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° PREFACE .

This Memorandum documents o numerical procedure which was
deyised to solve the problem of hyper\';elociw inpact gnd which wvas |
subsequently revised for application to the problem of sratering and
ground ghock from & nuclear surface burst. ) .

The RAND Syriposiun on High-Speed Impoet, held in 1953, fosused
attention on a forthcoming Air Force need for inforpation relative
to hypervelocity inpact. In fact, this symposiun sms the £irst of
a series of six symposia sponsored Jointly bty the Air Foree, Army,
and NaVy on the same topic since that date.

At the ﬁ.rst symposium, technieal data were presented which

‘stron@ly sufizested that the hypervelogity-impact prosess was hydroe

dymaric In nature, involving the substantial ccupression of even the
strongest materials, leading to shogks and severe £flwid é.stortien
in the wvesulting flow. The problemt was hopelassly eenplicated from
the analytical peint of view, and at that time, mumerical techniques
did not exist vhich were adequate to rovide the desired solutions,
The numerigal procedure discussed in this lemorandws vas devised
speciflcally to attack this probhlenm.

Onee developesl, the methed proved to have ayplication to am
evea Of Alt Forge Interest not gorteuplated in the original veseawch,
namedy erateying and gréund shogkk induted By a nuelesy surfage st
The proceddre has been applied to this problen, and the yoswlte age -

doqumentedt in RI-2300, Cratering From g Meaton Surfage Pacste
.. . . .




: SUMMARY .
[ ] *®
This Memorandum discusses in detail a numerical method for sclv-

ing the compressitle, hydrodynamic equations :mder the:. Jimitations
of (1) two space dimensioMs, (2) the inviscid upproxi.mation, and (3)
the adlebatie approximati?m. The method allows for the occurrence
of shoeks, contact discontinuities,.and interfaces. Ut:der a proper
prescription of initial and bound.a.r; cox:ditions , the method generates
solutions inciuding the above physical phenomena.

The basils 0f the method ;s the extension to two space dimensions
of the particle-in-cell (PIC) condept first propos.ed. by Harlow for a .
ane-iimensional computational scheme. The FIC concept involves mass

pbints moving in a Lagranglan sense through an Eulerian space grid,

Besides mass, the points carry with them the proper amount of momentum,

kinetin energy, a.;xd internal energy. .

The computational method approximatcs a set ©of partial differen-
t!ad equations gontaining terms in addition to those of the compressible,
hydrodynanle ¢quations under the approxlmations cited. The terms are
aqunlitatively suggestive of thermal cqnduct&vity and viscosity bu.t
are Lot afactly analogous to them. The terms are responsibl: for the
gémputational stabilit‘y of the nuherigal method, since they smear
ghegk frents over a few grid spaces, .

The evaluation of errors due to these terms end. thwse of higher ¢
order has not ad yet yie.:Lded to analysis. The srrors have been
g¥olda.gd by comparing nun:erical solut tond :d.fh analyticgl solu:.ions
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The computatiozrml scheme contains a feature known as "grid-

changing," which pesmits optimum resolution of all nhases of the prob-

lem using the limited memory capaclity of present-day electronic com-

puters.
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I. INTRODUCTIOR

In recent times, uwany important phvsical problems that demand
the solution of the compressidble hydrodynamic equations, uslog more
than cne space dimension, have arisen. Two examples are the ground
motiou in the esrly stages of a nuclear jround burst and the motion
induced vhen a projectile strikes a target at extremely high veloci-
ties, It might scem curious that although both problems involve
s0lid media, the hydrodynamic equations are used to describe the
phencmena, Howvever, this is precisely the aprroximation found
necessary in the high-pressure, high-density rsgions encountered
in these processes.

'I'ho. solutions of this class of physical problems gencxsally
feature the presence of shocks, which are allowed in the framework
of the nonlinear partial differential equations. Across the-e
shooks, discontinuities in the dependent variablas oceur., The com-
Plications vhich arise in the analytical treatment of shocks are
genaially very great, For this reason a. great deal of effqrt has
been devoted in the past to the formulation of schgnel that yield
numerical solutions on electronic computers, Because of these com-
plications, most of the work in the past has been confined to prob-
lems which contain a single space variable, This in twn implies
the existence of a strong spatial symmetry, usually plane, upharica.l,
or cylindrical, .

However, in the case of solids, the presence of a free surface
often has an extremely impartant influence on physical’behaviar.
Such a free surface anplilnes the camplexity of the already difficult
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analytical treatment to such a degree that workers 1n the field
despair of attaining analyt!/cal solutions by the use of presently
known teshniques, A free surface algc increases the complexity of
the numerical solutions in that it demands the use of more than one
s.pace dimension, and its presence usually leads to severe diestortion
3 the medium,

At the time that this work was undbrtaken, it vas evidemt that
the numerical analogue of the Lagranglan formulation brokerdown vhen
severe distortion of the hedium occurred and that the analogue of
the Fulerian formulation contained spurious material-diffusion terms
vhenever the problem included free surfaces and interfaces, The
technique described in this Memorandum circumvents these two d1ffi-
culties. Furthermore, it has been successfully applied to the
hypervelooity-impact problem'l) and to the early motion of the ground
d\n’:l.ng a nuclear surface burst.(z)

The example chosen for describing the method 1s that of the air
flow following a nuclear airturst. It should be emphasized that
this problem has not yet been solved by the method, and that diffi-
culties that prevent its solution may arise, Howevar, this problen
contains some gensralizations not required in the problems that have
been solved, thereby allowing a more complete discussion to be given,
These are the prosence of an external body force (gravity) and a
nonhamogeneous medium (the expomentially varying atmosphere),
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II. PROBL:M DESCRIPTICH

SYSTEM OF EQUATIONS TO BE SOLVED

The numerical method is designed to solve the hydrodynamic
equations with the inviscid, adiabatic approximation. The represen-
tation of these equations in Eulerian coordinates takes the follow-

ing form:
Du +
P8E grad P + pgrad & = O (1)
pllvi¥ + 2 = 0 (2)
%R B
P
P = Pp, e) (k)
where
D ? -

o-ow voucred

The inlependent variables are the time t, and a set of spatial coor-

dinates ¥. The dependent variables are

1= perticle velocity i
P = pressure 1

p = density

e = specific internal energy

.

The potential & of the external force field must be specified in advance.
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Equation (1), Buler's equatien of metion, contains the assump-
tion that the only forces vhich accelerate the fluid are pressure
forces and external forces which may be derived from u potential.

Equatien (2), the equation of cemtinuity, is a mathematical
statement of the fact that mass must be copserved.

Equation (3) 1s the first law of thermodymamics under the aiia-
batic apmroximation., It states that the only way the internal energy
of a fluld element may doe changed is through the action of pressure
forces during expansion or compression ol the element,

Equation (4) is the equation of state of the substance under
consideration. It establishes an equilibrium relation (solved
explicitly for P) between the pressure, density, and specific inter-
nal epergy of a small element of the material,

Although Eqs. (1) through (i), together with a potentlial func-
tion § and appropriate boundary and initial conditions, campletely
specify the motion, they are not in the most convenlent form for
the particuler mmerical computations vhich we have in mind, We
therefore transform them in the following way.

The dot product of Eq. (1) with u is taken to obtain

pﬁ-%+3°yad?+pﬁ'pad§=0 (5)
Substitution of Eq., (2) into Eq, (3) yields

-p%% = Pdivu (6)

We then use the vesctor identity
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Aiv(Ri) = Pdivu + 2 ¢+ grad P
together with Eq. (6), to obtain

U erad P =« atv(R) + ppo (7

Equation (7) is substituted into Eq. (5). The result is

DED(%?I'?‘ +e)+ u.iv(P-t;) + puergrad & = 0 (8)

If we integrave Eq. (8) over a region vhose volume is V and vhose
surface is denoted by S, we have

[[Froms v op(3i-5s o - ys.8 o

vhere Gauss's theorem has been applied to the right-hand side,
Equation (9) 1s the form vhich 1s actuelly used in the numeri-
cal computations, together with Eqs. (1) and (k).

INITIAL AND BOUNDARY CONDITIONS

The problems vhich we wish to solve are transient, nonlinear,
initial-boundary value problems in two space dimensions, Their
nature is such that if we prescride initial conditions at time ¢
and appropriate boundary conditions for all times T, vhere

tstst + At

we can find solution fieldr at a subsequent time t + AL, A3 we
have stated earlier, such problems do not lend themselves to an
analytical treatment, especially when the solution fields comtain
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a variety of discontinuities such as shocks, slip lines, and free
surfaces, as they do in many problems of interest.'

We are therefore forced to solve difference analogues of the
differential equations tc obtain solutions at successive points in
time,

In order to solve the difference equations at a succession of
times it 1s neceasary to have at our disposal the following kinds
of data vhich st be used simultaneously with the difference equa-

tions.

Initial Data

At some time t values of all of the dependent variables, (p,
o, &, W) must be specified at a set of points covering the region
of interest, It is not necessary to specify all these quantities at
the same set of points. In the numerical scheme vhich 1g desci bed
later, the velocity, density, and specific internal energy are speci-
fied at one set of points, while the pressure is specified at an
entirely different set of points. The reason for this will become
more evident later,

Boundary Data
Boundary-data equirements sssume a variety of forms, which
depend on the kinds of boundariec that appear in the region we wvish

to cover by owr numerical solution,

At the present time we have not even the assurance from mathe.
matics that these problems are solvable and contain unique solu-

tions. 3 Some as3urance is obtained by comparing numerical solutions
wvith physical experiments, with other types of numerical solutions,
and with the very few analytical sclutions which can be obtained.
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First, there are rigid boundaries. The aprropriate constraint
here is that the normal cwmponent of the fluid velocity must coln-
cide vith the normal component of velocity assigned to tne rigid
boundary, If the rigid boundery is fixed in time, then the noarmal
comporent of fluid velocity must vanish, of eourse, at this doundary.
If a point, axis, or plane of symmetry appears in the probles, it
mst be treated as a fixed doundary.

A seconmd kind of boundary often encountered is a free surfece.
At a free surface ve must assign zero mressure to the fluid, other-
vise 1t would do work on a vacuum or vice versa,

At interfaces and contact discontinuities the pressure and nor-
mal components of fluid velocity must e comtimious, vhile demsity,
intornal energy, and tangential components of velocity may change
abruptly across such surfacey. In the numerical procedure to be
described, no special arrangaments need to be made in order to pre-
sexve the requisite contimuities in pressure and normal velocities,
The principel reason for this is that the numerical procedure intro-
duces terms vhich have the effect of smoothing out discontimuities
in the solution nem.("”) However, because we keep track of
each particle in the system, we can still trace out a fairly sharp
"interface" wvhich separates wvave elements comprised of different
mterials,

Contact discontinuities can be approximately determined by
noticing the distridbution of mass points for a single material at
a glven “-.(6)

Finally, moving ihock surfaces may occur on vhich the well-
known Rankine-Hugoniot conditions must be satisfic”. Agaln, errars
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in the numerical procedure tend to replace a shock discontimuitv by
a zone of finite width across which the depenlent variables vary
in a rapid, but relatively smooth, fashion. The Rankine-Hugoniot
conditions are automatically satisfied oy the difference equations
governing the motion, so that again no special arrangevsent must be
made for shocks in the numerical yrocedure,

0 e G SRR, N | B e K
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III. QUALITATIVE DESCRIPTION OF THE METHOD

INTEGRATION TECHNIQUE
The method of solution empleys the Particle-In-Cell (PIC) comcept

devised by Harlow, In Ref. 7 he presents a scheme for solving the

equations for ths case of plane symmetry, vhich is a cas-dimensional

problem. In this Memorandum, the scheme is modified and extemded to

two dimensions, Harlow has independently extended his method to two

dimensions and has applied it to a pmber of aerodynamic ]I'obh-s.(h’a
A general description of the method is ailed by considering

the equations under investigation in the form

p§“€+&-p:a'ﬁ+mp+pwo-o (108)

§§+3'p:dp+puv'\i-o (aom®

*

o3 ¢+ oot 4 piogeat + atv(R) = 0 (200
vhere
‘- %3.3. + e
P = Pp, e) (200)

An Bulerian grid is laid down, apd in this grid ma.y parcicles
are initially positioned. The mass is cousidered to be c-~ncentrated
in these particles. During the computation, these particles move
throughout the grid; carrying vith them mass and momertum as well

L e AN OO
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as internal and kinetic emergv., Since the particles move in a
lLagrangian sense throughout an Eulerian grid, the method may be
sald to incorporate some features of both formulations. The depen-
dent variables, viz,, density, velocity, pressure, and specific
internal energy, are always specified ai. the Eulerian grid points.

In solving the equations, initial ani necessary bovmdary cone
ditions are set ur. The differential equations are then integrated
vith respect to time. Thus the essential problem is, given the
variable fields at time t, to find the new lields at time t + &t, The
computation proceeds in two steps, In the first, the convective
terms (starred in Eqs. (10a) through (10c)) are neglected, and the
truncated set of differential equations is approximated in finite
difference form. Fram these it 1s possible to cbtaln new tentative
values of velocity and specific internal emergy, u and €, respec-
tively.

In the second step, the mass points are moved, using the average
of the 0ld and the tentative new velocity, After the mass movement,
a calculation 1s made to determine which masses have changed cells,
If no masses enter a cell dwring this time cycle, the tentative
values are accepted as the final values.

When one or more rasses enter a cell, a process known as
repartitioning is carried out. Tne particle 1s first considered to
have brought with it an amount of momentum, given by the product
of its mass and the velocity of the cell which it left, This momen-
tum 1s added to that of the cell the mass entered, and a newy velocity

for that c2ll is determined by dividing the total new momentum by
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the total new mass, Thc newv velocity is takern to be the fipal
velocity for this particular time cycle; and the new total mass, the
final mass, In addition, a mass entering a cell is assumed to have
brought with it an amount of internmal. energy, given, similarly, by
the product of its mass and the speaific internal ensr~gy of the cell
vhich it left, This is added to the internmal energy of the cell
vhich the mass entered,

It is readily shown that the repartitioning process does not
conserve kinetic energy if the velocity of the cell vhich the particle
entered 1s different from that vhich it left. When the momentum and
internal energy are conserved in this vay, some kinetic energy is
alvays lost. That 1s, the estimated kinetic energy assigned to the
cell after mass movement but before repartitioning is always greater
than the kinetic energy of the cell after repartitioning., In erder
to conserve total energy, the loss of kinetic energy is arbitrarily
added to the internal energy of the cell in vhich this kinetic-energy
dafect occwrred. The mass movement and subseguent repartitioning
process simulates the convective terms neglected in the first step.

DISCUSSION OF ERRORS
A thorough discussion of PIC errors would include the determi-

nation of a single set of difference and differential equations vhich
correspond to the PIC process, the establishment of the convergence
of PIC solutions to solutions of the fluid-dynamic equations and
their initial and boundary data, and the establishment of a stabil-
ity eriterion,
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At the present time, there appears to be no satisfactory analy-
tical treatment of the PIC :onvergence and stadbility characteristics,
The greatest elffort has been placed on the determination of a set
of difference equations which form an analogue Lo the PIC numerical
scheme and on the construction of differeniial equations that are
modeled by this process to first order in the time increment and
to second order in the cell vidths.(5'6’8)

The derivation of the differential equations which are approxi-
nmately represented by PIC solutions lies outside of the scope of
this Memorandum. Those who are interested in this development may
refer to Refs. 4 and 8.

For the present numerical scheme, these differential equations
have the follcwing form in cylindrical coordinates with the angular

dependnnce omitted:

4

1 3
- % * % = 0 {continuity)

-] &0
o5t * 3+ PR

=

I3

3?( (xku - 5; ()‘v g—‘-;) (momentum, x direction)

Dv . 3p ., & _1 3, v K-} v

PoT * 5§ PR TR EOW ﬁ) + 3y ()‘v 57) (momentum, y direction)
De 1 3xu av| _ 1.3 e ) de
ot " P[E & sy] TR Em N Ty

2 2 2
Py [(%,‘-;) + () ] v, [(%3) + <g-;>] (enerey)

where
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ax
x\| = Dl\llj

A = olv1 %

In general, boundary.cell analysis does not yleld analogues to
these differential equations, We see¢ that the error terms, that is
the teras which do not coincide with owr ariginal equations of
motion, formally appear in the above set of equations in the same
manper as would the effects of certain physical dissipative mecha-
nisas. This has led to the common usage of the terminology “effec-
tive viscosity” and "effective heat conduction" to descride these
errors, Moreover, the elfects of these errors on the computer solu-
tions have besn interpreted as those vhich would have been caused
by an effective viscosity axrd heat conduction introduced into the
d1fference analogues of the ariginal differemtial equations.(’8) 1,
the right-hand side of the analogue momontum equation 1s to be the
ddvergence of & collection of elements, 11‘1', and the terms on the

right-hand side of the analogue energy equation not containing e are

—

In this section, liberal use of the tensor notaticom will de
made. Thus 11‘1 represents a collection of n2 elements vhich trans.
form like the cowpcnents of a contravariant tonsor of rank two; u"
axd u, refresent the contravariant amd covariant elements, respec-

tively, of the velocity vector. A comma is used to denote covariant
differentiation, and summation 1s assumed (unless explicitly stated

othervise) whanever an index 13 repeated. For instance, 9 = PED Y g
’

B T IR a
18 a shorthand for ¢ = L T =3 - ri“a mmruisthe
1,31 |ad g ¥

appropriate Christoffel symbol.
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to be the stress pover, 3, associated with 13
- 1
A ¥

vhere the form of neither of these relations 1s to explicitly depend
on the details of the initial and boupdary lata of the £lov problem,
then these rarticular error terms in the analogue equationc mAy be

assoclated wich a particular dynsmic-stress matrix 1(13)" given vy

*

i
(1) = )‘(J) %‘::(J) 1, = 2, 2 (nc sum on J)*

(k) = v(k3) = O k = 1,2 3

vhere
| - bl
and
{2 w3} = {o ol
(& & 5} = {0
—_—

If the trensformation properties of a set of elements are not
known, or if they do not satisfy a tensor transformation lav, wve use

the notation A(1j) rather than Ai", A 5 etc. If a repeated index

1s not sumned, we put parenthesis around it to emphasize this fact.
For instance, A(i)(l) is not summed; however, A(1J) Bid represents
a sua,
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From this form for the elements of the matrix +(1)), and from their
interpretation as clements of & dynamic-stress matrix, the follow-
ing facts may be immediately derived:

The elements of T(1)) do not transform like the elsments of &
contravariant tensor of rank two, Thus, the stress pover 7(1J) Y g
ts not invariant under adaissible courdinate transformsticns in E3,
This leads to the result that such physical properties as entropy,
specific internal energy, and density at a polnt vill vary vith a
char, e of spatial coordipates describing that point, Moreover, the
stress vector, Fi(p), at a given point {p) vith respect to a surface
through the point described by its unit normal veotor vJ(p), pre-
sumably 1s related to t(13) by F-(p) = v(13) vy(p). Again, the lack

of tensarial property of T(ij) lesds to F

‘s vhich depend not only
on the surface vi(p) but on the particular coordinate systea used
to describe the position of points in the portion of !3 under con-
sideration. (This 1s not surprising, since the entire erzar analy-
sis leading to the analogue differential equation is valid for one
particular coordinate system and no other.)

The established relations for t(i,)) 4o not leave the flow
equations Gelilean imvariant.”

By inspection, we see that T{1J) is not symmetric with respect
to interchange of the indices i an® j. If ve perform the usual
decomposites into symmetric (S) and antisymmetric (A) parts, ve
obsain T(1)) = 78(13) + ‘rA(iJ). We know that a constitutive relation

This particular property of the amalogue equations has already
been recognized by Hurlow. >
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corresponding to the viscosity hypothesis will only be related to
18(13). The antisymas-tric part 'rA(iJ) must be accounted far in
some other way.

The viscosity hypothesis is -rs(ij) = C(1Jke) ¢, , vhere

k¢
L) -%5 [“k,l + ul,k] ani the C's ure symmetrical with respect to
interchange of the first two and last two indices. Becavuse Ts(ij)
1s not a tensor, we avold the usual representation, C*V%¢, which
implies tensorial properties that our coefficlents do not have. It
is easily shown that for the given form of 73(13) the viscosity
coefficient C(1, 2, 1, 2) (and all of those derivedble from it by
symmetry arguments) must satisfy a set of equations which are incon-
sistent except on a line given by |ull Axl = |u2| &2.

Hence, the origin of -rs(i,)) cannot be gald to be viscous in
nature. If we introduce "he most general linear constitutive rela-
tion connecting the stress elements 7(1j) wvith the deformation ten-
SOT €, v(13) = B(1Jxt) Cypr VE still obtain incompativle relations
for some of the coefficients of this linear relation. Thus the
antisymsetric part of T(1J)) (as well as the off-disgomal terms of
the symoetric part) cannot be obtained by even the most general
linear constitutive relation connecting the stress elements with
the deformation teusor L] It

The presence of the antisymietric elements r A(ij) acds addi-
tional confusion to the attempted represantation of errors as physi-
cal effects, for it can be shown that a rather arbitrary partition-
ing among = number of physical effects (couple-stresses, couple

density fields, a.d possidbly moure general constitutive relations
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than we have considered here) may all lead to the same 7 A(1.‘]) that

is implied by owr analogue differential equations. Thus, among other
difficulties, there seems to be nv unique way of assigning physical
effects to the error terms considered.

A similar analysis can be made which staris with ihe assumption
that the remaining error term in the energy equation containing the
specific internal energy, e, may be thought of as the divergence of
a heat-flux vector {Qi}. This analysis also exhibits the many weak-
nesses of such an assumption. We first observe that the elements of
the "pseudo-heat-flux vector" @(1), which are given by {Q(i)}s
{)\1 il, )\2 32, Ol, do not transform like the components of a contra-
variant vector, with the result that the heat flux, as well as the
physical variables, entropy, specific internal energy, density, etc.,
exhibit the highly undesirable property of changing at a point under
admissible coordinate trensformations. Ancther drawback of this assump-
tion is that it implies a heat-conduction law where heal flow is pro-
portional to the gradient of specific internal energy rather than of
temperature, a condition which would make physical sense only when e
vas Just a function of temperature (which in general is not true).

In summary, we may say that the assumption that the eriors may
be thought of as related to distinct physical effects leads tc many
contradictions of the assumption. Therefore there seems to be
little merit in treating the lowest-order errors induced by a PIC
program as anything other than just plain errors.

Although the terms which we have been dlscussing represent

errors, they are largely responsible for the applicability of PIC

L ) v
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a8 a practical numerical scheme, These elements provide the
required smoothing that we need if we do not wish to keep track of
shocks which would te expected to appear in the actual solution of
the inviscid equations for adiabatic compressive flous.(g’lo)

As a result of these terms, owr solutions exhibit relatively
smooth variations in shocked regions, rather than the violent
oscillations which would characterize numerical solutions in these
same reglons when no such elements are present, These artificial
smoothing errors are much larger than real dissipative terms which
may occur in our physical system. (They muct be in order to provide
the necessary stabllizing influence,) For this reason, certain pre-
cautions must be observed when using this sort of a program. Shocks
are smeared out over approximately three grid increments in the
numerical solutions, whereas the true shock thickness may occur
cver a small fraction of a grid increment., Hence, shock thicknesses
derived from this sort of program should not be quoted as physi-
cally significant results, Also, real dissipative phenomena should
not be incorporated into the original equations where the correspond-
ing artificial smoothing effects are mary times larger than the real
ones,

In many instances, it is possible to replace these artificial
smoothing terms by morc desirable forms., Such replacements are
treated in Ref. 5.

It is easy to show that whenever mass points leave a cell but
none enter it, the difference equations for that cell contain neither

our previously defined errors nor any convective terms.(s)
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This particular situation seldom causes any problem in interior
cells, but it often ariseg and persists for menmy time cycles in
cells adjoining a boundary, particularly a free surface in a region
of essentially one-dimensional flow, The effects which this situa-
tion has on the PIC solution of problems are little under:stood. It
suffices to say here that such cells may comtribute a major source
of errors in PIC solutions and that these errars may peopagate to
the interlor cells.

Because of the lack of a good error apalysis for this kxind of
numerical scheme, it must be emphasized that the principel evaluation
of the results must be based on a comparison of PIC solutions, and
mathematical solutions whenever they ere available (which is seldom).
Other tests, such as checking the sphericity of results (where spher-
ieity is expected) and varying time and space increments in the PIC
progran to see what happens, are sometimes usefui.

An empirical investigation of this kind was used to ascertaln
the nature and extent of errors incurred by the FIC mmerical scheme
such as described in this Memorandum, and the following tests were
made,

a. Numerical solutions to one-dimensicnal, uniform-~shork-wave
problems were solve® for a variety of shock strengths amd for equa~
ticns of state of aluminum, irom, tuff, and polytropic gases with
gamaa equal to 1.4 and 2,0, Numerical results were compared to the
simple apalytical solutions which in these instances were at our
disposal.




b, KRumerical solutions to the problems of the one-dimensional
rarefaction of air irto a vacuum and of compressed tuff into a
vacuum were obtained. In each instance the rerulting theoretical
flows are simple centered waves, wvhich admit analytical solutions,
Again the numerical results were compared to these analytical solu-
tions,

¢. An axisymmetric numerical solution to a spherical air-burst
problem in a uniform atmosphere was computed in cylindrical coordi-
nates and compered to a Lagrangian soluticn of the same problem by
H. L. Brode(lo) in spherical coordinates,

The results of these tests led to the following set of general
qualitative observatlions vwhich appeared to be consistent with owr
mmerical solutions,

Shock velocities and the estimated position of shock fronts
wvere in good agreement with the corresponding theoretical solutions
and with values obtained in Ref. 10, Generally, agreement within
+ 5 per cent was obtained, The estimated position of shock fronts
in the mmerical solutions was taken to be the point at which the
pressurc was equal to the arithmetical average of the peak pressure
behind the shock zone and the initial pressure, The width of the
shock zones varied from two to five cell widths but generally
remained around three cell widtlhs in extent.

The largest errors in the solution flelds generally occurred

immediately behind a shock zone and in regions of very low density
wvhere there were very few (generally less than four) mase points

per cell. Most cten (though this was not elways true) the numerical




prreew

-21-

solution tended to exceed the corresponding theoretical values right
behind the shock and then to execute a damped oscillatory motion
about the theoretical values, The velocity and specific internal

enargy generally exhibited smaller errars than did the density and
pressure in these regions. Relative errors seldam exceuded 20

per cent and were more often on the order of 5 per cent for
reasonable choices of the cell widths and time increments. In
the continuous flows (rarefaction solutions) the numerical. solv-
tions were very good, often giving relative errors of less than

1 per cent and exhibiting stronger deviations only when reglons of
very low density were encountered in the tall of the rarefaction
for air. (The tuff rarefaction exhibited no tailing off of the

density to zero.)

GRID CHANGES

For such purely practical reasons as the limited size of the
electronic computer's fast memory and the desire to keep the comput-
ing time within reasonable bounds, 1t is possible to use only a
limited number of grdd points., Consequently, resoclution in the solu-
tion of two-dimensional problems is very troublesome.

To utilize the resolution to the utmost, an artifice termed a
"grid change" has been developed, We take advantage of the fact
that the interesting effects expand in size and that the medium
outside the motion 1s undisturbed until some signal from the expand.
ing region reaches it, In the case of hypervelocity impact and
nuclear bursts, the exterior fluid is undisturbed until a shock
reaches it, and the region of motion is entirely within this
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outwerd-moving shock. Thus, it is only necessary that the grid
agver the reglon of motion and & ressopable amount of undisturbed
£iuld outside of it. The procedure 1s to lay down such a grid and
constantly test for the slightest indication of motiom at the grid's
perirhery, The computation 1s stopped when such motion 1s detected,
and a new, somewtist larger grid 1s 1aid down for the next phase of
the computation, which encompasses some new undisturved fluid, Im
this way, the interesting region always occuples a large fraction

of the grid points avallabie.
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IV, DETAILED DESCRIPTION OF THE METHOD

PHYSICAL EXAMPLE

In order to illustrate the numerical process, we take as an
exanple a surface explosion in air over a fixed grourd in the pre-
sence of a uniform gravitational fiel?, The geometric representa-
tion selected is one of cylindrical symmetry about the wxis x = 0
with the ground at y = 0 as shown in Fig, 1. We treat the air as
a perfect gas, so that the equation of state for the fluid is

P(p, &) = (y - 1)pe (1)

vhere y 1s a constant usually equal to 1.4, It wiil be apparent
that any equation of state of the form P = £(p, ¢) may as readily
be used., The external force field has a potential

$ = gy (12)

vhere g iz the gravitational acceleration.
The iniiial conditions are

A%, 0) = O (13)

p(X, 0) = py exp(-y/A) (1k)

e(X, o) = ae, (for o+ yes rg)

(15)
e(;, o) = eo (fOl' xa + ye > rg)
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The particle velocity u 1s zero at t = 0; the density p of the fluid
is an exponential function of altitude; the specific internal esmsrgy
e is e in the undisturbed area, and a constant a times e, vithin
the disturbed area., The initial pressure is determined by substi-
tution of Eqgs. (14) and (15) into Eq. (11), the equation of state.

The boundary conditions to be satisfied are that there is to
be no fluld motion across the fixed boundary y = O and that the
radial component of wvelocity u venishes at x = O, These two con-
ditions may be written ac

v(x, o, t) = O
u(o, y, t) = 0O

vhere v and u are respectively the axial and radial components of
velocity. The fluid is considered to extend indefinitely with
ipcreasing x and increasing y.

At this polnt it should be emphasized that the particular repre-
sentation of the physical problem described above 1s not necessarily
the most realistic model for an extensive investigation of the physi-
cal phonomens; rather, it is selected to 1llustrate the application
of the nuserical procedure, It is clear that other initial condi-
tions wvithin the disturbed regiom, other equations of state, other
models of the updisturbed mediua, and other heights of Lurst may bhe
used in place of those assumed above,

REPRESENTATION OF THE FLUID
The volume 18 considered to be divided into a finite number of

§

o,

t eent ke o
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volume elements, each of which is fixed in position, shape, and size,
For our example this region is bounded by x = O on the left, y = 0
on the lower side, and extends indefinitely in the direction of

increasing x and y, Since we wish to maintain a certain degree of
resolution, for the time bveing, we limit the region to a maximum
Xnax on the right and Ymax ebove, as shown in Fig,. l.

One of the volume elements into which the region is subdivided
is shown in Fig. 2a. Element ij i1s bounded on the left by X)4, OD
the right by Xy9412 OB the lower side by . 3 and on the upper side
by leﬂ. It subtends an angle of one radian about x = 0, The
volume of element 1 is

viJ - %(xii'.'l - xii) (ylj"'l - le) (16)

A convenient notation is that the center of area of the volume ele-

ment cross section shown in Fig., 2b i3 at X549 y23 vhere
x - 3 + X
21 = 3 (™ 1441 )

1
Yo = (Y * Y1)

and the center of vclume is at x31, y3J vhere
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Furthermare, the subcells 01§, 1iJ), 21]), and 31]) all have equal
volumes.

The fluid in each volume element, or cell, 1s represented dy a
number of dlscrete mass points, These mass polnts are free to move
from cell to cell during the history of the motion. At any instant
in time tn’ the total mass M:J in a given cell is equal to the sum
of the values of the discrete masses contained in the cell. With
the total mass and the volume of a cell known, the density p, or mass

per unit volume, in cell i is
n
pid - M:J/Vij (17)

vhere p:d is the density at time t,, and V,, 1s given by Eq, (16).
Velocity,. density, and specific intermal energy are properties

attached to the cell, aud they are considered to be constaut over
the cell at a particular time. The components of velocity at time |

tn ere designated in the x direction by u and in the y direction

n

1)’
by v:J; the specific internmal energy e for cell ij is e?d.
The pressure P is measured at polnts where several volume

elements meet, For owr example, pressures P:J, Plil-bld" P:J-bl and
P:"'IJ*I are at the respective points X4 le; X441 yld; ete,

This is shown in fig. 3. Pressures at intermediate points are
assumed to be glven through lineer interpolation of nearby pressures.

Thus the pressure at a point y along fuce 01) is given by

013 13 Y T -y (P‘,‘,ﬂ - P'{J) (18)
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Fig. 3— The variables of volume element ij




-30-

A similar relation applies to each of the other faces 1liJ, 21J), and
.

External forces are treated in much the same manner. We observe
that the potential function # appearing in Eqa, (1) and (9) 1s always
in the form

grod b = (ao 3 )

® W ) = (X, -Y, -Z)

vhere X, Y, and Z are the components of force in the x, y; and z
directions, respectively, For our example. gravity 1s the potential

force and its components are
grad § = (0, [-9) 0) (19)

vhere & 1s defined by Eq. (12). In this particular case, grad § is

a constant.

INITIAL CONDITIONS

The mass in s given element of volume is
M = J;pdV (20)

If we substitute Eq. (14) for p and (x dx dy d8) for AV in Eq. (20),

the total wass M

13 originally in cell 1J is

0 X141 A1l ey
My, = I"n ‘I‘Vla JoPo /" x ax ay ae

vhich after integration becames
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Mi’d - DTJ("Jiu . xf_i) (e'yla/" - e'ylau/") (21)

This mass is divided equally among the mass poinmts originally in the
cell, The points in each cell are positioned so that the density
is approximately uniform over the volime of the cell, For instance,
if there are eight points originally in a given cell, tbeir locations
might appear as indicated by the cross marks in Fig, 4., Since the
points are free to move from cell to cell as time goes on, it is
necessary to record the mass of each poln%t so that the total mass
or density in a cell can be determined at any time,

The initial velocity in each cell is zero in the example

ugy = 0 (22)

The disturbed area, within vhich the specific internal energy

0
e

13
tlally vithin the radius r_. Outside this region, eg 5=

=Q ey consists of a number of cells which lie wholly or par-

EQUATION OF STATE

Having specified the other initial conditions, we calculate the
pressures from the equation of state, Eq. {(4). In order to evaluate
the pressure, whica 1s a function of density axd specific internal
energy, 1t 1s necessary to defiie an effective dersity aid specific
internal energy for the region immedliately surrounding the point at
vhich pressure is caaputed., Since the density of the fiuid is con-
sidered to be constant over a cell, we define the mass M associated

with the pressure Pia as
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M "(“013 o Mygay f o Mgiaaga t o Magya (23)

vhere the first subscript on each M refers to a subcell (see Fig,

2b). The volume in which this mass 1s contalned is given by

1 2 2 A
V=3 ("31 - "31-1) K"aa - "33-1) (24)

Substituting in Eq. (17), we £ind that the density associated with

the pressure 1is

b = (“01{ P Mgyt Mgt M) (25)

5("31 - *21-1),(3’33 - -"'3.1-1)

In a similar manner, the effective specific energy for the

pressure computation becomes

+ 1

01) 1-13 T ¥a1g1 Y390

Upon substitution of Egs. (25) amd (26) in the equation of state
for the fluid, Eq. (11), the pressure I, 3 is determined,

Certain boundary conditions affect the camputation of pressure,
For instance, at iy = 0, elther Egs. (23) through (26) must be

modified to take into account the presence of the boundary, or mass

and specific energy for fictitious cells below y = O must be supplied.

Similarly, scme adjustment 1s needed along the axils of symmetry at
X4 = 0, Ve choos? to modify the equations rather than supply
variables for the fictitlous cells., Hence, at X, = o, Yy = o,
Eqs. (23) througb (26) become

)
i

&




Mom My, (23a)

- 3(5) () -
o - (258)

e = ey (26e)

mereforthisempleﬁi-o, yusOvheni-la.ndJ-l. At

%, # O, Yy " 0, Eqs. (23) through (26) tecome

M o= (Mo“ + "11-1.1) (23v)
V = é(xgi - "%1-1) (y:ﬁ) (2ub)
p = (forg * P11y (25)

%(x.?ii N x.?’,1-1) (7'33)

e = Moigf1 * Mg (26v)
Mogs * Mu-1y

Fioelly, at X, =0, ¥y, % 0, Egs, (23) through (26) become

Mo (Moyy * Marga) (23)

v o= 3 (5) (v - Yan) (2he)
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(“gu + Mgy )
Exu(y - Y3sa)

M

(] + e
e = 014 1|l - MQ’.J-I 14-1 (266)
01) 1J-1

Other types of boundary conditions require similar considerations.
Free boundaries are such that the pressure must be zero on the bound-
ary. This can be handled numerically by imposing the following
restriction: If any Mi 3 1s zero for the rull cell corresponding to
Meqy 10 Eas. (23), (23a), (23b), or (23¢), vhichever is applicable,
then the resulting pressure is zero; otherwise the computation of
pressure is carried out as previously described.

This method of evaluating pressure from the equation of state
is employed not only in the computation of initial conditions but
also in subsequent computation in the integration process itself,

PRELIMINARY CALCULATION OF VELOCITY

The first step in the numerical integration of the equations is
to esiimate the new velocity in each cell, The x-component of Eq.
(1) 15 written
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since grad & in the x direction is zero, Neglecting the convective
term and dividing by p we have
#--2E (21)

This equation requires p and %5 to be knuown in order to evaluate the
change in the u component of velocity with respect to time., For
the £1uld model the density p is known in each cell, but 3e 1s not.
We estimate %’ in the following manner,

Assuming that the pressure varies linearly from one corner of

a cell to another, an average pressure P for e face can be computed.

For face O of cell 1J the average pressure Poni 3 is
1/ n
Porg = 2(¥y * P:J-i-l) (28)
and for face 1 the average pressure PLJ is
1
Pay = 3 (P:.-tlj * P§+13+1) (29)

If we approximate g;P with

ap~p§.14 N Pgig
& - Xy

and substitute this expression into Eq. (27), we have for the change
in u in cell 1} at time tn

A
n =1y 01)
it n <"n+1 vy (30)
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where the dot denotes the time derivative '5% The pressures B2
P’;i g ore given by Eqs. (28) and (29) respectively, and p?d is given
by Eq. (17).

For the change in velocity in the y direction, the differential

equation 1s
% + g; + 1+ p%’; -0
which for our example may be written

%“‘%"Mﬂo

Again, wc drop the convective term and divide by p, to obtain

X" p% & (31)

Calculating average pressures in the manner stated above, we have

for cell ij
Ty (Mu) (32)
pry \ 7M1 T Ty
vhere
Pasy = (Pn + 1+1.1) (33)
?'3‘“ B &(an P:ﬂm) (34)

If the change in velocity is assumed to be counstant over the time
step and equal to the value at the beginning of the time step,

013 and

S
i
;
H
"
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the estimated velocities at *’n-fl are
~rtL B, o Qn

Yy " Yy nel 14
(35)

P »

n
1) " Y1y M Yy

with &'n-o-l -t - tn' Here the tilde denotes an estimate of

n+l
velocity, since we have assumed that masses do nut move., Also, the

estimated aversge velocities for the time step are

=ntl 1/ n ~tl
“1.1 -E(u“-o-u“)

(36)

el 1 n _ ~utl
vid -'2‘(V1"*V1J )

PRELIMINARY CALCULATION OF INTERNAL ENERGY

The next phase of the numerical process is coucerned with the
estimation of specific interral energy in each cell at the end of
the time interval. The conservation-of-energy relation given by
Eq. (9) serves as the basis for this computation. Since we assume
that density, velocity, and specific internsl energy are constant
over tha cell, and grad & is also constant, Eq. (9) may be written

-o' D l-o'-o _.._‘
pV u grad.i-fpvb—t-(-e-u u+e)--£m as

Dropping the convective term and dividing by oV, we have for the

change in specific energy

g?f““'”“"?i(ﬁa‘a)-ﬁgﬁ'ﬁ (37)

Ty

e mtte
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Integrating Eq. (37) vith respect to time ylelds the change in spe-
eific enmergy for the time interval, which, vhen added to the specific
energy at the beginning of the interval, results in the desired esti-
mate of specific energy. Because of this integration with respect
to time, average velocity for the time step 1s used vherevir velocity
1s required in evaluating Eq. (37).

For the physical example wbere grad & is given by Eq. (19), the
first term in Eq. (37) 1s

-|; cgrad ¥ = -g;;:;l (38)

and the second term is

dfl= .= -+l <ntl
- (330 %) =Ry - (39)
The mass pV in the third term in Eq. (I6) 1s emn‘.l.too?d Vyy vbile

the integral represents the rate at which the energy is being dimin.
ished by work done on the surface of the volume elsment. In evalu-
aving the surface work integral for a cell we note that the volume
element under consideration has six different surfaces. Only four
of theze, however, contribute to the integral since the net wwk
done on the surfaces coincident with the meridian pianes is zero due
to cylindrical symmetry. Integrals for the four other surfaces
(0, 1, 2, 3) vhich do contribute are evaluated separately then summed
to determine the total integral.

To evaluate each of these integrals, we first d2termine the
quantity Fd * 45 and then inmtegrate. Far face Oi) the pressure P

L
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Integrating Eq. (37) with respect to time ylelds the change in spe-
cific energy for the time interval, which, vhen added to the specific
energy at the beginning of the interval, result. in the desired esti-
mate of specific energy. Becau~e of this integratiom wiith respect
to time, average velocity for ‘ue time step is used vherevsr velocity
is required in eval iting Eq. (37).

For the p . l!cal example vhere grad # is given by Eq. (19), the
first term in Eq. (37) is

e b m g¥y (38)
and the secc’ term is
Qfl s = =ntl .n «utl -
- 8E(E“ . u) - -\JlJ "1‘1 - ‘8‘13 'Qn: (;)

The mass pV in + - taivd term in Eq. (36) 1s equai to p:a Vyy A
the integral repr:sents the rate at vhich the energy is being dimin-
ished by work done on the su. ®ace of the volume elsment. In evalu-
ating the surf- "~ work integral for a cell we note that the volume
element undex consideration has six differsnt surfaces. Only fowr
of these, arrevys, comtrioute to the integral since the net work
done . the surfaces ¢ incldent with the maridian planes is zero due
Lo cylindrical syr ury. Iategrals for the four other surfaces
(0, 1, <, 3) whici. do contribute are evaluated separately then summed
1,0 dellermine tbc total integral.

To evaluate each of these integrals, we first determine the
quantity Fu * 3 and theu integrate, Far face (1) the pressure P
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1s a funstion of y alone as given in Eq. (16). The function U ° a8
represents the velocity nurmal to the surface (and teken to be posi-
tive in the outward sense) times the slemsnt of arva over which it
acts., Since we consider the velocity im each cell to0 be coastant

over the cell, a discontinuous velocity at a swface common t0 two

cells can ocawr if the velooities in those cells are different, Rence

the following assumption is made: The velociiy on such a common
surface is equal to the average of the velocities in the adjacent
cells. The function u * 43S way now be evaluated; for face O it is

3. a8 "%(‘.‘:L"-‘zl)(ﬁi dy) (k0)

The negative sign appears because of the outward sense of the normal,
Upon substitutions of Eqs. (18) and (4O) we find for this one face

-gh-‘,[‘d-s.-

11 |pn YT (||, n
oy o] e

vhich after integration becomes
{ A - & - (’wl - ’1.1)(":3 + ﬁ#l)("‘?:ia * “ﬁl) (82)

Proceeding in a similar manner for the opposite face, 11}, we find
that the integral of Eq. (37) 1s

- *'11+1 . =+l | -n+l
fracas-- —n—(’uu ”u) ("fm * "?ﬂaﬂ)(“u * “f:u)(m

-
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Next, the pressure along face 213 is given by

X=X

a —_r -
Pty = Py * X4e1 " 14 (P:*“ P:J) 43)
and the function u * dS in the outward sense is

2 \V13-1 * V13

-;;.dg.-l(-"*l -n*l)xax (k)

Substituting for the integral, we have

= =1 pu4]
- Pu* dS = = =+l =ntl
£ 2 in ?:1.1 (7’13-1 * V4 ) xdx

vhich after integration beccmes

y T 4 -+ i%("nu - "n) (;’?5}1 * Gf?) [P’:J (2"11 * "11+1)
* Pl ("n + 2"1.1+1):] (45)

In a similar fashion for the integral for the opposite facc, 31), is

..£ Pi-* dS =~ -EJ' (xli+1 - xn) (1'1?51 + \'r:;il) [P:J-!-l (le:t + xli+l)

+ P:+13+1("11 * 2"11+1)] (46)

The total intezral in Eq. (37) iz the sum of the integrals for the
four faces given by Egs. (41), (42), (45), amd (46),
It should be poted that when one cell receives an increment of

enexgy, Pu + dS O, exactly that amount is subtracted from the
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appropriate adjoining cell, so that total energy is conserved. Sinpce
the repartitioning process uiscussed in the following sections also
conserves energy, the extermal potential, &, is the unly agency vhich
can cause a change in the total energy. In cases wvhere & = 0, this
provides a valvable check on the computation.

The change in specific emergy per unit time, Eq. (37), may nov
be evaluated using Bqs. (38), (39), (%1), (h2), (h5), amd (B6) with
pV = .'.)';JV1 I Integrating vith respect to time wve find

~otl _ n -m+1 -p*l.n . -ntl.n
ey = %13 " Y18y - g (“13 Uyt My '1.1)

-0t | (Fager - Tl 2un (P:HJ * P:+w1)(a:;1 + ‘-‘::ia

2 3 -n¢l | -notl
P1aV13 ‘u(":a * 131) (“1-1,1 *ug )

- [ h
+ x11*112 xli) (‘-'l;;l + ;:3}1)(?:#1 {zxn + x'].hl}

Proaga s * a"uﬂ.}) - (‘-'11'3}1 * '-’:;1)

A

——

(Fsbrus = raand s 2n0)

L. .~

-

In Eq. (§7) no account has been taken of the effect of boundary comdi-

tions other than the jresence of free boundaries vhere the pressure
is zero (as discussed previously). In ouwr particular example mo wark
can be done on the fixed boundary or on the boundary of symsetry
because the velocity normal to these boupdarics is zero. Hence the
term in Bq. (47) resulting from Eq. (45) is zero for Y=o and
the term resulting from Eq. (k1) 1s zero wvhen x, = 0.

(47)
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Having computed the estimates for the velocity and specific
internal energy at time tn+1’ we can determine the momentum ln each
direction and the sum of the kinetic and internal energy for each
cell, The momentum in the x and y directions, respectively, are

Mn~m-l

Momentumx Q 1 “:I.J

(48)
Momentun,, = M:J '1}‘1’51

vhere

¥

n
13 = P1g Vi

The estimated kinetic pius internal energy in a cell is

1, 1 (~otd\2 | 1[~mii\2
“?.1(?11; +§(T"113) *E("ia)) (49)

Expressions (48) and (49) are correct at the end of the time interval,
provided no mass changes location from one cell to another (i.e.,
M’i‘sl = : J) . To correct these estimates of momentum and energy for
cells which do not meet this condition, each mass which changes cells
is considered to carry with it to the new cell 1ts share of the
moentum and kinetic plus internal energy. This together with the
integration of Eq. (37) insures that msss, momentum, and total energy

(kinetic + internal + potential) are all conserved,

MASS MOVEMENT

In the next phase of the computation, the masses are moved
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according to an average velocity for the time cycle. First the sub-

scripts p and q are decermined such that

n.
x2‘1:'-1. = *n < x2p
(50)

n
<
y2q~l = Y yeq

where x: and y: define the position of the mth mags point at time

tn and xap and yac1 define the center of area of the cell pq. The

velocity of the mass thus located is considered to be a sum of the
velocities in cells p-1 g-1, p g~1, p~1l q, and p q weighted, respec-

tively, Ly By Bq5 8p and a.3

=mtl =+l =0+l =+l =n+l
Ym o %% Yplg1t %y Vpgel T %2 Ypig t 83 Upg

(51)
-n+l antl o+l -ntl
ano *% v;:lq-l * 8 Vgl vV

+a ;,n+l

p-lq 3 'pa

vhere ﬁ:" 1am i'r:.' 1 are the migration velocities assigned to the m'D

mass point in the x and y directions, respectively. The weights are
determined in the following fashion: First the proportional areas

Cy» ©3s Co» and c3 are computed
n n
c. = ¥op " Xp \(yeq'ym >
0 "\~ %op1/ \Tag * Vee1

n n
1 \*3p = %p-1/\Y2q = Y2¢-1
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Yap - Xg -y
- 2p m m 2g-1
2 \%zp " *op1/ \Yoq = Y2q1

4

e}
!

n n
o = *n ~ x2tl)( Yo = Y2q-1 (52)
3 2p ~ %2p-1/\Y2q ~ Y2¢-1
*
Next bo, bl, b2, and b3 are determined
Bo=C M 1g1#0
P =0 M1g1 = O

b, =¢ xnlfo

17 % Pg-
bl = 0 ba-1 =0
(53)
bp = ¢ Mp1q * ©
by =0 M::-lq =0

b3 =2 M:q"o

= Mn=0
b 0 g

'In order to avold certein difficulties on cells sdjacent to
free surfaces, it i{s helpful to use an alternate scheme for computing

(bo, b, by, b ). In the alternate method, we use b, =C 1’ ete.

3 P-1 q-

Foy T

e A I S

et i
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Finally, the weights 8y 8y, 8, and 33 are defined

%

a,. =
0 b°+b1+b2+b

3

(5%)

8 By * By ¥ b, ¥ by

b
a, = 3
3 b°+b1+b2+?3

Substituting Eqs. (54) in Egs. (51) ylelds the average velocity for

the time cycle for mass m.

Again, boundary conmditions modify the computation of velocity.
For the fixed boundary at y = 0, cells p-) q-1 and p q-1 represent A
fictitious cells. The determination of the velocity near this ‘i
boundary 1s achieved by modifying the computation of the c's of ]

Eqs. (52)

(520) ]

.
l:‘u
=
S
S
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Substitution of Egs. (52a) in Egqs. (52) and continuing in the
menner previously descrived permit the velocity of the mass near the
boundary to be determined.

Similarly, for the veloclty near the boundary of symmetry, the

¢'s are computed in the following menner.

c. =0

< X’: ya'q-l)

220 (5ev)

xn n
3 x2p yeq - yaq_l

c0=0
c1=0

(52¢)
02=0

5+ @)E)
n+l l

The new location of the mass, given by x and a is

determined by integrating Eqs. (51) with respect to time

e e e s G s L
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i n =kl
x. = x- + &nl'l un

(55)

n+l n -n+l
Ya a’-*&nﬂ.':*

Purthermore, ve impose boupdary coniitions at x = 0 and a> y = O such

thstmmsscancrosstbebmm&ury.ﬂmsux:u<o,xrlisset
n+l n+l n+l n+l
equal toﬁxu ! similarly, Iy, <0,y is set equal toly_ l

th n.n n n
The n msspointattimtnisinceniljn,vlnreinandjmare

defined as
n n
=1 wben Xy S X < Nya
(56)
Bn=J wen ¥y, 5 Y < T34
1 n+l 1
If ot tine t ., 17" and 37", determined by cubstituting x = and

3! for xf snd 3] 1n Eq. (56), are eqal to ig =xd J, respectively,
no adjustment in momentux and energy 1s required since the mass does
not change cells. If, howewver, the mass does change cells, then
estimates of nopentun and epergy in both the old cell ami the new
cell are modified. nestimtedmtmafthen&msspoint
farthetilelntervaltnststn’lis,inthexdlrectlonam.y

direction, iespectively

~n+l ~o+l
"-“13 and Hsvij (s71)
th

\ﬂ:ereunistbemsofthe- mass point, the estimated totel

energy assigned to this save zass point is




M ol 2 2
e R 2
13

where ifsl = M?J 'Ef;l. The total mass in the ijth cell at time tn

is M: ¥ and ‘i?;l is the total estimated irntermal energy fo: this
same cell before mass movement. Notice that 1 = 1: and J = J: in
both Eas. (57) and (58). In going from cell 1232 to 1712 tne
mass takes with it both momentum and energy. Hence expressions

(57) and (58) sre subtracted from the vstimated momentum and kinetic

plus internal energy for cell 1:.1: and added %o those of cell 1:+1 o+l

Jn
ntl ntl
n J ¢

for each mass point which crosses from cell i:J: to cell 1 n

REPARTTITIONING

After 8ll of the masses have been moved and the total estimated
momentum and ensrgy for the cells have been adjusted correspondingly,
a final set of valuss for density, velocity, and specific internsl
energy at time nt+l must be assigned to each cell. These values are
chosen so that the tote) mass, momentum, and energy assigned to each
cell after mass movement are conserved,

First, the mass M;r;l of the thh cell after mass movement is
found by gimply adding up the masses of all of the individual mass
points in the 1Jth cell at this phase of the calcuiation. The new

density of the cell is then given by

+1
F,n+l - M?Q

n ot (59a)
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The new velocities (uﬁl, v:;l) are given respectively by

o (Total estimated momentum, x directioah
1) 1
)

(59v)

L [Total estimated momentum, ¥ rl:!.rec.‘l'.ion:lig1

) (Total estivated energyl,, - 1 ptl [(um.)e R (vnu)a]

2
&3 1

ol (594)

PRESSURE CALCULATION

The final stiep in the numerical integration process is to compute
the pressvres Pﬁl as described in Section IV using the new values of

specific internal energy el:;l and density pf;l.

STABILITY CHECK

Together with the computation of the lnternal pressures it is
desirable to perform a check on the stability of the numerical inte-
gration process. At the present time, thr:re appears to be no stae-
bility criterion specifically designed for the PIC process, although
the von Newann method(M) of stability analysis used in assoctia-

tion with the existing PIC analogue difference equations(h’e)

could
probably be used to develop one. A rough approximation to a sta-
bility criterien 1s given by the conditions that the mesh speed

in any direction should exceed the speed of a sound wave (relative
to a fixed reference frame) in that direction. For our problem this

condition becomes,
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.
At < Mind & &
'u|+Vs’ IV"“VS

where Ax and Ay are increments of Eulerian coordinates and Ve is the
local velocity o2 sound of an observer moving with the fluid.
This condition is always met by

&<u1n_LA_"z_A[L
vs+Vu + v

For practical computations we have found that
q/ua + V2 sSv
s

We therefore choose as our stability criteriom

R G g (60)

ry
S

vhere r 1s a constaunt (aprroximately equel to 2) that is generally
established by preliminary computetional experiments for whatever
problem we have in mind,

The velocity of sound is given by
2 _|{OoF
v = (33)5 (61)

that is, the partial derivative of P with respect to p at constant

entropy. Sincé at constant entropy

de = dp

ol

p




then
2 ()% P3P
2-(%), - 58 (62)
e ] [

For stability of the numerical process to be assured, the Ccurant
condition, Eq. (60), is observed throughout the region. In the case

of the equation of ctate given by Eq., (10) we have
o (63)

Therefore for each point in the fluld at which pressurs is computed

the condition to be satisfied is

ot 2
o= x (%)(mﬁy) <1 (&)

In addition to a check on stability we may use Eq. (64) to adjust the
time interval during the course of integration so that an optimum
time interval 1s always used., This is done in the following manner

o = At

o2 for slssss2<l

n+l 1

At = r At

oo = Tty for s <s, (r >l)

1

Aoy =T, for s2<s(r2< 1)

That 1s, if the calculated value of the stability function s at time

lies between or on either of two preassigned numbers, s < s, < 1,

Ype1 2
then the subsequent time interval is not changed. If the stability
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function s is less then s,, then the time interval is increased by a

1)

multiplier r If = is greater than S50 however, the time interval

1°

1s decreased by the multiplier r The numbers ry apd r, are also

o
positive preassigned constants.
GRID CHANGE

Sooper or later the disturbance induced by the presence of the
blast will reach the grid boundary at x = Xoax! ¥ = Ypoyr both.
At this point in time, computation with the cwrrent model must cease,
because the material will soom flow to nomexistent cells and further
computations will become meaningless, Consequently, at the epd of
each integration step, tests are made to determine whether or not the
disturbance has reached the boundary. These tests ilnvolve a search
for nonzero velocity and for specific internal energy, density, or
pressures which are different fram their origiral values in any cell
ad jacent to the boundary.

In instances where disturbances spread through a larger and
larger volume of material, it is often desirable to maintain at all
times a high degree of resolution with ra2spect to the disturbed
volume. The airburst problem is one such case. At the time vhen
e disturbance reaches the assumed boupdary in the example, it is
possible to create a new model with the characteristics of the old
model at that specific time, so that irtegration can be resumed.

This is done in the followlng manner.

The new regiom 1s selected in such a wvay that all the fluld in

the old model is coatained within the volume of the new model. Such

selection far our physical example 1s illustrated in Fig. 5. Here
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-
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Fig. 5 — New and oid regions in transfer
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the maximum dimensions of the new region are at "new" x and "nevw"

M

max’ the 0ld reglon is completely esnclosed in the new region.

The new r~glon is then subdivided into volume elements in the
same manner &3 described before. Mass, momen*um, and énergy ars now
assigned to the cells of the whole new region in two distinct steps:
First to those cells or parts of cells which colncide with the new
region, and then to those cells or parts of cells which coincide with
the old region. Initlal values of mass, kinetic plus internal energy,
and momentwa are provided in the new cells for the additional fluid
which has been encompassed; l.e., in the new cells where X441 > "old™

> |l°ld" y

max Here it 1s possitle that a given cell

*max? O Y1+l
may encompass some 0ld volume as well as some nevw volume of fluid.

In this event, the mass, energy, and momentum for the new fluid only
are provided in these cells,

Next the mass of the fluid in each cell of the old region is
added to the proper new cells, as shown in Fig. 6, undexr the assump-
tion of uniform density for each 0ld cell, The portion of mass of
the old cell which is contalned in the rnew cell 1 1s added to the
mase in new cell 1. Similarly the kinetic plus internai energy and
momentum associated with mass Ml are added to the energy and momentum
in nev cell 1. The other new cells, 2, 3, and 4, recelve mass M, M3,
and Mh’ respectively, from the 0ld cells and c!:0 recelve the corre-
sponding poriions of energy and mamentum,

After all the mass, energy, end momentum in the old cells have
been redistributed to the new cells, the velocity, specific energy,

and density are camputed in the new cells in i.c manner deserived in
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Fig 6 —Contribution of mass by old cell to new cell
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Section IV. The mass in each cell 1s then divided equally among a
mmber of mass points, positioned so that the density is approximately
unifornm.

Finally the pressure at the corners of the cell is computed from
the equation of state of the fluild usizy the method detailed in Sec-
tion IV,

The variables associated with the nev cells are the initial
conditions for continuing the integration. As time goes on, subge-
quent grid changes may be necessary to obtalr the desired solution
to the physical problen.

The grid change prcvides a means by which we can overlay om a
given network one of less detail, while conserving mess, momentum,
and energy. Some loss of detail occurs, tc be sure, but the general

craracteristics of the old region are carried over into the new region.
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