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PREFACE 

Part of the research program of The RAND Corporation 

consists of basic supporting studies In mathematics. One 

aspect of thlk is concerned with the solution of partial 

differential equations. In this field, the technique of 

difference approximations has been extremely useful. 

In the present Memorandum, the applicability of 

higher-order difference approximations of an unconventional 

type to the solution of partial differential equations is 

investigated. 
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SUMMARY 

In this Memorandum "^wo techniques of approximating 

the solution to a partial differential equation are In- 

vestigated. Using the first of these, the solution Is 

approximated at each stage by a higher-order difference 

algorithm. The second technique Is that of storing the 

function at each stage by a polynomial. 

Numerical results were obtained from a FORTRAN pro- 

gram applying these techniques to the equation u ■ uu^. 
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HIGHER-ORDER APPROXIMATIONS TO THE COMPUTATIONAL 

SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 

1. INTRODUCTION 

It has been shown In [1] that certain partial dif- 

ferential equations could be solved by an approach which 

has some advantages over the usual methods of approxima- 

tion by difference equations. This approach was shown 

to be superior In the following ways: 1) the solution 

Is re-created at desired points by an approximating poly- 

nomial; and 2) the algorithm for approximating the solu- 

tion exhibits certain desired properties of the actual 

solution. To Illustrate this method It was shown In [2] 

that the equation 

ut - uux ,  u(x,0) - g(x) , (1.1) 

which possesses the analytic solution 

u - g(x + ut) , (1.2) 

where g(x) Is here assumed to be an odd function of period 

two, can be approximated by the algorithm 
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u(x,t + A) - u(x + u(x,t)A,t) . (1.3) 

The variable t was constrained to values t ■ 0,A,2A,..., 

but x assumed arbitrary values in the interval [0,1]. The 

algorithm (1.3) clearly preserves boundedness and non- 

negativity, and upon expanding in a Taylor series it is 

2 
seen that the approximation is accurate to 0(A ). In 

[2] it was suggested that more accurate results could be 

obtained using a higher-order algorithm. It is the pur- 

pose of this paper to investigate the effect of improving 

the approximation to (1.1) by using an algorithm accurate 

to 0(A3). 

2. HIGHER-ORDER APPROXIMATION , 

Let the algorithm be given by 

u(x,t + A) = u(x + u(x + u(x,t)A,t)A,t)     (2.1) 

which also preserves boundedness and non-negativity. Ex- 

3 
pending both sides of (2.1) in a Taylor series to 0(A ) 

and applying the relations 

utt " uux2 + UUxt (2-2) 
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Utx-Ux   +uuxx (2.3) 

to the result, it c»n be s«ew that 

V+ r utt+ 0(A3) ■ uv+ r (2uux2 + u2,o+ 0(A3> xx' 

holds, and hence, (2.1) is accurate to 0(ä3). 

Again, let t - 0,A,2A,..., and at each stage of the 

calculation let u(x,t) be obtained by means of the finite 

sum 

u(x,t) a 2, %(') sin (nirx) , 
n-1 

(2.4) 

where the coefficients un(t) are obtained by the quadra- 

ture scheme 

un(t) ' 2 f *(*>*}  sin (nffx)dx 
0 

(2.5) 

R-l 

" R  Z «(k/R,t) sin (nffk/R) . 
k-1 

(2.6) 
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Hence, the values u(k/R,t), k - 1,2,...,R-1, store u(x,t) 

at time t, and by way of (2.1) u(x,t+A) can be obtained. 

'•'**'';^*,Z,.'\'?<i 

3. NUMERICAL RESULTS 

A FORTRAN program for the IBM 7090 was written to 

compare results obtained using (2.1) with those using (1.3). 

(a) g(x) - 0.1 sin ffx, 0 ^ x ^ 1 

where M « R - 10, A - 0.1, 0 ^ t ^ 10 

jttpion requires 22 seconds using (1.3) and 27 

seconds using (2.1Tf*«^«(s^own in [2], using (1.3) gives 

errors in vrC5c,.t) ^ .003 for times tlS^Smki^Üaee.    As 

shown in the following table, using (2.1) usually gives ^ 

slightly better results than (1.3) for times t less than 

three. 

X t exact (1.3) error (2.1) error 

.1 1 .043598 .043058 .00054 .043580 .00018 

.3 2 .100000 .100097 .00010 .100159 .00016 

.7 2 .055795 .055416 .00038 .055854 .00006 

.9 1 .023732 .023579 .00015 .023736 .00000 

For t - 10/tr, the time at which the shock occurs, the 

values of u(x,t) using (1.3) were in error about 3 per 

cent at x - 0.2, 0.4, 0.6, and 0.8. Also, the largest 

errors are made for small x, since the shock occurs at 
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x « 0. It is surprising to note that (2.1) gives poorer 

results than (1.3) for time t - 3.1 (see following table). 

X t exact (1.3) error (2.1) error 

.1 3.1 .094349 .099887 .00554 .101926 .00758 

.7 3.1 .046784 .047194 .00041 .047843 .00106 

.9 3.0 .016137 .016212 .00008 .016456 .00032 

(b) g(x) - 0.1 sin wx, 0 s x s i 

where M - R - 10, A - 0.05, 0 * t * 10 

To determine the reason that a higher-order algorithm 

doejgnot give better results near the shock, the same cal- 

culation was done Using a smaller stepsize A. For times 

t less than three, the accuracy in u calculated using (1.3) 

is generally better for a smaller A; however, the calcu- 

lation using (2.1) is inconsistent: sometimes better, other 

times worse. Finally, using (2.1) and a smaller stepsize 

does not give better results for t ~ 10/ff. 

Z^, ^r^b^ the value x- «.„ 

^^iH^;,|^ the polynomial 

given by (2.4). However, this poljTioroial is used a sec- 

ond time in calculating x2 - u(x,t+A) « u(x+x1t>t) in the 

case of the higher-order algorithm. Mow, if thfe pcly-' 

nomial approximation error is sufficiently Urge, then 
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thit error, «hen propageted calculating x«» i8 further 

increased. This is the reason for the poor results near 

the shock in examples (a) and (b), above. 

(c) g(x) - 0.1 sin ffx, 0 £ x * 1 

«here M - R - 20, A - 0.05, 0 * t * 10 

-■•■ • ■:" ■ 

X t exact (1.3) error (2.1) error 

1 .043598 .043320 .00028 .043593 .00000 

2 .100000 .099997 .00000 .099995 .00000 

2 .055795 .055591 .00020 .055795 .00000 

1 .023732 .024228 .00050 .023733 .00000 

3.1 .094349 .091836 .00251 .091602 .00275 

3.1 .046784 .046269 .00051 .046397 .00038 

Executior i 87 sec 123 sec 
Time 

In example (c), however, a 20  degree polynomial is 

used. As seen in the above table, better results are now 

3 
obtained. For times less than three, the 0(A ) algorithm 

gives results precisely to the fifth place, while for 

t ■ 10/ir large errors (mainly those near X" 0) are reduced, 

4. COHCLÜSION 

It appears from the results that in order to reduce 

.-», 

the computational error by increasing the order of the 
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algorithm, It Is necessary Co make a compatible reduction 

In error In the calculation of (2.4) and (2.6) by In- 

creasing M and R as necessary. 

'»fj--;....-.,,^ ...;.>. 

«^^v 
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