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LIST OF SYMBOLS

a Inner radius of cylinder

b Outer radius of cylinder

c Radius of interface between thrice yielded region
(first in tension, then in compression, finally
in tension) and the twice yielded region

d Radius of interface between once yielded region in
tension and twice yielded region (once in tension,
then in compression)

D Diameter

m Diameter ratio inside region where tube is elastic
(i.e., m is greater than n)

n Diameter ratio to which plastic flow has occurred

p Internal pressure applied to cylinder after reverse
yielding has occurred

P Internal pressure applied to cylinder before reverse
yielding has occurred

r Radius

w Diameter ratio inside region where plastic flow has
occurred (i.e., w is less than n)

Yo Yield strength

Yoe Yield strength in compression

Yot Yield strength in tension

a Stress

W Wall ratio ( b/a)

Superscript

* Residual (stress)
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Subscripts

t Tangential (stress)

r Radial (stress)

z Longitudinal (stress)

max Maximum (stress)

i Interface
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INTRODUCTION

The pressure capability of a closed-end cylindrical
pressure vessel is limited for elastic operation. Based upon
the Distortion Energy Theory the pressure at which yielding
begins at the bore is given iy

S- Y WI)1)NF W (1)

Thus, even for very large wall ratios the maximum pressure a
cylinder will hold elastically is given by P - Ya/5-

One of the methods of increasing the elastic pressure
capability of a cylinder in the use of autofrettage. This
process consists of inducing plastic flow in the cylinder
during manufacture by pressurizing it with a pressure (the
"autofrettage pressure") greater than that given by equation (1).
The plastic flow of the metal begins at the bore and progresses
through the wall as the pressure is increased. This non-uniform
flow is such that when pressure is released, the wall is left
with a residual stress distribution such that the bore has a
compressive tangential stress. The cylinder is then said to
be autofrettaged. Subsequent pressure application can be made
up to the autofrettage pressu.'e with the cylinder reacting
elastically.

The equations for the autofrettage process (based on a
perfectly plastic material) have been derived by numerous
investigators (see for example, refs. (1) (1) and (3)).
The stress-strain curve for a perfectly piastic material is
sketched below.

Y

1.



NOLTR 63-122

According to reference (3) the pressure required to deform a
cylinder of wall diameter ratio u) , plastically, to a diameter
ratio ra is

a)2. - M 
2

Upon release of the pressure given by equation (2) the
residual stress distribution is given by

that was plastically deformed. In the part that was elastic
X )r

where m is the position diameter ratio. It is assumed that
the residual stresses at the bore are not large enough to

cause thu bore, which had previously been yielded in tension,
to yield in compression, that is, to "reyield" or "reverse
yield."

As the pressure is increased during autofrettage a point
is reached where the tube is entirely plastic, ioe., n - wU
This represents the maximum pressure which can be applied
without rupturing the cylinder for a perf~ectly plasticmaterial and is, according to equation (2),

2
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The residual stresses in this case are given by inserting the
value of PMAX for p in equations (3) and (4).

From equation (7) it is apparent that as W is increased
the pressure required to cause plastic flow throughout the
wall increases. This, in turn, produces larger and larger
residual compressive stresses at the bore upon pressure release.
For the fully plastic case, then, there is some particular vail
ratio at which the residual stresses will be large enough to
just cause yielding at the bore in compression upon release of
the autofrettage pressure.

To determine the wall ratio at which the residual stresses
at the bore of a fully autofrettaged cylinder are large enough
to just cause it to yield in compression the yield criterion
used in reference (3),

t*

will be employed. Thus, the condition of yield, equation (8),
becomes, when applied to the residual stresses at the bore,

T (9)

Here it has been assumed that the yield in compression is equal
to the negative of the yield in teasion.

Substituting the values of the residual stresses from
equation (5) and equation (6) into equation (9) with kj- set
equal to 1 (i.e., at the bore), one obtains

*It was assumed that0 -' r I(-0 ) so that the yield condition

becomes C • - See reference (2) for a discussion
of the validity of'thib assumption.

3



NOLTR 63-123

with "= V for the case of the fully autofrettaged
cylinders, tre equation above becomes

z YO z YO - .

or

U '(10)

Solving equation (10) gives WA . 2.22. Thus, a cylinder
having a wall ratio of 2.22, if autofrettaged to the fully
plastic state, develops residual stresses of such magnitude
that the bore is an the verge of reyielding (reverse yielding)
in compression upon pressure release. If 034 2.22 the
residual stresses developed are less than those required for
reyielding for the fully plastic case and if a) )-2.22 these
stresses will cause reyielding for the fully plastic case.

It is further, found that as the wall ratio increases
above 2.22 the value of n to just leave the bore at the
compressive yield limit decreases (ref. (3)). This meanst
that, if the reyielding condition is the limiting design
condition, there is a limit to the autofrettage pressure.
This limit is calculated to be just twice the pressure to
cause initial yielding at the bore. Hence, according to
equation (1) the limiting autofrettage pressure for incipient
reyielding in the case of WO , 2.2 is

S(11)

For any cylinder there are, therefore, three limiting
curves as shown in figure 1. These are the followings

4
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the pressure at which yielding initially occursy

S- . ,(7)

the pressure necessary to make the cylinder fully plastic,
which for CJ A 2.22, leaves the residual stresses low enough
to prevent reyieldingy

the pressure limit for large wall ratios to just leave the
bore at the yield point in compression after pressure release.

It is apparent that if a cylinder could be operated at
pressures given by equation (7), a sizeable increase in
pressure capability over that given in equation (11) would
be possible. However, as noted before, in this circumstance,
there would occur reyielding of the bore in compression when
the pressure is released.

It is the purpose of this study to investigate reverse
yielding in thick-walled cylinders that have been pressurized
to the fully plastic state during autofrettage.

DERIVATION OF REYIELDING EQUATIONS (u) >2.22)*

The assumptions made are the followings

1. The material in assumed perfectly plastic
2. T* = 112. (dt +6)
3. The yield criterion is given by the Distortion

Energy Theory

Assumptions (2) and (3) result in the following yield criterion,

S-r ± (12)

Let us consider the case of the fully autofrettaged cylinder
of u) > 2.2 subjected to the pressure PMAX, where

• See Appendix A for an alternate derivation of the reyielding
equations.

5
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S- (7)

Yo

At every point in the plastically deformed cylinder

P. -I-31(13)

The equation of equilibrium is

T/L (14)

The radial stress at the bore is equal to -PMAX, that is

Equations (13), (14), and (15) may be combined to obtain the
plastic stresses due to the internal pressure PMjM that exist
in the cylinder (as was done in reference (3)). These
stresses are

Zo YO (16),

L-=- -.- (k -b (17)

An the internal pressure is released, the cylinder
deforms elastically until the bore reaches the yield point
in compression. Thereafter, as the pressure is further
reduced, plastic flow progresses outward from the bore. When
the internal pressure reaches zero, the cylinder will consist
of two sones, an inner core which has reyielded in coqpression
(reverse yielded) and an outer elastic jacket that has been
previously yielded in tension during autofrettage.

6
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The equations describing the reyielded inner core when
the pressure has been released are the yield criterion
equation in compression, and the equilibrium equation (14),
via.$

(r•0L - (18)

•-•Tt- 0;- --•-Q o

o (14)dtt.

These equations with the boundary condition that the residual
radial stress at the bore is zero lead to the following
equations for the inner reyielded core stresses after pressure
releaset

-- (19)

=A (20)19

a6,L-d
where "d" denotes the radius at the interface. These are
the residual stresses after pressure release in the reyielded
inner core.

The stresses in the outer jacket before pressure release
are expressed by equation (16) and equation (17). Since
during pressure release the outer jacket is only deformed
elastically, the stresses may be obtained by superposition of
elastic stresses. Thus,

Tt after pressure - before pressure + a due to
release release change in

effective (21)
pressure
at the
interface

The change in effective pressure AP at tha interface is given

by,

7
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AP - effective pressure at the interface after
pressure has been released

minus

effective pressure at the interface before the
pressure has been released

Since the effective pressure at the interface is equal to the
negative of the radial stress at the interface, AP becomes

AP- - G after pressure + before pressure
release at r - d + release at r - d

Froa equations (16) and (17) the change in effective pressure
becomess

0-d

The elastic stresses due to a pressure AP at radius d are
given by the equations (see reference (3) for exampleat

A:V 1(23)

4 ID b +(24)

Inserting equations (23), (24), (16), and (17) into (21) the

expressions for the stresses in the once yielded jacket become

-V. ± f- (25)

8
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~~r 0-~?~Y4 (26)

b tLd
Equations (25) and (26) are thus the residual stresses in the
outer once yielded jacket after the pressure has been released.

Since the tangential stress at the interface r - d must
be equal in each zone, one obtains by equating equation (26)
to equation (20):

(dI.-!a = b (27)C ,iW

The extent of the reverse yielding can be calculated from this
equation by solving for the inner core radius d.

The residual stresses may be rewritten by inserting
equation (27) into equations (25) and (26) to gives

-l (;i- (28)

t Y /L (29)

Equations (19), (20), (28), and (29) are thus the
residual stresses developed in a fully autofrettaged thick-
walled cylinder (i.e., 0 **2.2) after pressure release. The
extent of the reversed yielded plastic core of radius d is
obtained from equations (27).

Figure 2 shows the plastic and elastic zone dimensions
of a cylinder of wall ratio W equal to 5. The value of
d/a is calculated from equation (27) to be 1.41. It is
seen that the plastic core is relatively small. Figure 3 is
a plot of d/a for various wall ratios

9
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Figure 4 shows the residual stress distribution ( LT )
in a reyielded cylinder of 9A) - 5. Included in the plot, as
dotted lines, are the residual CM* and 6* that would exist
if the cylinder had no limiting compressive yield strength. It
can be seen that these residual stresses are only slightly
modified in the elastic zone.

The results indicate that a cylinder with wall ratio greater
than 2.22, if autofrettaged to the fully plastic condition, will
have a reyielded core after pressure release. This plastic core
has relatively small dimensions compared to the original
dimensions of the cylinder.

PRESSURE APPLICATION TO THE REVERSE YIELDED CYLINDER

If pressure, p, is reapplied to the reverse yielded cylin-
der, then the core will initially deform elastically. However,
if the pressure becomes sufficiently high, the tensile stresses
in the ccore will cause it to begin to yield in tension at the
bore. Further pressurization will cause the region of plastic
deformation to extend radially from the bore to, say, a radius
"c". For this plastic region the yield criterion

Yo

the equilibrium equation (14), and the boundary condition that
the radial stress at the bore is equal to minus the applied
pressure, result in the following:

T - ._- .. c- (30)

G.. -1 + -)-~ ) Lj CL (31)

These are the stresses in the thrice yielded core of the
cylinder. The cylinder at this time appears as sketched below.

10
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Once yielded in tension

Twice yielded (first in
tension, then in
compression)

Thrice yielded (first in
tension, then in com-
pression, now yielded in
tension)

Since the deformations in the cylinder other than In the
thrice yielded core are elastic, the stresses may be obtained
in these elaotically deforming regions by the use of super-
position. Thus, for the regions of radii greater than r - e,

f- •before pressure + due to change in effective
application pressure at the interface

The stresses before pressure application are the residual
stresses; the change in the effective pressure at the interface
is equal to the negative of the radial stress change at the
interface. Thus, the above expression becomes

S- '* + (' due to effective pressure of value On, (rA.
at interface

Hence, using equations (23) and (24) and denoting the
interface radius by /ZL

S= T& b IL (32)

11
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= -. c41(33)

For the region

equations (32) and (33) become with /i=-c

/Y + 1) + L4 (35)C, +

Equating the tangential stresses equation (35) and equation (31)
at the interface r - c, one obtains an expression for the
applied pressure, p, in terms of the radius, c, viz.,

-f5 I z& C- (36)

If a - c is substituted into equation (36), there results

12
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which is identical to equation (11). Thus, the reverse yielded
cylinder begins to yield a third time (at the bore surface)
when the reapplied pressure is that given by equation (11); i.e.,
the cylinder, upon reapplication of pressure, withstands
elastically the same pressure that it would have withstood if it
had been autofrettaged in such a way as to leave the residual
stresses at the bore at the compressive yield strength.

The stress equations (34) and (35) may be transformed by
use of equation (36) to yield

__P It (L fJ

0- (38)

For the region

equations (32) and (33) become with ri - d

13
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These equations simplify to

b~'a /d

which for c - d becomes

S[(41 )

Equation (41) is independent of r and states that the outermost
region which was elastic i n the reyielded cylinder becomes
plastic instantaneously when r reaches d during reapplicationof the pressure. Also, from equations (36) and (27) with r - d

14
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which is simply equation (7), i.e., the pressure required to
cause plastic flow throughout the entire wall. Thus, it is
seen that upon reapplication of pressure, p, the inner bore
begins to yield in tension for a third time when the pressure
reaches the value

zYO

and the yielding progresses to larger radii as the pressure
is increased. When the pressure reaches the value

zY0

the yielding reaches the radius, d, at which time suddenly
the entire wall becomes plastic.

The stress-strain history of elements in the tube wall is
sketched below. A 2A' II

do Ir To at

ý S I-i

A plot of equation (36), giving the pressure required to
extend the plastic zone when pressure is applied to a
reyielded cylinder of wall ratio 5, is shown in figure 5,

15
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CONCLUSIONS

Within the assumptions made, the equations for reyielding
of a cylinder of large wall ratio ( ca; , 2.22), autofrettaged
to the fully plastic condition, have been derived. These
equations indicate that the reyielded plastic zone has relatively
small dimensions while the residual stresses in the outer
elastic part of the tube are slightly altered from what they
would have been had the inner core had no limiting compressive
yield strength.

It has also been shown that subsequent application of
pressure to the reyielded cylinder causes the bore to start
yielding at the pressure that is the limit pressure for the
autofrettaging of thick-walled cylinders. However, as pressure
is built up the plastic zone grows but at a considorably slower
rate than it did during the original autofrettage process.
When the elastic-plastic interface reaches the outside radius
of the original reyielded core, the entire cylinder becomes
plastic.

It thus appears that the repetitively applied internal
pressure capability of cylinders may be the fully autofrettaged
pressure

even for thick-walled cylinders where reverse yielding occurs
(i.e., where W>2.2). This conclusion requires experimental
confirmation.

16
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PLASTIC CORE

ad

b

b/0=5 d/o:I.41

FIG. 2
SCALE DRAWING OF REYIELDED
CYLINDER WITH WALL RATIO OF 5.
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1.9 LIMIT-ENTIRE
CYLINDER BECOMES PLASTIC
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FIG.5

PRESSURE REQUIRED TO CAUSE
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APPENDIX A

ALTERNATE DERIVATION OF THE REYIELDING EQUATIONS

When the pressure is released in a fully plastic large
wall ratio tube, the cylinder will consist of a plastic
reyielded center core and an outer elastic jacket. Thus, the
core can be considered as a tube under external pressure, p,
which has caused the core to be fully plastic. The outer
jacket can be considered as an elastic tube with an internal
pressure, p, which produces a final stress which is the sum of
the residual and Lame stresses.

For a tube subjected to external pressure the following
equations apply

/~2

-(A-2)

It is assumed that

The yield criterion is

T. (A-4)

Consider the external pressure, q, to increase on the
cylinder until the bore begins to yield in compression. The
boundary conditions for this inner core are at r - a

-(A-5)

and

A-i
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0= (A-6)

From (A-4) therefore

f-1 01.) Yoe- (A-6)

As the external pressure is increased the plastic zone spreads.

In the plastic zone

and

IL d zY,
dA.

Thus,

-=.Y, t/,, (A-7)

Q,-t- 2.Yv Lw-~It (A-8)

For a fully plastic tube, at r - b, Th:-:§ and at r - a,C'ý O
-• c, 2 Y, ,

C- 2 Yr (A-9)

A- 2
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Thus,

T -L f -,Yý4 (A-10)

- O +Y~~~ (A-li)

To cause plastic flow throughout the tube

Yo, (A-12)

Therefore, in the fully plastic tube under external pressure

2- YA ý -Ox & b(A-13)

V 4Aq (A

Consider now the case where reverse yielding occurs. On
the outside of the plastic core there is a pressure, q, which
has caused central core to be plastic

To cause plastic flow throughout
the core, from (A-12)

(A-15)

In the core e stress distribution is from (A-13) and (A-14)

OIL1 I

A-3

A-3
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C•L See equation (19)

- iY~(+ (A- 17)
See equation (20)

In the elastic part of the tube the residual elastic stresses

will be the Lame-stresses plus the residual stresses created by

the autofrettage process. Thus,

t = z4 tJ (A-18)
G'- / C).*4-+

C +- (A-19)

At r - d, the yield criterion holds so that

* + - (A-20)

From reference (3) or equations (3) and (4) with &= 2YO L'O

V T
•d-- dz&O -I •'-

A- 4
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Hence, from (A-20) with Yoc - -Yot

-= •t(,- C'-&)) (A-21)

Substituting C3 in (A-19), and noting that at r - bj ' i= L00 1
gives

•= o =c -C- 2 .

so that

A -T - -- w -
- (A-22)

I I

a and Ct can be written as

V~b\- ~W) ~ Jr(A-23)

2'Yo( "

For the fully plastic core, from (A-16)

This must equal • at r - d, so that

A-5
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•T CL

Solving this gives

K (A-25)

which is the same as (27).

Using (A-25) and the values of C and CIr• the final
residual stresses in the elastic part of the reyielded cylinder
can be written

2.Yo b (A-26)

2 Yo( 2 (A-27)

which are the same as (28) and (29).

A-6
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