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PREFACE

Part of the research program of The RAND Corporation
consists of basic supporting studies in mathematics. One
aspect of this is concerned with the solution of partial
differential equations. In this field, the technique of
difference approximations has been extremely useful.

In the present Memorandum, the applicability of
higher-order difference approximations of an unconventional
type to the solution of partial differential equations is

investigated.
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\%SUMMARY

In this Mhmorandum'?ﬁo techniques of approximating
the solution to a partial differential equation are in-
vestigated. Using the first of these, the solution is
approximated at each stage by a higher-order difference
algorithm, The second technique is that of storing the
function at each stage by a polynomial.

Numerical results were obtained from a FORTRAN pro-

gram applying these techniques to the equation u, = uu_.
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HIGHER-ORDER APPROXIMATIONS TO THE COMPUTATIONAL
SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

1. INTRODUCTION

It has been shown in [1] that certain partial dif-
ferential equations could be solved by an approach which
has some advantages over the usual methods of approxima-
tion by difference equations. This approach was shown
to be superior in the following ways: 1) the lolution
is re-created at desired points by an approximating poly-
nomial; and 2) the algorithm for approximating the solu-
tion exhibits certain deéired properties of the actual
solution. To illustrate this method it was shown in [2]

that the equation

ut = uux ’ u(x,0) = g(x) , (1.1)

which possesses the analytic solution

u = g(x +ut) , 3 (1.2)

where g(x) is here assumed to be an odd function of period

two, can be approximated by the algorithm




u(x,t + 4) = u(x + u(x,t)s,t) . (1.3)

The variable t was constrained to values t = 0,4,24,...,
but x assumed arbitrary values in the interval [0,1]. The
algorithm (1.3) clearly preserves boundedness and non-
negativity, and upon expanding in a Taylor series it is
seen that the approximation is accurate to 0(A2). In

[2) it was suggested that more accurate results could be
obtained using a higher-order algorithm. It is the pur-
pose of this paper to investigate the effect of improving
the approximation to (1.1) by using an algorithm accurate

to 0(A3).

2. HIGHER-ORDER APPROXIMATION

Let the algorithm be given by
u(x,t +8) = u(x + u(x + u(x,t)d,t)s,t) (2.1)

which also preserves boundedness and non-negativity. Ex-
panding both sides of (2.1) in a Taylor series to 0(A3)

and applying the relations

v uux2 + uu (2.2)




2
U = U + uu_ (2.3)

to the result, it can be seen that

2 2
3 A 2 2 3
.. + 0(87) = uuxA 4 7 (2uux +u un) + 0(47)

holds, and hence, (2.1) is accurate to 0(A3).
Again, let t = 0,4,24,,,,, and at each stage of the
calculation let u(x,t) be obtained by means of the finite

sum

M
u(x,t) = Z un(t) sin (nmx) , (2.4)

n=]1

where the coefficients un(t) are obtained by the quadra-

ture scheme

1
un(t) = 2 J‘ u(x,t) sin (nmx)dx (2.5)
0
R-1
=2 T uk/R,t) sin (rk/m) (2.6)

k=1
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Hence, the values u(k/R,t), k = 1,2,...,R-1, store u(x,t)

at time t, and by way of (2.1) u(x,t+d) can be obtained.

3. NUMERICAL RESULTS

A FORTRAN program for the IBM 7090 was written to

compare results obtained using (2.1) with those using (1.3).

(a) g(x) =0.1sinmx, 0<sx<1

where M= R =10, 4 =0.1, 0t <10

_ “jﬂutign requires 22 seconds using (1.3) and 27

,.““ﬁaaghown in (2], using (1.3) gives
- e

errors in utx, x) < .003 for times t. e¥aha three. As

seconds ‘using (2.

'me
shown in the following table, using (2.1) usually gives

slightly better results than (1.3) for times t less than i

three.
X t exact (1.3) error (2.1) error
1] 1| .043598 | .043058 .00054 .043580 .00018
.31 2| .100000 | .100097 .00010 .100159 .00016
712 | .055795 | .055416 .00038 .055854 .00006
9 1 1| .023732 | .023579 .00015 .023736 .00000

Fum g,
Doy
kg s,
EN e
i w‘ﬂ.‘ 3

For t ~ 10/g, the time at which the shock occurs, the
values of u(x,t) using (1.3) were in error about 3 per
cent at x = 0.2, 0.4, 0.6, and 0.8. Also, the largest

errors are made for small x, since the shock occurs at




x = 0. It is surprising to note that (2.1) gives poorer

results than (1.3) for time t = 3,1 (see following table).

X t exact (1.3) error (2.1) error

1 13.1 | .094349 .099887 .00554 .101926 {f .00758
.713.1 | .046784 047194 .00041 .047843 | .00106
.9 (3.0 | .016137 .016212 .00008 016456 [| .00032

(b) g(x) = 0.1 sinmx, 0<xs1
where M= R = 10, 4 = 0,05, 0 st < 10

To determine the reason that a higher-order algorithm
culation was done u81ng a smaller stepsize 4, For times
t less than three, the accuracy in u calculated using (1.3)
is generally better for a smaller 4; however, the calcu-
lation using (2.1) is inconsistent: sometimes better, other
times‘worse. Finally, using (2.1) and a smaller stepsize
.does wot eive better results for t ~ 10/w.

?bx hprn egﬂbr* “mﬂ 1n question, the value x1 R

‘lrﬁh%meaﬂg of the polynomial

u{X‘{“u(x t}lx,t) 1‘“ Calru
given by (2 4) However this ;olynomiafris used a sec-
ond time in calculating x2 = u(x, t+A) = u(x+x A,t) in the
case of the higher-order algorithm, New, if the pely-'

nomial approximation error is sufficiently large, then




this error, when propagated calculating Xy, is further

increased. This is the reason for the poor results near
the shock in examples (a) and (b), above.
(¢) g(x) =0.1 sinmx, 0 s xs1

wvhere M= R = 20, A =0,05, 0<t<10

x t exact (1.3) error (2.1) error
o X .043598 .043320 .00028 .043593 § .00000
a2 .100000 .099997 | .00000 .099995 § .00000
JF @ .055795 .055591 .00020 .055795 ]| .00000
911 .023732 .024228 .00050 .023733 § .00000
1]3.1 | .094349 .091836 .00251 .091602 {| .00275
.713.1 | .046784 .046269 .00051 .046397 § .00038
Execution 87 sec 123 sec
Time

In example (c), however, a 20th degree polynomial is

used. As seen in the above table, better results are now

"abtained For times less than three, the 0(A3) algorithm

gtves results precisely to the fifth place, vhile for

4 NC ON

g 10/ﬂ large errors (mainly those near x = 0) are reduced.

It appears from the results that in order to reduce

the computationnl error by 1ncreasin; the order of
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algorithm, it is necessary to make a compatible reduction
in error in the calculation of (2.4) and (2.6) by in-

creasing M and R as necessary.
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