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NOTE ON THE PROPORTION OF GENETIC DEVIATES

IN THE TAILS F A NORMAL POPUlATION

D# S. Robson jand LeRoy Powers

Introduction

The phenotypic array exhibited by a segregating genetic population

reflects both the genetic and the environmental variability within the

population. As a consequence. an element of uncertainty attaches to

selection for genetically superior individuals on the basis of their

phenotypic traits. The latter may, by chance, be merely the result of

an unusually favorable environment acting upon a genotype which under

less favorable conditions would display only a mediocre or even undesirable

phenotype. Chances for the occurence of such phenotypic deception depend,

of course, upon the magnitude of the environmentally induced variability

as compared to that due to genetic differences.

Any mathematical formulation of this problem to allow the geneticist

to numerically evaluate his chances for successful selection requires a

detailed description of the phenotypic frequency distribution in the pop-

ulation. Structurally, the total segregating population may be regarded

as a mixture of subpopulations, with each subpopulation representing the

distribution of phenotypes produced by a single genotype under the existing

range of environmental conditions, and with each subpopulation or genotype

contributing to the total population in proportion to its genotypic fre-

quency. A mathematical description of the population therefore consists

of specifying the relative frequency of each genotype and the exact form

of its associated distribution of phenotypes.

Under most circumstances where selection is practiced for economic

purposes a large number of both genetic and environmental factors operate
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U. S. Department of Agriculture.



at variable levels to determine the phenotypes appearing in the population.

Empirical evidence supports the belief that in this case the total frequency

distribution and also the component distributions for a quantitative pheno-

typic trait are approximately Gaussian in form. A standard population model

which has therefore come into use in such problems as the prediction of ad.

vancement under selection is Eisenhart's Model II (1947) representing) in

the simplest case, a normal mixture of normal subpopulations with constant

variance. Each genotype is assumed to generate a normal distribution of

phenotypes under the existing range of environmental conditions. and the

distribution of phenotypic means (called genotypic values) is likewise

normal.

Graphs of the Proportion of Genetic Deviates

The phenotypic value X for some quantitative trait of an individual

selected at random from a genetic population may be regarded conceptually

as the sum of two components,

G = average phenotype for the genotype of the chosen individual

E = deviation of the particular phenotype of the chosen individual

from the average phenotype (G) for the genotype of that

individual = X-G

or

X=G+E

The first component G is conventionally called the genotypic value and E

is the environmental effect. If the population structure is a normal

mixture of normal subpopulations having a common environmental variance

then the chance variables G and E follow independent normal distributions,

G having a mean value of g and variance Cr , E having a mean value of zero
2and variance a. , so that X itself follows a normal distribution with mean

and variance a' + a? *

A probability distribution of particular interest to the geneticist is

the a posteriori distribution of G among individuals of a fixed pheno-

type x; that is, given that he has selected an individual of phenotype

x, the geneticist is then concerned with the probability that this chosen
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individual is of superior genotype, say greater than some standard value
g. For any selected phenotypic value x the conditional distribution of

genotypic values G is in this case normal with mean g + h (x-4) and

variance cf (1-h), where h is the heritability ratio
£

a 2

or the ratio of genetic to total variance in the population.

The desired probability that the genotypic value will exceed some specified

value g is therefore given by the standard cumulative normal probability

&(j+hxj)-g) / a/-h) or, expressing x and g in standard units as
x-g9

X' t. + o?. and g1=Z'

we obtain the simplified form

x

)e dt

which depends on the variance components only through the heritability

ratio. A special case of some interest is where g = g, giving

5(x' / .2j•)as the probability that an individual of phenotype x will be

genetically above average; note that when h = * this reduces to

;(xt) -= area to the left of x' under the standard normal curve.

For example, with xt = 1.645 and h = t, the probability that the Genotypic

value of the selected individual exceeds the population mean is

5(1.645) = .95; if h were ¼ instead of * then the desired probability would

be a(l.645//3) = &(.950) - .83, while h = 3/4 would give

&(1.645 /3) = &(2.849) = .998. These answers may be interpolated from

Figure 1 where the general form of the solution is illustrated by plotting

i(Cx' A-g'] /,/1-h) as a function of g' with xt fixed at the upper 5 per-

cent tail value of 1.645 and with h taking the values 0.1 to 0.9 by steps

of O.1. Figures 2 and 3 display the corresponding curves with x? fixed at

the upper 10 percent value of 1.282 and the upper quartile value of .674,

respectively.
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Where selection operates on the entire upper tail of the phenotypic dis-

tribution, taking all individuals whose phenotypic value exceeds x, the

question of interest becomes the proportion of these selected individuals

having genotypic values exceeding g. More precisely, this proportion may

be interpreted as the conditional probability that a randomly selected

individual exhibiting a phenotypic value greater than x will also have a

genotypic value greater than g. Again, the solution to this problem is

expressible in integral form as

X1

though in this case the integral is not previously tabulated. The only

non-trivial case xthich permits further analytic reduction is g' = 0 and

h = J; when half of the total variance is genetic then the probability

that an individual randomly selected from the region X>x will be geno-

typically above average is [I + 4(x')] /2. Thus, in this case, the solution

may be read directly from the cumulative normal tables; for example. the

proportion of above average genotypes in the upper 5 percent tail of the

phenotypic distribution is then

[l + 4(1.64,5)] /2 = [l + .95] /2 = .975.

A numerical solution in the general case can be obtained only by numerical

integration, for which the mo3t convenient approach is to hold g t and h

fixed and allow xf to vary. Graphs of this probability function of g'

appearing in Figures 4-12 are therefore plotted as functions of xn, with

each curve corresponding to a fixed value of g' and h. For example, from

the curve for P,: .05 (gt = 1,645) and h = t we see that in the upper

25 percent tail of the phenotypic distribution (xt = .674) the proportion

of standardized genetic deviates exceeding gt = 1o6f5 is .17, in other

words, 17 percent of the phenotypic top 25 percent also belong to the

genotypic top 5 percent of the population when half of the vwriability is

genetic.

A more complete picture of the expected proportions of gcnetic de-

viates may be constructed in histogram form by a slight extension of the

results in Figures 4-12. For a set of phenotypic intervals
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(x~•, ... , (x -) on the standard scale

X, -i9
XS = la?+ -ce7'

the proportion P5 (x1 ,x,+,) of genotypic values exceeding the population
mean by an amount gcr, can be computed from the formula

PII [l-(x 1 )J - pg, 1+: [l-(x•+M )JPg (xi ,XI +I ) =-..

Again referring to Figure 8 for the case h = 0.5, we illustrate this
procedure with intervals of length x•+±-x; = 0.5 between x, = .25 and
X, = X5 = +2.25. Taking the interval (1.25, 1.75), for example, we find(either by visual interpolation on the right hand scale of Figure 8 or
directly from tables of the standard cumulative normal distribution)

1-5(1.25) = lo56 14-(1.75) = .0401
[1-6(1.25)] E[i-6(1.75)] = .0655

Then to find the expected proportion of above average genotypes in this
interval we refer to the P = 0.50 (or g = 0) curve in Figure 8; at x, = 1.25
this gives

p e P = .947

and at xft+ = 1.75,

P"I*6+1 P'.1.75 = .980

so that

P,(x,,x,+I) = PO (1.25,1.75) =947(.1056)'.980(-n40n)
.0655

.0607

= .9267
Thus, when h = 6.55 percent of the population falls in the phenotypic
interval

1.25 < - 75/< 1.75
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and 92.67 percent of the individuals falling in this interval are

genotypically above average.

Similarly, from the curve for P =*0.25 (g = .6745) in Figure 8 we

find

Ps z= P,745s.2.aB 2.756 - P.67,3 175 = .867

so that

P9 (x,x 1 4 ) - . 7 4 5 (1.25,1.75) .756(.Jo56±-.867 (.OOl).06555

=.06555

-. 6885

Thus, 68.85 percent of the individuals in this interval belong to the top

quartile of the genotypic distribution. By subtraction, 92.67 - 68.85 -

23.82 percent of the individuals in this interval belong to the second

quartile of the genotypic distribution. The remaining computations for

this and other intervals were performed in the same manner and are shown

in Table i. The resulting histogram is plotted in Figure 135 indicating

for each phenotypic class the proportions of individuals belonging to

the various percentiles of the genotypic distribution.

Table 1 Percentage of individuals in a phenotypic class which belong to
the top P5 percent of the genotypic distribution when h -

Phenotypic Phenotypic Percentage of the class frequency belonging to the
class frequency top P6 percent of the genotypic distribution

interval (percent) Pg= 50 P*= 25 Pz= 10 P 5 = 5 Ps=l

.25 to .75 17.47 68.63 31.54 9.56 3.43 0.29

.75 to 1.25 12.10 83.39 50.17 20.58 9.09 1.07
1.25 to 1.75 6.55 92.67 68.85 36.79 19.85 3.51
1.75 to 2.25 2,79 97.49 83.51 55.91 35.84 9.32
2.25 to c 1.22 99.18 94.26 77.05 59.84 25.41



The Effect of Population Size: Before Selection

The preceding results describe some characteristics of an abstract

infinite population, while the genetic population actually observed and

selected from is of finite size N, representing only a sample from this

potential infinite population. Finiteness of the observed population has

no effect on the results plotted in Figures 1 - 3, which are conditional

on a single selected phenotypic value; but the application of Figures 4 -

12, which are conditional on a selected upper tail of the phenotypic dis-

tribution, requires further explanation in the finite case.

A selection procedure which takes all individuals in the tail of a

distribution may be defined in essentially two different waysj by specify-

ing either Wi) the minimum acceptable phenotypic value or (ii) the per-

centile of the observed phenotypic distribution at which selection begins.

When the minimum acceptable phenotype is fixed in advance then the number

or percentage of the prospective population of size N which will be selected

is a chance variablep unknown in advance of the selection experiment, while

if the selection rate or percentage is fixed then the minimum phenotypic

value which will be accepted is a chance variable and unknown in advance

of the experiment. In either case, chance variations in the respective

unknoin quantities will decrease as N is increased, and as N approaches

infinity the two procedures become equivalent; that is, when population

size is infinite, the specification that selection will take all individuals

with phenotypic values exceeding x is equivalent to the specifIcation that

selection will take a fraction 1-I(x) from the upper tail of the phcnotypic

distribution. This asymptotic equivalence is expressed in Figures 4 - 12

by labeling the ordinate with both the scale of x and 1-d(x).

For the purposes of planning a finite selection experimant of either

type, the potential magnitude of chance fluctuations in the respective

unknown quantities must be considered. For example, if a type (i) ex-

periment is contemplated with the minimum acceptable phenotype at some

preassigned level x then rational planning requires that the population

size 17 be chosen larGe enough to provide reasonable assurance that at

least one of the N phenotypes will exceed x. The preassigned value of x
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in this case is presumably based on considerations of the facts revealed

in Figures 1 - 12, and is likewise chosen to provide reasonable assurance

that an individual of this phenotype will be of superior genotype.

Analysis of the type (i) experiment model shows that the probability

of finding at least one phenotype exceeding x = (X-j) / 2 + a? in a
population of size N is 1 - [£(x)])N and the probability of finding one

whose genotype also exceeds some specified value g = (G-h)/a, is 1 -

(l-P,. 1 (l-4(x))7d. Thus, in order to obtain 100(1-a) percent assurance

that the type (i) experiment will produce at least one selection, population

size N must be chosen to satisfy the equation

[5 LI(x)]N 1 -c

or

Nlog 10x

In order to provide the same assurance of obtaining at least one selection

with a genotypic value exceeding any specified value g. a larger value of N

is required,

For example, if all phenotypes greater than two standard deviations above

the mean are to be selected (x = 2,(x) = .9773) then in order to provide

90 percent assurance (a = 0.1) of obtaining at least one selection from

the top 5 percent of the genotypic distribution (P. .05, g = 1.645) the

population size N must be chosen as follows
h PCsx N

0.1 .1744 580

0.2 .2597 390

0.3 .3427 295

O.h4 .4270 235

0.5 •5146 196

o.6 .6o7i 165

0.7 .7o62 143

0.8 .8139 124

0.9 .9293 108

1.0 1 101
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The values of P.. in these computations were those obtained by numerical

integration. but may be read with two-digit accuracy from Figures 4 - 12,

respectively. As an illustrationj referring to Figure 8 with h = 0.5

we find that the curve for P1 = .05 intersects with x = 2 at Pa * .515,

giving
log 0 o .1 196

N-log10 [l-*0227(.5l5)) log10 0.98M35 '.00511

A more detailed characterization of a contemplated type (i) ex-

periment is given by the probability of selecting exactly m individuals

belonging to the top 100 P1 percent of the genotypic distribution, which

is the binomial probability

ý:) r, .,[ld(x)]Z- [l-P,., (l-M(x))]N',

or approximately

[Ns. 1, (x) -NI (- (x))
MI e

Thus., for the case illustrated above, with N = 196 the probability of

obtaining exactly one selection from the genetic top 5 percent is

c196)c(.0227).5l5)(9883)195 = 2.291338 (.1008) = .231

or by the approximation

2.291338 (.nO1) = .232

Similarly, the chance of obtaining exactly two selections of this kind is

approximately

(2.291338)2 (.1011) .265

2

while for m = 3

( 3 (.loll) = .203

and for m = 4

(229 ) (.loln) .116



and so on, the probabilities from m I 1 onward adding to the previously

specified 1-a = .90, The expected number of such selections is

NP.., (1-d(x)), or in this case 2.291338.

If a type (ii) experiment is contemplated with a fixed selection rate

of 100 (1-4) percent then the population size N should be chosen laXrge

enough to provide reasonable assurance (1-a) that the k = N(1-4) selections

are genetically superior, or at least that the best of these selected

phenotypes is a genetically superior individual. A characterization of

the type (ii) model by means of the probability distribution of m, the

number of selections exceeding g in genotypic value, is readily accom-

plished analytically, but the form of the distribution is quite cumber-

some computationally. A more convenient characterization is given by the

genotypic distribution associated with the minimum or with the maximum

selected phenotype, the latter being equivalent to the distribution of m

for the special case k = 11(1-E) - 1.

The genotypic distribution associated with the k'th ranking phenotype

in a population of size N is

= f~5~-)dXC) l&Cx))r E&(Ir-

where P3 k denotes the probability that the genotype of the phenotypically

k'th largest individual will exceed the population mean by at least an

amount ga,. For k = 1, or for the largest of N phenotypes. this becomes

S--

Numerical evaluation of the integral P8 .k for the purpose of appraising

a contemplated type (ii) experimental plan is still somewhat tedious1 but

arbitrarily close bounds on the integral may be computed as

x A-g A xi fh (x3 (x

where -•=x,< x, < ... <x, <x,+, =+ w is any Judiciously chosen montone

sequence and
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Fk(x) k (i )[l1-(x)]J [t (x)])-N
.. Or

Furthermore, when k is small and N is large, F1 (x) remains extremely small

until 5(x) gets near unity, and then F\ (x) is closely approximated by

F~(x ~ e-N~l-a(x)) k-i EN(14(~x)1r
r=O r!

In particular, when k = 1,

F1 Cx) W &N(x) P e -NEl-W(x)I

remains less than .005 until 5(x) attains the value

a(I ) -5.29832
N

and increases to .995 at

.00501N

thus indicating a judicious range for the sequence x. < fee < X'S

Certain special cases do exist where the integral PBk can be

evaluated explicitly, the most interesting being the case h = * and g - 0.

When half of the phenotypic variability in the (infinite) population is of

genetic origin then the probability that the k'th ranking phenotype in a

population of size N will be genetically above average is

k
P.,• =i"N+-

From this result it follows that the expected number of above average

genotypes among the best k out of N phenotypes is

=lc [1 1cI]

A second but rather trivial special case arises when h = 1. giving

P,,k = 1 - Fr(g)

which is readily evaluated from tables of the standard normal distribution.

While this limiting case is of no particulax- genetic interest it does
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provide a convenient bound which may be useful as a check against numerical

integration at other values of h.

Numerical integration employing the devices mentioned above was

carried out for the case k = 1 to obtain a solution to P1,1 = 0.9 as an

equation in N. These results, presented in Table 1 as a guide to ex-

periment planning, indicate the population size required for 90 percent

confidence that the first ranking selection will belong to the top 5, 10,

25 or 50 percent of the genetic population.

Table 2 Population size required for 90 percent certainty that the
genotypic value of the phenotypically best individual will
fall in a specified upper percentile of the genotypic
distribution.

Heritability Percentile of the genotypic value of the best phenotype

_ _ Top Top Top Top

2 250% 25% 1(0% 5%

0.1 12,137 7 x i0e 2 x 1014 i0'8

0.2 147 31,140 3 x lI0 5 x i0C

0.3 35 1,070 84,145 2 x lOP

0.4 16 193 4,65o 5 x 104

0.5 9 80 870 5,300

o.6 7 34 254 1,o6o

0.7 6 17 109 415

o.8 5 14 58 165

0.9 4 11 34 82

1.0 4 8 22 45

The Effect of Population Size: After Selection

At the planning stage of a selection experiment the phenotypes to be

selected are yet unknown, except in the form of a lower bound in the case of

a type Wi) experiment, and upon completion of the phenotypic selection the

genotypic values of the chosen individuals are yet unkmown. Figures 1-12

are therefore still of some interest to the geneticist at the post-selection

stage and, in particular, Figures 1-3 apply to describe the genotypic
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distribution associated with any selected phenotypic valuep regardless of

the rank of that individual among the selections. If phenotypic values are

not actually measured in the selection experiment but only compared to a

standard value x in a type (i) experiment (i.e. phenotypes are observed

only to be greater or less than x) or simply ranked in a type (ii) ex-

periment then Figures 1-3 do not apply, and the use of Figures 4-12 depends

more specifically on the type of information available on the selected

phenotypes.

In a type (i) experiment where no information is obtained other than

the exact number k of phenotypes exceeding the standard value x then for

a random one of these k individuals the computations of Figures 4-12 apply

directly, and for all k individuals a binomial distribution applies* The

probability that m of the selected k individuals fall in the top 100 P8

percent of the genotypic distribution is simply

kVk p , :x(1-P, x)

For example, if k = 10 individuals are found to be phenotypically

larger than a preassigned standard value of x = 1.645 in a population with

heritability h = 0.4 then the probability that at least 3 of these 10

belong to the top 100 Pg = 5 percent of the genotypic distribution is

I-(oOp 10 x 10-P .. ))lOpi(' x,9"(10)p,2 ,,e. (1-PF ., )a

From Figure 7 and the curve F. = 5 at x = 1.645 we find Pg . 5#333., giving

1 - .66710 - 10(.553)(.667)9 - G.333)2(.667)s = .6996

Notice that knowledge of k will, on the average, decrease the variance of

m by a factor of (1-Pj, )/[l-P, .,+P ..A(x)], or approximately by 1-PF .,

Additional information concerning the ordering among the k selected

phenotypes in a type (i) experiment is difficult to analyze numerically

because of integration problems. The genotypic distribution associated

with the lowest ranking selected phenotype, for example, is given by the

integral

k

k ( (y dd(y),T
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while that for the highest ranking phenotype is

k

E[l-3(M)]R ' E&(y)4a 3 -d&(y)

Such functions could be integrated numerically by the methods employed in

computing Table 1i however, the number of cases to be considered is quite

large, requiring extensive tables or graphs.

For the purposes of reconciling the population sizes for a type (ii) ex-

periment tabulated in the P. .05 column of Table 2 with those computed

earlier for a type (i) experiment, the genotypic distribution for the

best of k selected phenotypes was computed with h = it, g . 1.6451 x - 2s

and then compounded with the distribution of k for N = 196. Earlier

computations had shown that when h - * and x = 2 in a type (i) experiment,

a population size of N = 196 is required for 90 percent confidence that

at least one selection will belong to the top 5 percent of the genotypic

distribution. Table 2, on the other hand, indicates that in a type (ii)

experiment a population size of N = 5300 is required for 90 percent

confidence that the phenotically best selection will belong to the top

5 percent of the genotypic distribution.

Superficially, these two tabulated results might appear incompatible,

however the conditions to be fulfilled are quite different. In the one

case we require only that at least one of the selections be genetically
superior, while in the other case we require that an identifiable one

(the largest) of the selections be genetically superior. Clearly, the
latter requirement is much more stringent and the population size

necessary to achieve it is correspondingly much greater. For a population

size of only 196 in a type (i) experiment with h = • and x = 2 there is a

0.9 probability that at least one of the selections will have g > 1.645,

but there is (by numerical integration) less than 0.65 probability that the
phenotypically best selection will have g > 1.645.

In a type (ii) experiment, phenotypic ordering is an integral part

of the selection process and thus contributes no additional information
beyond that assumed in the planning stage. In this case the number (k)
selected is fixed in advance, and the minimum selected phenotype xk is a

chance variable corresponding to the selection point x of a type (i)
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experiment. In fact, if x, were actually measured while the remaining

top k-I phenotypes were merely ranked then the information on these k-i

individuals would be of a type identical to that obtained on the k

selections of a type (t) experiment, with x. now playing the role of x.

Most conmonly, all selected phenotypes will be measured, so that

the outcome of the selection experiment consists of phenotypic observations

xI - x2 > *.. > Xk, and Figures l-3 then suffice to describe the probability

distribution of genotypic values associated with each of these phenotypes,

regardless of which type of experiment was employed.

Expected Identifiable Numbers of Genetic Deviates

Powers (1945), Powers et al., (1958) and Dudley and Powers (1959)

introduced the concept of identifiable numbers of genetic deviates in the

phenotypic classes of a segregating population. The identifiable numbers

of genetic deviates are represented by the differences between these clas*

frequencies and those of a nonsegregating population of the same size super-

imposed on the same population mean. As noted by Federer, Powers, and Payne

(in process of publication) in the normal case the class frequencies of the

segregating population exceed those of the corresponding nonsegregatin•

population at a distance of

z ='log. =l-h)

or more on either side of the mean. Consequently, in the sense defined by

Powers, the frequency of identifiable genetic deviates is positive in any

phenotypic class beginning at least a distance z away from the mean of an

infinite population. In particular, in the entire tail of the distribution

from z to +a the frequency of identifiable genetic deviates is

-Ji (Zih)N (l-h)log Cl-h),
(I -h )i -h

Jo that in a segregating population of size N the espectc number o1 suer

identifiable genetic deviates is defined as WN*.
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Unfortunately, in the present context this definition raises certain

ambiguities, for in this same phenotypic interval (z, w) the proportion of

genot~pic values exceeding the mean is

l-Ez)

so that N Po.,t (l-a(z')) may also be described as the expected number of

"ttsuperior" genotypes falling in this interval. Confusion may be avoided

here by regarding P' as an index of heritability, comparable to the herit-

ability ratio h, rather than attempting to interpret F' as a probability;

in fact, for the normal case1 P1'1 is a monotone (increasing) function of 1i

and is therefore equivalent to h as a heritability index. When the genotypic

distribution is non-normal then, of course, the two indices $+ and h are no

longer equivalent and, in general, neither can be regarded as an adequate

index of heritability in the sense of uniquely determining the genotypic

distribution for a given phenotypic distribution. If a frequency difference

is computed for every phenotypic class interval, however, all of the in-

formation in the genetic experiment is retained so that in this extreme

if trivial form the PI index has optimum properties for any distribution

model.

Numerical Illustrations With Sugarbeet Data

Experimental data fulfilling all of the requirements of the normal

model are extremely uncommon, and in the strictest sense are actually non-

existent. Aside from the problem of achieving normality and of achieving

constant environmental variance by appropriate choices of scale of measure-

ment, there is also the practical problem of conducting a completely

randomized experiment with a single individual per plot as called for by

the simple model considered here. The data used here for illustrative

purposes, obtained from a population genetic study on sugarbects conducted

in 1960, cannot be rigorously shown to satisfy any of the requirements of

the model, and so the application of the model provides only a crude guide

to the true genetic character of the data. Until more general methods of
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genetic analysis are developed, however, a crude guide is all that can be

expected and may serve as a valuable tool in the analyses of such data.

For details of the design of the experiment, a description of the

populations studied, and the adjustment of the frequency distributions to

eliminate variation due to replications and populations see Powers et al.,

(in process of publication). With the exception of the predicted values

the data in table 3 were taken from this article. They determined sucrose

percentage of the sugarbeet roots, transformed the data to the logarithmic

scale, and made the adjustments mentioned above. The resulting frequency

distributions are thus freed of replication and population mean effects

and hence are subject only to within plot sources of genetic and environ-

mental variation. Intra plot correlations) positive before adjustment,

axe negative in the adjusted observations. Their effects are not taken

into account in the following analysis. The frequency distribution (see

Powers et al., 1958 and Powers et al., in process of publication) present a

skew appearance indicating that the environmental distribution depicted by

the nonsegregating entry may change shape with each genotype.

First the correspondence between the observed frequency difference

beyond the points of intersection of the segregating and the nonsegregating

frequency distributions are considered. The method of identifying these

points of intersection is given by Powers et al., (1958). The predicted

frequency differences, based on the observed within plot heritability

ratio and the normal theory formula for NT" are shown in table 3 for each

of the segregating populations. For example, with a heritability ratio

of h = .60569 and ii = 450 the predicted frequency difference to the right of

.39432 log.(.39452)z ' = -,60569 =.77836

is * N =450 WQ9;A 2 ,)- M (.77836)]

= 450 [.8924 - .7808] = 50

Examination of table 3 reveals that this prediction corresponds fairly

closely with observation for most entries, though a few major discrepancies

reduce the correlation between observed and predicted to 07. A somewhat
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Table 3 Comparison of observed and predicted identifiable numbers of
genetic deviates. 1960 Group I, log percentage sucrose, N = 45o0. 5

Population and entry Heritability Identifiable numbers of genetic deviates

ratio Superior - - Tta

h observed predicted observed predicted

MIS X 4w-34W , 1 .60569 45 50 87 100
CMS X A54-1, 2 .62211 52 52 97 104

A54-1, 3 .63228 60 53 108 106

cms x 4w-34 s., 4 .48490 42 35 75 70
4W-34 S2, 5 .59884 45 49 77 97
0ms x 1W-34 asexual,

recurrent, 6 .52778 44 40 82 81

41-34 asexual,
recurrent, 7 .41712 25 29 52 58

52-430 X 54-520 F1, 8 .41019 32 29 64 57

54-520 X 52-305 F1, 10 .35738 33 24 64 48

A56-.3, 1i .51308 56 39 94 78

54-520, 12 .67032 44 59 83 118

Total 478 459 883 917

S30 21864 20499 73541 81847

SCP 20794 76459
C.T. 20771.27 19152.82 70880.82 76444.45

19945.64 73610.09

1092.73 1346.18 2660.18 5402.55

848.36 2848.91

r = .6995 r = .7515

j Wlitli exception of the predicted values the data are taken from Powers,
Reimenga, and Urqulmrt (in process of publication).
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surprising side result is the high correlation of .99976 between h and

NW' in this table, indicating that despite this analytically complicated

form, N? is a nearly linear function of h. In light of these many clear

and suspected violations of the model, the degree of fit to the model

predictions are somewhat surprising, and lend some credence to those assump-

tions which cannot be directly checked.

Another direct measure of departure from normality is given in table 4,

where the observed frequencies in the upper tails of the distributions

(X > x') are compared to predicted frequencies (N(l-4(x')))c Here the

skewness of the phenotypic distributions is made more apparent, the predicted

upper tail frequencies almost always exceeding the observed. The a poster-

iori probability of a superior genetic deviate in the tail, computed by

interpolation from figures 4-12, would therefore appear to overestimate the

true probability and hence have been adjusted downward. For example, in the
2

ragion X > g + 1.2667 a2+ ci of a normal segregating population with

h = .60569 the proportion of genotypes falling in the first quartile of the

(normal) genotypic distribution is given by linear interpolation between

the points P5 = 25, x =1.2667 in figures 9 and 10. For h = .6 in figure 9

at x = 1.2667 and P. 25 we find P... = .825 and for h = .7 in figure 10,

PS ex = .887. Interpolation to h = .60569 then gives

PS.Z = .60569 (.887 - .825) + .825 = .828

and since 32 individuals instead of the predicted 46 belonged to this tail

of the observed (standardized) phenotypic distribution then the predicted

number of genotypes

32 Px = 32 (.828) = 26

was arbitrarily adjusted downward by the factor 52/46, giving

26 18
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Appendix.

If X s G + E 4here G and E are independent normal chance variables with

means -and 0 and Variances a2 and a?. respectively, then the conditional,

disetibution of G for fixed X is normal with

ave (Ojx) -ave (G) + Dc(XG)[-ave()
var y(X)

2

-- +

var (GI x)-vr(G)[ .1 covX,Q)f2
var (X)v& G}J

+ *P

Consequently, for

.2
h=- X• I goa, - -s

CO• + a. 1/o, + a.
the conditional distribution of G is expressible as

P(,Gcgjx) = -[Gn- rŽ(Ix) g -anJ2JGXJ
'/var(G/x) ver(Gjx)

where if, the standard (cumulative) normal distribution function,

Similarly, under the condition X>x

'P.,"-(G•glX-() X>x)' j P(G <gly)dP(X <y)

0,
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For the special case g = j and h A(i - h2) = j, this expression

reduces to
cc

P (G4[xx)IN'> x,) fi (-y) di (y)

1- "--'' " S' (y) d & (y)

= 1 - I El + i(x'fl

while (i) becomes simply

P(G4lg'x) = 1 - (x')

If X, < .. e <X) denote the ranked observations in a random sample of

size N then the distribution of the G- component of Xk is given by

0C

P(G = <g) 1P(G<glx) dP(X,<x)

kf 6& j~ 1  Cx) E(x?)3jN-kE14(xt))kf-d5(x')

For the special case g and h this gives

obse Gatin Xk < .[ <I isY1) theX sum [Sk
N+ 1

so the expected number of G-. components less than gamong the kt largeat

observations Xk <*, <K1ý is the sum

Ji 
k (k +

+ =



Let
• .x,-j o1-•I.

-/1 if ý > x and - .g

i= T(G 1 ,X1;gx) -

0 otherwise

then

P(T1 - i) - i (d-d "(y) -P,

and

P T t) CN)P 1 t x -1_ )3-t

In particular,

P T, > = i- (l-Psz)N
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