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FOREWORD

This note presents the derivation, using the rudiments of probability and
combinatorial techniques, of a mathematical model for evaluating the penetra-
tion probability of warheads accompanied by indistinguishable decoys. The
resulting model is to be used in examining the utility of multiple warheads
and decoys in Study 17.1, "Offensive Missiles Systems for the Field Army (U)."
Because of its usefulness in the warhead-decoys problem, it was felt the de-
scription of the model should appear as an unclassified note independent of the
report of the general problem of Study 17.1.

Appendix B includes a FORTRAN program of the model, written by Mrs.
Bertha M. Butler and Mrs. Miriam K. Marhoff, usedto compute the data in the ex-
amples given in the paper.

The author is grateful to his colleaglie Dr. W. Bruce Taylor for his val-
uable assistance in establishing some of the preliminary results for this paper;
to Walter Eckhardt for his helpful suggestions in revising the paper; to Charles
R. Wyman for his support; and to Robert G. Busacker for his review of the final
draft and useful observations.
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Problem

To determine the probability that at least u of w warheads accompanied
by d decoys penetrate to a target defended by an antimissile missile (AMM)
system of c missiles, each with a single-shot kill probability (SSKP) pm.

Facts

There are many techniques, known as "penetration aids," to counter an
AMM system.. One such technique is the use of multiple warheads and decoys.
Forcing the defense to commit some of his interceptors to decoys, .and/or
forcing him to dilute his fire among several incoming warheads, results in a
corresponding increase in penetration probability of the warheads.

This penetration probability is needed to evaluate the effectiveness of
the use of multiple warheads and decoys.

Discussion

The problem is approached by using the rudiments of probability and
combinatorial techniques. With these notions the problem is reduced to a
version of a hypergeometric distribution.

",j The following assumptions are madei-n~the analyssis: ( the defense de-
tects the complete swarm of incoming objects before the engagement begins;

he commits his c missiles as uniformly as possible; (-) he cannot dist-
guish between decoys and warheads prior to final commmitment time; and
he cannot kill more than one incoming object with a single missile.

In the derivation of the mathematical model, a restriction of the number
of incoming objects is first made, and the probability of at least one warhead
penetrating is determined. Next this restriction is removed, and the prob-
ability of at least one warhead penetrating is established again. Finally this
result is made more general to determine the probability that at least u war-
heads penetrate.,-

The paper rý\esults in a mathematical model for determining penetration
probabilities of warheads accompanied by decoys. Two illustrations of the
use of the model are presented.
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GLOSSARY

AMM antimissile missile

SSKP single-shot kill probability
c simultaneous intercept capacity of AMM systemn

P. SSKP of AMM

P2m SSKP of two AMMs

Pim SSKP of i independently launched AMMs, i.e., the probability that at leastone of the i missiles aimed at an object will destroy it = 1-(1-p.)i

P(u) probability that at least u warheads penetrate

PIuI probability that exactly u warheads penetrate

d number of decoys arriving over target

w number of warheads arriving over target

W~h] probability that exactly k warheads are attacked by AMMs with SSKP =p"
W[iJkl] probability that exactly i warheads are attacked by AMMs with SSKP = Pim,

i of these are destroyed, and k other warheads are attacked and destroyed
by AMMs with SSKP = p(i+l),
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INTRODUCTION

During the study of penetration methods for field army missiles the use
of decoys with warheads In a number of combinations was considered. These
decoys could be launched in combination with the warhead in the same missile

or separately as dummy missiles. In addition a multiple warhead could be de-
livered by one missile or single warheads by single missiles. A measure of
effectiveness of this swarm of objects (warheads and decoys) arriving over a
target was needed.

This paper develops a mathematical model for measuring this effective-
ness by computing the penetration probability of warheads accompanied by in-
distinguishable decoys. The parameters of the model include the number of
warheads and decoys arriving over the target, thecapacityof the AMM defense,
and the SSKP of each AMM. The paper concludes with two illustrations of the
use of the model.

STATEMENT AND SCOPE OF THE PROBLEM

The offense has three modes of attack in attempting to penetrate an AMM
system. First, he can stagger his warheads and decoys in time so that the de-
fense will not be able to commit his missiles efficiently. The defense will be
forced to decide arbitrarily to commit a number of AMMs to each of the var-
ious waves until his missile supply is exhausted.

A second mode, somewhat similar to the first, is a shoot-look-shoot or
repeated attack. The offense attacks the missile supply of the defense but does
not risk wasting warheads in overkilling. Like the staggered attack, this mode
forces the defense to fire in Ignorance of the number of incoming objects, so
that he cannot use his missiles efficiently. Denying information to the defense
concerning the number of incoming objects is excellent strategy for attacking
his missile supply.

The third mode (and the one treated in this paper) is the simultaneous at-
tack in which the defense knows the number of incoming objects and therefore
can commit his simultaneous intercept capacity uniformly and efficiently.
Uniform fire doctrine is discussed in App A. It is assumed that the offense
has dispersed its objects in space so that only one can be destroyed by a single
AMM. It is also assumed that the decoys cannot be distinguished from the war-
heads prior to last commitment time.

In this type of engagement the penetration probability depends on the
number of incoming warheads and decoys, the SSKP of each AMM, and the
simultaneous intercept capacity of the defensive system. Since no missile
can be 100 percent reliable, this SSKP can be adjusted to include the degree



of reliability of the AMM. The capacity of the defense is interpreted as the
number of AMMs launched against a single attack of incoming objects.

In the derivation of the model an initial restriction on the number of in-
coming objects is imposed. The number of objects in the swarm is no more
than the defense capacity nor less than one-half this capacity. The probability
of at least one warhead penetrating is established with this restriction. The
model is then made more general by relaxing the restriction on the number of
objects in the swarm. And finally the model is generalized to determine the
probability of penetration by any number of warheads.

The problem stated precisely is: Given that d decoys and w warheads ar-
rive over a target defended by an AMM system with capacity c missiles, each
with SSKP = Pm,, find the probability that at least u of the warheads penetrate
this defense.

DERIVATION OF THE MODEL

Let it be assumed that w+dA,.c and 2(W+d) > c, or equivalently let c be on
the interval

t: 2(W+d)
(W+d)(1)

Restriction 1 ensures that no more than two nor less than one AMM can be
committed to each incoming object. The number of incoming objects attacked
by two missiles is

y = C-(W~d) (2)

and the number of incoming objects attacked by one missile is

x = w+d-y - 2(w•d)- c (3)

If the SSKP of a single AMM is p,,' then each of the incoming objects at-
tacked by two missiles can be viewed as being attacked by a "new" single AMM
with increased kill probability given by

P2. = 1-(1-p.) 2  (4)

These "new" missiles will be identified as AMMs with SSKP = P2m.
The probability that at least one warhead penetrates equals the comple-

ment of the probability that none of the warheads penetrate or

PW1 - I - P10 (5)

So that none of the warheads may penetrate, each must be successfully
intercepted by either an AMM with SSKP = Pm or an AMM with SSKP = P2m
Suppose exactly k warheads are intercepted by AMMs with SSKP = Pm' These k
warheads can be selected in

6



( ) W! (t v (6)

ways. After k AMMs with SSKP = pm are assigned to these k warheads, It
follows from Eq 3 that there are (x-k) AMMs remaining to be assigned to the
decoys. This can be done in

X k) (x-k)! (d-x+k)l (7)

ways.

The number of ways of assigning AMMs with SSKP = Pm to exactly k war-

heads is therefore the product (k) (,xk). The total number of ways of as-

signing these AMMe with SSKP = pm to all incoming objects is (w+ so tha

the probability that exactly k warheads are attacked by AMMs with SSKP = Pm is

w~]= (:) (r-k) (8)
(W+d)

The system of probabilities defined by Eq 8 is called the "hypergeometric
distribution." It should be noted that the probabilities W[k] are defined only
for k not exceeding w or x. However, by employing the usual convention,

(a) =0wheneverb>a, then W[k) =0 whenever k>work>x. AccordinglyEq8

may be used for all kO provided that the relation W[k] = 0 is interpreted as
impossibility.

The probability that the (w-k) remaining warheads are attacked by AMMs
having SSKP = P2m is uniy since restriction 1 ensures that each one is at-
tacked by at least one AMM. If exactly k warheads are attacked by AMMs having
SSKP = Pm, then the remaining warheads are attacked by the "new" missiles.

Based on the assumption that all intercepts are independent, the probability
that all k warheads attacked by AMMs with SSKP = Pm are destroyed is pk. The

remaining (w-k) warheads are destroyed with the probability pwrnk

The conditional probability that exactly k warheads are attacked and
destroyed by AMMs with SSKP = Pm and the remaining warheads are destroyed
by AMMs with SSKP = P2m is given by

wfk(w+ eil Pm P2m(9

And finally this number of k warheads can range from 0 to w, and the
corresponding values of Eq 9 are the probabilities that no warhead penetrates.

i7



These events are mutually exclusive and exhaustive so that the probability
that all warheads are destroyed, i.e., the probability that no warhead penetrates,
Is obtained by summing Eq 9 over all values of k. This probability is given by

1 0 ) - (O:p i. .n( 1 0 )

Using Eqs 3 and 5, the probability that at least one warhead penetrates is ob-
tained and given by

(.) , ) .

2( w~d)-c J
It should be noted that Eq 11 Is meaningless when the value of c violates

d w,restriction 1. The factor )2wd- in the denominator of Eq 11 becomes zero

whenever c >2(w+d) or c<(w+d). In order to extend the use of Eq 11 for values
of c outside the interval I the auxiliary relations

"(12)

C* -6-(-1)(W+d) (13)

Pfm" - I (I P.), (14)

SL -(15)

are introduced.
In the above relations the number i is the minimum number of AMMs

that attack any one object and is determined as the integral part of the
-quotient c/(w+d); ci can be regarded as a pseudocapacity of AMMs with kill
probabilities pim and P(i+,)m• For i = 1 the case just discussed is obtained,
i.e., all incoming objects are attacked by at least one AMM, and some are
attacked by two AMMs.

Eq 11 can be made more general by considering the interval

(16)
( +(w d)

where i is given by Eq 12. For i = I this interval reduces to the initial re-
striction 1. The number of incoming objects attacked by i AMMs becomes

xi = 2(w+ d)-c, (17)
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The probability that a warhead is destroyed by the i AMMs assigned to it is
given by Eq 14. The generalization of Eq 11 continues by analogy resulting in
the probability that none of the warheads penetrate, given by

ko k (18)

Finally from Eq 5 the probability that at least one warhead penetrates Is
given by

} ~ P ( 1) = - -- P im P 1 + 1)M
(w+d) kio Wk) Stk )(19)

\ Xi

For the special case when = 0, i.e., when the number of incoming ob-
jects equals or exceeds the defense capacity, Eq 19 reduces to

P(20)

It can be observed from Eq 20 that if w>c, then obviously the probability
of penetration of at least one warhead is unity.

Another specialization of Eq 19 of interest Is for d a 0, i.e., when no decoys
are used. Equation 19 then reduces to

P(1) = 1 -2W ., 94-W

GENERALIZATION

It is now easy to generalize Eq 19 to obtain the probability that at least U
warheads penetrate. First, it is necessary to obtain the probability that
exactly u warheads penetrate. As before, the warheads can be destroyed
either by an AMM with SSKP = pi. or by one with SSKP = P(i+i)m" The prob-
ability that exactly u warheads penetrate is the product of (a) the probability
that exactly r warheads are attacked by AMMs with SSKP = Pim times (b) the
probability that i of these warheads are destroyed times (c) the probability
that the remaining (w-r) warheads are attacked by AMMs with SSKP = P(i+1)m
times (d) the probability that exactly (w-u-i) of these warheads are destroyed.
The product of b and d must be summed from = 0 to i = r, c equals unity,
and a must be summed from r = 0 to r = w. The resulting probability that
exactly u warheads penetrate is given by

,X|-r w-: w(22r+ )

PU (W+d)_ J.) Pimoipim)'' _-~ 0+1e)M (iP(+1)m)(2
I (W ''9

\x, 9



Finally the probability that at least u warheads penetrate is

P(U) - 1: P[k] (23)

or

!P(") I-E Ptkl (24)
h =0

Equation 24 reduces to Eq 19 for u = 1.

USE OF THE MODEL

This final section presents two examples illustrating the use of the model.
An obvious example is that of determining the warhead-decoy requirement for
penetrating a given defense. In this example the increased payoff obtained
when using two warheads instead of one warhead per target is clearly revealed.

The second example points out a method for the offense to maximize the
number of targets destroyed by offensive warheads. Also clearly illustrated
is the enhancement of the penetration probability by the use of decoys.

Example I

Number of Decoys Required. Suppose the offense desires a 90 percent
assurance of penetrating the defense. In this instance penetration means one
or more warheads surviving the AMM attack. Let the defense have a capacity
of six AMMs, each with SSKP = .75. The number of decoys required using w
warheads can be calculated using Eq 20. Table 1 lists the results of this cal-
culation.

TABLE 1

RELATION BETWEEN WARHEADS AND DECOYS NEEDED
FOR 90 PERCENT ASSURANCE OF PENETRATING

DEFENSE CAPACITY OF SIX AMMs WITH SSKP =.75

Warheads w Decoys d

1 44
2 1l
3 6
4 3
S 2

In this example, the offense can penetrate the defense with certainty using
seven warheads and no decoys. From Table 1 it is evident that the offense can
attain 90 percent probability of penetration with fewer warheads if decoys are
used. It is interesting to observe that as the offense's choice of the number of
warheads decreases from 3 to 2 to 1, the corresponding number of decoys re-
quired for 90 percent penetration probability increases from 6 to 11 to 44. In
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like manner the number of decoys required for penetration against defenses
of other capacities has been computed for a range of defenses with Pm = .75.
The results are shown in Fig. 1.

Figure 2 demonstrates the relation of required decoys to penetration
probability. This figure again illustrates the increased payoff secured by the
use of two warheads. With one warhead the number of decoys required to ob-
tain a spread of from 50 to 90 percent probability of penetration ranges from
8 to 44. With two warheads a range from 4 to 11 decoys yields the same spread
in penetration probability.

Example II

Optimum Attack. Suppose the offense wishes to destroy a large number
of targets. Let each of these targets be defended by an AMM system with ca-
pacity 20 missiles, each with SSKP = .75. The problem to be solved here is
how the offense should allocate its warheads to this set of targets. It is true
that if the offense elects to send 21 warheads against a single target at least
one warhead will certainly penetrate. However, the offense can employ a
smaller number of warheads per target and attack a larger number of targets,
but the probability of penetration decreases for each target. The important
result is that this tactic yields a larger number of targets destroyed, up to a
point. After this point has been reached, the use of fewer warheads per target
results in a decreasing number of targets destroyed. In other words the op-
timum attack maximizes the number of targets killed or equivalently mini-
mizes the average number of warheads required to destroy one target.

As an example, by letting d = 0 in Eq 19 the penetration probability using
w warheads against a defense of 20 missiles each with SSKP = .75 can be com-
puted. The results are displayed in Table 2. In this example the minimum
number of warheads per target killed on a statistical basis occurs at w = 13.
Because the number of warheads per target killed is an average, it need not
be an integer. It should be noted also that the probability of penetration cor-
responding to this minimum point is relatively high, about 89 percent.

The penetration probability can be increased further by adding decoys.
Tables 3 and 4 are constructed in a manner similar to that used for Table 2
but with d = 3 and d = 6 in Eq 19. In Table 4 note that the probability of pene-
tration using 13 warheads has now increased to 97 percent.

The offense wants to destroy a target for each investment of w warheads
per target. This relation is plotted as a straight line in Fig. 3. Also displayed
in Fig. 3 are decoy curves asymptotic to this straight line. After the offense
decides on w (warheads per target he will use), he must select a decoy curve
that closely approximates the straight line beginning at w. This number of de-
coys will obtain the maximum number of targets killed.

The effect of adding decoys can be further illustrated by plotting w war-
heads as a function of probability of penetration. This plot results in an
S-shaped or logistic curve. The penetration probability rises slowly at first,
then rapidly with the addition of more warheads, and finally a point of dimin-
ishing returns is reached. With the addition of decoys this logistic surve is
horizontally translated to the left as shown in Fig. 4.

11
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TABLE 2

PROBABILITY OF PENETRATION USING W WARHEADS,
NO DECOYS, AGAINST A DEFENSE WITH

CAPACITY 20 AND SSKP = .75

Probability of
Warheads w penetration P(1) w/P(l)

7 .147 47.6
8 .275 29.1
9 .383 23.5

10 .475 21.0
11 .685 16.1
12 .811 14.8
13 .887 14.7
14 .932 15.0
15 .959 15.6
16 .975 16.4
17 .985 17.3
18 .991 18.1

TABLE 3 TABLE 4

PROBABILITY OF PENETRATION USING W WARHEADS, PROBABILITY OF PENETRATION USING W WARHEADS,
3 DECOYS, AGAINST A DEFENSE WITH 6 DECOYS, AGAINST A DEFENSE WITH

CAPACITY 20 AND SSKP = .75 CAPACITY 20 AND SSKP .75

Probability of Probability of
Warheads w penetration P(1) w/P(1) Warheads w penetration P(1) w/P(1)

5 .181 27.6 3 .148 20.2
6 .275 21.8 4 .227 17.6
7 .363 19.3 $ .402 12.4
8 .565 14.2 6 .557 10.8
9 .709 12.7 7 .684 10.2

10 .809 12.3 8 .779 10.3
1U .877 12.5 9 .850 10.6
12 .921 13.0 10 .899 11.1
13 .950 13.7 11 .933 11.8
14 .969 14.5 12 .956 12.5
15 .980 15.3 13 .972 13.4
16 .987 16.2 14 .982 14.3
17 .992 17.1 is .990 15.1
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As a final illustration of the optimum attack, suppose the offense has a
fixed number of warheads, e.g., 100. He will allocate these warheads to a set
of enemy targets each defended by an AMM system of 20 missiles, each with
SSKP = .75. Table 2 indicates that allocating 13 warheads without decoys to
each target will result in the maximum expected number of targets destroyed.
Further it can be expected that each of the targets attacked will be destroyed
with probability .887. This assumes of course that at least one warhead will
destroy the target. The offense can therefore expect to destroy (100/13) x
(.887) = 6.82 targets.

On the other hand, if the offense allocates only 7 warheads and 6 decoys
per target (note that this is the same number of objects per target as in the
previous exa;iple), it is evident from Table 4 that he can expect to destroy
(100/7) (.684; - 9.77 targets, or an increase of 46 percent.
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Appendix A

DEFENSIVE FIRE DOCTRINE

The model developed in this paper is based on the premise that the AMMs
are deployed as uniformly as possible against the incoming objects; i.e., one
missile is assigned to each incoming object until all objects are covered. Then,
if doubling up is desired, another AMM is assigned to each object until each is
covered twice, etc. A rigorous proof that a uniform fire doctrine is more ef-
fective than one deploying the missiles in a nonuniform manner would neces-
sarily be untenable because of the infinite number of nonuniform cases; how-
ever, it seems intuitively that uniform firing would be much better than com-
pletely random firing, but not so clear is the case where just two AMMs are
doubled up in order to increase the SSKP at the expense of letting an object
(hopefully a decoy !) through free of charge.

In this appendix, two nonuniform deployments are considered and shown
to be less effective than uniform deployment. In each example w warheads
and d decoys arrive over the defended area, and the probability of at least one
warhead penetrating is determined.

If the defense assigns one AMM to each incoming object, the penetration
probability can be obtained from Eq 20 and is given by

P(1)-= 1-Po (Al)

Instead, if the defense is doubled on one object thereby leaving another
object unattacked, the probability of penetration is obtained as follows: The
SSKP of the double missile becomes P2m =- I (l-pm) 2 , and the probability
that it attacks a decoy is d/(w+d) . The probability that this "new" missile at-
tacks a warhead is w/(w+d). The probability that at least one warhead pene-
trates is obtained using Eq 20 and is given by

Pm + P2m 1--p 1 - 'P2V+d W+d-1 w+d (P w+d-1I
(A2)

= - d w-1 dlP W2(W+d)(W+d-l) PM {dlp~P

It is desired to show the probability obtained from Eq Al is less than
that obtained from Eq A2 or

w d W-1
PM> (w-+d)(w+d-1) 

p.

19



and it can be shown with some algebraic manipulation that the above inequality

is equivalent to
w+d-i

Pm> d�

which is valid for all w, d>_l.

Next suppose the defense has covered all incoming objects once and has

two extra AMMs, i.e., c = w+d+2. The following argument demonstrates that

these two extra AMMs should be paired with two of the assigned missiles and

not tripled with one of the assigned missiles. The penetration probability is

obtained from Eq 11 and, when the extra missiles are paired, is given by

P(1) k=O (Wk) ( w~di2.-k) Pm Pw (M3)

while the probability of penetration when the missiles are tripled is given by

(w _ w)(d) P -

It is desired to show that the probability of penetration obtained from Eq
A3 is less than that obtained from Eq A4 or

+ k=O W d k-l -0

It can be shown with tedious algebra that the above inequality is equiv-
alent to

Pm <1

which is always valid.

20



Appendix B

A FORTRAN PROGRAM OF THE MATHEMATICAL MODEL

This appendix includes the FORTRAN program of Eq 24 shown in Fig. Bi
and the flow diagram for this statement (Fig. B2).

Input

A. Table
5 cards containing the Log Factorial Table of n, 1 n < 50,

B. Data cards Format

Columns Variable inputa

1-4 C
5-8 w
9-12 d

13-16 P,

17-20 u
24 1 (on last card only)

aAil inputs except Pm are integers. pm has

an assumed decimal point between columns 14
and 15.

Output

u< 10 because of output format.

21



* xEC
* PRINT A 3 PUNCH 8 4

L Li sT
* LABEL

0MM PENETRATION PROBABIL-ITIES U.S ING..-LUG. FACTORIAL -YA.BLE
DIMENSION COE 1(5),TABLE(5O),P( 11)
[IAPE-5
JTAPE=6
WRITE OUTPUT TAPE JTAPE*B1
WRITE OUTPUT TAPE JTAPE-,80
WRITE OUTPUT TAPE JTAPE,8.2 .---. .--.-

WRITE OUTPUT TAPE JTAPE,83

DO) 2 10=195
READ INPUT TAPE [TAPEv90,(TA8LE(I),I=MLNI)
ML=MI+ 10

2 N1=Nl101
I. READ INPUT TAPE ITAPE,59,C,WDsPMvMUNUMV

00 3 KP=1,11.
3 P(KPVQ.o

IC=C
1W02W+0

IIC/IWD
AI=I
COMPC=C-(AI-I. ).(W+0-)

PIlMI I.-( I..-PM)**(14)

XI1=2. * w+D)-(COMPC
SUMK=O.
DOi 71. KI-19MU
K-=Kl- 1
IW=W
SUMR=0.

DO 60 IR1=1IiWl
IR=IR1-l
SU J- 0.

J=Jl-1
Ic=I
L=IR
M=J
GO TO 99

20 IC=2
L=IW-IR
M-IW-K-J
GO TO 99

30 IF(J)73,301,303
301 IF(PIM)739302,303
302 SUMJzSUMJ+(COEI(1). (1.-PIM)..(IR-J).CQEI(2).PIM'11.('Iw- K-J)

1'(1.-PIM1)..( K-IR+J))

Fig. BI-FORTRAN Statement of Eq 24
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GO TO 31
303 SUMJ-SUMJ+(COEI(l).PIM*.J.(1.-PIM)..(IR-JV.COEI(2)*PIMI..(IW- K-J)

I*41.-PIMI)**( K-IR+J))
31 CONTINUE

IC=3
LuIW
M-IR

40 IC=4 9

L=D
IX=xI
M=IX-IR
GO 0 99

50 IC= -5 -

m= XI

60ý SUMR-SUMR,((COEI(3).COEI(4)/COEI(5))*SUJMJ)
KP=Kl
YAJPIt_)wSUM R

71 SUMK-SUMK*SUMR
___ANS_-1,-SUMK

WRITE OUTPUT TAPE J'TAPE,84,CWOPMMUd(P(KP),KP=1,11), NS
.... 1F( -NUMV-1 )1,73, 73
73 CALL EXIT
99 COEI(IC)=l.

I f(M 103, 1 00,102
__100 IF_(L)103,q 1ý50,150
102 IF(L-M)1039150v105
103 COEI(IC)=O.

GO TO 150
05IF(L-50)106,106,200

106 IF(M-50t107,107t200
.107_LM=L-M

A-ikG=_2. 3,0259* (TAB3LE (L) -TABLE( M)-TBL(LM))
COEI(IC)-EXPF(ARG)

150 GO TO (20,30,4005096091C
,._200_WRITEOUTPUT 'TAPE JTAPE,85

GO r0 73
59 FORMAT (3(F4.0),F4.2,2(I4))

80 FRMA(50X26HPENETRATIONPR3AILTE//

82 FOJRMAT(15X,6H INPUT,48Xt7H OUTPUT//I)
83OFORMAT(1Xt2H C,4X,2H Wt4X,2H Dt4Xp3H PM,3Xq3HMU9lOX,,3HPO,3X,3H P

1193X,3H P2,3X,3H P3,3X93H P4v3X,3H P5,3X93H P6,3X,3H P7,.3X,3H- P8,3
2X93H P9w3X9'H P10,7Xt6H P(MU)/I/) _fX_ý*S8'4'FUJRMAT(1X,F3.0, 3XtF3.0,3XF3.0,3XF3.2,3X,13,9X,11E IXF.3X)96X,

___ F6*3///)
85FORMAT (15H4 L OR M TOO BIG)

90 FORMAT(10F7.5)
END

* DATA * __

Fig. Bi (continued)
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