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!Iths ?I~orandun docwents a n~merica1 procedure ihiih was

de~rised to soJlve ÷Uie problem of hyrpervelocity impact •nd •iheh was

*0 ~~subsequently revised for sapp1catloni to t• prob .m of •a'ter.tfilgft

[round shock from a nuclear surface burst.

The RAID symposiwu on Hich-Speed Impaet, held in 29, 9Oause.
0m

attention on a forthcoming Air Fgrce need for Info atiou relative

to hypervelocity impact. In fact, this symposii vasa the tfrst of

a series of six symposia sponsored jointly by th Air Foreej, Arm',

and Navy on the sam topic since that date.

At the first symposium, technical data vere presented Vhica

strongly sutgested that the hypervelocity-iaet Wroaess was bhydo.

dymrr•e in nature, involvina the substantial rpression of eves the
strong•st materials, leading to ahogks ana sevez fluid dstortion

in the resulting flow. The prdblen vas hopelessly, empl-a1ated gna

the analytical point of view, and at. that tlm# aumerial teehnsqfes

did not exist vhich rer adequate to provS the Wdaixe solutia.

SThe numeri•al procedure discuosed in this Zeoranfu %%X devisoed

speci:ieally to attac7c this proble.

Onge developed, te method proved to ham a~plicatiie to an

area ot Afr Poree Interest not cortmla~ted In the Original 1--seaexhs

name3r trateaing and .V¶md soeol; Induted IV a vnielea surfaee Wrose

Th•e yrocefde i as been applied to this pr*en, an4 te r'lte sae
0

*dmOnU~rted in pflI!-)O, Cratering From aj ekat.n ftfae 9sol-
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. This Memorandum discusses in detail a numerical method for solv-

*000 0

• Ing the compressible, hydrodynamic equations under thee limitations

*1 0

• . of (1) two space dimensio~s, (2) the inviscid approximation, and (3)

the. adiabatic approximation. The method allows for the occurrence

o shocks, contact discontinuities,*and interfaces. Under a proper

prescription of initial and boundary conditions, the method generates

solutions incaiuding the above physical phenomena.

The basis ofý the method is the extension to two space dimensions

of the particle-in-cell (PIC) concept first proposed by Harlow for a

one-4imensional computational scheme. The PIC concept Involves mass

points moving in a Lagrangian sense through an Eulerian space grid.

Besides mass, the points carry with them the proper amount of momentum,

klnetI4 energy,, and internal energy.

The computational method approximates a set qof partial differen-

tal equations Gontaining terms in addition to those of the compressible,

S~r•Lro4•vagmio riluations tnder the approximations cited. The terms are

qftlitat•vely suggestivL- of thermal conductIvity and viscosity but

are wit i•ctl•r analogous to them. Mae terms are respons3Lbl,: for the

Gampuatltna stability of the nmker'cral Inethod; since they smear

Shef f~ronts-over a few grid spaces.

Us evaluation of errors due to these terms and t~ise of higher

order bas D•ot ad yet yielded to analysis. The errors have been

walta•s by comparing numerical solut,'•onst with analytic V solutions

",. CC test. problems and wlth numerical solutions of one-iimensiona~l •
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0 The computational scbeme contains a feature known as "grid-

changing," which pemita optimum reso2.ution of afl. nhases of thie prob- 'ob-

* len using the limited memory capacity of preo~ent-day electronic ecrn- 1
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e V specific internal energy

£ a gravitational acceleration * 0

P - pressure S

t -time

u - radial component of particle velocity

u , particle vector velocity * 0

V - volume S

v - axialecomponent of particle velocity

v M velocity of sound

x - radial coordinate

y - xial coordinate

S- stress power

* - potential of the external force field

* = total specidic energy, e + U U
* a S
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I. *nTROr!TIOmN

In recent times, many important physical problems that demand

the solution of the compressible hydrodynamic equations, using more

than cte space dimension, have arisen. Two examples are the ground

motiou in the early stages of a nuclear Cround burst and the motion

induced when a projectile strikes a target at extremely high veloci-

ties. It might scem curious that although both problems involve

solid media, the hydrodynamic equations are used to describe the

phenomsan However, this is precisely the apwroxlmation found

necessary in the high-pressure, high-density regions encountered

in these processes.

The solutions of this class of physical problems genwrally

feature the presence of shocks, which are allowed in the framevork

of the nonlinear partial differential equations. Acroes the-e

shocks, discontinuities in the dependent variables occur. The am-

plications which arise in the analytical treatment of shocks are

gen••Ly very great. For this reason a great deal of effgt has

been devoted in the past to the formulation of schemes that yield

numerical solutions on electronic computers. Because of these am-

plications, most of the work in the past has been confined to prob-

less1 which contain a sagle space variable. This in turn implies

the existence of a strong spatial symmetry, usally plane, spherical,

"or cylindrical.

Hiowever, in the case of solids, the presence of a free surface

often has an extremely important Influence on phy"icalebehavior.

* Such a free surface amplifies the coplexity of the already difficult

* S

° C
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analytical treatment to such a degree that workers in the field

despair of attaining analyt. cal solutions by the use of presently

known techniques. A free surface also increases the complexity of

the numerical solutiona in that it demands the use of more than one

space dimension, and its presence usually leads to severe dietortion

tf the medium.

At the time that this work was undertaken, it was evident that

the numerical analogue of the Lagrangian formulation broke down when

severe distortion of the medium occurred and that the analog•e of

the Eulerian formulation contained spurious 3aterial-diffusion terms

0 whenever the problem included free surfaces and Interfaces. The

technique described in this Memorandum circumvents these two diffi-

culties. Furthermore, it has been successfully applied to the

hypervelocity-impact problem(') and to the early motion of the ground

during a nuclear surface burst.(2)

The example chosen for describing the method is that of the air

flow following a nuclear airburst. It should be emphasized that

this problem has not yet been solved by the method, and that diffi-

culties that prevent its solution may arise. However, this problem

zontains some generalizations not required in the problems that have

been solved, thereby allowing a more complete discussion to be given.

These are the prnsence of an external body force (gravity) and a

nonhomogeneous medium (the exponentially varying atmosphere).

0 0
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II. PROBUIM DESMIPTION

SYSTM OF EqUATIONS TO BE SOLVED

The numerical method is designed to solve the hydroyaic

equations with the inviscid, adiabatic approximation. The represen-

tation of these equations in Eulerian coordinates takes the follow-

ing form:

S+ gradP + p grad I (1)

P div U+ U0 (2)
Dt

De P 22 = o(3)

P P(p, e)

where

D b

The independent vkriables are the time t, and a set of spatial coor-

dinates X. The dependent variables are

u = particle velocity
P = pressure

p = density

e a specific internal energy

The potential 4 of the external force field must be speoified in advance.



Equation (1), Euler's equatio of otion, contains the ssump-

tion that the only forces wbich accelerate the fluid are pressure

forces and external forces vhdch may be derived fr a potential.

Equation (2), the eqution of continuity, is a mathbemtical

statement of the fact that mas must be coasered.

Equation (3) is the first lay of tlermod3nudca unaer the alia-

batic appraomation. It states that the only my the internal eergy

of a fluid element my be chaned is through the action of pwessure

forces during expansion or c paession of the elemnt.

Equation (4) is the equation of state of the substame under

consideration. It establishes an equilibrium relation (solved

explicitly for P) betveen the pressuwe, density, and specific inter-

nal ene--- of a ..ll elemewnt of the unterial.

Although Eqs. (1) through (4), together with a potentlal fune-

tion # and appropriate boxmdary and Initial conditions, complezely

specify the motion, they are not in the most convenient fora for

the partlc'lar numerical computations which we have in ziMd. We

therefore transform them in the following way.

The dot product of Eq. (1) with ii is taken to obtain

S++ u*gadP + Pug- = 0 (4)

Substitution of Eq. (2) into Eq. (3) yields

De
De - Pd iv (6)

we then use the vector identity
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div(P') - P tvu + '.PgradP

together with Eq. (6), to obtain

Sgrad P - div(P') +PR (7)

Equation (7) is substituted into Eq. (5). The result is

M +e)+ uuv(Pa) p- gra # - 0 (8)

If we integra e Eq. (8) over a region whose volume is V axr whose

surface is denoted by S, we have

~ [.swi ~.+ e)]~. - i- P . di (9)

where Gauss's theorem has been applied to the right-hand side.

Equation (9) is the form which is actualy used in the numeri-

cal computations, together vith Eqs. (1) an (d).

INITIAL AND BOUNDARY CONDITIONS

The problems which we wish to solve ire transient, nonlinear,

initial-boundary value problems in two space dimensions. Their

nature is such that if we prescribe initial conditions at time t

and appropriate boundary conditions for all times T, where

t T !9t + At

we can find solution fieldr at a subsequent time t + At. As we

have stated earlier, such problems do not lend themselves to an

analytical treatment, especially when the solution fields contain
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a variety or discontinuities such as shocks, slip lines, and free

surfaces, as they do In a mx problems of interest.

We are therefore forced to solve difference analogues of the

differential equations to obtain solutions at successive points in

time.

In order to solve the difference equations at a succession of

times it is necessary to have at our disposal the following kinds

of data thich wast be used simultaneously with the difference equa-

tions.

Initial Data

At some time to values of all of the dependent variables, (P,

p, e, u) mast be specified at a set of points covering the region

of interest. It is not necessary to specify all these quantities at

the same set of points. In the numerical scheme which is descr bed

later, the velocity, density, and specific internal energy are speci-

fied at one set of points, while the pressure is specified at an

entirely different set of points. The reason for this will become

moe evident later.

R~giary Data

Boundary-data iequirements seams a variety of forms, which

depend on the kinds of boundarier that appear in the regian we vlsh

to cover by our nmerical solution.

At the present time we have not even the assurance from mathe-
matics that these problems are solvable and contain unique solu-

tions. ( Some as-3uance is obtained by comparing numerical solutions
with physical experiments, with other types of numerical solutions,
and with the very fev analytical solutions which can be obtained.
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First, there are rgid boundaries. The approWiate comnstint

hene is that the nma aemponent of the flldA velocity mnt Gain-

aide vith the normal omponent of velocity assigne to tae r1WA

boundar. If the rigid bounary Is fixed in tim, then the narmal

componnt of fluid velocity must vanish, of eourse, at this bouary.

If a point, axis, or plane of symtry apspas in the pmoblem, It

inst be treated an a fixed boundary.

A seecnd kind of bounary often encountered Is a free srface.

At a free surface ve must assign rop rwessure to the fluid, other-

vise It yould do vork on a vcuuma or vice versa.

At Interfaces sad contact discontinuities the pwessure and no-

m1 emonents of fluid velocity must be coatinuous, %ihle density,

internl ener•y, a&W. tangential ca9mo,1nta of velocity my change

abruptly across such suface, . In the nmeral procedure to be

escribed, no special arrangements need to be made in order to pre-

sorm the requisite continuities in pressure and norma velocities.

The principal reason for this is that the numerical procedure into-

duse" terms thich have the effect of smoothing oat discontinaitLes

in the sol•.tion feldA.(N'o) -owerver, because ve keep track at

each particle in the system, ve can still trace out a fairly sharp

"interface" Adch separates ave elements camtrised of different

materials.

Contact discontinuities can be appi•zmately determined by

noticing the distribution of mass points for a single material at

a given tme.(6)

Finally, moving ahbck surfaces mny occr on •hich the well-

know Rankine-ugoniot conditions must be sati•aiff_. Aain, errr

0

0



in the numerical procedure tend to replace a shock discontinlmtv by

a zone of finite width across whiich the depenient variables vary

in a rapid, but relatively smooth, fashion. The Rmnkim-Hugonlot

conditions are auomatically satisfied by the difference equations

governing the motion, so that again no special arrangeaet must be

made for shocks in the numerical procedure.



-9-

In. LALUM M DUSIPION OF ,1R MM D D

mnwamm• T'zmwqJ

The method of solution emplop the Particle-ln-Cell. (PIC) @COept

devised by .rlov. In Ref. 7 he presents a scheme for solvin the

equtions for tha case of pls symmetry, iLoh is a oWm-di1mnsi•OI

roblem. In this MemoraMdm, the scheme is modified ad extend to

two dimensions. H rmlov ham iadependently extended his method to two

dienions and has applied It to a zembei* of aerodyamio Fuoblis (m,6
A general description of the method is &ided by oonsidering

the equations uaer invystgation in the foae

CU pu greu + gradP + p eA grd * 0 (10a)

p A * gr-' + u ,pea.. O * ,,(P'a) =0 (1Oc)

Ahere

* - .Ve + e

P - P(p, e) (Ua)

An Bularian gid is laid dovn, an in this gid meay partioles

ate initia•3•y positioned. e mean is comnidered to be o.enmta'ted

in these partioles. During the omputatio, these rtiles move

thm u the gidv arryin with them mss a im muitiu asvell
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as internal and kinetic energY. Since the particles move in a

Lagrangian sense throu4hout an Eulerian grid, the method may be

said to incorporate some features of both formulations. The depen-

dent variables, viz., density, velocity, pressure, and specific

internal energy, are alweys specified ai, the Eulerian grid points.

In solving the equations, initial and necessary bovndarn con-

ditions are set up. The differential equations are then integrated

with respect to time. Thus the essential problem is, given the

variable fields at time t, to find the new fields at time t + &t. The

caaputation proceeds in two steps. In the first, the convective

terms (starred in Eqs. (10a) through (10c)) are neglected, and the

truncated set of differential equations is approxlmated in finite

difference form. Frum these it is possible to obtain new tentative

values of velocity and specific internal energy, Z and •, respec-

tively.

In the second step, the mass points are moved, using the average

of the old and the tentative new velocity. After the mass movement,

a calculation is made to determine which masses have changed cells.

If no masses enter a cell during this time cycle, the tentative

values are accepted as the final values.

When one or more masses enter a cell, a process known as

repartitioning is carried out. Tne particle is first considered to

have brought with it an amount of momentum, given by the product

of its mass and the velocity of the cell which it left. This momen-

tum is added to that of the cell the mass entered, and a new velocity

for that cell is determined by dividing the total new momentum by



-11-

the total new maos. The new velocity Is taken to be the final

velocity for this particular time cycle; and the nov total osun, the

final mass. In addition, a mass entering a cell is assumed to have

brought with it an amount of internal energy, given, similarly, by

the product of its mass and the spealfic internal energy of the cell

which it left. This Is added to the Internal energy of the cell

which the muss entered.

It is readily shown that the repartitioning process does not

conserve kinetic energy If the velocity of the cell which the particle

entered ic different from that which it leftt. When the momentum and

internal energy are conserved In this wry, same kinetic energy Is

alwzy lost. That In, the estimated kinetic energy assigned to the

cell after mass movement but before repartitioning Is alwas greater

than the kinetic energy of the cell after repartitionilg. In eoder

to conserve total energy, the loss of kinetic energy Is arbitrarily

added to the internal energy of the cell in vhich this kineticeenergy

defect occurred. The mass movement and subsequent repartitioning

process simulates the convective terms neglected In the first step.

DI1SCUSION OF ERMM

A thoroug discussion of PIC errors would include the determi-

nation of a single set of difference and differential equations which

correspond to the PIC process, the establliont of the convergene

of PIC solutions to solutions of the fluid-lynamle equations and

their initial and boundary data, and the establisaeent of a stabil-

ity criterion.



-12-

At the present time, there appears to be no satisfactory analy-

tical treatment of the PIC ionvergence and stability characteristics.

The greatest effort has been placed on the determination of a set

of difference equations which form an analogue to the PIC numerical

scheme and on the construction of differential equations that are

modeled by this process to first order in the time increment and

to second order in the cell widths.(5,6,B)

The derivation of the differential equations which are approxi-

mately represented by PIC solutions lies outside of the scope of

this Memorandum. Those who are interested in this development may

refer to Refs. 4 and 8.

For the present numerical scheme, these differential equations

have the follcwing form in cylindrical coordinates with the angular

dependonce omitted:

S? + . 0 (continui.ty)

S+ 1 D• 6 (XU b) + I ( •-• (momentum, x direction)

Dvt +y ' =y 'a x•m¼iu ) + T (Xv T) (momentum, y direction)

P~- -)-t Y y

1Dt 1X x TY, I x - u bx T Vb

" ", 2 + ( 2 + [(•2 + av• ] (enerey)

whert



-13-

x.= lul- 1

In general, bouwLary.cel analysis does not Yeled analogues to

these differential equations. We see that the error terms, that is

the terms which do not coincide with our original equations of

motion, formally appear in the above set of equations in the Same

manner as would the effects of cortain physical dissipative macha-

naisms This has Id to the comon usage of the terminology "effec-

tive viscosity" and "effective heat consuction" to describe these

error.%. Moreover, the effects of these errs an the computer solu-

tio have been Interpreted as those htich vauld have been caused

by an effective viscosity and heat cnduetion introduced into the

difference mnalogues of the originl differential equations. (5,8) TX

the right-hand side of the analogue momont•u equation I s to be the

divergence of a collection of elements, , and the terms on the

right-hand side of the analogue eergy equation not containing e are

*In this section, liberal use of the teswor notatic-a will be

made. Thus T i represents a collection of U2 elements hbich trans-

form like the caqpiennts of a contravarlant tensor of rank two; u,
and ui represent the contravartant and covariant eleents, respec-

tively, of the velocity vector. A co is used to denote covalant
differentiation, and sunmmtion is assumed (unless explicitly stated

otherwise) whenever an index I1 repeated. For Instance, cp - i 1t' uI,

U 1 Ba n• ei.

is1 i~j -E r isth

appropriate Christoffel symbol.



to be the stress power, f, assoolated Vith I

mhere the form of neither of these relations is to explicitly depend

on the details of the initial sad boundary ata of the f.ow Vroblem,

then these rprticular error term In the analogwe equatime Wsay be

assiociated. vih a particular dynmi@-sress matrix r(ij)* given by
*

aui 1,2(*mo.r(iJ) - X,(,) bu.,• 1,3 - !.2( sio 3)*

r(3k) " r(k3) - 0 k- 1, 2, 3

vhere

2

and

{u,~,u} {u, V, 0

Sx, X, 3} tx, Y, 01

eif the trensformtiol properties of a set of elements are not

inown, or if they do not satisfy a tensOr transformation law, ve use

the notation A(I) rather than Ai1 , A1 3 , etc. If a repeated index

is not smaed, ve put parenthesis around it to emphasize this fact.

For instance, A( 1 )( 1 ) is not suied; however, A(ij) Bij represents

a uuW1.



From this ftrm for the elements of the matrix -r(lj), and from their

interpretation as elesats of a dynaelo-stress matriz, the follow-

ing fats may be Imediately derived:

The elements of 1(I) do not transform like the elements of a

eontrevariant tensor of rank two. Thus, the stress power r(13) ui,•

Is not invariant iliw adaissible coordinate trsaformation• in Z3.

This leads to the result that such hysiceal properties as entrop,

specific internal energy, and density at a point vill vary vith a

ehaxe of spatial coordinates describing that point. Moreover, the

stress vector, F (p), at a given point (p) vith respect to a surface

through the point described by its unit nameal vector vj(p), pre-

svmably Lis related to -T(i3) by F I(p) 0 v(13) V j(p). Again, the lack

of tensorial property of T(ij) leads to FL'. vhich depend not only

on the surface vi(p) but on the particular coordinate system used

to describe the position of points in the portion of 3 under con-

sideration. (This Is not surprising, since the entire e*ror analy-

sis leading to the analogue differential equation Is valid for one

particular coordinate system and no other.)

The established relations for 1(1,3) do not leave the flov

equations Galilean invariant.

By inspection, v9 see that v( i3) Is not syetric vith respect

to interchange of the indices I a& 3. If we perform the usual

decaupositea into symmetric (S) and entisymmetric (A) parts, we

obtain -r(ij) - ¶s(i3) + rA(i3). We know that a constitutive relation

*This particular property of the aralogue equations has already

been recognised by Hurlow.0)



cerresponding to the viscosity hypothesis vill only be related to

TS(ij). The antisyimmtric part rA(iJ) must be accounted for in

some other way.

The viscosity hypothesis is TS(ij) - C(ijkA) ckA where

9 [u, + u 1and the C's &,ro. s-imetrical vith respect to

interchange of the first two and last two indices. Because rS(ij)

is not a tensor, we avoid the usual representation, C , which

implies tensorial properties that our coefficients do not have, It

is easily shown that for the given form of T,(ij) the viscosity

coefficient C(l, 2, 1, 2) (and all of those derivable from it by

symetry arguments) must satisfy a set of equations which are incon-

sistentexcept on a line given by I Ii ' - 1 1 A2.

Hence, the origin of TS(ij) cannot be said to be viscous in

natue. If we introduce -.he most general linear constitutive rela-

tion connecting the stress elements -.(ij) with the deformation ten-

somr gk, ,(ij) = B(ijkt) sk, ve still obtain incompatiole relations

for some of the coefficients of this linear relation. Thus the

antisymetric part of T(ij) (as well as the off-diagonal terms of

the symetric part) cannot be obtained by even the most general

linear constitutive relation connecting the stress elements with

the deformation te-sor eij"

The presence of the antisym.aetric elements -rA( ij) adds addi-

tional confusion to the attempted representation of errors as physi-

cal effects, for it can be shown that a rather arbi t rarý partition-

ing among a number of physical effects (couple-stresses, couple

density fields, a.ji possibly more general constitutive relations
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than we have considered here) may all lead to the same ¶A(iJ) that

is implied by our analogue differential equations. Thus, among other

difficulties, there seems to be no unique way of assigning physical

effects to the error terms considered.

A similar analysis can be made. which start. with the assumption

that the remaining error term in the energy equation containing the

specific internal energy, e, may be thought of as the divergence of

a heat-flux vector {Qi}. This analysis also exhibits the many weak-

nesses of such an assumption. We first observe that the elements of

the "pseudo-heat-flux vector" Q(i), which are given by {Q(i)}c

il' X2 2' O, do not transform like the components of a contra-

variant vector, with the result that the heat flux, as well as the

physical variables, entropy, specific internal energy, density, etc.,

exhibit the highly undesirable property of changing at a point under

admissible coordinate trensformations. Another drawback of this assump-

tion is that it implies a heat-conduction law where hea. flow is pro-

portional to the gradient of specific internal energy rather than of

temperature, a condition which would make physical senue only when e

was just a function of temperature (which in general is not true).

In summary, we may say that the assumption that the eriors may

be thought of as rplated to distinct physical effects leads to many

contradictions of the assumption. Therefore there seems to be

little merit in treating the lowest-order errors induced by a PIC

program as anything other than just plain errors.

Although the terms which we have been disous•ing represent

errors, they are largely responsible for the applicability of PIC



as a practical numerical scheme. These elements provide the

required smoothing that we need if we do not wish to keep track of

shocks which would be expected to appear in the actual solution of

the inviscid equations for adiabatic compressive flows.(9'I0)

As a result of these terms, our solutions exhibit relatively

smooth variations in shocked regions, g-ather than the violent

oscillations which would characterize numerical solutions in these

same regions when no such elements are present. These artificial

smoothing errors are much larger than real dissipative terms whica

may occur in our physical sys+em. (They mutt be in order to provide

the necessary stabilizing influence.) For tVis reason, certain pre-

cautions must be observed when using this sort of a program. Shocks

are smeared out over approximately three grid increments in the

numerical solutions, whereas the true shock thickness may occur

ever a small fraction of a grid increment. Hence, shock thicknesses

derived from this sort of program should not be quoted as physi-

cally significant results. Also, real dissipative phenomena should

not be incorporated into the original equations where the correspond-

ing artificial smoothing effects are many times larger than the real

ones.

In many instances, it is possible to replace these artificial

smoothing terms by morc desirable forms. Such replacements are

-treated in Ref. 5.

It is easy to show that whenever mass points leave a cell but

none enter it, the difference equations for that cell contain neither

our previously defined errors nor any convective terms. (8)
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This particular situation seldom causes an problem in interior

cells, but it often aris.s and persists for may time cycles in

cells adjoining a boundary, particularly a free surface in a region

of essentially one-dimensional flow. The effects Vhch this situa-

tion has on the PIC solution of problems are little under.-tood. It

suffices to say here that such cells my contribute a maor suce

of errors in PIC solutions and that these errors my propagate to

the interior cells.

Because of the lack of a good error analysis for this kird of

numerical scheme, it must be emphasized that the principal evaluation

of the results must be based on a comparison of PIC solutions, and

mathematical solutions whenever they are available (which is seldom).

Other tests, such as checking the sphericity of results (where spher-

icity is expected) and varying time and space increments in the PIC

programn to see what happens, are sometimes useful.

An empirical investigation of this kind was used to ascertain

the nature and extent of errors incurred by the PIC numerical scheme

such as described in this Memorandum, and the following tests were

made.

a. Numerical solutiom, to me-dimensiocal, uniform.-shoek-,ave

problems war solve' for a variety of shook strengths and for equa-

tions of state of aluminum, iron, tuff, and polytropic gases with

gama equal to 1.4 and 2.0. Numerical results were compared to the

simple analytical solutions Nhich in these instances Veto at our

disposal.
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b. Numerical solutions to the problems of the one-dimensional

rarefaction of air irto a vacuum and of compressed tuff into a

vacuum were obtained. In each instance the resulting theoretical

flows are simple centered waves, which admit analytical solutions.

Again the numerical results were compared to these analytical solu-

tions.

c. An axisymmetric numerical solution to a spherical air-burst

problem in a uniform atmosphere was computed in cylindrical coordi-

nates and compared to a Lagrangian solution of the same problem by

H. L. Brode(I0) in spherical coordinates.

The results of these tests led to the following set of gemeral

qualitative observations which appeared to be consistent with our

numerical solutions.

Shock velocities and the estimated position of shock fronts

were in good agreement Vith the corresponding theoretical solutions

and with values obtained in Ref. 10. Generally, agreement within

d 5 per cent was obtained. The estimated position of shock fronts

in the numerical solutions was taken to be the point at which the

pressure vas equal to the arithmetical average of the peak pressure

behind the shock zone and the initial pressure. The width of the

shock zones varied from two to five cel widths but generally

remained aroun three cell widtl3 in extent.

The largest errors in the solution fields generally occurred

immediately behind a shock zone and in regions of very low density

where there were very few (generally less than four) masa points

per cell. Most c.ten (though this was not always true) the numerical
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sol3utilon tended to exceed the correspo1i.n theoretical1 values rigt

behind the shock and then to execute a damped oscillatory notion

about the theoretical values. The velocity and specific internal

energy generally exhibited maller errors than did the density and

pressure in these regions. Relative errors seldom exceted 20

per cent and were more often on the order of 5 per cent for

reasonable choices of the cell widths and time increments. In

the continuous flows (rarefaction solutions) the numericaj. solv

tions were very good, often giving relative errors of less than

1 per cent and exhibiting stronger deviations only vhen regions of

very low density were encountered in the tail of the rarefaction

for air. (The tuff rarefaction exhibited no tailing off of the

density to zero.)

GRID CEANGES

For such purely practical reasons as the limited size of the

electronic computer's fast memory and the desire to keep the comput-

ing time within reasonable bounds, it is possible to use only a

limited number of grid points. Consequently, resolution in the solu-

tion of two-dimensional problems is very troublesome.

To utilize the resolution to the utmost, an artifice termed a

"grid change" has been developed. We take advantage of the fact

that the interesting effects expand in size and that the medium

outside the motion is undisturbed until some signal from the expand-

ing region reaches it. In the case of hypervelocity Impact and

nuclear bursts, the exterior fluid is undisturbed until a shook

reaches it, and the region of motion is entirely within this
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out'erd-moving shock. Thus, it is Only WCOmsey that the grid

coVer the region of motion and a reasonable amount of umx3stured

fluid outside of it. The procedure is to lay down suh a grid and

constSitly test for the slightest indlcation of motion at the grid's

per!ýizory. The computation is stopped when such motion is detected,

and a neo, somehat larger grid is laid dovn for the next phase of

the computation, utich encomps ses some nev undistur'bed fluid. In

this vay, the interestirg region always occupies a large fraction

of the grid points available.
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IV. DETAIL DESMIPTION OF THE METfOD

PHYSICAL EXAMPLE

In order to illustrate the numerical prooess, e take as an

example a surface explosion in air over a fixed grodu in the pre-

sence of a un4.form gravitational fie!c. The geometric representa-

tion selected is one of cylindrical symetry about tho rxis x a 0

with the ground at y - 0 as shown in Fig. 1. We treat the air as

a perfect gas, so that the equation of state for the fluid Is

P (p, e) u (y - I)pe (ii)

where y is a constant usually equal to 1.4. It w.II be apparent

that am equation of state of the foarm P m f(p, e) may as readily

be used. The external force field has a poteutial

0 a gy (12)

where g is the gravitational acceleration.

The In ~.al conditions are

u(x, o) 0 0 (13)

pG, o) - p0 exp(-y/X) (1j)

e(Z-,o) - aeo (for x2  e y 2 :9r2)

e6,o0) - e~ (forX 2 + 2 > 2)



-214-

y
YMO

cylindrical
sYmmetry-

ro

Fig. 1-Surface-burst geometry

II

II
tI



The particle velocity u is zero at t - o; the dmnsity p of the fluid

In an exponential function of altitude; the specific internal enaro,

0 In •0 in the unisturbed area, and a constant a time e vithin

the disturbed area. The initial pressure is determined by substi-

tution of Eqs. (14) and (15) Into Eq. (32), the eqmtA= of state.

The boudary conditions to be satisfied are that there Is to

be no fluid motion across the fixed bounlary y - 0 and that the

radial conponent of velocity u vanishes at x - 0. These two con-

ditions may be written az

v(X, o, t) - 0

u(o, y, t) - 0

mhere v and u are respectively the axial ad radial components of

velocity. The fluid is ionsidered to extend in•efinitely vith

increasi•g x and icreasing y.

At this point it should be emhas1zed that the perticular repre-

sentation of the physical problem described above is not necessarily

the most realistic model for an extensive investigation of the physi-

cal phenomsna; rather, it is selected to illustrate the application

of the numerical procedure. It is clear that other initial cor1i-

tions vithin the disturbed region, other equations of state, other

models of the undisturbed medium, and other heights of bust y be

used in place of those assued above.

REPRESENTATION OF THE FWLID

The vowume is considered to be divided into a finite number of
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volume elements, each of which is fixed in position, shape, and size.

For our example this region is bounded by x - 0 on the left, y - 0

on the lower side, and extends indefinitely in the direction of

increasing x and y. Since we wish to maintain a certain degree of

resolution, for the time being, we limit the region to a maximun

Xmox On the right and ymax P.bove, as shown in Fig. 1.

One of the volume elements into which the region is subdivided

is shown in Fig. 2a. Element ij is bounded on the left by xli, on

the right by xl+1,, on the lower side by Yl, and on the upper side

by ylj+I" It subtends an angle of one radian about x - 0. The

volume of element ij is

V a 1 - x22) (Y-J. y, ) (16)

A convenient notation is that the center of area of the volume ele-

ment cross section shown in Fig. 2b is at x2 V, Y2. where

x 1

1

y2j " (Y. + y.j+l)

and the center of volume is at x31, Y3M where

xlii

y 1M3i 7 (Y + 2lJ+l)
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yij+1
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K11 xI+

Fig. 2a--Volume element ii In cylindrical symmetry
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Fig. 2b-. Volume element ij cross section



Furthermore, the subeells Oi, lij, 213, vA 3ij all have equal

volumes.

The fluid in each volume element, or cell, is represented by a

number of discrete mass points. These mass points are free to move

from cell to cell duirig the history of the m-tion. At any instant

in time tn, the total mass be in a given cell is equal to the sum

of the values of the discrete masses contained in the cell. With

the total mass and the volume of a cell known, the density p, or mass

per unit volume, in cell ij is

-j ?4 /Vij (17)
n

where pij is the density at time tn, and Vi3 is given by Eq. (16).

Velocity,. density, and specific intermna energy are properties

attached to the cell, aud they are considered to be constant over

the cell at a particular time. The components of velocity at time
n

tn are designated in the x direction by uij, and in the y direction
a nl

by vii; the specific internal energy e for cell ij is ei 3 .

The pressure P is measured at points where several volume

elements meet. For our example, pressures Pa PO P l and
i3, i+lj.- 13+1

Pp3+ are at the respective points xli, y1 3 ; x1i+1 , yl,; etc.

This is shown in Big. 3. Pressures at intermediate points are

asmmed to be given through linear interpolation of nearby pressures.

Thus the pressure at a point y aloag face Oij is given by

P-n Pp + Y - Yl Iil-Pj) (80±3 13 (18)
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P11+1 Face 3 PI+ iJ+4

Face 0 11 Vi Facep11

PIj Face 2 Pi+i j

K..
F i i

Fig. 3- The variables of volume element ij
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A similar relation applies to each of the other faces liJ, 2±3j, and

3I±,.

External forces are treated in much the same manner. We observe

that the potential function * appearing in Eqs. (1) and (9) is always

in the form

grad •T TP (-x, -Y, -z)

where X, Y, and Z are the components of force in the x, y, and z

directions, respectively. For our example. gravity is the potential

force and its components are

grad - (o, g, 0) (19)

where I is defined by Eq. (12). In this particular case, grad # is

a constant.

flN!TIAL CONDITIONS

The masa in a given element of volume is

M a pdV (20)

If we substitute Eq. (14) for p and (x dx dy de) for dV in Eq. (20),

the total masM0 originally in cell ij isthe ota ,mss ij

0 Xli+1 SYl p e x dx dy dl

which after integration becomes
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PoJ 2 A(e-Ylj/•,(21
24%j - 2h (X l+l . Xý) (e-yi/X - 21

This mass is divided equally among the mass points originally in the

cell. The points in each cell are positioned so that the density

is approximately uniform over the vol'.me of the cell. For instance,

if there are eight points originally in a given cell, their locations

might appear as indicated by the cross marks in Fig. 4. Since the

points are free to move from cell to cell as time goes on, it is

necessary to record the mass of each point, so that the total mass

or density in a cell can be determined at any time.

Tht initial velocity in each celi is zero in the example

u. 0 - o (22)ii

The disturbed area, within which the specific internal energy
0

eij = a eo, consists of a number of cells which lie wholly or par-

tially within the radius ro. Outside this region, eij -e 0 .

EJUATION OF STATE

Having specified the other initial conditions, we calculate the

pressures from the equation of state, Eq. (4). In order to evaluate

the pressure, which is a function of density and specific internal

energy, it is necessary to defiLe an effective dersity aud specific

internal energy for the region imediately surrounding the point at

which pressure is computed. Since the density of the f.'luid is con-

sidered to be constant over a cell, we define the mass M associated

with the pressure Pij as
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Fig. 4 -Initial posItions of masses
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M -(MoiJ + Mi.tj + M31-lJ-1  ÷ 2i-1 (23)

where the first subscript on each M refers to a subeell (see Fig.

2b). The volume in which this mass is contained is given by

V - 31(x - x...iil) (Y3, - Y34-1) (211)

Substituting in Eq. (17), we find that the density associated with

the pressure is

P (M~ij 'Mli-l 'M31l- ' ~J1 (25)

X 3 - X31-),(3J- y 3 J- 1 )

In a similar manner, the effective specific energy for the

pressure computation becomes

e Moijej + +i'ljei'lj I M2 ij'leij'l + M3 1"jlei 1 l (26)
Moij ' Mli-1j M2ij-z 1 + 3i-lj-i

Upon substitution of Eqs. (25) and (26) in the equation of state
for the fluid, Eq. (11), the pressure lij is determined.

Certain boundary conditions affect the computation of pressure.

For instance, at y = 0, either Eqs. (23) through (26) must be

modified to take into account the presence of the boundary, or mass

and specif.i. energy for fictitious cells below y - 0 must be supplied.

Similarly, socme adjustment is needed along the axis of symsetry at

xli - 0. We choose to modify the equations rather than supply

variables for the fictitious cells. Hence, at X 0, y13 m 0,

Eqs. (23) through (26) become



X2 M (2a)

231~ x~) (Y3)(a

P y 4u-(25a)

e a eij (26a)

mhere for this example x3 - 0, yl- - 0 hen i 1 a•d - 1. At

xU 0, yL - 0, Eqs. (23) through (26) become

M - (Mi + -j (23b)

V ( - YI) ) (21b)

P k -4 Oi, Ml-1j)(25b)

e M o0 e. 3 + Mli-1 "i-1 (26b)

Mo13 + MU-1j

Fiz,,Uy, at X• 0 0, Yjj 0, Eqs. (23) through (26) beco

v X2 (24c)

2 ( 31) (y33 - y33..1) (10
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P (MOIJ M+2iij-l) (250)
x231(3J ° Y33J-i)

e W Oijei' + -j'leIj"I (260)M0IJ + '2Lj-l

Other types of boundary conditions require similar considerations.

Free boundaries are such that the pressure must be zero on the bound-

ary. This can be handled numerically by imposing the followlng

restriction: If any MiJ is zero for the ewl 1 cell corresponding to

M ij n Eqs. (23), (23a), (23b), or (23c), whichever is applicable,

then the resulting pressure is zero; otherwise the computation of

pressure is carried out as previously described.

This method of evaluating pressure from the equation of state

is employed not only in the computation of initial conditions but

also in subsequent computation in the integration process itself.

PRELIMINARY CALCULATION OF VELOCITY

The first step in the numerical integration of the equations is

to es .imate the new velocity in each cell. The x-component of Eq.

(i) is written

+ - + - C

which, for our example is

K - 0
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since grad # in the x direction is zero. Neglecting the convective

term and dividing by P we have

au

This equation requires p and r- to be known in order to evaluate the

change in the u component of velocity with respect to time. For
BP

the fluid model the density p is known in each cell, but K is not.

We estimate t in the following manner.

Assuming that the pressure varies linearly from one corner of

a cell to another, an average pressune P for a face can be computed.

For face 0 of cell ij the average pressure 10t1 is
Oij

O - + l. (28)

and for face 1 the average pressure P- islii

I - 3 + 'P+lj1) (29)

If we approximate •- with

ap lij xli

and substitute this expression into Eq. (27), we have for the change

in u in cell iJ at time t
(n
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where the dot denotes the time derivative •. The pressures PO d013
Sare given by Eqs. (28) and (29) respectively, and pn is givenlii i

by Eq. (17).

For the change in velocity in the y direction, the differential

equation is

Dv + + 1 + P 0

which for our example may be written

Dv •PPt+ T4 +pg a0

Again, we drop the convective term and divide by p, to obtain

av - BP

Calculating average pressures in the manner stated above, we have 4

for cell iJ4

,n n
in :• J L..÷ .- ) - g (32)

Pi y1i41 71 1

where

pn (P + PA+li (33)

fp-j (" + A(4
31 2 l +l "+l3+l)(k

If the change in velocity is assumed to be constant over the time

step and equal to the value at the beginning of the time step,
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the estimated velocities at t +l are

'i I J ii tn4~ ii

(35)
+Atl n

with 4,1+ 1 - tn+l - t.. Here the tilde denotes an estimate of

velocity, since we have asseued that masses do nut move. Also, the

estimated average velocities for the time step are

-n~l 1 +f -Ul

(36)

-n+1 1 (vai +

PIELDhflWAY CALCUILTION OF INTENAL ENRGY

The next phase of the numerical process is concerned with the

estimation of specific Internal energy in esah cell at the end of

the time interval. The conservation-of-energy relation given by

Eq. (9) serves as the basis for this computation. Since we assume

that density, velocity, and specific internal energy are constant

over the cell, and grad 0 is also constant, Eq. (9) may be vritten

pV u ,grad 0+ pVl 0 + e) P Uov•~ ~ D •2r •v•••••

Dropping the convective term Ead dividing by pV, we have for the

change In specific energy

et grad* - yt- f u u -) S
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Interating Eq. (37) with respect to time yiel2A the change in spe-

cific enya for the time interval, mhich, ohen added to the specific

energy at the beginning of the interval, results in the desired esti-

mate of specific energy. Because of this integration with respect

to time, average velocity for the time step is used wherewv velocity

is required in evaluating Eq. (37).

For the physical example where grad # in given by Eq. (19), the

first term in Eq. (37) is

-U grad # - -gv:jl 38

aed the secend term is

The mass pV in the third term in Eq. (:6) is equa to n Vi, le

the Integral represents the rate at which ahe energy is bLin dimin-

ished by work don oan the surface of the volume element. In evalu-

ating the surface work integral for a cell we note that the volume

element under consideration has six different sufaecs. Only four

of theze, however, contribute to the integral since the net wuk

done on the surfaces coincident with the meridian planes is zero due

to cylindrical smmetry. Integrals for the four other surfaces

(0, 1, 2, 3) which do contribute are evaluated separately then smmed

to determine the total integral.

To evaluate each of these integrals, we first d3termine the

quantity P. d'S a• then integrate. For face Oij the pressure P
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Integrating Eq. (37) with respect to time yie24s the change In spe-

cific e for the time interval, which, when added to the specific

enerz at the beginning of the interval, result. in the desired esti-

mate of specific energy. Becaue of this integration with respect

to time, average velocity for UIe time step is used vhere.w velocity

Is required in eval ,Ating Eq. (37).

For Vhe V '.cal example here grad # is given by Eq. (19), the

first tar. in Eq. (37) is

an the eec-.' +A rm is

The mass pY in +* t~ird tezu in Eq. (36) Is equla~ to pn V~ Ak-

the integral rersents the rate at which the energy is being dixLin-

ished by work don on the sa awe of the volues element. In evaiu-

ating the swfý - work integral for a cell me note that the volume

element ande uonsideration has six differ4t surfaces. Only four

of +,hese, t-'v.,, .octru te to the integral since the not work

done - tht surfaces c Incident with the meridian planes is zero due

.'o cy•Lindrical syv- .,,ry. I-tegrals for the four other surfaces

(0, 1, :, 3) ih'ic.+ do contribute are evaluated separately then sunned

to4.e~ermine th.c total Integral.

To evaluate each of these integrals, we first determine the

quanrtity FU -•J aM then integrate. For face Mji. the pressure P
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Is a function of y alone an given In Sq. (18). bTe function U - df-

represents the velocity n,.rmml to the surface (ana taken to be posi-

tive in the outwrd sense) tims the elent of arwa oves whih it

acts. Since ve consider the velocity in each cell to be constant

over the cell, a discontinuous velocity at a surface acimm to tin

cells can ociu if the velocities in those cals are different. neoee

the following assumptian is mode: Mw velocity on such a crea

surface is equal to the avrage of the velocities in the adjacent

cells. The functionU di my now be evaluated; for face 0 It is

-0 ý ii3J/\+.331)xl y (3.)
u •S I•l - • + j

The negative aign appears because of the outvard sense of the nam- .

Upon u'ibstitutions of Eqs. (18) aMd (ii0) we fird for this one face

y -. M

which after integation beees

proceeding in a si1ilar mannn• for the opposite face, 11J, ve find

that the integral of Eq. (37) is

- u dS - -W-(Yl,+l - Yl)P:+, + PP+J1)ý~ + u (2



Next, the pressure along face 21j is given by

Pf *pf + ~ p -Pu~ (143)21j 'j x1i~ - x 1 \+13 ±3/

and the function u d9 in the outwai-i sense is

"-u 2 " -" .1 + ij ) x d (44)

Substituting for the integral, we have

x lu d 2 1i I7ij-1 ijj

which after integrzation beccmes

+ &1 (x 1 1 + 2:i,](5

In a similar fashion for the integral for the opposite face, 31J, Is

I'- (xl 1 4 1 - lu) ( il i+ l [~.. )[ j~+1  (P-l 2 x1± ~

+ P',+1 j+i(xii + 2x,+.,)] (146)

The total integral in Eq. (37) is the sum of the integrals for the

four faces given by Eqs. (41), (42), (45), an (46).

It should be roted that when one cell receive_ an increment of

energy, Pu • dS bt, exactly that amount is subtracted fron the



appoprLate adjoining cell, so that total energy Is conserved. Since

the repsrtitioning process aiscussed in the folloving sections also

coserves energy, the external potential, t, is the unly agency which

can cause a cha&Ee in the total energy. In cases where 0 - 0, this

provides a volt-able check on the computation.

The change In specific energy per unit time, Eq. (37), may nov

be evaluated using Fqs. (38), (39), (41), (42), (45), and (46) with

pV . p n Integrating with respect to time we ftid

-,n+1 , a -n+l - n-(l n +ne ij e; -j Atn 9. tn+1 UjUL I J

+ y + )k t- n+l + -7+l

nP { 1 + -n+l)

+~xj+} (+1j{ZU + x~i +1 -~1) 7

In Eq. (47) no account has been taken of the effect of boundary condi-

tions other thba the presence of free boundaries where the pressure

is zero (as discussed previously). In our particular example no work

can be dome on the fixed boundary or on the boundary of symetry

because the velocity normal to these boundarics is zero. Hence the

term in Eq. (47) resulting from Eq. (45) is zero for y• - 0, an

the term resulting from Eq. (41) Is zero wben x, 1 - 0.
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Having computed the estimates for the velocity and specific

internal energy at time tn+1, i can determine the momentum in each

direction and the sum of the kinetic and interral energy for each

cell. The momentum in the x and y directions, respectively, are

Momentux 0+1

ii uii

(48)

omnumy . Mn -12+l
Momin ij

where

Mn n

-j Pij Vi

The estimated kinetic plus internal energy in a cell is

i S 2 \ý) +S I /i (49)

Expressions (48) and (49) are correct at the end of the time interval,

provided no mass changes location from one cell to another (i.e.,

. Mn ). To correct these estimates of momentum and energy for
ii ij

cells which do not meet this condit4 n, Aeah mass which chages cells

is considered to carry with it to the new cell its share of the

momentum and kinetic plus internal energy. This together with the

integration of Eq. (37) insures that mass, momentum, and total energy

(kinetic + internal + potential) are all conserved.

MASS MOVEMENT

In the next phase of the computation, the masses are moved



according to an average velocity for the time cycle. First the sub-

scripts p and q are de~.ermined such that

X2 p. 1  m 2p

(50)

y2q-n ! Yn< y2q

where xn and yn define the position of the mth -ass point at time

tn and X2 p and y2q define the center of area of the cell pq. The

velocity of the mass thus located is considered to be a sum of the

velocities in cells p-i q-l, p q-l, p-i q. and p q weighted, respec-

tively, 'Ly a., a. a2 , and a

-n+21i 4+1 -1+ -n+l -n+l

UM~ 0 0 i-q-1 + aluq1+ a2U-q+ a

'm 1  a 0 " qs l pq-1 + a 2 p-lq a3 PkI

where %1 an• vl are the migration velocities assigned to the mth

mass point in the x and y directions, respectively. The weights are

determined in the following fashion: First the proportional areas

CO, Cl, a2, and a3 are computed

c 0 o ,,,lc2 , and
cn n
a "X2 x 1 /\y 2 q y 2q- /

a 2p-l ýY/\ - 2q-',

l\ 2 p - 2,1- /V2"- y2q-l I
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i nC :,+ -m x+,. ' - Y2 ,,.I

'3- •2p 'ep_-1,] y2,q,. •2q-1] ,2

C) Y. - ;Y2,1 (52)

Next b 0 , b1 , b 2 , and b 3 are determinee

b0 = 0 MO •lq-i J0

b

b0 =0 p-lq!l 0

b =0 pq-i -0

(.53)

b2 =c 2  -lq q 0

b2 =0 P-lq 0

b =0 = 0

3 pq

In order to avoid certain difficulties on cell-- adjacent to
free surfaces, it is helpful to use an alternate scheme for computing
(bo, bl,, b b 3 ). In the alternate method, ve use b,= C q' etc.
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Finally, the weights a , a., a,, and a3 are defined

b0
"a0 + b b +b + b

0 1 2 3

a ~b 1
a1  b0 + b 6 b +b

U 1 ' 2 3
(51+)

b 2

a2  bo +•b +b 2 +b 3

b3
a3 =bo+ b1 + b2 + b 3

Substituting Eqs. (54) in Eqs. (51) yields the average velocity for

the time cycle for mass m.

Again, boundary conditions modify the computation of velocity.

For the fixed boundary at y - 0, cells p-. q-1 and p q-1 represent

fictitious cells. The determination of the velocity near this

boundary is achieved by modifying the computation of the c's of

Eqs. (52)

c0  0

-0

(52a)
x n \ / n \

2 - 2 P /V2q
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Substitution of Eqs. (52a) in Eqs. (53) and continuing in the

manner previously cescribed permit the velocity of the mass near the

boundary to be determined.

Similarly, for the velocity near the boundary of symmetry, the

c's are computed in the following manner.

C 0o
0

C 1  x~p~y2q - y2q-l/

a2 = o (52b)

mX)( Y. - y2q-/
23 - ý kg - ykq-l/

For the velocity near x - 0 and y - 0 the a's are

Co=0
c0 0

C =0

(52c)

a2 0

3 (x~p kg~
n+* n+l

The new location of the mass, given by xnm 1•* yYm is

determined by integrating Eqs. (51) with respect to time



K x +-A U
a n~l IN

(55)

ni- v + -t+

, we pose boudwary c ition at x =0 and a'. y 0 such
that no mass can cross the boudr. a Mrs f n+l < , Xnn+1 is set

n+1 yyl D1-1 n+l
eqa to Isiarly, if . <0, ya is set equal. toV, I.

Th th mass point at time t Is in cell1 3 , Aw~re i' andUSU

defined as

n

(56)

S- j enyl, A <y
YZn'+11

If at time t l, 1 1 anyr

nI+l ar e1 nai t n ny fr ady! nEq. (56), ar qa o M rsetively,

no adjust m n i mn uI aud energy is required since the mass does

not chabme cells. If, bowever, the zss does change cells, then

estimates of momentum and energy in bot'a the old cell and the nv

cellar moified. The estistedi innt of thle 2th NS on

far the time Interval tn! t 9 1+ is, in the x directton a. y

direction, re~spectively

;-0+i -,ni+i (57)

Sstm t a mass point, the esti ed ttal

enorgy assigned to tbI~s sam~e mnss point is
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~~ (~,0*2 +3?l)}(8

ii

1 -oil. th
where i += M i e . The total mass in the 1j cell at time tn

is eDJ, and -r_• is the total estimated internal energy foa.- this

same cell before mass movement. Notice that i = in and 3 = Jm in
m

both Eqs. (57) and (58). In going from cell ila? to j them m m m

mass takes with it both momentum and energy. Hence expressions

(57) and (58) are subtracted from the estimated momentum and kinetic

plus internal energy for cell ira4 and added to those of cell m n+lmn+l

na nn+l .nl
for each mass point which crosses from cell i£ n to cell i 3m "

mm M m

REPARTITIONING

After all of the masses have been moved and the total estimated

momentum and ewrgy for the cells have been adiusted correspondingly,

a final set of values for density, velocity, and specific internal

energy at time n+l must be assigned to each cell. These values are

chosen so that the totae. mass, momentum, and energy assigned to each

cell after mass movement are conserved.

First, the mass M.II of the iUth cell after mass movement is
ij

found by simply adding up the masses of all of the individual mass

points in the iJth cell at this phase of the calculation. The new

density of the cell is then given by

n+l M=.L (59a)
Pj3 vij
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The new velocities u14 'l "l) are given respectively by

+ [Total estimated momentum, x direction]i (
ij

1n~ [Total estimated moment.-ap y dlirection~li

ij (59c)
ij

iMi

PRESSME CALCULATION

The final step in the numerical integration process is to compute
pn+l

the presstres P as described in Section IV using the new values of
n+l a dsiyn+l

specific internal energye a density p "1

STABILITY CHECK

Together with the computation of the internal pressures it is

desirable to perform a check on the stability of the numerical inte-

gration process. At the present time, th0're appears to be no sta-

bility criterion specifically designed for the PIC process, although

the von Nemann method(I-) of stability analysis used in associa-

tion with the existing PIC analogue difference equations(4,8) could

probably be used to develop one. A rough approximation to a sta-

bility criterion is given by the conditions that the mesh speed

in any direction should exceed the speed of a sound wave (relative

to a fixed reference frame) in that direction. For our problem this

conlition becomes,



where 4x ani Ay are increments of Eulerian coordinates and vs is the

local velocity of sound of an observer moving with the fluid.

This condition is always met by

6t < MinmT

For practical computations we have found that

/2 2
U4V u vSV

We therefore choose as our stability criterion

.'at n (60)
S

where r is a constant (approximately equal to 2) that is generally

established by preliminary computational experiments for mhatever

problem we have in mind.

The velocity of sound is given by

v2= (aP) (61)s rs)

that is, the partial derivative of P with respect to p at constant

entropy. Sina.u at constant entropy

de =- dp
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then

v= 2 + (62)s Tpe P 2\ ] IP

For stability of the numerical process to be assured, the Ccurant

condition, Eq. (60), is observed thro-iwhout the region. In the case

of the equation of otate given by Eq. (10) we have

2 P

v -2 (63)

Therefoe for each point in the fluid at which pressure is computed

the condition to be satisfied is

sm (Y- )( \min LCPx,4y)/ 1(64

In addition to a check on stability we may use Eq. (64) to adjust the

time interval during the course of integration so that an optimum

time Interval is always wsed. This is done in the following manner

Atn+2 ' Atn+1 for s . s s2 < 1

Ltn+2 = rl/1tn+l for s < s 2 (rI > i)

Atn+2 =r 2 Atn+l for s2 < s (r 2 < 1)

That is, if the calculated value of the stability function s at time
tn+I lies between or on either of two preassigned numbers, s < s2 < 1,

then the subsequent time interval is not changed. If the stability
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function s is less then sl, then the time interval Is increased by a

multiplier r 1 . If q is greater than '2' hoever, the time interval

is decreased by the multiplier r 2 . The numbers r 1 and r 2 are also

positive preassigned constants.

GRID CHANGE

Sooner or later the disturbance induced by the presence of the

blast will reach the grid boundary at. x - xmax, y - ymax, or both.

At this point in time, computation with the current model must cease,

because the material will soon flow to nonexistent cells and further

computaticms will become meaningless. Consequently, at the end of

each integration step, tests are made to determine whether or not the

disturbance has reached the boundary. These tests involve a search

for nonzero velocity and for specific internal energy, density, or

pressures which are different from their origiral values in any cell

adjacent to the boundary.

In instances where disturbances spread through a larger and

larger volume of material, it is often desirable to maintain at all

times a high degree of resolution with r.-spect to the disturbed

volume. The airburst problem is one such case. At the time vhen

a disturbance reaches the assumed boundary in the example, it is

poosible to create a new model with the characteristics of the old

model at that specific time, so that integration can be resumed.

This is done in the following manner.

The new region is selected in such a way that all the fluid in

the old model is contained within the volume of the new model. Such

selection for our physical t:Awple is illustrated in Fig. 5. Here



New reglor. b-cundery I

Old New
Xmas Xmas

Fig. 5- New and old regions in transfer
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the maximum iimensions of the new region are at "ne" x. and "new"

ymax; the oli r•cgion is completely enclosed in the new region.

The new rrglon is then subdivided into volume elements in the

same manner as described before. Mass, momentum, and energy are now

assigned to the cells of the whole new region in two distinct steps:

First to those cells or parts of cells which coincide with the new

region, and then to those cells or parts of cells whtch coincide with

the old region. Initial values of mass, kinetic plus internal energy,

and momentiua are provided in the new cells for the additional fluid

which has been encompassed; i.e., in the new cells where xli+l > 'told:a

Xmax, or YI1 +3 > "old" ymax' Here it is possible that a given cell

may encompass some old volume as well as some new volume of fluid.

In this event, the mass, energy, and momentum for the new fluid only

are provided in these cells.

Next the mass of the fluid in each cell of the old region is

added to the proper new cells, as shown in Fig. 6, under the assump-

tion of uniform density for each old cell. The portion of mass of

the old cell which is contained in the new cell I is added to the

mase in new cell 1. Similarly the kinetic plus internaL energy and

momentum associated with mass N, are added to the energy and momentum

in new cell 1. The other new cells, 2, 3, and 4, receive mass M,2, M3,

and M4, respectively, from the old cells and L' co receive the corre-

sponding portions of energy and momentum.

After all the mass, energy, and momentum in the old cells have

been redistributed to the new cells, the velocity, specific energy,

and density are computed in the new cells in -.. manner described in



-- - -- - T - - - - -

I New cell 3 New cell 4

L -- -- - ---------------- -- 4
Old cell

M, I

MM

New cell 1I New cell 2

L L

Fig 6-Contribution of mass by old cell to new cell
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Section IV. The mass in eac)h cell is then divided equally among a

number of mass points, positioned so that the density is approximately

uniform.

Finall the pressure at the corners of the cell is computed from

the equation of state of the fluid uo!:r the method detailed in Sec-

tion IV.

The variables associated with the new cells are the initial

conditions for continuing the integration. As time goes on, subse-

quent grid changes may be necessary to obtair the desired solution

to the physical problem.

The grid change pre Ades a means by which we can overlay on St

given network one of less detail, while conserving mass, mentum,

and energy. Some loss of detail occurs, to be sure, but the general

ctaracteristics of the old region arc carried over into the new region.
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