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ABSTRACT

This report presents the analysis of a system which includes a
maneuvering ship towing an underwater vehicle at the end of a long
flexible cable. The equations of motion for both the cable and the
underwater vehicle are also presented.

The cable is imagined to consist of many interconnected short rigid
segments. The equations of motion for the system are formulated twice
on the basis of two hypotheses: first for a simple hypothesis regarding
the inertia of an accelerated body in a fluid, and secondly, for a more
complete and a more accurate hydrodynamic hypothesis.
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LIST OF SYMBOLS

the dot over a quantity denotes differentiation
with respect to t, i.e., d/dt.

xx or two notations are used to denote vectors: either the
vector bar over the letter, or a oubscriot to denote
the component. For example x- (,yx,z) xxi•

0,,0 these Greek letters have specific meanings assigned
further on in this section. They also are dummy
variiables. The quantity p is also the mass density
in Appendix E.

sin(v1 , 72) the sine of the angle betwee" the vectors of V and 2

a* a computational abbreviation for j(- + e where

l = 1,2, ... , V

a*+l a computational abbreviation for

+ )d +d (e, l/2)d+l

a* A computatlional abbreviation for

!2t d + d+5)d 2 + (e 1 /2)9 "V+l v+5dVl l

AN, component of moment on the X th element in the i thdirection due to the acceleration of the fluid.

bk the buoyant force per unit length of the X th segment

due to the displaced water.

Bl icomponent of buoyant force on the X th segment of cable.

BM i  component of moment about the c.g. of the vehicle due
to the buoyant force acting on it.

bXij a computational abbreviation for
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I
c the coefficients of the linear orthogonal coordinateciJ transformation connecting fixed inertial coordinates

with coordinates fixed in the towed vehicle with their
origin at its c.g.

C, the proportionality constant between the square of the
velocity of a cable segment and the tangential force
per unit distance due to the velocity of the water.

CI,\.+l for the vehicle is the same quantity as C1 is for a

cable segment.

C2 the proportionality constant between the square of
the velocity of a cable segment and the normal force
per unit distance on the segment due to the velocity
of the water.
for the vehicle is the same quantity as C2 is for

2,vlI a cable segment.

Ca the proportionality constant between the lift on
the vehicle due to the fins in the vertical plane,
i.e. the horizontal deflecting force, and the square
of the velocity through the water times the function

C4  the corresponding constant for the drag on the fins
in the vcrtical plane.

CS  the proportionality constant between the lift due
to the horizontal fins and the square of the velocity
through the water times F LI(O - 0).

C6  the corresponding constant for the drag of the fins
in the horizontal plane.

Clij added masses p, i ! " j e 3 (Reference 3).

C2 j added masses pi+ 3,1+3' i + 3 > 3, j + 3 > 3

C3ij added masses Pi,J+3' i < 3, j + 3 > 3; or

4i+3,j' i + 3 > 3, j :5 3.

c.b., c.g., are centers of buoyancy, gravity, mass.
C.M.



I I
d is the length of the X th cegment, for A 1,2. v

d + i  distances measured on the vehicle as indicated in
Figure A3, where i - 1, 2, ... , 6.

eijk the skew symmetric three index symbol.

•e the proportionality constant (Reference 1) between the
normal component of acceleration of a cable segment and
the force on it due to the accelerated motion of the
fluid.

el equals e divided by the mass of the cable element.

FIl the total force applied to the X th element.

the total force applied to the X th element exclusive

of the mechanical focces at either end.

F Aki  the sum of all noninertial forces on the X th element
which depend on the acceleration of the element.

F iv^ the sum of all forces on the X th element exclusive ofthose on the fins which depend on the velocity of the

element but not on its acceleration.

the sum of all forces on all the th element which
depend on neither the element's . celeration nor velocity.

(FIN)i the force exerted by the fluid on the vehicle through

the vehicle fins.

(FINM )i moment exerted by the fluid on the vehicle through
the vehicle fins.

(F app)i that approximation to the force on th:- th element due
to the velocity of the fluid obtained by neglecting the

'otatior, of the X th eae~nt.

(Facc),i the force on the X th element due to the velocity of the
tluid when the rotetion of the element is taken into
account.

F DHF(O-1 )  an empirical function giving the lift of the horizontal
fins when the vehicle is parallel to the stream whose
velocity is unity.
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F a LVF(0-a) an empirical function giving the lift on the vertical

fins when the vehicle is parallel to a stream whose

velocity is unity.

g gravitationsl acceleration.

G a computational abbreviation for

e X s W(-d s X/2) + (w,-bX)dk + Cd~

+ C'dS X u,)q, + FIN ,where FIN is the

zero vector unless X - v + 1.

, ~is the angular momentum of th' ) th element about its
c.g., where X - 1,2, ... , v + I.

equals E(Am)xixjs where (Am) has an i th coordinateiJ

distance xi from the c.g. of the element, and sunmation

is carried out for all Am into which the X th element

is decomposed.

i Vare the products of inertia of the vehicle about its

c.g. referred to a frame of reference fixed in the
vehicle.

iin Appendix E, a uinit vector along the fixed x, axis.

Iin Appendix E, a unit vector along the fixed x2 axis.

kin Appendix E, a unit vector along the fixed x3 axis.

K in Appendix D, a proportionality constant which
cancels aut.

lmn unit vectors along , , axes respectively.

1the mass of the X th element.

M the sum of all the moments acting on the X th element,
about the i th axis.

M i the sum of all the moments on the X th element about
the i th axis which depend on neither the element's
velocity nor its acceleration.
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M i  the sum of all the moments on the X th element about

the i th axis which depend on the element's velocity

but not on its acceleration.

MAW the sum of all of the moments on the X th element which

depend In any way on the acceleration of the element.

n a unit vector along the 93 axis fixed in the vehicle.

q a unit vector along the intersection of the plane n.lrma
to the X th element and the plane containing two lines,

one along the axis of the element and the other in the
direction of the velocity of the fluid past the element;
where I - 1,2, .. , +1.

unit vectors related to the direction of !low of fluid
past the vehicle fins, where X - v.:- 2, v + 3, v + 4,
+ 5.

- a-generis C US-- 4a ...... uSCd 4, A Oi

relate the Kirchhoff force to an inertial frame.

a unit vector along the X th element, X = 1,2,...,
V +1.

s Lor the towing vehicle, a unit vector corresponding to

S5.

TX the mechanical force exerted on the X th element by
the X - 1 element.

TV+2 the negative of the thrust, such as from a propeller,
that the vehicle exerts on the water.

Xthe velocity of the c.g. of the X th element.

ui components of linear and angular velocity of the
vehicle referred to axes fixed in the vehicle, where
i - 1,2,..., 6.

vvf the velocity through the fluid of the vertical fins.

Vfp the projection of vf on the ,L plane.

vhf the velocity thrcugh the fluid of the horizontal fins.

Vhfp the projection of vhf on the I plane.

wX  weight per unit length of the X th element in a vacuum.
xX a radius vector from a arbitrary inertial origin to

that terminal end of the X th element nearest the

towing vehicle.
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xG  the radius vector from an arbitrary inertial originGto the c.g. of the vehicle.

Xv/s the vector from the towing vehicle to the towed
vehicle.

x in Appendix A, the 'actor from the c.g. of the vehicle
to the fin axis.

the angular deflection of the vertical fin relative
to the vehicle.

the angle between the vertical fin and the projection
on the C-La plane of its velocity through the water.

the angular deflection of tl- horizontal fin relative
to the vehicle.

the angle between the horizontal fin and the projection
on the % plane of its velocity through the water.

6ij5J J the Kronecker delta. It is zero unless i - j in which
case it is one.

coordinates fixed in the vehicle with their origin
at its c.g.

X the index denoting the cable segment. X - v + 1
denotes the vchiclc.

also the index denoting the cable segment.

PiJ the surface integral p J (i(aph/6n)dS, Y, is the
velocity potential due to motion with unit velocity

in the i th direction.

v the number of segments into which the cable is divided.

p the mass density of the fluid.

,P), the angle between and u .

i a computational abbreviation for BXi + FDXi + Fli

+ (FIN)i, where (FIN)i is zero unless X = v + 1.
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2

X(u) the factor relating the velocity through the fluid
of the X th element to the normal force caused by
this velocity.

the factor relating the orientation of the X thPX element and the normal force on it due to its velocity

through the water.

W x the angular velocity of the X th element.
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STATEMENT OF THE PROBLEM

An underwater vehicle is towed with a flexible cable by a
maneuvering ship. A command is given which actuates the bow planes
of the vehicle through a prescribed angle. The vehicle then changes its
orientation and position. It is required to determine the positl. of
the towed vehicle, and the cable tensions as time varies.

The only kinematic boundary condition imposed on the system con-

sisting of the cable and underwater 'ehicle is that the end of cable
attached to the towing platform follows a known curvilinear path along
which the components of velocity and acceleration are given. It is
assumed that the end of cable attached to the vehicle if extended, would
intersect the longitudinal axis of the vehicle. This occurs, for example,
when the bail is an arc of a circle whose center is on the longitudinal
axis.

Other items which are taken to be known are the length, mass and
diameter of the circular cable, and the mass and dimensions of the
vehicle.

APPROXIMATE PHYSICAL SYSTEM

The cable is assumed to be inextensible (does not stretch) but its
shape is flexible in form.

The length of the cable is divided into v integral number of seg-
ments as shown in Figure 1. The sections are imagined to be short rigid
cylinders with universal joints at the junctions. The segments are

numbered according to the subscript N. X 1 1 for the segment next to the
towing platform and X - V + I is the underwater vehicle. The assumption
of discrete divisions is a reasonable one, and its validity improves
as v increases. The difference between the performance of the actual
and assumed cable is expected to be small as v becomes large. A precedent
for this assumption appears in Reference I.

-11-
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In the problem considered the cable and vehicle do not roll. This
will occur if either

(1) the vehicle is roll stabilized, or

(2) the shape of the bail on the vehicle is an arc of a circle the
center of which is on the longitudinal axis of the vehicle, and the
cable attachment is allowed to swivel so there is no torque transmitted
from the laid cable to the vehicle.

If either of these conditions is satisfied then roll equal zero is
a solution of the equations.

The vectors in the following problem have one of two distinct

notations: (1) the customary vector bar, or (2) a subscript indicating
its components. The first method will be used when poesaible.

The validity of a vector equation is independent of the particular
coordinates in whizh it is expressed, so that coordinates are generally
left unspecified. If the vehicle moves through an undisturbed fluid
medium, the fixed frame may be taken relative to the earth. However,
if the fluid medium moves with a velocity, it is convenient to fix the
reference frame to an undisturbed particle moving with the medium.

Let x. be the radius vector from the origin of such a fixed frame

to the forward terminal point of the X th element. To describe the
motion of the system, it will be necessary to specify the motion of
each cable element and also the motion of the underwater vehicle. The
velocity and acceleration of each of the teminal points relative to

the inertial frame are x (t) and x,(t). The position of the bow of the

underwater vehicle relative to the ship is denoted by xv/,, where

Xv/s i xv+l - x,. It is not easy to define a useful quantity "diversion"

while the towing ship is maneuvering. However if the towing ship is not
maneuvering, the lateral diversion or distance can be shown to be:

o% X{Xv/s - k X }I

where s is a unit vector pointing from the bow of the towing ship

toward the stern, and k is a unit vector along the x3 axis in the
inertial frame, as shown in Figure 1. The rate of diversion of vehicle
relative to ship is then

d I x vxs" (k /dt
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Further, the quantity k . x + represents the position of bow of the

vehicle relative to the s~a bottom, providing the inertial frame is
placed on the sea bottom. Likewise the quantity k . x+ I would repre-

sent the .ate of vertical displacement of bow of vehicle relative to
the above-mentioned frame. The tensions in the cable at the towing
ship and at the towing vehicle are Tt(t) and Tv+l(t) respectively, and

at th? forward end of X th element, the teiision is TX (t). In a similar

manner other quantities can be formulated. These quantities are ob-
tained from a solution of differential equations of motion of the
cable-vehicle system. The formulation of the equations of motion is
given on Page 23. The effect of the accelerated surrounding fluid on
both cable and vehicle is represented more accurately in the con-
siderations originally due to Kirchhoff (Reference 3), and more simply
by a three-dimensional generalization of the expression used by Walton
and Polachek (Reference 1). The latter method is enployed for cable
elements, whereas for the vehicle two ap-roaches are considered. The
two approaches, designated as Approach A dnd Approach B, are described
briefly as followF:

1. The force on the vehicle is calculated on the basis of the
same assumptions as made for a force on a cable element. That is,
the magnitude is proportional to the volume of fluid displaced, and if
i is the normal component of the linear acceleration, the magnitude
o? the force is proportional to 11n1, and its direction is -7n" The

proportionality constant for the vehicle may have to be determined ex-
perimentally. This approach has the undesirable feature that trans-
lation and rotation are not coupled through the reaction of the ac-
celerated fluid.

2. The force on the vehicle is given by hydrodynamical con-
siderations originally due to Kirchhoff. Physicaily the force is due
to the accelerated motion generating fluid pressure variations over
the surface, hence translation and rotation are coupled by the
motion of the fluid. This approach has the undesirable feature that
it complicates a formulation already lengthy.

The equations of motion of the vehicle using either Approach A or
Approach B are developed separately. The resulting systems of equations
differ from each other considerably in form. The testing of the two
hypotheses implies a large experimental program. However, both are
within the framework of a reasonably accurate formulation of physical

. fact s.

To determine the time varying quantities such as diversion,
instantaneous cable tensions and path of vehicle, we begin with a dis-
cussion of the dynamical equations of motion of a rigid body. The
first of the following two equations describes the translation of mass
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center and its relationship to the resultant external force. The second
equation describes the rotation of the body, and specifically it relates
the resultant external moment to the change in angular momenrum. F and
M with suitable subscripts are the forces and moments respectively acting
on a body, H is the angular momentum of a body and u is the velocity of
the mass center of a rigid body. The two equations are:

N(duNi/dt) - FXi, (X - 1,2,..., v + 1; i - 1,2,3)

dHX.i/dt = i , (X - 1,2,..., v + 1; i - 1,2,3)

The subscript X refers to the X th segment of the cable-body system, and
the index i refers to the component in the direction of the axes of the
fixed frame of reference. For example, FXi is the i th component of all

forces exerted on this element. The reader unaccustomed to the use of
subscripts to denote the component of a vectir should refer to Appendix B.
While both equations are defined relative to a space fixed frame xjxgxG,
the second equation can also be written with respect to axes fixed to the
center of mass of any body, providing all quantities entering into it are
referred to this point. The force FXi may be expressed an follows:

FX i FAXi + FVXi + FGXi + (FIN)i ,

where FA i Is the sum of the hydrodynamic forces which depeud in any way

on the accelerations of the coordinates of the end points of the elements.
FVkl is, with the exception of (FIN),, the sum of all hydrodynamic forces

which depend on the first time derivatives but not on the second time
derivatives, FGXi is the eum of the forces which depend only on the

properties of the element and on its orientation, and (FIN)i is the force

exerted on the vehicle due to the deflection of the fins and velocity
of the water.

THE FORCE FAXi

An aceelerated vehicle produces accelerations of the surrounding
fluid and so changes its momentum. The rate of change of linear (or
angular) momentum is proportional to the force (or moment) producing
this change which in turn is proportional to the linear (or angular)
acceleration of the vehicle. Thus the vehicle behaves as it its mass
were increased. This phenomenon is termed "mass accession" or added
masses and added mass moments of inertia.

In Reference 1, Walton and Polachek assume that a hydrodynamic
force is proportional to that component of acceleration of the center
of gravity of the cable segment which is normal to this segment. This
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may be generalized to three dimensions, and has an obvious application
to a long thin cylinder, i.e., a cable segment. However when we come
. the angular momentum equation, there is no allowance made for the
accompanying added mass moment of inertia. Approach A applies this
aralysis to the towed vehicle and the cable segments.

As formulated by Kirchhoff the forces are linear combinations of
the accelerations. The coefficients of this linear form are surface
integrals of the velocity potential which describe the fluid flow. How-
ever, some of the coefficients or "aaded masses" may be obtained experi-
mentally. Approach B applies these considerations to the towed vehicle.

THE FORCE FVU

There are two hydrodynamic forces due to the velocity of a cable
segment through the water. They are the .orces normal and tangential
tn the cble. Vnr Parh nf theme vp veneralize the expressions used by
Pode (Reference 2) to three dimensions. The assumptions made here are
as follows:

1. The tangential force has the direction of sx, where s; is

discussed in Appendix A.

2. The magnitude of the tangential force is independent of the
orientation of the cable segment.

3. The magnitude of tangential force is (1/2)pt.(constant)

A - C1 ui where ut is the velocity of the segment through the water,

and A is the wetted area of the segment.

4. The normal force is in the plane of the concurrent vectors!"sand u'-X and in normal to "s;.

5. The magnitude of the normal force is the product of two factors
S(y.). where cp is the angle between -a and Further

-sir? cy~ and x()-(1/2) p -2A (constant) - C27. (Refer tc;

Apperdix D for a more detailed discussion.)

THE FORC12 FCGi

There are two effects that contribute to F GXi  The first is the

weight of the cable in water. The second is composed of the tensions
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Ta T+T-'+,o at each end transmitted by adjacent segments. This we

suppose to be p:opagated instantaneously. Since action is equal to
reaction and since segments of finite length will have finite angles
of intersection, this force will not be along the axis of the segment.
A diagram of these forces with an explanatory notation is contained in
Appendix C. The possibitity of the vehicle exerting thrust, such as
from a propeller, may be included by setting -T = -TpS+, where Tp

is the magnitude of the propeller thrust.

TEFORCE (FIN)i

The lift and "drag" components of the resultant hydrodynamic force
on the fins are assumed to follow quasi-steady and real-flow formula-
tons. Forces which are zero when the rate ot rotation of the fins is

ro ae nelected. Th finr on the vehicle are in both the vertical
and horizontal planes.

Let vf denote the velocity of the vertical fins through the water,

and vfp denote the projection of Vvf on the t19 plane. (Refer to

Appendix F). The following assumptions are made:

1. The force is called lift if it is normal to the plane con-
taining both Vfp and n; and a force is called drag if it is in the

irecton -v . Lift is positive when it tends to increase the x 17

coordinate from its initial steady state value.

2. Both of the forces are proportional to IVvfpl

3. Each force is a function of the angle of attack; where the

lift is an odd function and the drag an even function of the angle of
attack.

4. The factors of proportionality in these forces are f3 and C4
for lift and drag, respectively. Then C% and C4 include variations
due to fin area and variations in CL and CD' which are coefficients of
lift and drag respectively.

The forces on the vehicle due to horizontal fins are considered in
exactly the same way. The lift due to these fins is normal to -vhf
(the velocity through the water of the horizontal fins), and is it the
vertical plane. The horizontal and vertical fins are taKen to be at the
same distance from the bow, although this assumption is not necessary
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I
and may be dropped for different vehicle designs. However this

assumption implies V V . For this pair of fins we obtain two

other constants, C5 and C6 , for the lift and drag respectively. Also
the lift is considered to be positive when it tends to increase the

coordinate from its initial steady state value. A detailed

treatment is found in Appendix F.

Now consider the second set of equations of motion which relate
the changes of angular moments of the vehicle or of the cable elements
to the external applied moments. These equations are:

k)i -MXi

In all cases the angular momentum and moment of the fcrces are taken
about the center of gravity of the segment involved. As shown in
Appendix B,

*,i Xi' JJ - wXJJ1 i eist JOxjxsjt

where wj is the angular velocity of the cable element and 1), = PiPj.

The quantity Pi is the i th component of the vector from the c.g. to a

typical =l zai w aai th'. ;ummiati"u it!a aszriadj out over the X th
zlement. The above equation is referred to a frame whose origin is
Ittached to the center of gravity and whose axes are parallel to the
ixes of the inertial frame.

To apply the above equation to the vehicle, it is more convenient
to refer the rate of change of moment of momentum to a set of axes
imbedded in the vehicle. Let the superscript prime denote the quantities
in this frame, then the above relation becomes:

" ", _v+l. e W ' 1.8 +jvl,i v+l,i jJ " v+l,iji ist v+l,J' v~l,s j

To obtain W', I and the H' relative to the body fixed frame, let the
rotation of the vehicle relative to the fixed inertial frame be
described by a transformation of coordinates as follows:

xi a c ij or tk - cikXi

The c j are obtained in terms of previously defined quantities as

shown in Appendix G. Since
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Ic

HI,i - ink+l,n

and

W -c W' ,W C
v+li in 'l,n' V+lj v+l,.t J

'4l,j m 'v+I,lcj' W41,s 0 Wv+lkCks

the preceding expression for H' relative to the body fixed frame now

takes the following form:

V~l 'V+l
v+1,i 'v+l'i jj V+1,ACincAj jn

-, - -•VI.
nst v+l,l +l,k in AJksJ t

The products and moments of inertia relative to the body fixed frame
are treated in Appendix B.

The value of H), for X - 1,2,...,v (i.e., for cable segments) is

more readily obtained, since the Iji depend on si by a known functional

relation. In fact they finally simplify to:

The right side of the angular momentum equations contains the
applied external moments with respect to the c.g. of the body. For
convenience we express these in a manner similar to that in which the
forces were decomposed.

5 A GXi + 'V~i +AXi + FN)i

whc re:

M Gi is the moment of those forces which depend on neither
the velocities nor accelerations,

HV~i is the hydrodynamic moment of those forces other than
those due to the fins depending on the velocities but
not on the acceleration,

MAH is the hydrodynamic moment of all forces dependent onacceleration,

(FI M)i occurs only for the vehicle and is the moment due to the fins.

1 -19-
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THE MOMENT MG?

For a cable element this moment is due only to forces exerted by

adjacent elements. For the vehicle we recall that in some designs

there may be a propller thrust whose line of action does not pass

through the c.g. of the vehicle. Should this be the case, the ad-

ditional moment of the propeller thrust about the c.g. must be included.

Furthermore there occurs an external moment on the vehicle whenever the

center of gravity and center of buoyancy do not coincide. Appendix C

may be consulted for details.

THE MOMENT Mvxi

The physical assumptions relating the farces due t' the velocity

have already been listed. Since translation and rotation of a cable

element occur simultaneously, one end travels through the water faster

than the other. This motion creates an opposing hydrodynamic moment.

The computation of this moment is carried out in Appendix D. The

moment of forces due to velocity on the vehicle is treated in an en-

tirely similar manner.

THE MOME MA)i

The hydrodynamic moment is zero according to the hypothesis stated

in Reference 1. This holds for all elements designated by X - i,'s...,$,
and also for the vehicle designated by X - v + 1 in Approach A. However

for the formulation discussed in Approach B, there is a moment on the

vehicle due to the acceleration of the medium. In this instance th.

moment is calculated in exactly the same manner as the previously dis-

cussed hydrodynamic force, The detal - are found in Appendix E.

THE MOMENT (FIN)i

The moment acts only on the vehicle. The fins are symmetric airfoils.
(FINK)i is the moment about the c.g. due to the lift and drag on the two

pairs of fins. The exact expression is contained in Appendix F.

We now consider the mathematical approach to the problem.
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THE MATHEMATICAL PROBLEM

The equations to be solved are:

m (du~i/dt) - Fi, (x - 1,2,...,v + 1; i - 1,2,3)

dl i/dt = M i, (X - 1,2,...,v + 1; i - 1,2,3)

where du Xi/dt is the linear acceleration of c.m. of the X th element,

and dHi/dt is an expression linear in the angular accelerations of the

X th element. In connection with these equations there ere two funda-
mental considerations.

1. The right siA nf any Pqn ation of the first set contains
T - T + F* and the right side of any equation of the second
Xi X+l'i Xi
set, except for X v v + 1, may be written -keijksij[TXk + TX+l kl + i'
where F* and M* are expressions which do not contain the terms T~i. By

i iX*
summing the first set of equations from X V- + 1 to X - p, an expression
for T is obtained. Thus T + T (or T + T ) may be obtained.

A pi 4+1i Xi X-1i, i
When this is substituted in the equation for angular momentum all Txi are
eliminated, and a set of equations in k and 'A is obtained. This set can
K. rasotod .I..nQ numerical processes.

2. The second fundamental consideration is that there are constraints
among the elements. Suppose we make the natural choice and take as
coordinates the position of the ends of the elements. We automatically
have a connected chain of elements. The constraints are that each element
has a given constant length.

The position of a rigid body is completely determined by the location
of any three of its points, provided that these points are noncolinear.
The distances between these points do not change. Hence there are three
constraints among the nine coordinates and six degrees of freedom.

In the problem under consideration suppose for the moment that the
ends of the rigid element are not connected to the adjacent elements.
Suppose the coordinates of the two end points of the element are specified.
Because there is one constraint among the six coordinates, five degrees
of freedom remain. When the location of either vehicle or cable element
is specified by giving th positions of its end points, the degree of
freedom of rotation about a line joining the two points is lost-because
roll is assumed to be zero. The condition of zero roll, W . s i = 0,
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yields a relation among the three angular velocities referred to the
initial system. Further, there will be a relation among the three com-
ponents of angular acceleration. Then for any element any component of
the angular velocity may be found in terms of the other two. This is
also true for the angular acceleration, and therefore also true ::or
the angular momentum and its time derivative.

When, as in the preceding, the roll about the longitudinal axis
is zero, the angular velocity may be readily determined in terms of the
positions of the end points of the element and their derivatives. The
expression obtained for WXi is dependent upon the fact that the element

has a constant length (c.f. Appendix A); i.e., d(length of element)/dt - 0.

Similarly the relationship of db) to the coordinates of the end points and

their derivatives is dependent upon the constant length of the element.

Therefore there is a dependency relation amo.g the three equations of
angular momentum and the condition that the length of the element is
constant.

The preceding discussion was under the hypothetical condition that
the ends of the element were free, which implied five degrees of freedom.
In our problem the ends of the element are not free. The forward end

of the X + 1 st element must coincide with the after end of the X th
element. This eliminates three degrees of freedom for the X + 1 at
element, so that each element has two degrees of freedom.

Fcr example the element next to the towing vehicle has a given
no"4 "honns n ,f It, fn w vr4 .nA Is no'cified. Clearly the

position of its after end lies on a sphere centered about the forward
end, and may be specified, for instance, by giving its latitude and
longitude. When these two values are specified for the first element,
two more must be given to determine the position of the second element,
and so forth.

Thus there are two degrees of freedom for each element and three
angular momentum equations, of which only two are independent when account
is taken of the constancy of length of an element.

We may use these two angular momentum equations for the two inde-

pendent angular velocities and obtain the third an.,9lar velocity from
the constraint. On the other hand, 3y nonindependent equation may be
dropped from a dependent system. To drop the constraint it is sufficient
to know that the three remainirig equation; are not independent of the
constraint. As mentioned previously and as shown in Appendix A, the ex-

pressions obtained for w and are dependent on the constraint, so

that instead of using two angular momentum equations and the constraint,

we may use the three angular momentum equations.
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I
DISCUSSION OF METHOD OF SOLUTION OF EQUATION

OF MOTION

Having taken as coordinates the end points of the elements, the
u's and u's which occur in the equations of motion are obtainable in
terms of derivatives of these coordinates. The 3(v4-1) linear momentum
equations determine the 3(v+l) forces TXi, and the 3(v+l) angular momen-
tum equations then determine the 3(v+l) coordinates of the end points

of the v + 1 elements.

The final 3(v+1) equations turn out to be linear in the linear
accelerations. At this point we anticipate using a subroutine for
solving differential equations such as SHARE program GL AIDE 1 (Ref-
erence 4). This necessitates a sequence of vailability of information
which is obtained by using previous values of positions or velocities to
obtain the present value ot acceleration. Thus we use known values oi
positions and velocities to compute the coefficients of the linear
equations for the accelerations and the constants on the right sides of
these equations. The linear system may then be solved numerically to
obtain values for the acceleration. This satisfies the requirements of
the numerical program.

EQUATIONS OF MOTION FOR APPROACH A AND APPROACH B

In this part the expressions for forces and moments which act on

the vehicle are substituted into the equations of motion. The final
differential equations of motion for Approach A are denoted
Equations (1) and (2), and those for Approach B are denoted by
Equations (3) and (4). A solution of either set of equations would

yield the components of velocity of the displacement coordinates at each
of the cable joints and also at the bow of vehicle.

Both formulations are now presented. The first formulation con-

siders the assumptions of Approach A, and the second formulation
considers the assumptions of Approach B.
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CONCLUSIONS

The equations of motion for a towed underwater vehicle have been
derived. The cable was imagined to consist of a finite number of rigid
cylinders. Two hypotheses were made relating the hydrodynamic force
and moment on the vehicle and its acceleration, and the equations were

developed separately.

The equations of motion are involved, the most desirable of the

two hypotheses above being the most intricate. In these equations
there occurs a sevenfold sum. Complexity of the equations is the
factor which will limit the computability.

The principal restriction in the equations of motion is that the
vehicle does not roll, nor does the cable. On the other hand, the
equations are general in that both the towing and towed vehicle may
move in a highly arbitrary fashion.
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APPENDIX A

GEOMETRY

This appendix contains, with the exception of the coordinate
transformation in Appendix G, all of the diverse kinematical considera-
tions relevant to the problem.

I+ __,.

Xcm 2

0 (Origin of Inertial Frame)

FIGURE Al. THE X th CABLE SEGMENT

Let sk be a unit vector tangent to the cable segment of length dk.

Referring to Figure Al, and with the rules of vector addition, we write

Sx + ds. or a,- (x+ 1 -

Since the length of cable is constant, then d(l/d )/dt 0 0, and the

derivative of sX with respect to time gives:

sw = (x,+ 1 - x,)d, (A-l)

In i similar manner:

s - "Y - I/d X
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Since the center of mi2ss and center of volume of a cable segment
coircide, by the rules of kinematics, we obtain

J. .x + w x(d /2)9cm

Xk+l - Xcm + uX x (-dX/ 2)sX

Subtracting these two equations we get
.L J.L

xx - x + X x dXsW

where W is the angular velocity of the cable segment. The vector product

with respect to sX gives:

S--X X (x,+1l"x ds, x(w x s) dW-d( )

Since the cable segment is assumed not to roll, then W XsX f 0

Solving the previous equation for w, and with the aid of Equation A-l,

we get w s xs k . Since S x sX 0, then it follows that

WX - sX x s'X

By rjferring to Figure A2, the location of the center of mass of
vehicle, xG with respect to the inertial frame may be expressed in the

x G - (dV+ I  d dv+2 )x V+1/d V+I +(d v+2 /d V+l)X \+2

Here the velocity and acceleration of-the center of mass are the usual
first and second time derivatives of x G .

The important unit vector q,, as shown in Figure A3, has the

following properties: (a) it is in the plane of uX and , (b) it is

normal to s, , (c) it is in the souse that the direction between

q, and -uX is less than n/2, and (d) it has unit length. The analytical

statement of these conditions is:

1. q X aux + ,, for some constants ci and .

2. qX's = 0 (3) q.u, < 0, (4) qX 1

j -38-
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II 1]CABLE
Sc b. b ,

.5+

~" v+3

-dj v+2

L dd.

FIGURE A2. MEASUREMENTS ON VERTICAL PROJECTION OF VEHICLE

Iq

FIGURE A3. UNIT VECTORS q)., sX, AND VELOCITY u.

OF CABLE SEGMENT

When one takes the dot product of both sides of (1) with s., the left

side is zero by (2); then

Iau s + 0
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I
If this value of 8 is substituted in (1), the result is

X = X XX uxss L -as UX ux sx)

From condition (4) and with this expression for q., we obtain

1=as~ WX (uX X 3)CS (uA X

C? es~ (u x sxQ x [ sw x ux x

QsX [(uL xsX) . sWI

Since s . sX = 1, and solving for a, where y is either t 1, we obtain

01= 'Y/I u x  s X

To determine whether y - + 1 or - -i is applicable, condition (3) may
be used. Applying this condition, the following result is obtained:

X -: xherefore s x (ux xY/ ux '

Since the quantity after the symbol y is positive, it follows that
y -I. Therefore

q-- S X IX x S X

Vehicle Geometry

d+ is the distance from the cable attachment to the tail,

d d+ 2 is the distance from the cable attachment to the c.g.,

d v is the distance from the cable attachment to the

effective axis of the horizontal fins.

dr+4 is the distance from the cable attachment to the

effective axis of the vertical fins,

dv+5 is the distance from the cable attachment to the

nose (d v+5 Z' 0),

dv+6 is the distance from the cable attachment to the

center of buoyancy.
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Let x be the vector from the c.g. to the fin axis.

8 V+1 has the sense of a vector from the cable attachment to the

c.g. If the d's are positive measured in the sense of sV+l, for any

placement of the c.g., fins, and cable attachment, then:

x f (d v+3 - d+2) s.+1,  (horizontal fins)

x (dv+ 4 - d +2 ) sV+ I , (vertical fins)

Summary of results

1. The linear velocity and accelerati'n of the center of X th
segment of cable with respect to tne inertiai frame are:

2. The linear velocity and acceleration of the vehicle with
respect to the inertial frame are:

xG -a xv+ I + b x v+2
.U Aj %.#

xG ja x+ I + b x +2

where a - (d+ I - dv2 )/dV+ 1 I b d dv+2 /d l+

3. The vectors s,, W, and x's are relaf follows:

s9 = ( ,+i " xx)dk X, x (Xx+l'X )dxs sk x (XX+l - x,)d,

s9 . -xa-sx X sxi

(Reverse Page 42 Blank)
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In this appendix, the linear and angular moments and their

derivatives of the X th element are considered.

In

0

FIGURE BI. CABLE ELEMENT OF MASS mC

Consider a small element of mass m. as shown in Figure Bl. Since

Pi originates fror the c.m. of the cable element, it follows from the

definition of center of mass of bodies that

Impi = 0, and imPci = 0

Let w0i be the components of angular velocity of the X th cable

element; then the velocity and aczeleration of a typical small element

of mass mare:
I MC

vw! of k ±L + X
C 2 K eikXj C k

accom x+l.i + xx .) +

C 2 i+ ei j k + eijkwOjPCk

In the above expressions, the summation convention &ias been used.

Within one term, no small latin index is to be repeated more than once.

When it is repeated once within a term a summation of this index from

1 to 3 is implicitly understood. If a small latin inziex is not repeated

the equation is to hold for that index having each of the values 1, 2, 3.
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The convention does not apply to Greek indices, and may be suspended
by explicitly stating so. Further, ejk is the conventional three-

index symbol, where i - 1,2, or 3, and j and k have the same range. If
any two indices are equal, then e iJk - 0. If i, J, k are an even

permutation of 1, 2, 3 the symbol has the value of + 1. If i, J, k are
an odd permutation, its value is -1. For example, the i th component
of a x b is e a b

jk J k'
The rate of change of linear momentnum of the X th cable element is:

d[(Linear momentum)n /dt =d[ X m C(velocity) Ci /dt

K nc xx+l"'+, xi+ e+ eijk j P~C
2 eijk 'xj L mCP~k J ,CJ

0 0

where the sums are carried out as ' ranges over the X th element. The
above expression reduces to the following:

d[(Linear momentum) 1i /dt - (mass (xx+l i + x 1 )

1et i be che anguiar momentum about the c.g., then the rate ot change

of the angular momentum of the X th cable element is:

d(H Xi)/dt Z m, eijk PCJ (acc)Ck - H

or

-e ij ,+ 1 .k + ~x)k m mp~j + ejik jeNi = eiJk i- m0 jeik mpjkpq")Xpp~q

+ e ij k  mep C ekpqXp (e qstw spct)

in which P~q eqst WXSP~k, and (acc)k derived earlier in this section

have been substituted. For further simplification we recall the
following relation (Reference 5):

e e 8ei j
ijkekpq ekijkpq p q q p
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so that the sefcond term in the above expression for i may be written

as follows:

°,,j W -p 6i 6J) qw-

eijk Lpq X (6p 6q- q p ImCPCJPCqWp

Xi I pcjcj 'Xj I I

where -j ,.p~jp1 andl -~ mpipj

The contribution of the last term in 1i may be rearranged into the

following form, where C ranges over the X tb element and is indicated
by the summation symbol:

e i~eke mpptWW
eijkekrqeqst X mcpcjPctxkpWxs

which reduces to the following form:

( 6 i 6 i i1 6) e w Y
p q q p qstXS cL

lis Mn P TX - W w' TX
AL As Xjt jt Ist Xj ),s jt

where as before t mCPaPCt " Moreover the symmetry of it

in j and t implies that the first term of this sum is zero, which is
proved as follows:

2e (0WIW' . e IX + e w IX
jst Xi Xs jt ist Xijit jst'Xi Xs tj

= "I iWXs I it (ejs t - ejs t) . 0

Finally the expression for H. £o the X th cable element becomes:

Xi ii Xiii ist Xs jt

where I is summed over the X th element. This expresLion for 114
it -5
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holds whenever the expression used for (acc) i gives the acceleration

of the C th particle element in the inertial frame. Since the latter

is a vector, it is valid both in the inertial and in a frame fixed in

the body. However, Hi enters into the equations of motion in moving

coordinates directly only when the origin of the moving frame is at c.g.

To apply the H expression to the vehicle, it is desirable

to express I V-  as a time independent quantity. With this in mind, we
ii

imagine a frame fixed in the vehicle at is c.g., consequently the
expression Hv+In with reference to this frame is

v+ln " l,n IjJ I -v.l,J Jn " enst v+lj v+ls jt

However

HO W1 w' are vectors, so that

v+l,n' V+l,n W4l,n

Hc H'W
.+li in V4ln W ,+ii cinWv.ln

v+l,j V+l1c Ai W , - j vl,1C J. +l,s = wv+l,kek,

where the cij are the coefficients round in Appendix G.

Finally a substitution of the above quantities into the expression for

H,+,, gives:

V+1 V+l

H -W I - c c~i
v+l,i v+l,i jj V+l,1 in Al in

nst +lA v+l,k kinjCks t

where the H, the W's, and 0' s are rLlative to the inertial frame and the

I's are calculated relative to the vehicle fixed frame of reference.

The expression ki for a cable element, however, may be expressed

with reference to the inertial frame. The moments of inertia with

respect to the inertial frame are: (where A = md?/12)
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S s 112= As s y 113 Asx sz

2 Asys, I3 AsS, x Ass

22 y y 23 y z 133 z z

where sx, Sy, sz are components of the unit vector tangent to the cable

vector, and these components are known at any instant of time. Here the
cable diameter d is assumed to be made much less than the length of a
cable element.

I

(Reverse Page 48 Blank)
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APPENDIX C

GEOMETRICAL FORCES

There are two types of geometrical forces on each cable element.
They are the weight of cable in water, and the force exerted by ad-
joining elements. The vehicle possesses these forces also, and in
addition has a moment about the c.g. due to the displacement of the
center of buoyancy from the c.g.

sXi

-T X + l'i (""b) X3

FIGURE Cl. CABLE TENSIONS AND NET WEIGHT

LeA ax be the unit tangent vector, w the weight per unit length of

cable in air, and bX the buoyant force per unit length of cable.

The force on a cable element is shown in Figure Cl:

F G i  T Xi T TX+- i + (w - bX)dX531

and the moment of these forces about the c.m. of the element is:

MGXi (d /2) [-eijkSxJT k + eijksXj(- T X+lk)]

-. eijkdXSj(TXk -% TX+,k)

f The force and moment on the vehiclc are:a
F G ~ r~ T t . , - T ,. 2 , + ( w . - b + ) d .6 5
FGv+l,i TV+l'i Tv+2,i + wV+l bV+l )dv+l 6 l
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MGvbl,i= eijkSv+l,j[dv+2 - dV+I] T+2,k - dv+2 eijkSv+l,jTv+l,k

i ejk a+l,j 6 3k(dV+ 6 - )bV+idV+l

where bV+1 = (buoyant force on vehicle)/d Note that the force

applied to the stern of the vehicle is (-Tv+2,i).
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APPENDIX D

VELOCITY FORCES

There are two forces dependent on the velocity; the tangential

and normal forces.

We assume as in Reference 2 that

1. The tangential force has the directions s.

2. The magnitude of the tangential force does not depend

on the orientation of element.

3. The magnitude of the tangential force is

(l/2)PA(constant) C-1 d,, where 1 is the velocity

through the water.

4. The normal force is in the direction NJ. that is in the

plane of the concurrent vectors 7x and r and normal

to s.

5. The magnitude of the normal force is the product of 
two

factors X ) k)where T, Is the angle between -s and u

In addition

,(p) - sin' y.

(() - (1/2)pA(constant) = CdX

The u appearing above varies along the element due to its

rotation. We ask what error is committed using the u of the midpoint

of the cable element.

Let AF be the magnitude of some force due to the velocity through

the water of p, as shown in Figure Dl.
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FW

C., rp

FIGURE Dl. FORCE DUE TO VELOCITY

The incremental force on an element of length Ap is:

AFX M K(u x + W. x0)a
A A

The integral of the incremental forces is as follows:

d /2

(Facc)x K x [u, +2t .(T. x P) +(W, x P)2] dp

dx/2

The above integral may be simplified if we observe that:

2u, ' x; x p') - 2% (WX" x sxp) - f(ux, UX ) p

wX P) xW psinpw) xup2

since by hypothesis sin (p~wk) W - i. Here is taken to be a vector

normal to the vector p
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Also noting that

d x/2 +d /2

rd pdp - 0 , and f padp - C?/12

- x/2 -dX/2

then if (F app) be the approximate force obtained by neglecting

the angular velocity . , we have

+d X/2

(Fa) K j u dp - Kuid
app j%

-d /2

The relative error is

(Fe)L - (F D)
( c - (1/12) (W d /UX

(Fapp) X

so that if the velocity due to rotation of one end of the eiement with

respect to the other were equal to the velocity of the midpoint through
the water, the omission of rotation causes an error of 8.25 per cent.
If the relative velocity due to rotation were one-half of the translation
velocity, the error would be about 2 per cent. This can always be
achieved by using short cable elements, but apparently this is not a
stringent limitation. Therefore when calculating the velocity forces, the
rotation of the element will be ignored.

By a direct three dimension generalization of the normal and tan-
gential forces discussed in Reference 2, one can obtain a representation
of the tangential force with a magnitude of dk X C-1 and directiongs

and a representation of the normal force with a magnitude of

d G2 2 sinrr - dC t? (-s- x u /Iu3,1) 2 = d C (S X ux)

dCux X X 2 X

with a direction of qXi

The moment above the c.m. due to lift is now computed. Let v be
the velocity of Ap through the water, then 7 = + x " The

incremented force experi,.ced by the element becomes:

-Y
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CA sin2 (v, s)AP

where V x (-s ) v sin (v-s . Then AF takes the form

AF = Cg Is x 712 Ap . The element moment about the c.m. of the cable
element takes the form:

AM ps x (AF)q = p Is X q18 Ap

2 2 2since s x V -s X V - (s v) , then an integration from -d /2
to d /2 yields:

d /2

-= Ce(s x xq f [p- - (s X . V)a]dp

-d, /2

2 - u 2  A ls h to e m

Noting that (sX . V) - (sX  Y2 , and also that integration of terms

with odd powers of p will give no net contributions, the above expression

becomes:
d /2

+dl

-dd /2 +d /2

e C8 X x q(X WX x SX) f 2p dp

-d X/2

Finally the moment of the lift about the c.m. reduces to the
form

- (Cgd!/6) (u W, xs!sx q.
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APPENDIX E

ACCELERATION FORCES

In this appendix there are two mutually exclusive but alternative
physical assumptions to be made regarding the composition of these

forces. The first, which we label Approach A, is a three-dimensional
formulation of the physical assumption embodied in Reference 1. The
second, which we label Approach B, is a Kirchhoff's general formulation
of the added masses of a submerged body.

The mathematical expression of Approach A is simpler than that of
Approach B. Approach A is always used for the cable. Approach B may be
more desirable for the vehicle. Equations are derived for each approach.

'Tese forces and moments contain the accelerations. The accelera-
tions are the unknownofor which the final linear equations are to be
solved. Approach A and Approach B assign different values to the co-
efficients of these equations, and therefore differ basically.

APPROACH A

In Approach A we are concerned only with the force due to the in-
duced acceleration of the fluid. As in Reference 1 we assume that this
force is proportional to the component of the acceleration normal to the
cable element, and that there is no moment due to the acceleration.

q

FIGURE El. UNIT VECTORS s, qX, AND ACCELERATION a,

Let ni be the unit vector normal to s. and in the plane of a.

and s,, as shown in Figure El. The acceleration a. is

a. (a, .n,,n I(a .6 s.
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Then the component of acceleration normal to the cable element is:

Hence the force due to acceleration of the element is

TAX - (-e'm )a. . -n - "e'm~a, - aX . sXsX)

= -e W(a. -a X . X W)

where e'm - e, is a parameter which depends upon the added mass of

fluid of cable element.

APPROACH B

Consider a body moving in a perfect fluid which is otherwise at
rest. The motion of the fluid is assumed to be irrotational. The hydro-
dynamic forces and moments experienced by this body due to its lincar and
angular accelerations are given by the following (Reference 3):

F3 
3

-P[ I uj(t)uij + I J)i ,J . (1-1,2,3)

j =I j =i 1,J3

3 3

= uk)i +, + J(t)11i+3,J+3 i=123

J-1 J-1

u0 (t) are the components oc the translational velocity of the origin of
a system of rectangular axes fixed to the body, and wji are the componients

of angular velocity of the body about chis origin as shown in Figure E2.

The density of the fluid is given by p, and pij are the "added masses".

The conctants p ij are determined exclusively by the shape and position

of the body surface relative to the moving coordinate axes fixed to the
body. It is also known that 1kij M fii. consequently the above equations

for forces and moments involve 21 possible independent constants
(Reference 3). If the surface of the body has one or more planes of
symmetry, the number of independent constants aXe reduced. For example,
if the g-2 - plane is a plane of symmetry, it can be proven that
21 independent constants reduce to 12. If the V3 - plane is also a
plane of symmetry, then the 12 independent constants reduce to 8. If
there is also symmetry of body surface about the 91t3 - plane, the
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8 independent constants reduce to 6, so that only the constants
1( =, ... ,6) remain. However, in this analysis we chall retain

all the constants or "added masses."

92

r 
9

3

x l

x 3

FIGURE E2. FIXED FRAM x AND BODY FIXED K C F

Let ,' , "A denote the components of linear acceleration
of the moving origin 0b in the direction of the axes fixed to the body.

Also let Fei and denote the components of hydrodynamic forces and

moments respectively in the direction of the axes fixed to the body.
The above equations for the forces and moments now take the following
form:

F9i - P C 1 - C3 11W ]

Mi -- p C3,;C* - C211w~

• . .c ij Cj

where Clij L for i £ 3, j f 3; C2 ij - i+3,J+3' for i + 3 > 3,

j + 3 > 3; C3. * n&ii,J+3' for i 9 3, J + 3 > 3, in the equatin

for the force; and C3j = 03j, i+ 3 > 3, j • 3, in the equation

for the moment.

I
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To refer the forces and moments relative to the directions of the
inertial area we note that for any vector V we can write V - c V

i.e., V, W c V;, and V' c V . Here the prime indicates evaluation
i ij k I kj k

with respect to the moving frame, as shown in Figure E3.

23

x 3

xxI 2
FIGURE E3. UNIT VECTORS ON FIXED AND MOVING FRAME

Referring V to the basis i, J, k and V'to the basis 4, m, n, then
dV/dt - OV'/dt + T x V. In particular dG/dt - d '/dt + I x Z ='/dt,
so that x c j

Hence

Fx cij F~. ij I cijgk -C3 je 9k
P cij Q jtk- C3 jkWAekA

where W~k mc.k"x, , and

The next step in the analysis is concerned with the expression for

Ck in terms of the inertial coordinates x1, , xg, x3. From Figure E3, and
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also from a coordinate transformation we write xi = c jJ9 + di, where

d1, d2, d3 are the x1 , xg, x3 coordinates of the origin of the moving
frame. The transformation is also orthogonal so that cij cik =jk'

cijckj = 61ks and 9j . c j(xL - d ). We also note that

Y= xT + y-j + At = g* + T1m + C

and then by the usual rules of kinematics we obtain:

r - xi + yJ + zk -L + Tm + Cn + w x r,

and r - xi + yj + zk

This equation can be rearranged in the following form:

Where AA - r - w x r, so that AA - xj - ejpq wpxq;-- - )j~ pq2 ~

and AB -- 2 x r + w x wx ), so that AB e jpq 2wpxq

+ ejpq Wp eqst ws xt . Thus the k th component of is:

" cJk(AAj + ABS)

M Cjk(xj - ejpq pxq) + cjk(ejpq eqstwpsXt - 2cjpqwpXq)

where the first term on the right hand fide contains accelerations, the
second term does not contain accelerations, and x is the q th component_ q

of r where r is the radius vector from the inertial origin to the origin
of the moving frame. Finally

Fxl "0 ci. Clkcrk(xr r q) - P c jC3jkC kwX
x Pcij Cl crr- (e q e qW -2e j*x ,

P c ij CljkCrk (ejpqeqstwpwsxt 2erpqwpxq

H =-p P CJ k'rk (x r- e rpw px q p c i C2 jkcikw)

i P CijC3jkCrk jpqqtp t rpqpq

(Reverse Page 60 Blank)
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APPENDIX F

FIN FORCES AND MOMENTS

The vehicle considered here has a pair of fins in a vertical plane
(one fin above the vehicle and one below), and a pair of fins in the
horizontal plane (one to port and one to starboard). These fins are
subsequently referred to as the vertical fins and the horizontal fins,
respectively.

Consider first the vertical fins. Figure Fl illustrates the forward

half of one of the vertical fins. The velocity through the fluid of the
vertical fins (see Appendix A) is:

- .L J -

Vvf - x+ 1 + (d v4/dv+l) (x+ 2 - x )

Undeflected Fin

Deflected Fin v Velocity of Fins
Through the Water

v pProjection of Vvf on

xx

3

FIGURE Fl. VERTICAL FIN AND ITS VELOCITY

The lift (or sidewise force in the case of vertical fins) will be
determined by the general relation t F x pU, where L is the lift,
' is the circulation, and TT is the velocity of the fins. The vector

r will be assumed to be equal to:

-61-
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(constant) (velocity) (sine of the angle of attack)(unit 'vector). The

effect of spanwise flow of the fluid will be ignored in this formu-

lation. This assumption implies: (1) that the -irculation vector is

parallel to the axis of the fir, i.e. ± n; (2) that the angle of

attack is measured in the M2 plane, as shown in Figure F2; and

(3) that the velocity with which we are concerned is Vvf - (v . -

i.e. the projection of v on the tIC2 plane.

V -

FI VfP v vf -(v Vf nn
FIN 1

--..

FIGURE F2. FIN AND VELOCITY IN i PLANE

The angle of attack is a + (-a), where a is the known,_deflectiqn
of the fin relative to the vehicle, where a1 = arctan (m . V " Vvfp

arctan (m . vvf/I . vvf). Hence the circulation vector becomes r =

(constant) vvfpn 3in (a - a1 ) and the s',dewise force takes the form:

(constant)V vf p sin(ce - i)n x p(Cv f ; (Vf I n) n)

whreVv p is the magnitude of vf Le 2

where v vfp ithmanudofv fp *Ltq v+2  .a unit vector in the

direction vvf, and q -+3 be another unit vector defined by n x qv+2

Since n x n 0, the vector factor in the above equation n x p v -

Pv fq\,+3 sin(nv f) P Vvfq v+ 3 . Then the lift - (constant)

pv2  q sin(o - a1). Since the fin is of low aspect ratio and is

in the neighborhood of a large body, the lift may be written in the
following form:
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where C3 is an empirical constant greater than zero, and FLF(C - )

is an empirical odd function of Its argdment, the angle of attack.
Both C and FLy may be obtained experimentally.

If a is positive when the forward edge of the fin is displaced
to starboard, and PLVF is positive when its argument is positive, then

positive lift (sidewise force) tends to force the vehicle to starboard
and to increase the x v+1 ,2 coordinate. The drag on the vehicle is

similarly

-04 FD.F vfp o2~

g where, however, FDVF is an even function of its argument. The moment

about the center of gravity of the vehicle due to the vertical fins is:

C'Vvfp)a FLVF( " - ')qa(dv4 4 - d+2);v+ xq 9+2

N" ( P Sv+ vip q
4 v'l+2 FDVF v4- v)(d2 ,

which reduces to the following form:

(vfp)2 (dv+ 4 - dv. 2 )%.4.1 x [C3 Lqv.3 FLVF ( 0' - c) "

c4 q+2 FDV?(Y " ]

By proceeding in an analogous manner, similar results are obtained
for the horizontal fins. In this cake the veloci.y of the horizontal
fins is:

Vhf M xv+1 + (d +3/dV+1) (X'\.2 -xV+l

Let q, be a unit vector in the direction of vf; q 5  m x q4;

vh p be the projection of vhf on the 9,92-plane; 1 =

arctan (n . vhf1A . and let 0 be positive when the leading edge

of the fin is deflected down.

I The lift due to the horizontal fine is then

Shfp) --v+5 LH -
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where Cb and F LHF(0 - 1) are analogous to C6 and FViF, respertively.

Therefore 8 > 0 tends to increase xv 1l,. The drag on the horizontal

fins is -CO (hfp )qV44 FDF(8 - P1); and the moment about the center

of gravity of these forces is:

(vhfp)2'(dv+ 3 - d V 1)sV+ 1 x [C5 qv+5 FL(8 - "

Cs qV+4 FDHF(O - k

The total force FIN, and moment FINM acting on the vehicle are the
sums of the above forces and the sums of the above moments. They are:

FIN (v vfp )2[C3 qv+ 3 FLVF (c ) -C qv2 FDVF(O - a)]

I~. Fo
' hfp" "-= v+5 -LHF ;v " - +4 DHF' "  1- j/0

and

FIN (Vf)2 (d 4 - d 2 )sv+1 x [% q\3 FLVF(a" c

- C4 q v+2 FDVF(c - o)]

+ (Vhfp) (d+ 3  d+2)sv+1 x [C v+5 FLF ( -

" C6 q + F ( -
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APPENDIX G

COORDINATE TRANSFORMATION BETWEEN INERTIAL
COORDINATES AND COORDINATES FIXED

IN THE VEHICLE WITH ORIGIN AT
THE CENTER OF GRAVITY

The coordinates fixed in the vehicle with their origin at c.g. of
vehicle are denoted by 9, T, . The coordinates x,y,z denoted the
coordinates in a frame which is parallel to the inertial frame. The
origin of both frames is at 0, and the C, 1 plane contains the hori-
zontal fins, as shown in Figure Gi. This appendix prc,'des the co-
efficients c j to transform vector components between the two frames.

o0 -

FIGURE Gi. INERTIAL AND BODY-FIXED COORDINATES

For a linear orthogonal transformation xi  cij ,. (see Appendix B)

the coefficients c j must satisfy the following orthonormal relations:

cijcik ' 6jk - cjicki ' 6 kj

The transformation in terms of matrices is:

y C 21 a'22 c 23

31 32 33
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If = I, 1 = 0, = 0, are the components of -s, then the substitution
of these coordinates in the preceding matrix transformation gives

x= c 11  (1.0) -s x

y= c 2 1 . (1.0) =-s

z= c3 1  (1.0) = z

If next we let 0 = , = 1, 0 = , a substitution in the transformation
with condition of zero roll gives z = c 32'(.0) = 0.

With the above mentioned quantities for x,y, and z, the coefficient
transformation takes the following form:

-9x c12 c 13

-S y c 22 c 23

-s z  0 C 33

The crtbonormal relations are applied to find the relation between
the c s and the s a. For example, c3ic3i a 1 * s2 + c33 . Solving tor

c we get c 2s2 = s2 + S, so that c = 8 2  s' . when
33 weet 33 z x y .33 x y

s = 0, z = c33C, so that we take the positive square root, hence

C3 = . + s 2 = 1/
33 y

where is defined for convenience to be l/ rs! + sx y

For the second and third rows the orthonormal relations give
sysz + c23 c33 =0 , thus c -s/c -sz .

For the first and third row the orthonormal relations give

s + c O, hence c -sxSz/c,3
x z 13 33 13 = - s x .

Also c 2 + c 2 = 1, and -sc 2 - Sc 2 2 = 0, are consequences of
12~~ 22 a a2- 2'

the orthonormal relations. The last condition yields s2 C = s a

x 12- y 22
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Using this relation and the other condition gives:

s 2 22 s 2 2 s2 2+2 C2

x x 12 x 22 y 22 x 22

from which c2  = s 2 /(s. + S2 ), hence c = "i±x, where denotes + I or22= xx y 22 x
1. In addition

c12  (-sy/sx)C22 -LSy

The determinant of the transformation is

-sx  -Pxsy -SBxS)

Sy xsx  -sy z

I-s z  0 (1)

which equals - s P - 2(s
2 + S2 , Since the determinant must be equal to

z x Y
+1, then it follows that p - -1.

In summary, xi  c ciJj, C j W cijxi , where

2 2

S - y x + s y/ +

y x z

• s 0 s2- +7s
z x y

|i
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