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ABSTRACT 

In this report it is demonstrated how simple existing theories can pre- 
dict whether a shell will fail by buckling or form a collapse hinge and 
then fail by this collapse mechanism.  It is also shown how work-energy 
analysis can predict the post failure plastic deflections of the shell 
once the mode of failure is known.  Some comparisons with experimental 
results are given. 
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LIST OF SYMBOLS 

Mj Nicy A/x   stress  resultants 

X, longitudinal coordinate 

(j) peripheral coordinate 

fCcf)  ^iCep) arbitrary functions of (f   which are determined from the 
f-fd) -f fst>) t)0undary conditions 

CL mean radius of the shell 

jOfcc cP) pressure distribution 

^\^ thickness of shell 

Ul *rA/f longitudinal, tangential and radial displacements respectively 

oi ß parameters used to define the peripheral pressure amplitude 

■\) Poisson's ratio 

B. modulus of elasticity 

JL length of shell 

<f^ -.Mnber of circiim5erential waves in buckling pattern 

(7^* yield stress in pure tension 

(Zp)c pressure which initiates collapse 

C%cr)k pressure which initiates buckling 

P mass density of shell material 

Qfe y-) spatial distribution of the impulse 

\/ work done by shell in deforming 

/OJl maximum deflection amplitude 

J-fx-jCf) spatial distribution of the deflection 

£?0 yield strain in pure tension 

do width of plastic hinge 

AT defined by Eg. [20] 

JT^. total impulse (theoretical) 

X defined by Eg. [22] 

Xg experimental impulse per unit area 

üQjf reflected experimental impulse per unit area 

(^-£•4 incident experimental impulse per unit area 

^ parameter defining periphery die out of spatial deflection dis- 
tribution in buckling 



I. Introduction 

1* 
A previous report presented the plastic work expressions for cylindri- 
cal shells and discussed the types of failure that could occur in cylin- 
drical shells under blast loading.  Experiments have shown that cylin- 
drical shells subjected to side-on blast can go into two main types of 
failure.  These are buckling and collapse.  The buckling type of fail- 
ure is described by a deformation pattern which consists of a number 
of lobes around the periphery of the shell and one half wave length 
along the length as shown in Figure la.  The collapse failure is de- 
scribed by a straight failure hinge at the center of the shell as 
shown in Figure lb.  Both of these figures are taken from Schuman's 
experimental results.  The type of failure will depend upon the geo- 
metry of the shell and can be predicted from an elastic stress and 
buckling analysis of the shell as will be seen later in this report. 

II Elastic stress analysis 

Assume that the shell is thin and that membrante theory is adequate 
to describe the stress patterns in the shell.  Assume also that the 
shell is of length /i  and is supported at each end. Take the origin of 
coordinates at the center of the shell as shown in Figure 2.  The mem- 
brane forces are shown on the differential element in Figure 3. 

If 'pC*-j<P)  is t^16 static load per unit area applied laterally to the 
shell then it follows from the basic membrane equations '  that 

where ^ (cP)    and T^fcf)  are functions of Cf  which are to be determined 
from the boundary conditions on N*.   N-xcf   NcP    '     ^ some of the 
boundary conditions are given in terms of displacements then the follow- 
ing membrane equations in terms of displacements must be utilized 

*Superscripts refer to references given at the back of the report, 
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where /{,   is the shell thickness, £     is the modulus of elasticity, 
Üj^yur   are the displacements (see Fig. 3) and ^fcfl)     J^Ccf) 
are arbitrary functions to be determined from the boundary conditions. 

Now assume that the pressure 'pfcjCp}  can be represented as 

-fiflK-<t>) [3] 

where -^0  is the maximum amplitude of the pressure and /S^ ^    are 
parameters determining the peripheral pressure distribution.  If the 
shell length is small compared to the distance from the explosion and 
if the blast is a side-on load then it seems reasonable that the spatial 
load distribution given by [3] should resemble the spatial distribution 
produced by the blast. 

The solution will be obtained for the boundary conditions 

[4] 

By straight forward integration of equations [1] and [2] subject to 
boundary conditions [4] it is found that 

Ny - o-fcfccf)   ;    -fry)- zT^c^oScf [5] 

The stress resultants at "X-  — cf  - O are 

Yielding will occur at   ^ - ^ - O     when the Von Mises Yield 
Conditon is satisfied at this point, i.e. 
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where  (77   is the yield stress in pure tension.  Substituting the 
values of the stress resultants into the yield condition it is found 
that yielding will occur at the center of the shell ( X.   - o^   cf -  O 
when the pressure -^ has a value 

6*4= ^l =;  [81 

III. Elastic buckling analysis 

The classical theory of buckling of cylindrical shells is presented 
by Timoshenko,  It is found that the lateral pressure at which buck- 
ling under uniform loading will occur is given by the following re- 

lation6 

A ) -M i   l^l ^"/y.,, 2^~>-J )1       fql 

where 7L is the number of full waves around the periphery of the 
shell.  It has been found by Reynolds that in lobar buckling such 
as this the circumferential parameter n- approximately satisfies the 

relatio-.. 

- - - --^ / 2 3 i%p [io; 

and that bockling will always occur with ordy one half wave along 
the length.  In other words, if "m, denotes the number of axial half 
waves along the length, then   im, = / and ^u is determined 
from equation [10].  The factor 1.23 has to be adjusted so that ^ 
turns  out as a whole number.  Once -n, is determined then equation 
[91 will give the value of the bucklirg load for uniform loading,. 
For noruniform loading correction factors can be applied in accor- 

dance with a recent paper, 

IV,.  Buckling or yield 

It is clear from Schuman's experiments2 that both buckling and yield 
collapse can occur,.  The main problem is to be able to predict which 
type will take place,,  Once buckling or collapse has commenced the 
plastic deformation will take place in that particular pattern into 
which the failure has started.  It will now be shown how equation [8] 
and [9] can be employed to determine whether a collapse or buckling 
will take place. Although there were some gross assumptions involved 
in the derivation of equation [8] the main item to be recognized is 
that the pressure for this type of yield is proportional to ^/CL  and 
dependent on  ^ -V^L .  On the other hand the buckling pressure is 

critically dependent on ^i, ^ #/aL     and    A Vtf *  as well as ^ -% 

It should be made clear at this point that equation [8j and [9] are 
not to be used to approximate any of the dynamical parameters of the 
shell- they are to be used only to determine which type of failure 
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will start.  Once this is known then the plastic analysis as given in 
a previous reference will be employed to determine the plastic deflec- 
tions and impulse values. Assuming that 

it was found that shell buckling or yield could be predicted by the 
equations in the previous section by employing the following criterion: 

If the buckling load is less than the yield load the shell 
shoulr' buckle; if the yield load is less than the buckling 
then the shell should collapse. 

Due to lack of experimental evidence on the load distribution the 
parameters ß   and << are questionable.  Perhaps when more information 
is available about the load distribution more accurate computations 
can be performed.  However our present calculations do indicate that 
the simplified equations presented above describe the physical phenom- 
enon and enable prediction of the type of failure that will occur in 
a given cylindrical shell. 

To illustrate the procedure for determining whether collapse or buck- 
ling failure will occur, consider several cylindrical shells that were 
tested. 

1. Consider a steel shell with radius of 1.5",length 11.62", thick- 
ness .019" subjected to a lateral blast which is 81 away,. The 
experiment showed that this shell formed a collapse hinge. 

Using an E = 1000 #7/ /^=2,0(=^, J=.3 the collapse load 
according to [8] is 

If the shell would buckle [10] predicts that  ^ = 3, Then equation 
[9] shows that the uniform buckling load for this 'Tu is 

and using the nonuniform pressure correction it is seen that this 
value of .0021 ÖT will be somewhat higher, possible as much as 
50% greater.  Thus for this shell   tyo)    <^4Lcr)^ so that 

the shell can be expected to fail by collapse. 

2. Consider next an aluminum shell of radius 1.5", length 6", thick- 
ness .006" subjected to a lateral blast which is 15' away.  The 
experiment showed that this shell buckled with 6 lobes around the 
periphery and a half wave along the length.  Using an E = 1000«^T 

ft = 2,    ^ = h,     v) -.3, the yield load would be 

Under buckling [10] predicts  "K r: Ö , Equation [9] shows that 
the uniform buckling pressure will be 

The correction for nonuniform loading could possible raise this 
value to .00036 Ö~2)  .  Thus for this shell ^£rr.) ^ < ^A Jc  so 

that the shell can be expected to buckle. 
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V. Post failure collapse and buckling 

A. Collapse 

It has been found that the relation between the total impulse applied 
to the shell and the work done on the shell can be written as 

k VU^* ^ 

'*.' [12' 

where  fyf^-t^) is the spatial distribution of the impulse, f* 
is the mass density of the shell material,  -A- is the shell thickness, 
and y     is the work done on the shell in deforming it plastically. 
The integral is taken over the area, A   ,   of the shell.  By a systematic 
simplification it has beer, shown that  V can be written as 

l/T     Jo  Jo 
where Uo      is the yield stress in pure tension, 4/J~e     is the maxi- 
mum deflection, -A- is the thickness, ß.     is the length and fCx.' cfi) 
is the spatial distribution of the deflection, i.e. 

The assumptions under which [12] was derived are 

1. The shell is made of a perfectly plastic material 
2„ The radius of the shell is considerably smaller than the 

length (*/£  <</J 
3„ The deflection of the shell is much smaller than the radius 

4, 'uJ'0/\r2     ^>   ^a^"/2-    where  (?a is the yield strain 

For details see Reference 1 

The deflection pattern for collapse is shown in Figure 4 and can be 
written analytically as follows 

Letting  £' = *yj£. 

[13]- 

[i4: 

where ao is the width of the hinge line as shown in Figure 4. Using 
these deformation expressions and [12], the work done on the shell in 
deforming it plastically can be written as 
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where 

4W [15] 

Cf, ~-A^-' ^IZllll       for   *<*'<: £ 
2.^1 

2a. l 

it is found that V    can be written 

or finally 

j/^ ZClJllcl 

16] 

After some mathematical manipulation and substitution of 

v -   -7T-   ^ ^ ^-/-T^ia ^}^        [18: 

where   <^ - xi+^u   /£/     & ~ ZtX. 

Now using the impulse equation [11] and assuming that 

The relation between the impulse and the deformation can be written 
as   

* /   l/J [20] 

The deflection is actually described by &*/&{ .    A plot of ]//? 
as a function of &0/cl      is given in Fig. 5. 

Some calculations were run on several of the tested shells which 
failed by collapse and these computations with the experimental re- 
sults are given below.  A given value of deflection corresponding 
to a given de/d    was measured from the tests and the incident and 

reflected impulse per unit area corresponding to this &e/ej  were 
also measured.  The theory (eq. [20] above) predicts thp impulse which 
will produce a given &o/aJ   ,  Unfortunately the exact value of the 
experimental impulse was not given but the incident impulse*per unit 

*The incident impulse is the measured impulse without an obstruction 
such as the shell. The reflected impulse is the impulse that reflects 
off of a large rigid plane. 
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area    \-L(z)I '   and the reflected impulse per unit area '-Afy/- 
were the parameters that were measured.  The actual impulse applied__to the 
shell will b'" somewhere between these values of (^e)i and C£x)r 

Assuming that the measured values would correspond to maximum values on 
the shell and assuming an    C^ distribution of the impulse on 
the shell it is seen that the total impulse would be 

"OS     -'o 21] 

ao (X),   ■xMt e       ~3I 
.So the theoretical value  to compare with  the measurements  is 

X--2    £   =    ^^"/^ 57 22' 

A value of (7^    ^c viT?  aoc     - s . 
shells  that were  tested 

/=■ 
was assumed for the steel 

Example 1 

For    do/jK/      \/K  K.l£    £rt^ F.j.r 

The measured values which gave the shell  a deformation in which  w/d ~ I 

(iTf^   -5*?fsi  r^J/'SiC, j   (Tt)r   ~ m psi >*'*/'See.. 

Example  2 

The measured values were 

Example 3 

The measured values were 

Example 4 

her  do/j ~iis-    /7Z ^.2/ JT ~   7/.J~i0sC  **J/tsac 
The measured values were 
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Example 5   c/-3" ^ ~  //• <rz" y A  T.or?" 

The measured values were 

(Tt)i r 2r    (Xt\-zi 

Example 6   ^1 T I" j  J2-. fS" J A - ,o><f" 

The measured values were 

(£,)■ *sr    (X^r^ltO 
Example 7   ^   „   _ ^      ^j^,„ 

The measured values were 

Example 8   ^ ^ ^ / ./7,^ ^ / S( .^^ 

The measured values were 

The different impulse values arose from various explosive charge weights 
and distances of explosion from the shell. 

The comparisons between the theoretical predictions and experimental re- 
sults show that the simplified equations predict the correct order of magni- 
tude for the impulse which will result in a given deflection.When more exact 
experimental values are available for the applied impulse more accurate 
computations using the more accurate general work expression of Reference 1 
can be made. 

B„Buckling 

For the post failure buckling region the circumferential parameter -n- takes 
on great importance and the simplification given by equation [12] cannot be 
employed.  Instead, the plastic work has to be computed from the more gen- 
eral integral expressions given in Reference 1.  We use equation [40] in 
the "Errata and Addendum of Reference 1 and assume a post failure deflec- 
tion pattern of the form 

^ [23] 

and an impulse distribution the same as before, i.e. 



T = (ie)e-w   f/i^) 

The shell used was made of aluminmn and was 
in diameter, 9" long, and .006" thick.  A yield stress of 15,000 psi was 
assumed. Numerical integration of equation [40] of Reference 1 was per- 
formed assuming a perfectly plastic material and /€= ^, ^ = 5,  The 
value of 'Tt = 5 was obtained from equation [10] and compared well with 
the experimental result.  The calculated peak impulse per unit area to 
produce ^e/a.'Z, S~      is 21 psi milliseconds.  The experiments showed 
that the blast load which produced an incident impulse of 21.1 psi milli- 
seconds and reflected impulse of 46.8 gave ^/cu 'XO.S'. 

VI.Conclusions 

One cannot apriori assume the type of deformation into which a shell 
will deform under blast load unless some pre-failure computations are made 
to determine whether the she.11 will collapse or buckle.   Schuman' s experi- 
ments point out that these two types of patterns can exist.  The compu- 
tations and experimental comparisons given in thi.^ report indicate that 

1. It can be predicted whether a shell will fail in buckling or 
collapse by use of equation [8] and [9] of this report. 

2. Once the failure type is known the order of magnitude of the 
impulse and energy to produce a given plastic deformation can be 
computed for side-on lateral loads by assuming a collapse pattern 
of the form of equation [13] for collapse failure and a buckled 
pattern of the form [23] for post buckling behavior in the plastic 
region. 

The equations given in Reference 1 have been programmed for the BRL com- 
puter.  This will enable future computations with more complicated de- 
flection patterns. 
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Blast 

Fig. 2 Origin of Coordinates 

v^^Vx 0*. 

Fig. 3 Shell Element 
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Fig. 4 Collapse Pattern 
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