UNCLASSIFIED 429961

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

4.5.7.

CHEEF, BUILDAU CI SITES TESTIMOAL LIBRARY

ij.

Bureau af Ships Code 641 Rm 3751

BEARING ATTF' JUATION

by

J. W. Lund B. Sternlicht

April 28, 1961

CONTRACTOR OF THE OF hind new and finded Dad.

QL-316B (4-59)

The information contained in this report has been prepared for use by the General Electric Company and its employees. No distribution should be made outside the Company except when indicated below:

5

1.1

General Engineering Laboratory

BEARING ATTENUATION

by

J.W. Lund B. Sternlicht

April 28, 1961

Technical Report

For: Bureau of Ships Contract No. : NObs - 78930 Task Order No. : 3679, Sub Area F 131105

SCHINECTARY, NEW YORK

TABLE OF CONTENTS

į

- - w -

	Page
List of Figures	
Abstract	iv
Introduction	1
Theoretical Analysis	3
Summary of Results	15
Design Information	18 .
Dynamic Operation	22
(a) Stability	24
(b) Balancing	29
Conclusions	33
Recommendations	34
Acknowledgement	35
References	36
Tables, 1-6	
Figures, 1-52	
Nomenclature	fold out

TINGPA NO.		Title			nden en e		
5628 (TAB TA / J = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	randrijana présióni		nerse Generalesenskeit		, , , , , , , , , , , , , , , , , , ,		Landersen ander Stevenster - 12 Mart
1	Configuration and coordinate system for Cylindrical Bearing.						
2 3	-Configuration and coordinate system for 4-Axial Groove-Bearing. Configuration and coordinate system for Elliptical Bearing						
4	Configuration and coordinate system for Alliptical Bearing Coordinate system for Cylindrical and A-Axial Croove Bearing						
8	Goordinate system for Elliptical Bearing						
6		aring dyna					
7	•	•		th dimonsio			
8						•	, Cylindrics i Bearing
9 [.]	41 41	8 0		11 II 17 EF	11 11-	f1	, 4-Axial Groove Bearing , Elliptical Bearing
10 11		int speed ri	14			paad rati	4.5
12							1. Cylindrical Bearing, the -1-
13-	H	H.	11	H H	#1	11	. Cylindrical Dearing. La ;
14	¥1-	11	0	ar n	h	*1	, A-Axial Groove Bearing, 1 * 1
15	и	*1	n	11 H	н	н	, 4=Azial Groove Bearing, D = 1
16	Dffectiv	s spring co	efficient	in horison			O Cylindrical Bearing,
17	44	Ħ	H	11 11	ŧŸ	11	, Gylindrical Bearing, At. # 1 13
16	li .	11	6	AF H	-11	68 66	, 4-Axial Groove Brg., 10 a.2
19	14	ţr.	Ħ	AF 41-	n		, 4-Axiat Groove Bry, 1. * 1
20	#ffective 11	e damping - u	eoefficie 11	nt in vertic	al directi "	00 VA2806 JI	Gylindrical Bearing, $\frac{1}{D} = \frac{1}{2}$, Gylindrical Bearing, $\frac{1}{N} = 1$
21							
22	11	11	н	11 11	55	11	4-Axial Groove Brg. ,
23	U	11	"	11 H	H	11	, 4-Axial Groove Brg. , D = 1
24	Effectiv	e damping	coefficie	int in horise	ontal dire	ction ver	us W. Cylindrical Bearing, Dan
25	ŧ	H	11	H 11			, Cylindrical Beaving, D = 1
26	11	H	11	83 18	11		4-Asial Groove Brg., Danie
27	f3	11	n	11 H	11		, 4-Axial Groove Brg., D = 1
28	Transm	itted force	in vorti	cal di rectio	N VETRUS	(14)	, Cylindrical Bearing, Bar
29	Transm	itled force	in verti	cal directio	n verfue	(H)'	, Cylindrical Dearing, D = 1
30	łf	(ł-	H 11	11	Ħ	11	, 4-Axial Groove Brg, L al
31	16	Ш	11 41	H	11	11	, 4-Axial Groove Brg., D = 1
32	11	н	H H	58	11	íl.	, Elliptical Bearing, D = 1, m = .25
33	н		11 11	11	H.	8	, Elliptical Bearing, Data , m. s. 5
34	11		H• H	91	н	0	, Elliptical Bearing, L = 1, m = .25
35	11	11	H 11	11	и	11 11454	, Elliptical Bearing, D = 1, m = .5 L 1
36	T ransm	-		iontal direct			, Cylindrical Bearing, $\frac{L}{D} = \frac{1}{2}$
37	H	łł	11 11	11	-ît		, Cylindrical Bearing, D = 1
38	11	11	H H	11	11	Ħ	, 4-Axia) Groove Brg., $\frac{L}{D} = \frac{1}{2}$
39	N	11	я н 		11	11	, 4-Axial Groove Birg., L = 1
40	11·	11	HF 11	11 11	11		, Elliptical Bearing, L = 1, in # .25
41	u II	11 11	н 0 13 0	31 11	11 11	11 11	, Elliptical Bearing, $\frac{L}{D} = \frac{1}{2}$, m = .5 , Elliptical Bearing, $\frac{L}{D} = 1$, m = .25
42							
43	п	ft	51 JL	(1 	**	41	, Elliptical Bearing, D = 1, m = .5

LIST OF FIGURES

•·· • ·

v

*ii=

LIST OF FIGURES (Continued)

The second secon

and the second second second

. .

.

.....

Figure No.	Title					
44	Comparison of transmitted force for the three bearing types, $\frac{L}{D}=\frac{1}{2}$					
45	и п и и и и и и и , <u>Б</u> ыц					
46	Design Chart for critical speed salculation, Cylindrisal and 4-Axial Groove Bearings					
47	B B B B B B , Diliptical Bearing					
48	Elliptical Journal Canter Path, Constant eccentricity ratio, Cylindrical Bearing, $\frac{1}{D}$ = $\frac{1}{2}$					
49	11 11 II II bearing reaction, Cylindrical Bearing, 抗 🗉 🔒					
50	Snamples of stable and shetable journal center paths					
51.	Coordinate system for stability exception					
52	Coordinate system for rotor-bearing system as used in asstion on Balancing.					

ABSTRACT

The purpose of this report is to analyze the stiffness and damping properties of fluid film journal bearings and to determine the force transmitted to the bearing support. The results are presented in practical design charts and are given in dimensionless form to make them applicable to wide ranges of geometrically and dynamically similar units.

The analysis assumes that the rotor vibrations are of small amplitude. Thereby the non-linear oil film force is replaced by gradients, denoted spring and damping coefficients. The numerical values of these coefficients are obtained by computer calculations. Results are given for 3 bearing types: the plain cylindrical, the 4-axial groove and the elliptical bearing. Using these bearings to support a symmetrical two-bearing rotor the force transmitted to the bearing pedestals, due to a rotor imbalance, is calculated. Thus the bearings can be compared for a given rotor and for known operating conditions and the bearing with the optimum force attenuation can be selected-

INTRODUCTION

The hydrodynamic oil film force is obtained from Reynold's equation. assuming constant viscosity. The equation is approximated by a finite difference equation and solved on a computer. The resulting oil film force is a non-linear function of the eccentricity, the attitude angle and the corresponding velocity components. The non-linearity implies a complex relationship between the rotor and its bearings such that in an exact analysis the rotor and the bearing cannot be studied separately, but must be analyzed as a system. Even if an exact solution was available it would not be too useful for design purposes, firstly because of the vast number of bearing and rotor parameters, and secondly because it would be almost hopeless to tie the results in with the supporting structure. In the present analysis, therefore, the oil film force is linearized by replacing it with its gradients, mathematically expressed in the first order Taylor expansion. This is a justified approximation when it is assumed that the journal motion is small. A linear bearing force vastly simplifies the rotor analysis and makes it possible to assign an impedance to the bearing, a necessary presupposition for any overall investigation of the rotor and its supporting structure.

Three bearing types are studied: the plain cylindrical, the 4-axial groove and the elliptical bearing. The configurations are shown in figure 1, 2 and 3. The oil film force gradients are calculated on the computer as shown in table 1-4 and introducing the numerical values into the linearized expression for the oil film force (see eq. (6) and (7), page 4) yields the bearing spring and damping coefficients as shown in table 5.

Although the thus obtained data are completely sufficient for a rotor vibration calculation they are not in a too convenient form. The reason is that 8 coefficients are obtained whereas the normal rotor calculation is set up for only 4 coefficients, a spring and damping coefficient in two mutually perpendicular directions. No provision is made for taking into account the additional 4 cross-coupling coefficients. Therefore, it is a matter of

-1-

practical importance to eliminate them. Unfortunately, they are unsymmetrical and do not vanish by the introduction of principal axis. Instead another method is employed making use of the fact that linear bearing forces result in harmonic rotor motion. Thus, it is possible to replace the original 8 coefficients with 4 equivalent coefficients that will give exactly the same rotor motion. It is clear that such a reduction depends on the rotor. A symmetrical, twobearing rotor is selected since it represents the most commonly used rotor design. As a further simplification the rotor is given only one degree of freedom by concentrating the rotor mass at midepan. The simplified system is shown in figure 6.

The procedure is as follows: a force-balance in the vertical and the horizontal direction is set up for the rotor combining the rotor inertia, the unbalance force and the bearing force represented by the computed 8 spring and damping coefficients. This results in 4 equations in the unknown amplitudes set up in a matrix. By eliminating the 8 terms, representing the cross-coupling effect, the matrix is reduced to the same form as the matrix for a rotor with only 4 spring and damping coefficients and no cross-coupling coefficients. Therefore the remaining terms in the reduced matrix are the desired equivalent spring and damping coefficients. In addition, the matrix is solved for the rotor amplitudes, and combining the amplitude with the spring and damping coefficients gives the force transmitted by the bearing. All the results are given in dimensionless form as a function of a dimensionless parameter $\mathcal{X} = \frac{\mathbf{k} \mathbf{k}}{\lambda \mathbf{u}} \cdot \frac{\mathbf{k}}{\mathbf{l} - \mathbf{k}}$. In plotting the results \mathcal{X} is replaced by the speed ratio (a_{1}) , see eq. (29), page 14. Curves are given for the dimensionless spring and damping coefficients, and the dimensionless transmitted force as shown in figures 12-43. The force attenuation, expressed as the ratio between the actual ransmitted force and the force transmitted by a rotor in rigid bearings, is easily found from the graphs since the dimensionless rigid bearing transmitted force is also plotted.

-2-

THEORETICAL ANALYSIS

For an incompressible fluid Reynold's equation may be written:

$$(1) \frac{\partial}{\partial x} \left[\frac{h}{\omega} \frac{\partial P}{\partial x} \right] + \frac{\partial}{\partial z} \left[\frac{h}{\omega} \frac{\partial P}{\partial z} \right] = 6 R \omega \frac{\partial h}{\partial x} + 12 \frac{de}{dt} \cos \theta + 12 \frac{de}{dt} \sin \theta$$
$$= 6 R \omega (1 - 2 \frac{h}{\omega}) \frac{\partial h}{\partial x} + 12 \frac{de}{dt} \cos \theta$$
$$\text{where } h = C + e \cos(\frac{R}{\omega})$$

Introducing: ĥ=2Ch 菜=2RX ヹ=Lz C=CE F=µN(I-2党)(音) (constant µ)

Reynold's equation reduces to the following dimensionless equation:

(2)
$$\frac{\partial}{\partial x} \left[h^3 \frac{\partial P}{\partial x} \right] + \left(\frac{D}{D} \right) \frac{\partial}{\partial x} \left[h^3 \frac{\partial P}{\partial x} \right] = 6\pi \frac{\partial h}{\partial x} + 12\pi \frac{1}{(1-2\pi)} \cdot \cos \Theta$$

The resulting oil film force is then:

(3)
$$E_{\pi} = \mu N(1-2\frac{\pi}{6})(\frac{\pi}{6}) DL \int_{0}^{\pi} Pcos(e+a) dx dx = \lambda \omega(1-2\frac{\pi}{6}) \cdot f_{\pi}(\frac{\pi}{6}, \epsilon, \alpha, \frac{\pi}{(1-2\frac{\pi}{6})})$$

where

(4)
$$\lambda = \frac{\mu R L}{\pi} \left(\frac{R}{C} \right)^2$$

For the subsequent analysis it is necessary to linearize the force with respect to displacement and velocity. The first order approximation of the Taylor expansion will be used:

$$d \mathbf{F} = \lambda \omega (I - 2\frac{\dot{\alpha}}{\omega}) \left[\frac{\partial f_{\alpha}}{\partial \varepsilon} d\varepsilon + \frac{\partial f_{\alpha}}{\partial \varepsilon} \varepsilon d\alpha + \frac{\partial f_{\alpha}}{\partial (\frac{\dot{\alpha}}{\omega})} + \frac{\partial f_{\alpha}}{\partial (\frac{\dot{\alpha}}{\omega})} - \frac{2f_{\alpha}}{\varepsilon \omega (I - 2\frac{\dot{\alpha}}{\omega})} \varepsilon d\alpha \right]$$

Writing:

$$\frac{\partial f_{1}}{\partial (\underline{a})} = \frac{\partial f_{2}}{\partial (\underline{a}/1 - 2\underline{a})}, \frac{\partial (\underline{a}/1 - 2\underline{a})}{\partial (\underline{a})} = \frac{\partial f_{2}}{\partial (\underline{a}/1 - 2\underline{a})}, \frac{2\underline{a}}{(1 - 2\underline{a})^{*}}$$

and taking as the reference for the Taylor expansion the steady state equilibrium position where

-3-

we get:

(5)
$$d = \lambda \omega \left[\frac{\partial f_{\alpha}}{\partial e} de + \frac{\partial f_{\alpha}}{\partial d\alpha} e d\alpha + \frac{\partial f_{\alpha}}{\partial (f_{\alpha})} d(f_{\alpha}) - \frac{2 f_{\alpha}}{g \omega} e d\alpha \right]$$

To change from polar to rectangular coordinates (see figure 4):

Since the point (CL, α) is the steady state position, dx and dy represents the dynamic displacements and dx = (dx) and dy = (dy). Thus we obtain: ŀ

(6)
$$dF_{x} = \frac{1}{c} \lambda \omega \left\{ \left(\frac{\partial G_{y}}{\partial e} \cos u - \frac{\partial G_{y}}{\partial e} \sin u \right) dx + \left(\frac{\partial G_{y}}{\partial e} \cos u + \frac{\partial G_{y}}{\partial e} \sin u \right) dx + \left(\frac{\partial G_{y}}{\partial e} \sin u + \frac{\partial G_{y}}{\partial e} \cos u \right) dy + \left(\frac{\partial G_{y}}{\partial e} \sin u - \frac{\partial G_{y}}{\partial e} \cos u \right) dy \right\}$$

or: $dF_{x} = -K_{xx} dx - C_{xx} dx + K_{xy} dy + C_{xy} dy$
(7) $dF_{y} = K_{yx} dx + C_{yx} dx - K_{yy} dy - C_{yy} dy$

Three bearing configurations will be analyzed. For this purpose equation (6) is not in a convenient form and must be rewritten in terms of the force components normally used in bearing calculations.

Cylindrical Bearing

The force is given in terms of a radial component F_r , positive in the negative radial direction, and a tangential component F_t , positive in the positive **4**-direction, such that

$$F_{x} = -F_{x} \cos \alpha - F_{x} \sin \alpha$$

 $dF_{x} = -dF_{x} \cos \alpha + F_{x} \sin \alpha$
 $dF_{x} = -dF_{x} \cos \alpha + F_{x} \sin \alpha$
 $dF_{y} = -dF_{x} \sin \alpha - F_{x} \cos \alpha$
 $dF_{y} = -dF_{x} \sin \alpha - F_{x} \cos \alpha$
 $dF_{y} = -dF_{x} \sin \alpha - F_{x} \cos \alpha$
 $dF_{y} = -dF_{x} \sin \alpha - F_{x} \cos \alpha$
 $dF_{y} = -dF_{x} \sin \alpha - F_{x} \cos \alpha$
 $dF_{y} = -dF_{x} \sin \alpha - F_{x} \cos \alpha$
 $dF_{y} = -dF_{x} \sin \alpha - F_{x} \cos \alpha$

Expressing dF_{T} and dF_{t} by equation (6), the coefficients in equation (7) can be written:

b

$$K_{yy} = \frac{1}{c} \lambda \omega \left[\frac{\partial f_{z}}{\partial \varepsilon} \cos^{2} \alpha + \frac{f_{z}}{c} \sin^{2} \alpha + \left(-\frac{f_{z}}{c} + \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

$$\omega C_{xx} = \frac{1}{c} \lambda \omega \left[\frac{\partial f_{z}}{\partial \varepsilon} \cos^{2} \alpha + \frac{2f_{z}}{c} \sin^{2} \alpha + \left(\frac{2f_{z}}{c} + \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

$$K_{xy} = \frac{1}{c} \lambda \omega \left[-\frac{f_{z}}{c} \cos^{2} \alpha - \frac{\partial f_{z}}{\partial \varepsilon} \sin^{2} \alpha + \left(\frac{f_{z}}{c} - \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

$$\omega C_{xy} = \frac{1}{c} \lambda \omega \left[\frac{2f_{z}}{c} \cos^{2} \alpha - \frac{\partial f_{z}}{\partial \varepsilon} \sin^{2} \alpha + \left(\frac{2f_{z}}{c} - \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

$$K_{yy} = \frac{1}{c} \lambda \omega \left[\frac{\partial f_{z}}{\partial \varepsilon} \cos^{2} \alpha + \frac{f_{z}}{c} \sin^{2} \alpha + \left(\frac{f_{z}}{c} - \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

$$\omega C_{yx} = \frac{1}{c} \lambda \omega \left[\frac{\partial f_{z}}{\partial \varepsilon} \cos^{2} \alpha + \frac{f_{z}}{c} \sin^{2} \alpha + \left(\frac{2f_{z}}{c} - \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

$$K_{yy} = \frac{1}{c} \lambda \omega \left[\frac{\partial f_{z}}{\partial \varepsilon} \cos^{2} \alpha + \frac{f_{z}}{c} \sin^{2} \alpha + \left(\frac{2f_{z}}{c} - \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

$$\omega C_{yx} = \frac{1}{c} \lambda \omega \left[\frac{\partial f_{z}}{\partial \varepsilon} \cos^{2} \alpha + \frac{\partial f_{z}}{\partial \varepsilon} \sin^{2} \alpha - \left(-\frac{f_{z}}{c} + \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

$$\omega C_{yy} = \frac{1}{c} \lambda \omega \left[\frac{2f_{z}}{c} \cos^{2} \alpha + \frac{\partial f_{z}}{\partial \varepsilon} \sin^{2} \alpha - \left(-\frac{f_{z}}{c} + \frac{\partial f_{z}}{\partial \varepsilon} \right) \cos \alpha \sin \alpha \right]$$

4-Axial Groove Bearing

(a)

The force is given in terms of a vertical component F_v , positive in the negative x-direction, and a horizontal component F_h , positive in the positive y-direction, such that

Using equation (6) directly the coefficients in eq. (7) become:

(9)
$$W_{xx} = \frac{1}{2} \lambda \omega \left[\frac{\partial f_{x}}{\partial e} \cos \alpha - \frac{\partial f_{x}}{\partial \alpha} \sin \alpha \right]$$

(9) $W_{xx} = \frac{1}{2} \lambda \omega \left[\frac{\partial f_{x}}{\partial \alpha} \cos \alpha + \frac{2f_{x}}{\epsilon} \sin \alpha \right]$

$$K_{uy} = \frac{1}{C} \lambda \omega \left[-\frac{\partial f_{u}}{\partial \varepsilon} \sin \alpha - \frac{\partial f_{u}}{\partial 0} \cos \alpha \right]$$

$$\omega C_{uy} = \frac{1}{C} \lambda \omega \left[-\frac{\partial f_{u}}{\partial \varepsilon} \sin \alpha + \frac{2f_{u}}{\varepsilon} \cos \alpha \right]$$

$$K_{uy} = \frac{1}{C} \lambda \omega \left[\frac{\partial f_{u}}{\partial \varepsilon} \cos \alpha - \frac{\partial f_{u}}{\varepsilon \partial \alpha} \sin \alpha \right]$$

$$\omega C_{uy} = \frac{1}{C} \lambda \omega \left[\frac{\partial f_{u}}{\partial \varepsilon} \cos \alpha + \frac{2f_{u}}{\varepsilon} \sin \alpha \right]$$

$$K_{uy} = \frac{1}{C} \lambda \omega \left[-\frac{\partial f_{u}}{\partial \varepsilon} \sin \alpha - \frac{\partial f_{u}}{\varepsilon \partial \alpha} \cos \alpha \right]$$

$$\omega C_{uy} = \frac{1}{C} \lambda \omega \left[-\frac{\partial f_{u}}{\partial \varepsilon} \sin \alpha - \frac{\partial f_{u}}{\varepsilon \partial \alpha} \cos \alpha \right]$$

$$\omega C_{uy} = \frac{1}{C} \lambda \omega \left[-\frac{\partial f_{u}}{\partial \varepsilon} \sin \alpha + \frac{2f_{u}}{\varepsilon \partial \alpha} \cos \alpha \right]$$

Elliptical Bearing

va .

The elliptical bearing is made up of two partial arc bearings called the lower lobe, identified by subscript 1, and the upper lobe, identified by subscript 2. The radial bearing clearance is taken as the difference between the lobe radius and the journal radius. The origin of the x, y-coordinate system is located at the bearing center, midway between the lobe centers, with the xaxis vertical downwards. 1

From figure 5:

 $\varepsilon_1^{z} = \varepsilon^{z} + m^{z} + 2\varepsilon m\cos \alpha$ $\varepsilon_z^{z} = \varepsilon^{z} + m^{z} - 2\varepsilon m\cos \alpha$ (10) $\sin \alpha_1 = \frac{\varepsilon \sin \alpha_1}{\varepsilon_1}$ $\sin \alpha_2 = \frac{\varepsilon \sin \alpha_2}{\varepsilon_2}$

Furthermore

(11)

$$d\varepsilon_{1} = \frac{1}{c} \left[\cos \alpha_{1} dx + \sin \alpha_{1} dy \right]$$
$$\varepsilon_{1} d\alpha_{1} = \frac{1}{c} \left[-\sin \alpha_{1} dx + \cos \alpha_{2} dy \right]$$

Erdar = E [sina, dx + cosa, dy]

The two lobes are calculated separately resulting in a vertical and a horizontal force component for each lobe. Then:

(12)
$$F_{x} = -(F_{x} - F_{yz}) = -F_{yz}$$
 $F_{y} = (F_{x} - F_{yz}) = F_{x}$

These equations are analogous to the 4-axial groove bearing. Therefore equations (9) are also applicable to the elliptical bearing. However, a difficulty is encountered in the calculation of the derivatives with respect to velocity because a pure radial velocity $\dot{\epsilon}$ gives rise to both a radial and a tangential velocity component for the lobes. Thus $\frac{1}{1000} = -2f$ does not hold for the elliptical bearing as it did for the cylindrical and the 4-axial groove bearing, but it is still valid for each lobe taken by itself. Using eq. (5) and (7) together with eq. (12) we get:

$$-C_{xx}d\dot{x} + C_{xy}d\dot{y} = \lambda\omega \left[-\frac{\partial f_{xx}}{\partial (\omega)} \frac{1}{\omega} d\dot{\epsilon}_{i} + \frac{\partial f_{yx}}{\partial (\omega)} \frac{1}{\omega} d\dot{\epsilon}_{z} + \frac{2f_{yx}}{\epsilon_{i}\omega} \epsilon_{i}d\alpha_{i} - \frac{2f_{yx}}{\epsilon_{z}\omega} \epsilon_{z}d\alpha_{z} \right]$$

$$C_{yx}d\dot{x} - C_{yy}d\dot{y} = \lambda\omega \left[\frac{\partial f_{xx}}{\partial (\omega)} \frac{1}{\omega} d\dot{\epsilon}_{i} - \frac{\partial f_{xx}}{\partial (\omega)} \frac{1}{\omega} d\dot{\epsilon}_{z} - \frac{2f_{yx}}{\epsilon_{i}\omega} \epsilon_{i}d\alpha_{i} + \frac{2f_{xx}}{\epsilon_{z}\omega} \epsilon_{z}d\alpha_{z} \right]$$

Using equations (11) we get:

$$\omega C_{xx} = \frac{1}{c} \lambda \omega \left[\frac{\partial f_{x1}}{\partial f_{x1}} \cos a_{1} + \frac{\partial f_{x2}}{\partial f_{x2}} \cos a_{2} + \frac{2f_{x1}}{c_{1}} \sin a_{1} + \frac{2f_{x2}}{c_{2}} \sin a_{2} \right]$$

$$\omega C_{xy} = \frac{1}{c} \lambda \omega \left[-\frac{\partial f_{x1}}{\partial f_{x1}} \sin a_{1} + \frac{\partial f_{x2}}{\partial f_{x2}} \sin a_{2} + \frac{2f_{x1}}{c_{1}} \cos a_{1} - \frac{2f_{x2}}{c_{2}} \cos a_{2} \right]$$

$$\omega C_{yx} = \frac{1}{c} \lambda \omega \left[-\frac{\partial f_{x1}}{\partial f_{x1}} \cos a_{1} + \frac{\partial f_{x2}}{\partial f_{x2}} \cos a_{2} + \frac{2f_{x1}}{c_{1}} \sin a_{1} + \frac{2f_{x2}}{c_{2}} \cos a_{2} \right]$$

$$\omega C_{yx} = \frac{1}{c} \lambda \omega \left[-\frac{\partial f_{x1}}{\partial f_{x1}} \cos a_{1} + \frac{\partial f_{x2}}{\partial f_{x2}} \cos a_{2} + \frac{2f_{x1}}{c_{1}} \sin a_{1} + \frac{2f_{x2}}{c_{2}} \sin a_{2} \right]$$

$$\omega C_{44} = \frac{1}{\epsilon_1} \lambda \omega \left[-\frac{\partial f_{41}}{\partial (4)} \sin \alpha_1 + \frac{\partial f_{42}}{\partial (4)} \sin \alpha_2 + \frac{2 f_{41}}{\epsilon_1} \cos \alpha_1 - \frac{2 f_{42}}{\epsilon_2} \cos \alpha_2 \right]$$

Thus we may use equations (9) by setting:

$$\frac{\partial f_{u}}{\partial E} = \frac{\partial (f_{u} - f_{v2})}{\partial E}$$

$$\frac{\partial f_{u}}{\partial E} = \frac{\partial (f_{u} - f_{v2})}{\partial E}$$

$$\frac{\partial f_{u}}{\partial E} = \frac{\partial (f_{u} - f_{v2})}{\partial E}$$

$$\frac{\partial f_{u}}{\partial E} = \frac{\partial (f_{u} - f_{v2})}{\partial E}$$
(13)
$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial f_{v}}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})} = \frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})}$$

$$\frac{\partial (f_{u} - f_{v2})}{\partial (E_{0})} = \frac{$$

The above forces and derivatives are calculated by means of a computer as summarized in tables 1-3. The resulting spring and damping coefficients as calculated from equations (8), (9) and (13) are shown in table 4. These results can be used directly when calculating the vibrations of the rotor. However, the usual calculation procedure allows for only 4 coefficients, one spring and damping coefficient in the vertical and in horizontal direction. No provision is made for taking into account the 4 cross-coupling terms Kxy, C_{Xy} , K_{yx} and C_{yx} . Therefore it becomes important to eliminate them to reduce the original 8 coefficients to 4 equivalent coefficients. Due to the non-symmetry of the cross-coupling terms they do not disappear by the

м 8.м

introduction of principal axis. Instead, the 8 coefficients may be combined to 4 by coupling the bearing with the rotor in such a way that the resulting motion remains the same. This is the purpose of the following analysis.

The rotor is a simple, symmetrical, one-degree-of-freedom rotor. It is supported in two identical bearings and the rotor mass is considered concentrated at midspan, (see figure 6).

Let 0 be the steady state position of the journal center (i.e., at zero unbalance), A is the actual journal center, B is the shaft center at midspan and G is the center of gravity of the rotor. A force balance gives:

$$M\ddot{x}_{b} + k(x_{b} - x_{a}) = Mew^{2}cos\omega t$$

$$k(x_{b} - x_{a}) = 2K_{xx}x_{a} + 2C_{xx}\dot{x}_{a} - 2K_{xy}y_{a} - 2C_{xy}\dot{y}_{a}$$

(14)
$$M\ddot{y}_{L}+K(y_{L}-y_{n}) = Mew^{2}sinwt$$

 $K(y_{L}-y_{n}) = -2Ky_{N}X_{n} - 2Cy_{N}X_{n} + 2Ky_{N}y_{n} + 2Cy_{N}\dot{y}_{n}$

The following parameters are introduced:

(16)
$$\mathcal{R} = \frac{1}{2} \mathbf{k} \frac{\omega^2}{\omega^2}$$

Furthermore the solution is taken in the form:

(17)
$$X_{a} = Accs \omega t + Bsin \omega t$$

 $X_{b} = \frac{Acc + e\omega^{2}}{\omega_{c}^{2} - \omega^{2}} cos \omega t + \frac{B\omega^{2}}{\omega_{c}^{2} - \omega^{2}} sin \omega t$
(17) $Y_{a} = Ecos \omega t + Fsin \omega t$

		B Xe	E Xe	E X C	· ·
(18)	(K _{**} -**)	ωC _{xx}	-K _{xy}	-wCxy	1
	-ωር _{×κ}	(K*****	ωСху	- K _{Xy}	
	- Kyx	-соСух	(Kyy-X)	ωCyy	0
	ωCyr	- Kyr	-wCyy	(Kyy-X)	

'Substituting eq. (15), (16) and (17) into eq. (14) yields:

k

It is desired to reduce this matrix to the same form as a matrix for a rotor without cross-coupling terms. Such a rotor has only 4 spring and damping coefficients which are denoted K_x , B_x , K_y and B_y . The reduced matrix is then:

*

· .

	A: Xe	B Xe	E E	F Xe	
(19)	(K*-*)	ωB _×	0	0	1
	-ωB _x	(K _x -æ)	0	0	0
	0	0	(Ky-38)	ωBy	
	0	0	-ω By	(Ky-*)	

After a substantial amount of algebra, eq. (18) is reduced to eq. (19) with the results:

í.

$$K_{x} = K_{xx} - \oint_{x} \left[\delta K_{xy} + \eta (\omega C_{xy}) \right]$$

$$\omega B_{x} = \omega C_{xx} + \oint_{x} \left[\eta K_{xy} - \delta (\omega C_{xy}) \right]$$

$$K_{y} = K_{yy} - \oint_{y} \left[\delta K_{yx} - \eta (\omega C_{yx}) \right]$$

$$\omega B_{y} = \omega C_{yy} - \oint_{y} \left[\eta K_{yx} + \delta (\omega C_{yx}) \right]$$

wherei

$$\begin{aligned} &\mathcal{Y}_{x}^{*} \left(K_{yy} - \varkappa + \omega C_{xy} \right)^{z} + \left(K_{xy} - \omega C_{yy} \right)^{z} \\ &\mathcal{Y}_{y}^{*} \left(K_{xx} - \varkappa - \omega C_{yx} \right)^{z} + \left(K_{yx} + \omega C_{xx} \right)^{z} \\ &\delta = \left(K_{xx} - \varkappa - \omega C_{yx} \right) \left(K_{xy} - \omega C_{yy} \right) + \left(K_{yy} - \varkappa + \omega C_{xy} \right) \left(K_{yx} + \omega C_{xx} \right) \\ &\eta = \left(K_{xx} - \varkappa - \omega C_{yx} \right) \left(K_{yy} - \varkappa + \omega C_{xy} \right) - \left(K_{xy} - \omega C_{yy} \right) \left(K_{yx} + \omega C_{xx} \right) \end{aligned}$$

-

Since eq. (19) are linear they may also be solved for the amplitudes:

(22)

$$\frac{A}{e} = \frac{\chi(K_{x} - \chi)}{(K_{x} - \chi)^{2} + (\omega B_{x})^{2}}$$

$$\frac{B}{e} = \frac{\chi(\omega B_{x})}{(K_{y} - \chi)^{2} + (\omega B_{y})^{2}}$$

$$\frac{E}{e} = \frac{-\chi(\omega B_{y})}{(K_{y} - \chi)^{2} + (\omega B_{y})^{2}}$$

$$\frac{E}{e} = \frac{\chi(K_{u} - \chi)}{(K_{y} - \chi)^{2} + (\omega B_{y})^{2}}$$

- 11-

The x- and y-amplitudes are found by substituting eq. (22) into eq. (17):

ŀ

$$\frac{\chi_{a}}{e} = \frac{\chi}{V(K_{x}-\chi)^{2} + (\omega B_{x})^{2}} \cos(\omega t - \varphi_{x})$$
$$\tan \varphi_{x} = \frac{\omega B_{x}}{(K_{x}-\chi)}$$

(23)

$$\frac{\Psi_{e}}{e} = \frac{\chi_{e}}{V(K_{y} - \chi)^{2} + (\omega B_{y})^{2}} \sin(\omega t - \varphi_{y})$$

$$\tan \varphi_{y} = \frac{\omega B_{y}}{(K_{y} - \chi)}$$

 x_{b} and y_{b} may be found similarly from eq. (17).

The force transmitted to the bearing pedestal is given by:

Substituting eq. (23) into eq. (24) yields:

$$\frac{P_{e}}{e} = \frac{\sqrt{\frac{K_{x}^{e} + (\omega B_{x})^{e}}{(K_{y} - \varkappa)^{e} + (\omega B_{x})^{e}}}} \cos(\omega t - (\varphi_{x} + \gamma_{x}))$$

$$tan \gamma_{x} = \frac{\omega B_{x}}{K_{x}}$$

$$\frac{P_{u}}{e} = \chi \sqrt{\frac{K_{y}^{e} + (\omega B_{y})^{e}}{(K_{y} - \varkappa)^{2} + (\omega B_{y})^{e}}} \sin(\omega t - (\varphi_{y} + \gamma_{y}))$$

$$tan \gamma_{y} = \frac{\omega B_{y}}{K_{y}}$$

In the calculation the above equations are made dimensionless by dividing through by $t\lambda\omega(\tilde{\omega})$ in order to make them general. As an assistance in plotting curves of the derived equations the following auxiliary expressions are set up:

$$For \quad 2 \rightarrow \infty$$

$$K_{x} \rightarrow K_{xx} - \omega C_{xy}$$

$$\omega B_{x} \rightarrow \omega C_{xx} + K_{xy}$$

$$K_{y} \rightarrow K_{yy} + \omega C_{yx}$$

$$(26) \qquad \omega B_{y} \rightarrow \omega C_{yy} - K_{yx}$$

$$\frac{2}{7} \rightarrow 1$$

$$\frac{2$$

Instead of expressing the rotor amplitude in x and y-coordinates a better physical picture is obtained by finding the corresponding elliptical path of the journal center. Combining the first and the third of eq. (17) we get:

$$\frac{2}{e} = \sqrt{\frac{1}{2} \left[\left(\frac{A}{e}\right)^{2} + \left(\frac{B}{e}\right)^{2} + \left(\frac{E}{e}\right)^{2} + \left(\frac{E}{e}\right)^{2} \right] + \frac{1}{2} \cdot \sqrt{\left[\left(\frac{A}{e}\right)^{2} + \left(\frac{B}{e}\right)^{2} + \left(\frac{E}{e}\right)^{2} \right]^{2} - \left[\left(\frac{A}{e}\right) \left(\frac{E}{e}\right) \right]^{2}}}{\sqrt{\frac{1}{2} \left[\left(\frac{A}{e}\right)^{2} + \left(\frac{E}{e}\right)^{2} + \left(\frac{E}{e}\right)^{2} \right] - \frac{1}{2} \cdot \sqrt{\left[\left(\frac{A}{e}\right)^{2} + \left(\frac{E}{e}\right)^{2} + \left(\frac{E}{e}\right)^{2} \right]^{2} - \left[\left(\frac{A}{e}\right) \left(\frac{E}{e}\right) - \left(\frac{B}{e}\right) \left(\frac{E}{e}\right) \right]^{2}}}}{\frac{1}{2} \tan 2\alpha = \frac{2\left[\left(\frac{A}{e}\right) \left(\frac{E}{e}\right) + \left(\frac{B}{e}\right) \left(\frac{E}{e}\right) \right]}{\left[\left(\frac{A}{e}\right)^{2} + \left(\frac{E}{e}\right)^{2} - \left(\frac{E}{e}\right)^{2} \right]}}$$

Where a is the major axis of the ellipse, b is the minor axis and α is the angle between the x-axis and the major axis, see figure 7. $(\frac{A}{e})$, $(\frac{B}{e})$, $(\frac{E}{e})$ and $(\frac{F}{e})$ are given by eq. (22). Rotor resonance may be defined as the speed where the major axis is a maximum. This maximum is found by plotting the major axis as a function of α . The results are shown in figure 46-47. From these graphs the rotor critical speed can be found directly for a given rotor by a trial and error process.

-13 -

.

1

的复数化 化过滤器 人名法法 法公司 人名法法法 医二丁二氏试验

Thus the results are obtained as a function of \aleph , but to facilitate the interpretation of the results, \aleph is replaced by a speed parameter. From eq. (16) \aleph in dimensionless form is:

....

(28)
$$\mathcal{X} = \frac{\pm k}{\epsilon \lambda \omega} \cdot \frac{\omega^{2}}{\omega^{2}} = \frac{\pm k}{\epsilon \lambda \omega} \cdot \frac{(\mathcal{U}_{2})}{(\mathcal{U}_{2})^{2}}$$

Arbitratily setting $\frac{kk}{k\lambda\omega_c} = 5$ (a rather stiff rotor) we get

X = 5 - (W)

(29)
$$(\underline{\omega}) = \frac{5}{2\pi} \left[-1 + \sqrt{1 + \frac{4\pi}{2\pi}} \right]$$

 (\mathfrak{M}) is used instead of \mathfrak{K} to present the dimensionless results as shown in figures 11-43. When a rotor with a dimensionless stiffness different from 5 is investigated, eq. (28) should be substituted into eq. (29) to find the value of (\mathfrak{M}) corresponding to the desired value of $\mathfrak{M}_{\mathfrak{C}}$. This relationship is shown for a wide range of dimensionless rotor stiffnesses in fig. 11.

The force attenuation may be expressed as the ratio between the actual transmitted force and the force transmitted with rigid bearings. The following relationship exists:

(30)
$$\frac{P_{m}}{E \lambda \omega_{c}(E)} = \frac{\frac{1}{E} k}{E \lambda \omega_{c}} \cdot \frac{1 - (E_{c})}{1 - (E_{c})} = \mathcal{H}$$

SUMMARY OF RESULTS

2 2

Effective spring coefficient in vertical direction:

1

$$K_{x^{*}} K_{xx} - \frac{1}{\sqrt{2}} \left[\delta K_{xy} + \eta(\omega C_{xy}) \right]$$

Effective damping coefficient in vertical direction:

$$\omega B_{x} = \omega C_{xx} + \overline{\psi}_{x} \left[\eta K_{xy} - \delta(\omega C_{xy}) \right]$$

Effective spring coefficient in horizontal direction:

$$K_{y} = K_{yy} - \frac{1}{2} \left[\delta K_{yx} - \eta (\omega C_{yx}) \right]$$

Effective damping coefficient in horizontal direction:

$$\omega B_{y} = \omega C_{yy} - \frac{1}{4} \left[\gamma K_{yx} + \delta (\omega C_{yx}) \right]$$

where:

$$\begin{split} \mathcal{W}_{x} &= \left(K_{yy} - \varkappa + \omega C_{xy}\right)^{2} + \left(K_{xy} - \omega C_{yy}\right)^{2} \\ \mathcal{W}_{y} &= \left(K_{xx} - \varkappa - \omega C_{yx}\right)^{2} + \left(K_{yx} + \omega C_{xx}\right)^{2} \\ \delta &= \left(K_{xx} - \varkappa - \omega C_{yx}\right)\left(K_{xy} - \omega C_{yy}\right) + \left(K_{yy} - \varkappa + \omega C_{xy}\right)\left(K_{yx} + \omega C_{xx}\right) \\ \eta &= \left(K_{xx} - \varkappa - \omega C_{yx}\right)\left(K_{yy} - \varkappa + \omega C_{xy}\right) - \left(K_{xy} - \omega C_{yy}\right)\left(K_{yx} + \omega C_{xx}\right) \\ \pi &= \frac{1}{2} k \frac{\omega^{2}}{\omega^{2} - \omega^{2}} \end{split}$$

 $K_{xx},\,\omega\,C_{xx}$, K_{xy} , $\omega\,C_{xy}$, K_{yx} , $\omega\,C_{yx}$, K_{yy} , and $\omega\,C_{yy}$ are given in table 5.

Transmitted force in vertical direction

\$

$$P_{x} = e \cdot 2e \cdot \sqrt{\frac{K_{x}^{2} + (\omega B_{y})^{2}}{(K_{x} - x)^{2} + (\omega B_{x})^{2}}} \cos(\omega t - \varphi_{x} + y_{x})$$

$$\tan \varphi_{x} = \frac{\omega B_{x}}{K_{x} - x} \qquad \tan y_{x} = \frac{\omega B_{x}}{K_{x}}$$

ŧ

Transmitted force in horizontal direction

$$P_{y} = e_{x} \cdot \sqrt{\frac{K_{y}^{*} + (\omega B_{y})^{*}}{(K_{y} - x)^{*} + (\omega B_{y})^{*}}} \quad sin(\omega t - \varphi_{y} + \gamma_{y})$$

$$tan \varphi_{y} = \frac{\omega B_{y}}{K_{y} - x} \quad tan \gamma_{y} = \frac{\omega B_{y}}{K_{y}}$$

Amplitude of journal center in vertical direction

$$X_{n} = \frac{e \varkappa}{V(K_{n} - \varkappa)^{n} + (\omega B_{n})^{n}} \cos(\omega t - \varphi_{n})$$

Amplitude of journal center in horizontal direction

$$y_{a} = \frac{e^{2}}{V(K_{y}-x)^{2} + (\omega B_{y})^{2}} \quad sin(\omega t - \varphi_{y})$$

Elliptical path of journal center

Major axis:
a =
$$\sqrt{\frac{1}{2} \left[A^{2} + B^{2} + E^{2} + F^{2}\right] + \frac{1}{2} \sqrt{\left[A^{2} + B^{2} + E^{2} + F^{2}\right]^{2} - \left[AF - BE\right]^{2}}}$$

Minor axis:
b = $\sqrt{\frac{1}{2} \left[A^{2} + B^{2} + E^{2} + F^{2}\right] - \frac{1}{2} \sqrt{\left[A^{2} + B^{2} + E^{2} + F^{2}\right]^{2} - \left[AF - BE\right]^{2}}}$
Angle between vertical and major axis:
 $\propto = \frac{1}{2} \tan^{-1} \left[\frac{2(AE + BF)}{(A^{2} + B^{2} - E^{2} - F^{2})}\right]$

where:

ŧ

á.

*

.

.

e is rotor mass eccentricity, i.e., e = Unbalance (lbs-in) Rotor Weight (lbs) Ł

-

$$A = \frac{e \mathscr{K}(K_{y}-\mathscr{K})}{(K_{y}-\mathscr{K})^{2} + (\omega B_{y})^{2}}$$

$$B = \frac{e \mathscr{K}(\omega B_{y})}{(K_{y}-\mathscr{K})^{2} + (\omega B_{y})^{2}}$$

$$E = \frac{-e \mathscr{K}(\omega B_{y})}{(K_{y}-\mathscr{K})^{2} + (\omega B_{y})^{2}}$$

$$F = \frac{e \mathscr{K}(K_{y}-\mathscr{K})}{(K_{y}-\mathscr{K})^{2} + (\omega B_{y})^{2}}$$

х⁴ с.

DESIGN INFORMATION

This section has been prepared to assist the designer. The method is directly applicable and does not assume familiarity with the underlying analysis. Thus, the designer should be able to extract any desired information without further reference.

In selecting the bearing on the basis of minimum transmitted force, the designer is faced with the problem of how to choose bearing type, unit bearing load, $\frac{L}{D}$ -ratio, clearance and oil viscosity. To answer these questions, the procedure below can be employed.

It is assumed that the rotor is given such that the following quantities are known:

- 1) The rotor critical speed, $\omega_c \frac{\text{rad}}{\text{sec.}}$, for rigid rotor supports (i.e., the classical critical speed calculation).
- 2) The bearing reaction F lbs.
- 3) The rotor stiffness k $\frac{1bs}{in}$. Since the results are valid only for a two bearing rotor and for rotor speeds below the second critical speed, the rotor stiffness is calculated from $k = M \cdot \omega_c^2$ where $M \frac{1bs \cdot sec^2}{in}$ is the vibratory mass of the rotor. M is somewhat smaller than the actual rotor mass and may be estimated by methods as shown in "Vibration Problems in Engineering", by Timoshenko, Chapter 1, Article 4.
- 4) The journal radius R, in.

For later use, we shall define the bearing parameter λ as:

$$\lambda = \frac{\mu R L}{\pi} \left(\frac{R}{C} \right)^2 \qquad \text{lbs \cdot sec}$$

 $(\mu: viscosity, \frac{lbs \cdot sec}{in^2} - P: bearing radius, in - L: effective bearing length, in - C: radial bearing clearance, in.)$

In addition we shall define:

the dimensionless bearing reaction:
$$\frac{F}{\lambda \omega_c}$$

the dimensionless rotor stiffness : $\frac{\frac{1}{2}k}{z \lambda \omega_c}$
the dimensionless speed ratio : $\frac{\omega}{\omega_c}$

(ω : operating rotor speed, rad/sec)

Once these three parameters are known the transmitted force can be found directly. Thus, the problem is to choose the bearing dimensions in such a way that the value of the above parameters minimize the transmitted force.

Selection of bearing type and of D - ratio

The selection will be done on a basis of comparison. For this purpose it is necessary first to estimate a bearing clearance C and an oil viscosity μ . Since the journal radius R is known it is then possible to compute λ for $\frac{L}{D} = \frac{1}{2}$ and $\frac{L}{D} = 1$. In addition $\frac{F}{\lambda \omega_e}$ and $\frac{ik}{\epsilon \lambda \omega_e}$ are obtained. For a given operating speed ω rad/sec the transmitted force can be found as follows:

- a) calculate the speed ratio $\frac{\omega}{\omega_c}$.
- b) calculate $\frac{F}{\lambda\omega_c}/\frac{\omega_c}{\omega_c}$ and enter figure ε -10 to get the corresponding value of eccentricity ratio ε .
- c) enter figure 11 with $\frac{\omega}{\omega_{c}}$ to find the equivalent speed ratio $\left(\frac{\omega_{c}}{\omega_{c}}\right)$.
- d) enter figure 28-43 with (ω) and the corresponding value of ε to find the dimensionless transmitted force $\overline{\varepsilon \lambda \omega_c \omega}$ for all desired bearing types and $\frac{L}{D}$ - ratio. If the curves are spaced too far for linear interpolation it is necessary to make a cross-plot. Multiply the result by $\varepsilon \lambda \omega_c \omega_c$ (e: distance between shaft center and center of gravity of rotor mass, inches. e may be calculated from the equation: $e = \frac{rotor unbalance}{rotor unbalance}$ is in rotor weight, lbs.) to obtain the transmitted force P lbs.

This procedure can be repeated for a number of operating speeds to cover the entire operating speed range. By plotting the curves of transmitted force versus rotor speed, the effect of bearing type and of $\frac{L}{D}$ -ratio is readily seen and a selection on the basis of minimum transmitted force can be made. An example of the results obtained by the outlined method is given in figures 44-45.

Selection of bearing clearance

In principle, the selection of clearance is done by the same procedure as above. Thus the goal is to obtain curves of transmitted force versus rotor speed for various values of the bearing clearance and from that select the actual clearance value on the basis of minimum transmitted force.

As before, the rotor is assumed known. In addition, an oil viscosity must be chosen. Since the journal radius R is given, it is then possible to compute λ and consequently $\frac{F}{\lambda\omega_c}$ and $\frac{tk}{t\lambda\omega_c}$ for $\frac{L}{D} = \frac{1}{2}$ and $\frac{L}{D} = 1$ and for various values of the clearance C.

As it would be time consuming to cover the complete speed range, it should be sufficient to base the comparison on rather few points. This is most easily done in the following way:

- a) enter figure 8-10 with $\varepsilon = .2$, .5 and .7 (except for the elliptical bearing with ellipticity m = .5 where the values are $\varepsilon = .15$, .3 and .5) to find $\overline{\lambda}\omega_{c}\overline{\alpha}$.
- b) divide the result into $\frac{F}{\lambda\omega_c}$ to get $\frac{\omega}{\omega_c}$ and enter figure 11 with $\frac{\omega_1}{\omega_c}$ to obtain the equivalent speed ratio $(\frac{\omega_c}{\omega_c})'$.
- c) enter figures 28-43 with the values of $(\omega_{c})'$ to the intersection with the corresponding ε -curve. Read off the value of $\frac{P}{\varepsilon \lambda \omega_{c} \omega_{c}}$ and multiply by $\varepsilon \lambda \omega_{c} \omega_{c}$ to find the actual transmitted force P lbs.

Thus, for each clearance value and for each bearing type and $\frac{L}{D}$ -ratio, three points are readily obtained on the curve of transmitted force versus -20rotor speed. A fourth point is P=0 for the so.

Although four points are not sufficient to define the graph of P versus speed with any high degree of accuracy, it may at least be enough to serve as a basis for comparison and a subsequent selection of bearing clearance. þ

The effect of oil viscosity is treated in the same way.

DYNAMIC OPERATION

6

Attenuation of structure borne noise through bearings is only one dynamic characteristic of bearings. There are several other examples of dynamic operations, e.g.:

a.) Transient conditions during starting or shutting down.

b.) Orbiting of the journal under a constant vibrating load.

c.) Motions of the journal center under oscillating loads.

The locus of the journal may be in a closed path of fixed amplitude or it may increase. In the latter case the system may be unstable causing the journal to rub the bearing. Fig. 50 shows several cases of dynamic behavior.

The previous section which deals with the analysis of structure borne noise through bearings indicates that for most effective noise attenuation the journal should operate at low eccentricity ratio. On the other hand it has also been shown (Ref. 1) that rotors operating at low eccentricity ratio are susceptible to instability at relatively low speed. In fact it has been proved theoretically and experimentally (Ref. 2) that the threshold of instability for vertical rotor in plain cylindrical journal bearings is zero speed. These two conditions are, therefore, somewhat incompatible. Since the system must be stable it is, therefore, necessary to optimize noise attenuation without sacrificing stability.

To make the report more complete a section dealing with Stability and Balancing is also discussed briefly in this report. Several definitions are given so as to clarify the usage of some of the terms used.

-22-

DYNAMIC OPERATION

Under this condition, the journal center moves relative to the bearing center and the local fluid film pressures vary with time. (Ref. 3)

r

Instability

This is a dynamic condition in which the journal center moves away from the bearing center, until breakdown of the film occurs and there is physical contact between the journal and the bearing. Another condition that may be defined as unstable is that in which the journal center whirls along a random locus.

Threshold of Instability

Corresponds to frequency at which instability is initiated.

Resonant Whip

This is a resonant vibration of a journal in a fluid-film bearing which, for low eccentricity ratio, sets in at approximately twice the actual first system critical and persists at higher speeds with frequency of vibration approximately equal to the first system critical regardless of running speed. The motion of the shaft center is in the same direction as shaft rotation. Resonant whip is a self-supported vibration, as is half-frequency whirl. In the case of resonant whip, the vibration is supported by the fluid film action, while the frequency is controlled by the system critical speed.

Critical Speed

Critical speed is the rotating speed of a system which corresponds to resonance frequency of the system. The system's critical speeds include rigid body as well as bending or torsional critical speeds. (In this text when we refer to first critical we mean bending body critical.)

-23-

Synchronous Whirl

This is a whirling orbital motion of the journal at a frequency equal to the rotational frequency. The motion of the journal is in the same direction as the direction of the rotating member.

An example of the synchronous whirl is the case of unbelanced rotating load. (In the case of vertical rotor in plain cylindrical journal bearings, the whirling locus is a circle; in the case of horizontal machine with plain cylindrical journal bearings the whirling locus is an ellipse. See Fig. 50.)

STABILITY

Using the coordinate system of Fig. 51 the dynamic equations may be represented by

$$\lambda \left(- \frac{\omega f_{r} \dot{S}}{\epsilon_{o} c} - \frac{2f_{t} \dot{S}}{\epsilon_{o} c} + \frac{\omega \partial f_{t}}{\partial \epsilon} \ddot{\eta} + \frac{\partial f_{t}}{\partial \epsilon} \dot{\eta} \right) = \frac{M}{2} \left(\ddot{x} + \ddot{S} \right) = -\frac{kx}{2}$$

$$\lambda \left(- \frac{\omega f_{t} \dot{S}}{\epsilon_{o} c} + \frac{2f_{r} \dot{S}}{\epsilon_{o} c} - \frac{\omega \partial f_{r}}{\partial \epsilon} \ddot{\eta} - \frac{\partial f_{r}}{\partial \epsilon} \dot{\eta} \right) = \frac{M}{2} \left(\ddot{y} + \ddot{\eta} \right) = -\frac{ky}{2}$$

$$(31)$$

Here the functions f_r , f_t and their derivatives with respect to ϵ , ϵ' are all evaluated at the equilibrium eccentricity ratio c_o , and for $\epsilon' = 0$.

$$\lambda = \frac{\mu LR}{\pi} \left(\frac{R}{C}\right)^2, \text{ M is rotor mass,} \qquad \begin{array}{c} de = \frac{\eta}{C}, & d\alpha = \frac{S}{e_0 C} \\ dc' = \frac{dc}{\omega} = \frac{\eta}{C\omega}, & d\alpha = \frac{S}{e_0 C} \end{array}$$

The differential Eqs. (31) are linear in the variables $\hat{\xi}$, η ; x, y, and their solutions contain time as an exponential. These may be expressed in dimensionless form as

$$e^{VT}$$
 where $\tau = \omega_{o}t$ $\omega_{o} = \sqrt{\frac{k}{M}}$ (32)

-24-

Here $\omega_{\rm c}$ is the critical speed of the simply supported shaft-rotor system whose mass is M and whose stiffness is k.

From the right-hand pair of Eqs. (31), there results

$$\frac{M(v\omega_{o})^{2}}{k+M(v\omega_{o})^{2}} \int \frac{M(v\omega_{o})^{2}}{k+M(v\omega_{o})^{2}} \eta$$
(33)

1

Equation (31) now leads to the determinantal equation

$$\left(\omega f_{r} + 2\nu \omega_{o} f_{t} + \frac{kM\varepsilon_{o} C (\nu \omega_{o})^{2}}{2\lambda \left[k + M (\nu \omega_{o})^{2}\right]} \right) \left(\omega \frac{\partial f_{t}}{\partial \varepsilon} + \nu \omega_{o} \frac{\partial f_{t}}{\partial \varepsilon^{\dagger}} \right)$$

$$\left(-\omega f_{t} + 2\nu \omega_{o} f_{r} \right) \left(\omega \frac{\partial f_{r}}{\partial \varepsilon} + \nu \omega_{o} \frac{\partial f_{r}}{\partial \varepsilon^{\dagger}} + \frac{kmC (\nu \omega_{o})^{2}}{2\lambda \left[k + M (\nu \omega_{o})^{2}\right]} \right) = 0$$

$$(34)$$

If we now introduce the dimensionless ratio

where w is the angular speed at the threshold of instability, we get

$$f(v) = \omega_{0}^{2} \left| \begin{pmatrix} sf_{r} + 2vf_{t} + \frac{A\epsilon_{0}v^{2}}{1+v^{2}} \end{pmatrix} \begin{pmatrix} s\frac{\partial f_{t}}{\partial \epsilon} + v\frac{\partial f_{t}}{\partial c^{\dagger}} \end{pmatrix} - 0 \quad (36) \right| = 0 \quad (36)$$
where

where

$$A = \frac{kc^{3}\pi}{2\mu LR^{3}\omega_{o}}$$
(37)

By writing

$$\zeta = \frac{Av^2}{1 + v^2}$$
(38)

Eq. (36) becomes

$$\omega_{0}^{2} \begin{pmatrix} sf_{r} + 2vf_{t} + e_{0}\zeta'' \end{pmatrix} \begin{pmatrix} s\frac{\partial f_{t}}{\partial e} + v\frac{\partial f_{t}}{\partial e} \end{pmatrix} = 0 \quad (39)$$

$$\cdot \begin{pmatrix} -sf_{t} + 2vf_{r} \end{pmatrix} \begin{pmatrix} s\frac{\partial f_{r}}{\partial e} + v\frac{\partial f_{r}}{\partial e} + v\frac{\partial f_{r}}{\partial e} + \zeta \end{pmatrix}$$

ŧ

 ω_{o} is not, in general, equal to zero, so that the factor ω_{o}^{2} can be divided out of Eq. (39).

It was assumed in the derivation of Eq. (34) that the solutions of the equations of motion were of the form $e^{\nabla T}$, where ∇ is a complex number. If the system is dynamically stable, the real part of the complex number ∇ is negative. Conversely, if the system is dynamically unstable, the real part of ∇ is positive. Thus, at the threshold of instability, ∇ will be a pure imaginary number.

We now solve Eq. (39) for the condition where v is wholly imaginary in order to obtain the value of ω at the onset of instability.

Considering first the imaginary part of Eq. (39), we have

$$\begin{array}{c|c}
 & 2f_{t} & s \frac{\partial f_{t}}{\partial \epsilon} \\
 & + \nu \\
 & 2f_{r} & \left(s \frac{\partial f_{r}}{\partial \epsilon} + \zeta\right) \\
 & + \nu \\
 & + \nu \\
 & + \nu \\
 & + \nu \\
 & - sf_{t} & \frac{\partial f_{r}}{\partial \epsilon^{\dagger}} \\
 & - sf_{t} & \frac{\partial f_{r}}{\partial \epsilon^{\dagger}} \\
 & = 0
\end{array}$$

Since $v \neq 0$,

$$\zeta \left(2f_{t} + \epsilon \frac{\partial f_{r}}{\partial \epsilon^{\dagger}} \right) + s \left(f_{r} \frac{\partial f_{r}}{\partial c^{\dagger}} + f_{t} \frac{\partial f_{t}}{\partial c^{\dagger}} \right) + 2s \left(f_{t} \frac{\partial f_{r}}{\partial \epsilon} - f_{r} \frac{\partial f_{t}}{\partial c} \right) = 0$$

If s = 0, we obtain a trivial solution; for $s \neq 0$, we have

$$\frac{\zeta}{s} = \frac{-2(f_t \partial f_r/\partial c - f_r \partial f_t/\partial c) - (f_r \partial f_r/\partial c' + f_t \partial f_t/\partial c')}{2f_t + c \partial f_r/\partial c'}$$
(40)

Naxt considering the real part of Eq. (39), we have

$$\begin{vmatrix} sf_{r} + e\zeta \end{pmatrix} = \frac{\partial f_{t}}{\partial \epsilon} + 2v^{2} \begin{vmatrix} \frac{\partial f_{t}}{\partial \epsilon^{\dagger}} \\ f_{t} & \frac{\partial f_{t}}{\partial \epsilon^{\dagger}} \end{vmatrix} = 0$$
$$= 0$$

Therefore

$$s^{2}\left(f_{r}\frac{\partial f_{r}}{\partial \epsilon} + f_{t}\frac{\partial f_{t}}{\partial \epsilon}\right) + s\zeta\left(f_{r} + \epsilon\frac{\partial f_{r}}{\partial \epsilon}\right) + \epsilon\zeta^{2} + 2\nu^{2}\left(f_{t}\frac{\partial f_{r}}{\partial \epsilon^{\prime}} - f_{r}\frac{\partial f_{t}}{\partial \epsilon^{\prime}}\right) = 0$$

Again, for $s \neq 0$, we have

$$\left(\frac{\nu}{s}\right)^{2} = \frac{-\epsilon(\zeta/s)^{2} - (f_{r} + \epsilon \partial f_{r}/\partial \epsilon)(\zeta/s) - (f_{r} \partial f_{r}/\partial \epsilon + f_{t} \partial f_{t}/\partial \epsilon)}{2\left[f_{t} \partial f_{r}/\partial \epsilon' - f_{r} \partial f_{t}/\partial \epsilon'\right]}$$
(41)

From Eq. (38) we have

 $\zeta_{v}^{2} - Av^{2} + \zeta = 0$

Once again, for $s \neq 0$, we can write

$$s^{2} \frac{\zeta}{s} \left(\frac{v}{s}\right)^{2} - s \Lambda \left(\frac{v}{s}\right)^{2} + \frac{\zeta}{s} = 0$$

or $s = \frac{\Lambda (v/s)^{2} + \sqrt{[\Lambda (v/s)^{2}]^{2} - 4 (\zeta/s)^{2} (v/s)^{2}}}{2 (\zeta/s) (v/s)^{2}}$ (42)

The speed ω at which instability starts to occur is now defined, since ω = sω_i.

The above defined speed at which instability sets in is, in general, different from the critical speed of the shaft-rotor-bearing system. For a symmetrical, two-bearing system the critical speed may be calculated as follows:

a. Shaft stiffness = k
b. Lubricant film stiffness =
$$\frac{dF}{de} = \frac{\mu L \omega R (R/C)^2}{C} \frac{df}{de}$$

= $\frac{sk}{2A} \frac{df}{de}$
-27-
The critical speed of the system is then

$$\omega_{CR}^{2} = \frac{1}{M\left(\frac{1}{k} + \frac{1}{2}, \frac{2A}{ks}\right) \frac{df}{d\epsilon}} = \frac{k/M}{1 + \frac{A}{s} \frac{df}{d\epsilon}}$$
$$\left(\frac{\omega_{CR}}{\omega_{o}}\right)_{r} = \left(\frac{df_{r}/d\epsilon}{df_{r}/d\epsilon + A/s}\right)^{1/2}$$

(43)

or

where subscript r refers to radial stiffness.

The dimensionless number A [defined in Eq. (37)], is a function of bearing geometry, shaft stiffness, and fluid viscosity. Calculations for the threshold of instability in which A was varied from 0.1 to 100 for 0.1 $\leq \epsilon \leq$ 0.8 and L/D = 0.5 and 1 were performed. The values of $f_{\rm p}$, $f_{\rm p}$, $\partial f_{\rm p}/\partial \epsilon$, $\partial f_{\rm p}/\partial \epsilon'$, $\partial f_{\rm p}/\partial \epsilon'$ were obtained from the solution of the dimensionless Reynolds equation. By introducing these values into Eqs. (37), (40), (42), and (43), we obtain the results of Table 6. The results indicate that, while for low eccentricity ratios instability sets in at approximately twice the critical speed, this number increases with an increase in eccentricity ratio. Thus, the onset of instability for eccentricity ratios of 0.8 is about four times the critical speed. This conclusion agrees with observations which show that stability increases with an increase in eccentricity ratio and also that instability may occur even at high eccentricity ratios.

The number $(1/i)(\nu/s)$ shown in Table 4 (where $i = \sqrt{-1}$) represents the ratio of the frequency of the oscillation of the shaft center to the running frequency of the shaft, calculated at the onset of instability. Note that this ratio is always below 0.5 and is independent of the magnitude of A.

-28-

BALANCING

A rotor is said to be balanced perfectly when it rotates in free space about one of its principal axes of inertia, which would be an axis of symmetry if such exists, with no wobble. If circular journals are now constructed concentric with this axis, by definition, these journals would also rotate with no wobble and may be enclosed in bearing housings with no rotating forces.

From this it follows that journals which are not concentric with a principal axis of inertia tend to wobble and for a rotor to revolve about an axis defined by such journals it must be driven by a set of applied forces which rotate with the rotor If the center of gravity of the rotor is not on the line of bearing center there must be a net force which furnishes the centripetal acceleration of the center of gravity. This force is equal to the mass of the rotor times the centripetal acceleration of the C.G. The C.G. may be moved to the axis of bearing center by suitable weight or weights. Such correction is commonly called static balancing.

Once the C.G. is moved to the line of bearing centers a rotating couple must be applied to keep the rotor rotating about an axis at an angle to that of a principal axis of inertia. This couple may be exerted by the centrifugal action of two equal and opposite weights in any two arbitrary planes. This correction plus that of the C.G. correction is known as dynamic balance and may only be determined on a rotating rotor-bearing system.

The most fundamental, but not unusual, description of unbalance appears to be that of the deviation of the line of bearing centers from the principal axis of inertia. It is important to note that the specifications of unbalance depends on the location of the line of bearing centers. The two simplest

-29-

descriptions of unbalance would appear to be the displacement of the C.G. and the angle of the inertia axis from the bearing axis or the displacement of the geometric centers of the journals from the bearing axis. (Refer to Fig. 51)

Under dynamical conditions either e or Q or both may not be constant. The conditions of dynamical equilibrium gives rise to the following equations.

$$F_{r} = -m \left\{ 5 \left[\omega^{2} \cos (\beta - \alpha) + \dot{\omega} \sin (\beta - \alpha) \right] + \ddot{e} - e(\dot{\alpha})^{2} \right\} + W \cos \alpha (44a)$$

$$F_{t} = m \left\{ 5 \left[\omega^{2} \sin (\beta - \alpha) - \dot{\omega} \cos (\beta - \alpha) \right] + e\dot{\alpha} + 2\dot{e} \alpha \right\} + W \sin \alpha (44b)$$

where

- $\dot{\omega}$ = is the angular acceleration of the rotor (generally very small)
- 8 = is distance between rotor geometric center and mass center

These are equations of motion with e and α as the two degrees of freedom. Once the fluid film forces are known it is possible to solve these equations.

The fluid film forces are to be found by integrating the pressure over the projected journal surfaces normal and parallel to the plane of maximum film thickness respectively.

$$F_{r} = -\int_{-L/2}^{L/2} dz \int_{-L/2}^{2\pi} d\theta R p \cos \theta \qquad (45a)$$

$$F_{t} = \int_{-L/2}^{L/2} dz \int_{0}^{2\pi} d\theta R p \sin 0 \qquad (45b)$$

The fluid film pressure satisfies the generalized Reynolds equation

$$\frac{\partial}{\partial \theta} \left[(1 + \epsilon \cos \theta)^3 \frac{\partial p}{\partial \theta} \right] + R^2 \frac{\partial}{\partial z} \left[(1 + \epsilon \cos \theta)^3 \frac{\partial p}{\partial z} \right]$$

$$= 6\mu \left(\frac{R}{C}\right)^2 \left[-c(\omega - 2\dot{\alpha}) \sin \theta + 2\dot{c} \cos \theta \right]$$

$$= 30 - (46)$$

Thus it can be shown that the radial and tangential forces are a function of

$$F_{r} = -\frac{\mu LR}{\pi} \left(\frac{R}{C}\right)^{2} (\omega - 2\dot{\alpha}) f_{r} (\epsilon, \frac{\dot{\epsilon}}{(\omega - 2\dot{\alpha})}, L/D)$$
(57a)

$$F_{t} = \frac{\mu LR}{\pi} \left(\frac{R}{C} \right)^{2} (\omega - 2\dot{\alpha}) f_{t} (\epsilon, \frac{\dot{\epsilon}}{(\omega - 2\dot{\alpha})}, L/D)$$
(57b)

Thus for a specified bearing geometry and speed of rotation once ϵ , $\dot{\epsilon}$ and α are measured the fluid film forces can be readily calculated. They may be constant per cycle $\dot{\epsilon} = 0$ (e.g., vertical rotor in plain cylindrical journal bearings) or they may vary from point to point along the journal locus this case corresponds to the horizontal rotor with gravity and unbalance load. Once these forces are established the magnitude and phase angle of the unbalance force can be calculated from the dynamic equations (54a,b). This permits balancing of the rotor without a trial and error procedure.

The measurements of displacement (c) and velocity $(c, \dot{\alpha})$ of journal center can be obtained by use of two capacitive or inductive probes located at 90° to each other within the bearing bore. They would then measure the motion of the journal center with respect to the bearing center as a function of time. These capacitive or inductive probes can also serve as monitoring devices to determine bearing performance in service. Thus they serve a dual function of providing the necessary measurements for balancing and monitoring bearing performance. Figs. 48 and 49 show the locus of the shaft center that such pickups would see.

Without the use of such instrumentation within the bearing there is still another method which may be employed for balancing. The analysis presented in this report indicates that there is a relation between the driving force and the transmitted force. The difference being the attenuation.

Since the attenuation has been theoretically calculated by measurement of force transmitted it is possible to calculate the driving force and the phase angle. Once this is done it is possible to balance the rotor without resorting to trial and error procedure.

This analysis indicates that by either measurements of journal locus or transmitted force it is possible to determine the magnitude and phase angle of the unbalance. Corrections can then be incorporated to balance the system.

To illustrate this point, theoretical and experimental analysis have been carried out on synchronous whirl (e.g., whirl produced at running speed, unbalanc- load) with circular orbit about the bearing center (e.g., vertical rotor). (Ref. 4) The comparison between the measured unbalance force and phase angle and calculated values appear to be very good, similar comparisons will be carried out on horizontal rotor.

-32-

CONCLUSIONS

- Attenuation of structure borne noise should be <u>done as close to the source</u> of noise <u>as possible</u>. Fluid film bearings provide the source of attenuation.
- 2. The report provides means for calculating noise attenuation of rotors supported by bearings of three geometries. The results are presented in dimensionless form so as to be applicable to a large range of geometrically similar configurations. The report also provides means for calculating system critical speeds and the static load carrying capacity.
- 3. The report shows that fluid film bearings can provide considerable amount of viscous damping which absorb the vibrational energy and in this way attenuate the force transmitted to the structure. Bearing geometry plays a major role on the level of attenuation as exemplified by the differences of the three bearings studied, see figures 44-45.
- 4. Since the fluid film is an elastic media, accurate predictions of the system critical speeds must include the elasticity and the damping of the journal bearings, see figures 46-47.
- 5. Indications are that for maximum attenuation one should operate at low eccentricity ratio, low stiffness and high damping. However, this implies low critical speed and tendency for resonant whip. Therefore, one must optimize the design to ensure stability and at the same time get maximum attenuation.
- 6. The dynamic response of a rotor can be measured by <u>capacitor or</u> wRTE². <u>inductive pick-ups</u>. These can serve also as monitory devices for controlling bearing performance. Obtaining the dynamic response and knowing the bearing characteristics, it is possible to determine the magnitude and phase angle of the unbalance load thus eliminating trial and error in balancing.

-33-

RECOMMENDATIONS

- 1. Other geometries such as pivoted shoes and elastically supported members in which stiffness and damping can be controlled and varied should be investigated. These studies should be both theoretical and experimental for these geometries offer considerable potential in noise attenuation and at the same time have a tendency of being stable.
- 2. Further studies should be continued to determine rotor dynamics around the second bending critical and higher.
- 3. Computational techniques should be set up which would include, without transformations, the bearing cross-coupling coefficients.
- 4. The application of capacitive or inductive pick-ups as permanent measuring devices in bearings should be investigated. Such measurements provide means for continually checking rotor balance and for monitoring bearing performance.

ACKNOW LEDGEMENT

1

This paper is based on the work performed under Contract Number NObs-78930, Task Order Number 3679, Sub Area F131105 sponsored by the Bureau of Ships.

The authors are indebted to Miss Ann Doughty, David Taylor Model Basin for her assistance in performing the computer calculations and to Mr. Roland Racko who made most of the figures.

REFERENCES

ŝ

- "Dynamic Stability Aspects of Compressible and Incompressible Cylindrical Journal Bearings" by B. Sternlicht, H. Poritsky and E. Arwas, Proceedings from the First Intern. Gas Bearing Symposium, 1959.
- "Investigation of Translatory Fluid Whirl in Vertical Machines" by
 B. Sternlicht, Doctorial Thesis, Columbia University, 1953.
- "Elastic and Damping Properties of Cylindrical Journal Bearings" by
 B. Sternlicht, A.S.M.E. Basic Engineering, June 1959.
- 4.) "Synchronous Whirl in Plain Journal Bearings" by B. Sternlicht and
 R.C. Elwell, ONR Report, Contract No. NONR 2844(00), January 30, 1961.

TABLE 1

ŧ

PLAIN CYLINDRICAL BEARING Computer Results

1

*

			······································	risesen steps		
LD	Ê	$\left(\begin{array}{c} \underline{a} \\ (\omega) \end{array}\right)$	fv	ø	ź	£
	. 2	0	. 4653	75.772	. 11436	. 45102
	, 2	.03			. 28010	. 48125
	. 2	-,03			02311	. 41915
	. 22	0			, 14035	. 50170
	. 18	0			. 09149	. 40187
	. 5	0	1.862	54.763	1.0744	1.5210
	. 5	.03			1.4528	1.6485
1	. 5	≈.03			, 7538	1.3971
12	, 52	0			1.2172	1.6367
47	. 48	0			,9508	1. 4192
	. 7	0	5.160	40.432	3.9274	3.3462
	.7	.03			5.1132	3.6797
	.7	03			3.0057	3.0218
	.715	0			4.3861	3.5934
	.685	0			3.5368	3.1349
	.2	0	1, 504	76.836	. 34257	1.4647
	. 2	.03			.86908	1.5517
	. 2	 .03			10182	1.3768
	. 22	0			. 41810	1.6240
	. 18	0			.27556	1.3089
	. 5	0	5.299	57.502	2.8470	4.4693
	. 5	.03			3.9082	4.7825
1	. 5	-,03			1.9853	4.1527
	.52	Q			3.1858	4.7621
	.48	0			2.5455	4.2090
	. 7	0	12.34	43.280	8.9832	8.4594
	.7	.03			11.455	9.1654
	. 7	03			6.805	7.7610
	. 715	0			9.8687	8.9177
	.685	0			8,1932	8,0365

TABLE 2

4-AXIAL GROOVE BEARING Computer Results

ŝ

e	¢	e Sancara V	£v	fh
. 2	80.000 81.647	0	. 2711 . 26946	.007144 .000218
, 2	81.696	0	. 26941	0
. 2	81. 696 81. 696	. 03 03	.29197 .25277	
. 2 2	81.696	0	. 29980	004059
. 18	81.696	Ö	. 23986	,003245
. 5	61.000	0	1.1700	004287
. 5	60.413	0	1.1789	000642
, 5	60.315	0	1, 1805	0
. 5	60.315	. 03	1,2164	010655
.5	60.315	-, 03	1.1482	.005458 019631
. 52 . 48	60.315 60.315	0	1,2847 1,0848	.019831
, 7	36.000	0	4.3096	041049
. 7	35.181	0	4.3135	-,002017
. 7	35.139	0	4,3137	0
. 7	35.139	, 03	4.4712	.010973
. 7	35.139	-, 03	4.1559	010862
. 715	35.139	0	4.7899	073303
.685	35,139	0	3.8962	.059837
, 2	80.000	0	. 52918	.023913
. 2	83.881	0	. 51908	002508
. 2	83.531	0	, 52004	0
. 2	83.531	. 03	.55702	074742 .038249
. 2	83.531	~, 03 0	.49585 .57700	005625
.22 .18	83.531 83.531	0	. 46426	.004520
. 5	61.000	0	2.2295	.039473
.5	64.123	ō	2.1370	.003321
. 5	64,431	Ö	2.1279	. 0 1
. 5	64.431	. 03	2.1846	022831
. 5	64.431	-, 03	2.0730	.018699
. 52	64.431	0	2.2948	030393
. 48	64.431	0	1.9714	.026434
. 7	36.000	0	7.7047	006564
. 7	35.918	0	7.7060	~.000638
. 7	35.909	0	7.7061	0
. 7	35.909	.03	7.9922	.001840
. 7	35.909	~. 03	7,4203	001750
. 715	35,909	0	8.4906	12758 .10588
. 685	35,909	Ó	7.0118	10260

 $\frac{1}{2}$

L D

1

TABLE 3 FLUPTICAL DEARING <u>Computer Results</u>

•

ŧ

						Inditional Action	Contractor of the local division of the loca	1931 Sec. 19 19 19 19 19						
	22222	<u>6</u> 103.797 100 105 103.797 103.797 103.797	.K. .51882 .56567 .50359 .57692	4. .00002 .03009 ~.00944	,28045 ,29045 ,29098	<u>5</u> 1, 43,133 48,457 44,261 43,133 43,133 43,133 43,135	(A) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	fvi . 61757 .64040 .60762 .79123 .47744 .67017	f _M .12873 .14103 .12512 .06618 .16161 .10981	<u>5840</u> ,35840 ,34022 ,35830 ,35846 ,35846 ,35846	<u>4</u> 2 33.122 34.074 32.627 32.122 33.122 33.123 95.236	(k) 0 0 0 0 0 0 0 0 0 0 0 0	69874 .08281 .10403 .19696 .04035 .09326	_fat- 12871 11093 13456 22105 .06220 12604
L = 1 D = 25	· 18 · 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	103.797 55.861 57 55.861 55.861 55.861 55.861 55.861	.46239 4.3933 4.5213 4.3114 4.9324 3.9271	.01538 ~.00220 .05936 ~.03537 ~.12343 .09314	.27099 .67291 .67783 .66982 .67291 .67291 .69196 .69390	40.170 37.953 36.640 38.759 37.953 37.953 38.461 37.414	0 0 .03 .03 .03	.46863 4.3933 4.8213 4.3114 5.3265 3.4767 4.9324 3.9271	,14603 -,00220 ,05936 -,03537 -,35063 ,24689 -,12343 ,09314	.34112 .41497 .40688 .41993 .41497 .41497 .43242 .39776	30.927 85.771 83.811 86.958 85.771 85.771 85.771 84.453 87.216	0 0 ,03 1,03 0	10323 0 0 0 0 0 0 0 0 0	.13065 0 0 0 0 0 0 0 0
	.7 .7 .7 .7 .7 .71 .69	24.931 23 29 24.931 24.931 24.931 24.931 24.931	45.096 56.591 49.981 68.015 45,601	24058 1.3492 -2.4458 -1.6541 .61768	.93268 .93524 .92662 .93268 .93268 .93268 .94261 .92274	18.443 17.004 21.484 18.443 18.443 18.443 18.512 18.373	0 0 ,03 ~.03 0	54.262 56.894 40.073 78.739 17.607 68.197 44.742	00608 1.6153 >2.2712 4.3878 2.5599 1.2984 	.48489 .47992 .49637 .48489 .48489 .48489 .49465 .47513	37.484 34.744 43.133 37.484 37.484 37.231 37.748	0 0 .03 -,03 0 0	.16607 .20402 .11239 .30661 .07941 .18257 .15167	.23450 ,27002 ,17457 ,38396 ,12701 ,25573 ,21566
	, 15 , 15 , 15 , 16 , 16 , 18 , 17 , 13	89.728 88 91 89.728 89.728 89.728 89.728 89.728	.90262 .96191 .84855 1.0342 .77582	.00002 .03285 *.02429 *.00490 .00535	.52270 .52701 .51950 .52270 .52270 .52270 .52867 .51722	16.476 16.926 16.780 16.676 16.676 16.750 14.957	0 0 0 50, *03 0 0	1.6100 1.6459 1.5837 2.0538 1.2394 1.7035 1.5187	.66137 .67508 .65151 .68903 .61299 .64976 .67130	.52133 .51698 .52452 .52133 .52133 .52735 .51603	16.722 16.856 16.615 16.722 16.722 18.806 14.591	0 0 .03 ~.03 0 0	.70742 .68394 .72537 1.0166 .46709 .66925 .74285	,66135 ,64223 ,67580 ,85694 ,48771 ,65466 ,66595
L: * 1 D * 2 m * ,50	, 3 , 3 , 3 , 3 , 3 , 3 2 , 2 8	84.491 80 85 84.491 84.491 84.491 84.491 84.491	2.4814 2.8740 2.4382 2.7378 2.2696	.00067 .15687 01778 04439 .03471	.60729 .62618 .60510 .60729 .60729 .61897 .59605	29.444 28.153 29.497 29.454 29.454 30.971 27.878	0 0 .03 03 0 0	2.8966 3.2077 2.8636 3.5861 2.3463 3.1320 2.7007	.52047 .58384 .91359 .39014 .57677 .46928 .56154	,55785 ,53657 ,56023 ,55785 ,55785 ,55785 ,56717 ,54911	32,364 33,410 32,240 32,364 32,364 34,167 30,501	0 0 23 03 0 0	.41515 .33363 .42546 .66512 .22776 .39426 .43117	,51979 ,42698 ,53136 ,75307 ,32351 ,50968 ,52583
	. 5 . 5 . 5 . 5 . 5 . 5 . 49	20.678 20 25 20.678 20.678 20.678 20.678	298,93 290,19 239,49 775,40 182,28	-,18894 5,5707 ~ 8,4445 -49,809 6,9082	.98376 .98481 .97630 .98376 .9376 .9376 .99360 .99360	10,319 10,000 12,500 10,339 10,339 10,442 10,233	0 0 .03 .03 .03	298.93 290.39 239.49 700.79 145.65 775.40 162.28	~,18595 5,5707 ~8,4445 ~56,134 14,503 ~59,809 6,9082	,17947 ,17369 ,21644 ,17947 ,17947 ,18153 ,17795	79.667 80.000 77.500 79.667 79.667 82.776 82.776 76.496	0 0 , 03 03 0 0	0 0 00056 0 0	0 0 .00137 0 0
<i>onecondative</i> reaction cont	. 2 . 2 . 2 . 2 . 2 . 2 . 22 . 18	105,652 105 110 105,652 105,652 105,652 105,652	1.4664 1.4862 1.3309 1.6282 1.3012	-,00048 ,00993 -,06822 -,04982 ,03769	.27481 ,27680 ,26134 ,27481 ,27481 ,28500 ,26974	44.491 44.361 45.983 44.491 44.491 44.015 40.710	0 0 ,03 -,01 0	1.6448 1.6581 1.5541 2.1236 1.2333 1.7953 1.4977	.21700 .32110 .19212 .05678 .31543 .16166 .26527	.38983 .36830 .36973 .36973 .35983 .35983 .37494 .34523	32.358 32.627 30.551 32.350 32.358 34.403 30.137	0 0 .03 ~.03 0	.17845 .17197 .22319 .39306 .06671 .16709 .19654	.21755 .21117 .26034 .40089 .09808 .21147 .22758
L = 1 17 = 1 m = . 25	, 5 5 4 5 4 5 4 4 8 1 4 5 4 4 2 8	44,288 51 57 54,288 54,288 54,288 54,288	10,010 10,301 9,7394 11,101 9,0474	~,00007 ,29239 ~,23169 ~,23287 ,16671	.67707 .68544 .66982 .67707 .67707 .69618 .65802	36.842 34.534 38.759 36.842 36.842 37.336 36.320	0 0 .03 ~03 0	10.010 10.301 9.7394 12.159 8.1820 11.101 9.0474	00007 .29239 23160 73831 .50890 23287 .18671	.40813 .39392 .41993 .40813 .40813 .42560 .39091	84.113 80.553 86.958 84.113 84.113 82.773 85.571	0 0 .03 03 0 0	0 0 0 0 0 0	0 0 0 0 0 0
January (1-1 day find a start start start)	. 7 . 7 . 7 . 7 . 7 . 71 . 69	25.628 25 27.5 29.628 25.628 25.628 25.628 25.628	B0.136 B1.039 76.911 96.227 68.075	.00028 .58077 -1.4131 -1.8917 1.2639	.93170 .93258 .92895 .93170 .93170 .93170 .94164 .92177	18.964 18.495 20.362 18.964 18.964 19.034 18.891	0 0 ,03 ,03 0	80.401 81.305 77.103 109.66 53.209 96.497 68.299	.33508 .93516 -51332 -4.7174 4.7403 -1.5264 1.5704	.48676 .48507 .49198 .48676 .48676 .48676 .49651 .47701	38,464 37,581 41,070 38,464 38,464 38,207 38,731	0 0 .03 03 0	.24576 .26580 .19230 .49286 .10437 .27005 .22330	.33480 .35439 .27996 .58896 .16437 .36528 .30652

							inued)							
							utar R	SEARING Baulto	1					
	.ű.,	, et	fr	£.	<u>.</u>	.KL	<u>(4)</u>	Lu.	.helm	4	, ci _k	(d)	.fva.	he.
	, 15 , 15 , 15 , 15 , 15 , 15 , 17	94.263 93 95 94.263 94.263 94.263	2.0616 2.1490 2.0101 2.3271	.00001 .04401 02575 02857	.51122 ,51444 ,60934 .51122 ,51122 ,51122	17.014 16.930 17.060 17.014 17.014 19.180	0 0 .03 03	3.8147 3.5673 3.4840 4.5497 2.6536 3.7276	1.2483 1.2681 1.2381 1.2912 1.1529 1.2161	.53259 .52948 .53439 .53259 .53259 .53259 .53259	16.312 16,434 16.238 16.312 16.312 18.279	0 0 .03 .03	1.4531 1.4183 1.4739 2.1909 .91724 1.4004	1.2483 1.2221 1.2638 1.6634 .89050 1.2447
L, rl Dr⊧,50	, 13 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3	94.263 87.235 84 90 87.235 87.235 87.235 87.235	1.7678 5.8986 6.1060 5.1412 6.0708 5.1252	.01870 00009 .20133 17954 10044 .07084	.50719 .59538 .60939 .56310 .59538 .59538 .60650 .58473	14.810 30.218 29.314 30.964 30.218 30.218 31.803 28.574	0 0 .03 03 03 0 0	3.3031 6.3631 6.7822 6.0241 7.8472 5.0667 6.8003 5.9506	1,2773 ,90295 ,98053 ,94342 ,60341 1,0708 ,78855 1,0032	.52569 .57055 .55556 .58310 .57055 .57055 .57055 .58049 .56115	14,271 31,682 32,483 30,964 31,682 31,682 33,409 29,893	0 0 0 03 -,03 0 0	1.5353 .76481 .64621 .86294 1.2947 .48279 .72949 .82538	1.2614 .97304 .77920 1.02296 1.3640 .55739 .68899 .93231
	55555555555555555555555555555555555555	21.256 20 25 21.256 21.256 21.256 21.256 21.256	361.66 349.96 294.90 904.50 227.16	61222 9.8135 -6.8638 -73.916 9.3925	.98285 .98481 .97630 .98285 .98285 .98285 .99268 .97302	10.628 10.000 12.500 10.628 10.628 10.628 10.755 10.519	0 0 -03 03 0 0	361.66 349.96 294.90 759.62 165.36 904.30 227.18	-,61222 9,8135 -6,8638 -54,350 19,725 -73,916 9,3925	18443 17365 21644 18445 18445 18443 18654 18265	79.367 80.000 77.500 79.367 79.367 62.388 76.287	0 0 , 03 03 0 0	0 0 ,00067 0 0 0	0 0 00161 0 0

k

.

.

4

.

¥

Ļ

				0 - 7242 0 - 6 1 - 643 1 2.537 4 1.864 0 1.209 0 1.209	
	·	161 tel un 16, 20, -			
	5	4.653 4.653 9.561 11.65 11.65 11.65 11.65	AR I	2.647 0 4.233 6.154 7.59 7.59 7.59 7.59 7.59 7.59 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	60.5 82.21 83.41 8
	-	1.035 1.195 1.95 1.95 1.95 1.95 1.95 1.95 1.		-1591 -1592 -115,8 -115,8 -117 -117 -117	· .
	美を	2, 496 5, 498 7, 878 1,	র্মু ও	5556 0 .6850 .6850 .6850 0 0 .9318 0 .9318	2.650
	2 w	1 144 1 238 1 238 1 238 1 238 23. 62 23. 63	z <mark>i</mark> z	4.424 13.65 113.5 6.161 9.539 303.9 11.97 29.57	172.6 13.75 21.38 7359
	SIK.	5,05 <u>4</u> 35,15 35,15 32,05 32,05 77,50	l i	2.610 2.757 3.757 9.158 7.239 7.239 5.439 5.439	6.475 21.23 14.53
	শ্বাঙ্গ	1,222 6,662 29,31 29,31 15,22 15,25 15,25 15,25 15,25 15,25	×1	5.230 29.55 685.5 685.5 29.65 92.62 14.84 14.84 14.84 14.84	31.65 942 942
	S. w	000 000	000 000	L 419 -3.061 -9.234 8.570 5.662 -211.2 L 261 L 261	-IL-82 IT-03 8.4I2 -227.7
	*18	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 198 - 269 - 364 - 364 - 369 - 692 - 692 - 692	-3.033 -9.471 -112.2 -1.361 -1.361 -1.58 -1.58 -1.58 -1.58	-152.3 -16.51 -12.14
7	*1-3	-2.396 -3.725 -7.371 -7.521 -1.521 -10.60	-1,286 -7,723 -3,901 -2,0 44 -5,916	-2.256 -3.531 -5.35 -6.396 -6.896 -6.896 -818.5	-72.11 -13.33 -12.26 -111.9
	SE DE	571 572 -6.073 -6.073		7902 -5.414 -5.414 -5.413 -2.003 -2.135 -2.135 -2.135 -2.135 -2.135 -2.135 -2.135 -2.135 -2.135 -2.135 -2.135 -2.135 -2.135 -2.145 -2.155 -2.145 -2.145 -2.145 -2.145 -2.155 -	-157.8 -1.12 -1.282 -1.282
	32	4. 79 14. 74 15. 04 15. 05 15.	2,694 4,722 2,03 5,200 8,512 22,02	8.921 24.33 24.33 24.33 29.57 29.57 29.57 29.57 29.57 29.57 29.57	286.0 55.65 64.52 2553
	W.	2.265 10.14 33.65 6.524 26.07 72.47	. 553 5. 255 1. 820 1. 8200 1. 820	-2. 22 23.73 670.1 928 2.056 2.056 9057 9057 9057 9057	918.2 -8.765 2.613 3598
	경령	000 000	270 270 393 393 392 1240		
	著	2. 719 5. 235 51. 45 51. 48 21. 26 20. 79	L 499 4. 998 23. 79 2. 819 8. 035 49. 29	2.863 25.13 1121 6.460 11.70 2.9650 8.175 8.175	1408 13.58 23.64 33870
	R	75.772 54.763 40.432 76.836 76.836 57.502 43.280	81.695 60.315 35.139 83.531 64.431 53.939	103.799 55.789 24.609 89.510 20.656 20.656 105.622 54.287	25.628 94.263 87.234 21.155
	ω B	うりた りりた	one one	25 25 25 25 25 25 25 25 25 25 25 25 25 2	-1 -50 -50 -5
	-10			-	~
	Bearing Type	Plain Cylindrical Bearing	4-åral Groote Bearrg	Elliptel Bearing	

Computed on basis of Tables 1, 2, and 3 TIBLE 4

*

....

.

,

.

For the elliptical bearing ł

۱n	
ŦE	
TAB	
ક્નિં	

		X
	page 5-6	ШC.
	1 Table 4 and Equation (9),	X
C III	and E	مر
TABLE	om Table	2
	sputed from ¹	Ļ
	Compu	

		4. 51	5.80	9.36	07 . PI	18.0 ∉	24.74	L 07	. 233	209	1.87	. 624	035	2.604	6. 111	36, 33	1.402	5.278	210.9	5.830	12.46	55.22	3.113	10.90	225.8	
	2 Provide State	1. 14	4.03	9.97	3,34	10.82	24.42	.366	L B	5.74	. 482	5.83	9.36	. 2293	6.462	101.9	.2907	2.654	1943	. 8763	14:38	133.3	1311.	4.869	2173	
page5-6	A C	puri prai soni I	-4.10	-10, 99	-3.44	-11.49	-26.28	156	133	.298	212	299	.048	2.101	-7.856	-105.9	8.563	5.181	-1158	2.939	-16.64	-142.4	17,31	7.895	-1214	
TABLE 5 Computed from Table 4 and Equation (9), page 5-6	N.	2. 18	I. 71	339	6.94	5.68	233	1.25	LLI.	-1.38	2.00	. 530	-2.83	2.379	1239	-72.78	7.280	6.673	-2833	4.991	2.029	-111-1	13.38	12.04	-3625	
IE 5 4 and Ec	en Car	999	-3.99	-10.73	-2.93	-10.60	-24.02	257	1. 35	7.05	428	2.00	12.24	. 5157	-7.598	-98.85	2.043	.7824	-1360	.2242	-16.08	-139.3	4.627	.5038	-1086	
TABLE om Table 4 a	Z S	-2.64	-6.77	-20.40	-8.26	-17.09	-41.68	-1.44	-3.47	-16.83	-2.71	-5, 83	-27.90	-3.640	-16.24	-398.5	-6.398	-10.09	-11210	-10.22	-35.03	-499.2	-15.92	-22.09	-12270	
aputed fr	the for	5.20	11. 94	35.32	I6. I3	31.88	76.93	2.76	4.67	Ш.39	5.28	8.43	20.63	9.313	31.03	691.8	24.32	29.63	93166	24.10			56.15	64.57	9871	
Con	X S	. 651	4.78	23.95	1.93	10-89	44.26	484	4.00	24.59	1,09	6.54	40.65	2.819	20.82	1050	13.21	17.32	27470	6.186	39.24	1322	25.50	32,59	31570	
	ω	2	ıث י	٢.	2.	ະດ •	[.2	ŝ	8 [~~	2,	in ر	2.	7.	ري ا	Γ.	រុះ រ	1	IQ.	.2	ŝ	2	រដ្ឋ	m	5	
	ä														. 25			.50			.25			. 50))	
	- 0			2		has	I			2		han	4			٣	-	ľ				1	ine-			
	Bearing <u>Type</u> Plaín Cylindrical Bearing					4-Axial Groove Bearing				Elliptical Bearing																

:

TABLE 6

L

,

THRESHOLD OF INSTABILITY FOR SYMMETRICAL ROTOR

SUPPORTED BY PLAIN JOURNAL BEARINGS

.

z

l/D	Ę	Â	Ś1.	(v/3) ²	l v	\$,	(w _{CR}) _F	$(\omega_{\rm CR})_{\rm r}$
1/2	0.2	0,1	- 0.9429	~0.1411	0.3756	2,6096	0,9852	2,6488
	0.5	0.1	- 3.1968	-0.1252	0,3538	2.8104	0.9974	2.8177
	0.8	0.1	-13,4452	-0.05543	0.2354	4.2438	0.9998	4.2446
1/2	0.2	100.0	- 0.9429	-0.1411	0.3756	0.06678	0.02910	2.2948
	0.5	100.0	- 3.1968	-0.1252	0.3538	0,2533	0.1315	1.9262
	0.8	100.0	-13.4452	-0.05543	0.2354	1.9267	0.7751	2.4857
1	0.2	0.1	- 2.6761	-0,1377	0.37	2.6763	0,9948	2.6903
	0.3	0.1	- 4.324	-0.1338	0.37	2.7224	0.9971	2.7303
	0.7	0.1	-18.434	-0.0846	0.29	3.4179	0.9998	3.4186
	0.8	0.1	-29.2005	-0.04898	0.22	4.5169	0.9999	4.5173
1	0,2	100.0	- 2.6761	-0.1377	0.37	0,1951	0.0834	2.3420
	0.3	100.0	- 4.324	-0.1338	0.37	0.3198	0.1390	2.300
	0.7	100.0	-18,483	-0.0846	0.29	1.6553	0.7000	2.3647
	0.8	100.0	-29.2005	-0,04898	0.22	3.1199	0.8998	3.4675

5

Figure 2 4-Axial Groove Bearing

4

Figure 6 Rotor - Bearing System

낢

¥

•

S CPL X 12

3 CLX 170

5 cyc.x 170

• P

CJC H 310

 $\begin{pmatrix} \boldsymbol{\omega} \\ \boldsymbol{\omega}_c \end{pmatrix}$

Ĉ

,

4

Figure 48

ŀ

Figure 49

ŀ

Horizontal Rotor

a) Stable Condition 6.g. acceleration

N

.

#

b) <u>Stable Whirl</u> e.g. Synchronous whirl , Critical speed c) <u>Unstable Whirl</u> ...g. Resonant within, Half freq.Horacy whirl i

¥

4

4

+

Å

1

x,

\$

¢

ť

ť

FORCES AND VELOCITIES

ŧ

HOMEHOLATURE

А, В, Ю, Р Кур На, Ву	Carsine and sino-components of rotor vibration amplitude, og. (17), page Ø Major and minisr axis of elliptical journal center path, soo fig. ? Xffeetive bearing damping veetheten in vestical and herisental direction	inek inek Noxtop in
C Cau	Radial bearing thereas	INCH
GNY GNY	Damping coefficient in X-direction for velocity in X-direction Damping coefficient in X-direction for velocity in Y-direction	140-04P
Cyn.	Daniping soufficient in y-direction for valuery in y-piraction	121:215
•		Der PAS
Cyy	Demping coefficient in y-direction for volatily in y-direction	100-000 14
D H	Benring Hameter Benring Hameter GG , dee fig. 1-5	inch
	Desting weenstrong = Ge ; dee fig. (+9 Distance between genier of gravity of rotar and shaft center at midepan-	inch
r	#####IN#_F###\$19H	inek Kez
R.	Manring force component a degrace from vertical	ite e
4	Dimensionless bearing force in dedirection + Aufi-Te	
F ++ F (Bearing force in radial and tangential direction	lite
4.4	Dimensionlean bearing force in radial and tangential direction a the	
Nyi Nyi Tur Nyi	Bearing foren in versiski and horiadnial diradion Dimansianlene beasta form in tentari and funda and bearing in	line .
fus: fat	Dimensionless bearing force in vertical and horisontal direction a Xu. Dimensionless vertical and horizontal force for lower more of difficient bearing	
lva: lha	Dimensionless variatal and horisonial force for upper labe of elliptical hearing	
F ₈₁ Fy	Hearing force in and year rection	itee
1	Oll film thickness	inch
h M	Dimiensionlese out feins thickness	
К _{ян}	Byring coefficient in x-direction for displayement in x-direction	热
K _{NY}	Boring soufficient in x-direction for displacement in y-direction	1
K ^{ÅH}	Baring conflictent in y-direction for displacement in N-direction	http:
к _{уу}	Spring coefficient in y-direction for displacement in y-direction	Iteg
K _{NI} K _Y .	Effective opring anofficiant in vertical and horizontal direction	171 101
k	Kutye alifingas.	ihe ihe
L	Blenstive hearing jangli	ineh Ineh
м	Vibratory folge maas	But step
м	Anoring allipticity, non lighted 8	IQ
N 16	Rolar apoed Oil film pressure	RPB
Pat Py	on rum pressure Perce transmitted by beering in vertical and horizontal direction	pei .
P _m	Pares transmitted for rigid rotor supports)hø tav
K K X	Bearing sadius	inches
K 1 # X4.	Giroumle rential and exial consulnates for nil film Dimensionless scordinates for oil film	ineli s e
4i y	Vertical and horisontal coordinates for journal venter motion, are lig. i>4	inches
Har Ya	Yeriseki and horizontal enordinates for journal senier, see fig. 6	inches
Mar Yiz M	Vertisal and horizontal coordinates for shaft center at midspan, see fig. 6	Inched
ń	Bearing Attituis angle, see lig, 1-5 Angle batwaan n akle and major axis of ellipticat journal center path, see lig, 7	
KH MJ	Attitude angle for lower and upper tone of elliptical bearing, see fig. 4	
Yn: Yy	Phase angle between transmitted force and amplitude, see eq. (25), page 12	
ิ.⊌ เ	Given by age (XI), page 11 Budwing accentricity ratio	
411 K2	Recentricity ratio for lower and upper lobe of elliptical learing, see fig. 5	
0	Polar coordinata for all film	
x	Rotor persmater, given by eq. (28), page 14	
λ	Bearing paremular, given by eq. 141, page 3	lba-nae
щ	Oll viscosity	lhe wee
י¶∗• ¶γ	Phase angle between-amplitude and unbalance	in ⁶
¥н: ¥у	Given by on: (23), page (1	
	Rutor spens	Yad/ Hed
۵ ₆	Gritical spaed of rotar in rigid supports	rad/and
(H)	Rquivalent speed ratio, see eq. (19), page 14 and fig. 13	