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ABSTRACT 

A new procedure is described for determining that frequency at which the power spectrum 

of a signal has its absolute peak. The salient feature of the procedure is that it does not 

explicitly involve the estimation of the power spectrum of the signal itself. Specifically, 

it is shown that the limit of the iterated normaliied outocorrelotion [see Eqs. (4) and (5)] 

of a function f(t) is a pure cosine wave whose frequency corresponds to the location of the 

maximum energy density in the spectrum of f(f)- 

Furthermore, if one is willing to accept the frequency of maximum energy to within a 

given finite spectral resolution, then the procedure terminates after a specified finite 

number of iterations. Results from a computer simulation of the procedure are also de- 

scribed. 

The areas of application of this procedure are discussed. The results indicate that this 

method of detecting a signal (i.e., by the peak of its spectrum) merits further considera- 

tion. 

It is important to note that the effects of noise have not been considered in this initial 

study; the results apply to the received signal only. 

This technical documentary report is approved for distribution. 

£ Z^y>- 
Franklin C.  Hudson,   Deputy  Chief 
Air Force Lincoln Laboratory Office 
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DETECTION OF THE  ENERGY PEAK 
OF AN ARBITRARY SIGNAL 

I.      INTRODUCTION 

In communications engineering,  it is often useful to be able to extract,   from an incoming 

signal,  that frequency which contains a greater energy density than any other frequency.    In this 

study,   a new procedure is described for determining that frequency;  the significant aspect of the 

procedure is that the power spectrum of the signal need not be calculated. 

The fundamental theorem of Sec. Ill describes the mathematically interesting result in the 

case where we carry our procedure to the limit.    The more useful theorem (Theorem 2,   Sec. V), 

however,   describes a realizable procedure for determining the frequency of maximum energy 

to within a finite spectral resolution. 
We begin by defining the quantities basic to the procedure. 

H.    DEFINITIONS 

Consider that class of real functions or signals f(t) whose autocorrelation function g(t) has 

the following properties: 

0 < g(0) < «      , f1' 

r |g(t)| clt<«      , (2) 

g(t) is continuous in t      . (3' 

Since g(t) is an autocorrelation,  it is therefore an even function of its argument.    We now define 

a set of normalized autocorrelation functions Rn(t) as 

Ro(t) - gm 

and 

Rn(t) = 1,2, 3, 

(4) 

(5) 

We recognize that R.{t) is the normalized autocorrelation function of the normalized autocorre- 

lation function R  (t),  etc.    We may thus consider Rn(t) to be the nth iterated normalized auto- 

correlation function of f(t). 



Consider the Fourier transform Sn(aj),  defined by 

S  (w) =   C    Rn(t) e'ja,t dt 
n ^ -an 

(6) 

and its inverse 

11 ^ -oo 

(7) 

Note that S  (w) is proportional to the spectral density of R^U):  in particular,  So(aJ) is propor- 

tional to the spectral densityt of f(t).    We also observe that Fyt) and SJu) are both real,   even 

functions of their arguments. 

HI. THE  FUNDAMENTAL THEOREM 

In Sec! we stated that our procedure,   consisting of operations limited strictly to the time 

domain,  enables us to determine the peak of the spectrum of a function f(t).    We will now state 

the theorem involved. 

Theorem 1. 

If S  (co) has a unique absolute maximum at w = ©,  viz., 

S  (6) > S  (w)      for a; =^ ±S (8) 

then 

lim  R  (t) = cosOt n 
(9) 

and 

5n(w)     [S0(^)V 

Oe) = lsn(e)l 
(10) 

Proof. 
f i r-vn"*" We first demonstrate that S^o.) exists for all finite  n.    A sufficient condition    for the ex- 

istence of Sn{cj) is 

r |Rn(t)| dt<« 
(11) 

We will establish this condition by an inductive proof on the hypothesis H, which states that Fyt) 

is integrable and continuous in t.    Clearly,  by Eqs. (1) through (4),  we have H,.    We now assume 

H     , and show that this implies H        From Eq. (5) we may form 
n-1 " 

r lRn(t)l  dt= f-   R2   ^)ar J-m     n-1 

(12) 

t Whether this is the energy density or power density depends upon the class that f(t) falls in.    See Eqs. (25) 

through (28) and the discussion following Eq. (28). 

♦ See Ref. 1, p. 103. 



But 

C      Rn_1(T) Rn_1(t+T) drUC       l^n.!^)!   iRjj.itt+T)! dT 

thus 

|Rn(t)|  dt« (13) 

However,  by assumption,   J_°^  |R   _1(T)|  dr < «.    Furthermore,   since R^^t) is assumed to be 

continuous and ^.^0) = 1 [from Eq. (5)],  then /_"  R^,.^7") dT > 0-    This establishes Eq. (11). 

Now,   since for normalized autocorrelation functions^ 

we may write 

Vi^Vi'0^1 

_1(T)Rn.1(t+T)^Rn_1(T) 

(14) 

(15) 

Therefore,  we may bound from above the integrand of the numerator in Eq. (5) by a function which 

is itself integrable and continuous (by assumption of Hn_1).    Thus,   Rn(t) is continuous.*   This 

proves H    and completes the inductive proof,  thus establishing the existence of Sn(a>) for all 

fixed n. 
We now use the fact that the Fourier transform of the autocorrelation of a real,  even function 

is equal to the square of the Fourier transform of the function itself.    In our case,  we have al- 

ready established the existence of the Fourier transform of the function Rn(t).  namely,  S^w). 

Thus,   since the numerator of Eq. (5) represents the autocorrelation of the function Rn_1(t),  we 

transform both sides of Eq. (5) and make use of the product relation above to obtain 

02 

Sn(W) 
n-1 (w) 

r n = 1,2,3, (16) 

K.i{T) dT 

We now concentrate our attention on the frequency  9.    Forming the ratio Sn(a))/Sn(e),  we obtain 

from Eq. (16) 

Sn_,(c..)|' 

S 
SM 
sn(e) 

It is then clear that 

Sn<") 

Sn(G) 

v-i«9)] 
(17) 

S (a))l2 
= lSo'e)J 

t See Ref. 1, p. 6>. 

t See Ref. 2, p. 67. 



which establishes Eq. (10).    We develop some alternate expressions for Sn(aj) as follows. 

2 1 

Let 

'n-1 f"   R2   AT) dr J-K,     n-1 

Th*n Eq. (16) may be written as 

SnM = KnS;   (c) 

where 

^22 
n n-1     n-2 

(18) 

But,  by Eqs. (5) and (7), 

R  (0) =  1 JLf S (OJ) do) 

Integrating Eq. (18) and applying the above relation,   we see that 

ZTT 
K   = n 

/.: so (">d" 

Thus,  we obtain,  as alternate forms for Sn(a)), 

S   (w) = ZTT 
So    ^ (19) 

f*   S2    (a) do- 
J-oo       o 

and 

S  (w) = ZTT n 

[So(a))/So(e)] 

/:„ [So<CT)/So(e)l    d,T 

We now proceed to establish Eq. (9).    By assumption 

S_(w) 

So(G) 
< 1       for all co =^ ±6 

(20) 

Thus,  by Eqs. (10) and (20),  we see that 

lim 
S  (w)       (0       a; ^ ±6 

n        _  I 
n^oc Sn<e)       |l       Co = ±e      . 

Furthermore,  it is clear from Eqs. (7) and (14) that for all fixed n. 

\       S   (w) do) = 27rR  (0) = ZTT 
J-«    n n 

(21) 

(22) 

I 



Since the integral of SJv) is constant and since SnM is vanishingly small compared to Sn(e) at 

all w 4 ±e,  we recognize that the limit at n - =0  must bet 

lim   S   (w) = nuiio - 6) + nu (tu + ©) (23) 

The transform of this limit function (by Eq. 7) is 

lim   Rn(t) = cos et 

which establishes Eq. (9) and completes the proof of Theorem 1. 

Corollary. 
If S   M has a finite number of equal absolute maxima at the frequencies ek (k =  1. 2, . . . , K), 

then 

K 

lim   Rn(t) =  K    E    cos ekt 

k=l 

and 

S (w)       f S (w)l2 
s (e,) 

n     K 

Proof. 
The proof here is identical with that of Theorem 1 through Eq. (20) (where ek is substituted 

for   O).    We now recognize that the limit of SJOJ) must be 

K 
(24) lim snM= J   I   [u^-e^ + u^ + e^]      . 

The transform of this limit is clearly 

K 

lim    Rn(t) =  ^    E    cos ekt       ' 

which completes the proof of the corollary. 
Let us now consider those functions f(t) whose autocorrelation function g(t) has the properties 

listed in Eqs. (1) to (3).    We define functions f(t) to be of finite energy if 

°<f iKtM  dt < 
(25) 

in which case 

g(t) f(r) f(t + T) dr 
(26) 

t Where u (x) is a unit impulse occurring at x - 0. 



Further,   we define f(t) to be of finite average power if 

■vT 

-T 
0 <   lim 

T-oo 
Im    57p \ 
-00   ^ 1 J-1 

|f(t)r dt <« (27) 

in which case 

g<t) im ^sr \      H lim 
T 

T) f(t + T) dr (28) 

Functions of finite energy or of finite average power therefore satisfy Eq. (2),  and if their auto- 

correlation function satisfies Eqs. (1) and (3),  our results hold.1"   We note here that for signals of 

finite energy,  S  (w) represents their normalized energy density spectrum,  whereas for signals 

of finite average power,  So(w) represents their normalized power density spectrum. 

IV. EXTENSION TO PERIODIC AND DISCRETE TIME  FUNCTIONS 

In order to extend Theorem 1 (and its corollary) to periodic and/or discrete time functions, 

we need merely to replace certain integrals in Sec. HI with the expressions described below. 

For continuous periodic functions,  our results hold if we redefine the limits of all previous 

time integrals to extend over a single period (To,  for example),  and if we redefine all integrations 

with respect to   w  as sums over the discrete set of harmonic frequencies,  viz., 

T  /2 

L ■""*-?: LV,,'dl (29) 

and 

*   \      y{a>)dw-*      1     y(wm) 
»-'-on 

(30) 

where 

27rm 

For these periodic functions,  we obtain periodic autocorrelation functions g(t) where 

g(t) 

rp      /y 

-i- ro  f(T) m + T) dr 
ro J-T /2 

(31) 

In addition,  from Eqs. (5),   (7),  and (30), 

y   s (a; ) = i L        nv   m' 
(32) 

and therefore we mustadjust the factor of proportionality by multiplying the right side of Eqs.(23) 

and (24) by l/27r. 

tThe properties expressed in Eqs. (D and (3)"™ most easily stated in terms of g(0 and wilt be left in that form. 



For discrete aperiodic time functions,  our results hold if we replace all time integrals with 

infinite summatiofis over the discrete time variatol«,   and also redefine the limits on all integra- 

tions over   u! to extend over the finite range -(ff/At) < a; < (ir/^t),  where At is the uniform incre- 

ment between adjacent time samples.    That is. 

r x«t) dt y  x(t )   , U        ' m 
(33) 

and 
poo pir/At 
\       y(oj) do) - At \ y(a)) dco 
J_«, J-ir/At 

(34) 

where 

t     = mAt m 
(35) 

For these discrete functions,   we obtain discrete autocorrelation functions g(tm).    Furthermore, 

we find that 

thus,  the new factor of proportionality requires that we multiply the right hand side of Eqs. (23) 

and (24) by l/At. 
For discrete functions (of increment At) which are periodic with period PAt,  we must make 

the following changes: 

P-l 

C     x<t) dt -    2    x(ti) 

J— 1=0 

P/2 

i  C    jioj) do. - ^      Z       y(wm) 
m=-P/2 

(37) 

(38) 

where 

t. = iAt 
i 

Zirm 
u,m= PAT 

For these discrete periodic functions,  we obtain discrete periodic autocorrelation functions g{ti). 

Moreover,  we have 

P/2 

1 S(.m)=P       . 
m=-P/2 

Therefore, the new factor of proportionality requires that we multiply the right hand side of 

Eqs. (23) and (24) by P/2ir. 

(39) 

t For convenience, we 
(39) slightly. 

assume P lo be an even integer.   When P is odd we must alter the limits in Eqs. (38) and 

i 



V.      FINITE SPECTRAL RESOLüTKOW - A  FEAfilBLC TIME DOMAIN PROCEDURE 

The int«reetinf feature of our iterated auitocorrelartion f\*nctio»i im tha« one m«y determin* 
the energy peak <a« OJ = 9,  tor example) of a aigtml Wim opermtionm strictty in the tifne <iom»in. 
In practice, one usually has a signal W of fifüte Auratiofi (T) to consider t   Ae a result,  the 
autocorrelation of the signal «,(«) will be zero outaide the interval  |t| >T.    However, the for- 
mal procedure for calculating \(t) as deacriibed byEq. (5) indicates thatRn<t) will, in general, be 
nonzero in the interval |t| < 2nT.    From a practical point of view, this requires an exponentially 
increasing complexity (in either equipment or computation).    At the same time,   we have an expo- 
nential rate of convergence to our limit function where the exponent is 2n [as may be seen from 
Eq. (10)].    It is clear that this rate of convergence,  although exponential,  is nevertheless depend- 
ent upon the shape of S0(w).    Note, however, that the resolution is theoretically) perfect, i.e., we 

are guaranteed to converge exactly on the value  ©. 
The price for perfect resolution is, as always, extremely high and one which we are not 

willing (or able) to pay; namely, that we require an unbounded number of calculations if we 
insist on passing to the limit n - «.    Two separate aspects of the complexity of the process 
grow without bound:   the number of iterations n, and the range  |t| « 2nT in which fyt) must be 
calculated.    If we are willing to sacrifice some resolution, then we may control both of these 

quantities as follows. 
Let f(t) be the signal whose energy peak (at co = 9) we desire, where we assume f(t) to be of 

finite duration T  sec,  i.e.. f(t) = 0 for t < 0 and t > T.    For this function,  we make the additional 
assumptions stated in Eqs. (4) through (3).    Define Rn(t) and Sn(a,) as in Eqs. (4) through (7).    We 

introduce the periodic function f (t) of period To » 2T such that 

f (t + kTo) = f(t) 0 .£ t-JCT -2,-1, 0, 1, 2, (40) 

For this function, we define S^^) and R^P)(t), as in Eqs. (4) through (7), with the changes 
indicated in Eqs. (29) through (32); the superscript P, serves to distinguish these from Sn(W) 

and R  (t) which refer to f(t). 
B^elow,  in Theorem 2,  wc show that an estimate   6  of the energy peak in fp(t) is a close ap- 

proximation to  G  when To is sufficiently large.    In addition,  we describe a procedure for ob- 
taining this estimate to within a given accuracy after a finite number (no) of iterations.    Further- 
more,   since periodic functions have periodic autocorrelation functions,   we recognize that Rn    (t) 
is periodic (with period T  ) for all n.    Consequently,   we need carry out our calculations of 
R(P)(t) over only one period.    Thus,  by agreeing to estimate  6  within a slight (arbitrarily small) 
error,  we have been able to reduce our system to one which goes through a finite number of it- 
erations over a finite interval (0, To) which is fixed with respect to the number of iterations.    All 
this,  of course,  comes about by allowing an uncertainty of size (p,  let us say) in the estimate of 

the frequency of maximum energy density. 
The relationship between the time limited signal f(t) and its periodic counterpart fp(t) needs 

further elaboration.    Indeed,  we recognize that the autocorrelation functions of these two signals 
obey an inverse of the sampling theorem.    Specifically,   since To > 2T,   R^  '(t) contains all the 
information about Ro(t);   consequently,  sj^uj must be proportional to S^u) at c = a;m = 27rm/T0. 
We may calculate this factor of proportionality from Eqs. (6) and (29),  viz.. 

t Therefore, the signal will be of finite energy [see Eq. (25)). 



T /2 o' 

■V2 ""0 
4- J   io/''RiP)(t)e'JtJJmtdt 

/ 
-jw    t 

R   (t) e       m  dt 
_ OO O 

The integrand in the numerator disappears in the interval T < |t|  < TjZ and the integrand in the lilt:   xliLC^X ciii»-t   in   tut   m****%r* ■••v-i    — r-i  (j- 

denominator disappears over the interval  |ti > T.    Therefore,   since (TjZ) > T,  we find that 

<P,'"mi o 

(41) 

Recognizing that these two spectra are proportional is essential to one's understanding of 

Theorem 2.    A typical case is shown in Fig. 1,   where the continuous spectrum S^u) is shown 

as the continuous envelope,   and the line spectrum vJ^a^) is shown as vertical lines. 

(P) 
Fig. 1.    Comparison befween S (u) and So    (um) 

'm- 2'm/To 

Observe that the distance between "samples" of So(a>) is ZTT/T^    We define an integer  M  such 

that a;M and coM+1 surround the spectral peak at w = 6 (the same clearly holds true for - o^, 

-9 and -ü;M+1).    Further,  we define  v- to be that frequency at which So((ii) has its second 

greatest local maximum. 
In estimating  e,  two separate problems confront us:   first,  how do we eliminate competing 

peaks (such as at w = ±^);   and second,  how do we converge to the neighborhood of 9  within the 

absolute peak itself.    The first problem may be solved by insisting that the spacing 27r/To be 
is fine enough to insure that at least one sample in the neighborhood of  e   (either ajM or wM+1) 

greater than the maximum possible sample near co = v..    Thus,  an important parameter of the 

spectrum S  («) may be expressed as a lower bound A,  for the difference between these two peaks. 

viz.. 

S   (0) -S   (jx) > A 
o o 

(42) 

In considering the problem of convergence in the neighborhood of  e,   we recognize that the shape 

of the spectrum in this region is crucial.    Specifically,  we require that the spacing 27r/To be 

small enough to guarantee that some lines in the discrete spectrum fall within the range of the 

dominant peak (the narrower the peak,  the finer must be the spacing).    On the other hand,  too 

many spectral lines in the immediate vicinity of 9  will result in a large number of required 

iterations,  because the largest sample will not differ significantly from its neighbors.    We may 

discuss the width or sharpness of the spectrum in the vicinity of its absolute peak by^considering 

the curvature of S  (w) in terms of the magnitude of its second derivative d So(w)/dw   .    When the 

second derivative Is large (in magnitude),  then the peak is narrow,   and vice versa.    Thus,  we 

are led to consider upper and lower bounds for this quantity in the neighborhood of 9,  viz.. 



d2S   (OJ) 
-A4 z     <-a 

do; 
for    (JO 

4IT (43) 

The preceding discussion deals qualitatively with those factors that determine the required 
number of iterations and the spacing of samples in the discrete spectrum."''   In addition to these 
considerations,  the sampling must be fine enough to satisfy the spectral resolution requirements 
of the user of these results.    Stated precisely,  we have the following theorem. 

Theorem 2. 

Consider any function f(t) of duration T  sec,  with a unique absolute energy peak at w = ±6, 
whose energy density spectrum So<a)) satisfies the conditions of Eqs. (42) and (43) with respect 
to the three positive parameters (a. A, A).    Then, for a given required frequency resolution p, 
there exists a procedure <defined below) which will calculate a number §  after no iterations of 
the autocorrelation of f (t) [see Eq. (40)] over the range  |ti ^ To such that 

|e - e| ^ p 

where 

% = l0g2 2ro 
(44) 

and 

e    = 
o 

2ir (45) 

and 

T    = max o 
,     /AT 
<* J-2/ 

4a St 
P 

2T) (46) 

Proof. 
(P), 

We begin by describing the procedure by which we determine the estimate  8   from Rn    (t). 
We  recognize that if one  line (say at u>m = ep) of the   spectrum of the periodic function 
R(P)(t) is "sufficiently" large* compared to all the other lines,  then R^  '(t) will appear as a 
"noisy" cosine wave at frequency e    rad/sec.    Our procedure, then,  is to count the number of 
"noisy" zero-crossings of this function for a known time interval;  if we are successful in 
counting only the true zero-crossings of the pure cosine wave,  we can then ascertain  ep exactly. 
We define a noisy zero-crossing counter as follows.    Consider a 6-threshold detector with hys- 
teresis defined by the transfer characteristic shown in Fig. 2.    Further,  define: 

and 

Z(t) = number of zeros (or counts) recorded by the 
noisy zero-crossing counter in t  sec 

Z(0)= 1 

t The »ample spacing may be adjusted by changing the value of T^ i.e., | um - u^, |      2it/To. 

i It is clear that by increasing T0, 9. can be made as clase to  6 as one desires; also, by '"^^ th* ^r 

of iterations, 5^(6 ) can be made Srbitrarily large compared to all other spectral components (see Theorem 1). 

10 



The noisy zero-crossing counter consists of a 8-thr«shol<i detector with hysteresis followed by 
a simple counter which registers at count each time the detector changes state (in either direction) 
as shown in Fig. 3.    It will be shown later that a setting of 6 = l/9 defines a noisy zero-crossing 
counter which produces a« estimate  0   consistent with Theorem 2,  that i 

[where 6    is defined by Eq. (♦«) below]. 

s,   ö    4 ö n l/9 for n ^ n 

OUTPUT       "lEIE^^L 

»—      iT«Te   A 

f H»#UT 8-THRESH0L0 
DETECTOR  WITH 

HYSTERESIS 

STATE 
CHANGE 
COUNTER 

>2(t) 

Fig. 2.   Transfer characteristic of the 
6-threshold detector with hysteresis. 

Fig. 3.    The noisy zero-crossing counter. 

With no loss of generality,  we may write 

R^(t)=BricosOpt + bn(t) (47) 

This form exposes the pure cosine wave that we wish to detect, and groups the transform of all 

the other spectral components into the function bn<t).    Define 6n by 

|bn(t)|<9n for   t   4T. (48) 

Then,  if 

n n 
(49) 

we are guaranteed that Z(t) will increase by unity each time Bn cos ept passes through zero, 
as  may be seen in Fig. 4.    That  is,   when Bn cos ept is negative R^t) < 6n and when  Bn 

cos e t is positive R<p>(t) > - 6n, thus insuring that a single zero-crossing (which is equivalent 
to a s^gn change) of Bn cos et cannot generate more than one count.    Furthermore,  by insisting 
that B   > 2«   ,  we guarantee that each time Bn cos ept passes through zero, we must get at 
least one coCnt.    Thus,   Z(t) - 1 will count the number of zero-crossings of Bn cos ept.    Now, 

since To is a multiple of the period of Bn cos ept,   we determine ep from 

Z(T   ) - 1 (50) 

B„ coi 8pt li-;2-44T7| 

Fig. 4.    Description of the relation between B^ and 8n. 

THIS DISTANCE MUST 
BE AT LEAST S. 

11 



Generally,   if we observe Z(t) for a time   r,  where 0 < r « To,  then we may ask how large an 

error is made in our estimation of B      in p 

this,  we use Euclid's algorithm to express 

error is made in our estimation of ep;   in particular,   how large is  | ep - [Z(T)/T] T: |.    To answer 

T ,     r 

P =q+ P 

where P is the period of cos ept (i.e., P = 27r/ep) and q and r are, respectively, the quotient 

and remainder of r/P, where, of course, r < P. But, q = [Z(T) - 1] /2 since we increment Z(t) 

twice for each period  P  of cos et.    Thus, 

T   _   Z(T)- 1       X 
pr " 2 P 

or,   multiplying by ZTT/T,   we obtain 

ZTT   _  7rZ(T)       IT   ,,  r _ ., 

Now,   since 6    = ZTT/F,   and since r < P,   we have 

|e   -^ill.U;    • (51) 1
      p T T 

Thus we conclude that the noisy zero-crossing counter determines from R^P)(t) the frequency 

0    to within the accuracy described by Eq. (51).    The error in this determination may be made 
P 

arbitrarily small by increasing   T. 

We now obtain bounds for the magnitude of the difference between spectral components in 

the neighborhood of e.    By Taylor's development,   we have 

dS
0^''      r„,-(.M2dZso(a) 

So(W)=So(W')+(«-W')-HI7-+ 2—       d,J        ■ 

where <T lies between  w   and   w'.    Furthermore,  expanding dS^')/^ we have 

dS  (w')        dS^(e) 
+ (w' - e) 

d2S  {a) o 
2 

dci)~ 

where   a   lies between  W'   and   e.    Combining these two equations,   and recognizing that the slope 

of S  (w) is zero for a) = e,  we obtain 
o 

d2S0(«)  +  (.-.')
2^!o^ 

S  (w) - S (co') = (« - w') (a;1 - 6)  g- +  j— 
Ov O da) da) 

For future reference, we now establish a lower bound for this difference in the case c' = o 

w = u^. Recall that ^ - U,,^., = 2rr/T0 where ^ is defined as shown in Fig. 1. Thu. 

Eq. (52) becomes 

(52) 

M' 

2TT 
d S   (o 

So^M-l'-V-M^-T-^M-9»-^ 

,   2 (TS Jcr) o      • .    2» o _ 
T2       d.2 

o 

Since  cr  and  a  both lie within the range e ± 4./To,   we may apply Eq. (43) and in obtaining a 

lower bound for the above expression,   we may set coM -  O,  yielding 

12 



(53) 

Note that a similar equation holds for i^M+1 and ^M+Z' 
We now consider the conditions necessary to insure that the sample at either OJ-^ or ^]yj+1 

exceeds the maximum possible sample at w = (A. Recognizing that one of the two samples sur- 

rounding  e   must lie within */T    of G,   we apply Eq. (52) [with w' = 0,   OJ = 9 ± (?r/To)] and obtain 

So(e * T^) - so(e) | *Z     dSQ<g> 

2T2     du)2 

o 

Application of Eq. (43) gives us 

o 2To 

(P), Thus,  the minimum value of the maximum sample of So    (o^) near   8  is 

f[v-44] 
where we have made use of Eq. (41).    We choose to require,   at this point,  that this minimum 

value should exceed S^)/^ by at least the quantity1' €o = 2a (*  /To).    Thus, 

f[v-4^^- (54) 

Applying Eq. (42),   we obtain,  as our first condition on To [see Eq. (46)|, 

T     ^-TT 
o J A+4a 

2A 
(55) 

We have eliminated the problem of competing peaks 

that 

i<P> o 

We may now discuss convergence of R^Nt),  in the neighborhood of  6.    Theorem 1 stalest 

the iterated normalized autocorrelation R'^'(t) of f (t) converges to cos et where So    (e  )> 

s:*'(a)m)foraUWm^*ep. 
•n     '"' -' -p— ° P op 

However,  as stated in the corollary to Theorem 1, if there are a 

' ^P\t) will converge to a sum of cosines at the various number of equal absolute maxima, then Rn 

frequencies of the equal peaks.    We have postulated that S^OJ) has a unique peak at u = e.    Never- 

theless, S^P)(a)m) may have two equal peaks at u)m = U)M< wM+1 as shown in Fig. 5.    On the other 

hand, S(P)(a)M) and S(P>(wM+1) may be arbitrarily close in magnitude,  depending upon So(aj) and 

the frequency sampling rate 2)r/To.    In order to handle this annoying circumstance,  we express 

R*P^t) (again, with no loss of generality) as 

l(P)(t) = C    L cos ^ M + (1 -ß) cos £P- (M + 1)1 + C  (t) 
« n I ^o o I 

(56) 

tNote that e    is iust the lower bound in Eq. (53). 
o 

t We use this theorem with its extension to periodic functions; see Sec. IV. 
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This form for H(P)(t) exposes the interaction of the two largest components of Sn    (a;m) and groups 

the transform of all the other components into a single function cn(t).    The variable ß  allows us 

13-22-4471 

ill ill 
If) 

Fig. 5.    Two equal peaks in S       (u 

VK1-"- 
'M+l 

to investigate the effect of the relative magnitudes of these two components,  where,  of course, 

04ß 4 i.    It is clear that c  (t) is a sum of cosines,  each with zero phase;' therefore. 

cn(0) » | cn(t) |       . 

Furthermore,  since R<P>(0) = 1,  we note from Eq. (56) that 

C    = 1 - c  (0) 
n n 

We concentrate our attention on the function 

e{ß.t) = |9 coslp1 M+ (1-/3) cos ^  (M + 1) 
o o 

(57) 

(58) 

(59) 

and investigate the behavior of its maxima and minima in order to determine the effect of passing 

R(P)(t),  as expressed in Eq. (56), through the noisy zero-crossing counter, 
n ' .... th 

Define S   to be that instant when the time derivative of e{ß,i) has its k     zero,   i.e.. 

de(/J,Sk) 

dt    ~ 
= 0 

Lemma 1.* 

We make use of Lemma 1 as follows.   For all 0 < /3 « 1, and for all k and  r  such thaf 

0 4Sk^uk4T4To/2       , 

then 

|e(f  ,T)| < \e(ß.Sk) 
(60) 

Application of this lemma will be made when we consider Eq. (56),  namely. 

R(P)(t) = C  e(/3,t) + c   (t) n n n 

and compare it to Eq. (47), 

R(P)(t) = B    cose t + b  (t) 
n   K r\ p n 

+ Recal I that S (u) is always real and even, 
n 

X See the Appendix for proof of Lemma 1. 

§ See the proof of Lemma 1 for a definition of u^. 
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Whereas e{ß,t) is not a pure cosine,  it does have the same number of relative peaks (maxima 

and minima) as some cosine of frequency (w1,   for example) where 

CO M<u'<uM*i 
(61) 

The same can be said about the number of zeros of e^.t).    We may now write an equation,   similar 

to Eq. (49),  which places a condition on the magnitude of the relative peaks of e(/3,t) over a range 

of t.    Specifically, if we expect the noisy aero-crossing counter to calculate the frequency w' 

when R(P)(t) (as expressed in Eq. (56H is present,  then we require [see the proof of Eq. (49)1 , 

that 

Cn |e(/},SkM Ss-Z  |cn<t)| 

By Lemma 1, therefore, we require that 

Cn |e(f ,r)|  >2  |cn<t)| 

for 0 < S    4u   ^ T 4T   /Z.    By Eqs. (67) and (58) we obtain,  as an equivalent condition, 

t n 

Thus,  we propose to choose some   r  in the range^  0 < r 4; (To/2) and agree to observe Z(t) only 

up to t = T.    In limiting our interval of observation to  T  instead of To we incur a slightly greater 

ambiguity in the estimation of w1,  namely [see Eq. (51)] , 

We define  6 to be the output of our noisy zero-crossing counter at time  T,  viz., 

g =   Z(I) .       . (64) 

Furthermore,   since W' is bounded between WM and WM+1 [see Eq. (61)] and since   e  is in the 

same interval (of width WM+1 - a;M = Zt/TJ.  we conclude [with the application of Eqs. (63) and 

(64)] that the maximum error in the estimate (O) of 0 is 

'     o ' 

(65) 

Consequently, we would like to make   T  and To as large as possible;  however, note that at the 

times of interest (namely at the peaks),  |e(l/2, T) | behaves essentially as cos(7rr/To).   Thus,  as 

r   is increased, the condition expressed in Eq. (62) becomes more difficult to satisfy, therefore no 

must increase (see below).   This represents a trade among no,   To,   and  r.    To be specific,  we 

choose a reasonable value for  r, namely, r = To/3.   Then,  from Eq. (59),   |e(l/2,   To/3) |  > l/4 

and we obtain the followingt from Eqs. (62) and (65), 

1-cn(0).„ (66) 
cn(0) i 8 

tHere we ore neglecting the restriction that u^ T; in so doing, we make a slight error.    However, this error is 

insignificant for large M (M>10, typically). 

t Equation (67) therefore requires 5Tr/T0 < p.   See Eq. (46). 
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and 

§-e  < 
STT (67) 

Note that Eq. (66) specifies an upper bound for c^O);  we may therefore use this as the setting for 

the threshold in our noisy zero-crossing counter.    That is,   6 =  l/9. 

We now consider the behavior of cn(0). Specifically, cn(t) is the transform of all spectral 

lines except the two pairs at w = ±wM, ±M+1. Therefore, cn(0) is merely the sum of the mag- 

nitudes of all such lines,  viz., 

=n(0)=       I      S^^-S^^-S^-^-S^c^^-S^-co^) (68) 

We now consider the worst'   case,   namely. 

Since S(P)(u)     ) = S(P)(w       )    we observe* that the coefficient C    [as defined by Eq. (56)]   is 01 n ni n -m n 

Furthermore,   since       S       ^{u^J =  1 [see Eq. (32)] ,  we may rewrite Eq. (68) as 
m= -« 

cn(0)=l-4S^)(a.M)=l-Cn      . (69) 

The behavior of sjf'^) [recall that S^c^) > S^m) for all m ^ ±M>  MM +  Dl may be 

determined by considering the extension of Eq. (19) to periodic functions,  viz., 

[siP)(cu^)]2n 
(P) ^o    ^M 

Sn    ^M' " 

m= -« 

For convenience,   we temporarily adopt the notation, 

h      = S^hw)       . mom 

Thus,   Eq. (69) becomes 

4h 
cn(0)=l- 

■M (70) 

S        h 
m= -x 

We adopt the further notation. 

tThat is, the case which requires the largest r^.   This corresponds to ß = 1/2. ^ 

JNote that the transform of any corresponding pair of spectral lines, say Sn  (»J ond ^  (u^), i» merely 
2SW(» ) cosu  t, since all components of WK»J "« ^al ond positive. 
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Equation (7 0) then may be written as 

4h 
cn(0)=l- 1V1 (71) 

4h 
M 

2'   h 

We recognize that cn(0) (and therefore,   n^ 
(P) 

is maximized when,  for fixed h^. = S      (^M''  
the 

sum  2'  h2    is maximized.    In order to find the maximum of this sum,   we find it convenient to 

state Tnd solve an equivalent problem,  as stated in Lemma 2 below.    In this lemma we recognize 

that the quantities 2bk.  a, and  N  correspond respectively to £'hm,   1 - 4hM and Zn.    The value 

of a, will become apparent shortly. 

Lemma 2.'t 

Given |bk} k=  1,2, 3, 

k=l 

such that 

and 

0 < bk< a2 < a1 

Then the set (b*} which maximizes 

oc 

(J=   L  bk 
k=l 

bk = 
a1 -(K- 1) a2 

k = 1,2, 

k = K 

k > K 

72 

where 

K = 1^1 +  1 

and [x] = the maximum integer contained in x. 
Maximizing c (0) corresponds to maximizing no (i.e., it makes the lnequ*Ut) in Kq ..-■ 

difficult to satisfy]1. This "worst" condition as described in Lemma 2 maj be combined «Xt 

Eq.(71) to give 

tThe proof of Lemmo 2 will be found in the Appendix. 
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4hM 
Cn(0) ^ * - —^ ^ ^ 

4hM+(K_1)a2    +{a1- (K- 1) a2} 

(73) 

We recognize that 

al = 1 - 4hM 

K- 1 = 
1 - 4h M^j 

As for a-,,  which represents the maximum value of S^'(a.m) for m ^ ±M, ±(M + 1),  we refer 

back to Eq. (53) and to the discussion preceechng Eq. (54) to obtain 

Z 
, 2 ay 

a2 = hM _ ^T 
(74) 

A portion of the denominator of Eq. (7 3) may be bounded above as follows: 

(K-DaJ;    +{a1-(K- 1) a2} 
2n        2 

= a2 

"  / 1 ~ 4hM \ 

- 4h M m)2 

Thus,   Eq. (7 3) becomes 

cn(0)^l- 
1 - 4hM.   , a. .2 

1 + 
/ 1 - 4nM\ l^Z\ 
\     4a2     MhM; 

Recalling the definition 

(75) 

2air 
o T3 

(76) 

we substitute Eq. (74) in Eq. (75) to obtain 

cn(0)<l- 

1 + 
/   l-4hM   W^vr^oV2 

V4hM-4eoA       hM        / 

We now consider that value of hM (H        let us say) which maximize 

(77) 

1 - 4h..      /h-, - e   \2 
E = 4h 4c     V     h^,      / M-^o   x     "M 

(^-•X1-^) 
->n     A e    ,2   -1 (78) 

Differentiating,  we get 
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dE 
dh 4h2

M   I hM/ 

€     v2"-l 6    v2"-2/  e 
+ (2U- 1) 

M 4h' fe-'K1-^) '(^ 
Setting this derivative equal to zero,  we find that 

2ne 

M       1 + 4£o(2n - 1) 

We note that e    ^ HM ^ l/4 as of course it must.   Substituting the value hM = HM into Eq. (78) yields 

n      ^v2"-l 

EX 

o 

(1 — 2      — 4e    + 4e   2     ) 1 oo 

-n 2n 

o 

Thus,   Eq. (77) becomes 

l + li-d"^)2 

o 

(79) 

Returning to the condition expressed in Eq. (66),   and using Eq. (79) we obtain as our condition, 

after some algebra. 

2 a 

(1-4C/   .<^- (80) 

where e    is defined in Eq. (76).     Rewriting Eq. (80) in terms of logarithms,  we obtain 
o 

n+2nlog2T^37->log2f      . (81> 
o o 

However,  due to the convexity of the function log l/(l - x) in the interval 0 < x < 1,   we may bound 

log l/(l - x) from below by its tangent at x = 0, viz., 

log2T^»|(^log2r^)x  J 

log 2 1 - x 5- x logo e 

Applying this inequality to Eq. (81) results in a slightly larger value of no.    Therefore,  we obtain 

,n+2 n + Z eo log2 e ^ log2 — (82) 

We now define 
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(ol     ' H) 

(f)      S>) 

u)    n,  (i) 

m 
(«)   «   (t> 

(P) 
Fig. 6.   Power spectrum Sn(o) ond one period of the iferoted outocorrelotion function Rn  (t) 
os a function of the number of iterations n. 
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y = iog2 

and so 

e    = 2 
o 

i-y 

Eq. (82) then becomes 

n + 2n+3"y log    e >y (83) 

The minimum value of n  (n   , for instance) which satisfies Eq. (83) is clearly no = y - 2,   so 

n    = log,  — 
o s2   e. 

2 = log2lf-      • (84) 
~o o 

Thus    n    reor^sents the number of iterations of the normalized autocorrelation of f  (t) which we 
0 /N p 

need in order to obtain a number  8   satisfying Eq. (67).    This completes the proof of Theorem 2. 

VI.    EXPERIMENTAL RESULTS 

The procedure described in Sec. V for determining the energy peak of a finite duration signal 
+ 

to a finite resolution was simulated on a digital computer.'    Results of the experimentation are 

shown in Fig. 6. 

Specifically,  the signal f(t) chosen was a small segment (T = 0.0256 sec) of human speech 

sampled  at a 10 kc  rate.    Figure 6  shows  only one  period,  the  interval  0 < t < To,  of fp(t) 

and R<P)(t) for n = 0, 1, 2,   as well as 8^(0)) for n = 0,1. 2, 3.    To was chosen equal to 2T for this 

experiment.    Note that S   (u)) is shown only as a visual aid;  its calculation was clearly not nec- 

essary for the generation of R^Nt).    We chose to show Sn(w) rather than S^'^) for convenience 

of programming;  as a result,   we observe the ([sin a (a) - a)m)]/a(w - wm)}2 envelope quite dis- 

tinctly in S  (UJ). 

One clearly observes the rapid convergence of both «^'(t) and Sn(a)) to the frequency of 

maximum energy density. 

VÜ. APPLICATIONS AND CONCLUSIONS 

Theorem 1 expresses the fundamental result that the limit of the iterated normalized auto- 

correlation function of a signal is a cosine wave at a frequency (8) corresponding to the maximum 

energy peak of the signal's spectrum.    However,  two aspects of the procedure by which one 

arrives at this limit require unbounded complexity:   first,  the interval over which the n     iter- 

ation must be calculated (assuming the signal to be of finite duration T) is  |t| « 2 T;  second, 

the number of iterations grows without bound.    These two difficulties require unlimited equip- 

ment and time,   respectively.    Clearly,  the reason behind these infinite operations is that we 

are asking for an absolutely perfect determination of e.    Naturally,  we are willing to accept 

some error in this determination in any practical situation.    Taking advantage of this fact,  we 

are able to establish Theorem 2 in which we offer a procedure for estimating  ©   (to within an 

arbitrarily small,  but finite,  error) which requires a finite number of calculations over a fixed 

time interval.     Thus, by accepting an error in the determination of e,  we have been able to 

eliminate both undesirable aspects of the original procedure. 

t A program for simolafing the iteroted outocorrelation written by the outhor, and a ipeetrun onaty»« progrom 
written by C. Rader, were run on Lincoln Laboratory'! TX-2 high-speed digito» compater (tee Ref. 3). 
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The procedure for obtaining the estimate (6) of  6   may be mechanized as follows (see Fig. 7). 

The signal fft) would be stored on a tapped delay line (of To seconds).    At time To,   the impulse 

response of a linear filter''' would be set equal to the values of the taps and the output of the delay 

line would then feed into the filter.    The output of the filter during the interval 2To < t < 3To 

(now equal to the autocorrelation of the signal) would then be fed back into the delay line.    The 

procedure is repeated n   times,   after which the output of the filter is sent through the noisy 

sero-croBsiftg counter,  which provides the estimate   6. 

mm)T 

bLCLTL ° t n. 
OMMtC 

LINt L0N9 

,1 SAMK.I«e 
'LI g     » ••• »*w*4.  am 
0  T0     ST0   5T0 FIR 

[PjFjjjg 

»rtti 

fiq. 7.    hnpiim***** o* **» pfoced«« ♦©» detecting th# ffenMeocy of ma*imji* efwrgy density. 

The applications of these results appear to be numerous.    The detection of the energy peak 

of an arbitrary signal («or example,  the energy peak corresponding to a time series) is often of 

great interest,   and may be detected as above.    Furthermore,  this method may be used for se- 

lecting that one out of N possible signals transmitted over a communication link;  in this appli- 

cation it is necessary,  of course, that the location of the absolute peaks in the spectra of the 

N  signals be distinct,  one from the other,   such as is the case in Frequency Shift Keying.    Another 

application may be found in locating the peak frequency in the return signal from a Doppler radar. 

These are but a few of the possible applications of the procedure described. 
The main conclusion to be drawn from this Study is that the iterated autocorrelation pro- 

cedure represents a new method for detecting the frequency of maximum energy density of a 

signal.    Some areas of application have been suggested above briefly; but,  more careful con- 

sideration and analysis must be undertaken before one can determine the advantages or disad- 

vantages of this system compared to any other.    In fact,  one of the main purposes of presenting 

this material is to stimulate thinking about the possible applications and merits of this new de- 

tection approach. 

t This fitter h 2T0 »ec long, with it, impulse response h(t) odjosted such that h(t + T0) = h(t), thus representins 
the periodic verston of the signal.    In Fig. 7, this linear filter is represented oso eomWnotion of «> ^'"9 c'™,t 

ond o second tapped delay line, the output, of which ore multiplied and summed to form the output of the l.neor 

RItef. 
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APPENDIX 

PROOFS OF LEMMAS 

Lemma 1. 

We may express e(/3, t) as the real part of the sum of two vectors in the complex plane,  viz., 

eO,t) = Re {ß exp[j(2Tt/To) M] + {i - ß) exp [jUrt/T^) {M + 1)]} 

= Re [A{/M.) e^^'^l      , 

where A(^,t) is the magnitude of this vector sum,   and yiß.t) is its phase angle.    We may express 

A(ß,t) and yiß.t),   after some trigonometric simplifications,   as 
1/2 

A{ß.t) = \ßZ + (1 ~ß)Z + 2^(1 -ß) cos^i] (A-l) 

and 

(1 - ß) sin Zri 

o yiß.t) =  1?! M + tan"1        . , 
o ß + a -ß) cos-^- 

(A-2) 

Forming dA{ß,t)/dß = 0,   we easily show that 

A(j.t)4A(ß,t)      . 

Furthermore,   we observe that for 0 ^ t < T  72, 

dA^)  <0 
at 

from which we conclude that 

(A-3) 

(A-4) A(|9,t1) >A(3,t2)      fort1«:t2«-y 

Let u,   be that instant when y(/3,uk) = (k - 1) TT.    Now,   for 0 < t-^ (To/2),   we observe that dy(ß, t)/dt 

is always positive;   furthermore,   since A(ß,i) is a decreasing function of t  in this interval [see 
\y(ß   t) 

Eq.(A-4)],  we note that dc(|8,t)/dt passes through zero each time the vector A(/3, t) eJ       '     passes 

through either the second or fourth quadrants of the complex plane.    We may then conclude that 

the instants u,   and S.   must alternate,  viz.. 

In addition. 

<uk.1«Sk^uk<Sk+1« 

|e(P,Sk)l > |eO,uk)|   = A(#,uk) A-5) 

which follows from the definition of Sk and uk and the fact that the relative maxima and minima 

of e(ß, t) occur when the vector AO, t) eJ^t/*. 1) passes through the second and fourth quadrants. 

It is also clear that 

leO,t)|  =  |A0,t) cosyO.t)! -$ AO,t)      . (A-6) 
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From Eqs. (A-3) through (A-6) we may write 

A(/3.u,)>A(y,u  )>A{|-,T)» 1A(|-T) cosy(|,r)|   =   |e(|-,T)| 
ie(/3,Sk)| > |e(/3,uk) 

where 

O^S^u^r^-^ 

This completes the proof of Lemma 1. 

Lemma 2. 

Consider a sequence of sets (b^} where we define 

Corresponding to each such sequence,   we define 

V     rh(i)lN 

^i "     L    tbk   ' 
k=l 

vhere,  obviously,  u a.    Since we have freedom  in labelling the subscript   k,   we choose to 

arrange the b^0) in a nonincreasing sequence;  that is. 

b(0)>b(0) 
bk     ?    k+1      ■ 

The iteration on  i  may be described essentially as follows.     We concentrate on two special values 

of  k,   say  k^i) and  k2(i),  where 

k,(i) = the smallest value of  k for which bk     < a2 

k  (i) = the smallest value of  k greater than or equal to  K,   for which 

k 

Corresponding to these values,   we define 

.U) D. = b,    , 
i        k1(i) 

di " bkz(i) 

(i) 
Then,   the set  (b)|

i+1)} is defined in terms of {bk    } by 

k 

D. + a.d.       for k = k,(i) 
iii i 

d.(l -a.)      for k = k7(i) 
ii ' 

t-i" otherwise (A-7) 

where 
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a„ -D. 
a. = mm 

i 

(i+i) 
Thus,   at each stage,  we transfer a fraction (o^) of cL to Dj being careful not to allow any b^ 

to exceed a   .    Now,   it is clear,   from the definition of K  and Kq. (A-7),   that k^i) < K and 

k  (i) a- K     For those  i where k.U) remains constant,   D   is an increasing function,   and for those 
2 i 1 (0) (0) 

i where k,(i) remains constant,   d, is a decreasing function.    Also,   since bk     >b
k+i 

we have 

D. > d.       for all  i 
ii 

Furthermore,   at each step,   we conserve the sum 

k=l 

The iterative procedure continues until we reach that value of  i   (io,   let us say) for which 

b*lo) = a?      k.  1,2, .,.,K-1       . (A-8) 
k 2 

We now show that (j.   , > cr, for all i < io.    As a result of Eq. {A-7) we may write 

Using the binomial expansion,   we get 

N 

CTi+1-i=    I     (j)tDiJKdi>N"J+diJ<-«idi 
1 = 0 

N-j. D.N-dN 

i i 

j = 0 

J + (-1)N'J d.J] 

But,   since D. 5. d.,   we have,   for i < io. 

a^i-cr^O 

We now consider the remainder 

(i 
I    \C   =a1-(K-l)a2SV 

k=K 

But, 

k=K l J lk=K J 

and this upper bound may be achieved when 

N 
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We observe that 

«V 

(i   ) 

y      k = K 

0       k > K (A-9) 

{bk
0)={bg}      . 

(i   ) where (b    0 } is defined by Eqs. (A-8) and (A-9).    Thus,  we have shown that starting from any 

(b (())},  the sequence (bjl1'} may be defined in a way such that 

and 

lim   {b^} = {b*} 

ffi<ffi+l      ^^ 

This completes the proof of Lemma 2, 
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