, 325 apart. The position
of the shaft (encoder) is read into the computer via an analog input channel, and die
difference between the actual shaft position and the desired shaft position is determined
and stored for print-out when the routine is complete. A number of output cnannels were
checked and adjusted as necessary. Due to the element of time, not all output channels
were checked prior to the commencement of aircraft simulation program check-ou, on
5 May 1959. As time was available the remaining output channels were checked

During the month of August 1959, at a time when the programmers were involved
with an F-100A simulation program problem, the complex Instruction Memory Te
Program was attempted. After a few program modifications, lf.a
computer could execute the program flawlessly, stopping only at IMAD 7171 due to a
bad core in the seventeenth plane. This situation was remedied by replacing the
defective plane.

As a result of the successful execution of the Instruction Memory Test Program,
four service programs (Number Memory Test, Diagnostic, Number Memory Test -
Revised, and Instruction Memory Test) were now available for periodic confidence
checking of the computer. As time permitted, effort was applied to the debugging of die
Number Memory Checkerboard Program. Ultimately the checkerboard program was
debugged and added to the group of available computer service programs.

4. 11 Trainer Modification and Static Test

To minimize the costs of developing the digital flight simulator system, the
government provided to Sylvania two flight simulators: an F-100A Simulator Tramer,
Type MB-3, and an F9F-2 Operational Flight Trainer, Device 2-F-13. Furtiier, the
government directed Sylvania to make use of the analog simulators, the use being
limited only to the extent that all aerodynamic, powerplant, and aircraft systems
calculations be performed by the digital computer. Thus extensive use was made of
such items as the trainer cockpits, the instructor's stations, the operator s stations,
the integrating servos and the radio-navigational aids.

i*.

137

The trainer cockpits were modified to allow their use with the digital computer;
potentiometer transducers were replaced with shaft-position-to'digital encoders and a
number of cockpit switches and indicators were disconnected from the analog computer
and rewired to the digital computer. Similar modiftcations were made to the instructor's
stations and the operator's stations. The analog computer integrating servos were
modified to function as conventional positioning servos; however, a synchro transmitter
was added to each servo which was used to position similar instruments in each cockpit.
The radio-navigational aids sections of the analog devices were left unmodified. The
majority of the parts and assemblies which found use in the final UDOFT system were
obtained from the F-100A analog simulator.

Initial testing of the modified trainer cockpits was limited to a continuity check of
the lines of communication between the trainer and the computer, and a static operating
check of the transducers and the indicators with the trainer cockpits. To facilitate the
check-out, a small test panel was developed which ultimately became an integral part of
the trainer. (Figure 64.) The 24 toggle switches grouped in two rows of 12 switches
each, at the top of the panel, simulate the discrete outputs (relay closures) from the
computer; the ten indicators immediately below the discrete output switches and to the
left of center are used to indicate the state of the ten-bit analog input derived within the
trainer; the ten indicators to the right of center are used to indicate the states of single
discrete inputs derived within the trainer. The test leads, the two rows of test jacks,
and the two AN connector receptacles provide the means for connecting the test panel
to the trainer. The 20 test leads are associated with the ten analog input indicators and
the ten discrete input indicators. No test leads are associated with the 24 simulated
discrete inputs; the reason will be apparent from the material that follows. The test
points are connected permanently to the left-hand AN connector receptacle. This
allows the "patching" of the indicator to the appropriate signal lead within the trainer
cable assembly. The right-hand AN connector receptacle is not connected to the test
jacks; it is wired permanently to the twenty-four discrete output switches. This was
done because there are only 24 discrete output lines from the computer to the trainer
all of them grouped within a single cable assembly. Therefore the right-hand receptacle
is used only for checking trainer components actuated by discrete outputs from the
computer.

In order to check the output from any shaft-position-to-digital encoder or
trainer discrete input switch, the trainer cable assembly carrying these signals is
disconnected from the computer's Input/Output unit and connected to the left-hand
receptacle on the test panel. After determining, from a posted reference list, the
designation of the connector pins carrying the desired signal, the appropriate status
indicator is connected, via the test jacks to the connector.

The only items not checked directly by the test panel are the computer analog
outputs. The instrument-positioning servos, which are activated by those outputs,
may be checked either by connecting a variable d-c voltage source to the appropriate
cable assembly connector pins or by using the manual servo-positioning facility which
was retained when the F-100A simulator-integrating servos were modified to simple
positioning servos.

4. 12 Review

This documentary report cannot relate the pertinent facts of the development
of the UDOFT system in a single logical series of report sections, because the
development of the UDOFT system involved the concurrent development and integration
of two major items, system hardware and system software. The three preceding
sections have related the prominent aspects of hardware development, namely, the
UDOFT digital computer. The two sections that follow relate the prominent aspects
of software, or computer programming, development At the conclusion of these
sections, the two major items of consideration, system hardware and software are
integrated and the remainder of the report is devoted to various aspects of the UDOFT
system as a whole.

i».

138

Figure 64. Trainer Static Test Panel

139

SECTION V

SIMULATION PROGRAM DEVELOPMENT

A review in the year 1962 of the development of the computer programs for the
UDOFT computer is in many respects a study of the ancient history of the computer in¬
dustry. The UDOFT programming tasks were initiated in 1956, comparatively early for
attempting the real-time simulation of a dynamic system on a digital computer. Many
of the problems encountered in preparing a satisfactory flight simulation program have no
similarity to those encountered in the more usual applications of digital computers; a dis¬
cussion of these problem areas is necessary if one is to appreciate their implications.

The following sections delineates the history of the programming task for the
UDOFT computer. Detailed descriptions of selected aspects of the simulation program
for the F-100A aircraft are presented in Section VI, RESULTANT PROGRAM.

5. 1 Simulation of the UDOFT Computer

At the outset of the UDOFT project, the need for a readily available digital com¬
puter to simulate the UDOFT computer was apparent, because the operational flight-
simulation programs were scheduled to be prepared and debugged shortly after the com¬
puter was made available. This meant that initial check-out and trial verification runs
had to be conducted on another digital computer. Further, UDOFT computer test and
exercise programs were being prepared to facilitate the verification of computer operation.
Confidence had to be established in both the computer and the associated programs before
they could be of use.

Accordingly, a program to simulate the UDOFT computer on an IBM 704 Computer
was prepared. The IBM 704 was selected primarily because it was probably the most
popular general-purpose digital computer readily available throughout the country at the
time the UDOFT simulator program was undertaken. This simulator program, known as
PSEUDOFT (PSEUDO-UDOFT) is a control program that instructs the IBM 704 to execute
a program written for the UDOFT computer in UDOFT language.

The original PSEUDOFT program was divided into three main sections: the loader,
the simulator, and the reporter. The loader controls the insertion of UDOFT instruction
and number words from magnetic tape into the 704 magnetic core memory. The simula¬
tor, which forms the bulk of the PSEUDOFT program, translates each UDOFT instruction
into 704 instructions which then cause the desired operation to be performed. Finally, the
reporter interrogates each instruction to determine if any output is required, and if so,
causes an on-line print-out of information on magnetic tape. The rest of the data is
printed off-line.

The intent of the program was to simulate all operations of interest to the program¬
mer, rather than all pulse-by-pulse actions of the UDOFT computer. Simulating the
UDOFT instructions required subroutines for the 704 which varied from two to thirty-five
704 instructions, those for the more basic UDOFT instructions and for the UDOFT Shift
and Add instruction. As a result of this and the speed disparity between the 704 and
UDOFT, the time ratio for simulation was approximately 150:1 when using PSEUDOFT to
run a UDOFT routine. This ratio increased even more when output was required from
PSEUDOFT.

In preparing the PSEUDOFT program the problem was not so much in deciding how
to do a certain thing but rather what needed to be done. The preparation of the first ver¬
sion of PSEUDOFT was hampered by the limited 8000 word memory capacity of the 704.
This imposed heavy restrictions on the programs to be run on PSEUDOFT, since the full
8, 000 words of the 704 memory would not be available to simulate the UDOFT computer
memory. Furthermore, the memory limitation complicated the coding of PSEUDOFT,
because care had to be taken to conserve the 704 memory in order to minimize the re¬
strictions on the UDOFT programs. Efficiency of the PSEUDOFT program was critical
also, since many passes through PSEUDOFT would be required to effect a few seconds of
real-time simulation. This requirement became more important when it was realized
that the UDOFT routines had to be run several times on PSEUDOFT before they were con¬
sidered adequately debugged.

140

When the 709 replaced the 704, the same PSEUDOFT program continued in use.
However, it was not as efficient because programs written for the 704 were not directly
applicable to the 709. Since many users of the 709's were former 704 users, an input
compatability program was made available by means of which 704 programs could be read
into the 709. The resultant inefficiency was tolerable. However, the use of the 704-
PSEUDOFT program on the 709 would have continued had it not been for a desire to aug¬
ment the PSEUDOFT program with other program preparation and checkout aids. Since
these programs were to be written for the 709, it was decided to rewrite PSEUDOFT for
the 709 to achieve maximum efficiency.

The 704 PSEUDOFT program has not been discarded. It was used recently by a
user of the UDOFT computer system who had a 704. The use of PSEUDOFT allowed him
to debug his UDOFT programs rapidly because PSEUDOFT was able to provide him with
data concerning the progress of problem solution.

If the computer to be used in a system is the first of a kind, a simulator program
such as PSEUDOFT is essential. Also, if the computer is highly specialized and its input-
output facility is severely limited, as is the case with the UDOFT computer, a simulator
program is highly desirable.

The use of PSEUDOFT had several side effects which are mentioned in a succeed¬
ing section, "Checkout and Test." During the course of preparing these programs, vari¬
ous additions were made to the PSEUDOFT program to increase its capability. The
finished PSEUDOFT program offers tracing, timing, variable output, overflow indication,
and programming-error detection capabilities.

5.2 Use of Automatic Programming Techniques

The use of automatic programming techniques was essential to the successful com¬
pletion of the operational simulation programs for UDOFT. It would have been virtually
impossible to complete the programs without the help of an assembly program. This
point is emphasized because, although the desirability of an assembly program is self-
evident now, it was by no means obvious at the time the work was begun. A brief history
of this aspect of the programming task follows.

At the beginning of the programming task it was assumed that all programs were
to be written in binary. Thus, if an instruction read "clear and add the contents of number
memory register four, " the instruction would be entered onto a UDOFT coding sheet as
340004. This required a knowledge of the binary (or octal) representations of the(UDOFT
order code. It required also that the numerical data, such as might be stored in "number
memory register four" would have to be entered in binary (or octal) form. The task of
converting decimal data to binary would be done manually. Accordingly, PSEUDOFT was
written to accept program and numerical data in octal form.

During the summer of 1958, the programming task became overpowering. Valu¬
able time was lost to converting decimal data to octal form. As a recourse, the standard
IBM 704 Assembly Program (SAP) was modified to convert numbers from decimal to fixed
point binary, using a scale factor selected by the program. As an example, consider the
conversion of Sin 4° to octal. Without any scale factor indication. Sin 4° = (0.069756)10 =
(0. 043556)g . With a scale factor of Bl, the octal representation will be shifted one binary
place to the left (equivalent to shifting the radix point one binary' place to the right) result¬
ing in (0. 0216670)g. Thus, (0. 069756) jq is transformed into (1).0216670)8.

In this way, all numerical data was assembled. The modified assembly program
was used for this purpose only. PSEUDOFT was, in turn, modified to accept the binary
cards processed by the assembly program.

Up to this time no thought had been given to the preparation of binary input cards
for the UDOFT computer. The UDOFT punched card format is unique, and as such posed
a problem. This problem was alleviated by preparing a program that would manipulate
bits, as they appeared in 704 core memory, and punch them out on cards suitable for entry
into the UDOFT computer. This meant that anything that had been used as input to PSE¬
UDOFT, whether numbers assembled by the modified assembly program or program in¬
structions coded in octal, could be punched on cards in accordance with the UDOFT punch¬
ed card format.

i*.

141

These modest innovations were a great advance, but still did not alleviate the
problem of writing instructions; instructions still were coded in binary form. In the spring
of 1959, it became apparent that it was possible, with very little effort, to further modify
SAP, the 704 Assembly Program, so that it would assemble all parts of the UDOFT pro¬
gram. From input consisting of mnemonic coding using symbolic addresses, the modified
SAP could produce absolute coded programs in accordance with the UDOFT format, suit¬
able for running on PSEUDOFT and for subsequent punching on UDOFT format cards.
Writing a working assembly program was accomplished in a few weeks. This first assem¬
bly program known more commonly as UDAP (UDOFT Assembly Program), provided two
forms of output; a 704 binary deck suitable for use with PSEUDOFT and an assembly listing
in UDOFT language.

The conversion of 704 PSEUDOFT binary cards to UDOFT binary cards required
the use of the punch program mentioned previously in this section. In order to eliminate
this extra step, UDAP was modified again to punch UDOFT binary cards suitable for direct
entry into the UDOFT computer. In addition, the assembly was modified further to write a
magnetic tape, an equivalent of the 704 PSEUDOFT binary deck. This modification elimi¬
nated the time-consuming task of on-line punching of cards for PSEUDOFT; further, the
resultant tape could be read into the 704 more rapidly than the punched cards. A final
modification was the incorporation of parity determination for the assembled UDOFT in¬
struction and number words and the subsequent print-out of parity as part of the UDOFT
assembly.

The designation of the program, since it had been modified to such an extent, was
changed to UD2 (considering the original UDAP as UD1).

Shortly after UD2 had been prepared and was being used, the decision to rewrite
PSEUDOFT for the IBM 709 was made. At this time a review of the many utility programs
was undertaken. Since the assembly program had become such a powerful tool, and the
need for PSEUDOFT was declining, it was decided to revamp UD2. However, now that the
709 had replaced the 704, the 709 Assembly Program (9AP) was to be modified to cater to
the needs of UDOFT, and continued modifications of the 704 Assembly Program (SAP)
were terminated. The resultant UDOFT assembly program became UD3. Aside from
using the 709 more efficiently, UD3 incorporated the forbidden sequence tester which un¬
til this time had been a separate program used in conjunction with PSEUDOFT. A still
later version UD4 is now in use. UD4 is used with the 7090 computer, and prepares the
12-word per card binary cards.

A sample print-out of a UDOFT routine assembled by UD3 is presented in figure
65; the example selected is the Governing Control Program for the F-100A simulation
program. The information appearing in four of the first five columns (IMAD, R, OT,
NMAD) is punched onto UDOFT binary cards; the remaining columns are printed on the
assembly listing to facilitate visualization of the assembled program.

The use of an assembly program to aid in program-preparation for future simulators
is strongly recommended. A compiler for flight-simulation programs may even be more
useful; it is well known that the computer industry as a whole is moving in the direction of
compilers. However, in making the decision on compilers, the following aspects must be
considered:

1. The validity and efficiency of the object programs produced by a compiler.

2. The ratio of time spent in writing a compiler to time saved in writing flight-
simulation programs.

There is no question in the mind of most people in the computer field with regards
to the usefulness of compilers in general. Most experienced people say that compilers cut
programming time to about one quarter of the time required for symbolic coding of the type
suitable for assembly programs. On the other hand, for a large system,compilers have an
inherent disadvantage in that it is difficult to insert temporary check points or to make
small changes to a completed program. It is also difficult to minimize running time, or
even simply to keep track of running time. These disadvantages become more pronounced
when preparing flight-simulation programs; however, they may not be intolerable.

The time required to write a compiler is another disadvantage. There is no way
to simply and easily modify one compiler so that it can be used on a different machine

n»-

142

î
8

H
D %
2
W
H
W f1 0 ffj g g
y w g g M tí ^ 04
° .0 .0 • w W0ÏÏO<O>
ÛZQZjZg
^ssasïâ«
SsSSSSS w°BiOrtOw

p4 i»4 o4 0 o4 g

oh^HwHHsO

o
1

« SÍ
£ H ^ (Î P

wü O

o tí
0 *
Z 2

H H H

Ü5 W y, f5 phïï w

<0 S2
Sp sH
Sg u o ^ w

HP
^ [n Z ®
o-
Q W 0 H W
* (d u in J

SoSgëg MHMO.Ut-1

o3 « X

3h ^ ,

- ipp E|

Ï il

sBggSsd dS

û*ôx ^ gS ívjeMO^K^w U , n s< tfj X tuwps ^ gnr.n
Of-i^HWHH^O O^íí »rrr^ri C-i U JHtí Z ZWW

8ã!jÍ8u8Í!o§88=860<,8o-88li=0$8

«jâíáSl |l§=ogj
cnUHUHÜH OW^wHHÜ

H
tí

8
sû o o ^ r- o

u
V
X ü

SS2o5°2S2 |IÍ2SgSSSÍílll||!|!?!|!p IlllgSSSi SgííggíSoor-Or-ooor-P-OP-or-

S-KilSSSS ssgsg^sgs^-.^o"-" — ”1'’0

u
Oil
o
u

Û4
H
fe

o2
® ■
2 ■ £ ® ® M * *o
S3
® g
** ^
® • 4*
Z 4 •o ^
.£ o

tí ^ ^

(¾¾¾¾¾ fc
p, O« & APiO.

O --SSSS2 ^22^^gS3SS|5|sSSSSÍ|l 2
liggggg og§oooooooo°o-

«

‘s.
H ■£

w

:hasSperíormed on'sAP toi reatfuDlp "oald TORTRAN into" com'terfo r anothe r

computer.

In the long ran it might be useful to ^r^^reLrlbfe'however^toVaU until
grams, perhaps a sperialiy-wrltt^ c°.simulation have been evolved before the use
generally acceptable techniques of digital flight simulation na e required to pro-
of a compiler is attempted. This conclusion phased P^VshouS be written carefully

at'first^and^that from this process, guidelines for a special-purpose compiler can be ex-

pected to emerge.

5. 3 Checkout and Test

' Ch,ck„«t
iirfit. on the 704 (or the 708l”s»í i.ll, .itheot any pro-
will be described, and second, 0I^thepseUDOFT but it was not a universal
gramming aids. The primary debuggi g nrntTram's inability to handle interface prob-
tool because of costliness and the simula ° P ^ UDOFT impeded the meeting
lems. The absence of programming aids for ^eckout^on the uuu^ compuieTi

of the development schedule. Also the inP P already operational, are inade-
while adequate for flight simulation programs which are already op

quate for the debugging process.

oo^r rr
culating the values of the functions on a straight 704 program. same as that
possible because the card input used for thet 7°4 *aS^se th¿ major source of
used on UDOFT Using the sa“®hC^dEu^oFT checking out the workings of the function
gX^Lb^Se? thelxPensL^se o°his simulator program for function data check-

out was thus eliminated.

Foiio-i.!ihe rkr^a?s*Ä" --1“ “ä” p
««h »¿fr “c., .» O^r .. hy-p... «h. ».cion „..«or Ppr íppc-

tiens of'these variables and thus conserve computer time.

5.3.1 Trace Facility

The facility By^Srly6

piete^trace t^o^co^e o^^us getting the maximum possible amount

of information from a single run on PSEUDOFT.

An example o. a UDOFT r.n.in. ^líSSÍn"
of the sine and the cosine of the ang^ a^ÆS1 gine and the coSine of the angular position
determined that linear approximations of t ired accuracy. Thus, the routine

roCÄ-liSed^^nnl theW"linearized" cosine of the angle to which the

indicator should position.

Prior to entry into this routine, altitude^has^tee^tCompute^^o ^ per revolution>

Since the altitude indicator is a multi-t tMs rangf> of jooo feet the variable is

L^teratdthln^cX^r-Unelrized'' sine and cosine (figure 66).

The flow diagram of the routine
the UDOFT computer evaluates the sme and the « transfers. The four-digit
points in the routine that are att^in^ ^ . recorded on the program coding sheets
numbers in each block indicate the instruct ons. contained within
(figure 68), that cause the computer to perform the macro oper

that block.

144

j

í

145-

F
ig

u
re

6

6
.

C
u
rv

e
s

o
f

L
in

e
a
ri

z
e
d
 S

in
e

h

p
/a

n
d
 C

o
s
in

e
 h

p
^

146

F
ig

u
re

6
7
 .

D
ia

g
ra

m

o

f
R

o
u

ti
n

e

fo

r
C

o
m

p
u
ti

n
g

L

in
e
a
ri

z
e
d
 S

in
e

h

p
^

a
n

d
 C

o
s
in

e

h
p
.

I
i

.
'

'•

I'

0Ú

0
5
UJ

5
Z o

bä cc
ft
Z
'w'

2

8 u_
o z
5
O
u

t

2
3

1
PR

O
B

L
E

M

1
u_
0

UJ

o
£

UJ

\

s
0
u

R
E

M
A

R
K

S
1

A
lt

it
u
d
e

M

o
d

u
lo

1
0
0
0
 f

e
e
t

B
1

6

|

5
0
-4-

_0>
Ö
u

CO T
e
st

fo

r
ra

n
g

e
 o

f
v

a
ri

a
b

le

1

<
c
!■
« u-
w
C
Ë

O
c
IT
V
c

-C

èâ T
e
st

fo

r
ra

n
g

e
 o

f
v

a
ri

a
b

le

(5

0
0
<

h
p
.<

 1
0

0
0

)
|

co

2
u

JJ M
c
E

o

N
v_
a

-C
V
o

s 7
5
0
c
h
p
.<

 1
0

0
0
 m

u
lt

ip
ly

 b
y
 s

lo
p
e

S
c
a
le

 t
o

B

ll

|

S
u
b
tr

a
c
t

2
0

4
7
 t

o
 g

e
t

si
n
e
 v

a
lu

e
s

|

S
40

8
_0

■0
e 4-

8

-8
C
i/i 9
3

?
®
0

to 1

£
ié-
O
«
D

£
o
«
â

1
0
<

h
p
jí

 2
5

0
;

m
u
lt

ip
ly

 b
y
 s

lo
p
e

|

cã
0
+-

e

8
V)

Û

<

Z

o - «O CO - CM in m CM o CM o CM - O co o o ’«t v> io o

•o o K "O o o rs O o •o o o O o o o o M> o «o IS o

rs CO N hs o o o rs o o O o o o o rs s rs O o

o O to >o o o o ■O' o o o o o o o M- o o

*-

0

CO ■M- »o - CM CM K V) ■M- CO - co »o «o co •M- co CM O rs m

CM CO CM CO CM CO CM CM CM - CM CO - CM co co CM — CM O co CM CM

1
PR

E
L

IM
IN

A
R

Y
 C

O
D

E

|
1

M

A

D
 |
 R

 f

Q£ 0¿ OC ec ac DC

O — CM CO m •o rs O - CM CO m rs O - CM CO M- V) •o rs

O CM

lO •o U1

1-

2
0
ft

Zñ

—i
O S

H
;

le
ft

5

S
:

5
0
0

(B

ll
)

I

<

0
1-

I
(1

1
9

)0
5

2
¾

 T
O

M
;

B

I
M

;
8
.1

8
8
(B

4
)

S
H

;
le

ft
 4

dT
0
z S

T
O

;
C

O
S

S;

2
0

4
7

(B

ll
)

j

CX-K
0 z S

T
O

;
S

IN

C
U

S
;

S
IN

C
L

S
;

C
O

S

S
T

O
;

S
IN

¿1
o z

1/1

0 u
0
ft 5

C
R

N
M

r C
 A

D
D

;
25

0

M
;

8
.1

8
8

1
S

H
;

le
ft

4

1
N

O
P

;
S

IN

147

R
«v

.
1

-9
-6

1

F
ig

u
re

6
8
.

A
b

s
o

lu
te

C

o
d

in
g
 S

h
e
e
ts

fo

r
L

in
e
a
ri

z
e
d
 S

in
e
 h

p
¿

a
n
d

C

o
s
in

e

h

p
.

R
o

u
ti

n
e
s

i

i

i
I
)

2

ti.
0

OI
c
< Û.

Ll
K
£

i/>

o¿

1
UJ
ai

Û

<

5

u Z

§ “

"

i

§ s
3 0
> 'r
“ 8
= 0 A -

J “O
«

1 g
1- O
0 u
0 “0
- c
t v>
3 §

i?
I s
i ° A iS)

X
UJ

1
50

0
<
 h

p
.

<
 7

50
;

m
u

lt
ip

ly
 b

y

(-

)
s
lo

p
e

-

S
c
a
le
 t

o

B
11

_
_
_
1

1
A

d
d
 2

04
7

to
 a

e
t

c
o
s
in

e
 v

a
lu

e
s

-
1

1
S

to
re

 v
a

lu
e

s
 i

n
 d

e
s
ig

n
a
te

d

lo

c
a

ti
o

n
s

-
I
I
-
1

*-

’x
UJ

00 O CN O O

-O

•S' S) in o o IN 03 o 03 - o es o o

O o O o o o O o O "O Os o o SD O o o O o o o S)

o N O O o o o O o ÎN ÍN N o o o rN o o o o o o o IN

o o o o O o •s s- o o o s o o o o o o •S'

m in m 03 es o IN m s 03 o s 03 m m en s 03 cs

1
P

R
O

B
L
E

M

0 ro 03 es es o m cs cs - OS 03 - CS 03 03 cs - CS o

— —

se

Û

<

5

o¿ Q¿ QC a¿ as û£ 0£ œ ùâ 0¿ Q£

W in < IN c •— es 01 s in «Ö IN O es 03 s •O S3 IN

n -s ■s in «o

un in ir ir IT lo

C
O

D
E

R

P
R

E
L

IM
IN

A
R

Y
 C

O
D

E

1

S
T

O
;

S
IN

!

2
0

4
7
 _

K

i/~
\n

«/

ii

í i
u

) « ■»
o L

r C
: L
T

-i
J .

J t

n -
: ¿
, u

h
j <-

? C

? u

3 C
; ; 3 U

s
o

j i
2 <
; o a

0
i 2

0

3 -

3 ^
l ¿
. u

0 “
J ±
i. 1/

2
i/

a
C
2

c

r

0

i i
•<

i/

if

H u

) Z
ir

) ¿
C C

L
S

:
-C

O
S

I
S

T
C

h

-S

IN

à
c
2

ir
c
c

\í
V

j ï
c

<u

&
w
tso
c

•r4
TJ
O
u

3 O)

o .5
tfi m
^2 o
< U

148

h
p
.

R
o

u
ti

n
e

(C

o
n
t.

)

■i

P s
*
Z g
H-

y
ü£

z
5

6
u-
Ü
Z
o
O
U

t

2

1
PR

O
B

L
E

M

I
LL.
0

UJ
0

á

UJ
I-

á

0¿
LU
a
0
u

N

M

A

D
 1

R
E

M
A

R
K

S

Ù

0

L.
« U-
lA
c
B

8
CN
V

a
_c

V
o
c
«

i 2
5

0

<
 h

p
.

<
 5

0
0

;
m

u
lt

ip
ly

 b
y

(-

)
sl

o
p
e

1

S
c
a
le
 t

o

B
1

1

I

A
d
d
 2

0
4

7

to
 q

e
t

si
n
e

v
a
lu

e
s

1

S
to

re
 v

a
lu

e
s

in
 d

e
si

g
n
a
te

d
 l

o
c
a
ti

o
n

s
1

‘x
UJ

If to •o CM o IN o CM o CO O — o o

00 >o ÍM O o 'O o O o o o o o ■o

N - N o O o rs o o o o o o o IN

to Mr o O o o o o o o o o 'M-

>—

0

O CM rs to CO o CO to to CO CO CM IN

CO CM CM N - CM CO — CM CO CO CM - CM O O

ac.

Û

<

5

ac ac ac ac ac ac
•

r— CM CO ■M- to «O rs o _ CM CO to fN o

to to >o

n n n _ca

>n «O to to to to to

PR
E

L
IM

IN
A

R
Y
 C

O
D

E

|

A

A
;

2
5
0

I

T
O

M
;

C

1

M
;

-8
.1

8
8

S
H

;
le

ft
 4

«4»
Q~
0
z S

T
O

;
C

O
S

1

A
;

2
0

4
7

J
;d

O
N

 S
T

O
;

S
IN

C
L

S
:

C
O

S

Z

l/T
—1
u S

T
O

;
-C

O
S

a

0
z S

T
O

;
-S

IN

5
z
ac
U
to S

E
N

IT

1

149

k».

F
ig

u
re

6

8
.

A
b

s
o

lu
te

C

o
d

in
g
 S

h
e
e
ts

fo

r
L

in
e
a
ri

z
e
d
 S

in
e

h
p

^
a
n

d

C
o
si

n
e

h

p
.

R
o
u
ti

n
e

(C

o
n
t.

)

ÛÉ

o
5
LU

5
û£

5
D
Z

S

5
LL.

O
Z
û
O
U

tz
O
Û
3

1
PR

O
B

L
E

M

LL

0

LU

Ü
< 0-

UJ
t-
á

a
0
U

ca:

LU

ec

S

O

Z

<

”

O o o O O X

'O o o ■*r o X

CO o o o o X

uo <N o K X

o N co IN. X

o IN. CO o In. X

o o o CO X

+ + + , + X

ID
E

N
T

IF
IC

A
T

IO
N

|
N

M

A

D
 |

o co o lx _

■o •o o •o o o

fN. N fN. rv

''t ’«t o

E
xi

t

C
o
n
st

an
t,
 5

0
0
'

C
o
n
st

a
n
t,

25
0*

|

o

ï

?

V
a
.2
LO Y

In

te
rc

ep
t,

+
2

0
4

7
/1

0

|

a
-C

¡
R

E
M

A
R

K
S

¡

«
“0
3

<
"O
0
4-
q 0

_c
“0
0

■*-
D
a
E

L

*o
e
m
•H

a
X!

0
G

•H1
CG

T3
0
N

•H

g
d
0
G

•fi

J
G
O

CO •M
0
0

XJ
CG

G
•f-i

U
0 4->
a n
•a c
o .3
01 (D
æ o
CU

i».

150

h
p
.

R
o

u
ti

n
e

(C

o
n
t.

)

The program coding sheets (figure 69) contain all the program information that ^
must be entered into PSEUDOFT for this program. This information includes instruction
words print-out requirements (I), and number words. Where possible a brief description
of each instruction, or a group of instructions, is given. .Th!fe
of the effort that must be expended to prepare a program rn absolute form The expenditure
of effort is reduced greatly when the programs are prepared in symbolic form and the
assembly program is used to prepare the assembly Listings which ^11
parable to that contained on the absolute coding sheets. An assembly hstmg of this same
routine (figure 69), assembled as a part of the total F-100A program, provides a realistic
indication of the extent to which an assembly program relieves the programmer of an inor¬
dinate amount of clerical work.

As has been stated previously, the purpose of PSEUDOFT waa to mähe possible
a certain amount of checkout of the operational flight programs prior to
UDOFT computer. A simulator should provide exactly the same output as computer
bein« simulated Fortunately, however, PSEUDOFT provided much more output than the
UDOFT computer, specifically, it provided a means for tracing tiie exact operaUon of any
program run on it. During the course of checking out the aircraft simu^tion progrès,
it became obvious that a selective trace facility was of the greatest value in debugging
programs.° (Since the completion of the UDOFT project the simulator-tracer technique of
program checkout has been successfully used with a large data processing program.)

In both these cases, the full trace facility was used because it came as an adjunct
to the simulator, and the simulator was deemed to be absolutely necessary. Most com
puling facilities do not provide full tracers as part of their debugging program package,
it is generally thought to beawaste of money. The usual Une of argumen ^that a full
trace8 pro gram means an interpreter*; an interpreter is expensive to write and to
the advantages do not justify the expense. It is true that a real tracing program requires
an interpreter. It is not true that an interpreter is expensive to write; an interpreter ca
be written in about four man-weeks for a medium size (32 instruction) computer. K is true
that an interpreter is expensive to use; it is more expensive to run a program on an inter
prêter than to free-running it on a computer. Note, however, that interpreters are e g
considered for debugging runs, not production runs. Therefore, one should not calculate
cost per run but cost per piece of information, since meeting a schedule mid documenta¬
tion of test results are'also prime considerations. The criterion for an effective de
buggîng iïn drifts even further away from cost per run. When these other factors are
taken into consideration, the utility ofdebugging runs using a trace increases even more.

For future applications of digital computers to the real-time simulation P^lem,
it is strongly recommended that an interpretive routine be written which allows tracing
to be impllmentedõn the final operational computer, especially if the computer is avail-
able at the beginning of the project.

* A simulator is one form of interpretive program.

151

i
I—1/>
<Üj

9ïï
CD

*-<
X*
LU <

5«

ai
Z
to

O
u

si

?U4

< to LJJ y

ÿ^Dto
<-J%0
!— LLI ^ (J
to _jo
OI CQ y LU
l-<Uk-
0502
o^os

LU LU

>0^0

isS
12
>û

ai
LU h-

il
fci
og
2z
N to ai

D

h-<
U>

g o¿

SjÛ

O- Z
z<
!§
S5
CM LU

=i
Xeo

^ w O-»Z
-, LU^>
Z -ï 0
LU

xxtztzxxxcofexxxxxxtu — — ZuXXCtoXXXXXXai

5<
> 2 ^

„-il
>oS
a. -r «i

to

Z
O

to _
ai O

32
il
U.0
Z</>
— LU
to û

fcz
0“

to

S3

I!
So

— CM CO
OOO

'"t Z<ZmZ - ^ Z-y^-y^ —
+ x^ uuuuu O u?^ — y < « aitoiotoL/otoi/íL/i^UotOLoUi/i^O-S

to

to
o

CM g

X uu5 o u2oZõ I j<
O LU UOLOtOTÎ-UOtOtoUtO^O^OLU

(OtoUtOtOI-tOh-

uu
to to

K^ôiQÏ?IQ^2^R88?8S888o8?
^S.*-^-Kí-S.cmS.qooKõoqoo
LO’M’OO'M’LO'M’UO’M’OOO'M'OOO O O

O K
O'M-

Î?S8ICS8s8S888o85
fs CM N
^ UW

O
OOQO
OOOO

00 rs
O O ''t

COCO-M-LO —CM^-CMN‘n,MTOr:'M-C,Oin|OCO'M-COW
OCMCOCMCOCMCOCMCMCMi—CMPO»—CMCOCOCM»—CMO

OCMNLO'M'COO'M’COUOLOCOM'COCM
OOCMCNCM—CMfO-—CMCOCOCS>-CMO

O' ai OU o' oí Oí oí

û_ 0.0.(1. 0.0.0. a. o.
o^cMCO'M-io-'OrNQr-cMco^Ln'Ohspr-cMco^’
(OUHOLOiOLOLOLO^'O'O'O'O'O'O'ONNN.rsN
ÍÕlÕlÕlÕSlÕSSÍÕlOlOlOIOIOUOiolOLOlO^lO

0. a. 0. a.
lOMDKQ-CMPON-iOMÍ^O-CMCO
büBMsasagsssÑÑ«
lOlOLOLOLOLOLOLOlOLOLO'O'OLO'O

152

F
ig

u
re

6
9
.

A
s
s
e
m

b
ly

L

is
ti

n
g
 o

f
L

in
e
a
ri

z
e
d
 S

in
e

h

p
.

a
n

d

C

o
s
in

e

hp
^.

R

o
u
ti

n
e

g
o
2
<

-Ji¬
fia D

0
>ux

in
2
0
t-

6
«/» o uj y
D-1
-!q
< LU
>h-
Oi<
2
LO
o

±0
i/i

ts>

Uq

tu2
CD

0

CM UJ

9o

a
2
<
o

2

oo U1
0

3U
UJ UJ

2» D

t 55

Z

^)0 uj r

¡i
UJ i-y ZÛ

LU

0<

og

2z
CO

3¾
cn3
I- <
U>
5 LU
h- “
»o X <0 32 5

XX<ÍÕXXXXXXUJ >uxxx2{fc;xxxxxx2

CN
o o
22

JQoo lo _
90 05 uo h
6w2y^ p X

CN CO
oo
22

UU - H X uu ±: V X
t/> t/> ^“cn o u"> ^ t/> ^ i o U O uj to lo ^ lo o V) < to 5 5 o U o uj

*£>co to
7 0 0 5 to
^UZUuo 0

O — CN (O

â|x§2âoó^ooog g^oo^og^oooj*
•< 5 LO Z to < 2 to U U to 2 to lO < S to 2 to to 2 to U U ^ Z tí to

* « a. * * « LÂ DDDD
ÖOOO

_ to
_ 5 to o
2«5oy
to 5

f?8R8 8 uõo . . N
rs N Q Q Q

CO Q CO —
~ O O o

¢888
£$S8§£88a58S83

0088¾ ¢¢888^8888888¾
-85

orNiOTj-cooTj-coiniocoTtcocN
COCNCN»—CNCO—CNCOPOCN — CNO

OrsUT^cO —^COUOIOCO^-COCN
COCNCNi—CNCO—CNCOCOCN^CNO

a£ B¿e¿ c¿ ccaeczac

a- a.
'^■‘o-orso —cNoo'^in'orNOr-
c^c^cj^aaaaasaasgj
loiomíoioioioioioioioioioto

a. a.
CNCO^IO-OINO —
CO CO CO CO CO CO -«It ■

{N CN CN CN CN CN v’i V*« v'i v'l v* t-«*
toioioioioioioioioioioioioio

• — CN CO IO O IV.

I CS CN CN CN CM CN CN

153

F
ig

u
re

6
9
.

A
s
s
e
m

b
ly

L

is
ti

n
g
 o

f
L

in
e
a
ri

z
e
d
 S

in
e

h

p
i

a
n

d

C
o
s
in

e

h
p

¿
R

o
u

ti
n

e

(C

o
n
t.

)

in
O
u

i
LU

Z
CO

Z
< >— *n
Z
O
u

tn
LU

D
-ï

<<
"Sa:

Ou. u.
yoo

Zoo
^zz
2áá

Sss
U- lu Ul

i-1-1"*?;
xoo92o
UJ k. ^ I/) |/> h-

LU Ul Ul LU 0

0ï lu r*
LU (J
Û. I- in

Û ui ■7 LU
±- O. Dm

Sq

S2o
<2ui

Ou< m o¬
rt O oc
-i I- Q-

^ ^-00 00 —
55SS|

• • O

3

[V »—
8S

5k-S„
Nooooc*ioo*—cowo

yuuuuuuuuuuo
LU LU UJ IU LU LU LU LU LU LU LU

QQQÛÛQÛÛÛQQO

—i <n ro O
F— cm n ^ m m m m m « «

.„ooooo OOOOoc
tZZZZZ OOOOO
XUUUUU 77777
uimmmmm î-

88188

§ h* O

lïlfs|§

3
O

05

oT
£
tu
c
m
O
U

S rt
•H
a

X!

<u
•w4
m
T?

ÙD
C

■fH

to
3

e
(U

05
<D

05
(h
3 üß

û_ a. a. O- a. a.

154

w».

5.3.2 Dump Facility

A routine was written to dump certain sections of the 709 core memory in a form
compatible with UDOFT notation. It was designed to assist the programmer in debugging
a UDOFT program being test-run with the PSEUDOFT program. The contents of special
registers in the 709 head the dump listing followed by the contents of special registers
used by the UDOFT computer and simulated by PSEUDOFT (figure 70).

The first line printed out by this program indicates the contents of the 709 Accu¬
mulator (AC), the three Index Registers (X REGS A, B, C), and the status of the four
Sense Lights. The second line of the printout contains the status of the six 709 Sense
Switches; the Accumulator and the MQ Register Overflow lights; and the Divide Check and
Tape Check flip-flops. The third line of print-out indicates the address of the last UDOFT
instruction that was simulated, the instruction, and the contents of the Tally Register and
the Interval Timer. The fourth line indicates the status of the UDOFT Accumulator (AU),
Transfer Register, and the G-Register. The fifth line indicates the status of the sixty-
four Discrete Inputs, which, even in the simulator, are accessible to the programmer.
The non zero contents of those registers which simulate the UDOFT Analog Inputs are
printed and identified on successive lines. In the case of the example of figure 70, only
one analog input channel, A109, is nonzero.

Following the aforementioned print-out of special registers, the contents of the
locations reserved for the "cockpit" program (a program to control input parameters to
the UDOFT program) are printed out in 709 format. The 709 control program for the
example of figure 70 occupies memory registers 24000 - 24040 (the reader is reminded
again that octal notation is used throughout). UDOFT instruction memory registers
(lOOOOg - 20000g, 709; OOOOg -7777g, UDOFT) are then dumped in UDOFT format, by¬
passing eight or more successive registers whose content is identically ZERO. At the
completion of the instruction memory dump, the number memory is dumped in the same
manner.

The sample dump shown in figure 70 should provide a clear picture of the form
and the content of a dump from PSEUDOFT. The particular example is a preliminary
program for F9F-2 ice quantity. It should be noted that the number memory dump is not
duplicated in its entirety; it has been terminated arbitrarily at number memory location
2030 in order to facilitate its inclusion in this report. Normally, the entire number
memory is dumped and printed.

It is the majority opinion of the programmers that although the dump facility should
be included, it should not be substituted for tracing in order to f^ave computer time,11
since, in general, it is the trace which saves running time over the long run. It is felt
also that a more convenient method of ordering a trace should be incorporated in the
simulator package; the method of indicating "printout desired" on the same cards as the
program input offers an obvious disadvantage ih that the program input cards themselves
must be changed from run to run. In contrast, for a recent simulator implemented at
Sylvania, a trace is commanded by console switch settings, a more desirable method. A
further refinement is to indicate that certain segments of memory only are to be traced,
or that the program is to be traced from the time the Program Counter contains a^ to the
time it contains a2. Either approach would be simple to implement, as long as an inter¬
pretive program is available.

5.3.3 Other Checkout Aids

As more and more programs were assembled and dynamically tested on PSEUDOFT
it became apparent that a truly flexible means of control should be provided in addition to
the fixed control program incorporated in PSEUDOFT. This control was provided by
coding extra control orders with the UDOFT instruction words which cause PSEUDOFT to
break off the simulation and transfer control to one of seven predetermined 704 addresses
(for the 709 version, this was reduced to four addresses). At this address the program¬
mer can place a 704 (709) program to accomplish the desired control. After the execution
of the control program, control is transferred back to PSEUDOFT and the simulation
continues from the point where it was interrupted by the initial transfer of control.

155

. fm nnnnnnnnnOQ? X REGS A 00001 B 16740 C 14000 SENSE LITES 0000

SWITCHES ON 020000 AC OVERFLO OFF MQ OVER FLO OFF DIVIDE CHECK OFF Ia™
T àst ORDER SIMULATED 6002 07 0000 TALLY READS COO000 I.T. READS 00000

innnnAA? TRANSFER REG +0000662 G-REŒSTER +0000000

DISCRETE INPUTS0000000000 10 00000000 20 00000000 30 00000000 40 00000000 50 00000000 60 00000000 70

ANALOGUE INPUTS

AI 09 + 7770000

704 CONTROL PROOUM

24000

24004

24010
24014

24020
24024

24030

24034

24040

+007400 434631

+050000 124040

+002000 020425
+000600 000000

+377400 000000

+076100 000000

+076100 000000

-000310 OOOOOO

+000100 001000

+000000
+060100

+000000
+000600

+076100

+076100

+076100

-377700

+000000

000002
020030

006140
000000

000000
OOOOOO

OOOOOO

000000

000000

+006432

+200001
+000001
+000000
+076100

+076100

+076100

-300000

+000000

500014

124016

000000
000000

000000

OOOOOO
000000

000000

OOOOOO

+312343

+050000

+000000
+377000

+050200

+060000

+000000
+310000
+000000

226260

024023
OOOOOO
000000

024070

020014

OOOOOO
OOOOOO
OOOOOO

UDOFT ORDER MEMORY DUMP

0000
6000

6140
6150

6160

6170

6200

6210
6220

6230

33 0000

34 6422
03 6141

22 6165

34 6422

23 6422

34 6422

23 6422

14 0000

30 6431

00 0000
34 6 4 32
03 6142

31 6421

30 6424

03 6226

31 6425
03 6226

23 6422

14 0000

UDOFT NUMBER MEMORY DUMP

0000
0010

0050

0060

0070

0100
0110
0240

0440

0450

0470

0500
0510

0520
0530
07 30
1010
1020
1030
1040
1050
1060
1070
1100
2000
2010
2020
2030

0000000
0000020
4000000

4000000

ooooooo
ooooooo
0000240

ooooooo
ooooooo
ooooooo

-0006200
ooooooo
0741216

1714630
4143366
ooooooo
ooooooo
5320172

-0660422
2663146
2231462
4631462
1250000
3220000
ooooooo
0160506
1324772
0207034

0000002
0000022
ooooooo
4000000

4000000

ooooooo
1000000
ooooooo
ooooooo

■0000002
■0006200

0000560

5050356

0546314
ooooooo
ooooooo
ooooooo
3100000
6727262
0605074
3600000
2663146
5174264
0372000
7776000
6662200

-0254020
5204742

00 0000
07 0000

12 0164

22 6160

10 6223

34 6422

10 6226

34 6422

03 6226

23 6432

0000004

0000024

ooooooo
ooooooo
ooooooo
ooooooo
1400000

ooooooo
0001440

-3330000
OOOOOOO

1651400
0146314

2352224
0571370

-0054500

2400000
4663016
0372000
0266314
4540000
1700000
1463146
OOOOOOO

3376756
-0277272

4463146
4061114

00 0000
00 0000
25 0005
34 6422

23 6422

03 6226

2 3 6422
31 6423
34 6427

03 6000

0000006

0000026

OOOOOOO
ooooooo
ooooooo
OOOOOOO
3600000

ooooooo
0001440

-5552000

ooooooo
ooooooo
0006200

0062000
0663146
OOOOOOO

1200000
3314630
0705430
7020000
017 5000
7652632
0764000
OOOOOOO

-0365604
2643656
0314630
1463146

00 0000
00 oooo
10 6174

30 6423

03 6226

31 6426

03 6226
10 6217

14 OOOO

07 OOOO

0000010
0000030

4652506

OOOOOOO
OOOOOOO
7777776
0006200

OOOOOOO
0004000

4340000

0540000

0025750

1200000
0152200
0776030
0620000
0204700
1320712
0030242
3100000

-5347564
2631462
OOOOOOO

0075340
0111564
4543000
7776000

00 oooo

00 oooo

31 6420

10 6223
34 6422

22 6212

34 6442

23 6422

23 6422

00 OOOO

0000012
OOOOOOO
1000000
4000000

ooooooo
ooooooo
0024000

ooooooo
ooooooo
ooooooo
ooooooo
5300406
0125604

3453004

5341216
OOOOOOO

5000000

0136152
6034332

0144000
5643504

1463146
1212000
OOOOOOO

1031462
2143222

3231462

3376756

00 oooo
00 oooo

22 6172

23 6422

30 6425
31 6421

31 6424

03 6226

23 0246

00 OOOO

0000014

OOOOOOO
1000000
OOOOOOO
OOOOOOO
7776000

0651630

-777 3750

0372000

OOOOOOO
OOOOOOO
4600000

2400000

0646314
0300400
1000000
3032400
5320172
3431462
0024760
00 507 52
4472166
7400000
OOOOOOO

0431462
5300406

-0162020
0006200

Figure 70. Sample of UDOFT Dump

156

i*.

OOOOOOOO 00

00 oooo

00 oooo

31 6421

03 6226

10 6223
22 6205

10 6217

35 6427

27 6430
00 OOOO

0000016

OOOOOOO
OOOOOOO
OOOOOOO
OOOOOOO
OOOOOOO
1022040

ooooooo
2000000
ooooooo
ooooooo
0076400

0470400
0724600

OOOOOOO

OOOOOOO

5500000

4300000

4246456
5174264

1034530
1063470
0706314

OOOOOOO
-4314630

4773716

01657 54
5174264

The simulation of a SENIT instruction (Sense Interval Timer) results also in the
automaUc transfer of control to a predetermined 704 (709) address. This feature facil¬
itates the changing of aircraft parameters at the end of the 50 millisecond iteration cycle.
If no control program is encountered at the address to which program control has been
transferred, PSEUDOFT continues to the next UDOFT instruction.

Usually, the control program, to which control is transferred by the SENIT
instruction, contains a special output program in addition to, or in the place of, the para¬
meter-changing program. The basic output routine designated 9 out, was prepared to
set-up and print on-line (72 or 120 column print-out), or to output a complete line of
information to a specified magnetic tape, or both. Any desired format may be used, and
conversion from floating binary to fixed decimal, floating binary to floating decimal, or
fixed binary to fixed decimal can be performed as desired.

A sample of the form of print-out which may be obtained through the use of this
routine is depicted in figure 71; the program undergoing test was the F9F-2 stick force
computations. The print-out control program required that, in addition to the count in
the Interval Timer, the following parameters be printed out in decimal; dynamic pressure,
Mach number, aileron control loading, elevator control loading, rudder control loading,
aileron deflection, elevator deflection, and rudder deflection.

From the preceding discussions, it must be apparent that there were adequate
automatic programming aids for the debugging tasks which were performed on the 704 and
709 When it came time for final integration and system checkout using the UDOFT com
puter the complexion changed. The great deterrent to expeditious flight-simulator system
checkout was the UDOFT input-output capability, which had not been designed with pro¬
gram checkout needs in mind.

The only printed output available from the UDOFT computer was obtained by means
of the IBM electric typewriter, which was able to print out the contents
in octal notation and under program control. However, it was necessary to halt the sim
latión program in order that this process could occur. This feature did provide a trace
facility on*the UDOFT computer, but did not provide decimal output. The use of strip re¬
corders actuated by the analog outputs provided yet another output facility. This feature
was most heSl during acceptance testing of the total system as a flight simulator but
was inadequate during the program debugging phase of the project.

In retrospect it can be stated that the checkout and the testing of program directly
on the UDOFT computer were the least successful tasks of the total programming task.
With due respect for computer design engineers, it is apparent that this shortcoming was
due to lack ofPforesíghUnPdeSigninggtha UDOFT computer, particularly the computer-s
non-real-time input-output facility.

5.4 Operational Program Considerations

The development of the UDOFT system offered an opportunity to improve the
fidelity of flight simulation. If used properly, the UDOFT computer can provide a sim
lation of a dynamic system which is superior to an analog simulation of the same syste

in the following respects:

1. Improved static and dynamic accuracy.

2. Improved small-signal response.

3. Freedom from drift,,

4. Flexibility of "implementation1 ' allowing rapid change incorporation.

The major aspects of the program which most noticeably affect these character-

istics are:

1. The method of data reduction and subsequently the form of function generation
used within the operational simulation program.

2. The mathematics for describing the position and orientation of the aircraft.

157

á

. «n > o*

►J rtv
Wm

o
o
o
o

o
o

►rt ^ Ift ^ «<í
rt u ^

-o
m
nO
r-
•f

S1?

o
o

> r-
w®
•J o
U O'

o
m
r~

N
O'
-t

g»

ro
m

> ^

J o
Uf-

in
fSJ
>0

^7

O
O
O 2
o »n n
o fO ü

H

o o
o o
o T 5 O in
o fO p

o ^ o 3
Q IM

O
o
o
o
o

á*
Û I

00

•l'
ao
*

Si
ä I

> o
w-
lj

J .

3?

tf)
r-
rO
O'
O

§-
tf I

W<^
J tfí
w ^

lo-go-Sldgg-oldg«-»!

O o o o
o o o o
o ►t* o Ti Otfi*«^ o in^ r0
o ^ U -- o O ^
ï J o 9í o ^

t^
o

a°
p ^j
tf .

ao

> K
Wf-
JfJ

I -I I
-.- §sg2 I

I

Sí

1 Q N

a®
Po
tf

tf)

f-

>&*
H®
J ns
Wn

O
O
O
O

J®
TO

sg"

'A

PN
tf

O'
sO

. O
>•

w «

tf)
N
CO

T O

O
O
O tf)
O l*> T O f*) ¿I

O
O

Si
O rt

. tf .
O Q rsl

U

4
<î
H

o T
O (M
O fsj
. O

T O
+ O T Q^ +OTQ

4

H

o «n
O N
O N
.O

fsj O
0-4- Q

g° O en
o ni
O r4

• O
O O

ao o
co o
nO o
^ o
tf) o

w «ñ W rj
+ 0^0

4

w

H H H H H H H
004000o4ooo040000400004ooooPoooo^oooo

d
O
X
a
4)
Æ
U

fc

8
P
W

S
CM S
O 0

■ft

3 Ä

?|
♦J Q.

fc. O
CUÜ

158

i :
i

o
o

►4 rf) Tí fo O T hm to

mu-' o fo U ^

Q -

co
00
vO

T>

ró
^ +Ot“

3

ü
O
£
U

h

0
a
D
W
w
Oh

OOOOhhOOOO»-sOOO 0,-,00

.
;

i
■ ;

159

V*.

3, The solution rate; i.e. the rate at which the input parameters are sampled
and the mathematics describing the response of the aircraft are solved.

4. The form of numerical integration.

5, The critical use of real-time.

6. The modularity of the organization of the flight-simulation program.

The following sections are devoted to a discussion of these aspects and an exposi¬
tion of the associated problems that developed during the formulation of the flight-simula¬
tion programs for the UDOFT system.

5.4.1 Data Reduction and Function Generation

Function generation is a subject of considerable importance for two reasons; first,
it constitutes the single largest portion of a total flight-simulation program; and second,
the accuracy of the simulation depends upon the fidelity with which the shape of the measur -
ed data is represented in the computer program.*

There are two basic methods by means of which single variable functions may be
generated:

1. Use of piecewise-linear approximations to the nonlinear functions with inter¬
polation between stored data points which describe the breakpoints of the piecewise-linear
functions.

2. Use o? polynomial approximations to the nonlinear functions.

For the former method there are at least two approaches to the selection of the
stored data points; namely, the use of breakpoints which are freely chosen to best suit
each function, and the use of standard or fixed sets of breakpoints for each independent
variable.

a.) Freely Chosen Breakpoints

increment) in one program iteration cycie,
still be contained in the same straight-line se.
adjoining segments.

Time Flight Simulation, Massachusetts institute ofTechnology7

August 1961.

160

To further minimize computation time, the function generation program
relies on a stored value of the slope of each line segment at each breakpoint. Even though
the value of the slope represents redundant information, the storage of this data eliminated
the need for the computer to evaluate Ay/Ax for each line segment. This was essential
because the divide process in the UDOFT computer is extremely slow (105 microseconds).

Thus, once the appropriate segment has been located, slope, breakpoint,
and intercept data are extracted from memory for use in the simple computation.

y = mb(x - Xfa)+bb (6)

where b^ is the ordinate of the function at the breakpoint, not the value of the y-intercept
if the straight-line segment had been extended to the y-axis (x = o).

b .) Fixed Breakpoints

A much less time-consuming computation scheme would result if fixed
or standardiïsed breakpoints were selected for functions of the same variable. This would
result in a considerable reduction in the time required for breakpoint searching. Since
this approach was not considered for the UDOFT flight-simulation programs, it is not
known what problems might arise from its use; Krashy'f concludes there are no real
problems associated with the approach and that the use of standardized breakpoints will
not detract from the accuracy of the overall simulation. Even though these conclusions,
which appear valid on the surface, have not been verified experimentally, there is insuf¬
ficient reason to deny them. However, one area of doubt does prevail; namely, will the
overall simulation remain stable when the independent variables are identical to the break¬
points, thereby resulting in all functions of these variables becoming discontinuous simu¬
ltaneously.

c.) Polynomials in One Variable

Current studies indicate that fourth order polynomial approximations are
adequate for describing the majority of single-variable functions that are encountered in
the flight-simulation problem. The advantages of using polynomials are the greatly re¬
duced data storage requirement and the smoother approximation of functions, thereby
eliminating the discontinuities that are an inevitable result of the table look-up scheme.

Early in the UDOFT program, attempts were made to derive polynomial
approximations for some of the F-100A aerodynamic functions. The results were so poor
that this approach was dropped; subsequently, the decision was made to use piecewise-
linear approximations throughout the program.

e d.) Conclusions

A summary comparison of the single-variable methods of function genera¬
tion reveals that the freely-chosen breakpoint scheme requires more computation time
than does either the fixed-breakpoints per independent variable (provided the number of
breakpoints is held to a reasonable number) or the polynomial scheme. All of these
methods share in the difficulty in data reduction that is encounterd when using combina¬
tions of functions of one variable to approximate a bivariant function. In addition, the
use of polynomial approximations requires increased effort for data reductions. However,
since computer programs for obtaining least squares polynomial fits are commonplace,
this task may not be so overwhelming.

Of the two variable methods (freely chosen breakpoints and polynomial fits)
one cannot say apriori which is the better, since the ultimate selection depends to a great
extent on the behavior of the data to be used. The surface fit provides a more nearly
continuous approximation than does the table-lookup scheme, but it is not always success¬
ful in producing a polynomial of reasonable degree which adequately represents the data.

*L.M. Krashy, The Functional Design of a Special Purpose Digital Computer for Real-
Time Flight Simulation, Massachusetts Institute of Technology, Report ESL-R-118.
August IWTT

161

The profusion of possible methods, together with the many possible trade-

digital computer f Æ there was no
ireneration. In the case of tnc F lUUA g ^ *.* aoUAmo T'hp data nrovided

'fpTÂSÏ Sr.r.Ä£ •

£”S, ”o^ « rÄKÄÄÄÄ ,., dictated «

the F-100A program adhere to the same scheme.

Up to this point, no comments have been made regardi^ the generation^

(sinceTthe'data'had^eerfréduœd'to'monovar^nt funcUonsl^Bivariant function generation

is useful if:

1) It reduces the complexity of data reduction.

2) It reduces the total number of functions to be evaluated.

3) It reduces the number of arithmetic operations which must
be performed in evaluating the functions.

The above statements are
takes toevaluate three single- variable gingi/two-variable function, which might
to combine them m the forrnJ " (/^(f|>< i3x>’sine!e Variable functions, may be evaluated.

sä,. ,> ,» —. **
a number of monovariant functions may be impractical.

5.4.2 Method of Describing Position and Orientation

The equations «J motio," °f ^ "‘^^si^pím^tiorrestífsVomtte'facttíiat lathis
set of axes attached to the rigid body . J inertia are negiigible. The body axes
axis system, the body axes, the cro p vehicle center of gravity: the x-axis

SsaföÄongetthef Srtneof tSrhicle; the y-axls points sideward; the s-axis

points downward.

Since the hnd, i..c.p.b.e S.Ï.SoÏSÏ.' S“
position of the vehicle with respect to ^ eart J (heading). The three angles
^ specified by the three Euler ^ Juh resect to a reference plane which
describe the orientation of the fll earth) or, more precisely, normal to

ÂÎTs ^cTort^^c^roV^S and passes through the vehicle at its center

of gravity.

respectively, attS1followingÍthreVdiE¿iÍnt¿requatp)ns JndiSte the interrelations bet^em^

the Euler angles and the components of angular velocity.

g = cos - r sin

1 -, _ 1 ... (p cose + q, sin e sin 4 + r sin B cos ¢)
” COS9 1

1
cos I

=__Lr7r- (q^ sin^ +r cos^)

(7)

(8)

(9)

. , , a - arp (nrxzñ - 0) two of these equations are indeterminate.
It is obvious that when J?os0) u values 0f 0 and i is desirable without

re^o^tin^t^tri^ery^^dUfe^rent approach to the problem is necessary. As indicated by

162

afní|.the University of Pennsylvania**, this problem is completely eliminated by

cosines arStífied^T body axes to ** earth axes. If the direction

tion cosines as functions o/&,%lnd7'ar2é:3’ h 2’ 3' ^ expre88ion8 for 016 direc-

1^ = cos Ô

lg - cos 0

13 = -sin 0

nij = sin 0

m2 = sin 0

nig = cos 0

= sin 0

Hg = sin 0

Hg = cos 0

cos 4/

sin ip

sin ^ cos \jj - cos 4 sin ip

sin ÿ sin 0 + cos $ cos ip

sin ^

cos 4 cos tp + sin 4 sin ip

cos ÿ sin \p - sin ^ cos 0

cos ÿ

(10)

(ID

(12)

(13)

(14)

(15)

(16)

(17)

(18)

. ,, ,S. , ? the velocities, p, qj and r are readily available from the calculations
of the total forces and moments acting about the vehicle body axes, it is desirable to use
misinformation in determining the aircraft orientation in terms of 0, i and ¢. Re Latina
the three anguiar velocities to the direction cosines produces nine differential equations
of the following form: ^

11, 2, 3, = ml, 2,

ml, 2, 3, = nl, 2,

nl, 2, 3, = 11, 2,

3, r ‘ nl, 2, 3, ql

S, P'1!, 2, 3r

3, ql, " ml, 2, 3P

(19)

(20)

(21)

These diff^-ential equations have no indeterminate points; they have other desirable
properties also. The direction cosines form a redundant system, using nine quantities
where, in general, only three are required, and therefore a program using these differen¬
tial equations may apply certain corrections to minimize drift due to truncation of the
finite computation. *** The program to normalize and orthogonalize these quantities is
described in Section VI, Simplified Description of the F-100A Simulation Program.

a.) Angular Position

Aside from their use in the classical equations of motion, the Euler
angles 0, and ^are displayed untimately on cockpit indicators. The use of direction
cosines, rather than Euler angles, as the descriptors of vehicle orientation, leads to
problems in the actuation of the gyro-horizon and the heading indicators. A simplified
diagram of the implementation of those indicators is shown in figure 72. The voltages Vi
and V2 are analog outputs whose values are the sine and cosine, respectively, of the 1
quantity to be read on the instrument. Pi and Pn are consinusoidally and sinusoidally
wired potentiometers, respectively. The output of the motor amplifier is

*R.M. Howe, Coordinate Systems for Solving the lliree Dimensional Flieht Eouations
WADC Tech Note 55-747, June, 1956. - -----

**Flight Trainer Digital Computer Study University of Pennsylvania, Moore School of
Electrical Engineering Research Division Report 51-28, 21 March, 1951.

***Flight Trainer Digital Computer Study, University of Pennsylvania, Moore School of
Electrical Engineering Research Division Report 51-28, 1957.

163

ti
2 U
w> Z
2 >
< </)
cr

1

164

F
ig

u
re

7

2
.

D
ia

g
ra

m

o

f
S

e
rv

o
 S

y
s
te

m

C

o
n
tr

o
ll

in
g

F

u
ll

R

o
ta

ti
o

n
a
l

In
d

ic
a
to

r,

V
-2

7
A

cos a' - V2 sin a1

However,

Vj = E sin a and V2 x E cos a

Therefore,

cos a' - V2 sin a1 = E [sin a cos a’ - cos a sin a'] (22)

= E sin (a - a1)

where a is the quantity to be read on the instrument and a1 is the angular position of the
servo motor. It is clear that the servo will seek a position that causes the output of the
motor amplifier to be zero. Thus, a’ = a, providing the desired indication on the instru¬
ment. Therefore, for the form of analog implementation used in UDOFT, it is sometimes
necessary to generate ± sine and ± cosine of the angular quantities that are to be displayed.
The heading indicator and the gyro-horizon therefore may be actuated by:

±1^ = ± cos 0 cos Ip

±12 = ± cos 0 sin ip

±m3 = ± cos 6 sin <p

±n3 = ± cos 0 cos <p

13 = - sin G

Heading

Roll angle

Pitch angle

(23)

(24)

(25)

Since the pitch attitude indicator does not rotate more than ±9CP , cos 6 is not required;
therefore pitch angle is the direct function of -1^.

It is apparent then that the problem arises in the heading and the roll angle outputs,
as 0 approaches 909 , f i>f 2' and n3 aPPr°ach zero, thereby reducing the effective
cos ip, sin ip , sin 0 ana cos ^ Àgnals to the instrument positioning servos. However, by
shifting the quantities/., f 2> iru and n to the left, while they are still in binary form, as

approaches unity, these quantities are increased proportionally by a factor of two for
each left shift, thereby maintaining the ratio of the sines to the cosines and compensating
for the signal degeneration resulted from cos ¡9 diminishing to zero.

The compensation is accomplished in the program by inspecting the absolute
value of i«, determining the number of single phase left-shifts required to raise Ip *2*
m3, and rig to significant values, and finally, performing the required number on ip i 2,
m3 and n^.

The range of values of l \ for which the quantities I f 2, m^, and are adjusted
is :

0.000000 <U3I <0.366578

0.866578 <|f3 l<0.968691

0.968691 < |¿3 I <0.992272

0.992272 < |i3 |<0. 998103

0.998103 <U3 I <0.99541

0.999541 <[l3 |<1.00000

shift left 0

shift left 1

shift left 2

shift left 3

shift left 4

shift left 5

i*.

165

b.) Ground Position

In the F-IOOA MB-3 analog flight simulator, it is necessary only to pro¬
vide ground speed and heading information to the cross-country and approach recorders
(plotting boards). Ground speed is resolved by means of the associated recorder electron¬
ics into north and east components as a function of heading. The resultant velocities are
integrated in the plotting board drive mechanism.

Since heading data is obtained from the heading instrument servo, only
ground speed had to be computed:

Ground Speed - ucos 9 + wsin 9 (26)

However, since cos 0 was not available readily, it was obtained from a Taylor series
expansion in powers of sin 0. Thus,

cos 0 »1 - l/2 sin^0 + 1/8 sin 0 (27)

Since sin 0 is available as the final form of the ground speed calculation becomes:

Ground Speed » u^i-1/2 lg + i/s ijj wl. (28)

The approximation for cos 0 is satisfactory for 0 < 5(F ; beyond this
point, the error in the resulting ground track is intolerable. However, if it is unlikely
that flight will be sustained at these relatively high pitch angles, the long term error
resulting from the short term inaccuracy of the approximation will be negligible.

A much improved record of ground track would be possible by using a
conventional positioning-type recorder rather than an integrating-type recorder, and re¬
quiring the computer to calculate the coordinates of ground position. Since the direction
cosines are available, the calculations would be simply

(ulj + vnij + wnj) dt

(ul2 + vm2 + wQg) dt

(29)

(30)

5.4.3 Solution Rate

The most desirable program iteration rate for the solution of the various aircraft
parameters would be infinitely high.

An infinitely high solution rate, to be effective, requires infinite precision. Since
this is not easy to achieve without using an infinitely fast and large computer, some com¬
promise in the solution rate must be made. The solution rate may be reduced until one
or more of the following appears:

1. An inordinate amount of phase lag occurs between successive iterations of the
simulation program, resulting in a simulation which does not adequately approximate the
dynamic characteristics of the vehicle.

2. The inaccuracy of the numerical integration method becomes intolerable.

3. Rapid changes in inputs are lost due to the low input data sampling rate.

4. Instrument movement is noticeably discontinuous due to low output multiplexing
rate.

The solution rate of twenty program iterations per second selected by the Moore
School has proven to be adequate for the simulation of the F-100A aircraft. (It appears
that the selection of this solution rate resulted from the initial studies concerned with
the determination of the most suitable method of numerical integration*). This is not

¿Flight Trainer Digital Computer Study, University of Pennsylvania, Moore School of
Electrical Engineering Research Division Report 54-08, 1 July 1963.

166

meant to imply that a selection of a twenty cycles per second solution rate is unimpeach¬
able, For the simulation of models characterized by higher or lower natural resonant
frequencies, this iteration rate may be much too low (e.g. simulation of the X-20 adaptive
flight control system indicates the necessity for a solution rate as high as 320 iterations
per second) or much too high (e.g. simulation of a submarine indicates a solution rate
of four iterations per second is acceptable). Even for the F-100A program it was not
mandatory to recompute all variables every twentieth of a second. The power plant pro¬
gram could just as well have been executed at a considerably slower rate, such as five
solutions per second. However as the solution rate is changed, the integrity of the numeri¬
cal integration method must be retained. This may well require a modification to the form
of numerical integration in order to make it applicable, within tolerance, at the different
solution rate.

Thus far, the comments regarding solution rate have concerned themselves with
the problems associated with a low solution rate, tacitly assuming that as the solution
rate is increased toward infinity the problems are minimized. Unfortunately this has not
been found to be true. The effect of the iteration interval on reaching the proper velocity
for steady-state straight and level flight equilibrium is a case in point. It is conceivable
that with a very high solution rate (i. e. At very small) the cumulative effect of a very
small forward acceleration, Ú, would be lost long before the steady-state velocity was
attained. The problem arises not only from the short iteration interval but also from the
fact that the binary number word length in the computer is finite, in the case of UDOFT,
twenty binary bits. Therefore,if a very high solution rate is required (because of the high
natural resonant frequencies of the physical system being simulated), consideration must
he given to increasing precision and therefore the length of the numbers that are used in
the calculations.

5,4.4 Method of Numerical Integration

In the numerical integration of a set of differential equations, the values of the
dependent variables, x. are obtained in a step-by-step manner. Assume that the past
values of and their first derivatives with respect to time, dx^ or more simply are

known for all instances of time t up to and including the instaStt of time t^. These values
may be used to "guess" at the values of x. one time interval later, i.e. at tn + i which
is equal to t + At. The formula used for "guessing" is referred to as an "open quadra¬
ture formula, " symbolized by the letter "O. M

The "guessed" value of thus obtained is ued to obtain an approximate value
of the derivative x^, at the time tn + Tliis approximate derivative is then used to ob¬
tain a better approximation of the true value of x- at tn . j using a "closed quadrative
formula, " symbolized by letter "C." By recalculating the derivative of the improved
approximation, and using it in the closed quadrative formula, a second improved approxi¬
mation is obtained. This short looping process is usually repeated until successive
values of x¿ at time tn + i remain unchanged; these values should then constitute the solu¬
tion to be differential equations for time tn + i.

For example, consider the case of the differential equation

-£f- = x = f(x,t) (31)

whose solution is known for t<tn. Let the following open quadrature formula O31, using
three past values of the ordinate x and one past value of the derivative x, be employed to
guess the value of x at time t^ + 1 = tn + At - + h:

x
n + 1

a,x + a9X . + aQx In ¿ n — 1 «3 n —
(32)

The prime (*) indicates that x'n + 1 is only approximate. The first guess at the derivative
is then the corresponding value.

1331

, Next, let the following closed quadrative formula C21» using two past values of x and the
derivative just computed be employed to refine the approximation of xn + ^ derived from
the open quadrature formula.

167

(34)
x"n+l'Vn + Vn-l+h(dl¿'n + l)

The double prime (") indicates that xMn + ! is an improved but not necessarily the final
accepted value. The two latter equations are then used repeatedly until successive values
of X1* , . are identical,

n + 1

From the example it can be seen that in the symbolic designation of an open
quadrature formula xmn, the subscript m indicates the number of past values of the
ordinate that are to be summed and the subscript n indicates the number of past values
of the derivative that are to be summed. In the symbolic designation of the closed quad¬
rature formula, CDa, the subscript p, like the subscript n, indicates the number of past
values of the ordinate, and the subscript q indicates the number of past values of the
derivative, including the present estimated value of the derivative. Thus, 041 C41 would
use four ordinates and one derivative in both the open and the closed quadrature formulas,
while O33 C33 would use three ordinates and three derivatives in each quadrature formula.

The mixed quadrature formula Omrj Cpf. consists of the open formula Omn followed
bv a single application of the closed formula CDQ, the result of this being the accepted
value of xn .,. All the ordinates, i. e. the xn _ j.g (j = 0, 1, 2, . . . n), in both the open and
the closed parts of this mixed formula are the filial values computed from the .closed quad¬
rature formula at previous instants of time, and all the derivatives, i.e. the xn-j's»
are computed using the values of the ordinates derived from the open quadrature formula.

In connection with their design and feasibility studies of UDOFT, the Moore School
investigators developed a technique which enabled them to choose a numerical integration
method, with a compatible integration interval, which would produce the desired solution.
This technique employed a graphical method for displaying the characteristics °i ^ny
specified integration formula in a "stability" chart, « from which the accuracy and the
stability of the numerical solution obtained by using the formula could be estimated m
advance. By means of the stability charts and a shifting technique, ** two formulas, hav¬
ing the same stability chart, were obtained from the classical mixed quadrature formula
O10 Ci 9 namely the open formula, O33 mod Gurk, and the mixed formula, O3Q C32
mod Gurk Although the open formula is preferable from the standpoint of computational
simplicity, it causes the actual solution to lag slightly behind the desired solution. Ap¬
parently the lag was not appreciable enough to cause any serious concern; therefore, the
quadrature formula O33, mod Gurk was established as the numerical integration method
for UDOFT.

The operational F-100A flight simulation program using O33 mod Gurk with an
integration interval of 50 milliseconds provides adequate simulation for aircraft frequen¬
cies ranging from 1 cps {snap roll) to one cycle in two minutes (phugoid). A current
study, utilizing the UDOFT F-100A simulation as the model, conducted by the Moore
School tends to uphold the applicability of O33 mod Gurk to the F-100A simulation problem.
However some doubt has been cast by Kase*** on the basis that the results using O33 mod
Gurk with different quadrature intervals were not compared with another independent
solution not using Ooo mod Gurk. Regardless of what has been said and what is being
said about the validity of O33 mod Gurk as an applicable numerical integration method for
real-time flight simulation, no operating problems have arisen from its use to date.

5.4.5 Use of Time in the Operational Program

Of all the aspects of the simulation programming task, the use of computer time
is probably the most critical; it is also difficult to control. This difficulty, aa experienced
during the formulation of the F-100A program, was increased by the absence of not only
pre-established programming techniques, but also a clear concept (from the beginning of
the task) of the proportions of the overall program. The brute-force but effective approach
was to minimize time through the program at all costs (i. e. at the cost of computer stor¬
age, the cost of clarity or organization, and the cost of program test points) until it was
apparent that the simulation program could be executed within the iteration interval.

* MSEE Report 54-09

** MSEE Report 54-25

***MSEE Report 61-19

168

Since it represents the single largest portion of the total program prime attention
was given to the function generator. The approach, already presented in 4
though cumbersome, reduced function generation time to a minimum. Aside from this
very important segment of the program, no spectacular efforts were made to speed-up
the program. At the beginning of program, formulation, instructions were used judicious*
ly toward the end, as it became evident that the running time would not exceed the oO
millisecond interval and as the deadline for acceptance testing was approached, less
care was taken to minimize the program. The penurious use of time, though necessary
(since this type of program had never been attempted before), had its repercussions
Had some of the program units been allowed to consume more running time, they could
have been programmed in a more straightforward manner, also, more intermediate
results could have been stored. As a result, checkout would have proceeded at a faster
rate - perhaps as much time as a month would have been saved. However, there was no
way of knowing in the beginning how much, if any, unused computation time would be
available after the complete program had been assembled.

The following conclusions may be drawn from this experience:

1. When simulating one computer on another computer for the purpose of checking
out a program written for the simulated computer, provision should be made m the sim
lation computer program to record elapsed time for the simulated computer.

2. Special attention should be given to optimizing (time-wise) the subroutines which
are used repeatedly, to arrangement of tables, etc.

3 When a choice must be made between saving a few microseconds of computa¬
tion time and storing an intermediate result which might be useful, the decision should
favor the latter. These "unnecessary" instructions may be so identified on the as^embi}
listing to facilitate their deletion if and when necessary.

4 Time estimates of the various program units should be made before any pro¬
gramming is undertaken. The critical program units should be written firs, ,o allow
mnple time for improvements resulting from the programmer s increased know.edge of

the problem.

5 Time estimated and time consumed should be monitored constantly at the
highest level both to ensure the formulation of a computer program which can do all
fhí it must do in the required time interval and to allow improvements m the program

if running time permits.

4s a result of the programmers being extremely time-conscious, the F:100'4
program is executed in less than 50 milliseconds. The actual running time varies between
thirty and thirtv-five milliseconds. As a result, however, there is very Uttle excess
capacity in either the instruction memory or the number memory. This bas made
cult to include automatic testing and monitoring programs in the High simu a PS
Usually the F-100A icing routine, which is unimportant when research s
than training is being conducted, is removed to allow the insertion of .hese programs.

4.6 Control of Precision in the Operational Program

The basic precision problem is the same for all digital computers and all computa

ional programs written for them: if p f ^.Äere «he

S^ÄTÄ1 mW«»„i», i....
ippear to be equal to zero.

The difference in the precision problem between fixed point and floating point

rsshiiz == -»-äSHSSE
dthough there is still a restriction on the “f allowable value of

r" whL^^sTquTto^erTthe rTünmun^alue of k which affects the computation

/ , j io n s; V i ¡í?^m) where m is the number of bits in in floating point (normalized mode) is 0. o X 1/U), wnere m
the exponent of the floating point word.

169

As p approaches its maximum value, the minimum value of k which can affect the computa¬
tion approaches p x/2n, where n is the number of bits in the fractional part of the float¬
ing point word. In contrast, using fixed point computation, the minimum value of k which
can ever affect the computation is Pmax/2n (actually a somewhat larger number since the
numerator is not truly Pmax, but the next greater power of two).

These considerations affect programming in several ways, and the way in which
they are handled determines, within the natural limits of the computer, the precision
which is ultimately obtained from the system as a whole (assuming that the mathematical
model is adequate). For example, suppose the problem is to add a series of numbers of
widely varying magnitudes. In floating point, the program would be organized to add the
small numbers first, otherwise they would have no effect, even though their sum is
relatively large. In straight fixed point computation, the same order of computation will
not have the same result since the scaling is predetermined; the best solution is a shift
in scale factor (really a species of programmed floating point). Another method of control
available to the programmer is to assure that no partial sums will be larger than the
final sum; otherwise an artifically high scaling factor must be chosen and an unnecessarily
high minimum increment will be the result. The magnitude of the partial sums is, of
course, affected by the order of the computation.

Insofar as this affects the generation of the aerodynamic coefficients and similar
parameters, the controlling factor is the accuracy with which the programmer knows the
maximum values of these parameters and the intermediate values in their calculation.
On the basis of the estimated maximum values, the scale factors are chosen, and this
choice in turn determines the minimum increment which will affect the calculation. The
order in which, for example, the forces due to different control surfaces are summed
determines the maximum intermediate value of this addition.

This problem was handled successfully in the F-100A operational program; it is
disappointing to note, however, that no methodology emerged for expeditious handling of
the required analysis in the future.

Occasionally, a choice of methods of computation presents itself. For example,
given the representation:

f o

There is a choice of interpolating between and f2 to determine f, or one can
extend the line f1 fo to the y-axis and interpolate between f and f2. It is possible that
this procedure would be faster given a certain computer instruction repertoire. How¬
ever, it would, in general, result in decreased precision in the result since a wider range
of numbers is involved in the compuvation. Accordingly, the first method was used in the
UDOFT programs.

The integration interval affects precision also. Reconsider the general example
of Section 5.4.3 where it was desirable to calculate u + Atû. For a given scale factor for
u and a given u, the value of At will determine whether ù will ever affect the computation.
Thus, the selection of a very small At imposes even greater precision problems. A
simple acceptance test like attaining a steady-state true airspeed for a given thrust may
not bs possible if lù ! decreases rapidly and At is very small, even though all parameters
involved--lift, drag, and thrust--are computed with extreme precision.

iX

170

5 5 Simulation Program Organization

preparing a Urge,.c* real-.i», .i™!»»« W». «»
mer) must exercise care to insure ta.,

1 Program debugging is facilitated.

2. Programs ,or aob-program.i *« bm.« «

,. For..,« -1,0,,8.. land mo., «nior.s.en one.) are «»pi« » “P1™'"''

4. Computational time is used efficiently.

Some of these exemplary qualities^have -

leni 77,bintegratio7efunction generation,^ vehicle^omentation,^ etc

coherent the mathematics and receive the same level of consideration,

Sherbwisf rnfuítimateVogram will lack the integrity demanded of it.

The following general description of program design is given to indicate an ap¬

proach to'developing real-time simulation programs.

5 5 1 General Simulation Program Formulation

ent computational tasks.

1. Vehicle dynamics

2. Propulsion system

3. Vehicle subsystem

4. Guidance and control systems

5. Airborne systems

„ „ r«r0Sm..d »»"• »< ffpfSr’S»;* Ä? Ä
.«hm,. L ip"Ä. »I d... .«b »»* f.ï"“ .r.mb*d

SC“progrLn. ,%¾. U d^cd Ü, ligdr. dl.

control The function of these sub co ^ blocks are used and to supply e^\
the manner in which their respective computational ^ ^ figure 73 1S a program
computational block with the necessary mp.it dat^. ^ contro, within the simulation Program,
control block which encompasse^.he high l ^ other blocks within the program and

“d tte real-WOrW- k lts

Tte g,,,.,» o, . ,.«88» .»o ~P»*“

i0: ,.
does not affect another.

2 Simplified debogging-fi.. prog.™, =» •*

3' Mb„l.;-^. - - ».d, ,. O» e-P.»»»
one block without affecting the other blocks.

The concept .1 dividi« 0.. SocíSrMÍwflSSÍiÓV*.;»,

SS -rr ÂZÂSnr édb- -..,..,. —- -
171

I
8

b*.

F
ig

u
re

7

3
.

B
lo

c
k
 D

ia
g
ra

m

o

f
F

li
g

h
t

S
im

u
la

ti
o

n

P

ro
g
ra

available computation time (program cycle time), because the sequence and the extent of
the computations can be varied with the existing conditions.

5. 5. 2 Programming Procedures

The simulation program must be capable of reproducing the actions of the vehicle
and all its subsystems under abnormal as well as normal operating conditions. Accord¬
ingly each system of the vehicle must be analyzed on an individual basis The purpose
ofgthe analysis is to describe, by means of mathematical and Logical equations the normal
response of the system to each of the pertinent independent variables. J^ effect of mal
functions at various levels within the system must then be analyzed m order to allow the
incorporation of these effects into the descriptive equations. The resulting equaUons re¬
flect the operation of the particular system under all conditions. These same equation*
form the starting point for the preparation of the subroutine.

Once th» equations are known, a subroutine flow chart is prepared. The flow chart
represents diagramaticaliy the program, or flow of mathematical zná logic operwonz
that are necessary in order to solve the descriptive equations. The next step is to fix tins
flowchart in the overall system organization flow charts.

due to improper ordering of subroutines is presented in Section 6.2, Program Control.

Notwithstanding these subtle considerations, the task of preparing the program-
control routine is somewhat mechanical in nature. The purpose of the routine is singlar
and its preparation is straightforward. However, if programming problems are to be
mini mixed ? consideration should be given to more than just the development of a single
commuer routine Bv approaching the preparation of this routine with an appreciation iO.
the task of overall program preparation and integration, standards may be derived to

facilitate :

a.) Program coding.

b.) Program debugging.

c) Communication between programmers %'ho are assigned to
individual parts of the total simulation program.

d.) Communication between computer development engineers
and programmers.

Concurrent with the development of the program-control routine individual
computational subroutines are coded by the programmers using only the descriptive
equations and the flow charts.

The next step is subroutine checkout, using either the ultimate computer, or as
in the case of the UDOFT program, a general-purpose digital computer simulation oi ,
ultimate computer Upon completion of subroutine checkout, the programmer ^ re-
quir“d to “corporate any changes made during the coding and checkout phases which dtd
not appearTn the initial subroutine flow chart. This material- the-ncorporaved mto a
detailed subroutine write-up, which when completed, contains the ioUoAing.

1. Subroutine name.

2. Purpose.

3. Detailed coding flow* chart.

4. Calling sequence (entry and exit designations used by die program-control

routine).

173

5. Inputs and outputs (including required scaling).

6. Outside constants to be used within the subroutine.

7. Outside library routines necessary for successful subroutine operation.

8. Simulation mathematics and logic.

9. Subroutine description (narrative).

10. Checkout results (to avoid inefficient use of computer time during the debugging
or checkout phase, all subroutines should be hand-traced before being run on the computer.
The same inputs used in the hand-trace are used in the machine checkout. Results of
both methods must be consistent. Both sets of results should be listed in the program
write-up).

11. Symbolic program listing.

Some techniques and procedures presented in the preceding discussion were not
used during the development of the UDOFT simulation programs. The material repre¬
sents those precepts that extensive experience with digital real-time simulation program
development has fostered. Had this approach been utilized at the beginning of the analysis
and programming task, the task undoubtedly would have been executed more effectively
and efficiently.

Initially, the analysis and programming task was not approached systematically.
Each of the subroutines was prepared in vacuo, i.e., each subroutine was considered as
a separate entity. As such, the routines were checked out on anindividual basis; little
attention was paid to the checkout of interrelated groups of routines. It was apparent,
midway through the task, that control and checkout programs were needed to facilitate
such an operation. This deficiency was rectified by the deveiopmem of the program-
control concept. However, during the latter stages of the programming task, it could
not right all the wrongs that had been committed.

One other major aspect of the program organization which was not approached in
a systematic manner and could not be changed because of the disruptive effect it would
have had, was the separation of the logical expressions and the computations within the
subroutines Consequently, the checkout task was more difficult than necessary. If the
logic and the computational tasks had been separated, a more flexible program could have
been developed, and the debugging and checkout procedures would have been simplified.
This is the reason for the inclusion of program sub-control routines, as well as the more
general program-control routine, in the idealized approach to the development of real¬
time digital simulation programs.

174

SECTION VI

SIMPLIFIED DESCRIPTION OF THE F-IOOA SIMULATION PROGRAM

The discussion of the UDOFT system thus far has been limited to the development
of the digital computer and to fundamental real-time simulation program problems. This
section treats aspects of the computer’s application to a specific real-time simulation
problem, the simulation of the F-100A.

Valid real-time digital simulation requires a program that will accept the real-
world commands of the pilot and introduce these inputs into a system of nonlinear differ¬
ential equations. The coefficients ot these equations are a function of the basic aerody¬
namic parameters (a, ¡p, Mach, hp, etc.) which are the result of past computational
history. The integration of these differential equations establishes new parameters from
which the coefficients for the next cycle and the data for the cockpit displays are generated.
Thus, pilot control movement results in changes in the linear and angular accelerations
which are, in turn, integrated to yield new cockpit indications of airspeed, attitude, etc.
In brief, this is what the aerodynamics portion of the simulation program accomplishes.
In addition, the simulation includes the engine and a number of other flight systems (flight
control, hydraulic systems, landing gear, speed brakes, and flaps).

6.1 Aerodynamic Equations of Motion (Logitudinal Plane)

The simulation of the aerodynamic properties of an aircraft describes the motion
and the orientation of the aircraft in terms of the translation velocities, u, v, and w; the
angular velocities, p, q^, and r, which are a result of the forces acting upon the physical
aircraft structure; and the parameters which describe the structure. The aerodynamic
forces and moments are defined in terms of dimensionless coefficients which are func¬
tions of such basic parameters as Mach number, angle of attack, and yaw angle.

As a case in point, consider the equations for ù, w, and q^ which describe the
motion of the aircraft in the longitudinal plane.

6. 1. 1 Longitudinal Acceleration (ü)

The acceleration along the longitudinal axis of the aircraft, ii, is defined as:

M, - g Sin 0 - w + vr
qj

where

where

X = Total forces along the airplane X axis
cl

X Cos a - Z Sin a + T - D s s wn

Xg = Total drag force along the stability X axis

= 376q[C¿ + CD + CD + CD + C i
dt 6J de ulJ. G

(35)

(36)

(37)

The equation for ù describes the longitudinal acceleration of the aircraft relative to
the earth in terms of body axis parameters. However, since the coefficient data for the
forces are given in terms of the airplane stability axis parameters, it is necessary to
transform the total forces from the stability to the body axis.

The coefficients utilized in the equations represent the simulator manufacturer’s
interpretation of the airframe manufacturer's estimated behavior of the particular coeffi¬
cient as a function of the basic parameters. The interpretation, in the case of the FIDO

simulation, resulted in piecewise linear approximations which yielded the coefficient when
evaluated for the basic parameters. The coefficients given in the equation for Xg are:

= basic airframe drag force coefficient

fg(Ma) + C^fjgiMa) +

= 1 - C^f^Ma)
(38)

= drag coefficient due to drop tanks

= Cn (Ma)
Udt

C = drag coefficient due to speed brakes
DÔJ

= Cn (Ma)
ubJ

C = drag coefficient due to inflated drag chute
'D

dc

0.30585, 6dc = 1 or 0

(39)

(40)

(41)

C = drag coefficient due to landing gear

DL.G

= 0.0278

6. 1.2 Normal Acceleration (w)

The normal acceleration, w, is defined as:

Z

* = ' IT + g Cos e Cos ^ • vp+ uqi

(42)

(43)

where

where

Z = total forces along the airplane Y Axis

- Z Cos a + X_ Sin a - 0, 053T
s 5

Z = total lift force along the stability Y axis
s

= 376ql CT + CT + C, + CL 1
hv LH bdt

(44)

(45)

The coefficients for this equation are:

C
h*

coefficient of lift due to wings

[C (Ma) - f1(aWR)f5(Ma)1£4(Ma) +

^1.1 (

(46)

176

Coefficient of lift due to stabilizer

CT = Coefficient of lift due to speed brakes
oJ

= Cf (Ma)
õJ

CT = Coefficient of lift due drop tanks
Ldt

(47)

(48)

= fjia)fg(Ma) (49)

The basic problem with this equation for Zg is that neither Cj^ nor C^ is stated

explicitly in terms of Mach number and angle of attack. RatheTj they are stated in terms
of rigid wing angle of attack (aWR) and rigid stabilizer angle of attack (a^). The solution

of a,irr> and is further complicated in that the equations implicitly define the depend-
W rí HK

ent variables:

aWR = ri^d win£ an^ie attac^

= ja - [C (Äfa) - f1(aWR)]f4(Ma)f4(q)f3(Ma)| f2(Ma) (50)

^1. 1

= rigid stabilizer angle of attack
lirv

= a + 6H - f2(aWR)f6(Ma) - [0. 00233q r ^(qJf^Äfe)] C^ (51)

In order to overcome the problems associated with the real-time digital solution oi implic¬
itly stated functions (Section 7. 5. 3, Short Period Longitudinal Response), the equations
for a„rT1 and are restated in terms of Mach and the slopes and intercepts of the fimc-

W K rirv
tion of and aRR-

an-! " [bl ‘ b2f2<Ma)if4(Ma)il(cl)f3(Ma)í f2ÍMa) (52)
WR) 1 - f4{Ma)f1(q)f3(Ma)f2(Ma)[a1 - a^LiMa)]

HR

Qn-1 ' 5H * ’ [f8{Ma) i0-00233cl * ib:

[1 + fg(Ma) \ 0. 00233q + f2(q)f7(Ma)} a3J
(53)

This requires a program which solves for the variables a WR and in the various re¬

gions of the functions C (a WR), and f^a^). The solution is valid only

W1 1
when the values computed for aWR and a HR are within the interval for which the data was

substituted The new coefficients a and b are the slopes and the intercepts, respectively,
of the functions C (a WR), f^a^h and îl (aHR). The intercept data lor these iunc-

.
tions, unlike the intercept data for interpolation purposes in the iunction generator, are the

i*.

177

-,. (-«rí n when extended to the ordinate,
values of the piecewise linear functions of aWR and HR
The data for the above functions are:

CLW (°WR)
Wl. 1

fl(aWR

Range of aWR

-24

-18 5 aWR < '6

<aWR<+8'25

8.25 <aWR< 12,25

12.25 <aWR<18.00

al

000000

0.461666

0.1151578

0.0600000

0.0095652

U1

-1.2450

-0.4140012

-0.0000580

+ 0.45500

1.0728698

0.000000

■0.1583333

0.3298245

-0.025000

-0.03130434

°2

0.00000

-0.2849998

0.00789470

0.48625

0.56347817

Range of aRR

-40 <qHr < '20

-20<aKR< + 14

-»<“HR< 20

20<aHR< 40

a3

0.0078

0.05570588

0.033333333

0.0145

3

0.05800

0.0001176

0.31333338

0.690000

value of aWR and aHR.

6.1.3 Pitching Acceleration (^)

„„ilün. equation necen.nry to de.erib. the «oUon ol the nircr.lt in the
lot*,..^!” VnogolT acceleration about the Í »... 4,.

Ma + 54200 rp
^1 = -1

y

(54)

where

where

Ma = total pitching moment about the airplane Y axis

M + Zod " 33T s s

Mg = total pitching moment about the stability Y axis

= 376 cq)C 'M
+ — C
+ 2V M ql + 2V. CM. a

(55)

(56)

a

+ 99q u5qiP-

WL.G LG

where ^ = throttle angle

178

The coefficients for this equation are:

'M
basic flexible pitching moment coefficient

= CM - f^íMa^íhpKgíi^) (57)

where

'M
rigid pitching moment coefficient

The equations describing takes on different forms for different intervals of

R
and is given as follows:

-24 < aWR < -18

'18 5 < *6

-8 <aWR<5

5 <aWR<8

8 - aWR < 12

12 < a WR < 18

18 — aWR < 24

CM = 'iB^s5
aR

(58)

= f17(Ma) - f18(Ma) + fls(Ma) / aWR+ is\
\-T2-J

= f16(Ma) - f17(Ma)]+ f17(Ma)

f,c(Ma) - fle(Ma) [15 16
f16(Ma)

= f14(Ma) - f15(Ma) ^4)+ f15<Ma)

= f13(Ma) - f14(Ma) (—|) + f14(Ma

= f13(Ma)

CM s pitching moment coefficient due to pitching rate

= f25(Ma)f9<hp) - f0fi(Ma) 26
(59)

CM = pitching moment coefficient due to rate of change of angle of attack
a

f (Ma) - 62 J 000 ~ = f (Ma) (60)
I27lMa; 64,000 28V /

CM = pitching moment coefficient due to air entering engine inlet duct
WQ a

= (Ma) a (61)
Mw a

C„ = pitching moment coefficient due to drop tanks
Mdt

The equation for pitching moment due to drop tanks takes on different forms for different
ranges of angle of attack as follows.

179

(62)
-40° < a < 0o

0o < a < 10°

10° < a < 20°

20° < a < 40°

cMat - MM») 22

= f23(Ma)^+ f22<Ma)

= (f24(Ma) - f23(Ma)]

= f24(Ma) + f22(Ma)

I - pitching moment coefficient due to speed brakes.

+ f23(Ma) + f22(Ma)

= f20(Ma)+ f21(Ma)f2(a)

’ = pitching moment coefficient due to landing gear

lL. G

= C
ml.g (awR>

M. H
pitching moment due to horizontal stabilizer

= CT <w(Ma)
lh h

(63)

(64)

(65)

L f is defined as the distance from the airplane center of gravity to the horizontal

solution of the aHR equations.

The remaining moment to be described in the pitching moment equation is the in-

fluence of a deployed drag chute:

= pitching moment due to inflated drag chute
dc

= 115q fp(a)
(66)

axis
dy coeiiicients wmcn reqmic - f
equation 62. In either case, the evaluation of the coeffi

Mdt'

HR/
respec

cient^varies in accordance with the interval of the present value of aWR and

interval equation are solved. This requires that f^Ma) through f18<Ma) be evaluated

outside of the function generator program. Thus, a maximum of only two functmns
Mach are ever calculated rather than six.

180

6. 2 Program Control

The* three basic longitudinal equations described in the preceding section form one

âÆïw «'Sä' f«’"

the next cycle.

In r\r*Hpr in maintain the cycle time fixed at 50 milliseconds, the Governing Control

Program is not initiated until the count in

for ^ly'of^he^hree ope rating mo'des, the time required for the computation is less than

50 milliseconds.)

The control aspect of the Governing Control Program selects the mode of operation
for the next computation cycle. (Mode changing is ^rforme^oidy^t fte^nit^ion of a

above three flags are off.

following ground rules when preparing the individual subroutines.

1.
During any one cycle there is only one entrance to and one exit from a sub-

routine.

9 -FVit from a subroutine is accomplished by a SCRNM instruction. (This in-
.«J„ ™S S S,*u," » tec..«™ addressed ..teer „.mor,

register.)

3 The exit from one subroutine is the direct entrance to the next subroutine; that
is, the contents of theTgister addressed by lhe SCRNM instruction is the effective ad-

dress of the entrance to the next subroutine.

trol.

The list of starting addresses of all siforoutines to be us^d is stored twice^ ^ ^

individual lists are in consecutive locations triable Changes are made in the variable ., —* -—
data for the required sequence of operations from the f

181

rnmolete list of addresses can then be transferred to the variable table, thereby
economizing on instructions (since this procedure can be coded in loop fashwn). Figure
74 exemplifies the relation of the fixed and the variable tables to the subroutines.

To illustrate the operation of a subroutine router, assume that the sequence of sub -
routines to befollowedTn the next cycle is C. D, A, B (figure 74). The following would
be the subroutine router to effect this sequence:

CLA 2002)
NOP 0000 J Place C as first subroutine
STO 1002)

CLA
NOP
STO

2003
0000
1003

Place D as second subroutine

CLA 2000)
NOP 0000> Place A as third subroutine
STO 1004)

CLA
NOP
STO

2001
0000
1005

Place B as fourth subroutine

CLA
NOP
STO

2005
0000
1006

Place return to Governing Control

This table of variables then becomes:

Variables Table

NMAD Contents
1002 0011700
1003 0014600
1004 0005000
1005 0006700
1006 Address of G. C. Entry

In the case of the F-100A simulation program, the Normal mode of operation
rpnrosents not only the most used mode but also the mode specifying the maximum number
of avalóle sub^utines Thus the fixed table for the Governing Control Program contins
the entrance addresses of all subroutines used in the Normal mode of operation. In thi
mode the subroutines and the order in which they are performed are.

Governing Control
Function Generator
Permute
Convert Input Variables
Aerodynamic Coefficients
Moments and Forces-Stability Axes
Moments and Forces-Airplane Axes
Accelerations
Velocity Vectors
Direction Cosines
Etcetera
Altitude
RPM
Icing
Percent Thrust
Total Thrust and Fuel Flow
Tailpipe Temperature
Mass of Fuel
Mass, Moments of Inertia, Center of Gravity
Hydraulic Pressure
Instruments
Decisions (Land, Air, Crash)

182

N MAD CONTENTS

2000 0005000

2001 0006700

2002 0011700

2003 0014600

2004 0017000 [

2005 ADDRESS OF
GOVERNING
CONTROL

FIXED TABLE

N MAD CONTENTS

1002 0005000

1003 0006700

1004 0011700

1005 0014600

1006 0017000

1007 ADDRESS OF
GOVERNING
CONTROL
ENTRY

VARIABLE TABLE

SCRNM 1002
FROM
GOVERNING
CONTROL

0050

SUBROUTINE A

SCRNM 1003

0067

SUBROUTINE B

SCRNM 1004

0117

SUBROUTINE C

SCRNM 1005

0146

SUBROUTINE D

SCRNM 1006

THIS VARIABLE TABLE THEN BECOMES:

1002 0011700

1003 0014600

1004 0005000

1005 0006700

1006 ADDRESS OF
GOVERNING
CONTROL
ENTRY

0170

SUBROUTINE E

SCRNM 1007

TO
GOVERNING CONTROL

Figure 74. Diagram of Simplified Governing Control Program

183

In the Zero mode the specific order in which subroutines are performed is:

Governing Control
Function Generator
Permute
Convert Input Variables
Aerodynamic Coefficients
Moments and Forces-Stability Axes
Moments and Forces-Airplane Axes
Accelerations (under Zero Control)
Velocity Vectors
Direction Cosines (under Zero Control)
Etcetera
Altitude (under Zero Control)
RPM
Icing
Percent Thrust
Thrust and Fuel Flow
Tailpipe Temperature
Hydraulic Pressure
Instruments
Decisions (Land, Air, Crash)

In the Freeze or Crash mode the specific order in which the subroutines are
performed is:

Governing Control
Function Generator

From the preceding description of Governing Control, it is apparent that the
flight simulation program is sub-divided into a number of subroutines whose order of
execution is controlled by the Governing Control Program (figure 75). The order of
subroutine execution is not arbitrary, but is consistent with the flow of calculations which
comprise the differential equations.

The order in which the equations are solved (the dependent variables are computed)
and the resultant parameters are introduced into other equations has a significant effect
upon the fidelity of the digital simulation. It was found that a delay as short as 50 milli¬
seconds (one iteration cycle), introduced by improper ordering of subroutes, could intro¬
duce enough phase lag to cause the system of equations to become unstable in regions
where the stability phase margin of the actual system of equations was quite small.

An instance of this arose during the testing of the simulation program for an oper¬
ational, high performance aircraft (not the F-100A). The scheduled checkout of this simu¬
lation program was delayed seriously due to the presence of vehicle longitudinal instability
at high supersonic speeds. Based on a detailed examination of the available computer out¬
put, familiarity with the computer program, and knowledge of the aircraft dynamics, it
was hypothesized that the instability was due to a 50 millisecond time delay introduced
into the program by the particular ordering of subroutines that was employed. This time
delay would appear as a phase lag to the vehicle dynamics and could cause instability at
the high Mach numbers where the aircraft stability phase margin is quite small. At low
Mach numbers the aircraft is normally quite stable with a relatively large stability phase
margin, and the added phase lag would not have any serious effect. An analysis of the
vehicle longitudinal mode was performed to confirm the hypothesis.

As a first step in testing this hypothesis it was necessary to examine the ordering
of subroutines in the program to determine the particular order of computation. Figure
76 indicates the original subroutine sequence. The block titles refer to the subroutine
titles (similar but not identical to the subroutines of the F-100A simulation program which
are described later in Section VI). The computations performed within each subroutine
which pertain to the longitudinal instability problem are shown within the appropriate
blocks.

Examination of the ordering of subroutines indicated that the current value of a
is computed early in the cycle (Velocity Vectors Subroutine); however, the value of the lift
coefficient, corresponding to the current a is not computed until the end of the cycle

184

OF CL, Ma, h

INTEGRATE TO

OBTAIN a, qi

VELOCITY VECTORS

I COMPUTE A7

1 ZA

LINEAR ACCELERATIONS

COMPUTE My
FORES & MOMENTS - STABILITY AXES

COMPUTE Ô
ACCELERATIONS - WIND AXES

COMPUTE q,
ACCELERATION - STABILITY AXES

COMPUTE DIRECTION COSINES
DIRECTION COSINES

COMPUTE qj, qsc,

sin a, cos a, C^, and C^

ETCETERA

COMPUTE STABILIZER
CONVERT INPUT VARIABLES

DEFLECTION

Figure 75. Governing Control Flow Diagram

185

START
OF

.CYCLE,

1 IN 1 1 u U, w,, • —

OBTAIN a, qj

ETCETERA
CUMrUic qj, tpt., 2

sin a, cos a / and

fîFIsIFRATE FUNCTIONS OF
FUNCTION GENERATOR

CL, Ma, h

COMPUTE Az
0

LINEAR ACCELERATIONS

COMPUTE M
ys

MOMENTS AND FORES-STABILITY

COMPUTE a

ACCELERATIONS-WORD AXES

COMPUTE q,

ACCELERATION - STABILITY AXES

COMPUTE _iec

DIRECTION COSINES

r DIRECTION COSINES

roMPUTE
CONVERT INPUT VARIABLES

STABILIZER DEFLECTION

Figure 76. Initial Ordering of Subroutines

186

(Etcetera Subroutine). Consequently, the computation of à and q. (Angular Accelerations-
Wind Axis - Subroutine and Angular Accelerations-Stability Axis - Subroutine, respectively)
use and old value of CL rather than the present value. The problem is compounded further
by recognizing that the functions of Cl which are computed at the beginning of the cycle
(Function Generator Subroutine) are based on the past value of CT rather than the current
value of Cl for that cycle.

On the basis of this examination it appeared that the value of Cl had been delayed
by one iteration cycle of 50 milliseconds before being used in the computations of ¿ and
qi. In order to determine the effects of this delay on the aircraft dynamic response and
stability, a detailed analysis of the system of equations for the longitudinal mode was
performed.

The equations that were examined were considered to be solved continuously, rather
than periodically, in order to simplify the analysis. The next step was the formulation of
a signal flow graph of the longitudinal dynamics which, in turn, was reduced to its simplest
form. Conventional servo analysis procedures were used to determine that the open-loop
gain and phase shift of the closed-loop system of equations were a function of frequency.
The result was simply that the system of equations, without consideration of the 50 milli¬
second time delay introduced by Cl was stable for all conditions. However, when the
delay factor was considered, the analytical results were identical to the experimental re¬
sults obtained from UDOFT. It was reasonable to conclude, therefore, that the instability
problem was caused by the unwanted inclusion of a time lag in the simulation. This lag
could be due only to the particular order in which the equations were solved.

Consequently, a new ordering of the subroutines was recommended (figure 77).
In the revised sequence, the value of Cl corresponding to the current value of a is com¬
puted early in the cycle and is then used for all subsequent computations during that cycle.
In addition, the functions of Cl are now based on the current value rather than the past
value of Cl-

This recommended ordering of subroutines was implemented on UDOFT. As
expected, the simulated vehicle is now stable over the entire flight regime and faithfully
reproduces the desired longitudinal behavior.

6.3 Function Generator Subroutine

The primary purpose of the Function Generator subroutines is to evaluate the
piecewise linear functions by solving the equation:

yn = mb(xn-xb)+yb <67>

where: xn is the independent variable

x^ is the breakpoint nearest to but smaller than the independent variable.

is the slope of the segment

y^ is the value of the ordinate at the breakpoint

For the example of figure 78:

Breakpoints, slopes, and intercepts for each function are stored in a block in
the following format.

Figure 77. Recommended Ordering of Subroutines

t*.

isa

Figure 78. Plot of Typical Piecewise Linear Function Approximation

Xq minimum x

m,

1

104

n-1

mn-l

yn-i

maximum x

As indicated, the data block will contain 3n + 1 data words for a function consisting
of n straight-line segments. The number of straight-line segments in the functions that
were used in the F-100A simulation program ranges from one to nine; thus, the data block
lengths would vary from four to twenty-eight data words. If separate subroutines were
used to evaluate each group of functions that consisted of a different number of segments,
nine subroutines would be required. In order to simplify the program the following three
data word block lengths were selected: 10 words, 16 words, and 28 words for functions
with three, five, and nine straight-line segments respectively. Therefore, only three
subroutines are required. If a particular function does not consist of three, five or nine
segments exactly, the data words for that function must be introduced into the next higher
data word block with the unused data words being made identically zero. As an example,
a function with four segments would be placed at the beginning of the section of number
memory reserved for functions with five segments (16 data words) in which the fourteenth,
fifteenth, and sixteenth data words are made identically zero. An examination of the por¬
tion of number memory reserved for function data words will show that the data words for
the functions of each independent variable are stored sequentially in order of increasing
number of segments. This is essential if the function generator routine, as conceived
and developed for the F-100A simulation program, is to maintain control of the program.
This will become apparent as the discussion proceeds.

79).
The function generator routine consists basically of five major operations (figure

1 FGENT-entry into the program and initialization of Tally Register and return
address, FGEND, for evaluation of functions of Mach.

2. FG2, FG7, and FG8-setting-up Tally Register and return address, FGEND
for cyclic evaluation of functions with five, three, and nine straight-line segments
respectively.

3 FG3-search of function data block for appropriate line segment, extraction of
line segment data, and evaluation of function.

4. FGEND-storage of ordinate of evaluated function and supplementary operations
if desired.

190

FGEND FGEND

STORE ORDINATE

TRANSFER CONTROL TO
CONTROL PORTION AT

FUNCTION GENERATOR PROGRAM

ACQÜIRE INDEPENDENT AND
VARIABLE, MACH, AND

INITIALIZE RETURN ADDRESS,
FGENT, AND TALLY REGISTER

FOR PORTIONS OF MACH

STORE ORDINATE

ACQUIRE QUANTITY TO
IE MULTIPLEXED OUT

MULTIPLEX-OUT
QUANTITY

ACQUIRE C
FOR INC REM EL

ADDRESS

OUNT OF 5
ITING RETURN

FGEND

TRANSFER CONTROL TO CON¬
TROL PORTION OF FUNCTION

GENERATOR PROGRAM

ACQUIRE NEW INDEPENDENT
VARIABLE SET-UP TALLY,
REGISTER TO ADDRESS OF
FIRST BREAKPOINT OF FIRST
FUNCTION TO BE EVALUATED

SET-UP RETURN ADDRESS, FGEND
AND TALLY REGISTER FOR FUNCTIONS

WITH 16 DATA WORDS

BREAKPOINT SEARCH AND
FUNCTION EVALUATION

STORAGE OF ORDINATE, AND
SUPPLEMENTARY OPERATIONS

SET-UP & STORE RETURN ADDRESS
FGEND, AND TALLY REGISTER
FOR FUNCTION WITH 10 DATA
WORDS

SET-UP 4 STORE RETURN ADDRESS,
FGEND, AND TALLY REGISTER

FOR FUNCTION WTTH » DATA

WORDS

Figure 79. Function Generator Control Flow Diagram

5. G()ENT-reentry to program for initialization of control for evaluation of
functions of remaining independent variables.

A more detailed flow diagram is shown in figure 80. A better understanding of the opera¬
tion of the function generator routine may be gained from an example showing the process
by which a function is evaluated.

The program is entered initially at FGENT. The first operation is to acquire the
independent variable for which functions are to be evaluated. Since the first functions to
be'evaluated are functions of Mach, the most current value of a Mach is extracted from its
normal storage location in number memory and stored in the independent variable working
location, FGIV. The next operation is to set the Tally Register equal to the address of the
first function of Mach which will be evaluated. However, because the routine which follows
increments the Tally Register by 16, the Tally Register is set initially to the first break¬
point address less 16. The return address, FGEND, by means of which the cyclic program
can jump out to a multitude of two and five instruction routines, is likewise established.
Normally, the short routines just mentioned are two instructions in length, containing both
a store instruction (510) and an unconditional transfer of control instruction (SCR). The
store instruction stores the ordinate of the evaluated function in the proper address in
number memory, and the transfer of control instruction returns program control to either
FG2, FG7, or FG8 for evaluation of the next function of the same independent variable.
As with the setting of the Tally Register, the return address is set to an address which
differs from the desired return address. The difference between addresses is a count of
two, because the following routine, FG2, increments the return address by a count of two.
At this point, the Tally Register is incremented by 16 and the return address, FGEND,
is incremented by two. This apparent inefficiency of operation occurs because the normal
incrementing of the Tally Register and the return address is performed by the routine
entered at FG2 which is used for evaluation of functions with four and five breakpoints,
respectively, (Considering the program as a whole, greater consistency of program design
would have been maintained had the initialization process for functions of Mach been made
similar to the initialization routine for the evaluation of functions of the remaining inde¬
pendent variables, which routine enters the main flow at FG3 rather than FG2.) Entry
is made initially to the control program (FG2) which is used for evaluating functions with
four or five breakpoints rather than to the control program for evaluating functions with
three or fewer breakpoints (FG7), because there are no functions of Mach with fewer than
three breakpoints, (A minor exception is one linear function of Mach which is evaluated
immediately after entry is made into the function generator and the independent variable
is acquired.)

With the establishment of the address of the first breakpoint of the first function
(of Mach) to be evaluated, the search for the straight-line segment within which the inde¬
pendent variable (Mach) lies is initiated. The search is initiated with a test to determine
if the independent variable is less than the breakpoint initially extracted from the function
data block. If it is not, the Tally Register is incremented by three, thereby establishing

-the address of the next breakpoint of the function. The testing is continued until the first
breakpoint greater than the independent variable is found. At this point, the next lower
breakpoint is extracted from the function data block and the variable is again tested to
determine if it is greater than or equal to this breakpoint. For the first search of the
first function, only one of these tests will be performed. When the condition of the second
test is satisfied, the search terminates. At this point, the Tally Register conveniently
contains the address of the breakpoint that defines one parameter of the straight-line seg¬
ment within which the independent variable lies. By modifying this address by factors of
one and two the applicable slope and intercept data, respectively, are readily extracted
from the function data block and the function is evaluated. This terminates the breakpoint
search and function evaluation routine.

In the preceding discussion it was indicated that two breakpoint-independent vari¬
able tests were performed. Undoubtedly, some question may arise as to the need for the
second test. (Is the independent variable greater than or equal to the breakpoint preceding
that one which passed the first test?) The second test is unnecessary, as already pointed
out, when the first function of each independent variable is evaluated. However, it may
be necessary when evaluating all other functions. This will become apparent from the
following discussion.

Assume that the first function, f^Ma), of the independent variable has been evalu¬
ated. Further, assume that the function consists of five straight-line segments and that

i*-

192

Figure 80. Function Generator Control Flow Diagram

193

the independent variable (FGIV) lies within the fourth segment (figure 81). When the
evaluation of the first function is complete and program control is restored to FG2 or
FG2 + 1 (because functions with five breakpoints are being evaluated), the Tally Register,
which contains the address of the breakpoint, d., defining the straight-line segment for
the previous function, is incremented by 16; thereby establishing the address of the
breakpoint, d, of the next function, f2(X), tobe evaluated. In the example of figure 81, it
is apparent that the independent variable, FGIV, does not lie within the fourth segment of
fo(X), but lies within the first segment. As a result, the first test of the search process
(the independent variable less than the breakpoint) will be satisfied. However, if it were
tacitly assumed then that the next lower breakpoint is less than the independent variable,
the function will be computed using the wrong segment. In these cases, testing of the lower
breakpoint ensures the proper evaluation of the functions. These cases do not occur fre¬
quently, but there are a few cases where there is considerable disparity in the ordinate of
the breakpoints of consecutive functions.

Function data points are grouped according to the number of breakpoints. (There is
not necessarily any correlation between the ordinate of the breakpoint.) Grouping by order
of breakpoint is necessary due to the substitution of zero for breakpoints which do not
exist-for example, in a function having 4 breakpoints, the fifth breakpoint is made equal
to zero since there is no group of four breakpoint functions. If the previous function had
five breakpoints and was being evaluated in the fifth segment the fifth breakpoint, zero,
would be tested against the value of the independent variable. If this zero value were less
than the value of the independent variable, the Tally Register would automatically be incre¬
mented, and the next data point-an erroneous one-wouldbe tested. Under these circum¬
stances the program could lose control.

The main program associated with the Function Generator subroutine serves as a
convenient device to space MLXO instructions. A time delay of 400/3 /¿sec. is necessary
between any two multiplex-out commands. It was determined that the minimum time to
generate any two functions would satisfy the demands of this time delay. Thus every
second time the Function Generator returns control to the main program, an MLXO opera¬
tion is effected. In order to compensate for the additional instructions used in this opera¬
tion, the main program causes the Accumulator to be set to the count of five and returns to
the Function Generator at the desired entrance location plus one. At this point, the Ac¬
cumulator will be added to the previous return address, and the result will be the proper
return address for the next function.

6.3.1 Extra Function Generator

When the independent variable ranges from minus to plus, the Extra Function
Generator Subroutine (figure 82) is used to compensate for the possibility of an overflow
occurring within the breakpoint search routine. The overflow occurs when the independent
variable is at or near the maximum negative value, and positive breakpoints are subtracte
from it during the search for the proper segment. This routine functions the same as the
Function Generator Subroutine with the following exceptions:

1. The input variable must be shifted one place to the right and stored in EFGIV.

2. The symbolic entrances to the routine are preceded by an E as follows:
EFG1, EFG2, etc.

194

195

F
ig

u
re

8

1
.

T
w

o
,

F
iv

e
-B

re
a
k
-P

o
in

t
F

u
n
c
ti

o
n
s

INCREMENT

RETURN
ADDRESS

BY 2

INCREMENT
TALLY
BY 28

196

6. 3. 2 Calculation of û*^ and û^r

The subroutines for obtaining explicit solutions of and <*rr are an adjunct to
the function generator. Immediately preceding the generation of function of and QftR,
control is transferred from the Function Generator program to the o^r program
(figure 83).

The program selects an arbitrary interval of the independent variable and evaluates
the variable using slopes and intercepts corresponding to this interval. The solution is
checked to determine if the calculated result is within the interval. The program calcula¬
tion continues until the independent variables and interval correspond.

The program performs the ff\vR calculation first, since ûtrr is a function of both
û^vr and ûrr. When the program has established a legitimate value for <*wr, all functions
of ffwR are calculated before the program proceeds to the orr computation. The same
procedure is employed for the computation (figure 84).

6. 3. 3 Accuracy of Function Generation

Using the method of interpolation

yn = mb(xn - V + yb (68)

rather than the method

yn = mb(xn) + yb (69) o

where is the Y-axis intercept of the segment b which is characterized by the slope m^,

produces a more accurate interpolation. This results because the interval interpolation is
added to the value of the function at the preceding breakpoint, which acts to limit the error
in the interpolation. The problems in scaling of the function are, in general, controlled by
the value of the largest slope. This is especially true of Mach functions which vary con¬
siderably in the transonic region. This is a significant problem in the F-100A simulation
program, so the functions of Mach were expanded in the transonic region. By expanding
the functions in this manner, the values of the slopes were reduced, thereby offsetting the
loss of accuracy due to the use of large scaling factors. For functions of Mach, the in¬
terpolation is in terms of Map, as follows:

0. 0 Mach < 0. 9 Map = Mach (70)

0. 9 < Mach <1.1 Map = 0. 9 + 3 (Mach - 0. 9) (71)

1.1 < Mach < 2. 133 Map - Mach + 0. 4 (72)

6. 4 Convert Input Variables Subroutine

From the description of the longitudinal equations, it is evident that the present-
cycle solution of the differential equations requires the coefficients to be interpreted in
terms of past-cycle computations of the independent variables (Mach, a, hp, etc.) and the
present cycle longitudinal control disturbances. These control disturbances could be
interpreted as a new flight control position, a gradual change in the longitudinal equation
as influenced by a change in the center of gravity resulting from fuel consumption, a thrust
change, deployment of speed brakes, etc. The status of the external controls are repre¬
sented by numbers stored in memory.

It is apparent that, as the computation is continued indefinitely, the coefficients
will be modified accordingly and the resultant computation will reproduce the short and
long term response of the longitudinal equations. The computations for the present cycle
must, therefore, reflect recent changes caused by external means before the computation
can be allowed to continue. The subrouting which updates the flight program to the in¬
fluences of the real-world is identified as Convert Input Variables. This subroutine con¬
verts analog inputs to the polarity and scaling required by the F-100 program; makes
decisions relating to the utility hydraulic system, the landing gear, the speedbrakes, etc;
and stores appropriate numbers in memory.

W».

197

Figure 83. aWí^ Calculation Flow Diagram

198

Figure 84. aHR Calculation Flow Diagram

K*.

199

a) Analog Inputs

The encoded quantities representing the positions of the flight controls are
multiplexed-in as binary numbers. A typical example of such an input is the
flightrcontrol. The multiplexed-in quantity is converted to stabilizer position and stored
as some deflection. The conversion of flight control displacement to stabihzer deflection
is accomplished by subtracting the binary quantity representing zero stabilizer pos on
from the multiplexed-in value. The resultant quantity is converted to stabilizer deflection
in degrees. A positive «h indicates forward displacement oi the flight control. Símil
processes are applied to the other analog inputs.

b) Discrete Inputs

The use of the discrete input is as varied as the number of times it ^
use of a discrete input is typified by the landing gear program fl^eS5>. The landing
gear program within the convert input variable program actually ¿
the 1 andine eear being extended or retracted. It does this by checking the status of a dis
cre+e input ^LANDING GEAR IN MOTION, which is activated whenever the landmg gear
handlers in a position other than that shown by the indicator. The real-time delay is
effected by keeping track of the number of program cycles completed before gmng an m
dication of gear up/gear down. To minimize the added computational burden .he count
“difiedlnly every fourth, 50 millisecond cycle. With the gear in tne down position the
various aerodynamic coefficients related to the extended landing gear are ca-culated.

With the completion of the Convert Input Variables program, the flight program is
updated with new input from the real-world and the equations making up the coefficient can
be evaluated.

6. 5 Aerodynamic Coefficients Subroutine

The function of the Aerodynamic Coefficient Subroutine is the evaiuatton of the
coefficient equations which are given in terms of the functions computed m the Function
Generator Program.

With the functional data and the real-world input defined it becomes a simple task
to calculate and to store the various coefficients employed m the flight program. The
coefficients í e ¿ouped together such that all coefficients due to the same real-world
input1 are*1 either fomp'uted 4 not computed as a function of the state of ^ mpuh Ex-
arrmles of this are drop tanks speed brakes, and landing gear. Thus, the coemdenxs
Ct P Cn Cy, , and CM,. are computed when the drop tanks are on, but are ignor
when the drop taSts are off. The other coefficients which are not so influenced are com¬
puted each cycle.

Thf* nroeram also performs a number of decision-making functions such as
selecting thePp™ aerodynamic coefficient equations in cases where these equations
vS asga funPctioPn of scrJ independent variable. An example of an ae-d^c coef¬
ficient so manipulated is the rigid pitching moment coefficient, CMffR (équation 58,
section 6.1.3).

The computation continues with the summation of the coefficients to establish the
forces the foments along and about the airplane stability axis. For the longitudinal
equations, this summation is limited to Xs, and

6. 6 Total Forces and Moments - Stability Axes-Subroutine

As the name implies, this program coUects the stored aerodynamic coefficients
and sums them in accordance with the equations for Xg, Ys, ¿s, - iXs>

The coefficients related to the forces and moments are suaTef

multiplication factor. In this case, however, the factor
pressure and wing area but also the proper moment arm. Moment arm C is tne mean
aerodynamic chord, and b is the wing span.

200

201

F
ig

u
ré

 8
5

.
L

a
n
d
in

g
 G

e
a
r

S
u
b
ro

u
ti

n
e
 F

lo
w

D

ia
g

ra
m

6. 7 Total Forces and Moments — Airplane Axes -Subroutine

The next step in the computation is the development of the forces and moments as
a function of the airplane axes. This involves the conversion of the forces and moments
as related to the stability axes into forces and moments related to the airplane axes. It
also involves the addition of engine thrust which is fixed at an angle relative to some
fuselage reference line.

This subroutine takes the results obtained from the summation of forces and
moments of the stability axes and sums them relative to the airplane axes. The quantities
are stored for the Acceleration Routine.

6. 8 Accelerations Subroutine

The description of subroutines thus far describes only the forces and moments
acting on the airplane. The next routine yields the resultant linear and angular accelera¬
tions along and about the airplane axes as influenced by the computed forces and moments,
respectively. The linear accelerations along the airplane axes are simply derived from
F = Ma. Longitudinal equations Xa/M¿ and Za/Mi, where Mi is the instantaneous mass,
are the simple translational accelerations. However, the component of acceleration due
to gravity interpreted along the particular axis and also the sum of a number of accelera¬
tions resulting from the cross products of a linear and angular velocity modify the simple
accelerations to produce the actual accelerations. The angular accelerations are summed
in a similar manner with the exception that the terms are multiplied by the products of
the moments of inertia.

The routine computes the six accelerations involved in the six differential equations
describing u, v, w, and p, q1# r. The routine also performs a number of tests to deter¬
mine whether or not a discrete input is activated. The discrete inputs checked are: True
Airspeed Lock, Roll Angle Lock, and Autopilot. (These functions and their use are de¬
scribed in section 7. 1, Special Test Controls). A test is made also for land/air conditions.
Under landed conditions the acceleration equations are modified extensively.

6. 9 Velocity Vectors Subroutine

The generation of the accelerations along and about the airplane axes concludes
the aerodynamic computations that must be performed using data that defines the behavior
of the aircraft to describe the aircraft in space. The succeeding program. Velocity
Vectors, computes the linear and angular velocities by integrating the accelerations.

Since integration is required also for the Direction Cosines Subroutine, it was
more convenient to establish the integration process as a separate subroutine which could
be entered freely. The Velocity Vectors Subroutine exists only to the extent that an entry
is made into the Integration Subroutine immediately following the Accelerations Subroutine
for the purpose of computing the linear and angular velocities (for the analog outputs).

6. 9.1 Integration Subroutine

Numerical integration in the UDOFT real-time simulation programs is performed
by applying the mixed quadrature formula, modGURK. This process requires that a
past history of the accelerations that are being integrated and the resultant velocities be
maintained for the three most recent computation cycles. This is apparent from the inte¬
gration formula:

X = 2 [Ãx . + Bx 0 + Cx « + Dx .+ Ex „ + Fx Jl n [Vl n-2 n-3 n-1 n-2 n-sj (73)

where the coefficients A, B, C, D, E, and F are the modified O33 modGURK coefficients
a, b, c, d, e, and f:

A = l/2a = 0. 5731042 D = 1/2 jlh • d = 0. 0410397

B = l/2b = -0.1005435 E = 1/2 Ah • e = 0. 0252003

C = l/2c = 0. 0274394 F = 1/2 Ah • f = 0. 0068774

l*.

202

The modGURK Integration Subroutine selects the table of past values (¾ and it) for the
specified variable and performs the integration in accordance with the quadrature formula
(figure 86). The integrated result is stored over the current cycle *--3 value. The table
of past values is never permuted; thus, for four successive computation cycles, the table
of past values would be:

x_ < _ x_ „ _ X o X « n-l-► n-¿ m n-3 n~l

n-2-► n-3 n-l -► n-2

K 7 X 1 n-J n-l

xn «_k ,
tl-¿ ^ n-3

n-3 n-l

Both the determination of the oldest past values that can be discarded and the permuting
of the coefficients are performed by the Permute Subroutine.

6.9.2 Permute Subroutine

The Permute Subroutine (figure 87) rotates the coefficients A, B, C, and D# E,
and F so that in every cycle, coefficient A is multiplied by the n-lst value of the variable,
B by the n-2nd, and C by the n-3rd, etc. A control word in the permute routine is modi¬
fied each cycle so that the new values of the variable and its derivative are stored over the
oldest value.

To illustrate, consider the initial storage of the table of past values and coef¬
ficients to be:

Coefficients

L(D A

M2) B

M3) C

M4) D

Ms) E

M6) F

where MD is defined to be storage register 1.

The modGURK program then computes:

Past Values

U7) Vl

^ V2

n-3

MIO) X ,
n~x

Lin) k , n-3

L(12) k .
n-3

L(l) . W) + U2) ■ US) + L(3) • L(9) + L<4) • L(10) + IX5) • iXll) + 1X6) • 1X12)

The result is:

A(x -) + B(x „) + C(x J + D(x n-l n-2 n-3 n* ,) + E(x „) + F(x _) = X 1 n-2 n-3 n
(74)

X is stored in M9) and the new derivative which is computed by the Acceleration Sub¬
routine is stored in Ml2). The permute routine then rotates the coefficient by storing
ClL(3)] in M2), C[M2)]in MD, and Cl Ml)3 in M3); MM4)] in M6), ClM6)] in M5),
and ClM5)] in M4). (ClM3)] is defined to the contents of storage register 3). The two
tables now appear as:

203

0
STORE
RETURN

ADDRESS

COMPUTE* =

SELECT
PROPER

STORAGE
BRANCH

STORE
RESULT
INTO
TABLE

Figure 86. Modgurk Integration Formula Flow Diagram

Figure 87. Permute Subroutine Flow Diagram

205

Coefficients

Ul) B

1X2) C

1X3) A

1X4) E

1X5) F

1X6) D

Past Values

W V2

XX8) xn.3

LO) xn.1

iXio) in.2

Ldi) ¿n.3

1X12) xn.j

Applying the Integration Subroutine, the result is

B<V2> + + ^^n-l5 + E<in-2> + F(V3> + ^^n-l» = xn (75)

The reason the coefficients are permuted each cycle rather than the past values is the fact
that there exists twelve sets of variable past values which are integrated each cycle (six
sets to obtain velocities and six sets in the Direction Cosines Subroutine) and each one of
the twelve sets would have to be permuted each cycle.

6. 10 Direction Cosines Subroutine

The next step in the computation cycle is the generation of the Euler angles. As
previously indicated (section 5. 4. 2), direction cosines are employed to determine the an¬
gular position of the aircraft with respect to the ground. The program associated with
establishing these values is called the Direction Cosines Routine.

The program (figure 88) computes six of the nine kinematic differential equations
forthe direction cosines and performs the integration. (The equations are the result of
the projection of cross products of the rate vectors of one axes system onto another system
of orthogonal coordinates.) The nine differential equations are as follows:

lj = m^r - n^q^ (76)

*2 = mir - Vl (77)

V m3r - n3ql (78>

^1 " nlP " *lr

m2 = n2p - l2r

“3 = n3p ' V l81)

ñj = (82)

"2 = 12ql ‘ m2p (83)

n3 = l3q - m3p (84)

The program integrates I2, m2, ¿2, and Í3, m3, ¿3 (sets two and three using O33 Mod
Gurk) to obtain the direction cosines (only six equations are necessary with this method
of orthogonalizing the integrated direction cosines). However, since these integrated
values may not necessarily be orthogonal, orthogonality is obtained by using an iterative
process in conjunction with six of the twenty-one direction cosine identities. The identi¬
ties used are the following six equations: 85, 86, 90, 91, 92, and 93.

The identity 1 = Ij + m3 + n3

is used to describe the 1^, m3, and ng direction cosines of set three.

(85)

207

4*.

The identity 0 = 1213 + m2mZ + n2n3 (36)

is used to obtain one component oí set two, perpendicular to set three. The method as¬
sumes that a minimum of error exists in the other two direction cosines of set two.
Equation 66 is solved for one of the three direction cosines using that equation which has
the largest component of the set three in the denominator:

- m2m'3
(37)

for n'3 > 1'3 or m'3

V2 =
"m2m3 " 12l3

(88)

for 1'3 > m'3 or n'3

m2 =
n2n3 - (39)

for m'3 > 13 or n'g

The primes denote that the component of the direction cosine matrix has been orthogonalized
with respect to one of the identities. The program then uses the same process as in set
three using the following identity:

i 12 , 2,2
1 =12 + m2 + n2

(90)

where the equation employs one of the direction cosines found by the use of either equation
37, 88, or 89.

The orthogonalized direction cosines of sets two and three are used in equations
91, 92, ajid 93 to obtain the orthogonalized direction cosines of set one.

i'l = m'2n'3 - m'3n2

m'j = n^lg - n3 Tg

n' = l'2m'3 - l'3m'2

(91)

(92)

(93)

The process of orthogonalizing the integrated values is based on the following
derivation. The integrated direction cosines of set three are substituted in equation 85
which yields the following:

^ + m3 + n3 = 1 + e (94)

where € indicates the lack of orthogonality.

Normalizing each term of equation 94 with respect to (1 + ¢),

i2 „2
+ m3 h n3 , 1 + € _ t

1 + € 1 + € 1 + € 1 + €

where now the orthogonalized direction cosines for set three are:

(95)

208

Wv/prr

m'g = mg/v^T+T

n3 =

(96)

(97)

(98)

Another form which is more suited to digital computer programming is utilized for UDOFT
(figure 88). The derivation of this form follows. The term l/^/T + c can can be determined
with sufficient accuracy by means of the first two terms of the binomial expansion:

(99)

Let

£3 = 1 -

then

€ = 2 - 2c'

Let

e3 = 2£3

then

e = 2 - e3 <100)

Substituting equation 100 into equation 94 gives the following orthogonalizing expression
which is used in the program:

<3 = 3 - (13 + m3 + ^ (101)

The orthogonalized direction cosines in terms of c g can be derived by substituting
equations 99 and 100 into the expressions for the orthogonalized direction cosines,
equations 96, 97, and 98. The resultant equations are as follows:

1- s_!i 1 (102)
3 2 3

m' m 3
(103)

n 3
(104)

Therefore, orthogonalizing set three becomes a simple matter of using the integrated
values of I3, m3, and substituting these values into equation 101 to solve for €3; and
finally evaluating the orthogonalized direction cosines using equations 102, 103, and 104.

6. 11 Output Processing Subroutines

By evaluating the direction cosines, the flight simulation program has completely
defined the attitude of the simulated vehicle in space with respect to the earth. The re¬
maining requirement is to exhibit the end results to the person in the cockpit. This is ac¬
complished by means of instrument displays, flight control pressures, etc.- To provide
these indications the Etcetera and the Instruments Subroutines programs must be per¬
formed. Within the Etcetera Subroutine the new variables which resulted from the current
cycle of computation are computed. These quantities will be used not only for the genera¬
tion of the inputs to the instrument displays in the present cycle, but also will form a part
of the past history for the next cycle of computation. The Instruments Subroutine takes

V. = 1/2 (v +¿^±^V(u2 + v2+w2)1;2 (air)

‘n yin-D Vl) /

these values, evaluates the necessary equations defining the particular instrument, and
prepares the results for analog output instrument display .

6.11.1 Etcetera Subroutine

The Etcetera Subroutine performs
the values of the linear and angular rates computed in the curren* cy

computed are:

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(n-1)

= u (land)

sina -

cos« =

tan?/)

w

vt n

w

-V
u

Mach = _i (where a is the speed of sound)
a

_ da (sijl g^n ^Sin a^n-l (where T = 50 milliseconds)
a -

(112)

(113)

(114)

df T

= « 57. 3 tan ip

= a° » 57.3 sina (for 0° <]ot| <20°)

= a° » 58 sina (for 20° < |a| <39.9°)

where the following limits are applied to the variables.

\a\ <39.9°

0 I <15.9°

Ià I < 1. 96 rad/sec

vt < 1183 feet/sec

6.11.2 Instruments Subroutine

The Instruments Subroutine solves the equations t^t process ^
ment displays. The resuitant data is convert^ and^to^r^lufim^^

positioning servos durmg the exeeution of the ^describe the accelerometer, indicated
the Instruments Subroutine solv^s te 0f climb ground speed, gyro horizon, and

true^heading. “'deserve equations consider the peculiarities, such as non-hneamty,

of the respective instruments.

The gyro horizon and the heading indicator employ the Section cosineSiÇiirectly

as inputs. A problem is “^^^^^the ^-0 horizon and the heading indicator
this occurs, the level of one of the this problem by shifting the
servos diminishes to insipifi canee. PJjT in 0 approaches unity (ñgure 89 and
appropriate direction cosines prior to outputting as sm »

section 5. 4. 2).

210

F
ig

u
re

8
9
.

G
y
ro

 H
o

ri
z
o

n
ta

l
H

e
a
d
in

g
 F

lo
w

D

ia
g
ra

m

6.12 Decisions Subroutine

Once the program computation has been completed, the resultant solution must be
checked to establish whether any of the structural limits of the aircraft have been violated,
both in the air and on the ground. The following additional tests are f
stall warning, land/air, crash, and a determination as to whether or not the mode of com

putation has been modified.

The Decisions Subruoutine performs a series of tests and, based upon the results,
controls the states of various discrete outputs or program flags.

a.) Land/Air (figure 90)

The aircraft is on the ground when

1. H < 0, or

2. H s 0 and the lift is less than the gross weight

The aircraft is in the air when

1. H > 0, or

2. H - 0 and the lift is greater than the gross weight,

b.) Crash (figure 91)

The aircraft is crashed if, when on the ground,

1. Landing gear is not down and locked.

2. Rate of descent is greater than 10 ft/sec.

3. 0° > 0 > 13°

4. -10° > 0 > 10°

The aircraft is crashed if, when in the air,
2

1. dynamic pressure > 1663 lbs/ft

2. -3 >g's >7.33

3. v1 > 600 kts and -3 > g‘s > 6.

c.) Stall and Stall Warning (figure 92)

A stall warning will be indicated if

1. CT > 0.85

A stall condition will occur if

1. a !WR
14c

This completes the description of the computation cycle for the Wudinal
At this ooint the program returns to the Governing Control program and starts

a\ew cycle. (Actually, in the F-100A flight simulation program, the complete pro^am
considers flight systems, engine, and altitude before returning to the mi p gr ,

Governing Control.)

i».

212

Figure 90. Land/Air Decisions Flow Diagram

213

:

214

ENTER ï CDAl

?

•:

Figure 92. Stall and Stall Warning Decisions Flow Diagram

SECTION VII

TECHNIQUES FOR ESTABLISHING THE PERFORMANCE
OF THE SIMULATED F-100A

Í

i

Many problems, the more significant of which have been discussed in preceding
sections, were encountered during the development of both the UDOFT computer and the
aircraft simulation programs employed to determine the feasibility of digital flight simu¬
lation. Once the computer and the programs had been dealt with, the problems did not
cease, for the success of the UDOFT project depended upon the ability of the integrated
system to perform as a flight simulator. The final proof of the feasibility of this new
approach to simulation therefore could not be established until the performance and the
flying qualities of the simulated aircraft had been exhaustively tested.

Techniques used in the testing of analog flight simulators were not directly
applicable to the digital counterpart; there were no servo shafts that could be locked or
manually positioned. Special controls and computer programs had therefore to be
established. The following discussion illustrates the specialized testing facilities that
were incorporated into the UDOFT and the F-100A simulation program.

7. 1 Special Test Controls

In order to force the simulation program into certain prescribed operating flight
conditions, or to lock the program at certain current conditions, a number of specialized
control functions were introduced into the aircraft simulation program. These control
functions were designed primarily to facilitate testing and not essentially as aids to train¬
ing. The following were established prior to, and were used during, the acceptance test¬
ing of the F-100A model:

Control Function Discrete Input

02LWT
30LWT
42LWT
43LWT
44LWT
47LWT
50LWT
73LWT
76LWT
77LWT

Zero
Freeze
Altitude Increase
Altitude Decrease
Autopilot
Altitude Lock
Roll Angle Lock
No Fuel Depletion
True Airspeed Lock
Center of Gravity Lock

The following sections contain brief descriptions of these controls. Where inadequacies
have been noticed during the time elapsed since acceptance testing, modifications have
been made to the control functions and are noted.

7.1.1 Zero; 02LWT

Once a crash condition has occurred, a method of initializing the variables and
the instruments to their ground values must be available. Also, during a simulated
flight, the Zero Control will land the aircraft and force all variables to their ground
values.

Initializing the variables is accomplished by forcing the equations of motion and
position to their original on-the-ground values. Zeroing these equations is performed by
introducing negative rates into the integration tables of the past values of the derivative
terms for the calculations of the linear and the angular rates and the direction cosines.
Typically, the angular rates are zeroed as a result of making

Í

i

(115)

(116)

(117)

216

This substitution process occurs in the course of each successive integration cycle, main¬
tained as long as the Zero Control is actuated The result of the integrations performed
with these parameters returns the equations of motion exponentially to the ZERO state at
a rate determined by the time constant of the intergration formula Zeroing the equations
in this manner does not necessarily force all parameters identically to zero, this m due to
both the fixed scaling of the quantities used in the integration formula and the fact that the
integration formula can regress to ground level conditions for values of certain variables

other than zero.

Since this can occur, an additional routine was inserted in the Zero program to
make all pertinent parameters identically zero. The procedure involves examining Mach
and altitude to determine if both are within prescribed minimum values; when they are,
zeros are inserted into the registers storing the pertinent parameters.

Exceptions to the zeroing process are the altitude and power plant computations.
Altitude is slewed to zero at a rate determined by the dynamic characteristics of the Analog
Altitude Indicator System. For the F-100A altimeter, the maximum slew rate is 25 feet
per iteration cycle (500 feet per second). The power plant equations are in no way affected
when the simulation program is under the influence of Zero Control.

In addition to its normal use of returning the simulated aircraft to the ground
condition the Zero Control may be used to relinquish a crash condition without returning
the aircraft to the ground. This is possible because the time required to achieve the zero
state varies for the different linear and angular rates as a function of the maximum scaling
of these quantities. Thus it is possible, if flight speed is safely above stall, to clear a
crash condition by momentarily actuating the Zero Control.

7. 1.2 Freeze; 30 LWT

The Freeze Control in the digital simulation program serves the same purpose as
the Problem Freeze Control in the analog flight simulators. It serves to suspend the
progress of the simulated flight and to maintain the currently computed conditions Entry
into a Freeze condition may be automatic or manual. Automatic Freeze occurs when a
crash condition exists; Manual Freeze is exercised by the instructor.

In the case of testing the simulation program on the UDOFT computer. Manual
Freeze is used extensively. Under this condition, the computation can be halted, allow¬
ing stored test datatobe retrieved automatically from the computer memory by print-out,
or manually by means of the computer console controls and indicators. Removal of the
Freeze condition will cause the resumption of computation, commencing at the point
where the Freeze condition had been injected.

The simplest method for freezing the computations would be to halt the computer,
but this cannot be done in UDOFT without seriously affecting the cockpit instrument read¬
ings This peculiar circumstance arises from the tendency of the analog output voltages
to drift rapidly with time if not updated periodically. Therefore, it seems, only those
instructions which serve to maintain the analog outputs would have to be executed. Initia y,
however, this approach to implementing the Freeze mode in the F- 100A simulation pro¬
gram was not taken. The technique used was to by-pass the routines for Aerodynamic
Coefficients, Total Moments and Forces (stability and airplane axes). Direction Cosines,
Mach Number, Dynamic Pressure, Altitude, Mass of Fuel, and Center of Gravity, and to
set the six angular and translational accelerations equal to zero. The velocity vectors
computed as usual, remained constant since the second derivatives had been set equal to
zero. Later, this approach was deemed needlessly complex; it was replaced by a very
simple modification to the Governing Control routine which causes only the Function
Generator routine, which contains the analog output multiplexing instructions, to be
executed.

One precaution must be observed, however, when preparing to extract test data
from the computer. In order to maintain system status quo while the program is halted,
the instrument positioning servos must be deactivated before halting the program.

7.1.3 Altitude Increase/Decrease; 42LWT/43LWT

The Altitude Increase and Decrease Controls permit manual modification of air¬
craft altitude while the simulation program is being executed. When either discrete input

217

is actuated, a maximum slew rate of 25 feet per cycle (500 feet per second) is introduced
into the altitude program. The altitude will continue to change so long as the control is
ON.

Aside from the use made of this control by an instructor, it serves as an aid to
testing. Since most of the acceptance tests were performed from the cockpit, the altitude
change controls provided a rapid means for altering test altitudes without the need of
simulating flight to the new test altitude.

This facility has been used infrequently of late, due to the availability of a superior
technique for attaining desired altitudes (see 7. 1. 5, Altitude Lock).

7. 1.4 Autopilot; 44LWT

The term autopilot is a misnomer; its application to the F-100A simulation program
belies its name. The F-100A autopilot is merely an aid to establishing flight equilibrium
conditions in the longitudinal equations; it is not capable of automatically forcing the longi¬
tudinal equations to equilibrium.

The problem encountered in attaining longitudinal equilibrium revolves about the
longitudinal stability of the aircraft. Any attempt to change readily from one altitude to
another, or from one airspeed to another, is balked by the short-term oscillations that
result from disrupting longitudinal equilibrium. The autopilot function overcomes this
objectionable response by increasing longitudinal damping, due to pitch rate fCm X qA,

\ ql /
to such an extent that the aircraft becomes extremely stable in terms of longitude.

The damping is increased by artifically stepping up the value of pitch rate, qj , as
a function of the difference between the instantaneous rate of climb and the desired rate of
climb. Thus the succeeding computation of pitch moment. My, exhibits increased damp¬
ing due to the large qj term. This aids in damping the short-term oscillation, but, be¬
cause the artificial damping diminishes as the desired rate of climb is approached, pilot¬
ing skill is still required to damp out the long-term oscillation (phugoid).

The autopilot function was used extensively to minimize the set time for achieving
a steady-state straight and level flight or a specific climb condition. For straight and
level flight, the desired rate of climb is set equal to zero; for specific climb conditions,
the desired rate of climb is set according to the following table.

Rate of Climb Octal Representation
Feet per Minute Feet per Second, Scaled B12

-1000
- 500

0
+ 500
+1000
+2000
+5000
+7000

+10,000
+15, 000

-0020524
-0010252
0000000
0010252
0020524
0041252
0123252
0164524
0246524
0371776

Once the octal representation of the desired rate of climb has been entered into the com¬
puter and the autopilot control function has been enabled, equilibrium is obtained by flying
the simulator in the conventional manner and allowing the longitudinal equations to stabi¬
lize. One precaution must be observed, because if the difference between the actual and
the desired rates of climb is too great when the autopilot input is actuated, the artificial
damping term may assume the proportions of a forcing function, thereby causing excessive
11G" loading which may result in a crash condition.

Since a true autopilot function is invaluable to the rapid creating of requisite
conditions for nearly all flight testing, and because the original F-100A autopilot was
lacking in so many respects, a more satisfactory automatic means for establishing
steady-state straight and level flight equilibrium has been developed. (See Section 7.5. 1,
SSLFE Program.)

I*.

218

7.1.5 Altitude Lock; 47LWT

The purpose of the Altitude Lock Control is to maintain altitude consent at the
value which existed when the control was actuated. Since altitude is obtained from simple
expression

kPn’ hpn-l +At(R/Cn)
(118)

it is necessary only for the altitude routine to omit the incremental change in altitude due
to the average rate of climb.

When this lock is used in conjunction with the Altitude Increase/Decrease Conta101,
the altitude can be slewed to any desired quantity and locked. The term At(R/Cn) is re¬
placed bv ±25 feet. Since the Altitude Lock function precedes the Altitude Change function
in the program, the Lock must be disabled in order to change aircraft altitude.

Achieving a particular altitude accurately by following this procedure i elf lres
considerable manual dexterity. Also, since altitude is incremented by 25 ifet per computa¬
tion cycle, the actual altitude may be in error by as much as ±25.feeJ ev®"1f ^e ^tl^e
Increase/Decrease switch is deactivated immediately upon reaching the desired altitude.
In light of the improvements being made to the other special test control functions, it was
decided to automate the achievemlnt of a particular altitude. It then ^omf necessary
only to read into the computer the desired altitude, and to enable the Altitude Lock Con
trol The altitude will be incremented (or decremented) at the rate of 25 feet per cycle
(500 feet per second) until the actual altitude is within 25 feet of the desired altitude at
which time the required adjustment will be made to bring the aircraft to the altitude e
sired. If the Altitude Lock Control is used strictly for locking at its current
value it is necessary only to read 25 feet into the register to which desired altitude is
assigned. When the Altitude Lock program examines desired altitude and finds it at 25
feet, it will lock altitude at the current value.

7.1.6 Roll Angle Lock; 50LWT

The Roll Angle Lock function forces the aircraft to assume a constant zero-degree
roll angle This Lock is used frequently to zero-out the lateral equations thereby reduc-
ing the nunVoer of degrees of freedom and permitting the longitudinal equations to be
stabilized more readily for a straight and level flight condition.

When the Roll Angle Lock Control is actuated, the direction cosine ~m3, i.e. -cos
9 sin i(i, is substituted info the integration table of past values for p and p for e^ succeed-
ing cycle of computation. The result is that the roll angle, ¢, is forced to zero degrees.

Because the Roll Angle Lock function has no effect on turn rate,
from the cockpit is often required to zero-out yaw angle in “ Ar^Ie L^ck
«itrflight and level flight condition. As a result of this inadequacy, the Roll Angle lock
function has been augmented with a Yaw Angle Lock function which is effected by f rodu^
ing the negative of theturn rates, r, into the integration table of past values of the turning
acceleration term, r, for each succeeding cycle of computation.

7.1.7 No Fuel Depletion; 73LWT

The purpose of the No Fuel Depletion function is to maintain the constant ““S of the
aircraft and consequently its moments of inertia. Since the only significant quantities that
makeup the mass of the aircraft are the mass of the empty aircraft and the mass of fuel
obviously preventing any change in the mass of fuel willkeepthe gross massofthe^amc^
constant When the No Fuel Depletion function is activated, the fuel flow CWf) calculations
are performed as usual; however, the effect of fuel flow on fuel quantity (¾) is ignored.

By means of the instructor inputs. Main Tank Refuel, 35LWT, ^ Main Tank Dump,
opi WT fuel mav be added to or depleted from the aircraft, thereby providing a manual
Ss for^Ühlng aircraft gross weight. The following data i* included ^ illustrate
the extent to which fuel quantity may be used to adjust the weight of the aire af .

219

r ■

Aircraft, Empty

Maximum Fuel, Main Tanks

Drop Tanks, Empty

Maximum Fuel, Drop Tanks

Mass (slugs)

591

153

12.4

111

Weight (pounds)

19, 030

4,927

393

3, 574
IVlctAiiiium -^ 1 i.’ r1 n-

Once the appropriate weight has been Ator AiÏ’techrliÏÏ had°been
° ol will freeze the aircraft weight or that ^^ be tQ read directly into

*‘""R ”18M “
for the particular test.

7.1.8 True Airspeed Lock; 76LWT

The purpose of the True Airspeed Lock function vllue.^The imple-
changing; it is used whenever airspeed 1 h t { ny other locking functions,

S“““ 2 ÂíínSÍrs Ä SÄ.

.hi. function I». be«» .“„I', “sSLFE Proscm.
is described more completely m becuon

7 1 9 Center of Gravity Lock; 77LWT

The purpose of the Cent., of "lift 11^2) f^Wheiftte^ortrol is

Manual control of the position of this centee qu^ center of gravity is established^ This

“repeat th: Ä«! w^tkin the

TO —c .«-«p .r;h^«ÄC»\Ä'S0Ä' SÄr1

2S‘ÄS'ÄS, ÄS - - -» »■*- ““
F-IOOA program for fixing this position.

Center of Gravity

29% MAC

30% MAC

32% MAC

34% MAC

35% MAC

Octal Representation in jeetjcaledjQ

5340000

4417300

2560100

0720300

ooooooo
3 57o MAL.

w,i ,,.„iB 0,0 h, ... independently of ». » op-« » — ** — —*

gross weight.

220

7,2 Accumulation and Extraction of Test Data

Since performance testing of an aircraft flight simulator involves performing static
tests, (the test results being indicated by parameter-values when the system has stabilized)
the accumulation of test data in a digital flight simulator system is a trivial problem. The
values of nearly all computed parameters are stored in memory immediately after their
calculation. Therefore, if a significant parameter has been computed and stored, there
is no data accumulation problem; the data is merely extracted and presented to an observer
in readily understandable form. Extracting the data is performed by a very simple com¬
puter program; the form of output is hard copy from the output printer.

On the other hand, testing the flying qualities of the simulated aircraft requires
data to be accumulated as a function of time, in many cases over a considerable period of
time. Since the computer is constantly updating all variable parameters at a rate of twenty
times a second, capacious data storage would be required to accept all data computed dur ¬
ing the interval between initiation and completion of the particular dynamic test. The
UDOFT computer is not endowed with unlimited data storage; therefore, another means for
storing time-variant data is needed. This is readily taken care of by using the unused ana¬
log output channels. By inserting only two instructions into the program, the recorded
behavior of a parameter can be extracted by means of an analog output. Ultimate storage
of the data is accomplished by a strip recorder accepting the analog output.

7.2.1 Output Printer

This means of data extraction generates a permanent record of computed quantities
in numerical form. The chief advantage of this method is that the data is presented in its
most accurate form, i. e. that form in which it was used within the simulation program.
The method has the disadvantage that the data cannot be extracted in real-time; therefore,
due to the limited computer storage available for test results, only a limited amount of
data can be extracted.

A simple printout program extracts data from the computer memories. In reality
the program does not effect printout, but merely calls-out data from the number memory
so that it can be acquired by the output printer control mechanism. The program consists
of a sequence of Clear and Add (CLÃ) instructions which address the number registers
storing the desired quantities.

An unlimited variety of such programs can be established; however, a most useful
program calls out the following parameters:

Quantity

Instantaneous Mass

True Airspeed

Thrust

Percent Thrust

Pressure Altitude

Fuel Flow

Fuel Flow Afterburner

Engine Speed

Tailpipe Temperature

Dynamic Pressure

Mach Number

Force Along X-Stability Axis

Rate of Climb

Distance to Center of Gravity

Angle of Attack

Stabilizer Angle of Attack

Sin 6

Symbol Units Scaling

MI slugs B17

VTK knots B12

T pounds B18

FN percent B9

HP feet B18

WF lbs./hr. B15

WFP lbs. /hr. B18

RPM percent B9

TPT degrees C B12

Q lbs./ft2 B12

MACH - B3

XS pounds B21

RC feet/min B12

D feet BO

ALP degrees B6

AHR degrees B6

L3 - B1

221

k

Th, d.U extraction pro*,.», Su'S'Ä'
a table, performing appropriate shifts ^0^ the ac ^ g 0 . .everEire oí the

The print-out procedure is as follows:

1. Halt the computer.

2. Set the Sequence Counter to 7532 (first instruction of call-out program).

3. Set Mode Control switches for Continuous Print Mode.

4. Depress Start Switch.

The output printer will print out (using the long form) the data as

(IMAD) (OTNMAD)

7532 346335

7533 346336

7534 346337

(NMAD) (SANUMBER)

6335 1273600

6336 0776006

6337 015457 0

typified by the following:

(ACCUMULATOR)

1273600

0776006

0154570

7535

7536

7537

7540

7541

7 542

7 543

7544

7545

7546

7547

7550

7551

346340

346341

346342

346343

346344

346345

346346

346347

343263

344714

340043

341640

341661

6349

6341

6342

6343

6344

6345

6346

6347

2363

4714

0043

1640

1661

1440000

0005632

1720660

0000000

1445242

1012426

1543610

0612664

-0011000

-0001004

-2234572

0173600

-0067000

144000Ü

0005632

1720660

0000000

1445242

1012426

1543610

0612664

-0011000

-0001004

-2234572

0173600

-0067000

7 552 340062 0062 0062240 -0062240

The data presented in the example was take“ e^rel
7-100A performance testing to establish the tti (Military) and altitudes above

a function of true airspeed, for to convert the

iato^to^ecimal form for tiie ^)urpose°of data plotting. ¿^scade^actors^f the

reason an octal-to decimal convers p 6 ^ result of the conversion was a very neat

StC^hfuDÄul q™tgy. the UDOFT scale factor, the decimal equivalent, and

the symbolic representation of the parameter.

222

The following demonstrates such a conversion using the same data as that presented
in the preceding example:

Scale Decimal
Qctal Factor Equivalent Parameter

1273600

776006

154570

1440000

5632

1720660

1445242

1012426

1543610

612664

-11000

-1004

-2234572

126300

-67000

62240

17

12

18

9

18

15

18

9

12

12

3

21

12

6

6

1

22392.00000000

510.01171875

6959.00000000

100.00000000

371.25000000

7814.75000000

0.00000000

100.66455078

522.54296875

867.76562500

0.77119445

-4608.00000000

-1.00781250

-0.28826618

1.47460937

-0.85937500

0. 02456664

MI

VTK

T

FN

HP

WF

WFP

RPM

TPT

Q

MA

XS

RC

D

ALP

AHR

L3

7.2.2 Analog Outputs

The analog output method of data extraction provides a permanent record of time-
varying quantities in graphical form. This method is used primarily for time-history
recordings, and indicates excellently the behavior of various parameters with respect to
each other as a function of real-time. It has the advantage that data can be extracted while
the simulation program is being performed. The computer need not be halted; needless to
say, were the computer halted, no time-varying quantities would be available. The dis¬
advantage, however, is that the recorded data is presented with decreased accuracy, as
compared with the accuracy of the data obtained via the output printer. This is especially
true for those cases where the parameters of interest have a large dynamic range and it
is important to distinguish small changes.

To activate a particular analog output channel, a simple three instruction program
is needed. The first instruction is a CLA instruction, to extract the current value of the
parameter from number memory and introduce it into the Accumulator. The second
instruction gates it into the Transfer Register. The third instruction, an MLXO instruc¬
tion, moves the quantity in the Transfer Register to the analog output channel specified
in the number memory address field of the MLXO instruction. If scale changes are
desired, the appropriate shift instruction is inserted between the CLA and the following
instruction. Due to the limitations of the analog output system, another MLXO instruction
must not follow within 133 microseconds and the analog output channel must be updated at
least once during every 50-millisecond interval.

7. 3 Supplementary Test Programs

Special programs were generated to facilitate setting-up various flight tests and for
correlating data. They were not significant in themselves; however, considering the
variety and the quantity of programs that had been prepared, there is very little that can¬
not be done with the digital simulator to expedite the testing phase. Typical programs are:

a.) A program to actuate console discrete output indicators when certain pre-
established flight conditions have been satisfied

b.) A program for converting data in UDOFT octal notation to BCD (binary coded
decimal)

c.) A program to examine the dynamic behavior of selected parameters and to
store their minimum and maximum values for printout after test; used as backup to the
time-history recordings in an attempt to improve the accuracy to which the recordings
may be read

The pressures of UDOFT acceptance testing did not allow further pursuit of this
promising area of automatic aids to testing. Many supplementary programs were prepared
after the completion of acceptance testing. Experimentation with the F-100A program,
after formal completion of the project, has provided the impetus for consolidating the
many minor test programs into complete testing packages applicable to the performance of
a broad spectrum of acceptance tests. The steady-state straight and level flight equilibrium
program (SSLFE) is a result of such consolidation.

7. 4 Procedure for Performance Testing

In order to demonstrate the use of the discrete inputs in establishing test conditions,
a typical test procedure will be reviewed. The test selected for this example covers
Thrust Available and Required Vs. True Airspeed.

This test, one of the basic performance tests, provides a graphic indication of the
thrust available at specific power settings and also the minimum thrust required to main¬
tain a steady, straight and level flight for various true airspeeds. The test is conducted
for several altitudes and configurations.

There are a number of reasons why this test is performed. For performance, it
indicates the thrust available for climb and acceleration purposes, and the minimum thrust
required to sustain level flight. To the simulator developer it indicates the degree of
success with which the basic drag and lift of the aircraft have been simulated and, of .
equal importance, the accuracy with which engine performance for specific power settings
has been simulated. Good results from this test aid in diagnosing problems that may arise
in achieving acceptable climb and time-to-accelerate performance.

The nature of this test allows the accumulation of additional test data pertinent to
other longitudinal tests. Tests such as Static Longitudinal Stability and Speed-Power may
be performed concurrently with the Thrust Required section of the test. In general, a
number of engine parameters such as fuel flow, tailpipe temperature (exhaust gas
temperature), and pressure ratio can be obtained concurrently from the Thrust Available
section.

7. 4.1 Test Requirements

The following relates the conditions for which this test was performed on the

F-100A model.

7. 4. 1. 1 Thrust Available Vs. True Airspeed

Tests were conducted to determine the thrust available as a function of true air
speed for the power settings and altitudes given on the following page:

l*.

224

Power Setting

Afterburner (augmented thrust)

Military-

Normal

Idle

Altitude

Sea Level

15, 000 feet

25, 000 feet

35, 000 feet

45, 000 feet

55, 000 feet
j

7. 4.1. 2 Thrust Required Vs. True Airspeed

Under steady, straight and level flight conditions, tests were conducted to deter¬
mine the minimum thrust required to maintain these conditions as a function °i true air¬
speed for the gross weights, center of gravity positions, configurations, and altitudes
listed below:

Clean Configuration No. 1 (drop tanks off)

Gross weight: 24, 000 lbs

Altitude : Sealevel; 15,000, 25,000, 35,000, 45,000
and 55, 000 feet

Clean Configuration No. 2 (drop tanks on) ,

Gross weight: 24, 000 lbs

Altitude : Sealevel; 15,000, 25, 000, 35,000, 45,000
and 55, 000 feet

• - i

Clean Configuration No. 3 (drop tanks off) i

Gross weight: 20, 000 lbs

Altitude : Sea level and 35, 000 feet

Clean Configuration No. 4 (drop tanks on)

Gross weight: 28, 000 lbs

Altitude : Sea level and 35, 000 feet

Landing Configuration

Gross weight : 28, 000 lbs

Altitude : Sea level

Configurations: Gear down, speed brakes open, drag chute
deployed

225

Geai down, speed brakes open

Gear down

Speed brakes open

Clean

7 4 2 Procedure for Conducting Thrust Available Tests

lo«.,», «« F-1« program *o »mp»,« «d computer opera«.»,
the procedure for conducting the tests was as follows:

a,) Actuate Boll Angle Lock control.

b.) Perform a normal engine start, and accelerate the engine to Military power

plus afterburner.

c.) Accelerate to takeoff speed.

d.) When the simulator is airborne, actuate Altitude Ix>ck control.

e.) Retract landing gear.

data point; pí^S Ä
airspeed.

g.) Clear the Freeze condition and Fly Simulator to maximum speed; may reqmre

placing simulator in a dive attitude.

Output Printer.

i.) Read in value of next desired airspeed.

, C1.» 1h. Freeze co»dl«on „d decre». «repeed ,o ,h. »er. de.lr«, ,«»• »Y
placing simulator in a sUght climb attitude.

k.) Repeat steps h, i, and j for all airspeeds.

1.) When tests for this power setting are complete, reduce power setting to
Military power and repeat steps f through k.

m.) When tests for this power setting are complete, reduce power setting to Norm

and repeat steps f through k.
, When tests for this power setting are complete, reduce power setting to Idle

power and repeat steps f through k.

o., W».»..... .or .1«. pmeer .«mg comp.,.., for «. ««.»de

also complete.

to Military power plus afterburner.

q.) Repeat steps f through p for all altitudes.

At the completion of the tests, the accurnulated data is converted to decimal form
and plotted on the appropriate acceptance test data sheets.

226

7 4 3 Test Procedure for Conducting Thrust Required Tests

tions of the simulated aircraft be str et y . f stabilizing the longitudinal equations;
are very time-consuming due to f e ¿°T^f£™fcUmh and longitudinal

Sngm'ment Car°e borh equq¿ torero. To establish these exact equilibrim conditxons

from the simulated cockpit even with the aid of t^specid^ P“ablished

2
Ù = 0 ± 0.0625 ft/sec

R/C = 0 ± 1 ft/sec

q1 = 0 ± 0.000732 rad/sec

the simulator until straight and \ehvel^eXmed by the same print-out program

“Â-ÍHheá" C0nVer8f0n' teSt data ^ plotted on the same Thrust Available and Required data sheets.

An indication oi ito an « ol th. ODOW »»ola«»« “'“““X'".““

íUSÃalSaííÍSls SÏ4) for altitudes of IS, ¿00 »d 25.000 fe*. raapeofi.e!,.

7.5 Dynamic Testing of the UDOFT F-100A Simulation Model

” Static or performance testing of
some than dynamic testing. Dynamic testing in possible problem areas. Many
of the aircraft, thereby of Pthe aircraft even with
neríect moíSlíig;* however, erroneous ^suHsrnay^iccrue from i^roperoexec^on^^^e^

of tests as mechanical as the performance tests.

^d“'

7, 5.1 Steady-State Straight and I^vel FUght Equilibrium (SSLFE) Program

To minimize the time and effort squired for estabUsM^ ^ns
and level flight equilibrium a program ^ ^ ? ssary not only for eliminating the
to a SSLFE condition. Such a progr^ appeared ne ry, ^ |or rapidiy and ac-
tedious process of establishing require i nuroose of displaying the ability to
curately reestablishing the same condition ,. P? s burden of establishing a
repeat test results. Further this program^eatlystatic longitudinal

Sr« °A^g^McIndication “the large number of data points that can be obtained

readily is presented in figure 95.

Bringing .5, locnj !» ^ïSd“" ÄUcd
The lateral directional equations must first be zeroed, men eq
in the longitudinal plane at the proper airspeed.

227

A
P

P
R

O
V

E
D

D
A

T
A

o

(sfli oooi) d 'isnani

UJ
Q¿
O

B£
X

0

O
Z
<
ec
LU

N
_J

(O

$
to

Û
O

5^
u

£
<
u_
O
UJ
-J

o z
<
o
z

Û
5
s

230

Since the aircraft is symmetrical about the vertical plane passing through the
longitudinal axis, i. e., the plane defined by theX and the Z body axes, it is necessary
only to zero the accelerations p, v, and r in order to establish lateral-directional
equilibrium. However, it is possible that the aircraft will stabilize in some nonzero
orientation; that is, roll angle and yaw angle will not necessarily be zero. Therefore,
it is necessary to zero the flight control positions da and ór.

Static equilibrium in the lateral-directional planes is achieved by ignoring the
calculated accelerations p, v, and r, and by substituting for them, in the integration table
of past values, the negative of the associated rates:

(119)

(120)

(121)

The system of lateral-directional equations will therefore return exponentially to zero, at
the rate determined by the inherent time constant of the numerical integration formula.
As mentioned previously in section 7.1, Special Test Controls, the rates may not be forced
identically to zero. Since it is desirable to have them identically zero, the program in¬
cludes a brief routine that makes the rates and the accelerations identically zero when
they have approached zero to within some predetermined tolerance. When equilibrium is
achieved for the lateral-directional equations, it is maintained by setting both <5a and ôr
equal to zero. If a lateral-directional test is to be initiated from the SSLFE condition,
5a and ôr must be reactivated because aileron and rudder flight controls in the simulator
cockpit have been made ineffective.

The next step is the establishment of equilibrium in the longitudinal plane, which
requires that the desired rate of climb be specified to the SSLFE program. In addition,
to allow the program to achieve an approximate rather than an exact equilibrium condition,
tolerance must be specified for qj, R/C, and ú (see section 7. 4, Procedure for Performance
Testing).

7. 5.1. 1 Description of the SSLFE Program

Control of the simulated aircraft by the SSLFE program is effected by three
Discrete Input switches; one for zeroing the lateral-directional equations, one for zeroing
the longitudinal equations, and one for establishing the required airspeed. The SSLFE
program is not entered during the normal simulation program computation cycle unless the
Discrete Input switch which controls lateral-directional equilibrium is actuated. Exceptions
to this are the integration tables of past values for stabilizer and throttle position which are
maintained, though not used, during the normal program cycle. The reason for this will
become apparent later in this discussion. Upon actuation of the lateral-directional equili¬
brium control, the associated equations are zeroed. When the lateral-directional equations
are identically zero, the longitudinal equilibrium control may be actuated. The longitudinal
equations are forced to zero by controlling the stabilizer as follows:

(122)

where

33

and

S âH " aH . n n-1

231

The only restriction imposed upon the use of this approach is that the simulator must be m
I condmon of longitudinal equilibrium; i. e., the rate of climb must be constant. Tins
restriction is necessary in order that the rate damping term.

-¾ lo
U33

k4(mh).

fion of ¿y toe constant for achieving steady-state straight and level fhght equilibrium.

When the longitudinal equilibrium control is in the deactivated state, the past values
for ¿h ancl appearing in the tables for the integration

6„ and l

' O33 ')(

k4(aóh)
'33

are made identically zero. However, the current values of stabilizer position, «H , are
stored in the table of past values for the integration

f o 'H
33

so that there will be no discontinuity in stabilizer position when the longitudinal equilibrium
control isactuated. When the control is actuated, the stabilizer commands from the cock
pit are ignored and stabilizer control is effected completely by these equations.

Once longitudinal equilibrium has been achieved, the required airspeed control
may be a"“'^ Acceleration to the proper airspeed is accomplished in a manner similar
to that used for achieving level flight except that thrust, T, is integrated:

(123)

33

where

K(Man - MaD) - K3 (k4(at)

33

and

(AT) = Tn - T^

of computed thrust are retained in the table of past values for the intégrât.

Î.
'33

craft.

232

The remainder of the SSLFE program provides a means for monitoring, from the
computer console, the progress of the SSLFE program. Two console Discrete Output
indicator lights are associated with each of the four parameters, qj, R/C, Ma and Ma.
One light indicates that the value of the particular parameter is greater than the required
value; the other light indicates that it is less than that value. When the value of a partic¬
ular parameter reaches the required value, within the specified tolerance, both indicator
lights are turned on.

The monitoring function of these indicators is important to the attainment of initial
conditions for a number of acceptance tests. Since the SSLFE program is as yet not com¬
pletely automatic, the Discrete Output lights indicate that a required condition has been
achieved and that the next step of the process may commence. Because the lateral-
directional equations are zeroed rapidly, no indication is required; therefore the longitudi¬
nal equilibrium control may be actuated immediately after the lateral-directional equilib¬
rium control. The required airspeed control may not be actuated until satisfactory
longitudinal equilibrium is signaled by the indicators for q, and R/C. Achievement of
the required airspeed is displayed by the indicator for Ma; the Ma indicator shows that
the airspeed is constant. Thus, if both the Ma and Ma pairs of indicators are turned on,
then airspeed has stabilized at the required value. At this point the initial conditions
have been established and the test may now be commenced.

If a particular altitude is also to be established, entry of the SSLFE program is
deferred until the simulated aircraft has been taken to the desired altitude by means of
the modified Altitude Lock Control. (See section 7.1.5, Altitude Lock.)

7. 5. 2 Dynamic Response Testing

To demonstrate the dynamic response of a flight simulator to a sudden change in
the flight controls requires that the related parameters be available for recording as a
function of time. In the UDOFT scheme, the recording of the transient responses of
these parameters is accomplished by means of Analog Output channels which provide
voltage signals for recording (refer to section 7.2,2, Analog Outputs). To aid in the
recording of dynamic test data, the Main Test Pattern (MTP) program was devised.

The SSLFE program, together with the MTP program, enables all dynamic tests
to be conducted semi-automatically from the computer console. The SSLFE program
establishes the required initial conditions and the MTP program introduces the forcing
function into the simulation program and causes the response to be recorded. Automation
of the process of dynamic testing could have been extended to include analysis of the
results. Automatic determination of the period and the time to damp to half-amplitude
of the resultant oscillation would require a program that performs the calculation indicated
in Section VI, Direct Determination of Damping and Natural Frequency from Time Re¬
sponses, of Technical Report NAVTRADEVCEN 318-1, Dynamic Test Program for Weapon
System Trainers. However appealing this may be, it has not been and probably will not
be done.

7. 5. 2. 1 Main Test Pattern (MTP) Program

The purpose of the MTP program is to aid in the calibration of the recording
equipment, to initiate the dynamic tests, and to output the transient behavior of selected
parameters to the recording equipment.

Calibration of the recording equipment is aided by the program generation of a
square wave pattern of diminishing amplitude immediately preceding the initiation of the
dynamic test and again immediately following the completion of the test (figure 96). The
recorded pattern also gives scale significance to the transient response data recorded sub¬
sequently. The grid is formed by drawing lines which connect like cycles of the patterns
that are recorded before and after the test is conducted; this implements reading the
transient response data directly from the recording. The grid lines also provide some in¬
dication of the short-term drift of the Analog Output channels and the recorder amplifiers,
and the linearity of the recording mechanism.

The MTP program (see flow chart, figure 97, and diagram, figure 98) is fairly
simple and straightforward. Entry into the program is made at the beginning of each
50 millisecond iteration cycle. If both the pattern flag (program controlled) and the test
Discrete Input are positive, the program is short circuited and entry into the main simula¬
tion program is made immediately. If, however, the test Discrete Input is negative (test
Discrete Input has been activated), the program commences immediately to computer the
amplitudes of the pattern for each channel.

233

234

a

F
ig

u
re

9

6
.

M
a
in
 T

e
s
t

P
a
tt

e
rn

R

e
c
o
rd

in
g

F
ig

u
re

9

7
.

M
a
in

T

e
s
t

P
a
tt

e
rn

P

ro
g
ra

m

F

lo
w

D

ia
g

ra
m

i

i

i

236

F
ig

u
re

9

8
.

M
a
in

 T
e
s
t

P
a
tt

e
rn

P

ro
g
ra

m

F
lo

w

D

ia
g
ra

m

I
The pattern constants (amplitudes) are derived from the knowledge of the anticipated

steady-state and maximum values of the parameters to be recorded. Numerical data des¬
cribing the mid-range value and the maximum value of each parameter to be recorded is
inserted into the computer prior to the execution of the test. The value of the parameter is
essentially its steady-state value. In many cases, particularly those cases involving
lateral-directional tests, the steady-state values of the pertinent parameters are zero;
thus the mid-range value of the parameter, for pattern generation purposes, is specified
as zero. For those cases where the steady-state values deviate only slightly from zero,
the mid-range value is still specified to be zero. The program compares the specified mid
range and maximum values for each parameter to obtain the anticipated dynamic range of
the parameter, which is designated A. From this, the program computes and stores sequ¬
entially for each output channel the following fourteen pattern data points: mid-range, mid¬
range, mid-range + A, mid-range - A, mid-range + 0. 8A, mid-range - 0. 8A, mid-range + 0.6A,
mid-range - 0.6A, mid-range + 0.4A, mid-range - 0.4A, mid-range + 0.2A, mid-range - 0. 2A,
mid-range, and mid-range. Each of these points is passed to the recorder for a period of
one-half second. Upon completion of the first pattern, program control is returned via
the main program to the beginning of the MTP program. For a period of one second, the
steady-state values of the selected parameters are passed to the recorder, followed im¬
mediately by the actual test. During the test, the'behavior of the selected parameters is
passed to the recorder, and also examined by the maximum routine, which extracts and
stores the maximum and minimum values of each selected parameter. This numerical data
and the values of the parameters at the end of the test are subsequently extracted and printed
out by the output printer. This additional data provides another quantitative means of cali¬
brating or verifying the scaling of the recorded parameters.

The test is terminated manually by means of the test Discrete Input switch. Im¬
mediately thereafter the second test pattern is recorded, at the completion of which the
simulation problem is forced into a crash condition in order to freeze the program.

Once the data for the MTP program has been generated, the execution of the test
problem is relatively simple. The procedure followed for a short-term longitudinal
stability test is briefly:

a. Initialize simulator to required altitude, airspeed, and rate-of-climb using
Altitude Lock control and Steady-State Straight and Level Flight Equilibrium control.

b. Freeze the simulator.

c. Read in Main Test Pattern program along with parameter selection and scaling
information, pattern constant data storage locations for steady-state and test values of the
selected parameters and the test program.

d. Printout initial steady-state values.

e. Return simulator to normal mode, -

f. Start recorder and align channels.

g. When recorder is aligned and gain controls are set, activate test Discrete Input.

h. When recording indicates that the steady-state conditions have been regained
(test complete) disable the test Discrete Input.

i. Wait for recording of final test pattern; disable recorder paper feed mechanism.

j. Printout maximum, minimum, and final steady-state values.

k. In order to conduct another test at a different altitude or airspeed return to
Step a; Step c may be omitted if some scaling information is adequate.

The only problems encountered with the use of the MTP program are the derivation
of the scaling data and the gain settings of the recorder. With regard to the scaling of the
parameters to be recorded, it must be remembered that only the sign and the eleven most
significant bits of number words in the UDOFT computer are converted to analog form.
Thus, if a quantity to be recorded is described predominantly by the nine low order bits,
it must be shifted to the left in order to attain any degree of significance. The extent of

237

shifting is determined, ÄTÄ
parameter. The parameter is sh^ted so . Care mUst be taken to prevent the
ficant bits of the quantity to ^erted to J overnow. The quantity actually con-
maximum values of the parameter frorn caus ^ ^ parameter. U, however, toe

verted represents ^ parameter varies about zero, the maxxmum
initial value of the parameter 'mines the extent of scaling.
absolute value of the parameter regult of Uging shift instructions

Since the scaling is effected inpower o J>rovideg only coarse control of the am-
rather than multiply instructions, the MTP progr p ^ ^ ^ recordingi8 effected by
plitude of the plot to be made by the ^corder F wutviut causing the subsequent

««SÄ»» '“«* ^ ir““'
recording linearity.

7.5.2.2 Recording Equipment ^

Test equipment devel<)ped i^ Corneii Aercmautic^I^t wasydevel'oped originally
tensively for coUecting the real-time test data tm eqp trainers. The equipment has
to aid in evaluating the dynamic respo function was used in conducting simulator
many functions: however, s^tem The recording function is implemented with
dÄannll CEC^Tl9pl os™ography. a CEC 5-036C Datarite unit, and ten osciUogr P

LÍipUfiers designed by the same Laboratory.

The oscillograph mechanism is ^
each galvanometer using the same incandescent ^ “^te P°spac J at one-inch intervals,
cilio graph used contains te". gain and bias control are established by
There are no amplifiers in the osciilograph umi, g ^ The Datante unit con-
means of the specially built d'= he ero^sed in the oscillograph, the mechanism for
tains the recording paper which wiU be e^°s^ it once exposed. Since the paper feed
advancing the paper, and the means for devei p g , calibration marks are provided on
mecí«»»» o.» b. ™ JJ P ■ ^ ^ ^,11, ,srf cnsürnUy to

•r,rpra&?.;™^.a.^..oond,-

A viewing window ot gromi-gUs. pMe th,

A, eng oilier piece ., ironic egnip»».. ».in pr.cenüo». -n« 1»

in the use of the recording oscillograph.

a.) The test equipment d-c amplifiers Power be on for at least

to evaporate^sinc^its^feed"meciwuds^and^ïeserve^supply^ï^

and ultimate^ tear when the recorder is started.

Th, procedure ior ..dig ... recording „«ipcen. » r«l.«v..S- .«i^.r.»*

„ Apply power to the «eat equipment and ihe recording oscillograph

one-half hour prior to time of intended use.

N- ' ■

238

b.) Check to see that Simulator Signal ON light, on test equipment, is lit. This
light signifies that the signals displayed on the ground-glass viewing window are the
signals to be recorded. When the Zero Signal light is lit, the galvanometers project the
ground signal associated with the test equipment. This signal can differ considerably
from the simulator signal, even to the extent of driving one or more of the galvanometers
off-scale. The Simulator Signal ON light is controlled by the Signal Control pushbutton
switch.

c.) Adjust gain for each channel to be used. Some previous knowledge of the be¬
havior of the parameter to be recorded is required, since recordings of significant am¬
plitude must be obtained without exceeding the plus-or-minus one-half inch maximum
linearity constraints of the individual channels.

d.) Adjust the bias controls for each channel to be used. These controls are varied
until the recordings of the parameter mid-range outputs from the UDOFT computer, as
generated by the MTP program, are centered on the inch marks in the ground-glass viewing
window. Channels 1 through 4 should be aligned to the left of the time-mark channel;
channels 6 through 10, to the right.

e.) Start the recorder, (recording paper feed mechanism.)

f.) Adjust the developer solution feed mechanism to make contact with the record¬
ing paper. Allow sufficient paper to be fed through the Datarite unit to insure proper
developing.

g.) Test may be initiated at this time.

h.) Upon completion of the test run, disengage the developer solution feed mechanism
and allow additional paper to be fed through the Datarite ronit before stopping the recorder.

7. 5. 3 Short Period Longitudinal Response

As part of the original F-100A acceptance testing program conducted on the UDOFT
system, the response of the longitudinal equations to an abruptly changing input was
demonstrated in a series of dynamic longitudinal stability tests. The initial conditions for
which these tests were conducted were established manually; i. e., the simulator was
hypothetically flown to the required altitude and airspeed, and trimmed-out from the cock¬
pit. The longitudinal equations were forced to oscillate by establishing the conditions as
prescribed by the initial values presented in the approved data sheets (see figure 99); i. e.,
the longitudinal flight control was displaced aft until the required acceleration was achieved
and then returned rapidly to the original trim condition. The resultant oscillation was re¬
corded and transferred to the approved data sheets. It is readily apparent from the test
results (see the first and third columns of table XII) that the dynamic longitudinal perform¬
ance of the simulated F-100A vehicle was unacceptable. Further study in this area was
therefore undertaken.

The first problem undertaken was the elimination of inconsistencies in results ob¬
tained from different runs of the same test. This brought about the development of the
Steady-State Straight and Level Flight Equilibrium program, by means of which it became
possible to reestablish the same initial steady-state conditions from one test run to the
next. In addition., a program means for automatically inserting a standardized forcing
function (in this case a horizontal stabilizer deflection pulse) was developed. Although
test results were far more consistent, there was no improvement in their acceptability.
If anything, the test results deviated even more from the approved data. (cf. columns 1,
3, and 4 of table X.)

Since the data used to construct the F-100A digital simulation program had been
reduced for the purpose of developing a special-purpose analog computer, it appears
fruitless to attempt to improve the dynamic longitudinal performance below Mach 1.0
without reworking the original data. Neither time nor funding allowfîd such ap under¬
taking, so the discrepancies in performance below Mach 1. 0 were attributed to the data
and not to the shape and nature of the program. However, such an obvious discrepancy
as that which appeared at Mach 1.25 and 35, 000 feet could not be passed over so lightly.

In an attempt to isolate the cause of these erroneous results, the aid of North
American Aviation Inc., was solicited. N. A. A. was requested to undertake a brief

239

A
C

C
E

L
E

R
A

T
IO

N

G

A
C

C
E

L
E

R
A

T
IO

N

-

G

A
C

C
E

L
E

R
A

T
IO

N

G

240

TABLE XII

COMPARISON OF RESULTS OF DYNAMIC LONGITUDINAL
STABILITY TESTS FOR THREE FLIGHT CONDITIONS

CONDITION I Mach = 0. 8; Altitude * 10, 000 ft. ; Weight = 24, 150 lbs.

TEST

(1)

NAA

Approved
Data

(2)

Melpar

Accept.
Test
Results

(3)

UDOFT

Accept.
Test
Results

(Cockpit
Control)

(4)

UDOFT

Accept.
Test
Results

(Pro¬
gram
Con¬
trol)

(5)

NAA

Verifica¬
tion
Test
Results

(6)

UDOFT

Accept.
Test
Results

(Improved)

PERIOD (SEC.) 2.4 2.0 1.7 1.35 .7261 1.4

TIME TODAMP(SEG) 0.8 1.4 1.0 0.4 .4326 0.6

CONDITION II Mach =1.0; Altitude = 10, 000 ft. ; Weight = 24, 500 lbs.

PERIOD (SEC.) 1.0 -- 1.0 0.65 .4652 0.65

TIME TO DAMP(SEC) 0.5 -- 0.35 0.35 .3519 0.45

CONDITION III Mach = 1.25; Altitude = 35, 000 ft. ; Weight = 24, 150 lbs.

PERIOD (SEC.) 1.0 1.4 1.0 0. 95 .9173 0. 92

TIME TO DAMP(SEG) 1.1 0.8 2.5 7.2 1.385 1.1

Droeram to verify the flight dynamics of the F- 100A as simulated on the UDOFT system.
That verification progra¿ was conducted on the basis of the data used to develop ^ digi¬
tal simulation program and the digital computer programs* developed by Et.A.A. tor
verifying th"real-time response of analog simulators. Nine tests were conducted for
this experimental verification, involving three flight conditions and three modes for eac
rondit^ The flight conditions were: low speed?low altitude, transome and mtonmum
cruise; the modes tere: short period longitudinal mode uncoupled, directional mode u
coupled, and five-degrees-of-freedom transient mode.

The comparative results of the nine tests varied considerably. Agreement in the
mil and the vaw responses was fair; the differences can probably be accounted for by a
small differeCe In aUeron ^ffectiveness. Agreement in the longitudinal mode was poor
(cf columns 4 and 5 of table X). No consistent pattern was evident which would indicate
a specific problem area. For the first two conditions, the damping is acceptable, how
eve^ ihe S>ds dfffer by from 4:3 to 2:1. For the third condition, the period is accept-
able but the damping times differ by a factor of 5:1.

It aooears on the surface, that the contribution of the horizontal stabilizer to the
lift and moment equations was not being simulated properly. This f
investigated further. Consideration was given to the equations for a„R and owr, ithad
been observed that the Melpar equations resulted in an implicit solution for ohR- 1116
UDOFT program however, considered the equation as though it explici y e l e
time n bv using the value of aHR at time n-1 within the equation. Under steady-state con
ditions Rie effect of using the past value within the equation is insignificant; however,
under hiS dynamic conditions, such as are exhibited in the third test conditio^ the use
of the past value can contribute appreciable phase shift to the
The first step then was to convert the implicit solutions of “HR and °WR t0 explicit som

tions.

Secondly, during the conduct of tests by N.A.A., it was found that the UDOFT

Cl", iu im pr'.yrh m.ltlpü.d b, tb, .,bg .re. r.tt.r Ih.n by 0»

stabilizer area This error, obvious only in retrospect, would have been detected far
sooner had static longitudinal stability tests been conducted; however, this had never bee
done for the F-100A aircraft.

Thirdly incorrect stabilizer flexibility data, the stabilizer being assumed exces-
sively flexible^ was use'd in the simulation. The correct data was ultimately obtained and
incorporated in the simulation program.

The net effect of these three changes on the longitudinal performance of the simu
lator is^ielîÆ^Scolumn of title XL The most -üceable ch^ge occur^

in the maximum cruise condition. If any improvement ^^ ^unLtelv hTwever the
to be expected, this is the condition most likely to benefit. Unfortunately, however, me
final results in some cases are still not acceptable, and it is quite unlikely that any
further improvement will be attempted because of the obstacle imposed by the inapprop
ate data used to develop the digital simulation program.

7. 6 Conclusions

From the preceding discussion of the UDOFT system may üiink that the
quality of aircraft simulation derived from a digital system is inferior to that dertved
fTom L equivalent analog system. Because of togh-^rma^e^u bo et airc«R
used in this program, the quaUty of simulation achieved by the UDOFT system is superi
to that achieved by the analog counterpart This ev^uaUon of tee diptal^system is^ ^
suDDorted by comparative data for three flight simulators, the F • . , »
Fifl?01 In every case the digitally simulated model was tested more extensively, and
íheVst resuîte^ere ^*xamineefmore critically In som^nstances
simulator was unable to perform, the same model simulated on the UDOFT system,

played the desirable qualities.

♦"An IBM Check-Out Program for Analog Mechanization of Up to Five Degrees of
Aerodynamic Freedom, K. J. Dyda, Report No. NA59-854, North American Aviation
Inc., Los Angeles, California, June 1, 1959.

242

Opponents of the digital approach criticize the superior quality of simulation
achieved with a digital system and the ability of the digital system to represent the com¬
plex dynamics of an aircraft. These criticisms are derived from insufficient knowledge
of the capability of the digital computer and partiality for using the time-honored analog
approaches to the simulation of complex, real-time, man-machine systems. Just as
adverse criticism was cast at the all electronic analog system when it was introduced as
an improvement upon the electro-mechanical analog system, so too is the digital system
being received cautiously. The same care exercised for developing an analog simulator
must be exercised when preparing the simulation program that will be executed by the
digital computer. Analog system design considerations of phase shift, drift, scaling,
torques, inertias, and calibration have their counterparts in the digital environment.
However, experience gained to date from the variety of flight simulation programs that
have been developed for the UDOFT system indicates that developing a digital computer
program from a complex mathematical model of an aircraft is accomplished more readily
and more economically than the development of a comparable special purpose analog
system.

The only apparent limitation to the use of the digital system is the simulation of
system parameters that exhibit high dynamic characteristics. Operating at a twenty
cycle per second solution rate the UDOFT computer, and in all probability any other
digital computer with comparable computing speed, can reproduce dynamic responses up
to two cycles per second. In order to reproduce responses of higher frequencies, a higher
solution rate worn be required. However, the solution rate cannot be increased greatly
before practical 1 mit at ions of computer speed and word length are encountered. Thus,
there are limitations on the practicality of using the digital system. These limitations,
however, are encountered only for a relatively small percentage of the simulation problems
that are undertaken at the present.

It is the earnest opinion of those who have been associated with the UDOFT pro¬
ject that digital simulation of a high performance aircraft is feasible and practical.
Further, the problems of this beginning art are no different from those encountered when
developing any new technique in the scientific field and will be ov rcome as more re¬
search and development are performed, as is presently with the UDOFT system.

243

SECTION VIII

UDOFT SYSTEM UTILIZATION AND RELIABILITY

Since its installation in April 1960, the UDOFT system has been used for a v ^
of projects, ranging from the simulation of a submarine and a surface shlP to that °f “"
orbiting re-entry vehicle. The success of these projects has been somewhat dependent
upon the reliability of the UDOFT computer. For those periodswhencoir.puteroperation
haq hppn flawless significant results have been achieved from the research progra s
?h¿heavne “d'thefomputer. Conversely, for those periods when co-Puterope ration
has been sporadic, much valuable time has been lost io repairing the system and to re
running the problems until valid results have been achieved.

In order to indicate the degree of success attained by the UDOFT system in ful¬
filling its intended role of real-time simulation research system, the °f!rat“"
maintenance logs that are maintained by the system operating personnel have been sum-
marized and thfresults are presented in the following sections. Two ^riods °f
operation are reviewed: namely, the first twenty months of operation (May 1960 through
December 1961) and the twelve months of 1962. Before drawing any decisive conclusions
from the material that follows, it must be remembered that the UDOFT computer is a
unique device employing outmoded techniques. No radical or extensive system modifica-
™ ns have been made since the initiation of the UDOFT system development in 19o6
whereby it would have been possible to improve the system operation due to the rapid ad-
vanees in digital computer technology.

8. 1 System Reliability - May 1960 through December 1961

During this twenty month period, the UDOFT system was actively manned for
3335 5 hours? Figure 100 indicates system usage wherein each major category of syste
utilization is plotted as a function of percent of total time. The terms presented in the
graph ar«> self-explanatory. However, because only the first category is defined as
^available" time, one should not be led to believe that the computer system «“P^ative
for the remaining 46%of the manned time. The system was operable and could have been
used for the activities comprising "scheduled downtime.

The graph is interesting from a cost viewpoint because it dramatically indicates
those activities where costly maintenance effort has been applied. It also indicates those
areas of computer oiration which must be improved in order to reduce the effective cost
of stern operation by increasing the level of available time (available time is defined as
that time during which the system is operated for the purpose for which it was intended).
Ideally, this level should be 100% however, this is a practical impossibihty since such
activities as system checkout and periodic preventive maintenance must be Pf
In addition, time must be allowed to incorporate minor system improvements and otiier
necessities. The time consumed by these categories of activity, as depicted on the
graph, are reasonable and do not differ significantly from the levels anticipated at the
time the system was installed.

The two disproportionate time consumers are unscheduled downtime due to cor¬
rective maintenance, and unscheduled downtime due to air conditioning system failure.
Downtime must be anticipated on a large electronic system, however, the amount of
unscheduled downtime required to perform UDOFT system repair £fxcessive^ Th
total time lost by air conditioner was 8. 5%, however, many more hours of unusable time
rnay be indirectly attributed to the sporadic operation of the air conditioner, ta ma y
instances consistent high ambient temperature has been the known cause of computer
system component failures.

The graph of figure 101 depicts on a weekly basis, the percentage of total manned
system time that was available to a system user. When integrated over the Period of.
twenty months, the data appearing in this graph, forms the bases for the Available Time
entry in the graph of figure 100. The graph of figure !00 can be misieadmg from a reh-
ability viewpoint. For this reason the term Operating Ratio (defined as the ratio of good
time to attempted running time expressed in percent) referred to 111 10^s “s*d_
Usable time which is utilized for preventive maintenance, system checkout, and system
modifications, and unscheduled downtime which is attributable to the air conditioning

244

PE
R

C
E

N
T
 O

F
 T

O
T

A
L
 T

IM
E

UJ

Figure 100. Total Hours 3335. 5 During Period 15 May 1960 to 31 December 1961

245

10
0%

246

F
ig

u
re

1
0
1
.

A
v
a
il

a
b
le

T

im
e

V

e
rs

u
s

T

o
ta

l
T

im
e
 o

f
S

y
s
te

m

M

a
n

n
in

g

I».

F
ig

u
re

1
0
2
.

O
p
e
ra

ti
n
g

R

a
ti

o

system are not considered as a part of attempted running time. Taking this into consid¬
eration, Operating Ratio can be defined also as the ratio of available time to the sum of
available time and unscheduled downtime, expressed in percent. Using this form for a
figure of merit for computer system operation, the average Operating Ratio for the entire
period was 76%.

The graph of figure 102 depicts the weekly Operating Ratio for the same period.
With the exception of the four periods of excessive downtime, the Operating Ratio was
between 80% and 90%. The periods of excessive downtime were caused by several factors
which are explained as follows:

1. October-November, 1960 - unreliable operation attributed to malfunctioning
of computer discrete inputs.

2. February, 1961 - unreliable operation followed by inoperability attributed
to misalignment of the five phases of the clock pulse.

3. August-September, 1961 - unreliable operation and inoperability attributed
to improper memory drive currents and again misalignment of the five phases
of the clock pulse and to insufficient preventive maintenance.

From the preceding it can be seen that excessive downtime was attributable qualitatively
to the clock pulse system, memory drive currents, and computer discrete inputs. In
order to indicate the quantitative contributions made by the major unreliable components
of the computer system, the graph of figure 103 has been prepared. The graph very clear¬
ly indicates that the primary cause of system downtime was the clock pulse generation
and distribution system.

A list of the major problem areas encountered, in order of importance, is as
follows:

8.1. 1 Clock Pulse Generation and Distribution

Misalignment of the five phases of the clock pulse was due to the aging of clock
pulse system components. Field changes allowed improvement in operation of the sys¬
tem but only for a short time. Design of a new clock pulse system was initiated in late
1961 for installation in 1962.

8.1.2 Memory Drive Current

Improper writing into and reading out-of-memory due to inconsistant memory drive
currents. This problem was eliminated by using higher quality diodes in the memory
drive constant current source. - ^ .

8.1.3 Discrete Inputs

The problem was not so much with improper operation of the discrete inputs as it
was the difficulty of locating the faulty components. This was overcome by adding a
maintenance control whereby all discrete inputs can be checked automatically under
program control.

8. 1.4 Memory Address Flip-Flops

Undesirable resetting of one or more address flip-flops during a memory cycle
resulting in improper rewriting of information into memory. The resetting of the flip-
flops was due to excessive loading of the aging triode vacuum tube used as address reg¬
ister flip-flop output cathode follower. The short-term remedy was the use of selected
high-transconductance triodes in these places; further investigation in order to find a
satisfactory solution was required.

8. 1. 5 Indicator Transistors

Inoperability of computer console indicators due to failure of transistor drivers.
Due to the high mortality rate of the 2N35 transistor, it has been replaced by the 2N1304
transistor which has performed commendably.

248

P
E

R
C

E
N

T
 O

F
 T

O
T

A
L
 D

O
W

N
 T

IM
E

70%

MEMORY CENTRAL IN-OUT OFF-LINE TRAINER
PROCESSOR DEV

Figure 103. Causes of System Downtime

249

1A. -

8. 1. 6 Console Switches

Failure of push-pull console switches. This problem has been overcome
by replacing the switches, which had phosphor bronze spring actuators, with similar
switches using a superior actuating mechanism.

8.1.7 Output Writer

Sporadic operation due to inadequate maintenance of the electric typewriter and the
use of inferior relays in the output writer mechanism. This problem has been overcome
only partially by improved maintenance of the typewriter and replacement of the relays.

8. 1. 8 Input Card Reader

Sporadic operation due to inadequate maintenance of the card reader. This pro¬
blem has been overcome by improved maintenance of the card reader.

8.2 System Reliability - January 1962 through December 1962

In 1962 the UDOFT system performed well with the exception of one extended
period early in the year. The graph of figure 104 indicates that the system was available
for use 73% of the time that the system was manned, a marked improvement over the
54% level attained during the preceding twenty-month period. The graph of figure 1
depicts, on a weekly basis, the percentage of total manned system time that was available
to the user. Compared with the similar graph of available time depicted in figure 101
for the preceding twenty-month period, it can be seen that available time has increased
noticeably and the periods of totally excessive downtime have decreased. Except for the
two periods of excessive downtime, the system was available for approximately 80% of
the time The graph of figure 106 depicts, on a weekly basis, the Operating Ratio of the
computer's system. With the exception of the period early in the year, system Operating

Ratio averaged over 90%.

The extended problem period was attributed to a combination of factors including
trouble with the modified card read-in system, clock phasing, and inexpenence of new
maintenance personnel. In addition there were three rather persistent problem areas,
marginal operation of the transistorized print register buffer packages excessive drift
in the analog output circuits, and intermittent problems with the output writer. Ihe
graph of figure 107 depicts the quantitative contribution of the major problem areas.

The following are explanations of the problem areas and corrections to them:

8.2. 1 Clock Pulse Generation and Distribution

During this period, the clock system was modified to improve rebability aria
simplify adjustment. A transistorized central clock was instaUed which uses well iso ated
fixed delays to establish phase differences, single shot multivibrations to establish [wise
widths and cable drivers to drive equal length coaxial cables which distribute the clock
phases to each cabinet. The only adjustment now required is the width of the pulses meas¬
ured at the output of the clock repeaters in the Input-Output Unit.

8.2.2 Card Read-In

In July 1961 the card read-in system was modified to provide twelve words per
card read-in. A critical parameter of this modification was a correctly timed gating
pulse To obtain this pulse the summary punch emitter contacts were used and the
correct timing was obtained by displacing the rotor of the summary punch emitter on tile
shaft. This method proved erratic and was discarded due to the bounce of the contacts
and the timing of the gating pulse. A one shot multivibrator and additional logic were
added to replace the summary punch emitter in generating the gating pulse for card read-
in. This method proved to be reliable.

8.2.3 Analog Outputs

The drift of the analog outputs, which is normally compensated for by the refer¬
ence supplies, was found to be excessive for use with the Electric Boat Company and

l*-

250

80%

AVAILABLE TIME

SYSTEM SYSTEM SYSTEM SCHEDULED AIR OTHER
USED DOWN CHECKOUT MAINT. COND.

DOWN

Figure 104. Total Hours 3615

M
IS

C
E

L
L
A

N
E

O
U

S

100%

1 JAN 1 MAR. 1 MAY
1962

Figure 105. Available Time Versus Total Time of System Manning

252

i»-

w
w

w
w

w
w

w
w

w
w

w
w

60%

Figure 107 Cause of System Downtime

254

P
E

R
IP

H
E

R
A

L
D

E
V

IC
E

S

Sperry Rand Corporation equipment. The chief source of drift was found to be the output
triodes of the multiplexer packages. Furthermore, it was found that all exhibited erratic
drifting could often be associated with the time of day. From this fact it was concluded
that small changes in filament voltages were responsible for the drift. To correct this,
the filament voltage was increased by reducing the voltage drops in the filament leads by
using buses; this helped considerably. Also tests were conducted on 12 of the multiplexer
stages (six package locations) using a constant voltage transformer. The tests showeo
that these stages, independent of the package used, exhibited less drift. (The constant
voltage transformers also produced a higher output voltage, 6. 8V as compared to 6. 3V.)
In the near future all the filaments of the analog output packages will be supplied by con¬
stant voltage transformers. By using these transformers, the drift is reduced to a point
where it does not present a problem to any of the users - less than 25 millivolts over
an extended period.

8. 2.4 Transistor Print Register Packages

Difficulty was encountered in the print register packages by the users, Electric
Boat and Sperry, quite often shorting the outputs to ground and thus destroying the tran¬
sistors of the output stage while checking out their equipment. In addition, the transistor
print register packages displayed a certain amount of unreliability which was traced to
poor grounding on the transistor packages. This was corrected by adding a jumper wire
between the two sections of the ground bus on the package. Since this change, these
packages have proved to be very reliable.

8.2.5 Address Flip-Flops

The memory address flip-flops performed reasonably well during this period.
However, they contributed an unreasonably high percentage of downtime considering
there are only twenty-four such memory address flip-flops in the computer. Because of
the success of improving the analog outputs by increasing filament voltage, the filaments
of the address flip-flops will be increased bv using constant voltage transformers. This
change should eliminate the need to choose hot" tubes for the output cathode followers of
the flip-flop. In addition, the output load may be reduced by increasing the size of the
cathode resistor of the output stages.

8.2.6 Output Writer

The output writer was a problem source during the year. The typewriter itself
is badly in need of overhaul. In addition, the relays of the control circuits are in poor
shape due to excessive use. The control circuitry is to be replaced with a redesigned
system using new components and it is hoped that time will permit an overhaul of the
typewriter.

8.2.7 Conclusion

The remaining problem areas at the end of 1962 are the memory address flip-
flops and the slow print system. Measures have been planned to correct both of these in
the near future - as soon as the schedule permits.

Although the system has operated over ten thousand hours no trends have been
noticed in component failure or in types of troubles. Therefore, it appears safe to assume
that no large scale preventitive maintenance effort is needed now or in the near future.
However, to insure a continued high Operating Ratio, maintenance effort must be kept up
especially in the areas of maintaining good spare packages, weeding out marginal tubes
in the computer, and grading tubes for the multiplexer output stage.

8. 3 Conclusion

The evident conclusion drawn from the UDOFT program is that a digital computer
is a highly flexible machine which when effectively programmed, can perform the task of
real-time flight simulation. With another avenue of application open to the digital com¬
puter, economies in the development of simulator-trainer systems should grow. A
single digital computer may be applicable to many simulator-trainer problems, thereby
obviating the need for costly development of special-purpose control computers. The
availability of such a machine, as an off-the-shelf item, can effect more rapid develop¬
ment of the whole simulator-trainer system.

I*.

255

These factors are important because delivery schedules for current simulator-trainer
systems are very short and time is not available for sophisticated development programs.
Flexibility is also important when it is realized that the development of a simulator-
trainer system often is interrupted because of changes in the simulated system and train¬
ing systems utilizing special purpose devices are not readily altered.

A digital simulator-trainer system has other attributes.

1. It provides a more accurate solution to the problem, partic¬
ularly for small changes in the independent variables.

2. It is more reliable, due to the dependence of the computer
upon the qualitative rather than the quantitative content of
internal information signals.

3. It is a system which is more easily maintained because
of its inherent characteristics of go no-go operation.

Flexibility of application has been demonstrated dramatically when one considers
the various projects currently using the UDOFT system. Reliability of operation is de¬
monstrated by the fact that approximately 10, 000 hours of operating time have been logged
on the computer without a failure of major proportions. As a result the Operating Ratio
of the computer is approaching 95%, based upon average utilization of seventy-five (7 5)
hours per week. Compared to the Operating Ratios for the better-known general purpose
digital computers, 95% does not indicate outstanding performance by the computer.
However, it must be remembered that the UDOFT computer is a unique device, whose
operation has not been improved to any significant degree since the day it was installed.

Unfortunately, the present UDOFT system is burdened with some severe physical
and logical limitations which restrict its potential application to real-time simulation of
vehicular systems. These limitations include:

1. Unwieldy size and large power dissipation due to the use
of vacuum tubes.

2. Lack of adequate program input-output facilities, rendering
difficult the obtaining of computer-originated data required in
system testing, acceptance testing, trouble-shooting, and
system analysis.

3. Insufficient control instructions to utilize effectively the high¬
speed capabilities of the arithmetic unit.

4. An instruction repertoire plague with programming restrictions.

5. A fixed-point number word which is limited to twenty-one bits.

6. Lack of true index registers.

7. Inability to modify instruction words.

The UDOFT computer, although a product of the past and infested with restrictions
that hamper its use, has been instrumental in proving the feasibility of real-time digital
simulation and in the development of techniques to be applied to the design of future digi¬
tal simulator-trainer systems.

256

APPENDIX I

1.

2.

GLOSSARY

Physical Parameters

a Speed of sound in feet per second

b Characteristic wing span, 36,-6 feet

c Mean aerodynamic chord

d Distance from reference point {35%/MAC) to center of gravity in feet
Center of gravity is positive aft of reference point

2
g Acceleration of gravity, 32. 3 feet/sec at sea level

H Altitude above field in feet

hp True pressure altitude in feet

hp. 'v Indicated pressure altitude in feet

Ahp^ Indicated altitude position error correction in feet

Moment of inertia about airplane X axis in slug-feet'

z

%

Ma

M,

M
ef

M.
i

M

H

t

Moment of inertia about airplane Y axis in slug-feetZ

2 Moment of inertia about airplane Z axis in slug-feet

Distance from center of gravity to center of pressure of horizontal
stabilizer in feet

Mach number

Mass of drop tanks in slugs

Mass of external fuel in slugs

Mass of internal fuel in slugs

Instantaneous total mass of airplane in slugs

Empty weight of airplane in slugs

Normal acceleration in G's

2
Incompressible dynamic pressure, l/2pVt

2
Characteristic wing area, 376 feet

2
Characteristic stabilizer area, 99 feet

Velocity of mass center in feet per second

Weight of airplane in pounds W

P

Angles and Angular Rates and Moments

Mass density of air in slug/feet'

Angle of attack in degrees; the angle between the X-Y wind plane and the
airplane X-body axis measured in the plane of symmetry, a is positive
for a nose up angle.

Rate of change of angle of attack in degrees/second

257

lwr

lhr

*

0

SH

sa

pr

H

at

Rigid wing compressed angle of attack in degrees.

Rigid stabilizer angle of attack in degrees.

Si«1 -
a nose right angle.

fhfairS X-S ixiíEired Ä
for a nose up angle.

Pitching rate; angular velocity about the airplane Y-body axis in radians/

second.

Pitching acceleration; angular acceleration about the airplane Y-body axis

in radians/second2 - -...

Euler angle Wbang ln Hegreea; the *»£»"*““ 'ï5“°‘ÎÂi'“‘
the airplane Y-body axis measured in the Y Z plane. P
right wing down condition.

Rolling ,.,.1 angular velocl., about tb. airplane X-bod, aal. r.dlanal

second.

Rolling acceleration; a
in radians/ second .

ngular acceleration about the airplane X-body axis

Turbibg ,...1 angular about tb. airplane ^ ax» In radian./

second-

Turning acceleration; angular acceleration about the airplane Z-body axis

in radians / second .

Control stick deflection in inches for-rd and aft^ neutca1 at a radius of
22. 75 inches, 6gH is positive when the stick is forwar .

Control stick deflection in inches ^ ^
22.75 inches; i>sa is positive when the stick is right.

Rudder pedal deflection from neutral; 6pr is positive when the left pedal

is forward.

Stabilizer deflection from neutral, in degrees; óH is positive w

leading edge is up.

Total aileron deflection from neutral in degrees, ôat positive wh

left aileron is down.
. . i un aperrees- 6 is positive when the rudder

Rudder deflection from neutral in degrees, »r F

is left.

Speed brake deflection in degrees.

Throttle position in degrees.

3. Linear Velocities, Accelerations and Forces

Longitudinal velocity along X-body axis in feet per second; u is positive

when it is in a forward direction.

258

•ft

Longitudinal acceleration along X-body axis in feet per second .

Lateral velocity along Y-body axis in feet per second; v is positive when
it is to the right.

Lateral acceleration along Y-body axis in feet per second2.

Normal velocity along Z-body axis in feet per second; w is positive when
it is down.

o
Normal acceleration along Z-body axis in feet per second .

Velocity along line of flight path feet per second.

Total force along X-body axis in pounds; Xa is positive when it is in a forward
direction,
Total force along X-stability axis in pounds; Xg is positive when it is in a
forward direction.

Total force along Y-body axis in pounds; Ya is positive when it is to the

right.

Total force along Y-stability axis in pounds; Yg is positive when it is to
the right.

Total force along the Z-body axis in pounds; Za is positive when it is down.

Total force along the Z-stability axis in pounds; Zs is positive when it is
down.

Thrust in pounds

4. Aerodynamic Coefficients and Derivatives (Stability axis)

r1»
UD

ClW

%

Basic drag coefficient

Coefficient of drag due to drop tanks

Rate of change of drag coefficient with speed brake deflection

Coefficient of drag due to drag chute

Coefficient of drag due to landing gear
ac

Rate of change of sideforce coefficient with yaw angle,
ac

Rate of change of sideforce coefficient with rudder deflection,

Rate of change of sideforce^coefficient with yaw angle when drop tanks
are attached

Rate of change of sideforce coefficient with roll velocity parameter,

»V
Coefficient of lift due to wings

Coefficient of lift due to horizontal stabilizer

Rate of .change of lift coefficient with speed brake deflection.

acT
w

m. a

m Wa

m dt

m,

m dc

m L.G

m G.C

C
ór

'óa

‘Wa

np

Coefficient of lift due to drop tanks

Rate of change of rolling moment coefficient with aileron deflection.

Rate of change of rolling moment coefficient with rudder deflection,

aci
*¡7
9¾

S7~
or

Rate of change of rolling moment coefficient with yaw angle,

Rate of change of rolling moment coefficient with roll velocity parameter,
, fbíp + r sin a) 1

8Ci/e [—J
Rate of change of rolling moment coefficient with turning velocity

. / Tb(r - p sin a)"!
parameter, öC|K -^-

Flexible pitching movement coefficient

Rate of change of pitching moment coefficient with pitching velocity

parameter, 8Cm/g [JH]

Rate of change of pitching moment coefficient with a rate of change of

angle of attack, [fyj

Rate of change of pitching moment coefficient with throttle position,

8Cm/3 4

Pitching moment coefficient due to drop tanks

Rate of change of pitching moment coefficient with speed brake deflection,

9C / ax ml 96j

Pitching moment coefficient due to drag chute

Pitching moment coefficient due to landing gear

Rate of change of pitching moment coefficient with altitude H close to
ground (ground effects)

Rate of change of turning moment coefficient with yaw angle, ^

Rate of change of turning moment coefficient with rudder deflection,

Rate of change of turning moment coefficient with aileron deflection,

Rate of change of turning moment coefficient with throttle deflection,

acn/a *
Rate of change of turning moment coefficient with rolling velocity

parameter, dCj ÿ [b(p

Rate of change of turning moment coefficient with turning velocity
~ ° . |~b(r - p sin a)“|
parameter, ^ -fy J

1 260

APPENDIX U

EQUATIONS FOR VELOCITIES, FORCES AND MOMENTS
RELATIVE TO AIRCRAFT AXES

This appendix supplies various data and formulaè used in the UDOFT Program.
Illustrations included display the various axes, moments, vectors and other forces
necessary to the mathematics involved.

Figure n-1. Linear Velocities Along Airplane Axes

Longitudinal Velocity

u = VT cos a

where

VT = j'u dt

Logitudinal Acceleration

X
¿ = ^ - wqj + vr (ground)

Xa U = ^ - g sin 0 - wqx + vr (air)

(124)

(125)

(126)

i».

261

Lateral Velocity

(ground)

(air)

(127)

(128)

V = 0

dt

Lateral Acceleration

V = ^ + g cos 0 sin $ - ur + wp
i

w - VT sin a

Normal Velocity

= VT

w = ^ w dt

Normal Acceleration

w = - ^ + g cos 0 cos $ - vp + uq1

(ground)

(air)

(129)

(130)

(131)

(132)

Figure E-2. Summation of Forces Along Airplane Axes

X = Total Force Along Airplane X Axis (+ Forward)

Xa = Xs cos « + T - Dwm - (Fbr - Fbl) - 600

= Xg cos a - Zg sin a + T -

where

r^WM = Engine windmilling drag along airplane X axis

= 10, 000 f48(Ma)f5(hp)

Wheel Friction = 6 00#

(ground)

(air)

(133)

(134)

(135)

262 •

(136)

Ya = Total Force Along Airplane Y Axis (+ Right)

Ya s Ys

Z = Total Force Along Airplane Z Axis (+ Down)

Z = Z cos a + X sin a - 0. 053T
as s

X = Total Drag Force Along the Airplane X Stability Axis In Pounds
s

where

D-o = Basic drag in pounds
D

Db = 376 qC'D = qSC'D

CJ-j = Basic drag coefficient

= fg(Ma) + C'Lf10(Ma) + C^C'^^Ma) + C'L2f]2(Ma)

where

C'T = Clean lift coefficient formula
F

= CT + o. 263 CT
ljw

(Note: see page 267 for CL and)

(137)

(138)

263

D = Drag due to drop tanks in pounds

dt = 376 qCDdt = SqCDdt

Cod = Drop tanks drag coefficient

= CDdt(Ma)

Ddt = 0 (Dr0P fanks
D = Drag due to speed brake deflection in pounds

ÍJ = 376 qCDôjíj = SqCDajäj

c = Speed brake drag coefficient

%

= CD (Ma)

ÄJ

í = Speed brake deflection degrees

D = Drag due to drag chute in pounds
dc

= 376 qC =SqC
ac dc

C = Drag force coefficient due to drag chute

Ddc

= 0. 30585

X) = 0 (Drag chute deflated or jettisoned)
dc

D = Drag due to landing gear in pounds
L, G

= 10, 2 q = SqCy-i
L. G

L. G

Drag coefficient due to landing gear

L. G

= 0. 0278

= 0 (Landing gear up)

y , Total Side Force Along the Airplane Y Stability Axis inPoundg

= Y . + Y, + Y,, + Yn ^ dt p

where

Y = Side force due to yaw angle in pounds

= 376 qC * = SqC ^ ^ in deS*

^ i i
C = Side force coefficient due to yaw angle

= C (Ma)

Y = Side force due to rudder deflection in pounds

4r
= 376 qCy «R = SqCy6 0R 6R in deg.

R tv

(139)

264 ’

i
P

.:

EKE* '

1

C = Side force coefficient due to rudder deflection
y6

R = 1. 238 jo. 002 - f3(hp)]^29<Ma) ' l- OoJ + f3(hp) (Mach

= f3(hp)f29(Ma) (Mach

Ydt = Side force due to drop tanks in pounds

= 376 qC * = SqC *
ydt ydt

C = Side force coefficient due to drop tanks
ydt

= 0. 002

Yp = Side force due to rolling rate in pounds

= 6880 qC (P + yiH-g) = 1¾.. C (p + r sin a)
yp VT jp

C = Side force coefficient due to rolling rate

yP
= C (a)

Z = Total lift Force Along the Airplane Z Stability Axis in Pounds
s

= Lw + LH + LÄj + Ldt

Lw + LH + LÄj + Ldt

= —070532 H + ÜT593

when

where

H < 25 feet

= Lift due to wings in pounds

= 376 qCT = SqCT

CT = Coefficient of lift due to wings

CLW '
1. 1

f .(Ma) + C.
4 IjW,

where

aWR = Ri6icl winS compressed angle of attack in degrees

={ a -[Cl - f^a^WgíMaJjf^JJaJf^qífgtMa^Ma)

- Lift due to horizontal stabilizer in pounds
H

= 376 qCT = SqCT

CT = Coefficient of lift due to the stabilizer
LH

= 0. 263 ^(«^JfgiMa)

265

(140)

»
IV

II A

where

Buo - Rigid stabilizer angle of attack
Hxt

= ff + SH - f2(a'WR)f6(Ma) -I 0- 00233q + tyqJtyMa)]

L - Lift due to speed brake deflection in pounds
aj

= 376 qC «J = SqC ij

6J

C = Coefficient of lift due to speed brake deflection

Lsj
= CL (Ma)

L , = Lift due to drop tanks in pounds
dt

= 376 qCT = SqCT
Ldt dt

C = Coefficient, of lift due to drop tanks
Ldt

L = 0 (Drop tanks off)

Figure H-4. Angular Velocities Along Airplane Axes

266

where

where

p = Rolling Rate About the Airplane X Axis in Rad/Sec

= fcdt
p = Rolling Acceleration About the Airplane X Axis in Rad/Sec'

= 0 (ground)

r (air)

~ Pitching Rate About the Airplane Y Axis in Rad/Sec

= |q1 dt

t

^ = Pitching Acceleration About the Airplane Y Axis in Rad/See4

Ma + 54, 200 rp - 1250(g - Z /M.) + AM
ä 1

Ma + 54, 200 rp
-j' --- -c.

y

(ground)

(air)

(141)

(142)

(143)

(144)

(145)

(146)

AM = Pitching moment due to nose wheel contact with the ground

= 25, 200(5 - 0) - K 9 when 0 < 5°

AM = 0 when 0 > 5°

K é nose wheel damping factor

0 Pitch angle in degrees

K Experimentally determined quantity

r = Turning Rate About the Airplane Z Axis in Rad/Sec

=iidt
r = Turning Rate About the Airplane Z Axis Due to Nose Wheel Steering

in Rad/Sec

- Vu* V
r = 0

when 0 < 4°

when 0 > 4°

r = Turning Acceleration About the Airplane Z Axis in Rad/Sec'

Na - 41, 300 pq1 + 6. 21(FBR - FßL) - 1250 ur + 420 v

(147)

(148)

(149)

(ground) (150)

N - 41, 300 pq, + 420 v
-!- (air) (151)

267

where

and
6. 21(Fbr - Fbl) = Turning acceleration due to foot brakes

420 V = Turning rate acceleration damping

= 0 (when yaw damper is off)

Figure n-5. Summation of Moments About Airplane Axes

L = Total Rolling Moment About the Airplane Z Axis in pound-feet
a

= L cos a - N sin a
S s

Ma = Total Pitching Moment About the Airplane Y Axis in pound-feet

= M + Z d - 1.33 T
s s

N s Total Turning Moment About Airplane Z Axis in pound-feet
a

= N cos a + L sin a + Y d
S S o

(152)

(153)

(154)

268

k*.

ctv.
Figure n-6. Summation of Moments About Airplane Stability Axes

Lg = Total Rolling Moment About the Airplane Stability X Axis in pound-feet

= L. +1--. +L.+L +L
Ôa -5r Í P r

where

= Rolling moment due to aileron deflection in pound-feet

= 13750 qCj = SbqC^

C = C. (Ma, a, q, Ö) rolling moment coefficient as a function

)1.Ma, a , q and f'*"*-’ « » --'J

C<a (1 -f4(q>f41(Ma)]'f46(Ma)+f47(Ma>f6<q)}f2(i!

where

Cf = + f8(^)f40(^) + 0. 796
5a

= f4Q(Ma) + 0.796

0 < Ma < 1. 1

1. 1 < Ma < 1. 73

Lj = Rolling moment due to rudder deflection in pound-feet

13, 750 qC^ Ôrfg(cr) = sbqCf 5rfg(a)
(5 6
r r

j

(155)

269

C = Coefficient of rolling moment due tc rudder deflection

l6r

L = Rolling moment due to yaw in pound-feet
*l>

= 13750 qC. - SbqC *

Cjt = Coefficient of rolling moment due to yaw

* - WMa) + f36<Ma) + 64,000 36

L = Rolling moment due to rolling rate in pound-feet

P = 252. 000 (IL±JLSÍ™)-^-qC^(P +r sina)

C = Rolling moment coefficient due to rolling rate

P

= f5(a)f38(Ma)^l -f3(q)f39(Ma)]

L = Rolling moment due to yawing rate in pound-feet
r

= 252, 000 ‘ P ^ a)

C = Rolling moment coefficient due to yawing rate

r = C| (a)

1 r

[, Total Pitching Moment About the Airplane StabOit^^^K^fee!

= Ma + Mql + MH + Ma + Mw^ +Mdt + M¿j + Mdc + ML_ G + E

here

M = Pitching moment due to angle of attack in pound-feet
a

= 4260 qC m
ScqC m

C = Flexible pitching moment coefficient due to angle of attack
m

aF

= Cmx ' f19<iIa)fl(hp)f3(“WR)

/here

C = Rigid pitching moment coefficient due to angle of attack

ra<2R
= f13(Ma) "

= ^i13(Ma) - fu(Majj(-

= fl4(Ma)-f15(Ma)](

WR gd!) + fH(Ma)

“WR ' 8 Vi)+ f. -(Ma) 4 lo

24°>«wr>18c

18.° >œwr > 12°

12° > “WR > 8'

(156)

270

= JyiUa) - f16(Ma)J

= jf16(Ma) - i17(Ma)](^—)+f17(Ma)

fî6<Ma)

+ 6

cl'

j^17(Irfa) - f18(^)](WR+ 18) +

= flg(Má)

80 5 “Wß 5 5<

5” > ori.p 5 - 6'

-6° > «WR 5 - 18°

-18° > -24°

M = Pitching moment due to pitching rate in pound-feet

i C
Mq 2

= 24, 133 q-lr-1q1 = qCM Qj
T ^

C = Pitching moment coefficient due to pitching rate
M
V

= f25(Ma)f2<hp) - f26(Ma)

M = pitching moment due to horizontal stabilizer in pound-feet
H

= -99qCL^lH = - SH¿lCLHí H

CT = Coefficient of left due to stabilizer (see page 267)-
LH

i „ = Distance from c. g. to c. p. of horizontal stabilizer in feet
H

= lH(Ma)

M- - Pitching moment due to rate of change of angle of attack in pound-feet

CM • ¿ c 2
= 24,133 q(^-)=2^qCMaa

C = Pitching moment coefficient due to rate of change of angle of attack

OL

- f (Ma) - (62,000 zilR-)f (Ma) -t^UWaj t 64,000 ' 28v

M = Pitching moment due to air entering the duct in pound-feet
Wa

= 4260 qCM fx{4 h = ScqCM f^ he
Wa

C = Pitching moment coefficient due to air entering the inlet engine duct
M Wa

(Ma) Wa

<) = Thrust selector in degrees

271

M ., = Pitching moment due to drop tanks in pound-feet
dt

= 4260 qCM = ScqC^ (Drop tanks ON)

(Drop tanks OFF) dt dt

Mdt = °

Gw = Pitching moment coefficient due to drop tanks
Mdt

= f24(Ma) + f22(Ma) 40° >a> 20°

= [f24(Ma) - f23(Ma)](-

= fgsíMa)^ +

=

1^) + f23(Ma) + f22(Ma) 20° lallW

10° >a> 0s

0C > a > -40’

M = Pitching moment due to speed brake deflection in pounds-feet

áJ
= 4260 qCM ij^ScqCj, ij

äJ äJ

C = Pitching moment coefficient due to speed brake deflection

Maj
= f20(Ma) + f21{Ma)f2(a)

M , = Pitching moment due to drag chute in pounds-feet
dc

= 115 qi.

Mdc ' ° (Dra£ chute jettisoned or not inflated)

Ip = Drag chute moment arm in feet

Í =ija)
P P

M = Pitching moment due to landing gear in pound-feet
L. G

= 4260 qCM = ScqCM (Landing gear down)
L.G G (Landing gear up)

M = O
L. G

= Pitching moment coefficient due to landing gear

‘ CMLG(aWR‘

Wl = Pitching moment due to ground effects in pound-feet
GE

(13. 1H - 328)q H < 25 ft

H > 25 ft
GE

N = Total Turning Moment About the Airplane Z Stability Axis in pound-feet

= N, + Ni + N6a + NWa + Np + Nr
T r

where

(157)

272

i
«
.,,,.

'

w
p

1

1

N = Turning moment due to yaw angle in pound-feet

= 13750 qCn * = sbqC^*

C = Turning moment coefficient due to yaw angle

$ h + 2000

= ^30(Ma) ' f31(Ma) “ ?4, ÖÖ0 f32(Ma)

N ' = Turning moment due to rudder deflection in pound-feet
a

= 13750 qC «„ = SbqC 5
ni r ri r r r

C = Turning moment coefficient due to rudder deflection

nör h + 2000

= -f33(Ma)-Hhreõ-f34(Ma)

N = Turning moment due to aileron deflection in pound-feet
aa

* 13, 750 qC = SbqC
nóa n5a

C = C (ôa, a) Turning moment coefficient as a function of aileron
n<5a n6a

deflection and angle of attack

= f^(<5a)fg{a)

N = Turning moment due to inlet air momentum is pound-feet
^$1 a

= 13750 C ÎJA) ^ = SbqC
nWa 1 nWa

C - Turning moment coefficient due to inlet air momentum
Wa

= C (Ma)
nWa

N - Turning moment due to rolling rate is pound-feet
P . _ n r sin a, bb

= 252, 000 qC (E)= c (p + r sin a)
np' VT ' 2VT np

C = Turning moment coefficient due to rolling rate
np

= cnpte>

N - Turning moment due to turning rate in pound-feet
r

= - 23, 900 q(r '^?TS"—) = - Cn^(r - p sin a)

C = Turning moment coefficient due to turning rate
nr

= 0, 0948

273

APPENDIX III

MASS MOMENT OF INERTIA AND LOCATION OJ
mass uf gravity equations

= Total Instantaneous Mass in SUigs

+Mef+ Mdt
(158)

I =

1 =

1 =

where

M = Weight of airplane empty in slugs
o

= 591

= Weight of internal fuel in slugs

= 153

M - Weight of external fuel in slugs
ef

= ni

M = Weight of drop tanks in slugs
dt

= 12.4

Moment of Inertia About Airplane X Axis in Slug-Feet 3--uared

10, 200 + 100 Mef

Moment of Inertial About Airplane Y Axis in Slug-Feet Squared

57, 000

Moment of Inertia About Airplane Z Axis in Slug-Feet Squared

60, 000 + 75. 0 (Mf + Mef)

Distance from Reference Point (35% MAC) to Center of Gravity, in Feet
d =

(Positive if c.g. is aft of Re*. - -

- 46.7 +0.453 M f - ^ (Mf) + K1

TT

where

Kx = 28.4 in slug-feet, drop tanks ON

= 0 in slug-feet, drop tanks OFF

f^M.) = Mass of internal fuel

274

APPENDIX IV

DISPLACEMENT ABOUT AXES EQUATIONS

Q = Pitch Angie with Respect to X Axis in Degrees

= 57. sj é dt

G = Rate of Change of Pitch Angle in Radians per second

= cos $ - r sin $

4» =-'Bank Angle with Respect to Y Axis in Degrees

= 57. 4 dt

$ = Rate of Change of Bank Angle in Radians per second

= p + ^ cos e

¥ = Heading Angle with Respect to Z Axis in Degrees

= 57. 3 \ 9 dt
•J

V = Rate of Change of Heading Angle in Radians per second

= Sec 0 r[cos sin 4*]

275

(159)

V.

APPENDIX V

AUXILIARY AERO EQUATIONS

Ma - Mach Number (160)

where a = speed of sound in speed per second.

a = Angle of Attack in degrees

= 57.3w/Vt

¡f¡ = Yaw Angle in degrees

.. - = » 57. 3 v/VT = - ß

where (3 = Side slip angle in degrees.

R/C = Rate of Climb in feet /min

= 60, 0[u sin 6 - cos 0 (v sin $ + w cos 4»)]= hp = H

where hp = Rate of change of pressure altitude in feet/min

H = Rate of change of altitude above use field in feet/min.

n = Normal Acceleration in G's '

Landing and Take off indications

Landed

Z
H = 0 and < 1 G

B = Ball Angle in degrees

= 57. 3 V /Z (air)
a' a

= - 57. 3 rVT/G (ground)

1^(V^) = Indicated Airspeed (shaft position in degrees)

= log + log p - A log +1.93X 10 ^ Ahp (162)

hp^ = Indicated Pressure Altitude in feet

= hp - Ahp + 855 Apo

276

where

Ahp = f42(hp)f4(hp)

Ap = Departure from standard barometric pressure (29. 92 indies of H^)

Ma = Rotation of Mach Dial Counter Clockwise from the Mach = 1. 0
1 opposite " Vi = 661 knots' Position in degrees

= fg(hp) - 0. 00278 Ahp

where

Ah = Indicated altitude position error correction in feet
P

= Magnetic Heading in Degrees - Position Eastward

= ♦ + A’t

where

^ = True heading in degrees - position eastward

A* = Magnetic variation in degrees - West variation positive.
East variation negative

277

APPENDIX VI

AERODYNAMIC HINGE MOMENT EQUATIONS

hmh

HM a

Cha

HM r

= Stabilizer Hinge Moment in Inch-Pounds

= 4050 qC
nH

= Stabilizer hinge moment coefficient

= -[o. 0111 af53(Ma) + 0. 025 í Hf54(Ma)j935f8(q)

= Aileron Hinge Moment in Inch-Pounds

5°o qCha

= Aileron hinge moment coefficient

= 0. 0136 afõ2(Ma) + 0, 013| óaj f51(Ma)

= Rudder Hinge Moment in Inch-Pounds

= 123 qCh
r

= Rudder hinge moment coefficient

- 0. 0225 6 (1 r
f43(Ma>f7(q)

(IS4)

(165)

(166)

278

!;
«
S

ff
lí

5
S

§
S

S
S

st
W

.5
0
5

CONTROL FORCES AND TRIM TERMS AND EQUATIONS

^SH C Forward and Aft Neutral (positive when forward)

(5^ = Sticks Deflection Left and Right of Neutral (positive when right)

ôjj - Stabilizer Deflection from Neutral (positive with leading edge up)

= Total Aileron Deflection from Neutral (positive with left aileron down)

öpR = Rudder Pedal Deflection from Neutral (positive with left pedal
forward)

0D = Rudder Deflection from Neutral (positive with rudder left)
rv

H
Total Stabilizer Stick Force Measured at a radius of 22. 75

T inches in pounds

= FH + 2. 85 (n - 1)

where

n = load factor in G's

(167)

1. Stick limits from rig 10° forward to 13° aft

2. Trim limits from rig 85° forward to 29° aft

3. Trim speed 1. 5° / sec of stick

4. Moment of inertia around the stabilizer stick pivot point 0. 422 slug - ft
2

F-p = Total Pedal Force at a Radius of 15 inches in pounds
F m r~ -ï

1 1 HM,
2 I - R|

FP 15 HMr
HMd I - 4330

K
when > 4330 (168)

= Fn when HMr ^ 4330

Fp + HMr (utility hydraulic system failed)

where

1. Pedal limits from rig 12. 5° forward to 12. 5° aft

2. Trim limits from rig 3. 8° forward to 3. 8° aft

3. Trim speed 0. 86° /sec of pedal

4. Moment of inertia around the rudder pedal pivot point,

0. 365 slug-ft2

öj = Speed Brake Deflection in Degrees

= f44(Ma) - f5(q)

<5j maximum - 50°

279

APPENDIX VH!

s
w

PLOTTING BOARD TERMS AND EQUATIONS

Ej - Eastward Position of Interceptor for Plotting Board Reference Point in feet

r . (169)

= 3Eidt+\

where E, = Rate of change of interceptor eastward position in feet/second

= (u Cos 0 + w Sin 0)Sin ♦

Ej = Initial position in feet
o

Ni = Northward Position of Interceptor for Plotting Board Reference Pound in feet

r . (170)
= V N, dt + Nj

^ 1 o

where Nj = Rate of change of interceptor Northward position in feet per second

= [u Cos e -f w Sin 0)Cos *

Nj = Initial position in feet

w.

280

UNCLASSIFIED

UNCLASSIFIED

