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PREFACE 

This note was the result of my collaboration with C. D. Goodhope, 

M. D. to remove the difficulties in using a classical t-test of the 

hypothesis of the equality of two means when applied to the bloodless 

during surgery of patients treated or in control.  The t-test assumes 

the underlying distributions are normal or nearly so.  A glance at the 

data indicated that this was an untenable assumption since several 

observations were too many standard deviations away from the mean. 

Consequently, a less restrictive non-parametric method was called for. 

In order to explain the rationale of this analysis, and to preserve 

some of the things that we have mutually learned from our discussions, 

this note was written.  It shows again that statistical techniques which 

apply to mechanical machines will apply to human ones as well. 



SUMMARY 

In this paper we examine some data which purports to show that patients 

undergoing prostate surgery can be protected from excessive bloodless 

through the prior administration of an estrogen. We point out some assump- 

tions that must be made in order to assure that a test of measured bloodless 

is equivalent with a test of the actual bloodless these quantities differing 

by a random error. 

We conclude that the use of em estrogen is effective in reducing blood- 

loss at the 5 per cent significance level but we have insufficient evidence 

to conclude that it reduces the length of time necessary for the operation. 

The treatment does seem to reduce the weight of the tissue removed at the 

20 per cent significance level. 

We also point out that a comparison of average bloodless per minute 

of operating time probably does not give any additional information than 

a comparison of bloodless. 



1: Introduction 

The population of males who will undergo transurethral prostatectomy 

during the next few years is the group about which our inferences are to 

be made.  To do so we shall use the clincal data that was obtained by C. 

D. Goodhope Cl]. Thus, strictly speaking, the snbpopulation from which 

our sample has been taken is that of the males in a particular geographical 

area who have presented themselves for clinical treatment to one urologist 

during the last few years. However we have no reason to believe that this 

subpopulation is not representative of the population with which we are 

concerned. 

Some of the random variables (recall a random variable is any quanti- 

tative measurement made on a member of a population) which we shall consider 

are the bloodless during surgery, the weight of the tissue removed, and the 

length of time of the operation. 

We wish to compare the effect of a particular treatment on these 

random variables.  Since the difference of these quantities between members 

of the population is quite sizable even though both were accorded the same 

care throughout, a meaningful comparison of the effect of the treatment, 

if there is any, can only be made through statistical means.  Specifically 

we shall test for statistical significance the effect of kO  mg of poly- 

estradial phosphate (P.E.P.) in 2 c.c. solution administered intramuscularly 

one week prior to surgery against that of placebo (2 c.c. saline solution 

similarly administered) by means of statistical tests at a specified level 

of confidence. 



It is anticipated that the effect of this treatment is , in general, 

to reduce the actual bloodloss as well as make the operation easier to 

perform by reducing the weight of the tissue being removed and thus conse- 

quently to reduce the length of time necessary for the operation. 

In this paper we shall not be concerned with the chemical mechanism 

whereby the estrogen P.E.P. produces its effect.  In this regard one is 

referred to the publications of its discoverer Diczfalusy [2] and to that 

of Goodhope [1], as well as the references given there. Rather we shall 

be concerned with the fulfillment of the requirements of correct statistical 

analysis and the relationships between the mathematical assumptions and 

actuality. 

The Data and Its Collection 

From Goodhope [1], we have the following data: 

CONTROLS ESTRADURIN PROTECTED 

PT PT.    WT.   TOTAL  LOSS   OP  LOSS 
TISSUE  BLOOD  PER  TIME  PER 
QMS.  LOSS CO  GM.   MIN. MIN. 

WT.    TOTAL  LOSS  OP  LOSS 
TISSUE  BLOOD  PER  TIME  PER 
QMS.  LOSS CC  GM.  MIN.  MIN. 

EP 25 308 12.3 40 7.7 WA 9 20 2.2 30 .66 

IV 11 780 70.9 30 26.O AP 6 197 32.8 40 4.8 

JN 8 108 13.6 24 4.5 JF 5 20 4. 17 1.2 

CG 2k 180 7.5 40 4.5 HT 23 38 1.6 50 .76 

CR 25 329 13*2 62 5.3 EH 10 30 3. 45 .66 

*ap ko 785 19.6 100 7.85 ♦QP 22 65 2.9 75 .86 

ww 7 300 ^2.8 47 6.4 TS 17 310 18.2 50 6.2 

JE 9 250 27.7 40 6.25 VL 20 110 5.5 25 4.4 

AVE. 18.62 392.5 25.95 48 8.56 14.0 98.75 8.77 41.5 2.45 

It was obtained from sixteen cases (fifteen patients - one was operated on 

twice once under control and once under treatment) suffering from prostatic 

obstruction sind operated by transurethral prostatectomy. Now the measured 



bloodless, the length of time for the operation, and the weight of the 

tissue excised for each patient under the surgery described are the 

observed values of the random variables in which we are interested.  We 

want to determine the effect of treatment on these random variables. We 

shall be concerned with several statistics also, principally the ones 

listed. 

To observe a value of the statistic for the control or treated group 

we obtain a patient with prostatic obstruction and then decide by a chance 

mechanism with probability one half whether he will be in the treated 

group or not, the next patient being in the alternate group. The operation 

is performed and we determine the measured bloodless, the duration of the 

operation, and the weight of the tissue excised for that patient. 

We assume: 

1 : The statistics for the control and treated groups are independent 

random variables each measurement of which is continuous. 

Independence means that a knowledge of the statistic for a control 

patient will not provide any information as to the outcome of the 

statistic for a treated patient and vice versa. The guaranteeing of 

independence is the raison d'etre of the selection procedure and the 

performance of hemotological studies to exclude abnormal bleeding or 

clotting tendencies in every cause. 

The assumption of continuity means that the methods of measurement 

is of sufficiently refined scale that it is always possible to determine 

between two patients which measurement has the greater magnitude, that 



is we cannot have a tie between patients in this respect. This can be 

effected by the choice of meterology.  The only case where the meterology 

should be mentioned is bloodless. Measurement was accomplished by the 

determination of total hemoglobin content in all washings by colorimetric 

methods. Test indicate that the accuracy of this method was within + 15 

per cent for small losses and + 5 per cent for large losses. However, we 

cannot assume that this implies that the measured bloodless is within such 

percentages of the true bloodless because in certain cases blood may 

coagulate in the washings and thus not be measured.  Also in other cases 

clotting may take place in the bladder and therefore not be measured. 

These occurrences are presumed to be more probable with the greater loss 

of blood. 

3 : The Actual Bloodless and the Measured Bloodless 

Let R.  be the controlled variable measured bloodless and M_ the 

treated variable measured bloodless.  The probability law that governs 

M-  we shall denote by F1 with the interpretation 

Prob{M1 < a} = F^Ca)  for each real a > 0, 

and similarly we shall assume M_ has a distribution law Fp    and 

Prob{M_ < a} = F2(a)  for each real a > 0. 

We want to test the hypothesis that M.  is equal to Mp in the 

stochastic sense, which is to say these distributions are equal, 

H0 : F1 = F2 

against the alternative that M_ is stochastically smaller than M., i.e. 



E1   : F1<  F2. 

This may seem to be confusing at first thought, but it is precisely what 

is needed. Under the null hypothesis H^ there is no difference between 

the treated group and the control group, which is to say that 

ProbCM, < a} = Prob{M_ < a}  for every a > 0. 

In words: The probability that a treated patient will lose an amount of 

blood not exceeding a units is exactly equal to the probability an 

untreated patient will lose the same amount, moreover this equality holds 

for all amounts of blood a. 

Under the alternative hypothesis that the treatment is effective, 

we have 

Prob{M2 > a} < Prob{M^ > a)  for every a > 0. 

In words: The probability that a treated patient will lose more than a 

units of blood is less than the probability that an untreated patient will 

lose more than the same amount a and we have the inequality holding 

no matter what this amount is. 

A central question at this juncture is whether a test of an hypothesis 

on the distribution of the measured bloodless M is what one is really 

interested in. Of course, the answer is "no." We are primarily interested 

in the distribution of the true bloodloss and it is this random variable 

and its distribution about which the hypothesis should be made. Unfortu- 

nately, the true bloodloss of a patient we can never know. The measured 

bloodloss is always different by a meterology error (which we assume is 



random).  Letting the true bloodless f in either case, treatment or control, 

be L and the measured bloodless be IL , we have 

"L = L + eL 

where e  is the random error due to the accuracy of the colorimeter when 

measuring a true bloodloss of sunount L as well as the amount of blood lost 

which is not measurable for one reason or another.  As previously noted the 

distribution of error depends upon the true bloodloss. 

We now make the assumption 

2° : Given that the true bloodloss will be a certain amount, the 

meterology error will have the same distribution for a patient 

with treatment as one without. That is 

PCM^ < x|L. = A] = J(x|A)    for i = 1,2 

and J does not depend upon i, 

3 : As the given total bloodloss increases the random measured 

bloodloss increases in a stochastic fashion. That is for each 

fixed x, J(x|^)  is a decreasing function of -2, We further 

assume its derivative with respect to &    exists and is continuous 

and not zero at x = £ 

Under control we let the actual random bloodloss be Ll with distri- 

bution G.. , under treatment let actual random bloodloss be L_ with 

distribution G», In all cases we have G, < G,, and we describe two 

states of nature 

H6 : Gl = G2 Hi : Gi < G2 • 
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We now prove a result which says that from 2 and 3 it follows that 

a test of Hn against H..  is equivalent with a test of HI against H' 

We have the 

Theorem 1: Under the assumptions G, < G- and F, < Fp with 2 and 

3° holding we have 

F1 = F2 iff a1 = G2 

F1<F2    iff    G1<G2     . 

Proof: By the theorem of total probability we have for 1 s 1,2 

F.(x) = PCMT  < x] = f J(xK)G'(X)d-e . 
1   .   Li "    o      :L 

Integration by parts yield, upon setting v(x|^) = ~ dT J(xl^) 

CO 

(•)    F.(x) = J(x|») + f G.(A)v(x|A)d^ 
1 0 :L 

and by 3* we have that J(x|^)  is a decreasing function of & 

for fixed x and thus lim J(x|^)  exists and equals say J(x|<») 

moreover v(x|^)  is always nonnegative. 

Thus by (*) it is clear that if G1 = G  then F1 = F2 

but also if F, = F_ then for every x we must have 

CO 

[ CG_(i) - G (A)]v(x|A)d^ = 0. 
0 

Since G_ > G1  and v(x|^) is nonnegative we must have 

d    = G {^ : v(x|-Ä) > 0  for some x} 

but by the assumption in 3* this is the entire space {^ > O). 



Remark: Assumption 3 would for example follow if e,    had a distribution 

say J independent of &    which would mean that the error would be sto- ' 

chastically of the same magnitude no matter what the true bloodless would 

be.  In this case we would have J(x - i) = J(X|.ä). 

Based upon the reasonableness of assumptions 2 and 3" the theorem 

above proves that the performance of a statistical test about the distribution 

of the measured bloodless is the same as the performance of a test on the 

distribution of the true bloodless of patients with and without treatment. 

This fact is of primary importance.  Merely because it is overlooked so 

often should not blind us from seeing its neglect can often vitiate the 

conclusions reached. 

hi    Analysis of the Data: Operating time, Weight of excised tissue, and 
Bloodless 

In this section we shall make use of the Wilcoxon-Mann-Whitney 

statistic which is 

U = mn + m(m + l)/2 - S 

where S is the sum of the ranks of the controlled variates and m and 

n are the number of observations of control and treatment, respectively. 

Probability tables of the distribution of U are given in C3]. 

Operating Time in Minutes 

Control 

Treated 

Rank 

Ü = 100 - 68 = 32 

which is not significant. In this case, under the null hypothesis. 

2k 30 ifO 41 kz 47 62 LOO 

17 25 31 43 45 50 51 75 

2 4 6 7 8 11 14 16 
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Weight o f Excised Tissue . in Grams 

7 8 9 11 2k 25 25+ 40 1 

5 6 9+ 10 17 20 22 23 

3 4 5 8 13 14 15 16 

P[U < 32] = .520. Therefore we cannot reject the null hypothesis that 

the operating time of treated patients is less than the operating time 

of untreated patients. 

Control 

Treated 

Rank 

U = 22 . 

This value of U is significant at the 20 per cent level.  In this case 

P[II < 22] = .191 under the null hypothesis. Thus it does appear reason- 

able that later observations may prove that the weight of excised tissue 

is reduced significantly. 

^_____^____^__^ Measured Bloodloss in Cubic Centimeters 

Control 

Treated 

Rank 

u = 8. 

This value of U is significant at the 1 per cent level.  Under the null 

hypothesis P[ü < 8] = .005.  Hence we reject the hypothesis that there 

is no difference in bloodloss between the control and treated group and we 

do so at the 1 per cent level of significance.  We conclude that the 

treatment is effective. 

One might think that a comparison of bloodloss per minute between the 

two populations would be informative since one notes that in one case the 

average is nearly three times that of the other.  However, it does not give 

108 180 250 300 308 329 780 785 

19 20 30 38 65 no 197 310 

6 8 10 11 12 14 15 16 
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us additional information since a test of bloodloss per minute is the 

same as a test of measured bloodloss under some reasonable assumptions. 

These assumptions are 

k   '.    Given that the bloodloss is the same for a treated and an untreated 

patient the times for the operations would be stochastically equal. 

5 : Given the true bloodloss the error in measured bloodloss is independent 

of the length of time for the operation. 

6 : As the true bloodloss increases the average measured bloodloss per 

minute increases in a stochastic manner. 

In view of the statistical nonsignificance of the time length of the 

operation between the treated and the control group even when disregarding 

the variation of total bloodloss, which is some measure of the difficulty 

of the operation and hence of its duration, we feel that k    is reasonable. 

Assumption 5 seems undeniable.   Assumption 6 is not so intuitive, 

however, a glance at the data seems to substantiate this assumption.  We 

also present the following reasoning:  In the case of active bleeding the 

surgeon spends more operating time than otherwise in effecting coagulation 

to reduce the bleeding rate to an acceptable level. However, it is clear 

that in the case of hypothetical active bleeding at a constant rate the 

average true bloodloss will be higher than if the bleeding rate were 

constant at an acceptable rate. The extra time spent in coagulation can- 

not reduce the average bloodloss. 

However, regardless of the profile of the patients bleeding rate during 

the operation it is still true that extra time spent in efforts to inhibit 
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bleeding cannot reduce the average bloodless per minute if at the time 

coagulation efforts are begun the average of the instantaneous acceptable 

and unacceptable rates exceed the average per minute loss at the acceptable 

rate. 

To see this consider a safe bleeding rate r  for an  operation so 

that during a normal, operation of length T the average bloodloss per 

minute would be 

1  T 
i J r (t)dt = L say. 

0 

An operation is begun which has an unacceptable bleeding rate, 

say r ,  and at time T the surgeon observes that the average of the 

acceptable and unacceptable rates exceeds  L, i.e. 

i (ru(T) + ra(T)) > L . 

We then begin coagulation efforts reducing the bloodloss linearly to 

an acceptable level r  in a period of length c minutes and then 
cL 

proceeds with the remainder of the operation taking (T - T)  minutes 

we then would have 

T 

- T + c J  u 

rjT) + ra(T)     T 

-2  C + I r*1    • 

This is  equivalent  to 
T T T 

(T + c)  J r (t)dt < T J r (t)dt + ~  [r (T)  + r  (T)]  + T J* r (t)dt 
0 0 ^u a T 

T T 

c J r (t)dt < T Jtr (t) - r (t)]dt + ^ [r (T)  + r (T)] •La —      ^.u a 2u a 

L < 7 I Cr (t) - r (t)]dt + -^ 5—ä  
c 0      u 
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which proves the contention. 

We now have the 

Theorem 2: Let R.  be the distribution of the ratio (M./T.), the 

average measured bloodless per minute for i = 1,2 then from k 

o 
and 5 we have 

Rl = R2  
if Gl = G2 ' 

But further we have 

R < R   if G < G2 

and 6 holds. 

Proof:    By definition 

Ri(x)   = PCCM/^) < x]  = J P  L^JJJ < xll^ = -e]dGi(i) 
" M„ 

0 

where T.(&) is the (random) time of the operation given the total 

bloodloss is ■& which by k has a distribution W(»|-0 which does 

not depend upon i. 

Now we examine the integrand which is 

00 

P[M. < x.T.(A)lL. = 4] = f PCM- < x.t|L. = ^] W(dt|i) 
*—   ii      n 1 

and by 5 we have the equality 

CO 

= J" J(xtl^)W(dt|i) 
0 

which does not depend upon i = 1,2. Moreover this quantity is by 6 a 

decreasing function of ^. The remainder of the proof is analogous to 

that given for the previous theorem and need not be given here. 
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However, the hypothesis that measured bloodloss per gram of 

excised tissue is stochastically smaller in the treated case is in 

fact stronger than that the measured bloodloss is stochastically smaller 

itself in the treated case. 

Let V1, V  be the measured bloodloss per gram of severed tissue 

and VL , W? the weight of the tissue in the control and treated cases 

respectively. Then if W_, Vp are stochastically not greater than VL 

and V-.  respectively, then M_ = V_W  is stochastically not greater 

than l^ = v1
w
1. 

To see this consider the string of inequalities 

00 00 

P[V1W1 ^ x]   = I Fv  ^t^d F
w  (t)  > I Fv  (x/t)d Fw  (t) 

0  1 0  2 

= / F (x/t)d F (t) > J F ix/t)d  F (t) = P[V W < x] . 
0  1        2     0  2        2 

Thus we have that P[M < x] > P[Mp < x] and this is the result desired, 

recalling the definition of stochastic inequality. 

Before we conclude we remark that we have continually laid stress 

upon hypotheses which were in terms of the distribution functions and not 

in terms of say the mean loss of blood. The reason for this is two-fold. 

Firstly, it is conceivable that the treatment could on the average have a 

mean loss which was less but have a greater percentage of patients which 

require transfusions, and secondly, it is clear from the data that it is 

not from a normal population so that conclusions via the t-test would not 

be strictly usable. 
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