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ABSTRACT: The one-dimensional theory of stress-wave propagation
has been found to adequately represent a three dimensional
experimental situation in both the elastic and plastic regimes.
An air gun was used to accelerate a rod and impact it against a
stationary test rod to produce a force pulse. The strain
resulting from this pulse was recorded at various positions
along the test rod. The deviation between the theoretical and
experimental values of maximum stress was less than 11.5 percent.

PUBLISHED MARCH 1964

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

i
UNCLASSIFIED



NOLTR 63-141 31 July 1963

STRESS~-WAVE PROPAGATION IN ALUMINUM

This work was performed as a part of Polaris Long Range
Research under Task Number PR-13.

The authors wish to express their appreciation to
Drs. A. E. Seigel and V. C. D. Dawson for their valuable
contributions to this program.

R. E. ODENING
Captain, USN
Commander

a. €. Jocqel
A. E. SEIGEL
By direction

At



NOLTR 63-141

CONTENTS
Page
LIST OF SYMBOLS . iv
INTRODUCTION . . 1
THEORETICAL CONSIDERATIONS . 1
EXPERIMENTAL TEST APPARATUS . 6
EXPERIMENTAL DATA REDUCTION . . . . 6
RESULTS FROM EXPERIMENTS AND CALCULATIONS 5 b4
ERROR ANALYSIS . . . 8
DISCUSSION AND CONCLUSIONS .. 8
REFERENCES . . . S 10
ILLUSTRATIONS
Figure Title
1 Compression Stress-Strain Curve 7075-0 Aluminum
2 Shift Rate vs Stress
3 Impact Velocity vs Stress
4 Characteristic Diagram
5 Velocity of Impact vs Stress
6 Test Apparatus
7 Strain-Time History After Impact
8 Characteristic Diagram Aluminum (Elastic) Impacting
Aluminum (Elastic)
9 Theoretical-Experimental Comparison of Aluminum (Elastic)
Impacting Aluminum (Elastic)
10 Characteristic Diagram Aluminum (Elastic) Impacting
Aluminum (Plastic)
11 Theoretical-Experimental Comparison of Aluminum (Elastic)
Impacting Aluminum (Plastic)
12 Characteristic Diagram Magnesium (Elastic) Impacting
Aluminum (Plastic)
13 Theoretical-Experimental Comparison of Magnesium (Elastic)

Impacting Aluminum (Plastic)

i



¢ w Hh A

M x = M I» R

€ q

NOLTR 63-141

LIST OF SYMBROLS
Lagrangian length coordinate
Function
Shift rate defined by equation 5
Time
Particle velocity
Cross-sectional area
Young 's modulus
Impedance
Constant defined by equation 15
Strain
Initial mass density

Stress

Impact velocity defined by equation 6

iv



NOLTR 63-141

INTRODUCTION

The impact of a re-entry body during either water entry
or hard surface landing operations produces very severe loads
in the structure. When the body first strikes the target, a
compressive stress wave emanates from the surface of contact
often causing damage to the payload. It becomes necessary to
mitigate the loads felt by the payload so that the maximum
allowable stress 13 not exceeded.

One possible method of protecting the payload 1s to make
use of the cancellation of high-intensity plastic stress waves
by faster traveling elastic unloading stress waves, The work
reported here was undertaken as a result of an idea proposed
by Drs. A. E. Seligel and V. C. D. Dawson as a method of
mitigating shocks experienced by re-entry vehicles, The basic
concept 1s discussed in a report (in preparation) by
Drs. Seligel and Dawson.

In an effort to verify the theory of stress-wave cancel-
lation, it was desired to compare the results of experimental
tests with calculations using the one-dimensional theory of
stress-wave propagation. The structure used for this study
was a simple free-ended test rod. To simulate loads obtained
from impact, a rectiangular force pulse was suddenly applied to
the test rod by impacting a second rod against it. The problem
considered i3 therefore that of predicting the stress-time
history at any point in the test rod and comparing it to
experimentally measured values,

THEORETICAL CONSIDERATIONS

The theory studied in this investigation has been derived
by numerous investigators, the first being Th. von Karman
(ref. (1)) and 6. I. Taylor (ref. (2)). It 18 a one-dimensional
theory applicable to both elastic and plastic wave propagation.

For simplicity, only strain rate independent materials have
been considered here so that stress 18 a function of strain only:
o= FEe 0<o < oy

(1)
g = f‘(E) 630'7
The behavior of the rod i1s governed by the equations of

continuity and momentum which take the following form in the
lagrangian coordinate system:

du de

-

da T~ 2 (2)
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¥ jyu
Sa B SFE (3)

Introducling the shift rate, g, and impact velocity, ¢ ,
the above equations may be rewritten in the following form:

Sz 3 g (ute) = o (4)
where g?= ?l';/i': (5)
and dp = gde = F%'JC" (6)

In the experiments reported here, 7075-0 aluminum was used
exclusively for the test rod since 1t does not exhibit an
appreciable strain-rate dependence at room temperature (ref. (3)).
The static stress-strain relationship for this material 1s
shown as figure 1.* Equations (5) and (6) have been used to
determine the shift rate and impact velocity as a function of
stress, and are shown in figures 2 and 3.

A8 previously stated, a rectangular force pulse was
generated in the test rod by the impact of a second rod traveling
at constant velocity. 1In order to obtain a rectangular force
pulse, 1t will be shown that the impacting rod must necessarily
remain elastic and have an impedance,l= pgA, equal to or less
than that of the test rod. To attaln these requirements the
impacting rods were made of high-strength magnesium or 7075
aluminum alloy, heat treated to the "-T6" condition while the
test rods were made of 7075 aluminum alloy in the annealed, or
"-0," condition. The higher strength impacting rods could thus
be made to remain elastic during impact while the test rods
deformed plastically.

Figure 4 shows the two rods and the resulting character-
istic net in the a-~t plane for a case where plastic deformation

* This stress-strain curve was obtained experimentally by the
authors. Specimens 0.500-1inch dia. and 0.750-inch long
were instrumented with post-yleld type strain gages and
loaded compressively with a standard testing machine,

2
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takes place. The initial conditions are (subscripts indicate

regions in fig.

Uy = 0
¢A= 0 test rod (7)
lj;f;)u'g impacting rod (8)

Prom equation (4), it may be said that

Up = &y = Ua - Pa
Therefore, from equation (7)

u,-—¢°=o (9)
Likewise, from equation (4) 1t may be saild that

uc+¢c= ua+¢°

Therefore, from equation (8)

Ue + d. = - Y, (10)
If the two rods have the same croas-sectional area, then

Cc.= Op (11)
and
St (12)

Combining equations (9), (10) and (12) ylelds

¢+ =-u (13)
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The quantity ¢. 1s the impact velocity of the impacting
rod, which may be found from equation (6) if it 1s assumed that
the bar remains elastic so that the shift rate remains constant.
This quantity has been calculated for 7075-T6 aluminum alloy
and ZK60A magnesium alloy and is shown in figure 2. Equations
(11) and (13) may be solved graphically by adding the impact
velocities plotted in filgure 3 to obtaln o7 as a function of
the initial velocity as shown in figure 5.

The stress at any point between regions A and D in
figure 4 may be calculated by the following method:

Up - ¢% = &y~ = O (14)
Up + Po = K (15)

vhere X 1s a constant assoclated with each characteristic line.
Solving equations (14) and (15) simultaneously we obtain:

uf,:¢p:é}( (16)

The stress may be obtained directly from figure 3 for each value
of K.

As the unloading wave penetrates the test rod, the material
will obey the elastic stress-strain relation. Therefore, the
characteristic lines of slope "-g" intersect causing a
discontinuity in properties which may only be resolved by the
formation of a shockwave. The shock equation relating regions
D and E are:

AT =24 (17)
and %% = E (18)

where the subscript E indicates the elastic shift rate. When
the above equations are used in conjunction with the method of
characteristics it may be shown that:
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- I 'I'r
oz = 5, Tf:TE— tor I, = 1. (19)
and 6, = 0 for I, = I,

where I is the aforementioned 1mpedance,‘p9A , and the subscripts
I and T refer to the 1mpacting and test rods, respectively.

These equations are valid for elastic or plastic deformation of
the test rod, provided that the impacting rod remains elastic.

From the first of equations (19), it can be seen that a
zero-stress condition will result 1f I in the case
of impact of aluminum on aluminum), proéucing the rectangular
pulse desired. If Ir 1s less than I» (as in the case of
magnesium impacting aluminum), the first of equations (19)
indicates tension; since this 1s not possible, the two rods will
separate producing a similar zero-stress condition. In either
of these two cases, the characteristic line separating regions
F and F' does not exist.

In the plastic case, the shockwave separating regions D
and E penetrates rod I until the change 1n stress across the
wave 1s zero, This creates two regions, G and H shown in
figure 4, of constant stress but having different stra‘n
histories. The material assoclated with regions E and G has
already been loaded into the plastic regime and then unloaded
along an elastic curve. The material assoclated with region H
has not yet been unloaded so that 3 1s the maximum stress
occurring at that time,.

The method of calculation used here i1s a relatively easy
method of determining the elastic and plastic stress-time
history anywhere in an impacted material provided: (1) the
loading pulse, force-versus-time, 1s rectangular or a small
number of constant stress levels, and (2) the stress occuring
after the first unloading wave in the plastic case 1s not needed.
This later history in some plastic cases includes a '"secondary
plastic region" (ref. (4)). This region 1s short in length
along the bar, occurring near the boundary between the primary
plastic and elastic reglons. The method of calculation
presented here 1s not readily adaptable to the determination of
the boundaries of this reglon as six significant figures would
have to be carried for the required accuracy. However, the
experimental test indicated that the stresses in the secondary
plastic regions were always less than those in the primary regions
for which calculations wWere made,

5
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EXPERIMENTAL TEST APPARATUS

The impacting and test rods used in the experiments were
0.500 inch in diameter. The impacting rods were 12 inches
long which produced a loading pulse of approximately 120 micro-
seconds, the time required for a stress wave to travel down the
rod and back. In the all-elastic tests, the test rod was 144
inches 1n length; in the plastic test, the test rods were
approximately 40 inches in length.

An air gun, shown schematically in figure 6, was used to
accelerate the bore size impacting rod. 1In operation, a mylar
diaphragm was placed between the gun's high-pressure chamber
and barrel. Air was loaded into the chamber until the diaphragm
burst, sending the impacting bar down the barrel. Velocity of
impact was controlled by varying the diaphragm thickness and
the initial distance between the diaphragm and impacting rod.
Vent holes were put in the end of the gun barrel to relieve the
driving pressure before impact. The velocity of impact was
measured by two photoelectric units connected to a time-interval
counter which was operated when light beams passing through
holes drilled in the end of the barrel were interrupted by the
impacting rod.

The test rod was inserted into the end of the gun barrel to
assure normal impact of the rods. This rod was instrumented
with a pair of strain gages at each of six polnts along the
length of the rod for the plastic case and two points for the
all-elastic case. The strain gages 1n each pair were mounted
1800 to one another and connected into a Wheatstone bridge 1in
an additive manner so that any bending strains in the rod would
cancel out. The outputs from the Wheatstone bridges were fed
into oscilloscopes equipped with cameras for photographing the
displays. The oscilloscopes were connected to trigger together,
with the first oscilloscope set to trigger on the incident stress
wave, Baldwin type FAB 12-12 strain gages were used 1n the tests
when the strain was all elastic, and PA-7 gages were used where
plastic strains occurred. Typical oscilloscope traces are repro-
duced in figure 7. A marker generator was connected to the
oscilloscopes to blank the trace every 50 microseconds. The
calibration traces were obtained by switching a resistor of known
value in parallel with one arm of the Wheatstone bridge.

EXPERIMENTAL DATA REDUCTION
The oscilloscope traces were reduced to stress-time curves

in the following way. The value of strain represented by the
calibration trace was calculated from the manufacturer's gage

6
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factor. The Wheatstone bridge outputs were then read from the
oscilloscope photographs making use of a comparator and reduced
to strain making use of the calibration. Reduction to stress
was achleved using the stress-strain curve shown in figure 1,
always following an elastic line during unloading and reloading
up to the previous maximum strain.

RESULTS FROM EXPERIMENTS AND CALCULATIONS

Three sets of cunditions were used for an experimental-
theoretical comparison., These conditions were:

(1) Elastic-aluminum impact rod - elastic-aluminum test rod
(2) Elastic-aluminum impact rod - plastic-aluminum test rod
(3) Elastic-magnesium impact rod - plastic-aluminum test rod

The first case was that of the impact of two 7075-T6 rods
at a velocity of such magnitude that the system remained elastic.
In the experiment conducted, a 0.500-inch diameter and 12-inch
long impacting rod struck a 0,500-inch diameter, l44-inch long
test rod. The comrression pulse was recorded 42 inches from the
impacted end of the test rod as it first propagated down the rod
and then again after it reflected from each end of the free-
ended bar and passed the gage a second time after traveling 24
feet. Attenuation in this case amounted to less than 5 percent,
and the dispersion, as can be seen from the oscilloscope trace
in figure 7, was negligible. Figure 8 is the characteristic
diagram for this case, while figure 9 compares the calculated
stresses with the experimental data.

The second case considered was that of a 7075-T6 aluminum
impacting rod striking a 7075-0 aluminum test rod at such a
velocity that the impacting rod remained elastic while the test
bar underwent plastic deformation. Figure 10 is the character-
istic diagram for this case, and figure 11 i1s a plot of calculated
and experimentally measured stresses at two points along the test
bar.

The third case considered was for the impact of dissimilar
metals. Here an aluminum test rod (7075-0) was impacted by a
magnesium rod (ZKAC.). The strengths of the rods and the
impact velocity agaln were such that the impacting rod remained
elastic while the test rod underwent plastic deformation. The
magnesium was chosen because 1t has an Impedance lower than that
of aluminum so it rebounds after impact, producing the desired
rectangular pulse. Figure 12 18 the assoclated characteristic

7
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diagram and figure 13 i1s a comparison plot of calculated and
experimentally measured stresses at two points along the test
rod.

ERROR ANALYSIS

The accuracy of the theoretical and experimental results
presented here 18 greatly dependent on the accuracy and care with
which the experimental data are gathered and reduced. The most
important and critical plece of data is the stress-strain curve,
As previously stated, the stress-strain curve used here was
experimentally obtalned 1n compression on a standard testing
machine. The assumptlion was made that the material 1s not
straln-rate sensitive. 1In the theoretical calculations, the
slope of the curve must be used to obtain the velocity of each
stress wave of different intensity (see fig. 4). A slight error
in the slope of the stress-straln curve will thus cause an error
in the distance down the rod a given stress level will be felt.
The magnitude of the stress generated by a given impact velocity
is also dependent on the stress-strain curve, but this quantity
is not overly sensitive to error as it is a function of the area
under the curve.

In the reduction of the experimental data, the stress-strailn
curve again plays a critical role as the desired value of stress
must Le obtained from the measured value of strain. The
largest reading error will occur when the stress 1s rellevec due
to the large permanent set in the material. This results in a
comparatively small change in strain when unloaded, relative to
the change 1in straln when loaded beyond the elastic 1limit.
Loading might thus be represented on a strain-time curve with a
displacement of ten times that representing unloading. Thus a
given oscilloscope trace reading error will result in a
discrepancy ten times worse on the unloading wave than on the
loading wave. This may result 1in poor agreement between calcu-
lated and experimental results, but fortunately 1s most serious
only at the low stress levels which are not of primary interest.

DISCUSSION AND CONCLUSIONS

The major conclusion drawn from this study 18 that the one-
dimensional analysis used here for both elastic and plastic wave
propagaticn 1s quite good. The maximum error encountered in
predicting the maximum stress of the incident pulse was less
than 11.5 percent. Better agreement was found in predicting the
speed of propagation in those tests involving only aluminum as
may be seen in figures 9 and 11. However, significant

8
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discrepancies in the speed of propagation were noted in those
tests involving magnesium as may be seen in figure 13. For
design purposes this method seems to be more than adequate as
the inaccuracies are small compared with the unknowns for
which allowance must be taken, such as material properties and
loading.

A second conclusion drawn from the accuracy of the theory
is that elastic stress waves can be used to cancel plastic waves,
This principle might well be applied to the design of shock-
mitigating devices,
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