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ABSTRACT

A new procedure is described for determining that frequency at which the power spectrum
of a signal has its absolute peak. The salient feature of the procedure is that it does not
explicitly involve the estimation of the power spectrum of the signal itself. Specifically,
it is shown that the limit of the iterated normalized autocorrelation [see Eqgs. (4) and (5)]
of a function K1) is a pure cosine wave whose frequency corresponds to the location of the

maximum energy density in the spectrum of f(t).

Furthermore, if one is willing to accept the frequency of moximum energy to within a
given finite spectral resolution, then the procedure terminates after o specified finite
number of iterations. Results from a computer simulation of the procedure are also de-

scribed.

The areas of opplication of this procedure are discussed. The results indicate that this
method of detecting asignal (i.e., by the peak of its spectrum) merits further considera-

tion.

It is important to note that the effects of noise have not been considered in this initial

study; the results apply to the received signol only.

This technical documentary report is approved for distribution.

(A
ranklin C. Hudson, Deputy Chief

Air Force Lincoln Laboratory Office
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DETECTION OF THE ENERGY PEAK
OF AN ARBITRARY SIGNAL

1. INTRODUCTION

In communications engineering, it is often useful to be able to extract, from an incoming
signal, that frequency which contains a greater energy density than any other frequency. In this
study, a new procedure is described for determining that frequency; the significant aspect of the
procedure is that the power spectrum of the signal need not be calculated.

The fundamental theorem of Sec.III describes the mathematically interesting result in the
case where we carry our procedure to the limit. The more useful theorem (Theorem 2, Sec.V),
however, describes a realizable procedure for determining the frequency of maximum energy
to within a finite spectral resolution.

We begin by defining the quantities basic to the procedure.

II. DEFINITIONS

Consider that class of real functions or signals f(t) whose autocorrelation function g(t) has

the following properties:

0 <g(0) < s (1)
S lgt)] dt<e (2)
g(t) is continuous in t . (3)

Since g(t) is an autocorrelation, it is therefore an even function of its argument. We now define

a set of normalized autocorrelation functions Rn(t) as

_ g(t)
Ro(t) ()] (4)

and

® R (T)R_ ,(t+ 7)drT
R (1) = J e Ra-t n-1 n=1,2,3,... . (5)

= 2
f_w Ro_,(7) dr

We recognize that R (t) is the normalized autocorrelation function of the normalized autocorre-

lation function Ro(t), etc. We may thus consider R (t) to be the n fha iterated normalized auto-

correlation function of f(t).



Consider the Fourier transform Sn(w), defined by

S (w) = S B R (4) e Iwt gt (6)

and its inverse

1 (" j
Rn(t) = 55 S . Sn(w) vt gy . (7)

Note that S (w) is proportional to the spectral density of R 1(t), in particular, S (w) is propor-
tional to the spectral den51tyT of f(t). We also observe that R (t) and S (w) are both real, even

functions of their arguments.

1II. THE FUNDAMENTAL THEOREM

In Sec.I we stated that our procedure, consisting of operations limited strictly to the time
domain, enables us to determine the peak of the spectrum of a functiap f{t). We will now state

the theorem involved.
Theorem 1.

If So(w) has a unique absolute maximum at w = 9, viz.,

5,(0) > Sy(w) for w # 0 (8)
then
lim Rn(t) = cos 6t (%)
n—>o
and

S, (w) S (w)y2
. [° (10)

S (e) SO(G)
Proof.

We first demonstrate that Sn(w) exists for all finite n. A sufficient conditionI for the ex-

istence of Sn(w) is

S 3} IR ()] dt <= . (11)

We will establish this condition by an inductive proof on the hypothesis Hr which states that Rn(t)
is integrable and continuous in t. Clearly, by Egs. {1) through (4), we have Ho. We now assume

H, 4 and show that this implies H_. From Eq. {5) we may form

(12)

* s 2, Ry_q(T) Ry _y(t+7) dr| at
S IR (t)] dt = ool
== o Ro_y(m)dr

t Whether this is the energy density or power density depends upon the class that f() falls in. See Eqgs. (25)
through (28) and the discussion following Eq. (28).

4 See Ref. 1, p. 103.



But

\<S‘w IR 4 IR, _jt+ )| ar

’gm R__ (TR _,(t+7)dr

thus

[fw IRn-l(T)I dT]Z

-0

(13)

g IR_(t)] at <
v o0 L o0 2
f_w Rn_1(T) dr

However, by assumption, f_: IRn_i(T)I dr < ». Furthermore, since R _,(t) is assumed to be

continuous and Rn—i(o) = 1 [from Eq.{(5)], then f_: Ri_1(7) dr > 0. This establishes Eq. (11).

Now, since for normalized autocorrelation functions?

R ISR _,(0)=1 (14)

we may write

Rn-i(T) Rn-i(t+ T)\<Rn_1(T) . (15)

Therefore, we may bound from above the integrand of the numerator in Eq. (5) by a function which
is itself integrable and continuous (by assumption of Hn—i)‘ Thus, Rn(t) is continuous¥ This
proves Hn and completes the inductive proof, thus establishing the existence of Sn(w) for all

fixed n.

We now use the fact that the Fouriér transform of the autocorrelation of a real, even function
is equal to the square of the Fourier transform of the function itself. In our case, we have al-
ready established the existence of the Fourier transform of the function Rn(t), namely, Sn(w).
Thus, since the numerator of Eq. (5) represents the autocorrelation of the function Rn—i(t)’ we

transform both sides of Eq.(5) and make use of the product relation above to obtain

Si-i(“’)
S (@)= —gT=——— n=123... . (16)

Fa Rﬁ_i(r) dr

We now concentrate our attention on the frequency €. Forming the ratio Sn(w)/Sn(O), we obtain

from Egq. (16)

Sn(w) lSn_i(w) 2 o)

S.(©) ~ |5, (6]

It is then clear that

Splw) Syl 2"
- SO(G) ’

t See Ref. 1, p. 61.
1 See Ref. 2, p. 67.




which establishes Eq. (10). We develop some alternate expressions for Sn(w) as follows. Let

2 1
n-1 = o 2
f_w RS _,(7)dr

o

Then Eq. (16) may be written as

n

2
S fw)= K S  (w) (18)
where
2 n
= 2 2
Kn =041 %p-2e e

But, by Eqs. (5) and (7),
R (0)= 1= - " s () d
n -T2 L. n'® @

integrating Eq. (18) and applying the above relation, we see that
2w

K =
n

n
1282 () dw

Thus, we obtain, as alternate forms for Sn(w),

Sf;n (@)
Sn(w) = 2r o , (19)
f S; (o) do
and
(s 2"
Jlw)/s (€]
Sn(cu) = 2m

@ Zn
Q
J2. Syto/s ey do
We now proceed to establish Eq.(9). By assumption

S(w)
W <A1 for all w # *0 . (20)

Thus, by Egs. (10) and (20), we see that

. Sn(w)
lim §(—e—) =
n

n-o

0 w0

1 w=3*60 . (21)

Furthermore, it is clear from Egs. (7) and (14) that for all fixed n,

g . Sn(w) dw = 21ar(0) =2r . (22)




Since the integral of Sn(w) is constant and since Sn(w) is vanishingly small compared to sn(e) at

all w # +6, we recognize that the limit at n -« must bet

lim Sn(w) = ‘rruo(w — 8+ 7ruo(w + ©) . (23)

n-+%
The transform of this limit function (by Eq.7) is

lim R _(t) = cos 6t )
n

n—+wo

which establishes Eq. (9) and completes the proof of Theorem 1.

Corollary.
If So(w) has a finite number of equal absolute maxima at the frequencies Ok (k=1,2,...,K),
then
K
: 21
11n: Rn(t) =g Z cos ekt s
2 k=1
and
n
S, (w) ) [ S, (w) IZ
s 6 " |50
Proof.

The proof here is identical with that of Theorem 1 through Eq. (20) (where ek is substituted

for O). We now recognize that the limit of Sn(w) must be

g

lim S_(w) = % (u (w—©) +u e+ 0] . (24)
k=1

n—+owo

The transform of this limit is clearly

; =1
lim Rn(t) il e

n—+oo

cos th )
1

T

which completes the proof of the corollary.
Let us now consider those functions f(t) whose autocorrelation function g(t) has the properties

listed in Egs. (1) to (3). We define functions f(t) to be of finite energy if

= 2
o<g If(t)|“ dt <= (25)

in which case

glt) = g oy fit + 7) dr . (26)

t Where uo(x) is a unit impulse occurring ot x = 0.




Further, we define f(t) to be of finite average power if

o) 1 '2'“? |f(t)]2dt<°o , (27)
T-»0
in which case
, T
g{t) = lim ﬁg f(r) f(t + 1) dT . (28)
T —»o00 -T

Functions of finite energy or of finite average power therefore satisfy Eq. (2), and if their auto-
correlation function satisfies Eqgs. (1) and (3), our results hold! We note here that for signals of
finite energy, S (w) represents their normalized energy density spectrum, whereas for signals

of finite average power, S (w) represents their normalized power density spectrum.

IV. EXTENSION TO PERIODIC AND DISCRETE TIME FUNCTIONS

In order to extend Theorem 1 (and its corollary) to periodic and/or discrete time functions,
we need merely ‘o replace certain integrals in Sec. Il with the expressions described below.

For continuous periodic functions, our results hold if we redefine the limits of all previous

time integrals to extend over a single period (TO, for example), and if we redefine all integrations

with respect to w as sums over the discrete set of harmonic frequencies, viz.,

L) 1 TO/Z
g x(t) dt —~ Tg x(t) dt (29)
oo T /2
and
A0 ywrae~ Y ven (30)
- IYy= =00
where
_2mm
“m > T
o

For these periodic functions, we obtain periodic autocorrelation functions g(t) where

. 0T /2
gt) = 5 O f(r) f(t + T) dT . (31)
o -TO/Z

In addition, from Egs. (5), (7), and (30),
0
Y S (e )=1 (32)
n'm
m=-c
and therefore we must adjust the factor of proportionality by muiltiplying the right side of Eqgs.(23)
and (24) by 1/2r.

1 The properties expressed in Eqs. (1) and (3) are most easily stated in terms of g(1) and will be left in that form.



For discrete aperiodic time functions, our results hold if we replace all time integrals with

infinite sumeations over the discrete time variable, and also redefine the limits on all integra-
tions over w to extend over the finite range —(r/At) < w < (w/At), where At is the uniform incre-

ment between adyacent time samples. That is,

P o0
(Caoa~ Y ) (33)
- — ]
and
o0 T/ At
S y(w) dw = At S‘ yiw) dw , (34)
-® -W/At
where
t = mat . (35)

For these discrete functions, we obtain discrete autocorrelation functions g(tm). Furthermore,
we find that
w /At
g S () dw = 2%, (36)
-n/At
thus, the new factor of proportionality requires that we multiply the right hand side of Egs. (23)
and (24) by 1/at.
For discrete functions (of increment At) which are periodic with period PAt, we must make

the following chamges:T
P-1
a0
(" xwa~ 3w (37)
- Gl .
i=0
L ) P/2
2—”S‘wy(w) dw ~ P Z y(wm) (38)
- m=-P/2
where
t.1 = iAt ,
_ 27rm
“m - PaAt

For these discrete periodic functions, we obtain discrete periodic autocorrelation functions g(ti).

Moreover, we have

P/2
Y Slw )=P . (39)
m
m=-P/2
Therefore, the new factor of proportionality requires that we multiply the right hand side of
Eqs. (23) and (24) by P/2r.

t For convenience, we assume P to be an even integer. When P is odd we must alter the limits in Eqgs. (38) and
(39) slightly.



V. FINITE SPECTRAL RESOLUTION — A FEASIBLE TIME DOMAIN PROCEDURE

The interesting feature of our iterated awtocorrelation function is that one may deter mine
the energy peak {at w = @, for esampile) o? a signal with operations strictly in the time domain.

In practice, one usuaslly has a signal #(¢) of Yinite dyuration (T) to considerY As a result, the
autocorrelation of the signal R_(t) will be zero outside the interval |t| »'T. However, the for-
mal procedure for calculating R (t) as described by Eq. (5) indicates that Rn(t) will, in general, be
nonzero in the interval [t]| < Z“T From a practical point of view, this requires an exponentially
increasing complexity (in either equipment or computation). At the same time, we have an expo-
nential rate of convergence to our limit function where the exponent is 2" {as may be seen from
Eq.(10)]. It is clear that this rate of convergence, although exponential, is nevertheless depend-
ent upon the shape of So(w). Note, however, that the resolution is {theoretically) perfect, i.e., we
are guaranteed to converge exactly on the value ©.

The price for perfect resolution is, as always, extrermely high and one which we are not
willing (or able) to pay; namely, that we require an unbounded number of calculations if we
insist on passing to the limit n - «. Two separate aspects of the complexity of the process
grow without bound: the number of iterations n, and the range [t]| <2 DT in which R (t) must be
calculated. If we are willing to sacrifice some resolution, then we may control both of these
quantities as follows.

Let f(t) be the signal whose energy peak (at w = ©) we desire, where we assume f(t) to be of
finite duration T sec, i.e., f(t) = 0 fort <0 andt>T. For this function, we make the additional
assumptions stated in Egs. (1) through (3). Define Rn(t) and Sn(w) as in Eqs. (4) through (7). We
introduce the periodic function fp(t) of period T 22T such that

f(t+kT)=f(t) s OSt\<TO s k=...,—-2,—1,0,1,2,... . (40)

For this function, we define S( )(w ) and R( )(t), as in Egs. (4) through (7), with the changes
indicated in Eqgs. (29) through (3?), thﬂ superscmpt P, serves to distinguish these from S (w)
and R (t) which refer to f(t).

Below in Theorem 2, we show that an estimate 8 of the ene rgy peak in f_(t) is a close ap-
proximation to © when T is sufficiently large. In addition, we describe a procedure for ob-
taining this estimate to w1th1n a given accuracy after a finite number (n ) of iterations. Further-
more, since periodic functions have periodic autocorrelation functions, we recognize that R(P)(t)
is periodic (with period T ) for all n. Consequently, we need carry out our calculations of
R(P)(t) over only one penod Thus, by agreeing to estimate © within a slight (arbitrarily small)

error, we have been able to reduce our system to one which goes through a finite number of it-

erations over a finite interval (0, T ) which is fixed with respect to the number of iterations. All
this, of course, comes about by allowmg an uncertainty of size (p, let us say) in the estimate of
the frequency of maximum energy density.

The relationship between the time limited signal f(t) and its periodic counterpart f (t) needs
further elaboration. Indeed, we recognize that the autocorrelation functions of these two signals
obey an inverse of the sampling theorem. Specifically, since T 22T, R(P)(t) contains all the
information about R (t), consequently, S(P)(w ) must be proportional to So(w) at w = w 27rm/T .

We may calculate thls factor of proportlonahty from Eqgs. (6) and (29), viz.,

1 Therefore, the signal witl be of finite energy [see Eq. (25)}.




1 o (P) m
o R (t) dt
SQ(P)(wm) ) Ty —TO/Z o
S (w_) - o0 “jw __t
o= S Rytre ™ oat

The integrand in the numerator disappears in the interval T < [t| < TO/Z and the integrand in the

denominator disappears over the interval Itl > . Therefore, since (TO/Z) > T, we find that
(P) = el
Sy wp) = T S (w ) - (41)

Recognizing that these two spectra are proportional is essential to one's understanding of
Theorem 2. A typical case is shown in Fig.1, where the continuous spectrum So(w) is shown

as the continuous envelope, and the line spectrum Tosgp)(wm) is shown as vertical lines.

(R ET]

! Byl
Fig. 1. Comparison between So(w) and So (um). W
e 1  Her B

L ""'nu-l-e ;'u ] : y ""‘.u
Observe that the distance between "samples" of So(w) is 27r/T0. We define an integer M such
that WM
—0 and —wM+1). Further, we define p to be that frequency at which So(w) has its second

and WM+ surround the spectral peak at w = © (the same clearly holds true for — wy,,

greatest local maximum.

In estimating ©, two separate problems confront us: first, how do we eliminate competing
peaks (such as at w = +u); and second, how do we converge to the neighborhood of 6 within the
absolute peak itself. The first problem may be solved by insisting that the spacing 27T/T0 be
fine enough to insure that at least one sample in the neighborhood of © (either wy, or wM+1) is
greater than the maximum possible sample near w = p. Thus, an important parameter of the
spectrum So(w) may be expressed as a lower bound A, for the difference between these two peaks,

S (8) =S (k) >4 . (42)

In considering the problem of convergence in the neighborhood of ©, we recognize that the shape
of the spectrum in this region is crucial. Specifically, we require that the spacing 211'/To be
small enough to guarantee that some lines in the discrete spectrum fall within the range of the
dominant peak (the narrower the peak, the finer must be the spacing). On the other hand, too
many spectral lines in the immediate vicinity of © will result in a large number of required
iterations, because the largest sample will not differ significantly from its neighbors. We may
discuss the width or sharpness of the spectrum in the vicinity of its absolute peak by considering
the curvature of So(w) in terms of the magnitude of its second derivative dZSO(w)/de. When the
second derivative is large (in magnitude), then the peak is narrow, and vice versa. Thus, we

are led to consider upper and lower bounds for ihis quantity in the neighborhood of ©, viz.,




2,
d bo(w) 4T
—Ag —5—<-a for [w—©| < 5 . (43)
dw o
The preceding discussion deals qualitatively with those factors that determine the required
number of iterations and the spacing of samples in the discrete spectrum.T In addition to these
considerations, the sampling must be fine enough to satisfy the spectral resolution requirements

of the user of these results. Stated precisely, we have the following theorem.
Theorem: 2.

Consider any function f(t) of duration T sec, with a unique absolute energy peak at w = +0,
whose energy density spectrum So(w) satisfies the conditions of Eqs. (42) and (43) with respect
to the three positive parameters (a, A, A). Then, for a given required frequency resolution p,
there exists a procedure {defined below) which will calculate a number & after n, iterations of

the autocorrelation of fp(t) [see Eq. (40)}] over the range It[ < To such that

8- <p
where
n_=1lo £ )
o~ ©82 Ze (44)
o
and
2
r4
€ = a |, (45)
o T3
o
and
_ A+ 4a 57
To— max (7 [—-———2 T 2T) . (46)
Proof.

We begin by describing the procedure by which we determine the estimate 8 from Rilp)(t).
We recognize that if one line (say at w = ep) of the spectrum of the periodic function
RLP)(t) is "sufficiently" large1 compared to all the other lines, then RLP)(t) will appear as a
"noisy" cosine wave at frequency © rad/sec. Our procedure, then, is to count the number of
"noisy" zero-crossings of this function for a known time interval; if we are successful in
counting only the true zero-crossings of the pure cosine wave, we can then ascertain ep exactly.

We define a noisy zero-crossing counter as follows. Consider a 8-threshold detector with hys-

teresis defined by the transfer characteristic shown in Fig. 2. Further, define:

Z(t) = number of zeros (or counts) recorded by the
noisy zero-crossing counter in t sec

and
Z(0)=1

1 The sample spacing may be adjusted by changing the value of To’ i.e., |“m - um_‘| = 21|/T°.

31t is clear that b)y increasing Ty, @5 can be made as close to O as one desires; also, by increasing the number
of iterations, SnP (BP) can be made arbitrarily large compared to all other spectral components (see Theorem 1).

10




The noisy zero-crossing counter consists of a 8 -threshold detector with hysteresis followed by

a simpie counter which registers a count each time the detector changes state (in either direction)

as shown in Fig. 3. It will be shown later that a setting of § = 1/9 defines a noisy zero-crossing

counter which produces an estimate @ consistent with Theorem 2, thatis, 6 <6 = 1/9 forn>n
n o

[where én is defined by Fiq. (48) below].

ouUTSUT [-20-eev8]
SYRTE A
-& F) INUT
STATE B

fig. 2. Transfer characteristic of the
S-threshold detcctor with hysteresis.

With no loss of generality, we may write

(P),., _
Rn (t) = Bn cos ept + bn(t)

3-22-4476

(») 8-THRESHOLD STATE
R (1) Onemtny DETECTOR WITH CHANGE a0 2 (1)
HYSTERESIS COUNTER

Fig. 3. The noisy zero-crossing counter.

C . R

(47)

This form exposes the pure cosine wave that we wish to detect, and groups the transform of all

the other spectral components into the function bn(t). Define 6 by

lb"(t)l <s, for e ST,

Then, if

B 22, .

we are guaranteed that Z(t) will increase by unity each time

(48)

(49)

B, cos Ot passes through zero,

as may be seen in Fig. 4. That is, when Bn cos Opt is negative RLP)(t) < én and when Bn
cos ©_t is positive R;‘p)(t) >—6,, thus insuring that a single zero-crossing (which is equivalent

to a sign change) of Brl cos 6 _t cannot generate more than one count.

Furthermore, by insisting

that Bn P2 Zﬁn, we guarantee that each time Bn cos ept passes through zero, we must get at

least one count. Thus, Z(t) — 1 will count the number of zero-crossings of Brl cos ept. Now,

since To is a multiple of the period of Bn cos Opt, we determine Op from

Z(T ) -1
8 = —2&— 1
P TS

Fig. 4. Description of the reiotion between Bn and Sn.

B, cos Gyt

(50)

[3-22-4a11]

-_]-
THIS DISTANCE MUST
BE AT LEAST 8,

11




Generally, if we observe Z(t) for a time 7, where 0 <7< T, then we may ask how large an

error is made in our estimation of ep; in particular, how large is |9p —[Z{r)/7] ©|. To answer

this, we use Euclid's algorithm to express

T

v
59t P

where P is the period of cos ept (i,e., P= Zw/ep) and q and r are, respectively, the quotient
and remainder of /P, where, of course, r < P. But, q= [Z(T)— 1] /2 since we increment Z({t)
twice for each period P of cos Opt. Thus,

Z{t)—1 r

T—_—__——— i
- Z P

or, multiplying by 2r/7, we obtain

2T TZ{(T) T r
LU = (2=
P

P T T -1

Now, since ep = 2n/P, and since r < P, we have

Z(7) 4
Iep— ol (51)
(P)
n

© to within the accuracy described by Eg. (51). The error in this determination may be made

Thus, we conclude that the noisy zero-crossing counter determines from R (t) the frequency
arbitrarily small by increasing 7.
We now obtain bounds for the magnitude of the difference between spectral components in

the neighborhood of ©. By Taylor's development, we have

2
ds {(w") w2 d’s_(o)
- _ ot w—w)T o
So(w) = So(w') + (w— w") do + 5 B > ,
w
where o lies between w and w'. Furthermore, expanding dSO(w')/dw we have
as (w')  dS _(®) a%s (a)
o o ) o
dw = Tdw t{w' —9) 2
dw

where a lies between w' and ©. Combining these two equations, and recognizing that the slope

of So(w) is zero for w = ©, we obtain

%S (@) (1) a®s (o)
So(w)—-So(w') = (w— w") (w'—0) 12 + > ——(;2-— (52)

For future reference, we now establish a lower bound for this difference in the case w' = AV

W= Wpoge Recall that W T WM-1 T 21T/T0 where w,, 18 defined as shown in Fig.1. Thus,
Eq. (52) becomes
2 2 .
S (w Y= S (wo,) = 2 (w e)_(j__SO_(Ol_)+HEdS°(U)
-1 =TT - 2
o' "M-1 o M T0 M de To dwz

Since o and a both lie within the range 6 * 41r/TO, we may apply Eq. (43) and in obtaining a

lower bound for the above expression, we may set wyy = 6, yielding

12




2
1 . 2ar
7 [Sylwpg) = Solwy | > (53)
o T
o
Note that a similar equation holds for wyg. 4 and W42
We now consider the conditions necessary to insure that the sample at either Wy OF Wpgeq
exceeds the maximum possible sample at w = p. Recognizing that one of the two samples sur-
rounding © must lie within n/To of 8, we apply Eq.(52) [with ' = 6, w =0 % (1r/To)] and obtain

2
2 d”Ss (o)
|S (6 % 5-) — S _(€)] = "2_—%_—
o o 2T dw
o
Application of Egq. (43) gives us
2

Am
|S (6 =) —S (8)] <~
o TO o = ZTZ

o]

Thus, the minimum value of the maximum sample of S(op)(wm) near O is

2
1 Ar
P S(e)————]
To[o ZTZ

o

where we have made use of Eq. (41). We choose to require, at this point, that this minimum

value should exceed So(p)/T0 by at least the quantityT £, = 2a (FZ/Tg). Thus,

2 S_(u) 2
1 A o) T
= |s ey -5 —5|2 + 2a . (54)
T, [o 2 T(z)] T, TOS

Applying Eq. (42), we obtain, as our first condition on T0 [see Eq. (46)],

,A+4a
TO )1” T . (55)

We have eliminated the problem of competing peaks.

We may now discuss convergence of Rr(lp)(t), in the neighborhood of €. Theorem 1 states}
that the iterated normalized autocorrelation Rl(lp)(t) of fp(t) converges to cos O _t where Sép)(ep)>
Sép)(wm) for all G # tep. However, as stated in the corollary to Theorem 1, if there are a
number of equal absolute maxima, then R;P)(t) will converge to a sum of cosines at the various
frequencies of the equal peaks. We have postulated that So(w) has a unique peak at w = ©. Never-
theless, Sép)(wm) may have two equal peaks at w =~ = Wy, Wygyq 28 shown in Fig.5. On the other
hand, Sép)(wM) and Sép)(wMH) may be arbitrarily close in magnitude, depending upon So(w) and
the frequency sampling rate Zn/'I‘O. In order to handle this annoying circumstance, we express

RI(IP)(t) (again, with no loss of generality) as

(Py - 2t _ 2rt
Rn (t) = Cn [B cos To M+ (1 —B) cos To (M + 1)] + cn(t) . (56)

t Note thot L is just the lower bound in Eq. (53).

$ We use this theorem with its extension to periodic functions; see Sec. IV.
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This form for R( )(t) exposes the interaction of the two largest components of S( )(w } and groups

the transform of all the other components into a single function ¢ (t) The variable B allows us

3-22-447¢
(P)
o (Wm)

I l | I l I 1 I I l l Fig. 5. Two equal peaks in SO(P)(um).
i 1

\

w w
™ M+

to investigate the effect of the relative magnitudes of these two components, where, of course,

0<B 1. Itis clear thatc (t) is a sum of cosines, each with zero phase; Al therefore,

c (02 fc ] . (57)
Furthermore, since Rf_lp)(()) = 41, we note from Eq. (56} that

Cn= 1—cn(0) . (58)

We concentrate our attention on the function

e(8,t) = B cos 22X M + (1 - B) cos Zrt M+ 1) (59)
(o] O

and investigate the behavior of its maxima and minima in order to determine the effect of passing
(P)(t), as expressed in Eq. (56), through the noisy zero-crossing counter.

Define S to be that instant when the time derivative of e(B,t) has its k th zero, i.e.,

de(s.S,)
Tt

Lemma 1.}
We make use of Lemma 1 as follows. For all 0<pB<1,and for all k and 7 such that§
0£S,_<u

<T /2,

RSUEST

then
1
le(z .1 < le®@. 5] . (60)
Application of this lemma will be made when we consider Eq. (56), namely,
(P -
Rn (t) = Cne(ﬁ,t) + cn(t)
and compare it to Eq. (47),

(P),., _
Rn (t) = Bn cos ept + bn(t)

tRecall that Sn(u) is always real and even.
1 See the Appendix far proof of Lemma 1.

§ See the proof of Lemma 1 for a definition of Y
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Whereas e{f,t) is not a pure cosine, it does have the same number of relative peaks (maxima

and minima) as some cosine of frequency (w', for example) where

wM< w'Swm+1 . (61)
The same can be said about the number of zeros of e{f,t). We may now write an equation, similar
to Eq.(49), which places a condition on the magnitude of the relative peaks of e(8,t) over a range
of t. Specifically, if we expect the noisy zero-crossing counter to calculate the frequency w'

when R:}P)(t) fas expressed in Eq.(56)] is present, then we require [see the proof of Eq. (49)],
that

2
C, le@. sl 22 e (v
By Lemma 1, therefore, we require that

i
c, letz .0l 22 fc @l

for 0 < Sk £ uy L7 TO/Z. By Eqgs. (57) and (58) we obtain, as an equivalent condition,
. ¢ (0) T,
etz .0l 22 7= ¢ O0ST<Z - (62)

Thus, we propose to choose some T in the rangeT 0<T<L (TO/Z) and agree to observe Z(t) only
up to t = 7. In limiting our interval of observation to T instead of TO we incur a slightly greater

ambiguity in the estimation of w', namely [see Eq. (511,
T
|w'__ZTL_’ sl . (63)
We define 8 to be the output of our noisy zero-crossing counter at time 71, viz.,

6 - Z‘;T) T . (64)

Furthermore, since w' is bounded between Wpg and Wnfs 1 [see Eq.(61)] and since © is in the
same interval (of width Wyl T YM T 21r/TO), we conclude [with the application of Egs.(63) and

(64)] that the maximum error in the estimate (@) of O is

T T
o

|6_e|<n(—2+1) . (65)
Consequently, we would like to make 7 and TO as large as possible; however, note that at the
times of interest (namely at the peaks), le(i/Z, -r)| behaves essentially as cos(w«r/’I‘O). Thus, as
7 is increased, the condition expressed in Eq. (62) becomes more difficult to satisfy, therefore ng
must increase (see below). This represents a trade among n,, TO, and 7. To be specific, we
choose a reasonable value for 7, namely, 7 = TO/3. Then, from Eq.(59), |e(1/2, TO/3)| >1/4

and we obtain the following1 from Egs. (62) and (65),

1 —cn(O)

—anﬁ)—_ 28 (66)

t Here we ore neglecting the restriction that u, < 7; in so doing, we make a slight error. However, this error is
insignificant for lorge M (M > 10, typicolly).

1 Equotion (67) therefore requires 55/T,< p. See Eq. (46).
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and

S5
8 -0« T (67)
<}
Note that Eq. (66) specifies an upper bound for cn(O); we may therefore use this as the setting for
the threshold in our noisy zero-crossing counter. Thatis, & = 1/9.
We now consider the behavior of cn(O). Specifically, cn(t) is the transform of all spectral
lines except the two pairs at w = Twyy, gy Therefore, cn(O) is merely the sum of the mag-

nitudes of all such lines, viz.,

.y P (P) (P) (P)
c (0)= ) Sy ey) =Sy Heyy) =S (mey) =S e

ms= -

) —s{P) (68)

M+ 1 ~Wppsq)

We now consider the wor'stJr case, namely,

(P)

(P), =
S Nwpg) = S) (g y)

. P P . . .
Since SI(,1 )(wm) = S; )(w_m), we observe¥ that the coefficient Cn[as defined by Eq.(56)] is
- 45'P)
Cn = 45rl (wM)

Furthermore, since = Silp)(wm) = 1 [see Eq.(32)], we may rewrite Eq. (68) as
n= -

_ (P) -
c (0)=1- 45 wyy) = 1 — c, - (69)

The behavior of 8" w.) [recall that S
n M o)

determined by considering the extension of Eq. (19) to periodic functions, viz.,

)(wM) > Sgp)(wm) for all m # M, *(M + 1}] may be

(P) 2"
[SO (wM)]
[ n

(P) 2
mzz_w [sO (wm)]

(P) -
Sn (wM) =

Tor convenience, we temporarily adopt the notation,

h =S(p)(w )
m o m

Thus, Eq.(69) becomes

Zn

4h
=0 M__n , (70)
2
2% hm
m= -

cn(O) =1 —

We adopt the further notation,

1 That is, the case which requires the largest n. This carresponds to B = 1/2.

P .
1 Note that the transfarm of any carresponding pair of spectral lines, say SnP)(um) ond Ss‘ )(u_m), is merely
ZSS‘P)(um) cosw t, since all camponents of SS‘P)(um) are real ond pasitive.
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= )
m m#+M, £(M+1)

Equation (70) then may be written as

n
4h;i
c (0)=1— (71)
n Zn Zn
1
4hM + X hrn
m
We recognize that cn(O) (and therefore, no) is maximized when, for fixed hM = S(P)(wM), the
n
sum Z!' hil is maximized. In order to find the maximum of this sum, we find it convenient to

m
state and solve an equivalent problem, as stated in L.emma 2 below. In this lemma we recognize

that the quantities Ebk, a, and N correspond respectively to S'hm, 1 - 4hM and 2. The value

of a, will become apparent shortly.

2

Lemma 2.7

Given {bk} k=1,2,3,..., such that
w
Y PpTay
k=1

and

0<hb Saz<a1

Then the set {b}"z}which maximizes

o
N
o = Z bk
k=1
is
a, k=1,2,. JK—1
*— —_— — = -
B = a,~(K-1a, k=K 2
0 k>K
where

a
1
K [—a l+ 1
2
and [x] = the maximum integer contained in x.
Maximizing cn(O) corresponds to maximizing n, {i.e.. it makes the inequality in 13N
difficult to satisfy]. This "worst" condition as described in Lemma 2 may be combined w

Eq. (71) to give

§ The proof of Lemmo 2 will be found in the Appendix.
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n

an?,
enl0 €1 -—3 o R (73)
4hy, + (K- 1) a, +{a,— (K- 1) az}
We recognize that
a, = 1-— 4hM

1 — 4h
K_1=[__M-] .
a

As for a,, which represents the maximum value of S(()P)(wm) for m :/: *M, *(M + 1), we refer
back to Eq. (53) and to the discussion preceeding Eg. (54) to obtain

Zaw2
a, = hyy — =3~ . (74)
2 M T?)

A portion of the denominator of Eq.(73) may be bounded above as follows:

n
on 2N 20 1 —4h 1 — 4h 1 — 4h 2
(K—1)a, +{a1——(K—i)a2} = a, ‘[ % Ml+ aZM— [ 5 M]

n ;1 - 4h
az

Thus, Egq.(73) becomes

1
c (0)<s1— = (75)
1 — 4h a, \2
(= )
4a; fm
Recalling the definition
2
e (76)
T
o
we substitute Eq. (74) in Eq.(75) to obtain
1
Cn(O)\<1— = (77)
- ( i——4hM )(hM—GO)Z
4hM — 460 hM
We now consider that value of hM (HM, let us say) which maximizes
n
B 1-— 4hM (hM - 60)2
4hM - 4€O hM
1 eo 2M1 (78)
5 . 4) (1 - —) _ 7
(4hM hM

Differentiating, we get
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n n
dE 1 €0 2 -1 n 1 €o 27-2 €0
e —ahbeull ik v et - e ) TR, T2
4hM M M M hM
Setting this derivative equal to zero, we find that

n
2 €
o]

H = — 9
1+ 450(2“—1)

M

We note that €, S HM 1/4 as of course it must. Substituting the value hM H,, into Eq. (78) yields

M
n
1+ 4e (2" — 1) 1+ 4e (20— 1\% -1
e | (1______0___>
Zn

1 — 4¢ - -n.20
:% i o) (1-27"— ¢+ 4¢ 2 e i
2%
[o]
-n n
2 2
< 3 (1—450)
o
Thus, Eq.(77) becomes
0) < 1 d (79
CatVIs T 20 on )
1+ (1 — 4¢ )
4€o o

Returning to the condition expressed in Eq. (66), and using Eq. (79) we obtain as our condition,

after some algebra,

n € 2

2 Q
(1—-460) S s (80)

where €5 is defined in Eq. (76). Rewriting Eq. (80) in terms of logarithms, we obtain

n 1 2
n+ 2 10g2?j€—0 }10g2-€— . (81)

(o]

However, due to the convexity of the function log 1/{(4 — x) in the interval 0 € x <1, we may bound

log 1/(1 — x) from below by its tangent at x = 0, viz.,

1 1
log, 7= l(dx log, 7 _x)x=0] X

1
1og2 1—=% 2 x 1ogze
Applying this inequality to Eq. {81) results in a slightly larger value of n.. Therefore, we obtain

n+2 2
n+ 2 €, log, e > log, o (82)

We now define
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Fig. 6. Power spectrum Sn(w) and one periad of the iteroted outocorrelation function R&P)(t)
as a function of the number of iterations n.
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and so

Eq. (82) then becomes
n+3-y
n+2 log, e>y . (83)

The minimum value of n (no, for instance) which satisfies Eq.(83) is clearly ng=y- 2, so

_ 2 . 1
n, = log2 = 2 = log2 e (84)
o o

Thus, n, represents the number of iterations of the normalized autocorrelation of fp(t) which we

need in order to obtain a number 8 satisfying Eg.(67). This completes the proof of Theorem 2.

Vi. EXPERIMENTAL RESULTS

The procedure described in Sec,V for determining the energy peak of a finite duration signal
to a finite resolution was simulated on a digital computer.T Results of the experimentation are
shown in Fig. 6.

Specifically, the signal f(t) chosen was a small segment (T = 0.0256 sec) of human speech
sampled at a 10 kc rate, Figure ¢ shows only one period, the interval 0 <t < TO, of fp(t)
and Rilp)(t) for n= 0,1,2, as well as Sn(w) forn=0,1%,2,3. To was chosen equal to 2T for this
experiment. Note that Sn(w) is shown only as a visual aid; its calculation was clearly not nec-
essary for the generation of R:lp
of programming; as a result, we observe the {[sin a fw — wm)]/a(w - wm)}2 envelope quite dis-

)(t). We chose to show Sn(w) rather than S;P)(wm) for convenience

tinctly in Sn(w).
One clearly observes the rapid convergence of both R;P)(t) and Sn(w) to the frequency of

maximum energy density.

vU. APPLICATIONS AND CONCLUSIONS

Theorem 1 expresses the fundamental result that the limit of the iterated normalized auto-
correlation function of a signal is a cosine wave at a frequency (6) corresponding to the maximum
energy peak of the signal's spectrum. However, two aspects of the procedure by which one
arrives at this limit require unbounded compiexity: first, the inte rval over which the nﬂ'l iter-
ation must be calculated (assuming the signal to be of finite duration T) is ltl < ZnT; second,
the number of iterations grows without bound, These two difficulties require unlimited equip-
ment and time, respectively. Clearly, the reason behind these infinite operations is that we
are asking for an absolutely perfect determination of ©. Naturally, we are willing to accept
some error in this determination in any practical situation. Taking advantage of this fact, we
are able to establish Theorem 2 in which we offer a procedure for estimating 8 (to within an
arbitrarily small, but finite, error) which requires a finite number of calculations over a fixed
time intervai. Thus, by accepting an error in the determination of 8, we have been able to

eliminate both undesirable aspects of the original procedure.

t A program for simulating the iterated autocarrelation written by the author, and a spectrum analysis program
written by C. Rader, were run on Lincoin Laboratory's TX=2 high-speed digitat computer (see Ref. 3).

24



The procedure for obtaining the estimate (6) of © may be mechanized as follows (see Fig. 7).
The signal fft) would be stored on a tapped delay line (of To seconds). At time To’ the impulse
response of a linear filter‘T would be set equal to the values of the taps and the output of the delay
line would then feed into the filter. The output of the filter during the interval ZTO Ltg 3To
fnow equal to the autocorrelation of the signal) would then be fed back into the delay line. The
procedure is repeated n times, after which the output of the filter is sent through the noisy

zero-crossing counter, which provides the estimate @

(¥
T

) gﬁ:lﬂ& [ Y X "éc
cc o NENAL LIN|
ot},ﬂ_ELo 2, ShaL €t woNg

oloit
ﬂ oM

i i Cllﬂl.l-"

| T e | ol
! SRESING
x 1 __f COUNTER
]"l i Vi L T4
" rn_-- i e GELAY L] i, 8Ec LOws o n
o T, Bl 11T,

Fig. 7. implementation of the pracedure for detecting the frequency of maximum energy density.

The applications of these results appear to be numerous. The detection of the energy peak
of an arbitrary signal (for example, the energy peak corresponding to a time series) is often of
great interest, and may be detected as above. Furthermore, this method may be used for se-
lecting that one out of N possible signais transmitted over a communication link; in this appli-
cation it is necessary, of course, that the location of the absolute peaks in the spectra of the
N signals be distinet, one from the other, such as is the case in Frequency Shift Keying. Another
application may be found in locating the peak frequency in the return signal from a Doppler radar.
These are but a few of the possible applications of the procedure described.

The main conclusion to be drawn from this study is that the iterated autocorrelation pro-
cedure represents a new method for detecting the frequency of maximum energy density of a
signal. Some areas of application have been suggested above briefly; but, more careful con-
sideration and analysis must be undertaken before one can determine the advantages or disad-
vantages of this system compared to any other. In fact, one of the main purposes of presenting
this material is to stimulate thinking about the possible applications and merits of this new de-

tection approach.

t This filter is 2T, sec long, with its impulse response h(t) adjusted such that hit + Tg) = h(1), thus representing
the periadic versian of the signol. In Fig. 7, this linear filter is represented as o combination of o holding circuit
and o second tapped delay line, the outputs of which are multiplied and summed to form the output of the lineor
filver.
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APPENDIX
PROO¥S OF LEMMAS

Lemma 1.

We may express e(B, t) as the real part of the sum of two vectors in the complex plane, viz.,

e(8,t) = Re {8 exp [j(27t/T_ ) M]+ (1 —B) exp [j(2rt/T ) (M + 1)1}

Re [A(ﬁ, t) eJ‘Y(ﬁ: t)]

where A(@,t) is the magnitude of this vector sum, and v(8, t) is its phase angle. We may express

A(g,t) and y(8,t), after some trigonometric simplifications, as

2 2 Iwt 1/2
A0 = (8% + (1-8)% + 26(1 —p) cos F* (A-1)
o
and
(1 —8) sin 2rt
2rt -1 To
y(B,t) = T M + tan T . (A-2)
o B+ (1 —-8) cosT—
o
Forming dA(8,t)/d8 = 0, we easily show that
1
A(i.t)S AB,t) . (A-3)
Furthermore, we observe that for 0 € t< TO/Z,
dA@.t) . 0
dt
from which we conclude that
To
A@B,t)) 2 A(B,t,)) fort, <t, <=5 . (A-4)

Let uy be that instant when v(3, uk) =(k—1) 7. Now, for0<t< (TO/Z), we observe that dy(8, t)/dt
is always positive; furthermore, since A{8,t) is a decreasing function of t in this interval [see
Eq.(A-4)], we note that de(8, t)/dt passes through zero each time the vector A, t) ejy(B‘ t) passes
through either the second or fourth quadrants of the complex plane. We may then conclude that

the instants uy and Sk must alternate, viz.,

In addition,
lew.s )| > le@.u)l = A, u) A-5)
which follows from the definition of Sk and uy and the fact that the relative maxima and minima

of e(f,t) occur when the vector A{8,t) ej'Y(B' t) passes through the second and fourth quadrants.

It is also clear that

leg, t)] = |A@, 1) cosviB, )] < AEB, 1) . (A-6)
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From Eqgs. (A-3) through (A-6) we may write

|
leg. S| > leg,u)| = AB,uy) > A u) > AR, D2 AG D cosnF. T = etz ] J
where ‘
: \
0« Sk < Uy <7« —20 1
This completes the proof of Lemma 1.
Lemma 2.
Consider a sequence of sets {blii)}where we define
w9 - (by)
Corresponding to each such sequence, we define
0
o = ) N
k=1
where, obviously, o,=0- Since we have freedom in labelling the subscript k, we choose to
arrange the b}io in a nonincreasing sequence; that is,
S

The iteration on i may be described essentially as follows. We concentrate on two special values

of k, say ki(i) and kz(i), where

ki(i) the smallest value of k for which b}(:) < a, )

kz(i) - the smallest value of k greater than or equal to K, for which

(1)
b >0

Corresponding to these values, we define

_ L (1)
D= Py,
_ . (1)

4 = Pyt

Then, the set {b}iﬁi)} is defined in terms of {b}((l)} by

D.1 + aidi for k = ki(l)

(i+1) _ B .
bk = di(i - ai) for k = k2(1)
(1) . A-
b otherwise (A-T7)
where
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ozi = min (1, a

a, _Di)
1

Thus, at each stage, we transfer a fraction (ai) of di to Di being careful not to allow any blii'H)
to exceed a,. Now, it is clear, from the definition of K and Eq. (A-7), that ki(i) < K and

kz(i) > K. For those i where ki(i) remains constant, Di is an increasing function, and for those
(0)

k+1 W€ have

i where kz(i) remains constant, di is a decreasing function. Also, since blﬁo) >b

Di > di for all i

Furthermore, at each step, we conserve the sum

The iterative procedure continues until we reach that value of i (io, let us say) for which

(i)
= a

bk 2

k=12,...,K—1 . (A-8)

We now show that o] > o; for alli < io' As a result of Eq. (A-7) we may write

+1

o A diN

) N N
44703~ Dy —dp + (D agd) e H (1= ay) dy)

Using the binomial expansion, we get

N

L N\ N-j . 40y o \N-j; _oN_ N

VL) (j)[Di(“idi) tdi{madpT 1Dy —dy
H=0

N-1

_ N N-j ipd 4 (o yN-I g3

- (J.)(aidi) () + (- NI )]
=0

But, since Di > di’ we have, for i< io’

But,

o0

(i YIN SN N
) bko] S[Z bko] =Y
k=K k=K

and this upper bound may be achijeved when
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We observe that

(i)
oy = {of)

(A-9)

(i)
where {bk ©1 ig defined by Egs. (A-8) and (A-9). Thus, we have shown that starting from any

{béo)}, the sequence {bk(l)} may be defined in a way such that
lim {b{M = (b}
3 k k ’
i-i
o
and
o, <o,y i<i

1 o]

This completes the proof of Lemma 2.
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