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FOREWORD
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ABSTRACT

The objectives of this program were: (1) to compile lists of materials presently
used or proposed for use in spacecraft — specifically, the Apollo, Mercury, Gemini, and
Dyna~Soar programs—and to assess the possible toxic properties and breakdown products
of these materials under thermal and other anticipated stresses and (2) to evaluate
methods for the detection and identification of space cabin contaminants for the purpose
of compiling the requirements, methods, and specifications on available instrumentation.
These in turn can serve as the basis for development of a compact kit for detection of
toxic off-gassing from materials employed in space vehicles.

For other than short duration missions, monitoring instrumentation must be
capable of the detection and identification of a wide variety of toxic contaminants, some
of which may not have been anticipated. A highly sensitive multiple gas detector, either
directly or in combination with a trace gas separation and concentration technique,
appears to be a desirable approach. Many of the comments on gases and vapors also
apply to particulate type-contaminants.
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INTRODUCTION

In a spacecraft with a closed and recirculated atmospheric environment, gradual
contamination of the environment by the accumulation of toxic gases, vapors and dust
particles may be expected under normal operating conditions unless suitable control
equipment is provided. This contaminant build-up problem is particularly complex
for long duration manned space missions.

In order to establish an atmosphere control regime, it is essential to identify
those materials projected for use in spacecraft which are potentially capable of evolving
toxic substances; to learn more about the characteristics of these evolved toxic sub-
stances; to devise methods of eliminating or reducing the accumulation of these sub-
stances to prescribed safe levels in closed environments; and to detect whether in fact
prescribed safe levels are being violated.

Listed below are several methods envisioned for control of toxic contaminants in
spacecraft atmospheres:

. Employment of devices for removal of the contaminants per se as they evolve,

. Construction of spacecraft using materials which are not toxic per se and
which do not outgas toxic contaminants,

° Limitation of the total amount of potentially toxic materials used in space-
craft construction, i.e., permit contamination within safe limits.

No doubt, for the present and immediate future, all three methods will be em-
ployed. But it is obvious that to insure the reliability of these methods, there is an
urgent requirement to obtain more information regarding the materials planned for
use in spacecraft as well as knowledge regarding the toxic properties of these mate-
rials and instrumentation for their detection.

Thus the objectives of this study were twofold and subdivided into two phases.
In Phase I, the objective was to determine as many materials as possible which were
being used or considered for use in spacecraft construction and to delineate the out-
gassing and/or other decomposition products under expected environmental conditions.
Having appraised the contaminants which might evolve from the various materials,
the Phase II objective was to compile methods for the detection and identification of
these contaminants as a basis for the development of a compact toxic instrumentation
kit for spacecraft applications. It should be noted that a well designed manned space-
craft will have equipment on-board to control the concentration of atmosphere contami-
nants. This of course does not preclude a build-up of contaminants due either to
partial or total failure of this equipment or the evolution of an unexpected toxic con-
stituent which the equipment cannot control. Thus, the requirements, methods and
specifications for suitable instrumentation must proceed on the basis of potential con-
taminants based on planned spacecraft materials without regard to the efficiency of
the contaminant removal equipment,




SOURCES OF CONTAMINANTS

The contaminants which may accumulate in the atmosphere of a manned space-
craft are derived from two principal sources: (a) biological and (b) materials and
equipment.

Since there is information presently available pertaining to the toxicity of the
various substances derived from human metabolic and waste products, it was decided
only to summarize these substances and to concentrate the Phase I efforts on evalua-
tions of material derived substances.

BIOLOGICALLY DERIVED CONTAMINANTS

Most substances which are evolved by man and animals as products of their
metabolism are predictable. Table 1 summarizes the substances which have been
reported. These are expected to vary appreciably, depending on vehicle type, length
of mission, and contaminant disposal techniques employed. The rates of output may
vary considerably as a function of such factors as diet, temperature and pressure.
Although the list seems impressive, perhaps only a relatively small number of human
waste products appearing in Table 1 demand serious consideration. Those that are
considered toxic under normal conditions and evolve from feces and flatus as well as
from urine are indicated in Table 2. The selection criteria, Table 3, was based on
the classification proposed by Hodge and Sterner (Ref. 1).

MATERIAL DERIVED CONTAMINANTS

Materials used in spacecraft construction present the other prime source of
potential toxic substances. A wide variety of materials (metals, plastics, rubber,
finishes, adhesives, etc.) have been used and are anticipated for use in manned space-
craft.

Metals

In general, because of their high vaporization temperatures, metals are con-
sidered to be relatively non-toxic except when contained in the spacecraft in the form
of dust or vapor. Table 4, based on data in Appendixes A through C and G.E. manned
space vehicle studies, lists the metals expected to be found within a typical spacecraft,
These metals, generally found in combination with each other, or as oxides, can be
considered as the basic materials from which the structure and equipment will be
manufactured.

These metals, with the exceptions noted in Table 4, are considered to present
no toxic hazard for use in a spacecraft environment. They generally have vaporization
temperatures well above expected ambient atmosphere temperatures, Oxidation of
these materials appears to pose no problem since the oxides are particularly stable
and will not outgas in the temperature/pressure environment expected,

Plastics

Plastic compounds of various types will be found in manned spacecraft. These
materials, fiberglass, phenolics, plexiglas, styrofoam and teflon, will be used as trim,

3




TABLE 1
HUMAN WASTE PRropucts (1)

Feces and Flatus

Indole Methyl mercaptan Amino acids

Skatole Nitrogen Ammonia

Paracresol Hydrogen Mucus
proprionic acid Proteoses Starch granules

Hydrogen sulfide Peptones Fats and fatty

Methane Peptides acild

Urine

Water

Solids

Inorganic Salts
Cations - Sodium, potassium, calcium, magnesium, ammonium
Anions - Chloride, phosphate, sulfate, cabonate

Organic Compounds - Urea, uric aclid, hippuric acid, crea-
tinine, indican, oxalic acid, allantoin, purine bases,
phenols, organic sulfates

Inorganic Compounds - Inorganic sulfates, sulfur dioxide

Explired Air

Oxygen Isoprene Furan

Carbon Dioxide Methanol Propilonaldehyde
Water Vapor Ethanol Dimethyl sulfide
Acetone Methyl furan Isovaleraldehyde
Acetaldehyde Carbon monoxide(z)

Sweat .

Inorganlic Salts
Cations - Sodium, potassium, calcium, magnesium, copper
manganese, iron
Anions - Chloride, sulfate
Organic Compounds - Lactic acid, glucose, urea, uric acid,
ammonia, creatinine, amino acids, phenol, histamine,
fatty acid esters.

(1) Condensed from Ref. 2 through 5.

(2) R. E. Forster, Per. Comm., Univ. of Penna., 1963.



TABLE 2%

TOXIC GASES AND VAPORS: HUMAN WASTE PRODUCTS

Substance MAC in ppm

Feces & Flatus¥*¥

Ammonia 100

Carbon Dioxide 5,000

Hydrogen Sulfide 20

Methyl Mercaptan 50
Urine

Acetone 400 -~ 1,000

Phenols 5

Sulfur Dioxide 5 - 10
Expired Air

Acetaldehyde 200

Carbon Dioxide 5,000

Ethyl Alcohol 1,000

Methyl Alcohol 200

Carbon Monoxide 100
Sweat

Ammonia 100

*Condensed from Table 1 - those compounds with MAC's under

10,000.

**Skatole, indole, paracresol and proprionic acld are toxlc

although not listed in the TLV tables,

TABLE 3

TOXICITY CLASSIFICATION

Toxlcity MAC in ppm
Extremely toxic 10
Highly toxic 10 - 100
Moderately toxic 10 - 1,000

Slightly toxic
Practically non-toxie
Relatively harmless

1,000 - 10,000
10,000 - 100,000
> 100,000




Metal

Aluminum
Antimony¥**
Beryllium**
Cadmium#*#*
Chromium¥#*
Copper¥#
Gold

Iron

Lead#®#*
Magnesium**
Manganese¥¥
Mercury**
Molybdenum¥#*
Molybdenum#*
Nickel
Selenium¥*
Silver
Tellurium*¥
Titanium

Zingk*

TABLE 4

EXPECTED METALLIC SPACECRAFT MATERIALS

Threshold Limit Value*
Mg . /M3

-
0.5

0.002

0.1 (as oxide)
0.1 (as Cr03)

- (Salts are known to be toxic)

0.2
15.0 (as oxide)

5.0

0.1

5.0 (Soluble compounds)

15.0 (Insoluble Compounds)

5.0 (As oxide)

*Threshold Limit Values for 1962. 24th Annual Meeting of the American
Conference of Govermmental Industrial Hygienists.

*%Known to be toxic (Ref. 6)

——————————



insulation, instrument faces, light structure, ducting, controls, switches, seats, food
containers, instrument panel faces, and electrical insulation.

The majority of the high molecular weight plastic compounds are inert and non-
toxic. However, frequently some unreacted material is present which may outgas
under certain conditions of temperature and pressure. In addition, plasticizers such
as tricresyl phosphate and camphor are toxic and may be volatilized if the material is
heated.

Rubber

Rubber will be used in the spacecraft in many forms as seals, insulation, pad-
ding, shock mounts, survival gear, elastic, control handles, etec.

Natural and synthetic rubbers are non-toxic at normal temperatures. Natural
rubber latex, however, contains ammonia which is released when heated. Neoprene
latex contains partly polymerized chloroprene which gives off a strong odor. Finished
rubber contains fillers, plasticizers, accelerators, anti-oxidants, retarders, vulcan-
izing agents and pigments. While most of these are innocuous, some might require
additional investigation for long term use in a closed environment.

Finishes

All finishes such as paint, varnishes, enamels and lacquers contain toxic solvents
(benzene, naphtha), Materials in the precured state are also hazardous.

Adhesives

Cements most probably will be carried in the spacecraft for making minor re-
pairs. These cements, made from plastic or rubber, contain volatile solvents such
as naphtha and toluene which can result in a toxic hazard during use and curing. Here
again, concentration will be important and must be investigated with respect to long
term continuous exposure,

Natural Fibers

Natural fibers such as cotton, flax and wool have had a toxic effect when inhaled
in quantity (Ref. 6). It would appear, however, that the fibers in the manufactured
product would not cause any irritation .

Lubricants

Petroleum products such as those which would be used for lubricating rotating
machinery, contain relatively high percentages of naphthenes and aromatic hydro-
carbons. While these components require relatively high concentration before be-
coming dangerous, it is conceivable that the increase in volatility of the substance
caused by heat or friction could, over a period of time, cause at least unpleasant
odors and visible fumes. Hydraulic fluids are known to be volatile and contain toxic
compounds. The high operating pressures of these fluids (1,000 to 3,000 psi) are such
that even minute leaks could create a toxic hazard by aerosolization.




Refrigerants and Heat Transfer Fluids

These fluids, notably freon, ethylene glycol, and alcohol can be expected to
create toxicity problems if released into the controlled environment.

Fire Extinguishants

Carbon dioxide is expected to be the principal agent utilized for extinguishing
internal spacecraft fires; however, other agents such as foams, dry chemicals (for
example, sodium bicarbonate) and vaporizing liquids such as halogenated hydrocarbons
are also available. Virtually all of the presently available agents are potential hazards
when introduced into a closed environment,

Table 5 (Ref. 7) lists various fire extinguishing compounds, with the approximate
concentrations at which they are lethal after 15 minutes of exposure. Since many of
these compounds have an anesthetic effect before becoming lethal, the Table also gives
the exposure times that the two vapor conditions take to produce anesthesia,

Contaminant Generation

Mechanical, thermal, and other stresses applied to materials may produce gases,
vapors, or airborne particulate matter. Smoke, dust and liquid droplets are examples
of particulate matter. The following are the stresses or mechanisms which are con-
sidered as significant to the generation of contaminants in spacecraft, Note that the
total quantity of contaminants generated may be limited by either the ambient environ-
ment as in evaporation and condensation or the amount of the material available as in
thermal decomposition.

Elevated Temperatures

An increase in temperature, such as would accompany a short circuit or fire,
would most certainly produce toxic fumes, gases and smoke from a number of organic
and inorganic materials found within the spacecraft. Only general statements can be
made regarding the thermal degradation products and decomposition temperatures of
many of the materials, in particular the plastics where the pyrolytic products depend
to a great extent upon the degree of polymerization and the cure and additives used.
Many polymeérs undergo slow self-polymerization even at ambient temperatures, so
that different decomposition temperatures may be obtained from various samples of
the same polymer.

Evaporation

Low ambient pressures affect materials in two ways: by evaporation of the mate-
rial or a volatile component of the material, and/or by removal of the layer of adsorbed
gas on the surface of the material. Sublimation and evaporation of materials are en-
hanced by the absence of an atmosphere in that molecules leaving the surface of the
material are not reflected by collisions back to the surface.

The evaporation rate of a pure material can be calculated fromkinetic theory
(Ref. 8) as follows:
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G-—-———— ——

17.14 T
where

= evaporation rate, g/(cm?) (sec)
molecular weight

absolute temperature °K

= vapor pressure, mm Hg at temperature T,

|l

W20
N

It is not expected that the rate of evaporation of most metals will be a significant
problem if the temperature is below 300°F, However, cadmium, zinc and mercury
will evaporate appreciably below this temperature. Magnesium would appear to be a
marginal material at this temperature.

Plastics, on the other hand, are more complex than metals because they con-
tain a variety of ingredients. Although the basic polymer of the plastic is not likely to
have a high enough vapor pressure to cause significant loss of material, some of the
other ingredients may. In particular, plasticizers used in many plastics have rela-
tively high vapor pressures; however, loss of plasticizer from a plastic is dependent on
the diffusion rate of the plasticizer to the surface, which may be slower than the evap-
oration rate of the pure material would indicate. .

For a given material, the saturated vapor phase that is in equilibrium with the
surface of the solid or liquid exerts a finite pressure; this pressure, possessed by all
liquids and solids, is the vapor pressure of the material. Moreover, if a material is
a mixture of several ingredients, each ingredient exerts its own finite vapor pressure.
The ingredients of such a material would, therefore, be expected to diffuse and escape
from the materials at different rates until such time that the vapor phase of each in-
gredient in the material is in equilibrium with the vapor of the same ingredient in the
ambient atmosphere. This, of course, assumes that the total pressure of the atmos~-
phere is greater than that of the vapor phase within the ingredient. If the vapor pres-
sure were higher than the total pressure, a condition of boiling would be obtained if a
liquid phase were present,

For total pressures of 5 to 7 psia as would be expected in a manned spacecraft
atmosphere, the steady-state total concentration of a specific contaminant resulting
from the outgassing of a particular material is independent of the quantity of material
available, and depends only upon an equilibrium condition between the vapor phase of
the contaminant in the material and that in the environment. Table 6 lists the vapor
pressure at approximate ambient temperatures for various toxic substances together
with a comparison of the corresponding concentration at maximum permissible ACGIH
limits. Note that if the rate of generation is low or the spacecraft not leaktight (a
normal condition), the concentrations noted for equilibrium conditions may never be
reached.

Recondensation

As noted above, whenever the vapor pressure of a substance exceeds the partial
pressure of that substance in its ambient, molecules escape from the material into the

10
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TABLE 6

VAPOR PRESSURE OF TOXIC SUBSTANCES

Substance

Acetaldehyde
Acetic Anhydride
Acrolein
Allyl Alcohol
Allyl Chloride
Amyl Acetate
Aniline
Benzyl Chloride
Butyl Acetate
Butylamine
Carbon Disulfide
Carbon Tetrachloride
Chloroform
Chloropicrin
Chloroprene
Cresol
Cyclohexane
Cyclohexanol
Cyclohexanone
o-Dichlorobenzene
p-Dichlorobenzene
1,1 Dichloroethane
1,2 Dichloroethane
1,2 Dichloroethylene
Dichloromonofluoro-~
methane
Diethylamine
Dimethylaniline
Dioxane
Ethyl Acetate
Ethyl Acrylate
Ethyl Alcohol
Ethylbenzene
Ethyl Bromide
Ethyl Formate
Ethylene Chlorohydrin
Ethylenediamine
Ethylene Dibromide
Furfural Alcohol
Heptane
Hexane

2

gl Temperature in ©C.
Vapor pressure in ppm (by volume) at temperature T and

Formula

CoH4KO
CMH603
C3Hu
C3HKO
CBHSCé
C-H
i
C H7Cl
Cimote
Cse11
cCl
CHC1s3
CC13N0p
C3H501
C-HZ0
Ciy
CgH1 20

760 mm Hg total pressure.
(3) ACGIH Threshold Limit Values for 1962 in ppm,

7(1)  vapor Pressure(2) TLV(3)
20.2 1,000,000 200.
36. 13,200 5.
3.5 526,000 0.5
33.k 52,600 2.
27.5 526,000 5.
35.2 13,200 200,
34.8 1,300 5.
22.0 1,300 1.
25.5 26,300 200,
32.0 26,300 5.
28.0 526,000 20,
23.0 132,000 10.
25.9 263,000 50.
33.8 52,600 0.1
37.0 1,000,000 25.
38.2 1,300 5.
25.5 132,000 400.
21.0 1,300 50.
38.7 13,200 50.
20.0 1,300 50.
39.0 6,600 75.
39.8 526,000 100.
29.4 132,000 50.
4i.o 526,000 200,
ho 4 13,200 1,000.
38.0 526,000 25,
29.5 1,300 5.
25.2 52,600 100.
27.0 132,000 400,
26.0 52,600 25.
34.9 132,000 1,000.
25.9 13,200 200.
21.0 526,000 200.
37.1 526,000 100,
30.3 13,200 5.
21.5 13,200 10.
32.7 26,300 25.
31.8 1,300 50.
22.3 52,600 500.
31.6 263,000 500.




TABLE 6 (Cont'd)

Substance Formula T(l) Vapor Pressure(e) TEV(3)
Hexanone C6H120 38.8 13,200 100,
Hydrogen Cyanide HCN 25.9 1,000,000 10.
Hydrogen Fluoride HF 19.7 1,000,000 3.
Iodine I 38.7 1,300 0.
Mesityl oxide CEHy 0 26.0 1,300 25.
Methyl Acetate C H682 24.0 263,000 200.
Methyl Acrylate CLHgOo 28.0 132,000 10,
Methyl Alcohol CHy 21.2 132,000 200,
Methylcyclohexane C7Hy 22.0 52,600 500.
Methyl Formate CoH)Oo 32.0 1,000,000 100.
a-Methyl Styrene BH h7.1 13,200 100.
Methylene Chloride C 2&9 24 .1 526,000 500.
Nitroethane CaH5N82 38.0 52,600 100.
Nitrogen Dioxide NOo 21.0 1,000,000 5.
Nitromethane CH3NO 27.5 52,600 100.
2-Nitropropane CH=zH ﬁOQ 28.2 26,300 25.
Octane 08§1§ 31.5 26,300 500,
Pentane CsHip 36.1 1,000,000 1,000.
Pentanone C5Hy 0 39.8 52,600 200.
Phenol CgH68 Lo.1 1,300 5.
Phosphorus trichloride P 13 21.0 132,000 0.5
Propyl Acetate C5H] 002 28.8 52,600 200,
Propyl Alcohol C3Hg 25.3 26,300 400.
Propylene oxide C3H60 34.5 1,000,000 100,
Pyridine C5HsN 24.8 26,300 5.
1,1,2,2, Tetrachlor-

oethane CoHoCly 33.0 1,300 5.
Toluene C7H 31.8 52,600 200.
Trichloroethylene 02H§13 31.4 132,000 100.
Xylene C8H10 32.1 13,200 200,

Elg Temperature in °C.
2

760 mm Hg total pressure.
(3) ACGIH Threshold Limit Values for 1962 in ppm.
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ambient. As the vapor pressure is a function of the temperature, if a volatile mate-
rial is heated, molecules can escape. However, if the temperature of the ambient
is lower, then the molecules will recombine and become airborne particulate matter.
In general, particles so produced are quite small with few larger than 0.1 microns
in diameter,

An example of this mechanism is the production of many airborne particles during
an electrical discharge (e.g., motor brushes, relay contacts opening), when the elec-
trode material is evaporated and recondenses into minute particles, Many particles
are also formed by this process during the smoking of cigarettes.

Mechanical Generation

This mechanism includes any action, either natural or man-made, by which par-
ticles are mechanically produced and distributed into the air, such as the rubbing and
consequent abrasion of two surfaces (such as cloth on cloth, causing lint). The par-
ticles generated by this mechanism are physically torn from the parent material and
dispersed into the air. Liquid sprays are also considered in this category. The
particles so produced are generally sized from 0.1 to 100 microns,

In determining the ease of production, the mechanical properties of the material,
such as crystal structure, density, and bonding forces, are important for the solids;
viscosity and density are the more important factors for the liquids.

Conversion of Gases

The formation of particles from the chemical change of a gas brought about by
oxidation has been demonstrated in the laboratory and in the free atmosphere, The
importance of this mechanism has only recently been realized. By chemical change,
gases in the air may form other compounds which tend to be solid or liquid under
normal pressure and temperatures. This process occurs for example in the smogs
of Los Angeles. An excellent example of this type of production is the conversion of
S09 gas into SOg by reaction with ozone and the subsequent formation of HoSO4 drop-
lets when water vapor reacts with SOg., By this process, very small droplets in the
range from 10-7 to 5 x 10~7 cm in diameter are produced.

Radiation

In discussing radiation damage to materials, it is convenient to consider three
broad material classifications: metals and alloys; organic materials such as poly-
mers, greases, and paint vehicles; and inorganic materials such as glasses or
ceramics,

Metals and Alloys. In general, metals and alloys are relatively resistant to radi-

ation damage. For the most part, only fast neutrons are effective in producing any
damage in metals. Electrons or beta particles, having low mass, do not transfer
sufficient kinetic energy to induce damage and gamma radiation, and being effective only
in producing ionization, do not affect metal properties.
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Organic Materials. Organic materials are notably susceptible to radiation damage.
Unlike metals, there is a definite molecular structure in organics which may be de-
stroyed and is not capable of healing through processes akin to annealing. It has
been shown repeatedly that radiation-induced damage is dependent on the total energy
absorbed, and sometimes on the radiation intensity, but rarely, if ever, dependent
on the type or source of radiation.

The types of damage produced in organics by irradiation are summarized as
follows: Polymers may be produced by chain scission and subsequent interaction of
active bond sites; graft polymers may be produced; long-chain polymers (rubber,
polyethylene, etc.) may be cross-linked to form rigid three-dimensional networks;
polymers may be degraded to reduce molecular weight, increase vapor pressure,
decrease viscosity, and decrease mechanical strength., Crystallinity in polymers
such as nylon, polyethylene and teflon is destroyed by radiation,

Inorganic Materials. Inorganic materials are generally resistant to radiation damage,
as are metals. This is undoubtedly due to the nature of ionic rather than covalent
bonding inherent in organic structures.

IRRADIATED MATERIALS EVALUATION

Although decomposition of materials to the point of changing their physical
properties occurs at radiation doses many times higher than those lethal to man,
outgassing of toxic gases may possibly take place at doses several orders of mag-
nitude less. During long-term missions, such as space station or planetary probe
operations, the spacecraft crew may take refuge in specially shielded chambers
when high intensity, high energy, short-term radiation is imminent, Thus the nor-
mal spacecraft living quarters could easily be irradiated with doses high enough to
cause toxic outgassing from materials.

Procedure

As previously noted, organic materials tend to have the least radiation resist-
ance in terms of physical properties. Among the organics, the plastics and elas-
tomers show a marked susceptibility to radiation. In general, plastics are more
resistant to radiation damage than are elastomers., Plastics may be exposed to 10
to 108 roentgens irradiation before a physical change appears, while elastomers can
only absorb dosages of up to 10° roentgens before being damaged, (Ref. 9). Bovey
(Ref. 10) has shown that when subjected to high dosage radiation, some plastics
(notably polymethyl methacrylate) will evolve Hp, CHy, CO, COg2,09 and other hydro
carbons,

In general, irradiation effects studies have been concerned with performance
degradation, reduction in mechanical or other properties, outgassing, etc., at high
dose rates, i.e., limit conditions. No data was found concerning the effect of mini-
mum of threshold dose rates. Therefore, it was concluded that an exploratory eval-
uation should be made of the effects of radiation on selected organic materials at
dose rates considerably lower than those which had been reported in the literature.
A dosage of 6,000 roentgens at a rate of 50 roentgens per minute was selected. This
dosage is one order of magnitude higher than man's LDy,

14
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Table 7 lists the four materials together with helium and paraffin samples,
which were evaluated as part of the study program. Since Kel-F is a fluorinated
compound, its container was lined with a high-purity paraffin. A sample of paraffin
alone was also included in order to evaluate, separately, the radiation effects on the
paraffin. The sample container used is shown in Figure 1. This glass type container
is used routinely for gas analysis at General Electric. The sample material is intro-
duced into the sample volume through the seal-off tube. Examination of the larger
glass tube affixed to the top of the sample volume will reveal a "break-off"" seal
approximately 20 percent of the distance up from the top of the sample volume. The
sample volume is evacuated through the seal-off tube following introduction of the
sample material. The volume is then recompressed to the desired pressure with
the specified gas or gas mixture. While maintaining these conditions the seal-off
tube is heated and pinched-off to effect a seal.

When it is desired to connect the sample volume into the analytical instrumen-
~tation complex, a thoroughly washed and cleansed steel plug is placed in the tube
above the break-off seal. The entire container is connected to the instrumentation
manifold by means of the 12-30 taper and the volume above the break-off seal evacu-
ated, The steel slug is then lifted magnetically and allowed to fall, fracturing the
break-off seal and thereby admitting the gas mixture, in the sample volume, into the
instrumentation manifold.

The glass containers were prepared by a thorough cleaning with a solution of
potassium dichromate and sulfuric acid followed by distilled water rinses and over-
night oven drying. The sample materials were shredded, where necessary, and intro-
duced into the sample volume through the seal-off tube. The container was filled to
7 psia (the expected total atmosphere pressure in a manned spacecraft) with an inert
atmosphere of helium. Helium was used in these exploratory tests to preclude mask-
ing of the offgassing products by high oxygen and nitrogen partial pressure concen-
trations. It should be noted that the use of helium in these exploratory tests thus did
not permit recombinations of some of the offgassed products with oxygen or nitrogen.

Gamma irradiation and subsequent gas analysis was accomplished at General
Electric's 15,000 curie cobalt-60 facility in Schenectady, New York. Figure 2 is
typical of the test set-up for the irradiation of the samples., The samples were ar-
ranged in a suitable rack at a specified distance from the radiation source. In the
lower center of the picture is the ion chamber for measuring the radiation dose rate.
Immediately after the irradiation, gas analyses were run on the samples using a GE
high resolution (250 unity mass) mass spectrometer,

Results

In Table 7 are the data from the mass spectrometer analysis of the material
samples selected. Data from both the control and irradiated samples are presented.
Quantities given are in mol %, (percentage concentration). The total sample volume
after expansion into the mass spectrometer was 250 cc. This volume, with the pres-
sures as noted, and with the concentration levels indicated, can be used to compute
approximatel y the actual quantity of gas generated.
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SEAL-OFF TUBES

Figure 1, Sample Container
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Offgassing of significance, after irradiation, occurred in only two instances.
One — carbon dioxide from Kel-F, 70 ppm — is of relatively little importance; the
other — chlorinated hydrocarbons from Kel-F, 170 ppm — is of importance. Kel-F
is employed as electrical insulating material under elevated thermal environments;
MAC's among chlorinated hydrocarbons range as low as 25 ppm.

However, the volume of the sample container was about 60 ml, half of which was
occupied by loosely packed sample materials either in powder form or as finely cut up
pieces. Assuming a packing factor of 0.5, the total volume occupied by gas was about
37.5 ml, Assuming further the maximum dimensions of sample pieces to be 1 cm x
1/2 em x 1/10 em, 12.5 cc of sample has an approximate area of 325 sq. cms, Thus,
a minimum of 325 sq. em, of sample participates in the offgassing process into a
volume of 37.5 cc, a condition much more severe by several orders of magnitude than
would be encountered in the interior of a manned space vehicle,

From the foregoing paragraph, it might be assumed that off-gassing from irra-
diated materials is not a problem. However, it would be presumptuous to make this
assumption without a full scale study, involving irradiation of many more materials,
in both oxygen and nitrogen atmospheres.

THERMAL DEGRADATION

Materials proposed for use in spacecraft may be divided into two broad classes,
metals and non-metals. From the point of view of thermal degradation, metals may
be considered as inert under expected thermal environmental conditions for manned
spacecraft and therefore may be omitted from further discussions. :

Among the non-metals, few natural products such as latex, natural fibers, and
leather are likely to find spacecraft applications. Other non-metallics such as ceram-
ics, inorganic coatings, and glasses are well known for their inertness even at elevated
temperatures and for this reason should not cause any concern. The main source of
possible toxic contaminants are the varicus polymeric materials together with the
additives, solvents, plasticizers and catalytic agents used in their manufacture.

The tentative materials for manned spacecraft, Appendices A, B, and C, contain
large numbers of such polymers. Their use is quite varied — from structural mem-
bers to potting compounds, electrical wire insulation, coatings, enamels, varnishes,
items of clothing, utensils, and a host of other applications too numerous to mention,

Polymer Breakdown Mechanism

Degradation of such polymeric materials takes place continuously, even at ordi-
nary temperatures. With temperature rise the degradation is accelerated. The mech-~
anism of such degradation is quite varied and is also temperature dependent. At lower
temperaturesj, loss of volatiles usualliy occurs first. This may be coupled with very
slow additional cross-linking and perhaps some oxidation at or near the surfaces ex-
posed to an oxidizing atmosphere such as air. This process is commonly referred to
as aging., At low temperatures, most large polymer molecules are relatively stable.
Thus during aging very little evolution of low-molecular weight gases may be expected
to take place. Any gases evolved during aging are usually low boiling point solvents
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and water vapor., The mechanism of gas evolution under such conditions is essentially
that of diffusion of gases through solids and through any pores and gas pockets that
may be present.

At higher temperatures, in addition to above processes, depolymerization of the
polymers into the constituent monomers may also take place. Their evolution will de-
pend primarily on their vapor pressure and to some extent on the diffusion.

At still higher temperatures the monomeric substances may undergo partial
decomposition, chemical reactions may take place between such fragments and the
parent polymer, the products of the condensation reactions may be evolved, and oxi-
dation may take place at a much higher rate., Increasing the temperature still further,
the polymer may break down in random fashion into larger molecular forms which may
further decompose or react with each other to form a whole spectrum of chemical

compounds,

At very high temperatures some polymers carbonize with almost complete loss
of hydrogen and other groups. Other polymers decompose completely without leaving
residues,

The exact mechanism of polymer breakdown depends primarily on the molecular
structure (Ref. 12). For instance, the breakdown of simple vinyl polymers takes
place in accordance with various mechanisms as follows:

a. Breakdown of the chain into a molecular spectrum having from one to about
50 carbons, An example of such a polymer is polymethylene. After an
initial step of degradation has taken place, resulting in the formation of
some free radicals, the main process of degradation depends on a transfer
of the free~radical activity through hydrogen abstraction.

b. If some of the hydrogen in the polymer chain is replaced by some other
atoms or radicals the displacement of hydrogen by intramolecular abstrac~
tion at the site of scission becomes more or less limited. As a result
some scission reactions cause free radical formation which can unzip into
monomers, can react further with the polymer or other radicals. In case
of vinyl polymers the monomer yield is quite high, Table 8 Ref. 12) lists
the half-life (Tp,) and monomer yields of a number of polymers pyrolized in
a vacuum at temperatures below 600°C, Polystyrene, which is really a
polymethylene in which one of the hydrogen atoms is replaced by a phenyl
group, yields on pyrolysis below 600°C, 40% monomer.

c. Breakdown by a mechanism yielding almost 100 percent monomer.

Polymers,in which one of the hydrogens on alternate carbons is substituted
by a methyl radical and the other hydrogen by some other, still larger
group such as phenyl or ester, decompose into free radicals which in turn
unzip into monomers. This action is due to steric hindrance which pre-
vents intramolecular hydrogen transfer by blocking of scission sites by
these large groups. Methyl methacrylate and alpha - methyl styrene
polymers belong to this category. These polymers when heated at temper-
atures to 500°C, decompose almost completdly into monomers. In case of
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polytetrafluoroethylene (Teflon), which also yields monomers on thermal
decomposition, steric hindrance is not involved., The carbon-fluorine
bond is much stronger than the carbon-hydrogen bond, the result of which
is a chain scission into free radicals which unzip into monomers.

TABLE 8

HALF-LIFE (T,,) AND MONOMER YIELD IN THE
PYROLYSIS OF SOME POLYMERS

Polymer Th Monomer
Polytetrafluoroethylene (teflon) 509 >9
Polymethylene Liy Trace
Polytrifluoroethylene 1o 0
Polybutadiene Lo7 2
Branched Polyethylene Lok Trace
Polypropylene 387 0.2
Polychlorotrifluoroethylene(Kel-F)| 380 27
Poly - #-deuterostyrene 372 39
Polystyrene 364 40
Poly-a-deuterostyrene 362 68
Poly-m-methylstyrene 358 45
Polyisobutylene 348 20
Polygmethyl acrylate) 328 Trace
Poly(methyl methacrylate) 327 91
Poly-a-methylstyrene 286 >95

* In weight percent of total volatilized part.

d. Breakdown into large chain fragments and small molecules, not particu-
larly related to the structural unit of the polymer. A typical example is
methyl methacrylate, which when pyrolyzed at temperatures below 500°C
yields mainly carbon dioxide and methyl alcohol. Other examples are
vinyl chloride, vinyl fluoride, vinylidene fluoride, and acrylo-nitrile
polymers. The chloride, the fluoride, and the nitrile polymers decom-
pose to yield, in addition to large polymer fragments, HCl, HF, and HCN,
respectively.

Only a very crude estimation of off-gassing from inspection of chemical composi-
tion is possible in terms of the kinds of molecules that could possibly be generated
during the breakdown of polymers. Thus polymers containing chlorine may evolve
hydrogen chloride and possibly, phosgene. Polymers containing nitrogen may evolve
ammonia and various oxides of nitrogen. In general hydrocarbon type polymers will
give off various hydrocarbon products of degradation such as methane, ethylene, and
longer chain hydrocarbons., For ready reference, Appendix E lists the chemical com-
position of the more important polymers likely to be used in manned spacecraft.
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Test Method

Studies of the thermal degradation of polymers are performed by pyrolyzing
representative samples. Reliable and reproducible measurements are obtained only
through careful control in sampling and pyrolysis, and high precision in detection of
the weight loss and in the separation and identification of the volatile constituents.
The slow process of diffusion of degradation products through the viscous mass of
the decomposing polymer must be considered in the sampling step and in the choice
of pyrolysis technique. As the pyrolysis temperature is increased, viscosity is
lowered but reaction between the pyrolysis products may be accelerated, Under
most conditions, thin films give best results. The type of information desired,
whether it is identification of a polymer or the analysis of the gaseous products, de-
termines whether pyrolysis should be performed on a hot filament or in a tube fur-
nace. Extensive use has been made of trapping the volatile decomposition products.
However, for determination of the composition of the volatiles, gas chromatography,
mass spectrometry, or their combination have proven to be the most powerful methods.

For screening purposes the thermogravimetric analysis (TGA) has found almost
universal acceptance. In this method weight loss, continuously measured versus time

or temperature, provides a rapid method for following the degradation of polymers over

a wide temperature range. Detailed degradation kinetics and mechanism investigations
can be made conveniently by thermogravimetry, since conditions for vigorous iso-
thermal degradation studies can be quickly selected. Hot-filament pyrolysis is very
useful in identification of pyrolysis products. This method can be applied in conjunc-
tion with mass or infrared spectroscopy or gas chromatography.

Relative Stability of Polymers

For polymers that vaporize almost completely on pyrolysis at temperatures
below 600°C, the relative stability may be established by heating them under exactly
the same conditions for a specified period of time and comparing the amount of sample
volatilized. Figures 3 and 4 (Ref. 11) show experimental data obtained during vacuum
pyrolysis.

Each circle represents a separate experiment of 30 minutes duration at the
indicated temperature. The curves, with the exception of vinyl chloride, vinylidene
fluoride, and acrylo-nitrile polymers, have generally the same shape, and the rela-
tive thermal stability of the represented polymers is quite obvious. However, another
convenient method of representing relative thermal stability is to compare character-
istic temperatures (T}) which is the temperature in degrees C at which 50% of the
original polymer weight is lost. A series of polymers arranged in the order of their
decreasing thermal stability, based on Ty, values, is shown in Table 8.

Polymers such as polyvinyl chloride, polyacrylonitrile, and polyvinylidene
fluoride, which develop cresslinking during pyrolysis, or polytrivinylbenzene, which
is highly crosslinked initially, do not vaporize completely. In such cases a more
appropriate scale of comparison would be the amount of residue remaining after
pyrolysis and the extent of carbonization of the residue.
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Breakdown Products

Madorsky and Straus (Ref. 12) performed an extensive study of polymer degra-
dation at temperatures up to 1200°C. The study included identification of the constitu~
ents of degradation products, determinations of fraction of the samples volatilized at
various temperatures, and obtaining the rates of degradation of the polymers under
investigation. The representative polymers studied were:

a. Polyester (Vibrin 136A), consisting of equal parts by weight of maleic
anhydride and triallyl cyanurate, with tertiary butyl perbenzoate as the
curing agent,

b. Epoxy (Epon 1310) which is a condensation product of epichlorohydrin with
a polyphenol containing 3 to 4 phenolic groups per molecule and having a
molecular weight of 200 per epoxide group. Boron trifluoride was used as
the curing agent.

c. Phenolic (phenol-formaldehyde resin).

d. Silicone with methyl and phenyl groups attached to silicon atoms in a
silicon-oxygen chain,

e. Polyvinylidene fluoride polymerized by y-~radiation.

f. Polytrivinylbenzene.

g. Polyacrylonitrile.

h. Polymethylene.

i. Copolymers of styrene with divinylbenzene and trivinylbenzene,

Tables 9 through 14 illustrate typical results. Note that the component quanti-
ties vary as a function of pyrolysis temperature.

In still another comprehensive study of thermal degradation of polymers, Grund-
fest (6) (Ref. 13) reported results shown in Tables 16 and 17, Table 15 identifies the
polymers investigated.

In June 1958, the Pyrolysis Task Group of the ASTM E-14 Committee on Mass
Spectrometry prepared an annotated bibliography on the subjects of pyrolysis and
depolymerization. This bibliography is reproduced herein for reference purposes in
Appendix F. A more recent and more inclusive bibliography on the subject of degra-
dation of materials was also prepared and is included as Appendix G.

One factor common to past studies of the thermal degradation of polymers is
the relatively high temperatures involved as compared to those existing within a manned -
spacecraft. No data at ambient temperatures and in the presence of high oxygen con-
centration atmospheres was discovered. The high temperature data is significant,
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however, in revealing the probable toxic contaminants which may be generated at
lower temperatures even though the rate of generation may be such that no problem

is anticipated.
PROPOSED SPACECRAFT MATERIALS

Current Programs

Listed in the Appendix are specific materials which have been indicated for
potential use in the following spacecraft:

*  Apollo ~ Appendix A
Mercury - Appendix B
*  Dynasoar (X-20) - Appendix C

The information obtained was qualitative in nature rather than quantitative, With
quantitative information, it would have been possible to assess the probable rate of
accumulation of the toxic products of these materials. Unfortunately, quantitative
materials data have notbeencompiled by any of the sources contacted. Moreover, the
data as available were incomplete and no assurances could be given that all of the
materials listed would be finally approved for use.

TABLE 9

THERMAL DEGRADATION OF POLYMERS
IN A VACUUM AT VARIOUS TEMPERATURES (REF, 12)

Temperature of Pyrolysis, ©C

500° 800° 1200°
Polymer Vol™ M*® [ Vol M Vol M

% % %

Vibrin 83 73 | 89 49 | 93 39
Epoxy 75 146 86 171 87 36
Phenolic 28 76 47 24 48 4
Poly(vinylidene fluoride) 76 29 85 29 90 29
Polytrivinylbenzene 55 162 68 57 63 40
Polymethylene 100 583 98 230 98 30
Polystyrene*** ——— | e—— 100 141%%*% . -—

*Wol - stands for volatllization in percent of sample.
*¥M - stands for average molecular weight of all volatiles.

***giggres for polystyrene are based on results of pyrolysis at
50°cC.
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TABLE 10

ANALYSIS OF VOLATILE PRODUCTS FROM PYROLYSIS
OF THERMOSET PLASTICS IN A VACUUM AT 1200° (Ref, 123

Component * Vibrin Epoxy Phenolic

% % %
H, 1.3 2.1 2.8
Cco 7.2 25.9 2.2
COy 29.4 1.8 1.2
CH), 3.4 4.3 h.9
CoH, 0.1 2.5 1.9
CoH), 14.8 3.0 1.6
CHy 0.1 0.4 0.3
C3H6 1.6 0.1 0.8
CyHg 1.4 0.2 0.1
CHg 1.3 0.6 0.9
CeH, 4.7 8.1 9.0
C7H8 0.1 0.1 1.5
Vpyr 38.2 50.9 72.8
Total ;I;;:;_ ;};;};_ 100.0

V& ot Sampie 93 87 48

* Amounts of components are

of total volatilized part.
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TABLE 11

ANALYSIS OF VOLATILE PRODUCTS FROM PYROLYSIS
OF POLYTRIVINYLBENZENE IN A VACUUM (Ref, 12)

Temperature of Pyrolysis

Component¥
500° ¢ 800° ¢ 1200° ¢

% % %
H, 0.1 2.1 3.3
CH), 1.7 5.0 4.8
CoH, - --- 3.3
CoHy 1.8 0.7 3.3
CoHg 1.5 0.9 0.1
C3H)y 0.1 0.1 ——
C3Hg 1.0 1.4 0.1
C3Hg 0.8 0.3 0.1
CyHg 0.8 0.2 0.1
C5Hig 0.1 0.1 -——
CeHg 0.1 0.2 4.0
CrHg 0.2 0.4 0.3
CgHg 0.1 0.1 -
CgHy g 1.2 0.8 -
CoHyg 0.8 0.2 ———
CoHyp 2.4 1.0 ———
C1oH1y 1.9 0.4 ——-
Cii1Hyg 0.6 0.1 —
Vpyr** 84.8 86.0 80.6
Total 100.0 100.0 100.0

Vélggiéigzggon’ 55 68 63

* Amounts of components are glilven in welght percent of total

volatilized part.

*¥Pyrolysis products not volatile at room temperature,
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TABLE 12
ANALYSIS OF VOLATILE PRODUCTS FROM PYROLYSIS
OF POLYMETHYLENE IN A VACUUM (Ref. 12)
Temperature of Pyrolysis
Component*
500° € 800° ¢ 1200° ¢

% % %
H, —- 0.1 1.5
CH)y, --- 0.4 5.8
CoHo ——— 0.1 4.9
CoH), 0.1 2.7 40.1
CoHg == 0.1 0.7
C3H4 - 0.1 5.6
C3Hg 0.1 1.9 11.4
C3Hg 0.1 0.2 0.5
CyHy ——- --- 2.9
CyHg 0.1 0.5 7.7
CyHg 0.1 1.7 2.7
CyH1o 0.1 0.1 -
CoHe ~—- —-- 1.1
CgHg --- 0.5 2.0
CgHg - , 0.1 1.6
C6H10 0.2 0.4 _——
CeHyo 0.4 l.2 -
CgHyy 0.2 0.3 ---
Colyp 0.2 0.3 0.5
C7Hy 0.7 1.2 -—-
C7H16 ‘ 0.4 0.2 -

*Amounts of components are given in welght percent
of total volatilized part.
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TABLE 12 (Continued)

ANALYSIS OF VOLATILE PRODUCTS FROM PYROLYSIS
OF POLYMETHYLENE IN A VACUUM (Ref. 12)

Temperature of Pyrolysis
Component¥* 5
500° ¢ 800° ¢ 1200°
% % %
CgH _— 0.4 ——
8%16
CgHig — 0.1 —
CoHyg - 0.1 _—
Vpyr ** 97.3 87.3 11.0
Total 100.0 100.0 100.0
Volatilization, %
of Sample 99.2 99.8 98.3

* Amounts of components are given in welght percent
of total volatilized part.
*%#Pyrolysis products not volatile at room temperature,
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TABLE 15
MATERIALS STUDIED (Ref. 13)

% of Resin

by wt. Symbol
CTL-91LD on glass
(Commercial high temperature phenolic resin) (22) (CTL)
Taylor Phenolic (Electrical grade on glass) (4h) (Taylor)
Melamine on glass
(Textolite 11508) (46) (Melamine)
Epoxy on glass
(Shell 82%) (45) (Epoxy)
Novolac epoxy on Refrasil (46.6) Novolac R
(Dew 2638.,1)
Novolac epoxy on Asbestos (42) Novolac A
(Dew 2638.1)
Polyester (Vibrin 1068) 100 Polyester
Nylon 100 Nylon
Treated nylon 100 Nylon T
(impregnated with phosphotungstic acid)
Cotton 100 Cotton
Treated cotton 82 Cotton T

(impregnated with phosphotungstic acid)
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TABLE 16

CHAR AND GAS PRODUCED IN TUBE FURNACE EXPERIMENTS (Ref. 13)

Resin

CTL

Taylor

Melamine

Epoxy

Novolac R

Novolac A

Polyester-

Nylon

Nylon T

Cotton

Cotton T

Tem
Cc)_

L60
500
560
610
650
700
720
800
900
1000
1000

500
720
1000
500
600
800
1000

600
800

600
800

600

600
800

600
800

600
800

800

Char

@

84.37
73.32
68.19
65.27
61.46
60.19
61.88

33

Relative
Vol Gas

9

15.
13.
.81
34,
38.
39.
38.

31

63
4o

27.9

28.
31.
37.

22,
37.
37.

6.
15.
21.
31.

33.
8

Average
N, W,

22,
18,
16.
10,
11,
10,
11.

7.
19.
15.
10.

20,
20,
10.
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W =
H\0
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FNO 00OV OEWWUT I MW
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(0

o

Tar

11.27

11.59
16.06

12.9
7.52

18.74
16.90
19.86

51.71

71.04

69.53
61.47

49.17

80.41

59.66
bs. .47

76.65

91.76
X

65.82
27.47

65.63
8.36

13.63




Resin

CTL

Taylor

Melamiline

Epoxy

Novolac R

Novolac A

Polyester

Nylon

Nylon T

Cotton
Cotton T

TABLE 17

MAJOR GASEOUS PYROLYSIS PRODUCTS (Ref. 13)

Temp.

L60
500
560
610
650
700
720
800
900
1000
1000
500
720
1000
500
600
800
1000
600
800

600
600

800

600
600
800
600
800
600

600
800

% Hp % CO % COp % CH
23.15 63.94 4 ouy 6.61
25.22 20.17 6.73 17.64
37.43 25.15 5.93 21.06
56.38 13.09 6.26 21.6
59.39 15.76 6.66 17.58
57 .69 20.39 X 16.43
L6,.53 18.83 2.77 16.62
72.99 11.26 2.18 11.43
33.16 55.28 4,15 5.40
ho .74 4o, 74 2.22 7.41
54.80 17. 1.47 12.64
21.76 10.12 15.38 25.02
49,54 17.54 2.99 21.67
65.84 23.23 3.09 ———
(22% ethane, 70.48% NH3, 6.5% CH3CH, CH30H)
13.33 22.93 28.67 14.33
27.14 15,08 21.72 15.08
28.27 18.49 23.92 8.92
7.68 24 L9 31.06 $1.7% acrolein)
35.41 11.36 19.26 (6.6% acrolein,
4% acetone)
24 2k ——
11.06 36.09 32.40 (5% acrolein,
1.44% acetone)
34,88 _—— (8.0% acrolein,
9.8% acetone)
3.29 9.10 58.42
18.18 (analyses poor)
14.16 25.66 10.62 14.16
(12.39% Ethylene)
9.52 (analyses poor
37.71 22.38 6.56 ) 8.66
9.5 35.63 26.13 9.26
2.39 58.80 33.43
14.86 60.45 22.16
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The Life Sciences Group of the North American Aviation Corp. has compiled
a list of materials, Appendix A, which are being considered for the command module

of the Apollo spacecraft. This list is approximately 50 percent complete. Outgassing
studies have been initiated by North American which are limited to a literature search

effort, Beginning in January or February 1963 actual testing of the materials will be
undertaken, utilizing gas chromatographic techniques.

The Boeing Company has compiled a list of materials, Appendix C, which had .
been arbitrarily selected and were not specifically identified for use in the X-20 pro-
gram. This list is estimated to be approximately 30% complete. In the development
state of the X-20 program, toxicity investigation is being limited primarily to an
analysis and literature search., During preliminary flight rating tests of flight proto-
type hardware, subsystems and components will be checked for evolution of noxious
or toxic products. The Boeing Company has, however, done some laboratory inves-
tigations of the thermal decomposition products of selected materials by means of
the thermogravimetric analysis (TGA) method. The data from these studies are pre-
senfed in Appendix D.

The Materials and Processes Group of the McDonnell Aircraft Corp. has been
engaged in materials toxicity investigations since 1959. Their technique has been
6 determine the temperature limits of selected materials in a 100% oxygen
and 5 psia environment for 24 hours continuous usage without producing any of
the following:

*  Irritating or obnoxious odors - "sniff"' tests were conducted on the effluent
of the materials,

+  Toxic gases - no animal tests were conducted, In general, the gases were
classified as toxic if the odor was irritating. (Note: This is not considered
an acceptable test for toxicity.)

. Chemical deterioration (oxidation).

Spontaneous flash fire or explosion due to gaseous products or the solid
materials as such.

Additional tests were conducted by McDonnell to determine the physico-chemical
effects of HpOq spillage on selected mon-metallic materials. This test reflects the
concern about the reactions of H9Oo, used in the Mercury attitude control system,
with other spacecraft materials. The data obtained as a result of these evaluations
are included together with the lists of materials in Appendix B, This list is esti-
mated to be 65% complete.

As previously noted, the quantities of the various materials noted in Appendices
A through C for each corresponding spacecraft are not currently available, Without
reference to specific hardware, it is impossible to determine a precise and com-
pletely meaningful weight breakdown analysis by material type. As an approximation,
qualitative data for types of equipment can be generated for estimating purposes. For
example, electronic type instruments may be considered to be composed of materials
as shown in Table 18, Thus, for a four man orbiting space station containing about
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TABLE 18

COMPOSITION OF ELECTRONIC EQUIPMENT(I)

Materials

Welght 1in Grams
per Kilogram

Metals

Alloy resistance wire (Evenohm)
Ahmnmmgmmnummm
Aluminum (anodized)
Brass

Chromium

Cobalt

Copper

Copper (tinned)
Ferrous metal
Ferrous metal (hi mu)
Germanium 2?

Gold

Lead

Manganese

Molybdenum

Nickel

Selenl

S111con(2)
Tantalum(2)

Tin

Non-Metals

Carbon(z)
Ceramlc
Epoxy &Hysol)(3)
Epoxy (MPC 52 w/ceramic speres)
Formex (insulating enamel
Glass
Glass (fiber)
Kel-F (plastic)
Mylar (metallized)(2)
Plastic (misc.)
Teflon
Miscellaneous

Total 1,000

(1) Materials breakdown averaged across three typilcal
electronic chasslis designed for flight in Project
"Advent",

223 Encapsulated, as in transistors, capacitors, etc.
Large surface area.




TABLE 19

SUBMARINE ATMOSPHERE CONTAMINANTS

Compounds Identified or Suspected in Submarine Atmospheres

Compound Chemical Suspected
Formula Source Remarks
Acetylene CoHy
Acrolein CH,CH CHO Cooking
Arsine AsH3 Battery Gassing
Ammonia NH3 Scrubbers
Carbon Dioxide 002 Breathing
Carbon Monoxide co Smoking
Chlorine Cl, Chlorate Candles
Ethylene CZH4 Polyethyl?n?
Decomposition
Formaldehyde CH,0 Cooking, Combustion
Freon-12 CCle2 Air Conditioning See also HCI1,
HF, and COCl2
Hydrocarbons -- Paints
(other than CH4)
Hydrogen H2 Battery Gassing
Hydrogen Chloride HC1 Freon Decomposition
Hydrogen Fluoride HF Freon Decomposition
Methane CH, Sanitary Tanks
Methyl Alcohol CH30H
Monoethanolamine HOCH)CH,NH,CO,, Scrubbers
Nitrogen N,
Nitrogen Dioxide NO, Burners, smoking
Nitric Oxide NO Burners, smoking
Oxygen O2
Ozone 03 Precipitators
Phosgene 00012 Freon Decomposition
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TABLE 19

SUBMARINE ATMOSPHERE CONTAMINANTS (Cont'd.)

Compounds Identified or Suspected in Submarine Atmospheres (Cont'd.)

Compound Chemical Suspected
L Formula Source Remarks
Stibine SbH3 Battery Gassing Highly
unstable
Sul fur Dioxide 802 Oxidation Sanitary
Tank Gases
Triaryl - Compressors
Phosphate
(NOTE 4)
Compounds Qualitatively Identified in Trace Amounts
Material Chemical Material Chemical
Formula Formula
Arsine AsH3 Propane C3H 3
Benzene C6H6 Pseudocumene 1,2, -(CHB)C6H3
1-3-Dimethyl-5- Sulfur Dioxide SO,
ethy l-benzene 1,3-(CHg),-5-CoHsCgHy Toluene CgH5CH4
Ethylene 2Hy, O-xylene 1,2-(CHs )2 6}14
p-Ethyl Toluene 1,4-CH3C,H5CE6H,, m-xylene 1,3- (CH3)206H4
Freon-114 CF,C1CF,Cl p-xylene 1,4-(CHy),CcH,
"Gasoline Vapors" -
Hydrogen Chloride HCL
Mesitylene 1,3,5~(CH3)3CgH4
Compounds Suspected as Present But Not Identified
Material Chemical Formula Suspected Source
Formaldehyde HCHO Oxidation of Methyl Alcohol
Mercury Hg Meters and gauges
Ozone 04 Electronic/electrical Equipment
Acrolein CH,CHCHO Cooking fats and greases
Phosgene COC1l2 Degradation of Freon
Hydrogen Sulfide H2S Waste tanks
Radon, etc. Rn Luminous dials
[Cellulube 550 (triaryl Phosphate) Hydraulic fluids
Sodium Bisulfate NaHSO4 CO2 scrubber
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300 lbs. of internally located electronic equipment, some 127 lbs. of material (from
which toxic contaminants may be generated) may be included. Note that the majority

of these objectionable materials are plastics and mainly epoxy base resins. Actually
the quantity required to contaminate the spacecraft atmosphere may be small (assum-
ing no atmosphere leakage). Thus,assuming a 1000 #t3 free volume enclosure and
using the data of Table 10, the degradation of greater than 0. 06 1bs. of epoxy would
result in a carbon monoxide concentration exceeding ACGIH limits. The above table.
illustrates the degree to which equipment materials must be considered if toxic hazards

are to be eliminated.

Submarine Atmosphere Contaminants

Naval submarine activities have long been confronted with problems of con-
tamination of submarine atmospheres. The more recent development of the nuclear
submarine has, because of its long range capability, introduced habitability problems
that had not been encountered previously. An intensive atmosphere test program was
therefore set up in 1956, References 14 through 16 indicate the results of this pro-
gram,

Table 19 (Ref. 14) gives evidence of the broad spectrum of contaminants that have
been found or suspected to occur in nuclear and fleet submarines. Although problems
of the submarine and manned spacecraft are divergent in many respects, they parallel
each other in a number of ways. It is therefore expected that many of the contaminants
contained in submarine atmospheres, particularly nuclear powered, will also be present
in manned spacecraft.

An interesting point noted in Reference 16 emphasizes the need for toxic con-
taminant monitoring in spacecraft. This is in reference to the fact that the toxic
contaminant control equipment on-board the spacecraft may, in its operation, cause
the generation of toxic contaminants, Catalytic burners using Hopcalite are commonly
used in submarines (and spacecraft) for control of CO and Hy and for removal of many
organic contaminants, However, if freons are present, hydrogen fluoride is formed
as a product of the catalytic combustion to the detriment of crew and equipment.
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DETECTION AND IDENTIFICATION METHODS

In the selection and design of equipment to detect and identify potentially
hazardous materials which may be present in spacecraft atmospheres, several con-
cepts must be examined. The final selection will depend upon such factors as the
extent of equipment required for removal of the contaminants, the type and extent of
identification required, the power, weight, and volume which can be allocated for such
instruments, the degree of reliability required, and the extent of participation of the
occupant in preparation of such equipment and evaluation of results, As described in
Section 2.0, the hazardous materials will be present in two general forms, gases and
vapors, or particulate matter.

GAS AND VAPOR CONTAMINANTS

The toxic vapor detection and identification methods employed for a specific
space mission will depend to a great extent on the duration of the mission and second-
arily on whether the mission is earth orbijtal or interplanetary, Toxic gas monitoring
instrumentation could vary from no instrumentation or at most one or two specific gas
sensors during a short mission such as a ballistic shot or earth orbital flight, to
highly sophisticated laboratory-type analytical equipment carried in massive manned
space stations over mission periods of many months., The decision to carry certain
sophisticated multiple-gas type instrumentation might depend on the particular stress
the spacecraft is expected to encounter; for example, high intensity ionizing radia-
tion. In this connection the height of the orbital path above the earth during a sus-
tained earth orbital mission could in a large measure determine the extent of the
instrumentation.

For these reasons, in the discussion to follow covering multiple-gas detectors
and specific gas detectors and even more extensively in the section covering instru-
mentation specifications as the basis for a compact toxic gas monitoring kit, mission
type and duration will be a strong factor. Note also that vapor is synonomous with
gas insofar as detection and identification are concerned.

Multiple Gas Instruments

The term multiple gas detector is here used to define a single instrument

whose theory of operation makes it capable of detecting, identifying and making

- quantitative determinations of two or more gases. Generally, a multiple gas
detector can make determinations of more than two gases, usually upwards of
five gases. Several of the multiple gas sensors, among them the mass spectrometer
and infrared spectrophotometer, can make determinations of literally hundreds
of all gases (not in a single mixture) depending upon the particular gas mixtures
analyzed.

Many instrumentation techniques for multiple-gas or material analysis were
subjected to a preliminary literature investigation and, as a result of the investigation,
ruled out for application to space flight. Among these were: Cryoscopy, Emission
Spectrometry, X-ray Fluorescence, X-ray diffraction} Nuclear Magnetic Resonance,
Activation Analysis, and Microwave Spectroscopy. Most were discarded because
their operation could not be reasonably compatible with the spacecraft environment
due to sample preparation and analysis-energy-source requirements, Others were
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not included due to predicted high weight and volume requirements for a space flight
package, or highly complex analysis procedures. An amperometric method for the
determination of concentrations of several gases in the parts per million range, has
been developed (Ref. 17). In this method advantage is taken of the fact that the dif-
fusion current between two electrodes to which an EMF is applied is a function of
the concentration of the given trace gas in a mixture with other inert gases. The
method, while very sensitive and reproducible, is not as yet specific enough to dis-
tinguish a particular gas in the presence of other reactive gases.

Mass Spectrometer. The mass spectrometer is an anlytical instrument which iden-
tifies gases by determining their mass-to-charge ratio (essentially their molecular
weight). Its output is a voltage peak, the amplitude of which is a function of the con-
centration of the gas, and whose position in time varies directly with the mass-to-
charge ratio. Mass spectrometers utilize several techniques for separating these
gases in time in accordance with their mass-to-charge ratios. Most widely used
are the magnetic deflection types, time-of-flight types, and high frequency types.
While the high frequency type instrument is not in wide use in the laboratory, it
could well be the mass spectrometer of choice in a gas analytical system for space
flight, since it appears that it can be packaged most efficiently from a volume and
weight standpoint, and even more important it does not require a magnetic field
(discussed later) of any type for its operation.

Any mass spectrometer, when used alone as an instrument for analyzing
gaseous mixtures at near normal room temperatures and pressures,does not possess
a sensitivity higher than about one part per million under ideal laboratory conditions.
Rapid scan mass spectrometers, such as the time of flight type, cannot be depended
upon.consistently to deliver better than about 10 parts per million. When packaged
for space flight this sensitivity figure will probably be even further degraded. Also
these sensitivity figures are only valid when the adjacent mass peak is either several
mass units removed from the peak of interest, or of equal or less concentration so
peak “overlap" interference is minimized.

Physiologically, allowable concentrations of toxic contaminants are generally
much less than 10 parts per million and many are less than one part per million? some
even fall below 100 parts per billion (Ref. 18). Thus, the unaided mass spectrometer
will fail to "see" a great many of the peaks of interest due to low sensitivity and inter-
ference from the high concentration fixed gases such as oxygen and nitrogen.

The electromagnetic deflection, and time of flight instruments are not ideally
suited for long range space missions since they require electromagnets or permanent
magnets of high gauss for proper operation of the instruments. An actual magnetic
field measurement using a magnetometer was made at a distance of 12 inches from a
time of flight mass spectrometer (Bendix Model 12). A magnetic field strength of 10
gauss maximum was recorded. Depending on the spacecraft mission, the electro-
magnetic fields generated by on-board equipment range from insignificant to intoler-
able. Even shielding does not sufficiently attenuate such hi-gauss fields. There are
several effects:

a. Vehicle Torque - Interaction of a strong magnet with Earth's field produces
torques on the vehicle, which, depending on the distance from earth, may
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be the largest disturbance to vehicle attitude. For altitudes up to 20,000

nautical miles or more small size magnets produce greater torques than

solar pressure or other pressures and are sufficient to be used in control
systems to remove accumulated momentum from central flywheels.

b. Distortion of Field - Many vehicles carry magnetometers to read inter-
planetary magnetic fields, either to obtain data or to resolve currents
among torquing coils, These will be nullified by the presence of a large
artificial field in the vehicle.

c. Instrumentation - In some cases operation of guidance or control instru-
mentation may be susceptible to magnetic fields that can exist near devices
with large magnets.,

These and other factors are sufficiently important that component specifications for
some vehicles have quoted stringent requirements with respect to inherent magnetic
fields.

Two important advantages of the mass spectrometer are: the extremely small
sample size required (Approx. 0.2 cc/min at 0.2 mm of pressure) and the inherent
ability to ""see" an unknown gas by its molecular weight, Thus, an unpredicted gas,
provided its concentration was above the instrument threshold and provided high con-
centration masking gases were absent, could not go unnoticed.

Gas Chromatograph. A gas chromatograph consists basically of 3 parts: the sampling
system, a column and a detector. Helium is generally used as a carrier gas; however,
argon, nitrogen and hydrogen have also been used and, no doubt, several other gases
have been used experimentally, Commonly, the detector is a device which generates
either a zero electrical signal, or a DC electrical signal when only the carrier gas is
passing through it, but delivers a varying signal, or AC signal when any other gas
appears mixed with the carrier gas. The AC signal is also normally proportional in
amplitude to the concentration of the contaminating gas in the carrier.

In operation, carrier gas is allowed to flow through the entire system at a rate
between 10 and 400 cc per minute, the exact rate of flow depending upon the particular
equipment at hand and the type of analysis being performed. The carrier gas allows
the various gases in the sample mixture to lag the carrier due to the selective retarda-
tion exerted by the stationary phase. The carrier gas sweeps the sample gas mixture
through the column containing the solid adsorbing or liquid partitioning agents. Thus
the components of the mixture move through the column, effectively at different flow
rates.

It should be noted that the partitioning columns are designed for specific mixtures
of gases, An unknown (and thus unex‘p/ected) trace gas could therefore not be detected.
This is an important and often unrealized disadvantage of the gas chromatograph for
toxic contaminant detection and identification. The detector in a gas chromatograph
is probably the most critical component of the entire instrument. It is the detector
which determines the ultimate sensitivity of the instrument and determines also to a
large extent the types of gases which can be detected. Several of the most widely used
detectors, as well as a new detector which shows great promise, are briefly described.

43




a. Thermal Conductivity Detector. This detector depends for its operation upon

the differential thermal conductivity of different gases, Hot wire elements or ther-
mistors are generally used. This type of detector has two outstanding advantages.

It requires very simple output circuitry, and it will detect any gas of sufficient con-
centration whose thermal conductivity is different from that of the carrier gas. On
the deficit side of the ledger, however, is its poor sensitivity; it cannot be depended
upon to deliver a sensitivity of better than 100 parts per million and most generally
the sensitivity is on the order of 500 parts per million to many of the gases of interest.
In the realm of toxic gas detection this detector is useless, since most MAC's require
much higher sensitivity levels for measurement (Ref. 18).

b. Hydrogen-Flame Ionization Detector. The hydrogen-flame ionization detector,
as in the case with most ionization detectors, is between 103 and 10% times more
sensitive than the thermal conductivity detector. The one advantage of this detector
is its high sensitivity to certain gases. The detector is insensitive to inorganic com-~
pounds, except for some containing elements in groups I and II of the periodic table.
It will respond to all organic substances except formic acid, CO9 and CO. Its sensi-
tivity to organic compounds is approximately proportional to the carbon number,
except for those compounds which are oxygenated or contain nitrogen. Calibration

is very critical in this detector for quantitative results, and is much dependent upon
detector design and gas flow rate. The sophistication of this detector, its critical
nature and the fact that a hydrogen flame is required, would appear to make it unsuit-
able for spacecraft use.

c. Argon Ionization Detector. Several versions of this detector have been developed,
with much of the work being done by J. E. Lovelock (Ref. 19). These versions have
varied from models with sensitivities not much better than a thermal conductivity
detector, to sensitivities even higher than some hydrogen-flame ionization detectors.
Again, the sole advantage of the argon ionization detector lies in its high sensitivity.
It has an additional advantage over the hydrogen-flame detector in that a flame is

not required, However, the same sophisticated readout circuitry is required.

The argon ionization detector will detect most organics and in addition, some
of the simple gases not detectable with the hydrogen flame, such as HoO, NO, NO,,
NHz, PHg, BFg, and others. As with the hydrogen-flame ionization detector, the
argon detector will not respond to Hg, Ng, Oy, COy, CO (CN)9, Hy0, and also
fluorocarbons. In general, all organics which have ionization potentials of less than
11.7 electron volts can be detected. However, the several critical toxic gases noted
above cannot be seen by this detector and therefore, it would appear to be unwise to
carry this instrument as the only multiple gas detector on a particular space mission
without the inclusion of several backup specific gas detectors.

d. Karmen Glow Discharge Detector. The Karmen Glow Discharge detector is a
very recent development in the field of gas chromatography detectors. Dr. Arthur
Karmen, et al (Ref. 20 and 21) working in the Technical Development Laboratory of
the National Heart Institute with a form of the Lovelock ionization detector, noted that
when helium was used as the carrier gas and the intensity of the radioactive source
was increased — this normally produces an increase in current in the detector — for
a given voltage across the cell, current failed to increase beyond 107 amps. regard-
less of the intensity of the radioactive source. When Karmen removed the radioactive
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source and operated the detector from a constant current power supply, a stable
glow discharge was initiated in the detector. A schematic representation of this
detector is shown in Figure 5. The breakdown voltage across the cell was found
to be a function of the impurity in the helium. Since the sequential effluent gases,
contained in the original sample injected into the column of a gas chromatograph,
are essentially contaminants of the carrier gas as they leave the column, Karmen
found he had an extremely sensitive detector, which could see the light permanent
gases as well as organics.

Sensitivities to several of the light permanent gases measured were as good
or better than sensitivities to organics obtained in other ionization detectors. An
additional advantage possessed by this detector is that the output signal is biphase,
depending upon the concentration of the particular contaminant, Figure 6 is an
approximate plot of this characteristic. As the concentration of the 'contaminant"
gas in the helium increases from 0 to approximately 100 parts per million, the effec-
tive glow discharge resistance reduces and therefore the voltage across the cell goes
negative. However, as the concentration continues to increase, a point is reached
where the slope abruptly reverses due to partial quenching of the glow discharge due
to the high concentration contaminant., The negative going characteristic for the
extremely low concentration has the steepest slope, a desirable characteristic for a
toxic gas detector.

While this detector has recently been introduced to the art, it is not at present
being marketed and perhaps has certain disadvantages which are yet to be discovered.
It appears to be a detector which will supply the gas chromatograph with a high sensi-
tivity, as well as an "across the board" detector of essentially all gases that are
separated in the column. With the advent of this detector, even with its sophisticated
readout circuitry, the use of the gas chromatograph as a multiple toxic gas detector
during space missions becomes much brighter,

Spectrophotometers

In the present state of the art of spectrophotometry for gas analysis, two instru-
ment types are much used in the laboratory. One type is the infrared spectrophotometer
and the other instrument is the UV and visible spectrophotometer. Between the two
instruments including accessories, practically all gases and vapors can be detected
provided they are of sufficient concentration. For organic gaseous forms, without
resorting to extremely cunb ersome ne thods of handling the sample, only the infrared
instrument is of value; sensitivities between 20 and 100 parts per million are feasible.

Spectrophotometric instruments for gas analysis, while valuable as complemen-
tary instruments in the laboratory, are considered to pose severe problems where
redevelopment and redesign for space vehicle applications are undertaken. In order
to achieve even reasonable sensitivity (better than 100 parts per million), complex,
long optical path-lengths are required and/or samples at high pressuresare necessary.
These long path lengths make instrument volume reduction difficult. In addition, the
optics required for infrared transmission and refraction are generally adversely af-
fected by high humidity conditions. This could interfere seriously with the reliability
of the instrument.
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Condensation Nuclei Gas Analyzer. A relatively unknown toxic gas analyzer technique
is the concept of Condensation Nuclei detection. For certain toxic contaminants this
detector is now operational, being marketed by General Electric for the detection of
hydrazine and other toxic substances (Ref. 22). Figure 7 shows the basic Condensa-
tion Nuclei Gas Analyzer. Some typical concentration sensitivities for the condensa-
tion nuclei type gas analyzer are shown in Table 20, (Ref. 23).

TABLE 20
CONDENSATION NUCLEI GAS ANALYZER DETECTION SENSITIVITY
Substance Minimum Concentration, ppm 'I‘LV(l)
Carbon Monoxlde 1.0 100.
Methyl Mercaptan 0.01 50.
Mercury (vapor) 0.001 0.1
Nitrogen Dioxide 0.5 5.
Sulfur Dioxlde 0.001 5.

(1) ACGIH Threshold Limit Values for 1962

The gas mixture to be analyzed is passed first through a particle filter to re-
move any ambient nuclei present in the sample (in practice down to less than 50 par-
ticles per cc.). It then is passed through a reaction section where the specific gas
or group of gases of interest are converted to an aerosol by one of a number of photo-
chemical, chemical or thermal processes. This aerosol, consisting of fine particles
which can act as condensation nuclei, together with the remaining gas constituents,
are then passed through a humidifier to achieve a 100% relative humidity condition.
The humidified mixture then flows through the first section of a rotary motor driven
valve into the expansion chamber. After a brief dwell period, the second section of
the rotary valve opens, exposing the expansion chamber to a source of regulated
vacuum, The sudden expansion results in adiabatic cooling of the gas sample causing
the relative humidity to rise above 100%. The water vapor will then condense out on
any huclei present, The resulting droplets soon grow in size to where they can scatter
light. The expansion chamber contains a dark-field optical system which delivers no
light to the photomultiplier tube in the absence of fog droplets. With droplets present
in the chamber, light is caused to be scattered to the photomultiplier, The amount of
light received is proportional to the number of droplets (each one containing a nucleus),
and to their scattering area.

One disadvantage of a condensation nuclei type instrument used for gas analysis
is the inherent selectivity. A condensation nuclei instrument can only detect and iden-
tify the specific gas (or group of gases) for which it is designed. Thus, as with the
gas chromatograph, detection and/or identification of unanticipated gas constituents
cannot be accomplished, If specific identification is not required, conversion of all
contaminants in the atmosphere sample to condensation nuclei is a possible alterna-
tive. This concept has been explored to some degree (Ref. 23) with promising results
obtained. This can result in a highly sensitive instrument which will be sensitive to
total contaminant concentration. With consequent simplification of the instrumentation,
it becomes a consideration for application to spacecraft.
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Multiple Gas Instrument Combinations. When two or more analytical instruments

are combined during the analysis of a given gas mixture, it is obvious that greater
accuracies from both a qualitative and quantitative standpoint can be achieved,
especially when positive detection and identification of a given toxic contaminant is
desired. Probably the most powerful combination in the state of the art today is the
gas chromatograph and mass spectrometer (Ref, 24), While these instruments by
themselves are powerful multiple-gas analytical instruments, they both possess
certain disadvantages. For example, the gas chromatograph requires a column

which has been specifically designed to separate the gases of a specific gas mixture,

It is often extremely difficult to design a column complex to separate in time, one or
more of the specific gases from a complex multi-gas mixture. Present state of the
art detectors used as part of gas chromatographs have combinations of desirable and
undesirable characteristics as previously discussed. A major disadvantage when using
the gas chromatograph alone, regardless of the form of detector, is the possibility that
it will fail to identify a gas for which the chromatograph column has not been designed,
since the instrument does not identify gases by a fundamental property as does the
mass spectrometer. The major advantages of the gas chromatograph lie in its ability
to physically separate a gas mixture, and, when using ionization detectors specific to
certain groups of gases, to detect down to parts per billion,

The mass spectrometer, on the other hand, when analyzing a gas mixture, dis-
plays spectra for all gases in the mixture simultaneously. This can cause overlapping
of the gas spectra and therefore make it difficult to determine whether a given spectral
peak is a cracked product of one gas or another., Its major advantage lies in its ability
to identify a given gas by a fundamental characteristic of the gas; the molecular weight
to charge ratio.

Combining these two instruments can thus be seen to form a powerful tool for
gas analysis. In such an arrangement, the mass spectrometer becomes an extremely
versatile, high-resolution, identifying detector for the gas chromatograph. However,
the present dependable sensitivity is no better than about 100 parts per million for a
unit packaged for spacecraft use.

Concentration and Separation. Concentration and separation in one form or another has
been a widely used technique for supplementing detection and identification instrumenta~
tion for detecting trace gases at very low concentration levels. In mass spectroscopy,
for example, the spectra of high concentration gases (such as oxygen and nitrogen) and
low concentration gases (such as some of the toxic contaminants) can overlap. Thus
critical toxic contaminants of low concentration can be masked. Also the sensitivity

of a mass spectrometer designed for space use cannot reliably be expected to exceed
about 100 parts per million. Separation and concentration techniques can improve the
effective sensitivity of the mass spectrometer down to well below the one part per
million range. Freeze-out is commonly used in mass spectroscopy for separating
condensables from non-condensables in order to minimize masking. Southwest
Research Institute (Ref. 25) employed various physical and chemical techniques to
separate and concentrate metabolic trace constituents from some 60 liters of expired
air. Gas concentrations as low as 0. 0001 ppm (referenced to the original volume)
were detected, Flight type hardware for trace gas concentration and separation does
not presently exist; no great difficulty is anticipated in adapting laboratory concentra-
tion methods for spacecraft applications.
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Separation and concentration techniques are not limited to use in mass spectro-
scopy. These techniques are equally useful in conjunction with spectrophotometers
and condensation nuclei type instruments. A gas chromatograph inherently provides
separation; however, concentration is still a useful tool to provide for detection and
identification of gases in the less than one part per million range,

Instrument Comparison Table, Table 21 summarizes the capabilities of the various
gas analytical instrumentation discussed in this study. Reference to this table can
allow rapid comparison and selection of the multiple gas instrumentation required
for a specific mission,

Specific Gas Instruments

For missions too short to justify complex instrumentation or as an emergency
back-up gas sampling system for longer missions, specific gas detection for a few of
the most important toxic gases may be of value. At the present time there are avail-
able from several manufacturers, relatively compact kits containing a basic gas
sampling apparatus together with glass tubes containing proper reagents supported
on some inert absorbent. By passing a metered volume of gas through such tubes,
the concentration of the unknown gas is determined visually by the color change of the
reagent as well as by the length of the tube affected by the color change, In many
instances, the color change is not very distinct especially when other reactive gases
are present. In such cases accuracy of the gas concentration determination may vary
considerably and may even lead to completely erroneous results. The errors of gas
concentration measurements using such specific gas detector tubes can be considerably
decreased by providing the operator reference color standards with which to compare
color changes of the reagents. Such color standards are particularly useful in areas
of varying illumination and intensity as well as spectral balance.

It has been the experience of the Naval Research Laboratory personnel engaged
in chemical research in atmosphere purification and control on nuclear-powered sub-
marines, that thorough training of operators using the gas analysis tubes greatly in-
creased the accuracy of gas concentration determinations (Anderson, W., NRI Per-
sonal Communication, November 1962). However, even under most favorable condi-
tions, the accuracy that can be attained with this technique seldom exceeds 20 percent.
In many cases the ratio of apparent concentration to true concentration may be in the
range from 0. 25 to 4.0 (Ref. 26),

In spite of these inadequacies, colorimetric tubes may be found to be useful in
spacecraft applications to give at least approximate concentration of toxic gases in
the atmosphere.

While many specific colorimetric tubes for a long list of gases have been devel-
oped, it is very unlikely that more than about five or six kinds would be needed in a
spacecraft, simply because from the detailed knowledge of materials to be used in such
a vehicle it will be known a priori that certain gases cannot be present under any cir-
cumstances. In addition, a close identification of all the gases is not required. It
will be sufficient to identify certain families of toxic gases if present in concentrations
near or above the allowable limit. The suggested tubes are:
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Carbon Monoxide (in the presence of hydrocarbon and nitrous gases).
Benzene and other aromatics,

Hydrogen sulfide, sulfur dioxide,

. Chlorine and halides.

. Ammonia and amines,

. Hydrogen fluoride.

U W

In addition to the above tubes, a tube for detection of mercury may also be
included, should there be a possibility of mercury spillage.

A complete list of available gas detector tubes manufactured by Kitagawa of
Japan and Mine Safety Appliance Co. have been compiled in Table 22, The Kitagawa
tubes are distributed in this country by Union Industrial Equipment Corporation, Port
Chester, New York. :

The gas-detector tubes are supplied with a hand operated pump designed to draw
air samples at a reproducible, fixed rate through the detector tubes. If no color
change in the tube develops after one pump stroke, the procedure is repeated until
a color change appears or until such time at which there is assurance that the gas
in question is not present at a concentration greater than the minimum detectable
value. Thus each analysis can be quite time consuming if the particular gas is
absent or present in very low concentration. In order to speed up the analysis, the
atmosphere sample may be drawn through tubes arranged in parallel, or still better,
drawn through the tubes in sequence. In this manner a complete analysis for about a
half dozen gas families can be performed within the time period which may be re~
quired for one specific gas existing in low concentration.

Instrumentation Specifications as Basis for Compact Kit

Probably the most important piece of information confirmed during the detec-
tion and identification methods portion of this study, is the lack in the present state-of-
the-art of a versatile instrument for monitoring toxic gases and vapors. No in-
strument exists, which exhibits in the same instrument, the sensitivity, specificity,
and range of gases detected, required of an instrument for monitoring the spacecraft
atmosphere during intermediate range and long range space missions. In the im-
mediate future state-of-the-art, with the advent of the Karmen detector, techniques
involving the gas chromatograph appear promising, as does the high frequency type




GAS DETECTOR TUBE

MEAS, TUBE
GAS RANGE MAC NO. SOURCE INTERFERENCE
Acetone .05-5% 0.1% 102A Kitagawa Organic vapors, HyS
502
Acetylene 3-600 ppm ——— 82802 MSA Co. Hydrocarbons, CO,
HyS, NHy
Acetylene 50-100 ppm - 101 Ritagawa Hydrocarbons, CO,
H2S, HCN
Arsine .05-1 ppm .05 ppm 87031 MSA Co. SbH3, Py
Acrylonitrile~-
high-range 0.1-3.5% .0027, 128A Kitagawa Organic vapors
Acrylonitrile~~
low-range 10-500 ppm 20 ppm 1288 Kitagawa Organic vapors
Ammonia~-high-
range 1-25% 0.01% 105A Kitagawa Organic vapors
Ammonia-~-low-
range 20-700 ppm 100 ppm 105B Kitagawa Amines
Arsine 5-160 ppm .05 ppm 140 Kitagawa HyS, PHy
Benzene 10-310 ppm 25 ppm 118A Kitagawa Aromatics
Benzene 10-100 ppm 25 ppm 72986 MSA Co. Aromatics
Benzene (in pre-
sence of
aromatics) 25-345 ppm 25 ppm 118B Kitagawa Toluene above 500ppm
Bromine 5-75 ppm 0.1 ppn 82399 MSA Co. HyS,NHg, NO,, C2H4’
Bromine 5-200 ppm 0.1 ppm 87042 MSA Co. HpS,NHy, NO2, CoHg,
Bromine 10-300 ppm 0.1 ppm 114 Kitagawa Halogens, ozones,
nitrous gases
Carbon dioxide .05-1% 0.5% 85976 MSA Co, | w=eme-meeea- ———
Carbon dioxide --
high range 0.1-2.6% 0.5% 126A Kitagawa acid gases at high
concentrations
Carbon dioxide ~--
low~-range 300-700 ppm | 5000 ppm 126B Ritagawa acid gases at high
concentrations
Carbon Dioxide L- .
type 1-20% 0.5% 126L Kitagawa acid gases at high
concentrations
Carbon Monoxide .001-0,1% 0.01% 47134 MSA Co. NO2 ,Co Hg , Hydro-
Carbon Monoxide 25-6000 ppm | 100 ppm 106A Kitagawa carbons,cé Hy,
CoHp, nitrous gases,
HCN HyS
Carbon Disulfide {10-200 ppm 20 ppm 141 Ritagawa HgS above 50 ppm,
S02 150 ppm
Carbon Monoxide 25-6000 ppm | 100 ppm 1068 Kitagawa Hydrocarbons, CoHy,
Hy5, HCN, Nitrous
gases
Carbon Monoxide 25-600 ppm 100 ppm 106C Kitagawa CoHp, HCN
Chlorine 0.5-20 ppm 1 ppm 82399 MSA Co. Halides
Chlorine 3-100 ppm 1 ppm 87042 MSA Co. Halides
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TABLE 22 (CONTINUED)

GAS DETECTOR TUBES

MEAS, TUBE
GAS RANGE MAC NO. SOURCE INTERFERENCE
Chlorine 1-40 ppm 1 ppm 109 Kitagawa Halogens, O,_,
nitrous gasés
Chlorine Dioxide | 10-500 ppm 0.1 ppm 116 Kitagawa Halogens, 03,
nitrous gases
Chlorobenzene 10-200 ppm 75 ppm 85834 MSA Co. Halogeus, halides
Carbon Tetra-
chloride 5-300 ppm 25 ppm 147 Kitagawa CO ClLo
Cyclohexane 100-6000 ppm | 400 ppm 115 Kitagawa Organic vapors
Decaborane 0.01-1 ppm .05 ppm 82099 MSA Co. Hydrazine, UDMH,
HpS
Diborane 0.1-3 ppn 0.1 ppm 82099 MSA Co. Hydrazine, UDMH,
H,S
0-dichloro- 2
benzene 10-200 ppm 50 ppm 85834 MSA Co. Halogens , halides
cis-1,2 dich- '
lorethylene 25-400 ppm 200 ppm 85833 MSA Co. Halogens, halides
diethyl ether 400-1400 ppm | 400 ppm 107 Kitagawa Organic vapors
Dimethyl ether 100-1,200,
000 50 ppm 123 Kitagawa Organic vapors
Ethanol 0.04%-5% 0.1% 10zA Kitagawa Organic vapors,
HyS, 8507
Ethyl bromide 25-400 ppm 200 ppm 85835 MSA Co. halogens, halides
Ethyl chloride 100-2000 1000 85833 MSA Co. halogens, halides
Ethylene 0.5-100 ppm | -=--- 1088 Kitagawa €O, CoHy ,H2S, HCN
Ethylene 0.5-100 ppm | -~~~ 82802 MSA Co. CO,NH3, H,S,
hydrocarbons
Ethylene oxide 0.01-3,5% 0057 122 Kitagawa Organic vapors,HS
S02
Hexane 0.01-0.6% .05% 113 Kitagawa Organic vapors
Hydrazine 0.5-20 ppm 1 ppn 87492 MSA Co., | ==m=wmcomocaee-
Hydrogen Cyanide |2-50 ppm 10 ppm 73497 MSA Co. NH3, HpS
Hydrogen Cyanide 0.01-3% .001 1124 Kitagawa Cyanogen, HyS, S02
Hydrogen Fluoride [0.5-5.0 ppm | 3 ppn 8123 Kitagawa | ==--==c~cecc-nm--
Hydrogen Sulfide--
high-range 0.01-0.17% 0.002% 120A Kitagawa 509
Hydrogen Sulfide-~
low-range 5-160 ppm 20 ppm 1208 Kitagawa 509
Hydrogen Sulfide |1-800 ppm 20 ppm 87414 MSA Co. o))
Hydrogen Sulfide
in presence of S03|.005-0.167% .0027% 120C Kitagawa HC, CO, Nitrous gas,
HCN
Mercury 0.05-2 mg/m> | 0.1 mg/m> | 83089 MSA Co. | =mmmmmmmemcea--
Mercury 0.1-2 mg/m3 |0.1 mg/m3 142 Kitagawa CLy, NOy
Methanol 0.01-67% 0.02% 119 Kitagawa Organic vapors,
Hy S, SOp
Methyl bromide 10-500 ppm 20 ppm 157 Kitagawa halogens, nitrous
gases
Methyl bromide 10-100 ppm 20 ppm 85834 MSA Co. halogens, halides
Methyl Ethyl
Ketone 0.01-1.47% 0.02% 1398 Kitagawa Organic vapors
Nickel carbonyl 20-700 ppm 0,001 ppm 129 Kittagawa H2S, 509
Nitrogen Dioxide |0.1-50 ppm 5 ppm 84099 MSA Co. H2S, halides
Nitrogen Dioxide |1-1000 ppm 5 ppn 117 Kitagawa halogens, O3, N5 03
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TABLE 22 (CONTINUED)
GAS DETECTOR TUBES

MEAS, TUBE
GAS RANGE MAC NO. SOURCE INTERFERENCE
Pentaborane 0.01-1 ppm .005 ppm 82099 MSA Co. Hydrazine, UDMH,
HyS
Perchloroethylene | 10-300 ppm 100 ppm 85833 MSA Co. Hglogens, halides
Phosphine-~high
range 20-800 ppm 0.05 ppm 121A Kitagawa H2S, As Hj
Phosphine~--low
range 5-90 ppm 0.05 ppm 1218 Kitagawa HyS, As H
Propylene 1-400 ppm ———— 82802 MSA Co. NH3, H2S8, CO, HC
Sulfur dioxide 1-50 ppm 5 ppm 74354 MSA Co, H28, NH3, Cl,
Sulfur dioxide--
middle-range 0.04-.3% 5 ppm 10338 Kitagawa HyS
Sulfur Dioxide--
low~range 5-300 ppm 5 ppm 103C Kitagawa HyS
Sulfur Dioxide--
D-type 1-80 ppm 5 ppm 103D Kitagawa H,S
Toluene 1-1000 ppm 200 ppm 124 Kitagawa Aromatics
Toluene 5-400 ppm 200 ppm 72986 MSA Co. Aromatics
Trichloroethylene | 25-600 ppm 100 ppr 85833 MSA Co, Halogens, halides
Trichloroethylene
(perchloroethylene)
10-400 ppm 100 ppm 134 Kitagawa Halogens, halides
03, nitrous gases
UDMH 0.5~10 ppm —=-= 81977 MSA Co, | ~reeccmccemcacman.
Xylene 10-400 ppm 200 ppm 72986 MSA Co. Aromatics

mass spectrometer in combination with a trace gas separation and concentration
technique, A long range look at the future state-of-the-art of multiple gas detec-
tion instruments indicates promise in the General Electric Condensation Nuclei
type instrumentation. The amperometric technique may also be useful to measure
total contaminant concentrations.

Materials in use and being considered for use in spacecraft, under both pre-
dicted and unpredicted stresses of space flight, can be expected to off-gas numerous

toxic contaminants.

In the ideal case where none of the materials used in the space-

craft are those which might off-gas toxic contaminants, there would still exist, as

a minimum, the off-gassed products of metabolism from the man himself, Therefore
assuming a leak-tight spacecraft, numerous toxic contaminants could build up to
unacceptable concentrations in a relatively short time (assuming partial or complete

failure of the contaminant control equipment),

Thus monitoring by gas analytical

instrumentation which possess the necessary resolution and sensitivity is required.
To cover any eventuality, all missions in excess of a few days duration would include
on~board gas analytical instrumentation exhibiting the following performance capa-

bilities:
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a.

C.

e,

g.

Resolution

Resolve toxic contaminants in the presence of the normsl gases (oxygen,
diluent and water vapor) which exist in the spacecraft breathing atmos-
phere. As noted above, a minimum spectrum of toxic contaminants is
that generated by the man himself. Table 1 lists these constituents.

Sensitivity

Exhibit a sensitivity high enough to discern above the instrument back-
ground noise the threshold concentration of any toxic gas or gases ex-
pected, This threshold concentration should be an order of magnitude
below the unacceptable level for the particular gas involved. A threshold
sensitivity of 0. 01 ppm appears desirable.

Fundamental Mode of Analysis

The method of analysis should allow the identification of gases which may
be unpredicted.

Sampling Rate

The time from one analysis to the next should be short enough (between

0.1 to 5 min. ) to safely monitor the possible rapid build-up of contaminants.
In the event the spacecraft environmental control system functions are being
operated directly from this instrumentation, the time must be short enough
(between 0,01 and 5 seconds) to maintain the stability of the control system
and supply the necessary information rate.

Sample Floi;v

The sample flow must be small enough to minimize loss of spacecraft atmos-
phere (where the analytical technique destroys the sample or discards it out-
side the vehicle).

Fail Safe Characteristics

The instrumentation must indicate in some way when its data are no longer
valid.

Signal Output Characteristics

The output of the instrumentation must be capable of modulating telemetry
signals as well as operate on-board readouts.
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h. Reliability

The mean-time-to-failure of the instrumentation including redundancy
effects must be consistent with the mission length.

i. Accuracy

Plus or minus 10% of full scale.

jo Environmental Conditions

The instrumentation must be capable of meeting the performance require-
ments when subjected to the following environmental conditions or rational
combination thereof:

Environment Range

Temperature 0 to 150°F

Pressure ambient to vacuum

Radiation 5 REM max. normal, 100 REM
max, emergency

Humidity 0 to 100% RH

Acoustics 135 db between 40 and 9600 cps

Acceleration 20 g along each of three mutually

perpendicular axes

Vibration 2.3 g's, 20 to 50 cps 0.018 in,
double amplitude; 50-112 cps 11.4 g's;
112-2000 cps (along each of three
mutually perpendicular axes).

Impact Shock 20 g's for 10 milliseconds along each
of three mutually perpendicular axes.

The selection of actual instrumentation to identify and detect toxic contaminants
will depend on mission type and duration. This is illustrated below for assumed mission
type and duration.

a. Short Missions

Short missions may be defined as earth orbiting flights or the equivalent

of durations up to several days. Because of the short period, toxic gas
monitoring instrumentation no more complicated than several of the specific
single-gas detectors previously described will be required. The specific
single-gas detector chosen for a particular short mission will depend on data
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developed during spacecraft design and ground testing, the results of
which will permit prediction of those gases which will require monitoring.
Note that in Project Mercury, the high permissible leak rate from the
capsule negates any requirement for toxic gas monitoring.

b. Intermediate Missions

Flights in the intermediate range category may be defined as earth orbital
flights of duration up to several weeks and/or lunar voyages. Toxic gas
monitoring instrumentation for this class of mission will be more compli-
cated, consisting of a multiple gas analysis instrument such as a gas
chromatograph plus back-up specific single gas detectors for predicted,
problem gases. The relative short duration mission will permit extensive
ground testing prior to flight,

c. Long Missions

Extended range missions, defined as inter-planetary voyages and manned
space station occupancy of durations up to a year and more, will require
multiple gas analysis instruments capable of detecting a wide range of
gases and vapors, many of which may not be predictable by ground testing
or even past mission data. This requirement would most certainly point
to an instrument, such as the mass spectrometer in series with a trace
gas separation and concentration technique wherein detection and identifi-
cation depends on a fundamental characteristic of the particular gas or
vapor,

PARTICULATE CONTAMINANTS

As for gases and vapors, the detection and identification methods employed
for particulate contaminants for a specific spacecraft will depend to a large extent
on the type and duration of the mission. Also, and in particular for long duration
missions wherein prior ground testing may not be 100% effective, the generation of
particulate contaminants, both anticipated and unanticipated, must be assumed. For
spacecraft use, instrumentation must be provided to determine both concentration,
in terms of total number and/or weight of particles within the critical size range,
and the chemical composition. Both are required to determine whether or not par-
ticulate contaminants are within tolerable limits.

Instrumentation

Tolerable limits for particulate contaminants are listed by the ACGIH (Ref. 18)
in terms of both milligrams per cubic meter and millions of particles per cubic foot
(based on impinger samples counted by light-field techniques). Thus metallic dusts
and fumes are reported in terms of weight concentration; however the error in
appraisal of hazard may be considerable because of coarse particles in the sample,
On the other hand, mineral dust is reported in terms of number of particles. This
latter practice does not compensate for differences in size within the hyg:ienic range
below 5 micron, Equal number concentrations of one and three micron $ize particles
will not represent the same degree of hazard because of differences in alveolar
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deposition and in basic toxicity. Conversion from one to the other requires a
knowledge of both particle size and particle density.

Detection. Many techniques have been devised for determination of atmosphere
particulate concentration for both laboratory and field use. These sampling instru-
ments may be categorized according to collection mode as follows: settlement, both
gravity and centrifugal; filtration; impingement; and precipitation (Ref. 27). In
general particles are collected on slides or the equivalent with concentration for a
given size range of particles determined by a combination of microscopy, gravimetric,
and chemical techniques. Electric and thermal precipitators and various filter
media are superior to impingement type relative to collection efficiency for the
complete particle size range of interest. The molecular or membrane filter and
thermal precipitator have the added advantage of depositing particles without physical
alteration and in such a manner as to permit direct microscopic examination without
disturbing the particles. By making particle size measurements on the collected
sample along with the particle count, concentrations may be reported for each size
increment, thus greatly increasing understanding of the nature of the contaminant
exposure. In contrast, impingement-type instruments (used exclusively in the U, S.
Public Health service as a basis for determining tolerable exposure limits) have low
absolute collecting efficiency for particles smaller than one micron. Also disaggre-
gation and shattering of particles occurs to various exterts in impingement type
devices, further clouding the actual particle size distribution. In addition to optical
microscopy, size distribution may be determined by elutriation or electronic micro-
scopy. Electron microscopy offers an order of magnitude improvement in minimum
particle size measurement, the limit of resolution for the optical microscope being
about 0.4 microns.

In general, sampling rate is dependent upon the physical limitations of the instru-
mentation employed rather than upon any physiological reasons. A relatively rapid
sampling rate has the advantage of providing both trend information and, by integra-
tion, longer term averages. The importance of sampling rate depends on the type and
weight rate of contaminant release, Silicosis requires prolonged (many year) exposure,
whereas lead intoxication may develop after a few months., Poisoning from cadmium
fumes or a toxic organic dust may result in a few hours.

Dusts and smoke can be visually observed when present in high concentrations.
Harmful materials of low toxicity, such as zinc oxide, are readily visible under
favorable conditions. However, concentrations on the order of 1 mg per cubic meter
(well above the safe limits for cadmium and lead) are not easily observed,

For automatic type instrumentation, a continuous indication of particle count
and size distribution may be obtained using detectors employing a light scattering
technique. The Rayco photometer, using a dark field optical system, in combination
with a gated counter can determine the number of particles ranging from 8 to 0.2
microns in diameter in a number of discrete size steps. Accuracy is somewhat
better for relative than for absolute number; performance degrades if the total
number of particles becomes too large. Similarly, an aerosol, smoke and dust
photometer manufactured by Phoenix Instrument Co. provides a count of total par-
ticles of significant size,
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Condensation nuclei type instruments (described in section 3,1.1.4) may also
be used to automatically and continually determine the presence of particulate matter.
Particles ranging in size from 0.1 to 0. 001 micron in diameter are readily detected
using this technique (Ref. 23). However, because of the mode of operation, only the
total quantity of particles is determined, regardless of particle size distribution.
Total counts as low as 10 particles per cubic centimeter can be obtained., A sampling
rate of several times per second results in essentially a continuous measurement of
particulate concentration. Figure 8 shows schematically the condensation nuclei type
instrument when used as a particulate detector and counter. In any one cycle, the
incoming sample containing the particulate matter is drawn in through a humidifier
whose purpose is to bring the sample to a 100% relative humidity condition. It is
then valved into the expansion chamber where after a brief dwell period the sample
is expanded rapidly to a source of regulated vacuum. The sudden expansion results in
adiabatic cooling of the sample and causes the relative humidity to rise above 100%.
Water will then condense on the particulate matter present. The resulting droplets
soon grow to a size where they can scatter light. Also contained in the expansion k
chamber is a dark field optical system which produces no light to the photomultiplier
phototube in the absence of condensation nuclei droplets. However, with droplets
present in the chamber, light will be scattered to the phototube. The intensity of light
is proportional to the number of droplets (each containing one nucleus) and to their
scattering area. The output of the photomultiplier tube, after amplification, can be
applied to telemetry and/or recorders. As a matter of interest, airborne bacteria
can be differentiated from other particulate matter and counted using the condensa-
tion nuclei technique.
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Figure 8. Condensation Nuclei Particle Detector
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Identification. Quantitative identification of particulate contaminants may be accom-
plished by chemical analysis, petrographic analysis, immersion, differential fusion,
X-ray diffraction, and combinations thereof. For example, the best method for the
determination of free silica (an unlikely problem in spacecraft) requires standard
chemical analyses combined with petrographic and X-ray diffraction analyses of
residues at various steps in the procedure (Ref. 28). A sample size of 0.1 gm or
less may be used. Petrographic, immersion, and differential fusion may be used
for mineral dust analysis. X-ray diffraction may be used advantageously for the
analysis of a particle mixture which may contain both metallic and non-metallic
substances. Quantitative estimates of the amount of each substance present may

be obtained. In combination with a recording geiger counter, the X-ray spectro-
photometer can provide high accuracy for identifying crystalline type materials
(Ref. 29). About a 60 mg sample is required. An electric arc type spectropho-
tometer also may be used for analysis. Semi-quantitative results can be obtained
from samples as small as 0.05 mg. The electric arc type is advantageous for
multiple compound identification in that the basic elements of the sample are dis-
closed;thus there are no restrictions on the kind of sample which may be analyzed.
None of the above lend themselves to automated monitoring on a continuous basis.

Instrumentation Specifications

Many of the comments on instrumentation for detecting and identifying gas
and vapor contaminates also apply to instrumentation associated with particulate
matter. The problem is complicated by the need to measure particle size, particle
concentration in terms of weight or in terms of numbers (ideally as a function of
particle size), and particle chemical composition per se. All of the foregoing are
needed to provide a reliable assessment of the toxic hazard, No single instrument,
either currently available or under development, can perform the required functions
needed for detection and identification for the entire range of anticipated particle
contaminants, Until new techniques are developed, an interim solution combining a
particle counting type device, a sample gathering technique and a multi-compound
identification capability is suggested. In this combination, a light scattering type
photometer and counter combination would function as an early warning device by
indicating that the total atmosphere particle count had exceeded the normal (and
acceptable) background count. The sampling and identification capability (an impinger
type device plus an electric arc type spectrophotometer for example) would then be
employed to assess the probable danger of the increased particle count. By setting
the automatic warning capability to initiate an alarm when minimum tolerable limits
are exceeded, sufficient time should be available to accomplish the relatively time
consuming sampling and identification.

One problem associated with the above approach (and probably any other, for
that matter) is the determination of an acceptable threshold particle count. Particle
inhalation is the usual cause of disability. Particles of 15 to 25 micron size are
likely to be caught in the nasal passages or at the back of the throat. Smaller par-
ticles may impinge on the trachea or bronchi and gradually be removed by action of
the cilia. Particles below five microns in size, and particularly below one micron,
may enter and be retained by the alveoli where they may pass directly or indirectly
into the lymph circulation. The optimum silica particle size for alveolar deposition
is about one micron; for lead (on the basis of density) the optimum size would be about
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0.5 micron (Ref. 27). The above would indicate that a count of all particles between
approximately 5 and 0.1 micron would be a satisfactory criterion. It might be argued
that the high retention of very small particles revealed by the use of the condensation
nuclei type instrument, 80% retention at 0.06 micron average radius (Van Luik, F.W.
Per, Comm., G.E, (1963), negates the above., However, inspection of Figure 9
reveals the large quantity of smaller particles required to be equivalent (in volume
or weight) to a one micron particle. Since mass as well as number is important,

the five to 0.1 micron range appears to be satisfactory.
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Figure 9. Equivalent Number of Particles

Assuming a leak-tight spacecraft, numerous toxic particulate contaminants
could build up to unacceptable concentration levels (assuming partial or complete
failure of the contaminant control equipment). Thus all missions in excess of a
few days duration should include a particulate contaminant monitoring and identi-
fication system exhibiting the following performance capabilities:
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a.

c'

e.

g.

Resolution

Resolve toxic particulate contaminants in the presence of the normal gases
(oxygen, diluent and water vapor) which exist in the spacecraft breathing

atmosphere.

Sensitivity

Exhibit a sensitivity high enough to discern above the instrument background

noise the threshold concentration (on the basis of particle count and/or weight)

of any toxic material expected. This threshold concentration should be an order of
magnitude below the unacceptable level for the particular contaminant in-

volved, An instrument system threshold sensitivity of the order of 0.01

mg/m" with particle sizes between 5 and 0.1 microns appears desirable.

Fundamental Mode of Analysis

The method of analysis should allow the identification of particle types
which may be unpredicted.

Sampling Rate

The time from one analysis to the next should be short enough to safely moni-
tor the possible rapid build-up of contaminants, Thirty to sixty minutes or less
appears desirable for completing one detection and identification analysis.

Sample Size

The sample size must be small enough to minimize loss of spacecraft atmos-
phere (where the analytical technique discards it outside the vehicle).

Fail Safe Characteristics

The instrumentation must indicate in some way when its data are no longer
valid.

Signal Output Characteristics

The output of the instrumentation system must be capable of modulating
telemetry signals as well as operate on-board readouts.

Reliability

The mean-time-to-failure of the instrumentation including redundancy
effects must be consistent with the mission length.

Accuracy

Plus or minus 10% of full scale.
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j.

Environmental Conditions

The instrumentation must be capable of meeting the performance require-
ments when subjected to the following environmental conditions or rational
combination thereof:

Environment Range

Temperature 0 to 150°F

Pressure ambient to vacuum

Radiation 5 REM max, normal, 100 REM

max., emergency

Humidity 0 to 100% RH
Acoustics 135 db between 40 and 9600 cps
Acceleration 20 g along each of three mutually

perpendicular axes

Vibration *2.3 g's, 20 to 50 cps 0,018 in.
double amplitude; 50-112 cps
11,4 g's; 112-2000 cps (along
each of three mutually perpen~
dicular axes)

Impact Shock 20 g's for 10 milliseconds along

each of three mutually perpen-
dicular axes,
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DISCUSSION

Preparation of lists of materials presently used or proposed for
use in spacecraft construction is in progress, but not yet completed.
Data on quantities of materials used or proposed are not available.
Steps should be taken to compile these data for current system projects
and to insure that such data are compiled in future manned spacecraft
programs. The lists in the appendices to this report include, as best
as can be determined, approximately one-half of all the materials .
expected to be used in the habitable portion of Apollo, Mercury, Gemini,
and Dyna-Soar spacecraft.

The detection and identification of atmosphere contaminants as generated by
mechanical, thermal and other stresses may be categorized into two areas: gases
and vapors and airborne particulate matter. For gases and vapors, the most signifi-
cant generation mechanisms appear to be evaporation and thermal degradation, The
study of literature on the thermal degradation of elastomers shows that this area of
investigation has been reasonably well covered at temperatures above 200°C. There
is, however, a lack of information on off-gassing at ambient temperatures., It should
be noted that deductions based on the chemical formula of the material can be very
unreliable, A comprehensive study of off-gassing under ambient spacecraft condi-
tions of materials likely to be used in manned spacecraft should be initiated. The
study should also include the effects of a pure oxygen atmosphere as well as other
non-standard atmospheres that may be proposed in the future. A similar situation
exists in the area of radiation degradation of elastomers. Both quantity and rate of
generation of off-gassing products should be determined. In addition to providing
information for identification and detection, this will permit an assessment of the
danger of included specific quantities of a particular compound in a given spacecraft.
If the quantity or rate of off-gassing will not exceed tolerable limits for a particular
operating environment, then no toxic problem exists for that particular contaminant
for a given spacecraft. In contrast to the arbitrary exclusion of any substance which
may off-gas toxic contaminants, quantity and rate knowledge permits greater flexi-
bility in equipment design. »

No single instrument currently exists which exhibits the versatility and per-
formance characteristics required to serve as a monitor for toxic trace gases and
vapors during all missions, The variety of materials planned for use on current
spacecraft programs and the degradation products therefrom is imposing. Many
of these materials can be eliminated, particularly for missions of relatively short
duration, by extensive ground testing of the complete operating system. For long
duration missions, it would appear unlikely that the long term interactions of mate~
rials, off-gassing products, and environment could be duplicated by ground testing.

In any case, man himself is an excellent generator of toxic contaminants. Thus, for
other than short missions, monitoring instrumentation must be capable of the detection
and identification of a wide variety of toxic contaminants, some of which may not have
been anticipated. Threshold sensitivity must also be in the parts per billion rather than
in the parts per million range in order to detect and identify contaminants at concen-
trations significantly below tolerable limits. A multiple gas detector(s) in combina-
tion with a trace gas concentration and separation technique appears to be the best
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available approach to the instrumentation requirements for long term missions. The
type of detector used should be one which can detect the presence of an unexpected

contaminant,

Particulate matter may be generated by several mechanisms such as mechanical
abrasion and recondensation. Many of the comments on gases and vapors are applic-
able to particulate matter type contaminants. Information on both quantity and rate
of generation are needed to permit a realistic selection of spacecraft materials and
contaminant control equipment, For long duration missions, it is unlikely that flight
conditions can be duplicated during ground testing to a degree which would insure no
unexpected particulate type contaminants during later phases of the mission. Thus,
for other than short missions, instrumentation for monitoring of particulate matter
type contaminants must be capable of the detection and identification of a wide variety
of contaminants, some unexpected, and at concentrations significantly below tolerable
limits. No single instrument is available to both detect and identify. Detection may
be accomplished on a continuous automatic basis by use of a light scattering type of
photometer and counter., Either total particle count or count for discrete sizes over
the entire particle size range of hygienic interest can be obtained, the latter providing
the best data for assessingthe potential toxic hazard. Identification is comparatively
complicated. A sampling means must be used to gather a sample of sufficient mass
to permit analysis. An electric arc type spectrophotometer may be used to establish
the chemical identification of the particles. Since identification is time consuming as
compared to detection, a suggested approach is to use the detecting portion of the sys-
tem as an early warning capability followed by the identification procedure when
threshold concentration limits are exceeded.
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CONCLUSION

In summary, for long duration missions, the generation of a large variety of
toxic contaminants, both predicted and unpredicted, can be assumed. Information
on quantity and rate of generation of these contaminants is needed to permit a realis-
tic appraisal of their effect in a particular application. Development of new techniques
for the detection and identification of toxic contaminants, gases and vapors and particu-
late matter, is required if useful contaminant monitoring is to become a practical
reality for spacecraft applications.
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APPENDIX A
APOLLO COMMAND MODULE MATERIALS LIST
This is a list of materials which are being considered for the Command Module

of the Apollo spacecraft as compiled by the Life Sciences Group of the North Ameri-
w- The list is estimated to be approximately 50% complete.
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APPENDIX B

PHYSICAL PROPERTIES OF NON-METALLIC MATERIALS
FOR MANNED SPACE VEHICLES

This material is excerpted from McDonnell Aircraft Corporation report 6792,

revised April 1963, "Physical Properties of Non-Metallic Materials for Manned
Space Vehicles."
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Report 6792 has been prepared to establish maximum use temperatures for
non-metallic materials to be used in the inhabited area of spacecraft. The indicated
temperature limits are based upon laboratory tests using 100% oxygen atmosphere at
5 PSI absolute for 3-24 hours continuous usage without producing irritating or obnoxi-
ous odors. Toxicity vs. temperature limits are not based on actual tests but were
compiled as a result of odor tests and a basic knowledge of chemical and thermal
properties. In most cases the maximum temperatures shown were established by
tests because of a current operating temperature. Some, in fact most,of the mate-
rials listed will probably pass a higher temperature.

The charts are for use as guides to Design Engineers concerned with the selec-
tion of non-metallic or non-ceramic materials. In most cases materials are listed by
popular chemical names. It is recognized that some Design Personnel may not be
familiar with the popular chemical names; it is therefore recommended that "MIL
Spec' materials, "MMS'" (MAC Material Specifications) materials, "AMS" (Aero-
nautical Material Specification) material or trade name materials be identified chemic-
ally before consulting the charts.

The charts do not establish temperature limits for mechanical or electrical
properties. Most of the materials can withstand much higher temperatures than those
indicated. In selection of materials, it is desirable always to choose the highest tem-
perature material available since higher temperature materials have more possibility
of passing the odor and toxicity tests. Selection of lubricants and fluids must be based
on whether the parts or systems are open within the cabin.

Enclosure 1 is included, Contaminants Recovered from Capsule Atmosphere of
Mercury Flights (NASA Report), which presents the contaminants and the results in
parts per million and actual weight in milligrams. Quantitative measurements were
made by desorbing activated carbon which collected gases from the capsule atmosphere
of Mercury flights 6, 7 and 8. In general the table shows that a safe atmosphere was
maintained in the spacecraft and that odor tests conducted for use in the Mercury
Spacecraft were an effective means of predicting the safety level of the atmosphere
under operating conditions.
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APPENDIX C

DYNASOAR SPACE CABIN MATERIALS LIST

The source of this data is The Boeing Corporation. The list is approximately
30% complete.
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L

Plastics

A, | Thermoplastic Materials

1-

©_Noo kWD

9.
10.
11.
12.
13.

Acrylic

a. MIL-P-5425
b. MIL-P-8184
c. MIL-P-8257

Cellulose acetate (MIL-0O-8587)

Cellulose Butyrate (MIL-P-3414)

Kel-F (Polychlorotrifluoroethylene AMS 3650A)
Nylon (MIL-P-17091)

Polyethylene (MIL-P-3083)

Polypropylene

Polystyrene

a. Rexolite - cross linked styrene (MIL-P-3827A)
b. Styrene Rubber Copolymers (BMS-8-35)
c. Thermoplastic Polystyrene

Polyvinyl Chloride (MIL-P-3410)
Polyvinylidene Chloride (MIL-P-3411)
Polyvinyl Butyral (MIL-G-8602)

Teflon 100X - Polytetrafluoropropylene
Teflon - Polytetrafluoroethylene (AMS 3651)

B. Thermosetting Materials

1.

.

qmm:{awm

Polyester

a. Common Polyesters Resin (MIL-R-7575A)
b. Tri-Allyl-Cyanate (TAC) Resin (MIL-R-25042)

Epoxy Resin (MIL-R-9300)
Phenolic Resin (MIL-R-9299)
Silicone Resin (MIL-R-25506)
Phenyl Silane (MIL-R-9299)
Alkyd Resins (MIL-M-14E)
Melamine (MIL-P-15037)

These listed specifications are for Reference only.

1L

Elastomers

A. Acrylonitrile

B. Natural

C. Silicone (G. E. -RTV-60)

D. Neoprene - Polymers of Chloroprene
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E. Butyl - Isobutene and isoprene or butadiene
F. Polyurethane - diisocyanate and glycol - adipic acid esters
G. Hypalon - chlorosulfonated polyethylene :

II. Lubricants

A. Solid Film Dry Lubricants - BMS -3-3
B. Greases

1. Petroleum oil thickened with Sodium, Calcium or Lithium Soaps.
a., MIL-G-3545 Lubr1cat1ng Grease H1gh Temperature

b. MIL-G-7711 Lubricating Grease General Purpose
¢. MIL-G-7187 Grease,. Graph1te Aircraft Lubricating

2. Synthetic oil thickened with various th_ickeners

a. MIL-G-T118 Grease, Aircraft Gear & Actuator Screw, Diester
type oil, Lithium Soap Thickener

b. MIL-G-7421, Grease Extreme Low Temperature Diester Type
oil, Lithium Soap Thickener

c¢. MIL-G- 25013 Ball & Roller Grease Extreme High Temperature,
Silicone Fluid, th1ckened with mdanthrene type thickener.

d. MTL—G-257_60 Ball & Roller Grease, Wide Temperature Range,
Pentaerythritol ester fluid, aryl urea thickener or other ester
type with indanthrene type thickener

3. Radiation Resistant Grease
C. Fluids
1. Petroleum Oil = MIL-L-7870 - Lubricating 0il, Low Temperature
2. Synthetic Diester type MIL-L-6058 ~ Lubricating Oil Aircraft Instru-
ment _ '

3. Synthetic Silicone Type

a. General Electr1c Vers11ube F- 50
b. Dow Corning F-60 ‘

IV. Sealants
A. BAC - 5010

1. Type 2

a. Monsanto RF 2905
b. Catalin 726
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c¢. Casophen RS-216
d. Bostik 1007

Type 5

a. Bostik 1008

Type 12 (BMS-5-55)

a. Minnesota Mining & Mfg, EC-1128
Type 30 (BMS-5-43)

a. Dupont 5458

Type 34 (BMS-5-56)

a. Minnesota Mining & Mfg. EC 873
Type 38 (BMS-5-29)

a, Minnesota Mining & Mfg, EC-776R
b. Epon 828

c. Epon 812

d. Versamid 115

e. Versamid 125

f. Hysol 2022

g. SaCo 2862, Comp. I

h. Hysol AK-7

i. SaCo 2862, Comp, I

j. Cement Epoxy Polyamide

Type 40 (BMS-5-14)

a, Pro-Seal 590 M
b. U.S. Rubber M-6249

Type 42 (BMS-514)

a. Dow Corning Silastic Adhesive 8S-2200

b. Dow Corning A4094 Primer
Type 44 (BMS-519)

a. PR-9021-A-1
b. PR-9021-A-2
¢, PR-9021-A-4
d. PR-9021-B-1
e. PR-9021-B-2
f. Pro-seal 719-A-2
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g. Pro-seal 719-B-2
h. 3202-B-1
i. CSs-3203-B-2

10. Type 45 (BMS-5-58)

a. Dow Corning RTV-Silastic 501 (Catalyst A)
b. Dow Corning A-4094 Primer

11. Type 46

a. Dow Corning A-4000 - Silicone Adhesive
b. Dow Corning A-4014 - Primer
c. Dow Corning A-4000 - Catalyst

12, Type 47

a. Mystic A-117, Silicone
b. Corning C-269, Silicone Adhesive

13. Type 48 (BMS-5-30)

a. Bostik 4040
b. Minnesota Mining & Mfg. EC1458

14. Type 49 (BMS-5-34)
a, Churchhill 3C-90 °
15. Type 50 (EMS-5-36)
a., Eastman 910
16. Type 51
a. Pro-Seal 501
17. Type 53
a. Gaco~N-29 Adhesive
b. Gaco-N-39 Accelerator
¢. Ga<o~N-15 primer
18. Type 54 (BMS-5-25)
a. Epon 901 & Catalyst B-1

b. Epon 901 & Catalyst B-2
c. Epon 901 & Catalyst B-3
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19, Type 55
a. Thixon IB
B. BMS-5-17, HT-424
C. BMS-5-20, Harmtape 102, Types 1 and 2
D. BMS-5-15, AF-30/EC~1593

Adhesives

A, BMS-5-33 (Pressure Sealing RTV Silicones)

Dow Corning 3-0014

General Electric RTV-90

. Products Research PR-1910

. Coast Pro-Seal 792

. Minnesota Mining & Mfg, Co. 1667

01.-[:-00}\9!—‘

Interior Finishes

A, Alkyd
1. MIL-P-6889A primer
2. MIL-P-8585 primer
3. TT-E-489 enamel
4. TT-E-527

B. Vinyl Chloride Polymers

1. MIL-P-15830 primer
2. MIL-E-15935 enamel

C. Vinyl Acetal

1. MIL-G-8514 wash primer
2. MIL-T-15328 wash primer

D. Catalyzed Epoxy

1. BMS-10-11 Type 1 primer
2. BMS-10-11 Type 2 topcoat

E. Silicones
1. Dow Corning 805, resin

2. Dow Corning 806, resin
3. Dow Corning 807, resin
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Chlorinated Materials

1. Chlorinated Rubber (Parlon)

2, Chlorowax 70

3. Arochlor 1254

Polyurethanes

1. Mobay Co. Mondur CB-75 with Multron Resins

Nitrocellulose and Lacquers

1. MIL-1.-7178
2, MIL-L-6805

Acrylic

1. Sherwin Williams M49YC10 enamel
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APPENDIX D
THERMAL DECOMPOSITION AND TOXICITY DATA

FOR SELECTED ORGANIC MATERIALS
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The Boeing Company, in 1959, initiated a program to study the thermal degra-
dation of certain selected materials which might be employed in space cabins. This
study is reported in Boeing Company DocumentNo, D2 90202, portions of which are
discussed herein. The laboratory studies included thermogravimetric analysis of
individual materials, chemical identification of breakdown products, and relative
indication of acute animal toxicity. These tests were conducted at reduced pressure
under conditions simulating hypothetical space cabin environments.

A Stanton automatic recording thermogravimetric balance was used to determine
the characteristic temperature profiles of the materials under study. To simulate a
reduced pressure environment, the thermogravimetric balance was operated in an alti-
tude chamber at 18,000 ft. (7.35 psia). Chemical analyses were made by gas chroma-
tography and mass spectrometry. AKitagawa Toxic Gas Analyzer was used for low-
level carbon monoxide determinations. Several groups of materials, primarily elas-
tomers and plastics were selected for the initial evaluation program. The decomposition
temperatures, ranges, and other data from the thermogravimetric analyses are shown
in Table 23.

The initial weight loss is the lowest temperature at which weight loss was re-
corded. These losses are usually due to loss of residual solvent or absorbed water
but in some instances may be caused by very slight degradation.

The empirical decomposition temperature is arbitrarily taken as the lowest
temperature at which a line drawn 60° to the horizontal axis is tangent to the weight
loss curve. This is an empirical method of picking a temperature at which definite
sample degradation occurs that can be readily duplicated by any operator. Some
materials held at this temperature will degrade completely while others degrade only
partially. Curve inspection will usually indicate the thermal behavior to be expected.

The maximum rate decomposition temperature is taken at the inflexion of the
weight loss curve and represents the point of most rapid degradation of the material.

Range of accelerated rate change is the temperature range in which the thermo-
gram depicts a steeper slope than either the preceding or subsequent slope. First and
second merely indicates the order of occurrence in the direction of increasing tem-
perature. This phenomenon of slope increase indicates the start of acceleration of
a reaction, while slope decrease indicates the finish or deceleration of the previous
reaction,

Final weight loss is the temperature range in which final decomposition is com-
pleted. In most polymers, a carbonaceous residue is formed which will gradually
burn off, leaving an ash if nonvolatile inorganics are present,

Chemical analyses were made of three of the samples with aid of mass spectro-
graphic and gas chromatographic techniques. The result of these analyses are
shown in Table 24,

To determine the relative acute toxicities of the different materials, a large

bell jar apparatus was modified to serve as an animal chamber. Inside the bell jar
was a small furnace for material decomposition, a fan for circulation and a wire-net
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TABLE 24
CHEMICAL ANALYSIS OF THERMAL DEGRADATION PRODUCTS

Products Detected B
Gas Chromatograph -

Products Detected By

Material Mass Spectrograph

Butyl Rubber

Carbon Dioxide
Carbon Monoxilde
Ethane

Carbon Dloxide
Carbon Monoxide

Propane
Acrylonitrile Carbon Dioxide Carbon Dloxide
Carbon Monoxide Carbon Monoxide
Ethane Ethane
Hydrogen
Neoprene HC1 Carbon Dioxide
TABLE 25
RELATIVE TOXICITY
Substance LDg (mg/liter*)
Elastomers:
Acrylonitrile 19
Butyl Rubber 325, Gum Stock 38
Hypalon 66
Natural Gum Rubber, Smoked Sheet 11
Neoprene WRT, Gum Stock 10
Polyurethane Adiprene C 8
Silicone Rubber, DC 916 4
Plastles:
o KEL-F 240 3
Nylon FM-2 52
Polyethylene T
Polystyrene 80
Polypropylene 26
Polyvinyl Butyral 17

* Milligrams of material decomposed,

133




cage to house four mice, Accessory equipment included a pressure manometer, a
Variac for furnace control, a paramagnetic oxygen gas analyzer, and a Hempel carbon
dioxide analysis unit. A cold water cooling coil removed heat from the furnace wall
preventing a temperature build-up within the chamber.

For toxicity determinations, a small weighed sample of material was placed in
the furnace crucible, four mice were placed in the cage, and 10 grams of dessicant
was spread out in a flat metal receptacle for humidity control. The apparatus was
evacuated to 25,000 ft. and pure oxygen leaked in to bring the altitude down to 18,000
ft. This resulted in a partial pressure of 156 mm for oxygen, equivalent to sea level.
Tests made with control animals indicated no pathological effects due to the altitude
changes. A comparison of the relative toxicity of several materials is shown in Table
95, Since only four animals were used per trial, the statistical significance of the
data is limited,
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APPENDIX E

POLYMER IDENTIFICATION
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Some of the polymers, such as Teflon, are homopolymers and, therefore,
easily identifiable by specific chemical formulas. Others, such as epoxies or poly-
esters, are copolymers with other monomers or polymers thus making only generic
chemical formula identification possible. Since most commercial polymers are
either copolymers, or complex mixtures of copolymers, with solvents, plasticizers
and fillers added to obtain the desired physical and chemical properties, their com-
plete chemical formula identification cannot be made without direct information from
the respective manufacturers.

1. Acrylics

Homopolymers of such acrylates as acrylic acid, CHy = CHOOH, methyl
acrylate, CHy = CHCOOCHg, methyl methacrylate, CHy = CCOOCH3, ethyl
acrylate, CHg = CHCOOCgHg, and acrylonitrile, CHy = CH-CN, or copolymers
with other monomers, the most important of which are: vinyl chloride, vinyl
acetate, vinylidene chloride, vinylpyridine, butadiene and styrene. Typical
cast acrylic is methacrylate '"Plexiglas" of Rohm & Haas, typical acrylic
rubber is a copolymer of acrylonitrile with butadiene (and styrene) such as
"Hycar" of Goodrich, or Goodyear's "Chemigum."

2. Alkyd Resins
0il, modified polyesters (vide 13).
3. Cellulose Acetate

An ester of cellulose, obtained from natural sources such as cotton linters or
chemical pulp, and acetic acid, CH3COOH.

4, Cellulose Butyrate

Mixed ester of cellulose and acetic-butyric anhydrides.
5. Dacron (DuPont)

Poly (ethylene terephthalate) polyester fiber.

6. Epoxy Resins

Resins which are derived from the epoxide group are CHm CHz. A typical
example of an epoxy resin is the product of reaction between bisphenol A and
epichlorohydrin,
CI|'13
HO - O -C - O - OH + HZCQ-(-)—/CHCH2 Cl———p
3
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CH

3
|
H, C - CHCH, - O—O—?-—O—OCHZFHCHZ -
o cH, OH
n
CH
|3
c0-0O -¢- O —O—CHch\—}}Hz*‘HCI
CH )
3
7. Kel-F

A polymer of chlorotrifluoroethylene, whose molecular structure is:

F ClI F CcCl
~C—= C=C~C ~
F F F F

8. Melamine Polymers;

Polymers of melamine,
NHo

A
N

N
{ \
H,N ’C§N’b = NH,, and aldehydes

such as formaldehyde, CHZO

9. Mylar (DuPont)

Poly (ethylene terephthalate) extruded film of the same chemical composition
as Dacron.

10. Nylon
Any of the long chain polyamide polymers such as ""nylon 66"

~CO (CH,), CONH (CH,)  NH ~

2)4
11. Orlon (DuPont)

An orientable fiber made from polymers containing mostly acrylonitrile,
CH2 = CH -~ CN, in the chain.

12, Phenolic Polymers

Products of reaction between phenol, O -~ OH and an aldehyde such as formalde-
hyde, CHy0. The polymers are usually tridimensionally cross-linked.
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13. Polyesters.

Unsaturated polyesters of such acids as maleic anhydride,
~CH =CH\
O =¢C C = O, fumaric acid, HOOCCH = CHCOOH
~—0 —
and polyhydroxyl alcohols such as ethylene glycol, HOCHg CH,0H, and pro-
pylene glycols, HOCgHgOH, cross-linked to thermosettmg copolymers with vinyl
monomers, usually styrene,
14. Polyethylene
A polymer formed from ethylene
H H
H H
15. Polypropylene
A polymer formed from propylene.

(a) atactic form (Random)

H H
CH3 CH3

(b) syndiotactic form (stereospecific)

H CH3
Cc - CH2 - C - CH2
CH3 H

16. Polystyrene
A polymer of styrene

0 - CH = CH,—% “~CH - CH, ~

(a) Rexolite - Cross linked Styrene

~CH-CH, - CH-CH -CH - CH2 —CH—CHz—CH-CHz <

6 0 ¢
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~CH —CH2 --CH—CH2 - Cg-CHZ-CH-CHZ-CS—CH2 ~
() Styrene Rubber Copolymers

Copolymers of styrene with natural rubber or such monomers as butadiene

CH2 = CH-CH = CHZ'

17. Polyurethanes

Products of reactions between polyhydroxy compounds and polyisocyanates.
The iso-cyanate group, -N - C = O is extremely reactive with active hydrogen.
Polyurethane foams are made by reacting saturated polyesters, unsaturated

dibasic acids, such as maleic acid, and di - and tri-isocyanates such as
toluene 2,4 - diisocyanate,

CH

03 —~N=C=0
N=C=0

18, Polyvinyl Butyral
A copolymer of polyvinyl alcohol and butyraldehyde.
~CH2 - CHOH-CHZ—CHOH ~ -+ -
CH3—CH2-CH2-CHO-——-“-——.
~CH2 jJH CH2 CH ~

6] —C{-I -0
CH

I 2
Ciiz
CH 3
19. Polyvinyl Chloride
A polymer of vinyl chloride

CH2 = CH Cl"""~CH2 -CHCl~

20. Polyvinylidene Chloride
A polymer of 1,1-dichloroethylene

= e ol -
CH2 C Cl2 CH2 C C12~
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21. Silicone Polymers

Polymers in which some of the carbon atoms are replaced by the silicon
atoms. Polymers are prepared from mono di, tri, and tetrahalosilanes of
the type RaSixy,, where a +b =4,

22, Teflon
Polytetrafluoroethylene,
F F F F
] | | I
~C - C -C -C~
| ] I |
F F F F
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APPENDIX F

BIBLIOGRAPHY - PYROLYSIS AND DEGRADATION
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Reference Works

Norman Grassie, '""Chemistry of High Polymer Degradation Processes," (Butter-
worths, London, 1956).

A comprehensive review of the present knowledge of polymer degradation
(including thermal, and photo-initiated degradation, hydrolysis, oxidation,
sulphuration, ozonization and other reactions). Many references are cited

and those quoted in this bibliography are so indicated by being preceded by
an indication of the chapter and reference number in the book.

C. D. Hurd, "The Pyrolysis of Carbon Compounds," (Chemical Catalog Co., 1929).
A comprehensive review of the knowledge of pyrolysis up to 1929. Although
it does not particularly pertain to higher molecular weight materials, the
generalizations and relationships to compound structures are useful in inter-
preting the pyrolysis products obtained from higher molecular weight mate-
rials.

NBS Circular 525, Symposium on Polymer Degradation Mechanisms, (1953).

Polystyrene

B. G. Achhémmer, M. J. Reiney, L. A. Wal'l, and F, W, Reinhart, '"Study of

Degradation of Polystyrene by Means of Mass Spectrometry," J. Polymer Sci 8,

555 (1952). : RS
Degradation of polystyrene by heat and/or by ultraviolet radiation.

(Grassie 1 - 6) Bachman, G. B., etal. J, Org. Chem. 12, 108 (1947).

Monomer formation from polystyrene, polydichlorostyrene and poly-m-trifluoro-
methylstyrene.

(7) P. Bradt, V. H. Dibeler, and F, L, Mohler, "A New Technique for the Mass
Spectrometric Study of the Pyrolysis Products of Polystyrene." J. Research NBS
50, 201 (1953).
(Grassie 2-1) Jellinek, H. H. G., Trans Faraday Soc 40, 266 (1944).
Monomer from polystyrene and the decrease in molecular weight.
(Grassie 2-23) Jellinek, H. H.G., J. Polymer Sci. 3, 850 (1948); 4, 1, 13 (1949).
Thermal depolymerization of polystyrene.

(Grassie 2-29) Madorsky, S. L., J. Polymer Sci. 9, 133 (1952).

Rate of thermal degradation of polystyrene.
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S. L. Madorsky and S. Straus, '"Pyrolytic Fractionation of Polystyrene in é High
Vacuum and Mass Spectrometer Analysis of Some of the Fractions," J. Research
NBS 40, 417 (1948). cf Ind Eng Chem 40, 848 (1948). '

((Grassie 2-19) Staudinger, H. et al, Ber 59, 3019 (1926); 62, 241 (1929); 62, 2406 (1929);
Ann 517, 35 (1935).

Monostyrene, distyrene, and tristyrene from polystyrene.
(Grassie 6-2) Staudinger, H., and Steinhofer, A., Ann 517, 35 (1935).
Pyrolysis products from polystyrene.

Polymethacrylates

(Grassie (2-7) Cowley, P.R.E.J., and Melville, H.W., Proc Roy Soc A 210, 461
(1952); 211, 320 (1952).

Photoinitiated thermal depolymerization of polymethyl methacrylate.
(Grassie 1-5) Crawford, J,W.C., J Soc Chem Ind 68, 201 (1949).

Extent of monomer formation from polymethacrylates as a function of structure
of the monomer.

(Grassie 1-11) Grassie, N. and Melville, H.W., Proc Roy Soc A 199, 1, (1949).

Rate of production of monomer from polymethyl methacrylate as a function
of layer thickness,

(Grassie 2-3) Grassie, N. and Melville, H.W., Proc Roy Soc A 199, 1, 14, 24, 39
(1949).

Mechanism and moleailar weight change of thermal depolymerization of poly-
methyl methacrylate.

(Grassie 1-9) Grassie, N, and Melville, H.W., Proc Roy Soc A 199, 39 (1949).

Time lag in the rate of evolution of volatiles during the depolymerization of
cross-linked polymethyl methacrylate at 250°C.

(Grassie 2-4) Simha, R., Wall, L. A, and Blatz, P. J., J Polymer Sci 5, 615 (1950).

Mechanism and molecular weight decrease in the thermal degradation of poly-
methyl methacrylate.

(Grassie 2-2) Votinov, A., Kobeko, P., and Marei, F., J. Phys Chem (U.S.S.R.)
16, 106 (1942).

Mechanism of the thermal depolymerization of polymethyl methacrylates.
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Polyesters

(Grassie 3-45) Collected papers of W, H, Carothers on polymerization. High Polymers
Vol 1, Mark and Waitlay, Interscience. 1940,

Cyclic esters from polyesters.

(Grassie 3-44) Hill, J.W,, and Carothers, H.W,, J Amer Chem Soc 55, 5031 (1933).
Polymers whose products of degradation are cyclic esters.

(Grassie 1-12) Grassie, N., Trans Faraday Soc 48, 379 1952,

Catalytic decomposition of acetic acid from thermal degradation of polyvinyl ace-
tate by the presence of powdered metals.

(Grassie 3-48) Marshall, I. and Todd, A., Trans Faraday Soc 49, 67, (1953).
Thermal degradation products of polyethylene terephthalate.

(Grassie 3-44) Spanagel, E. W, and Carothers, W. H., J Amer Chem Soc 57, 929 (1935).
Polymers whose products of degradation are cyclic esters.

Natural Rubber, Synthetic Rubber and Related Materials

H. L. Bassett, and H. G. Williams, J Chem Soc, (1932) 2324.
Natural Rubber degradation.
(Grassie 2-47) Bolland, J. L. and Orr, W, J, C., IRI Trans 21, 133 (1945).
Volatile products from natural rubber heated at 220-270°C.
T. Midgley and A. L. Kenne, J Am Chem Soc 51, 1215 (1929).
Natural rubber degradation.
H. Staudinger and E. Geiger, Helv Chim Acts 9, 549 (1926).
Natural rubber degradation,
H. Staudinger and J. Fritschi, Helv Chim Acts 5, 785 (1922).
Natural rubber degradation.
S. L. Madorsky, S. Straus, Dorothy Thompson and Laura Williamson, J Research

NBS 42, 499 (1949). "Pyrolysis of Polyischutane (Vistanex), Polyisoprene, Poly-
butadiene, GR-S and Polyethylene in a High Vacuum,"
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L. A. Wall, '"Mass Spectrometric Investigation of the Thermal Decomposition of
Polymers,'" J Research NBS 41, 315 (1948).

Polyethene, Polyisobutene, Polystyrene, Polybutadiene, Polyisoprene, Poly-
methylpentadiene, Methyl rubber, natural rubber.

(Grassie 2-39) Madorsky, S. L., Straus, S., Thompson, D., and Williamson, L.,
J Polymer Sci 4, 639 (1949).

Mass spectrometric analysis of products from depolymerization of polyethylene.

Halocarbon Polymers

P. Bradt and F. L. Mohler, "Analysis of Fluorinated Polyphenols by Mass Spectrom-
eter," Anal Chem 27, 675 (1955).

(Grassie 2-46) Lewis, F. E. and Mayier, M. R., J Amer Chem Soc 69, 1968 (1947). -~

Mechanism of thermal degradation of polytetrafluoroethylene.

S. L. Madorsky, W. E. Hart, S. Straus, and V. A, Sedlack. "Thermal Degradation
of Tetrafluoroethylene and Hydrofluoroethylene Polymers in a Vacuum,'" J Research
NBS 51, 327 (1953).

S. L. Madorsky and S. Straus, J Research NBS 55, 223 (1955). ''Thermal Degradation
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