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ABSTRACT: The equations are developed for the case of a
raverse ylelded thick-walled cylinder. 1t is assumed that

a cylinder is subjected to an internal pressure which causes
plastic flow throughout the wall; the size of the cylinder

ia such that the residual stresses developed during pressure
ralease cause the cylinder to reyield in compression. The
stress equations for the subsequent reapplication of pressure
to the rayielded cylinder are also developed,
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LIST OF SYMBOLS

a Inner radius of cylinder

b Outer radius of cylinder

c Radius of interface between thrice yielded region
(first in tension, then in compression, finally
in tension) and the twice yielded region

d Radius of interface between once yielded region in
tension and twice yielded region (once in tension,
then in compression)

D Diameter

m Diameter ratio inside region where tube is elastic
(i.e., m is greater than n)

n Diameter ratio to which plastic flow has occurred

P Internal pressuro applied to cylinder after reverse
yielding has occurrod

P Internal pressure applied to cylinder before roveorso
vyielding has occurrod

T Radius

w Diameter ratio inside region whero plastic flow has
occurred (i,e,, w 48 less than n)

Yo Yiold strength

Yoo Yield strength in compression
Yoy Yield strength in tension

o Stress

w Wall ratio ( b/a)

Superscript

. Residual (stress)
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Subscripts

t Tangential (stress)

r Radial (stress)

z Longitudinal (stress)
max Maximum (stress)

i Interface
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INTRODUCTION

The pressure capability of a cloased-end cylindrical
pressure vessel is limited for elastic operation. Based upon
the Distortion Energy Theory, the pressure at which yielding
begins at the bore is given

_ Yo (w*-1)
- \J—sﬂ wz, (1)

Thus, even for very large wall ratios the maximum pressure a
cylinder will hold elastically is given by P = Yo/ 3" .

one of the mathods of increasing the elastic pressure
capability of a cylinder is the use of autofrettage. This
process consists of inducing plastic flow in the cylinder
during manufacture by pressurizing it with a pressure (the
“autofrettage pressure”) greater than that given by equation (1l).
The plastic flow of the metal begins at the bore and progresses
through the wall as the pressure is increased. This non-uniform
flow is such that when pressure is released, the wall is left
with a residual stress distribution such that the bore has a
compressive tangential stress. The cylinder is then said to
be autofrettagad., Subsequent pressure application can be made
up to the autofrettage pressu.e with the cylinder reacting
elastically.

The equations for the autofrettage process (based on a
perfactly plastic material) have been derived by numerous
investigators (see for example, refs., (1), () and (3)).
The stress-strain curve for a perfectly pialtic material is
sketched balow, Y4

Srress

!

STRAIN
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According to reference (3) tha pressure required to deform a
cylinder of wall diameter ratio w , plastically, to a diameter

ratio m is
— 2 Te 2Yo ( zwz +,€n 'YL) (2)

Upon release of the pressure given by equation (2) the
residual stress distribution is given by

b g B B

wsm

» Y

== P+ g - wa_,(’— ) (4)
wem

at any position diameter ratio W~ 4in the part of the tube
that was plastically deformad. In the part that was elastic

> 2 wi
k(52 &0 o

Wwamam

6;::_ _&(mi w‘-) wi- l(l B ) (6)
w»m»m

where m is the position diameter ratio. It is assumed that
the residual atresses at the bore are not large enough to
cause the bore, which had previously been yielded in tension,
to yield in compression, that is, to "reyield" or "reverse
ylield."

As the pressure is increased during autofrettage a point
is reached where the tube is entirely plastic, i.e., n = w .
This repcresents the maximum pressure which can be applied
without rupturing the cylinder for a perfectly plastic
material and is, according to equation (2),
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The residual stresses in this case are given by inserting the
value of ple for p in equations (3) and (4).

From equation (7) it is apparent that as W 1is increased
the pressure required to cause plastic flow throughout the
wall increases, This, in turn, produces larger and larger
residual compressive stresses at the bore upon pressure release,
For the fully plustic case, then, there is some particular wall
ratio at which the residual stresses will be large enough to
just cause yielding at the bore in compression upon release of
the autofrettage pressure,

To determine the wall ratio at which the residual stresses
at the bore of a fully autofrettaged cylinder are large enough
to just cause it to yield in compression the yield criterion
used in reference (3),

% — 0 = % (8)

will be employed, Thus, the condition of yield, equation (8),
becomes, when applied to the residual stresses at the bore,

q —0= - %3 (9)

Here it has been assumed that the yield in compression i8s equal
to the negative of the yield in teasion,

Substituting the values of the residual stresses from
equation (5) and equation (6) into equation (9) with yr set
equal to 1 (i,e,, at the bore), one obtains

*It was assumed thatG‘-—%~<¢} *—G}> so that the yield condition

&
-0, 4%%— . See reference (2) for a discussion
idity of %his assumption,

3

becomes (
of the vai
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2o | z2pP* _ 2.

KL wi-| 5
wWith sz%ﬁ £ for the case of the fully autofrettaged
cylinders, the equation above becomes
_ 2% _ 2Y _ %(._w* ) o w
WS Ve A3 e
or
EJ:L = qu.) (10)

wz

S8olving equation (10) gives W = 2,22, Thus, a cylinder
having a wall ratio of 2,22, if autofrettaged to the fully
plastic state, develops residual stresses of such magnitude
that the bore is on the verge of reyielding (reverse yielding)
in compression upon pressure release. If W< 2,22 the
residual stresses developed are less than those required for
reyielding for the fully plastic case and if w > 2.22 these
stresses will cause reyielding for the fully plastic case.

It is furthey found that as the wall ratio increases
above 2.22 the value of n to just leave the bore at the
compressive yield limit decreases (ref. (3)). This means
that, if the reylelding condition is the limiting design
condition, there is a limit to the autofrettage pressure.
This limit is calculated to be juast twice the pressure to
cause initial yialding at the bore. Hanca, according to
equation (1) the limiting autofrettage pressure for incipient
reyielding in the case of W > 2.2 is

£ a(w?-
Y, —Z'aw’- (11)

For any cylinder there are, therefore, three limiting
curves as shown in figure 1. These are the following:

RS
£ - L (1)

Yo V3" w?
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the pressure at which yielding initially occurs:
ﬁ"“.—“i :—%—— In w (7)
Yo 3

the pressure necessary to make the cylinder fully plastic,
which for W S 2,22, leaves the residual stresses low enough

to prevent reyielding;
£ 2 w?-1
Yo Y3’ w?* (1)

the pressure limit for large wall ratios to just leave the
bore at the yileld point in compression after pressure release.

It is apparent that if a cylinder could be operated at
pressures given by equation (7), a sizeable increase in
pressure capability over that given in equation (1ll) would
be possible. However, as noted before, in this circumstance,
there would occur reyielding of the bore in compression when
the pressure is released.

It is the purpose of this study to investigate reverse
yielding in thick-walled cylinders that have been pressurised
to the fully plastic state during autofrettage.

DERIVATION OF REYIELDING EQUATIONS (w > 2,22)*
The assumptions made are the following:
l. The mataerial is assumed perfectly plastic
2, Oa=V2 (G +aQ)
3. The yield criterion is given by the Distortion
RBnergy Theory

Assumptions (2) and (3) result in the following yield criterion:

G-0n= 1 2L, (12)

Let us consider the case of the fully autofrettaged cylinder
of W > 2.2 subjected to the pressure Pypyx, where

* See Appendix A for an alternate derivation of the reyielding
equations,
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Krwor . R fu (7)

Yo V3’
At every point in the plastically deformed cylinder

2 Y,
G- G o= A8 (13)
The equation of equilibrium is
d
0o =G = 7 adp 14)
+ n e d)L (

The radial stress at the bore is equal to -Pmqpx, that is

Oh = —Mwmay = — 2% Inw 15)
l\“.a' ot V-S' (

RBquations (13), (14), and (15) may be combined to obtain the
plastic stresses due to the internal pressure Pypx that exist
in the cylinder (as was done in reference (3)). These
stresses are

2% b
Ta TtiT ﬁﬁb ~ (16)

|

i &\_(g(%_% _|> (17)

Vs

As the internal pressure is released, the cylinder
deforms elastically until the bore reaches the yield point
in compression. Thereafter, as the pressure is further
reduced, plastic flow progresses outward from the bore. When
the internal pressure reaches zero, the cylinder will consist
of two gones, an inner cores which has reyielded in compression
(reverse yielded) and an outer elastic jacket that has been
previously yielded in tension during autofrettage,
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The equations describing the reyielded inner core when
the pressure has been released are the yield criterion
equation in compression, and the equilibrium equation (14),

vie,,
G;—Q‘h_ = - —% (18)
G— G, — ML ad%nz o (14)

These equations with the boundary condition that the residual
radial stress at the bore is zZero lead to the following
equations for the inner reyielded core stresses after pressure
release:

G"‘:=_.z_xn.ﬂ,ni. (19)

a < ned

« _2Y. h_

0; = ﬁ(’"‘a '!-l) (20)
a< nsd

where "d" denotes the radius at the interface. These are

the rasidual stresses after pressure release in the reyielded
inner core,

The atresses in the outer jacket before pressure release
are expraessed by equation (16) and equation (17). Since
during pressure release the outer jacket is only deformed
olastically, the stresses may be obtained by superposition of
elastic stresses, Thus,

qd" due to
change in
effective (21)
pressure
at the
interface

*
Crtaftlr pressure 0 bpefore pressure

release - release +

The change in effective praessura AP at tha intarfaca is given
by:
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AP = effective pressure at the interface after
pressure has been released

minus

effective pressure at the interface before the
pressure has been released

8ince the effactive pressure at the interface is equal to the
negative of the radial stress at the interface, AP becomes

Qxr vefore pressure

AP = - (O, after pressure
release at r = d

release at r = d +

Prom equations (16) and (17) the change in effective pressure

becomes:
Z-Yo d “_ 2 Yo é_
ap = In vy = In 2

The elastic stresses dus to a pressure AP at radius 4 are
given by the equations (see reference (3) for examplea):

a = ”NE <( > (23)
I

Inserting equations (23), (24), (16), and (17) into (21) the
expressions for the stresses in the once yielded jacket become

e r - (O g g o

byh»d
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b»hd>d
Equations (25) and (26) are thus the residual stresses in the
outer once yielded jacket after the pressure has been released.

Since the tangential stress at the interface r = A must

be equal in each zone, one obtains by equating equation (26)
to equation (20):

Ind - (—db—)z—wh—c'j— (27)

The extent of the reverse yielding can be calculated from this
equation by solving for the inner core radius d.

The residual stresses may be rewritten by inserting
equation (27) into equations (25) and (26) to givae;

o= - 2%k () &l -
byn>d

G'= - %{9“‘% “ht (Tdu‘)z‘(%)z} (29)
by 2

Bquations (19), (20), (28), and (29) are thus the
rasidual stresses developed in a fully autofrettaged thick-
walled cylinder (i.e., () > 2.2) after pressure release. The
extent of the reversed yielded plastic core of radius d is
obtained from equations (27).

Pigure 2 shows the plastic and elastic zone dimensions
of a cylinder of wall ratio W equal to 5. The value of
d/a is calculated from equation (27) to be 1.41, 1t is
seen that the plastic core is relatively small, Pigure 3 is
a plot of d/a for various wall ratios
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Figure 4 shows the residual stress distribution ( th} a;?)
in a reyielded cylinder of & = 5, Included in the plot, as
dotted lines, are the residual Qi* and (g* that would exist
if the cylinder had no limiting compressive yield stremngth, It
can be seen that these residual stresses are only slightly
modified in the elastic zone,

The results indicate that a cylinder with wall ratio greater
than 2,22, if autofrettaged to the fully plastic condition, will
have a reyielded core after pressure release, This plastic core
has relatively small dimensions compared to the original
dimensions of the cylinder,

PRESSURE APPLICATION TO THE REVERSE YIELDED CYLINDER

If pressure, p, is reapplied to the reverse yielded cylin~
der, then the core will initially deform elastically, However,
if the pressure becomes sufficiently high, the tensile stresses
in the core will cause it to begin to yield in tension at the
Lore., Further pressurization will cause the region of plastic
deformation to extend radially from the bore to, say, a radius
"c", For this plastic region the yield criterion

2 Yo
Nz !

the equilibrium equation (14), and the boundary condition that
the radial stress at the bore is equal to minus the applied
pressure, result in the following:

0~ Gn =

g 4 2Ye s
T = =4 + ,ﬁ,ﬁn 5 asnse (30

2 Yo n
aG=—-4 + _V?@na +;) ashsc (31

These are the stresses in the thrice yielded core of the
cylinder. The cylinder at this time appears as sketched below,

10
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Once yielded in temnsion \\\\\\\\‘\74;;;;77r-

Twice ylelded (first in
tension, then in
compression) ——

Thrice yielded (first in
tension, then in com- /////

pression, now yielded in
tension)

Since the deformations in the cylinder other than in the
thrice yielded core are elastic, the stresses may be obtained
in theso elastically deforming regions by the use of super-
position, Thus, for the regions of radii greater than r = ¢,

G"- Gvbefore pressure + @‘ due to change in effective
application pressure at the interface

The stresses before pressure application are the residual
stresses; the change in the effective pressure at the interface
is equal to the negative of the radial stress change at the
interface, Thus, the above expression becomes

T = g’* + (° due to effective pressure of value 0';.,*- <%
at interface

Hence, using equations (23) and (24) and denoting the
interface radius by A;

*
a, =G , [}

Y-

11
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Gr = Gn b\2
G = » nen, s L
.= a0, + : )z_, ((“n) +l> (33)
I :
For the region

d>nzc

equations (32) and (33) become with /1 = ¢

(g -

G =

iem ko) - (PR o

Equating the tangential stresses equation (35) and equation (31)
at the interface r = ¢, one obtains an expression for the
applied pressure, p, in terms of the radius, ¢, viz,,

T | +2bl —(—‘-1—)* (36)

2Yo b
If a = ¢ i8 substituted into equation (36), there results

V¥p . _w?-)

A D2 a=c

12
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which is identical to equation (11)., Thus, the reverse yielded
cylinder begins to yield a third time (at the bore surface)

when the reapplied pressure is that given by equation (11); i.e.,
the cylinder, upon reapplication of pressure, withstands
elastically the same pressure that it would have withstood if it
had been autofrettaged in such a way as to leave the residual
stresses at the bore at the compressive yield strength,

The stress equations (34) and (35) may be transformed by
use of equation (36) to yield

T=— Yo @m ~I—(n (b)) (37)

d2r>C
.2.79( s e (L )
q. - 52 bl v (&) - (% (38)
drizc
For the region
byt d
equations (32) and (33) become with ry; = d
g = — 2l b - Y (@) - 2% GIQ) Gl—l
e e - R

G=— il b | +<%Y+(b)% _ﬁ %M& )

13
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These equations simplify to

e ek (4] @ ) o

bz A >d

From equations (39) and (40)

G~ o= - k(2 -4 )

which for ¢ = d becomes

- 2Ye
O G"'_VS’ (a1)

Equation (41) is independent of r and states that the outermost
region which was elastic in the reyielded cylinder becomes
plastic instantaneously when r reaches d during reapplication
of the pressure, Also, from equations (36) and (27) with r = d

3{%%:2“@

14
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which is simply equation (7), i.e,, the pressure required to
cause plastic flow throughout the entire wall, Thus, it is
seen that upon reapplication of pressure, p, the inner bore
begins to yield in tension for a third time when the pressure
reaches the value

P _ wi
2 Yo w3

and the ylelding progresses to larger radii as the pressure
is increased., When the pressure reaches the value

3L _ fuw

the ylelding reaches the radius, d, at which time suddenly
the entire wall becomes plastic,

The stress-strain history of elements in the tube wall is
sketched bhelow,

Al
gYO F or Fonr "Y* H.A'
d»r>o ber>d &
5 ~—> b hes
Sreaw SreAaw

B=8' -ﬂ}&d
o R Y
. AN AW . : B
'_./ //\ @‘P . g " prd
’ Y o’

A plot of equation (36), giving the pressure required to
extend the plastic zone when pressure is applied to a
reyielded cylinder of wall ratio 5, is shown in figure 5,

15
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CONCLUSIONS

¥Within the assumptions made, the equations for reyielding
of a cylinder of large wall ratio ( @ > 2,22), autofrettaged
to the fully plastic condition, have been derived. These
equations indicate that the reyielded plastic zone has relatively
small dimensions while the residual stresses in the outer
elastic part of the tube are slightly altered from what they
would have been had the inner core had no limiting compressive
yield strength,

It has also been shown that subsequent application of
pressure to the reyielded cylinder causes the bore to start
yielding at the pressure that is the limit pressure for the
autofrettaging of thick-walled cylinders, However, as pressure
is built up the plastic zone grows but at a considerably slower
rate than it did during the original autofrettage process,
¥When the elastic-plastic interface reaches the outside radius
of the original reyielded core, the entire cylinder becomes
plastice,

It thus appears that the repetitively applied internal
pressure capability of cylinders may be the fully autofrettaged
pressure

'pnax ='J$§; ﬁLLU)

even for thick-walled cylinders where reverse yielding occurs
(1.e,, where W?>»2,2), This conclusion requires experimental
confirmation.

16
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ELASTIC OUTER SECTION

PLASTIC CORE

b/a=5 d/a=1.4l|

FIG. 2
SCALE DRAWING OF REYIELDED
CYLINDER WITH WALL RATIO OF 5.
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LIMIT-ENTIRE

CYLINDER BECOMES PLASTIC

BORE BEGINS TO YIELD

FIG.5

PRESSURE REQUIRED TO CAUSE
PLASTIC FLOW IN A REYIELDED
CYLINDER OF WALL RATIO 5.
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APPENDIX A

ALTERNATE DERIVATION OF THE REYIELDING EQUATIONS

When the pressure i1s released in a fully plastic large
wall ratio tube, the cylinder will comnsist of a plastic
reyielded center core and an outer elastic jacket., Thus, the
core can be comsidered as a tube under external pressure, p,
which has caused the core to be fully plastic., The outer
Jacket can be considered as an elastic tube with an internal
pressure, p, which produces a final stress which is the sum of
the residual and Lame” stresses,

For a tube subjected to external pressure the following
equations apply

t =- wl_' (—b_ + U) (A-l)
i () e
It is assumed that
0 =—",_-<G; +0‘m) (A-3)
The yileld criterion is
Yo

(A-4)

Consider the external pressure, q, to increase on the
cylinder until the bore begins to yield in compression, The
boundary conditions for this inner core are at r = a

- w?
q, = 3 L (A-3)

wio|

and
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Jp=o0 (A-6)
From (A-4) therefore
2put _ 2%,
ol T A3
o =__(w_1:'_‘.l ch_ (A-6)
V3! w?

As the external pressure is increased the plastic zone spreads,
In the plastic zone

- = 2

and

Il
»
5<

/LdO'

A
dar 13~
Thus,

ZYo L’b
0. = C, e Jor bwon, (A-7)
> t

0’; = CI -+ %(Qﬂ/h+|> (A-8)

For a fully plastic tube, at r = b, G}}:-ﬂo and at r = a,0, = 0

-p=C + % An b
C=-p - _{V% fub (A-9)
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Thus,
=-p - 2—Y—s bn 2 (4-10)
- = — zYoc(h_g, +,>
e e " (A-11)
To cause plastic flow throughout the tube
— 25&, li
To = e " ) (A-12)
Therefore, in the fully plastic tube under external pressure
,\{ _b_
O = Rl fy — 2o g, (A-13)
AT & R
— AV o — 2pb 2% A-14
“= 7 wa T (h-19)

Consider now the case where reverse yielding occurs. On
the outside of the plastic core there is a pressure, q, which
has caused central core to be plastic

To cause plastic flow throughcut
the core, from (A-12)

% = N—z'%fi‘ Lng— (A-15)

In the\:;;a*fﬁe stress distribution is from (A-13) and (A-14)

Y, d
Oh = “‘% - %ﬁ%-ﬁu 7{'
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2o G, N
G = % U (A-16)
R ‘VS’ a See equation (19)
Q@ = —9 — 2 Yoo [ d o 2
T S R 1
_ e ( I |) (A-17)
NZT a + See equation (20)

In the elastic p}rt of the tube the residual elastic stresses
will be the Lame stresses plus the residual stresses created by
the autofrettage process, Thus,

/ *
G = ¢, + %’7, +0e (4-18)
= C, — %32- + T (A-19)

At r = d, the yield criterion holds so0 that

6_*-_ G;,:'*' g_c_i = E_Y_o.f— (A-20)

t d? V3’
From reference (3) or equations (3) and (4) with *O = E:ﬁ I w
Yy

O X = 1Y, b Du > 2 Yo,

TN T Y o TR




NOLTR 63-123

Hence, from (A-20) with Yo, = - YOt

e, -2 (- Hos)

Substituting c3 in (A-19), and noting that at r = b, = Ca =0,

(A-21)

gives

— _ . 2 Yo ii} (e
tvh=0 =0C, Tg* bz( ‘5—2' wa‘_)

so that

A 2
2 Yo, d <i~ b Q“”) (A~22)

i Gl
I
Jhand Gz.can be written as
AT b? luw < b b
o -<%d /) _ B M W -
"3 5’( it d* w IWV»SA 22

' ngaél _ ti £Mu) Rl e d 2 ﬂ“ "
b‘(l gt )+ 5 71‘(‘?*&"?)*"?,,5“24’

= v5 wor
For the fully plastic core, firom (A-16)
2% p d
o = 2% ), d
n qqgw Q.

This must equal O, at r = d, so that
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V?? b* d2 whi k? -
3 a
Solving this gilives
2
ﬂn%j:—gi“‘ -+—ﬁw5’— (A-25)

which is the same as (27).
*
Using (A-25) and the values of (3" and GOr , the final

residual stresses in the elastic part of the reyielded cylinder
can be written

o Ot - r@)f) e

oo (k@) e

which are the same as (28) and (29).
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