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ABSTRACT

The importance of designing a radar receiver to operate effectively

in the presence of noise which is correlated with the signal creates the

necessity for developing a theoretical model of the clutter which can be

used for the evaluation of various detection techniques.

Kelley and Lerner in reference 1 have developed one such model.

Reed, in reference 2, has developed another model. This report presents

a refinement of Reed's original model for the clutter noise process.

The clutter cloud is considered to be a collection of individual

point scatterers moving about and reflecting signals independently of

one another. The individual motions of the scatterers are considered to

be independent of one anotner, but the cloud is allowed to have an over-

all drift velocity.

The analysis technique is the following: An RF pulse is trans-

mitted at t = 0. The wavefront is reflected from the scatterers at the

distances rk.  If we neglect the multiple scattering effect, then the

returned echo consists of many replicas of the transmitted waveform

beginning at times tk = 2r k , where c is the velocity of propagationk c

in the medium. A probability density that a scatterer will be at range

r and time t is assumed. Since the scatterers are independent, the

arrival of an echo at time t does not affect the probability of an

echo arrival at other times; thus the echo arrivals constitute a non-

stationary Poisson process with rate v(t).

The calculations proceed from this point to determine the non-

stationary expected value and covariance function for the clutter noise
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process. The process is then approximated as stationary in order to

determine the power spectrm.
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SUMMARY

The time-varying correlation function for a radar (sonar) back-

scattered noise process is determined. An approximation is made in order

to obtain an expression for the power spectrum of the noise process. The

correlation function and the power spectrum are both a function of the

probability density that a scatter will be at range r and time t as

well as the signal pulse shape. This implies that in order to minimize

the noise power the signal may not be wideband but is affected by the

probability distribution of the scatterers.
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I. INTRODUCTION

In order that a radar (or sonar) receiver may be properly designed

to operate in an "optimum" fashion in the presence of clutter (reverbera-

tion) it is necessary to determine the statistical properties for the

back-scattered noise process (which will be correlated with the signal

reflection to be detected).

The statistical properties for the noise process that are analyzed

in this report are the time varying correlation function and the power

spectrum (for the steady state case). Since it would be difficult to

determine the power spectrum for a noise-like returned echo train for a

particular scattering cloud, the problem is idealized at the outset. A

refinement to Reed's first order approximation (reference 2) to the power

spectrum of the returned process is analyzed. This process is applicable

for a wide class of possible scattering clouds.

The results of the present analysis are an extension of the results

obtained by Reed. Reed assumed that the set of distributed targets is

large in extent and is composed of a homogeneous random collection of

individual scatterers which are possibly moving about independently of

one another with possibly an overall drift. The effects of multiple

scattering are neglected in order to obtain a tractable answer. In

addition the scatterers are assumed to have small velocities so that an

echo from a particular scatterer can be regarded as a doppler-shifted

replica of the transmitted waveform. The result Reed obtained for the

stationary correlation function is given in the conclusions of this



report, along with the new results of this report. A comparison of the

two results is also made in the conclusion.

The next section discusses the assumptions pertinent to the analysis

and the refinements of the first order approximation obtained by Reed

before determining the time-varying correlation function of the noise

process.

II. REFINEMENT OF T1L- MODEL AND ITS ANALYSIS

The following assumptions are similar to Kelly and Lerner in

reference 1 as is the method of calculation. The pattern of the calcu-

lations follows that of Reed in reference 2.

While most of the following assumptions and comments have been

discussed in references 1 and 2 they will be repeated here for complete-

ness.

The refinement of the model consists of

1. the inclusion of the three dimensional aspects of the problem

as well as the statistical structure of the reverberation

(clutter) cloud,

2. a coordinate system centered at the transmitter of the sonar

(radar),

3. the inclusion of the transmitter antenna g in function,

G(e, 0), normalized to unity in the direction of maximum

gain (A is the depression from the vertical, 0 is

azimuth).

The effects of scatterer rotation as well as multiple scattering will

be ignored.
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Following Reed (reference 2), if the transmitted signal is given by

f(t) = s(t) e2nifot  where f(t) is the real transmitted signal plus i times its

Hilbert transform (reference 3, P. 320), then the returned echo from a collec-

tion of scatterers at (r, 0, 0) as a function of time over an observation

interval (0, T) is given by

z(t) G k 2k ak s(t-t ) exp i[ 2n fk(t- tk ) + 6k + £(

r2 -k k k (k' 0k)J
tk c(O, T) k

where

0 includes such factors as RF gain, antenna matching, etc.

ak is the amplitude reflection coefficient

2v 2v

f +_ + -) f is the doppler frequency (introduced by

Reed in reference 2)

v is the drift radial velocity of the system of scatterers0

v k is the differential radial velocity

6k  is the phase shift due to the effects of reflection

£(k, k ) is a phase shift due to the transmitting antenna beam

phase characteristic

c is the velocity of sound (or light) in the medium.

The subscript k refers to the kth  scatterer.

The following statistical assumptions concerning the random values

ek' fk9 Ok' ak' and 6k  are made:

1. The random values are taken from a joint probability distribution

where it is presumed that a scatterer is present at range
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Ctk tkrk k at the time .

2. The scatterers are stbtistically independent and identically

distributed.

Kelly and Lerner have determined the probability density that a

scatterer will be at range r and time t as 4 r2 u(r, t):

u(r, t) = j p. sin 0 d9 d0

(2)

p (x,y,z,t) = ri p(x,y,z, VX , vy, Iv z , t) dvx dvy dvz

p(x, y, z, vx , Vy, I, t) statistically describes the cloud of scatterers

and is the probability density that the point (x,yz) is occupied at

time t by a scatterer with velocity (vx, Vy V z). P5  is the spatial

density; i.e., the probability density that (x,y,z) is occupied at time

t. u(r, t) is obtained by converting to polar coordinates.

Kelly and Lerner also discuss a method of handling tangential

velocity components. However, in the model considered here we have con-

sidered only the radial velocity components and converted these to a

doppler frequency as done by Reed.

Using the above expression for the probability density that a

t
scatterer will be found at range r at time 1 , the probability

density that an echo will arrive at a time in the interval (t, t + dt)

is

t ct

v(t) dt a 4nr2 u(r, dr where r z c-

then
3



Following Reed we next assume the scatterers are Poisson distributed

in range (time). It has already been noted that they are independent. The

joint probability distribution for the Poisson process for exactly n

events to occur in the intervals (t,, t, + dtl) ... (t n, t n + dt n) for

this nonstationary case can be expressed as:

T

n v(tk) 40 v(t) dt d 4

where it has been assumed that the signal duration A is short compared

with T, the observation interval, and we can neglect the end effects

near 0 and T.

With these assumptions we may now determine the expected value of

z(t) as follows.

i~ -~w(t) dt

EE Z(t)] - ke 0 t
n=0 o k=l kc

x f .j' p(a) da .. p(A, d'q(5

x.. p(90 d 0J . p(6) d6 p(f) df
-40 -m UD..

n k

I N't-tk exp i[ 2tf(t-t) + + 6 k' 0 ~

where

* ~~~~p(x) dx. T (~ x

and a -1 as been absorbed into P
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If we assume that each of the random variables is sta~tionary except

for range (or delay t) or vary slowly in time compared to the Pulse repe-

tition frequency, then E Ez(t)i can be expressed as follows:

T
Obj.~ n v(t k 0-~ t d

E rz(t)] E(a) 46(l) 7 -7 vt dt dtk
n=O 0 l k

x ....f p(9) do '.. p(O) do pf) df
-mD -00

X nj Go'O)S(t-tk) eir2n~- k )fk + (k' Ok)'(6

k~l k

where

P (1) - p(6) e ibu dbl u=l (7)

=characteristic function of 6 with u=l

and the a k'I are identically distributed.

If we let Lo k, Ok) G( Ak, Ok) e ic(Akt Ok) and assume that the

L's are identically distributed then

s T nv (t) dt

Erz(t)] E(a) E(L b (l) f vf k dtk

n=0O 0 k1 k

Aln s(t-t k) 2if (t-t)(8
x .. p(f) df 1 2 e k k(8

-. kal tk

The approach used in obtaining equation (8) differs from that used

by Kelly and Lerner in that they make an assumption which eliminates the
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doppler shift effect. Consequently, they obtain results which differ

considerably from the results which are derived in the following pages.

E [z(t)] - P E(a) E(L) .,(1) 6 ne

n=0

v(t') s(t-t'){ 5 p(f) e2lif(t 't') dr dt'

7T dfT

E~) (L () Jv(t') dt' - v(t) dt

= P E(a) E(L) b5(I) n 0e
6 n!
n=O

rT v(t')st-) (t)

TO (t')

x . 2 ' s(t-t') (t-t') d9)

E(a) E(L) 0 (1) 
(t')

where

4(t) - 5 p(f) e2nif(t) df (10)

z characteristic function of p(f).

If v(t) is replaced by n C, 2  -- , t

E[z(t)] E(a) E(L) x6(l) T -3-(-t- s(t-t') 4(t-t') dt' (11)

where u(r,t) is the probability density of finding a scatterer at
o3

(r, t). Let f(t-t') - s(t-t') #(t-t'), c u 8 E(a) E(L) (06(1) .i-

6 2
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then

T
E Ez(t)] OL ua 5 ,L)f(t-t-) dt'

fT  T~ le, t
OL J.u ,' t f(t- ) dt' + a JO u(. , )ftf' (t' )I dt'

7 a fTu(S-t f(t') dt' (12)

provided f(t-t') - f(t') 7 0 (

or the second integral is approximately zero.

Equation (13) establishes one functional relationship for f(t)

which may be useful later in determining an optimum signal w1lF shape,

If the interval (0, T) is large, then Etz(t)] canl be

approximated by

E[z(t)] - a j u(S , s(t) #(t) dt (14)
2-2

This is a generalization of Canibell's theorem (see references 1 and 2).

In a similar manner we can show that the covariance function of

z(t) is

co0y [ zt-r) 7z(t)] - E [ zt-T -zt)] - E [ z~t- )1r E [z(t)]

11 r 0 12 Va 2 ) E(G 2 ) *( T Xv(tI at --r -t ) s(t-t') dt' .(5
0O (t')
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Again, replacing v(t) by nC t 2 U(St4 ) we have

2 2 2 

y ~E(a ) E(G 2 (16)

If we again extend the limits of integration from -mD to a so

that z(t) is now stationary, then

R(T) cov [ M- z~t] - Y #(T U 2J 2) t) s(t) dt (17)

is the covariance function of the centered z(t) complex noise (back-

scattering) process.

Now define the power spectrum G(f) of z(t) as the fourier

transform of R('r), then

GMf = I e2'R'f'R(i) dT (18)

SMf z s(t) e-2 n ft dt (19)

as the signal spectrum. Then, by the convolution theorem,

G(f) - y fp(f-fl) HUI') F*(fl) df' (20)
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where h(t) =1 (U(,) ast)

mt

H(f) = h(t) e'2niftdt = f U(f-f') S(f') df'

Go (Ct t'
t)2 e dt.

-CO

It is to be noted that if v(t) is proportional to t4  then

equations (15) and (20) reduce to the same result as that obtained by Reed

(within a constant multiplier).

III. CONCLUSIONS

The significance of the results obtained in equations (17) or

(20) can be seen if we compare with the result obtained by Reed; namely,

Reed has shown that

R(T) = v E(a2 ) () J s(t-) s(t) dt

and that the noise power is

N R(O) v Ea I s(t)2 dto 2 J~
-0

If the pulse duration is T, then the noise power increases

linearly with T or the signal energy.
1
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However, equation (17) gives

R~o) -X. r u (22 ) s(t) 12dt

- t2

This shows that the noise power may or may not increase linearly Aith

Ts, since the probability density u(r, t) now influences the noise

power. Thus, the signal pulse shape is strongly determined by the pro-

bability density u(r, t) if the noise power is to be minimized; i.e.,

for one type of probability density, v(r, t), the signal spectrum might

be broad, while for another u(r, t) the signal spectrum might be narrow.

It is shown in the appendix, in a similar 
manner as that used

in reference 1, that z(t) approaches a Gaussian process.

I
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APPENDIX

he show here that the probability distribution of the returned

echo noise waveform approaches a 3aussian probability distribution as the

mean number of scatterers per unit distance becomes large.

he start by considering Reed's original model of the returned echo

noise process, which is a simplification of equation (1). If the time inter-

val of observ tion (Ci, T) is large compared with the transmitted pulse dura-

tion, A, a returned echo waveform in (0, T) for a transmitted pulse is

z(t) = ak s(t-tk) exp 21ifk(t-tk)

tk e (0, T)

where the various symbols have been defined in the main body of the report.

Following Kelley and Lerner [reference 11 we can write immediately

P(Z) ) F p(-a) d-a -i p(t) dt Ff) df b(z-z n
n=O -m 0 -t

where
n

(1) O(x) d(t) =7 PIx i) dxi = joint probability distribution of the
i1 l

xi' IS where xl ,..., Xn are assumed

independent.

(2) We disregard effects within A of the end points of (0, T);

n

z = ak s(t-tk) exp 2nifk(t-tk) represents the waveform

k-i

resulting from events at the times tk (0 < tk < T);
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ZWt ak) s(t-tk) exp 2n ifk(t-tk).

The characteristic function of the distribution is

cj(U) [ pz) e1 iuz dz

= n -vT

n=o-ee

F.jdt' x u-ke"f
0 k1l

a n -vT cc T CO
v e~ p(a) da Fdt' r pff) tF4

n=o -CD 0 0
T

=exp{ vT + v [dt'F p(a) da fp(f) df exp~iua s(t-t') e Itf~t) dfl
0 .

where v is not time varying.

If we expand the exponential involving s(t) in a series and introduce the

characteristic function for p(f) as

W

f() Fpf 2nift dt
-OD

then

I(s,O) = Fpf) df exp~iua s(t.,t') e 27if(tt')]

(iua s(t-t')A 0r2(t
= 1 + iua s(t-t' 0(t-t' + 2. 02tt)

13



Next we have

am(iu)
r  '

p(a) I(s,O) da = + r r t s(t-t )]

-m r=l

r r

where a denotes the expected value of a

Using the above we obtain

mT

(u) = exp v a - O sr(t-t,) 0rr(t-t,)l dt',

r=l

The probability density of z is found by transformin-I its charac-

teristic function as follows:

Jr ( u -iuz d

cc 
0]"~ exr o, r t ,_t, r t != + V a"- a s (-t' dtl du

ex{au f r f I~-t)
-ob r=l

1 du expf-iu(z-) expfv ( Y r s(t-t') 0rr(t-t,)1 dt'T

r=2 0

U,~

1 F exp{iu(z-7) expv (iu)r ar(t) du

-0 r=2

where

Gr(t) " f sr(t-t') 0rr(t-t,1] dt'

The above gives the time varying probability distribution of z.

14



We assume next that the noise process is st~tionary in order to simplify some

of the following calculations and be able to express the probzibility density

of z in terms of its stationary vlariance and mean. Thus, the rrob:Jbility

density of z is given approxIrnately by

f2 
(ju)r

P(Z) -J'expf-iu(z-11 exp _ u z exp~v a r }~r dui

Cc r=3

where ar is no longer a function of time. ..'e next make the followir.g sub-

stitutions

z-z 2 X; 2 = '

and in addition we recall that for v a constarnt then = V 2 r. he
z

P(z) dz becomes

P(x) dx = Sx expf-iTrx - exp{Z- a--' a r I dr

-mO r=3 V2

If we expand the second exponential of the aibove integrand in a series we

obtain

P(x) =~f~eP{-iTC -} {I l 3C

a a4j a7 a5
++ . . .

2
V

15



Then recalling that rsee reference 4, p. 2281

t 2
* t

J n)(x) e itx dx (-it)n e 2, n=O,1,2,.

2
x

(n) dn 1 2, Cx) =-
dx

n

2
x

(0) 1 -7
Ox) (x) = j e

we finally obtain the Edgeworth series

P(x) (3) 1 (4)(x )

Thus P(x) approaches a Gaussian distribution as v becomes large, where

v is the mean number of events per unit time. If p is the mean number of

scatterers per unit distance in range which are illuminated by the transmitted

pulse and intercepted by the receiver, then

V_-a

2

Thus the returned echo noise process approaches a Gaussian process as 0,

the mean number of scatterers per unit distance, becomes large.

It is a straightforward matter to use the above formal methods to

show that all joint distributions are Gaussian in the limit.

16



For the case when z(t) is given by equation (1) and v(t) is given

by equation (3), then the probability distribution will again be Gaussian

provided the comments made above regarding a r apply to the modified ar

given by

art)= (t ' tt) 0[r(t-t') dt'

17
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