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NOTE ON THE PROPORTION OF GENETIC DEVIATES
IN THE TAILS OF A NORMAL POPUIATION

D, 5. Robson _:‘_'/and LeRoy Powers _2_/
Introduction

The phenotypic srray exhibited by a segregeting genetic population
reflects both the genetic and the envirommental variability within the
populations. As g consequence, an element of uncertalnty attaches to
selection for geneticelly superior individuals on the basis of their
phenotypic traits. The latter mgy, by chance, be merely the result of
an unusuglly favorable enviromment acting upon a genotype which under
less favorable conditlons would display only a mediocre or even undesirsble
phenotype. Chances for the occurence of such phenotypic deceptlon depend,
of course, upon the magnitude of the envirommentally induced verisbility
as compared to that due to genetic differences.

Any mgthematical formulation of this problem to allow the geneticilst
to numerieally evaluate his chances for successful selectlion requires a
detaliled description of the phenotypic frequency distribution in the pop-
ulations Structurally, the total segregating population may be regarded
as a mixture of subpopulations, with each subpopulation representing the
distribution of phenotypes produced by a single genotype under the existing
range of environmental conditions, and with each subpopulation or genotype
contributing to the total population in proportion to its genotypic free
quencys. A mathematical description of the population therefore consists
of specifying the relative frequency of each genotype and the exact form
of its associagted distribution of phenotypes.

Under most circumstances where selection is practiced for economic
purposes g larpge number of both genetlic and environmental factors operate

y Associgte Professor of Bilological Statistics, Cornell University.

2/ Geneticist, Crops Research Division, Agricultural Research Service,
Us S¢ Depertment of Agriculture.
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at variable levels to determine the phenotypes appearing in the population.
Empirical evidence supports the belief that in this case the total frequency
distribution and slso the comporent distributions for a quantitative pheno-
typic trait are approximately Gaussian in forme A standard populaticn model
which has therefore come into use in such problems as the prediction of ade
vancement under selection is Eisenhart's Model II (1947) representing, in
the simplest case, a normal mixture of normal subpopulations with constant
variance. Egch genotype 1s assumed to generate a normal distribution of
rhenotypes under the existing range of envirommental conditions, and the
distribution of phenotypic means (celled genotypic values) is likewisec
normale

Graphs of the Proportion of Genetic Deviates

The phenotypic value X for some quantitative trait of an individual
selected at random from a genetic population may be regarded conceptually
as the sum of two components,

G = average phenotype for the genotype of the chosen individual
E = deviation of the particuler phenotype of the chosen individual
from the average phenotype (G) for the genotype of that
individual = X=G
or
X=G+E

The first component G is conventionglly cglled the genotypic value and E
is the environmentsl effect, If the population structure is a normal
mixture of normal subpopulations having a common environmental variance
then the chance variables G and E follow independent normal distributions,
G having a mean value of'E and variance of s & having a mean valuc of zero
and variance of sy so that X itsclf follows a normal distribution with mean
E and variance of + cf N

A probability distribution of particular interest to the geneticist is
the g posteriori distribution of G among individuals of a fixed pheno-
type x3 that is, given that he has selected an individual of phenotype

X, the geneticist is then concerned with fhe probability that this chosen
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individual is of superior genotype, say greater than scme standard value
B« For any selected phenotypic value x the conditional distribution of
genotypic values G is in this case normal with mean g + h (x~g) and

varignce ¢F (l-h), where h is the heritability ratio

2
13

2
o2+ of

o}
h =

or the ratic of genetic to total wvarisnce in the population,.

The desired probability thaet the genotypic value will exceed some specified

value g is therefore given by the standard cumulative normal probability

& ({g+hlx~g)=g] / a‘,/l-:ﬁ) or, expressing x and g in standard units as
g -

- ————

%
xt =/ + andg'aﬁgg

vwe obtain the simplified form

8([x* /h=g'] / /I-h)= ﬁ l e-é_dt

which depends on the varisnce components only through the heritability
ratios. A special case of some interest is where g = -é, giving
B(xt / Jrg—ﬁ)as the probability that an individual of phenotype x will be
genetically above average; note that when h = £ this reduces to

€(x?) = area to the left of x! under the standard normgl curve.
For exsmple, with x!' = 1.645 and h = §, the probability that the genotypic
value of the selected individual exceeds the population mean is
B(1.645) = ,95; if h were % instead of § then the desired probability would
be &(1.645/ /3) = 8(+950) = .83, while h = 3/l would give
&(1.645 /3) = a(2.849) = .998. These answers may be interpolated from
Figure 1 where the general form of the solution is illustrated by plotting
([x* /h~g'] / /1-h) as a function of g! with x! fixed at the upper 5 per=
cent tail value of 1.645 and with h taking the values 0.1 to 0.9 by steps
of Ouls Figures 2 and 3 display the corresponding curves with x' fixed at
the uprer 10 percent valuc of 1,282 and the upper quartile value of .67k,
respectively,.
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Where selection operates on the entire upper tail of the phenotypic dise-
tribution, taking all individuals whose phenotypic value exceeds x, the
question of interest becomes the proporticn of these selected individuals
having genotyplc values exceeding g. More precisely, this proportion may
be interpreted as the conditional probability that s randomly selected
individual exhibiting a phenotypic value grester than x will also have a
genotypic value greater than g. Again, the solution to this problem is
expressible in integrsl form as

- |5 CARD a0

though in this case the integral is not previously tsbulated, The only
non-trivial case vhich permits further analytic reduction is g!' = 0 and

h = #; vhen half of the total varience is genetic then the probabllity

that an individual randomly selected from the region X>x will be geno-
typically sbove average is [1 + &(x')] /2. Thus, in this case, the solution
mey be read directly from the cumulative normal tables; for exemple, the
proportion of above average genotypes in the upper 5 percent tail of the
phenotypic distribution is then

[+ &(2.645)] /2 = [1 + 4951 /2 = 975

A numerical solution in the general case can be obtalned only by numerical
integration, for which the most convenient approach is to hold gt and h
fixed and allow x! to vary. Grgphs of this probability function of g!
appearing in Fipures L-12 are therefore plotted as functions of x°, with
each curve correspcnding to a fixed value of g' and he For example, from
the curve for Py1 = «05 (g' = 1,645) and h = # we see that in the upper
25 percent tail of the phenotypic distribution (x!' = .67k} the proportion
of standardized genctic deviates exceeding g! = 1.645 is 417: in other
words, 17 percent of the phenotypic top 25 percent also belong to the
genotypic top 5 percent of the population when hglf of the v.riability is
genetic,

A mere complcte picture of the expected proportions of penetic dee
viates may be constructed in histogram form by a slight extension of the
results in Figures 4-12, For a set of phenotypic intervals
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(%, %, Jseeey (X stw) on the standard scale
x’ D TR etr—————

og" + oe

the proportion Py (% ,x, + ) of genotypic values exceeding the populstion
mean by an amount 89, can be computed from the formula

P‘ lx‘ [l-a(xl )] - P"'g"‘l [l'ﬁ(xg-h )]

P, (x » )=
¢ et [1-&8(x, )] - [1-8(x,,, )]

Again referring to Figure 8 for the case h = 0.5, we illustrate this
procedure with intervals of length X418y = 0.5 between x, = 425 and
¥ = ¥g = +2.25. Taking the interval (1.25, 1,75), for example, we find
(either by visual interpolation on the right hand scale of Figure 8 or
directly from tables of the standard cumulative normal distribution)

1-3(1.25) = ,1056 1-&(1,75) = 001
[1-8(1425)] ~ [1-8(2.75)] = «0655

Then to find the expected proportion of gbove average genotypes in this
interval we refer to the P = 0,50 (or g = 0) curve in Figure 85 at x, = 1,25
this gives '

P| "Xy = Pﬂolzﬁ = '91*7
and at x4, = 1.75,

P"’l"‘l = PO-], 78 = '980

so that
Py (xl,xtﬂ.) = Py (1.25,1.75) = '9h7('10§g%;§980(.0h01)
_ #0607
= 0655
= 9267

Thus, vhen h = é, 6.55 percent of the population falls in the phenotypic
interval

los < 228 <1.75
/O‘f + o2
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and 92,67 percent of the individuals falling in this interval are
genotypically above averages

Similarly, rrom the curve for P = 0.25 (g »6745) in Figure 8 we
find

P;-xl = P,ev4s-1.aa = o756 f}.x1+1 = P.6745-1,7s = o867

so that

| ] [ L] .l‘-
Py (X 5%y 1) = Panes (1425,1475) = -12§1_292_2§5867( 0ho1)
_ o051
.05§§“

= 06885

Thus, 68.85 percent of the individuals in this interval belong to the top
quartile of the genotypic distribution. By subtraction, 92.67 - 68.85 =
23.82 percent of the individuals in this interval belong to the second
quartile of the genotypic distribution. The remsining computations for
this and other intervals were performed in the same manner end sre shown
in Table 1. The resulting histogram is plotted in Figure 13, indicating
for each phenotypic class the proportions of individuals belonging to

the various percentiles of the genotypic distribution.

Table 1 Percentage of individuals in a phenotypic class which belong to
the top P, percent of the genotypic distribution when h = %,

Phenotypic Phenotypic  Percentage of the class frequency belonging to the
class frequency top P, percent of the genotypic distribution

interval (percent) P,= 50 Py= 25 P,= 10 b= 5 By=1

f e ———

25 to 75 1747 68463 31,54 9,56 3,43 0.29
«75 t0 1,25 12,10 83.39 50417 20.58 3,09 1.07
1.25 to 1.75 6.55 92,67 68.85 36479 19.85 3451
1.75 to 2425 279 97.49 83.51 5501 35.8k Fe32
2.25 to 1.22 99,18 94,26 77.05 59.84 25.41
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The Effcct of Population Size: Before Selection

The preceding results describe some characteristics of an abstract
infinite population, while the genetic population sctually observed and
selected from is of finite size N, representing only a sample from this
potential infinite population. Finiteness of the obscrved population has
no effect on the results plotted in Figures 1 - 3, which are conditional
on & single selected phenotypic value; but the application of Figures b -
12, which are conditional on a selected upper tail of the phenotypic dis-
tribution, requires further explanation in the finite cese.

A selection procedure which takes all individuals in the tail of a
distribution may be defined in essentislly two different ways, by specifye
ing either (i) the minimum acceptable phenotypic value or (ii) the per-
centile of the observed phenotyplc distribution at which selection beginse.
When the minimum acceptable phenotype is fixed in advance then the number
or percentgge of the prospective population of size N which will be selected
is a chance variable, unxnown in advance of the selection experiment, while
if the selection rate or percentege is fixed then the minimum phenotypic
value which will be accepted is s chance variagble and unknown in advance
of the experiment, In either case, chance variations in the respective
unknowvn quantities will decrease as N is increased, and as N approaches
infinity the two procedures become equivalent; that is, when population
size 1s infinite, the spccification that sclection will take gll individuals
with phenotypic values exceeding x is equivalent to the specificgtlon that
selection will take a fraction 1-@(x) from the upper tail of the phcnotypic
distribution. This asymptotic equivalence is expressed in Figures 4 - 12
by lebeling the ordinate with both the scale of x and 1=&(x).

For the purposes of planning a finite selection experimant of either
type, the potential masgnitude of chance fluctuations in the respective
unknown quantities must be considered. For example, if a type (i) cx~
periment is contemplated with the minimum acceptable phenotype at some
preassigned level x then rational planning requires that the population
size Il be chosen large enough to provide reasongble assurance that at
least one of the N phenotypes will cxceed X« The presssigned value of x
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in this case is presumably based on considerations of the facts revealed
in Figures 1 - 12, and is likewise chosen to provide reasonable assurance
that an individual of this phenotype will be of superior genotype.

Analysis of the type (i) experiment model shows that the probability
of finding at least one phenotype exceeding x = (XJE) / 46? + cf in a
population of size N is 1 = [&(x)]¥, and the probsgbility of finding one
whose genotype also exceeds some specified value g = (GJE)/G‘ s 1 =
[1=P; .. (1=8(x))« Thus, in order to obtain 100{1-¢) percent assurance
that the type (i) experiment will produce at least one selection, population
size N must be chosen to satisfy the equation

1w [@x)M =1-a

log &
N= Tog &(x)

In order to provide the same assurance of obtaining at least one selection

or

with g genotypic value exceeding any specified value g, a larger value of N

N = log O
a Logil-P‘_,il-ﬁixjjj

For example, if all phenotypes greater than two standard devistions sbove
the mean are to be selected (x = 2,d8(x) = 9773) then in order to provide
S0 percent assurance (& = 0.1) of obtaining at least one selection from
the top 5 percent of the genotypic distribution (P, = +05, g = 1.645) the
population size N must be chosen as follows

is required,

h P, ox N
0.1 J1T7hh 580
0.2 2597 390
0.3 o3h27 295
Ouk L1270 235
0.5 «5146 196
06 6071 165
0.7 « 7062 143
0.8 8139 124
0.9 <0293 108

1.0 1 101
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The velues of P, ,, in these computations were those obtained by numerical
integration, but may be reed with two=digit accuracy from Figures & = 12,
respectively. As an illustration, referring to Figure 8 with h = C.5

ve find that the curve for P, = .05 intersects with x = 2 at P ; # 515,
giving
10810 0.1 -l 1

¥ = Tog 5 [1--0227(-515)] ~ Togo 049885 ~ +005LL ~ 196

A more detailed characterization of a contemplated type (1) ex-
veriment is given by the probability of selecting exactly m individuals
belonging to the top 100 P, percent of the genotypic distribution, which
is the binomial probability

) pya, [1-6(x) 1= [1P, . (1E(x)) N2
or gpproximgtely

e, (1-8(x)] NP, (1-8(x))
i )

mi
Thus, for the case illustrsted above, with N = 196 the probability of
obtalning exactly one selection from the genetic top 5 percent is

(426)(20227) (+515) (98839 = 2,291338 (.1008) = ,231

or by the spproximation
2,291338 (.1011) = .232

Similarly, the chance of obtaining exactly two selections of this kind is
approximately

2
{2.291338)° ; 8 (s1011) = 265

while for m = 3

-LQ—‘-%%SQE—’B- (+1011) = .203

and for m = &

24201378 )4

N6 (,1011) = .116
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and so on, the probabilities from m = 1 onward adding to the previously
specified le=g = 90, The expected number of such selections is
Nf;,, (1-8(x)), or in this case 2.291338.

If a type (i1) experiment is contemplated with a fixed selection rate
of 100 {1-&) percent then the population size N should be chosen large
enough to provide reasoradle assurance (1-) that the k = N(l-3) selections
are genetically superior, or at least that the best of these selected
phenotypes is a genetically superior individual. A characterization of
the type (i1) model by meens of the probability distribution of m, the
number of selections exceeding g in genotypic value, is readily accom=
plished anelytically, but the form of the distribution is quite cumber-
some computationaslly. A more convenient characterization is given by the
genotypic distribution associated with the minimum or with the maximum
selected phenotype, the latter being equivalent to the distribution of m
for the specisl case k = H(1-&) = 1.

The genotypic distribution associated with the k'th ranking phenotype
in a population of size N is

18, =[5 (B 4 () e e

vhere Pl‘,k denotes the probebility that the genotype of the phenotypically
k*th largest individual will exceed the population mean by at least an
amount go;s For k = 1, or for the largest of N phenotypes, this becomes

Py, = _J; & (5455 am (x)

Numerical evaluation of the integral P;,x for the purpcse of sppraising
a contempleted type (1i) cxperimental plan is still somewhat tedious, but
arbitrarily close bounds on the integral msy be computed as
;: & xi'g\/h . ] x1+1'8\/ﬁ _ .
= (ﬁ-) [Fy (g4 3R (%,)] < By <@ ( s )[Pk(xm )=F, {x,)]

vhere == = X, < X; < o900 < Xy <Xy =+ @ is any judiciously chosen montone

sequence and
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Fo(x) = 2 OG0T (8 P

Furthermore, when k is small and N is large, F, (x) remains extremely small
until &(x) gets near unity, and then F, (x) is closely approximated by
- kel r
F () % e N[1-3(x)] *% [N(l.;agx)]
r=0 X

In particular, vhen k = 1,

Fl (x) = @\'(x) * e -N[l"a(x)}

remgins less than .005 until &(x) attains the value

29832
a(xy) = 1 -2

and increases to 995 at

ﬁ(x‘) =1 = 0010\1201

thus indicating a judicious range for the sequence X; < sev < X, o

Certasin speciel cases do exist where the integral P‘,,, can be
evaluated explicitly, the most interesting being the case h = # and g = O,
tlhen half of the phenotypic variability in the (infinite) population is of
genetic origin then the probability that the k'th ranking phenotype in a
population of size N will be genetically gbove average 1is

k

P°,‘=1“N+l

From this result it follows that the expected number of above average
genotypes among the best k out of N phenotypes is

SRR P X 5
gz 029 - 2({N + 1
A second but rather trivial special case arises when h = 1, giving

P‘,k = 3. - Ft(g)

which is readily evaluated from tables of the standard normgl distribution.
While this limiting case is of no particular genetiec interest it does



provide a convenient bound which may be useful as a check against numerical
integration at other values of h,

Numerical integration employing the devices mentioned above was
carried out for the case k = 1 to obtaln a solution to I;’l = 0.9 a8 an
equation in N. These results, presented in Tgble 1 as a guide to ex~-
periment plenning, indicate the population size required for 90 percent
confidence that the first ranking selection will belong to the top 5, 10,
25 or 50 percent of the genetic population.

Table 2 Population size required for 90 percent certainty that the
genotypic value of the phenotypically best individual will
fall in a specified upper percentile of the genotypic
distribution.

Heritability Percentile of the genotypic value of the best phenotype

h = 8 Top Top Top Top
62 + o2 50% 25% 10% 5%
0.1 12,137 7 x 108 2 x 1014 ixs
0.2 147 31,140 3 x 107 5 x 100
0d3 35 1,070 84,145 2 x 108
Ot 16 193 4,650 5 x 1ot
0.5 9 80 870 5,300
0.6 7 3 ash 1,060
0.7 6 17 109 415
0.8 5 1h 58 165
0.9 b 11 34 82
1.0 L 8 22 ks

The Effect of Population Lize: After Selection

At the planning stage of a selection experiment the phenotypes to be
selected are yet unknown, except in the form of a lower bound in the case of
a type (i) experiment, and upon completion of the phenotypic selection the
genotypic values of the chosen individuals are yet unknown. Fipgures 1«12
are therefore still of some interest to the gencticist at the post-sclection
stage and, in particular, Figures 1-3 apply to describe the genotypic
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distribution assoclated with any selected phenotypic value, regardless of
the rank of that individual among the selectionse. If phenotypic values are
not actually measured in the selection experiment but only compared to a
stendard value x in a type (i) experiment (i.e. phenotypes are observed
only to be greater or less than x) or simply ranked in a type (ii) ex=
periment then Figures 13 do not apply, and the use of Figures 4#=12 depends
more specifically on the type of information available on the selected
phenotypes.

In a type (i) experiment where no information is obtained other than
the exact number k of phenotypes exceeding the standard value x then for
a random one of these k individuals the computations of Figures U4=12 apply
directly, and for sll k individuals a binomial distribution applies. The
probability that m of the selected k indivi&uals fall in the top 100 P;
percent of the genotypic distribution is simply

&) p

m g sX (l-Pl oX )kc"'n

For example, if k = 10 individusls are found to be phenotypically
larger than a preassigned standard value of x = 1.645 in a population with
heritability h = O.4 then the probability that at least 3 of these 10
belong to the top 100 P, = 5 percent of the genotypic distribution is

10)

Piix(l-fk.x)‘°'(l Pii:(l'Pi.x)9'(;O)P:?:(1'Ps.x)a

1-(2°)

From Figure 7 and the curve P, = 5 at x = 1.645 we find P, , = 333, giving

1 = 66710 w 10(s333)(.667)° = (.333)2(.667)8 = 6996

Notice that knowledge of k will, on the average, decrease the variance of
m by a factor of (l-P‘_x)/[l-E;_‘+P“x6(x)], or approximately by 1P . .

Additional information concerning the ordering among the k selected
phenotypes in & type (i) experiment is difficult to analyze numerically
because of integretion problems. The genotyplic distribution associated
with the lowest ranking selected phenotype, for example, is given by the
integral

[1-ask(x5] k I & (EJXI% (1-8(y)I*"1a8(y)
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while that for the highest ranking phenctype is

[—1:5%)7 k [3 (%) [&(y)=8(x)J=2aa(y)

Such functions could be integrated numerically by the methods employed in
computling Table 1; however, the number of cases o be Lonsidered is qnite
large, requiring extensive tables or graphs.
For the purposes of reconciling the population sizes for a type (ii) ex=
periment tabulated in the P‘ = o05 column of Tgble 2 with those computed
earlier for a type (i) experiment, the genotypie distribution for the
best of k selected phenotypes was computed with h = &, g = 1645, x = 2,
and then compounded with the distribution of k for N = 196, Earlier
computations had shown that when h = % and x = 2 in a type (i) experinent,
a population size of N = 196 is required for 90 percent confidence that
gt least one selection will belong to the top 5 percent of the genotypic
distribution. Table 2, on the other hand, indicates that in a type {(ii)
experiment a population size of N = 5300 is required for 90 percent
confidence that the phenotypically best selection will belong to the top
5 percent of the genotypic distribution.

Superficiglly, these two tabulated results might sppear incompatible,
however the conditions to be fulfilled are quite different. In the one
case we require only that gt least one of the selections be geneticelly

superior, while in the other case we require that an identifiable one
(the largest) of the selections be genetically superior. Clearly, the
latter requirement is much more stringent and the population size
necessary to achieve it is correspondingly much greater, For a population
size of only 196 in a type (i) experiment with h = § and x = 2 there is a
0.9 probability that at least one of the selections will have g > 1.645,
but there is (by numerical integration) less than 0.65 probability that the
phenotypically best selection will have g > 1.645.

In s type (ii) experiment, phenotypic ordering is an integral pert
of the selectlon process and thus contributes no additional information
beyond that assumed in the plenning stage. In this case the number (k)
selected is fixed in advance, and the minimum selected phenotype x, is a
chance variable corresponding to the selection point x of a type (i)
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experiment. In fact, if x, were actually measwred while the remaining
top kel phenotypes were merely ranked then the information on these kel
individuals would be of a type identical to that obtalned on the k
selections of a type (1) experiment, with ¥, now playing the role of x.

Most commonly, all selected phenotypes will be measured, so that
the outcome of the selection experiment consists of phenotypic observations
X S X5 > eee > X,y and Figures 1-3 then suffice to describe the probability
distribution of genotypic values associated w;th each of these phenotypes,
regardless of which type of experiment was employed.

Expected Identifisble Numbers of Genetic Devistes

Powers (1945), Powers et ale., (1958) and Dudley and Powers (1959)
introduced the concept of identifiable numbers of genetic deviates in the
phenotypic classes of a segregating population. The identifiable numbers
of genetic deviates are represented by the differences between these class
frequencies and those of a nonsegregeting population of the same size super=
imposed on the same population mean. As noted by Federer, Pawers, and Payne
(in process of publicetion) in the normal case the class frequencies of the
segregating population exceed those of the corresponding nonsegregating
population at a distance of

ceu TR [
or more on elther side of the mean. Consequently, in the sense defined by
Powers, the frequency of identif'iable genetic deviates is positive in any
phenotypic class beginning at least a distance z away from the mean of an
infinite population. In particular, in the entire tail of the distribution
from z to += the frequency of identifiable genctic deviates is

. {log, (1=h) (1-«h)1og, (1=h),
(P o (R

5%)-& (z*)

so that in a segregating population of size N the expecicd number of superior

p*

identifiasble genetic deviates is defined as NI*.
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\'Jnfortunafely, in the present c’éritext this ciefii:i{:ion raises certain
smbiguities, for in this same phenotypic interval (z, =) the proportion of
genotypic values exceeding the mean is

Po,.s!? =T-3%ET)- J"ﬁ(% ag(y)

so that N Py .+ (1-&(z')) may also be described as the expected number of
“superior® genotypes falling in this intervale. Confusion may be avoided
here by regarding P* as an index of heritability, comparable to the herite
sbility ratio h, rather than attempting to interpret ¥* as a probability;

in fact, for the normal case, P* is & monotone (increasing) function of h
and is therefore equivelent to h as & heritability index. When the genotypic
distribution is non-normal then, of course, the two indices P* and h are no
longer equivalent and, in general, neither can be regarded ss an adequate
index of heritability in the sense of uniquely determining the genotyple
distribution for a given phenotypic distribution. If s freguency difference
is computed for every phenotypic class interval, however, all of the ine
formation in the genetic experiment is retained so that in this extreme

if trivisl form the P* index has optimum properties for any distribution
model.

Numericel JIllustrations With Sugarbeet Datas,

Experimental data fulfilling all of the requirements of the normal
model are extremely uncommon, and in the strictest sense are actually none-
existent, Aside from the problem of achieving normality and of achieving
constant environmental veriance by appropriaste choices of scale of measurecs
ment, there is also the practical problem of conducting o completely
randomized experiment with a single individual per plot as called for by
the simple uwodel considered here. The data used here for illustrative
purposes, obtained from a population genetic study on sugarbects conducted
in 1960, cannot be rigorously shown to satisfy any of the requircments of
the model, and so the gpplication of the model provides only a crude guide
to the true genetic character of the data. Until more general methods of
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genetic analysis are developed, however, a crude guide is gll that can be
expected and msy serve as & valuable tool in the analysea of such data.

For detalls of the design of the experiment, a description of the
ropulations studied, and the edjustment of the frequency distributions to
eliminate veriation due to replications and populations see Powers et sl.,
{in process of publication)s With the exception of the predicted values
the dats, in table 3 were taken from this article. They determined sucrose
percentage of the sugarbeet roots, transformed the data to the logarithmic
scale, and made the adjustments mentioned above. The resulting frequency
distributions are thus freed of replication and population mean effects
and hence are subject only to within plot sources of genetic and environe
mentel variation. Intra plot correlations, positive before adjustment,
are negative in the adjusted observetions. Their effects are not taken
into account in the following snalysis. The frequency distribution (see
Powers et al., 1958 and Powers et als., in process of publication) present a
skew appearsnce indlcating that the environmental distribution depicted by
the nonsegregating entry may change shape with each genotype.

First the correspondence between the observed frequency difference
beyond the points of intersection of the segregating and the nonsegregating
frequency distributions are considered. The method of identifying these
points of intersection is given by Powers et ale., (1958)s The predicted
frequency differences, based on the observed within plot heritability
ratio and the normal theory formule for NP* are shown in tsble 3 for each
of the segregating populations. For example, with s heritsbility ratio
of h = 60569 and N = 450 the predicted frequency difference to the right of

39432 log, («39432)
2t = v/ =60569 = 7783

1

o W = ko [a (}—T%Sﬁ-?a) - & (.77836)]

k50 [.8924 - ,7808) = 50

Examination of table 3 reveals that this prediction corresponds fairly
closely with observation for most entries, though a few major discrepancies
reduce the correlation between observed and predicted to 0.7, A scomewhat
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Table 3 Comparison of observed and predicted identifiable numbers of
genetic deviates. 1960 Group I, log percentage sucrose, N = 450, _/

Populstion and entry Heritability Identifiable numbers of genetic deviates

ratio 5 1  mote .
h observed predlicted observed predicted
CMS X WW-3L4, 1 «60569 b5 50 87 100
CMS X A5he1, 2 62211 52 52 97 10k
A5k, 3 «63228 60 53 108 106
CMS X bw=-3lk s,, 4 48490 ke 35 75 70
W3k 5, 5 «59884 k5 kg 77 97
CMS X W=-34 asexual,
recurrent, 6 «52778 yl ho 82 81
hyl-3h asexual,
recurrent, 7 1712 25 29 52 58
52-430 X 54=520 F,, 8 41019 32 29 64 57
54=520 X 52~305 F;, 10 35738 33 2k 6k 48
A56-3, 11 «51308 56 39 gk 78
54=520, 12 «67032 by 59 83 118
Total L78 459 883 917
SSe 21864 20l99 73541 81847
SCP 20794 76459
CoT. 20771.,27 19152.82 T0880.82 T6MiL U5
19945.64 73610.09
1092,73 1346,18 2660.18 5402,55
848.36 2848,91
r= 6995 r= Lf515

_l/ With exception of the predicted values the data are taken from Powers,
Remmenga, and Urquhart (in process of publication).
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surprising side result is the high correlation of 99976 between h and
NP* in this table, indicating that despite this analytically complicated
form, NF* is & nearly linear function of h. In light of these many clear
and suspected violations of the model, the degree of fit to the model
predictions are scomewhat surprising, and lend some credence to those assumpe-
tions which cannot be directly checked,

Another direct measure of departure from normelity is given in table &4,
where the observed frequencies in the upper tails of the distributions
(X > x') are compared to predicted frequencies (N(1~&(x?))). Here the
skewness of the phenotypic distributions is made more apparent, the predicted
upper tall frequencies almost always exceeding the observed. The a poster=-
iori probability of a superior genetic deviate in the tail, computed by
interpoletion from figures 4=12, would therefore appear to overestimate the
true probability and hence have been adjusted downward. For example, in the
ragion X> g + 1.2667 m of a normel segregating population with
h = 60569 the proportion of genotypes falling in the first quartile of the
(normal) genotypic distribution is given by linear interpolation between
the points Py = 25, x = 1,2667 in figures 9 and 10. For h = .6 in figwre Y
at X = 142667 and P, = 25 we find P, , = .825 and for h = .7 in figure 10,
Py ,x = +887, Interpolation to h = .60569 then gives

P‘ x = 060569 (0887 - 0825) + e825 = 328

and since 32 individuals instead of the predicted 46 belonged to this tail
of the observed (standardized) phenotypic distribution then the predicted
number of genotypes

32 Py, = 32 (.828) = 26

was arbitrerily adjusted downward by the factor 32/U6, giving

26 (E%) = 18
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Appendix
If X = G + E vhere G and E are independent normal chance variables with

means g and O and variances o and oF, respectively, then the conditional
distribution of G for fixed X is normal with

ave (Gfx) = ave (6) + SEUQ [xave (x)]
— of 2 "')
=g+ (X=~g
02 + of
2 -
var (6]%) = var (0) [1 - LA ]
02

O

Consequently, for

2
Os -
h = X! = -——-——E——.__f:_ t = MO’-
2 2 3
o + o /o5 + o s

the conditional distribution of G is expressible as

PGcglx) = P [G = ave(G]x) . g = ave (G]x)

ver (@[x) W

=a[" ']al-a fox! - gt

/(1) / (1-h) :I

vhere & is the standard (cumulative) normal distribution function.

(1)

Similerly, under the condition X>x

1P, =P(G<g|X>x) = ?6{}5_:{)' J' P(G <g|y)aP(X <y)

(2) =l-;x' .r (/(lh))dd('y)
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For the special case g = g and h = /h(1 = h) = #, this expression
reduces to

P(G <g[¥ >x)

L]

[& () aa ()

1-55y JI®aa )

1=-%[1+a(x)]

vhile (1) becomes simply
P(C <g|x) = 1 ~ &(x!)

If Xy < e«ee <X, dznote the renked observations in a random sample of
size N then the distribution of the G- component of X, is given by

[~

P(G, <g) _l P(G<g|x) dP(X, < x)

]

-]

k-i & ( '/-'(:1_2)' ) (N) [&(x? )P -%[1-E(x?)]*~1dd(x!)

For the special case g = g and h = & this gives

Ll

[+

PG <E) =k [ [1-8("] () BxHDF=[L - 6(x*) ]38 (x")

K
N+1

s0 the expected number of (G- components less than 2 among the k largest
observations X, < «vs <X, is the sum



Let -
1l if ————— > x and S>Sg
[ZT @ %
[ ]
Ty = 0(Gy,X, ;8,x) =
0 otherwise
then
[~ -]
P’(.L1 = 1) = Lﬁ(&ﬂ) dﬁ(y) = P. <
L
M (1<h)
and

N N
p( T, - t.>= (t)P':‘(l..p"x)n-t,

In particular,

N
P(f:Ti > l): l - (1.1:":)"
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