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SUMMARY

By a procedure similar in principle to that for the longitudinal
equations of motion, the lateral equations of a specific compound satellite
system were derived. The system is substantially identical with that of the
previous report (Part I).

As a result of linearization for small perturbations, the effect
of orbit ellipticity vanishes in the lateral motion. Both the general case, i. e.
with hinged yaw-stabilizers, and a simpler case, i. e. with fixed yaw-
stabilizers, are discussed. The latter is considered to be better from the
practical standpoint.

After calculating numerical examples, the configuration was
found to provide damping of the lateral motion to 2 amplitude in about 0. 28
orbits, which is a little better than was previously found for the longitudinal
modes.
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SYMBOLS

A total moment of inertia of a satellite (including stabilizers)
about -axis

A1 , A 2 , A 3  constant coefficients (Eq. 2. 15)

A1 , At constant coefficients (Eq. 2. 19)
2

a, a' satellite body dimensions (Fig. 1)

ao ... a 5  constant coefficients (App.)

b, b" stabilizer dimensions (Fig. 1)

C total moment of inertia of a satellite (including stabilizers)
about k-axis.

C' constant coefficients (Eq. 2. 19)

C 1 ,C 2 , C 3  constant coefficients (Eq. 2. 15)

cI, c 2  damping coefficients of hinges

d differential operator d/dr"

D constant coefficients (Eq. 2. 15)

E constant coefficients (Eq. 2. 19)

F constant coefficients (Eq. 2. 19)

I moment of inertia by dumbbell mass

nj real part of the roots of characteristic equation (App.)

O1 orbits to I amplitude

T i  constant coefficients of characteristic equations

0(k weighting numbers (App.)

control variables (App.)

Sp E angular displacement of yaw stabilizer rods (Fig. 1)

K, A angular displacements of roll stabilizer rods (Fig. 1)
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Lagrange multiplier (App.)

() imaginary part of.the roots, of characteristic eq. (App.)

2, Euler angles giving orientiation of satellite body.

vi



I. INTRODUCTION

This report presents an analysis of the lateral motion of a
compound satellite system.

The first part of the analysis (Sec. II) is the derivation of the
lateral equations of motion of the system, applying the general formulae for
the forces and moments given in the previous report (Part I) (Ref. 1). The
system analyized is substantially the same as that of Ref. 1.

The second part (Sec. III) gives numerical solutions of the
equations of motion. The following two cases are calculated separately.

(1) Case with fixed yaw-stabilizers

(2) General case, i. e. case with hinged yaw-stabilizers

In the lateral motion, no steady state oscillation occurs, so
that the numerical results are only concerned with the transient motion.

The damping of lateral motion obtained in the initial series of
calculations was for both cases unsatisfactory compared with that of the
longitudinal motion (Part I), hence further parameter variations were made.
A dumbbell mass on the Y-axis of the system was found effective to improve
the lateral stability for the case with fixed yaw-stabilizers.

Finally, the so-called "steepest-descent method" (Ref. 3)Is
applied to optimize the solution. The actual procedure of this method is
presented in Appendix 1.

II. DERIVATION OF THE LATERAL EQUATIONS OF MOTION

2. 1 Lateral Equations of Motion for the Particular System

In this analysis, it is assumed that the system to be studied
is thd same as the particular system which is suggested in the previous
report (See Ref. 1) from the standpoint of passive attitude stabilization. It
consists of the satellite body, two roll stabilizer rods and two yaw stabilizers.
The roll stabilizers are identical with the pitch stabilizers of the longitudinal
motion, and are universally-hinged at the top and bottom of the satellite
body. The yaw stabilizers are hinged at the front and back of the body and
can rotate only in yaw. Subscripts S , ., k- and ) are used to denote
the four stabilizers respectively, which is shown in Fig. 1 (a) and (b).
Subscript b is used to denote the satellite body only. (Note: subscript b
is used to express the satellite body plus two yaw stabilizers in the longitudinal
case - see Ref. 1. ) The damping coefficients in the yaw and roll stabilizer
hinges are _&l and .2 respectively, so that the rods are acted on by
couples -E, -C , -6 K and -- A

A.



As the generalized coordinates we take 6 angular displace-
ments, i.e. 4k , 0 ,6" E , K and A , defined as shown in Fig. 1.

<, 0 correspond to the conventional Euler angles used in airplane dy-
namics, see Ref. 2. In this figure, C6 , Cd , CE" , CK and CA are the
mass-centres of constituent bodies, and 0 is the mass-centre of the whole
system. The mass-centre coordinates are given in terms of the generalized
coordinates by

(2. 1)

+ 4c-'I i-c+ C-" 44'c

These positions are also connected by the following relations, which express
the fact that 0 is the mass centre.
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Mb 4 + P Y. + M 7(4- * Mt lZ + M, l A - 0

MA 0 j -- P Y (2.2)

mb6 + mF~' +tn~3 mi a~ + -'jA

where Mk = 'A

In Eq. (2. 1), ', 1 , J ,C , -A and A are the first order small
quantities, so that, using the relation of Eq. (2. 2), we find approximately,

MS (2.3)
21b m

~~~u0

~= ' + ,

+ +

I
P" "S - b (k -
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k 0

(2.4)

~a +

= a+ +

where m mb + 2 mg + 2 m, = total mass of the satellite.

After differentiating Eq. (2. 1) and (2. 2) with respect to time
t we neglect the higher order small quantities, so that we find approximately,

:Z= 0

S= (0'
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0

.. t.'
-K- 7

0 -(2.5)

(a+6)0 ~ + .g

2. 2 Kinetic Energy

The kinetic energies of the five constituent bodies are given by

2 1I

(2.. 6)
2 C., +A-

T- 2 C Cr

-r 2 ( , + 2) + + jk, )

where ThMi .tC Mk, c. , 4,k= AA

* The exact expression for the kinetic energies should be

1 "- ,

'r - 2 +, ('+ ) + 2-' 96. 2

However, ' , J , .... are assumed to be small quantities,
so that approximately
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The total kinetic energy T is given by

T -'+;- T e - 77+-T (2.7)

After substitution of the values of Eq. (2. 5) into Eq. (2. 6), the partial deriva-

tives of T required for the Lagranges equation of motion are presented as
follows:

;q -- 44

k -,, ---, ,<' ,9+-,j + A,*',-<

SA6cd +,4A-+) ( (2.8)

- ,,{,)<+)> " + fl -:' ..+-" +(--;

C C> A, -, ,(a + # A 3 kAk + Mka+b')

Simeilarly,

+EU[(.r + m<; 6"''t V)] (2.9)

#T--

- 2 n+ 'q'. + <l6'(a

[(- -- )- " (2. '10)

a

(2. 11)
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.2T-.. A, rn*,f.)+ -S '"

a a' $ a A(2.1)

[Ar+ k +7)

Mki 0"+ (2.13)

- - - - - 0(2.14)

The equations of motion therefore become

CA" V + C3  - DS

C, ?P + C, + C2 e - DA -

A,', *DS -DE + AK+AA -

A, -DS D* A k + A) - - (2.15)

where

A -AA, + 2A m (a4+

total moment of inertia about 9b -axis

A, - ( m £(a+ )

Al A-+ Mr(~&

A.
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total moment of inertia about -axis

C, - + b- )

2'

C3 =---e ,C,) + C, KBB

2. 3 Generalized Forces,

Since we.deal with the lateral motion, the total work done is
given by

W- = 6 , Y 6 .-6 + F/. +Fb , Ls., + /S

4 F.j + #Fg./ r +AjS -- +

*F~j~'c4( ~AI/,( + Fek 'Sti

FSi +FyA ,S FA SF+ L J A-&& A (2. 16)

note: +

The generalized forces are obtained from the virtual work SW as follows:

- Lb + L± + 1- ++F +Fe a

+ F a F3 +Fe Fve F~-

+ F, F + F9 ,\ + FE F4 7,

8



Similarly, other forces are

law
C-I

C (2. 17)

In Eq. (2. 17), the forces and moments are given by Eq. (2. 26) and Eq.
(2.29) of Ref. 1, i.e.

L -+ (c B)e+( + (A +c -B)-

N = [(,-A), + (A-4-c- 1)-± .(2.18)

Furthermore, using Eq. (2. 1) and (2. 2), all derivatives involved in the
generalized forces are given in the following table. With Eq. (2. 18) and
the values of the table, therefore, the generalized forces in Eq. (2. 17)
can be reduced, after some calculation, to equations (2. 19).

9



~~~~~1 ±k-'~+b 6 Vjf i.

V0 
-

-- b / )tAY k

0 __

jK (a ) Nb k--
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F E4' -- A," K + A X

/-4I + 8. + C- + (AL + C, -(BA+A C, + lcC

t C C_,, +

de= -1P c, l + ct;- y+ , C + C , - k + D
=- CiP C 3 S4 T d" C Dk +

LO'A+ cz -D P +i(AtAa)+)X Aa\

A4 +2 DSct- - 'DE + T.dy+ A.'K+ a

+ -A, + 4- - A+ + A+3A,+ Aat

1~~~A +Z + Ask+T-P%' + A,'. (2.19)

where additional simple notations are as follows:

£ Ab +Cb-B ,3 F -AE/

A; = 4A, AS. 3A,+A,.

C 'C-E

r o,-
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By combining Eq. (2. 15) and (2.19) and noting ;.d.

the equations of motion are, finally, at -

Aj2 + F - Ed o o A,41 A,' Ait A) "

E-d cd C' C,41+C, CdC 1 Q, 0 0

o Cida c, c, T.'Jr c c dC, Cd- -(J-D)
=0

o C, 42+ C C34,-C3  7 -C(Pd2 .) P d4 P

A "4%A, o "d +D -r-dJ-tA) A4'.gtA' A3daA3  K

AX A,' 0 -(DJD) Vda'.-P A3c1+A3 A+T,+A. X
(2.20)

where

As a result of assumption e << 1, no effect of the ellipticity
of the orbit appears in the equations of motion. Furthermore, since Eq.
(2. 20) is the homogeneous equations, the disturbed motion is only the tran-
sient motion and no forced motion occurs.

III. SOLUTION OF THE EQUATIONS OF MOTION

3. 1 Characteristic Equation (i) with fixed Yaw-Stabilizers

Since the characteristic equation of the lateral motion, derived
from Eq. (2.20), is the equation of the 12th degree, it is too complicated and
inconvenient to discuss. Hence, to begin with, we assume a simpler case,
i. e. with fixed yaw-stabilizers, in which case

's = 6 - 0 (3.1)

and from Eq. (2. 20), the equations of motion become

A J2+ F - Ed A,d'+ AtA A,t'" 4

E d C Sd a C " o o I"=

A.d1 4,' 0 F , dAt' A c/3' A k

At A, 0 A, . #4. "d+A , (3.2)
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where

C = Ch+ 2 Cj + 2 Mi (4

and assumed

a Q- q (spherical body)

Sj - mj 4- (slender rods)

The characteristic equation of Eq. (3. 2) is

A A24- F - E A 4,jX+/," A, A,

A C C
-0

A3 ,4A 7, A +A (3.3)

It has the expansion

(A.,-Ad)T~ 1( 2 -A) 71

A +F -E. (4 "

F)A CA~c 0 m

A,. 4' 0 (A. Ar,)A), ,+ (A Ai) (3.4)

The characteristic equation can, therefore, be factored into two equations,

i. e. the quadratic

(Aa-A3) J1 + A O (3.5)

and the sextic

-A+ T T /, , 7, +7',+7..
-~ T ) T4 ~4TA~ -r +~ T. w (3.6)

where
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-j A c (A, -tA,) -2 Atc

T4 (A4c 'FC+E)(Aj*A.#) +AC(A.*A 3)2(2A,,4,C+A, 1 ')73= rT AC4CE

T F2 (14 c*" FC * E')

T FC (A,4 fA3)+ (Ac'-Fc*E)A;+A)-2A 2AAc)

7= F C

The quadratic equation (3. 5) corresponds to the symmetric or "staggering"
mode, because if $ = l = o , = -K are substituted into Eq. (3. 2), the
first and second equations are identically satisfied, and either of the re-
maining two equations will become

(A,-4r) dck + 7- K -+ (4'4- i)K - 0 (3.7)

Hence, the characteristic equation of this mode is identical with Eq. (3.5).
This mode of motion is illustrated in Fig. 2(a). The sextic equation (3.6)
can likewise be identified as the characteristic equation associated with the
antisymmetric modes, for which K = A (Fig. 2(b)).

For example, if the satellite body is an uniform sphere and
it has no yaw-stabilizer, by definition

A'. C'C6

hence in the sectic equation (3. 6)

77, 7 =o (3. 8)

i. e. the characteristic equation has two zero roots. The mode of motion
corresponding to those zero roots will naturally be considered the yawing
motion, and it means the satellite has no directional sense.

14



However, in the case with fixed yaw-stabilizers, C' is not

zero but positive by definition, and therefore the yawing motion will be
oscillatory, and by the coupling effect between rolling and yawing motion, we
can expect the possibility to damp out the transient yawing motion, or in other
words, to stabilize the whole system.

3. 2 Characteristic Equation (ii) General Case

The characteristic equation of the general case, i. e. with
hinged yaw-stabilizers, becomes from Eq. (2. 20)

A+ F -EA o. 0 A, + A, A, 2iA,'

CA2* c' C12'Cc~E, A , C " ,l+ C,3 , o

=0
0 (,,A C, (C3 C7P(, -( +D) C,44D

AX A, O -0 P) (DI' 2 #* D) AXtF +A.' A AA,

(3.9)

After some manipulation of the determinant, it becomes

Al+F -E, o 2/A, AA,') A,I2t 1A"

EA C P I+ C 2 ((, + , 0 (,t (
o C,tI.C, ((2.+),7,+(e.+ej 0J o ,.G-j,~

0 +0

A,X t A,' o -[[W(*AD ) "

0 o a [(c-cA,#7P(G-,)j z(PA+.)

0 00 ( 1"[(A,-)i+A;

(3. 10)
This equation has the expansion

15



-7"

2 (w2+ D) (A -4)' 4 1 + (A-Ad

AA-+ F -EV 0 2(A,A'+,)

CA C' 2 (CA'+C) 0 Vo ¢ G [C6,'6B,,+a g o-TAoC1 (413))a7'+p(CS)]
o,4zA+A'+A +.+J + (3.11)

The characteristic equation can, therefore, be separated into two equations,
i. e. the quartic equation and the equation of the 8th degree. In a similar way
as the previous case, the former corresponds to the symmetric modes, for
which

and the latter corresponds to the antisymmetric modes, for which
J,= 6It X'= A

These motions are illustrated in Fig. 3 (a) and (b).

3.3 Numerical Examples

Numerical examples are divided into two groups, i. e. the case
with fixed yaw-stabilizers and the general case. The numerical data which
have been used for calculation are as follows:*

.- 0 a

0 A 77 '

/ '2

* The numerical values given here are almost the same as those given in
the previous report (see Ref. 1). However, owing to some basic assumptions,
e. g. the satellite body is assumed to be a sphere with uniform mass distribu-
tion, in this report a few values have been changed slightly.

16



Since it is convenient to make the characteristic equations non-dimensional
during the actual solution, the formulae for the various coefficients which
occur in the characteristic equations are expressed as follows:

A0

A A, S' MA-- bb- -

A 4 - + M

S= - b

At

#i - -- - - ( ) + /0 > + -

A, "' (7 26 '
A, A-.' /0 2"

22

= C, " 6" 61

c - ,-7=-'-¢ ) (a)w
A 6

S= M 2 6
A *

A Mk£h7 1

D
A /

A 20 ( ' k b 4D.

_ ,_ 20 (3.12)
Ab

where

The characteristic equations for each case are, therefore, given as follows:

(1) with fixed yaw-stabilizers
A _ A )A2 + A A + (3.13)

17



and

A A

A F 2(A,A +A~)
A A2 A

A, 0 (Az+ Aj)b fa++ A 3 ) (3.14)

(2) with hinged yaw-stabilizers (general case)
S A A /I A

y~4~+ A 2 (D)4D)
0

A A 
A a,. A

and
A A A AA).'+ F -EA) 2 (A,, 2+,A)

"A AA2 A A 2. A

E A C+ C (C ,) 0
A A AAAAA

0 C, + C, (C+G) , T (C.+c) o
A. A, A A ,A A A

A,,+ A, (,+A,) . ,(,4.A,) (3.16)

The above characteristic equations were solved on the IBM
7090 at the U. of T. Institute of Computer Science. For each root of the
equation, the characteristic decay time (time to 2 amplitude) and the period
were calculated. For antisymmetric modes, the mode shapes, i. e. IP/.
1%. etc., were also calculated.

(i) Some sample results for the case with fixed yaw-stabilizers
are shown in Table 1 (a) and (b) and in Fig. 4. The principal variables are
b/a, b'/a and 7r, in this case, and depending on those values, both
oscillatory and non-oscillatory modes were obtained. Figure 4 shows plots
of the least-damped modes for two combinations of b/a and b'/a. The best
performance, from the standpoint of the number of orbits to I amplitude for
the particular cases shown in Fig. 4 was obtained for the combination
b/a = 3. 0, b'/a = 2. 5, 7 I= 0. 7 for the antisymmetric mode. The best
value is seen to be nearly 1. 35 orbits. The damping and period of the
symmetric (or staggering) mode are also shown in Fig. 4 for b/a = 3. 0 and
4. 0, but this mode is less important, since it does not involve angular motion
of the satellite body.

18



(ii) The principal results of the general case are shown in Table 2
(a) and (b) and in Fig. 5. The variables of this case are b/a, b'/a, P and

A

7 Figure 5 shows plots of the least-damped modes for two sets of com-
A

bination of b/a, b' /a and T , and the best performance for the antisymmetric
A

mode is nearly 1. 2 orbits. It is clearly seen that when r, is large, weak

damping and long period (sometimes aperiodic) mode occurs in each case of
the antisymmetric mode.

However, the above-stated damping of the antisymmetric mode
of lateral motion, i. e.

01 = 1. 35 with rigid yaw-stabilizers
2

01 = 1. 2 with hinged yaw-stabilizers
2

are both unsatisfactory compared with that of the longitudinal motion. Hence,
further parameter variations were made in a search for better performance.
The equations of motion of the general case are so complicated that it is
inconvenient to use them for such a purpose. Furthermore, from the
practical standpoint, the equipment of fixed yaw-stabilizers is much simpler
than that of hinged yaw-stabilizers. Hence, the following discussions are
only concerned with the case of fixed yaw-stabilizers.

(iii) The least damped mode of the case of fixed yaw stabilizers is
mostly connected to the yawing motion and, as already discussed, the damp-
ing of this mode depends strongly on the coupling between yawing and rolling
motion. This in turn is seen to be entirely governed by the two terms con-
taining E in Eq. 3. 2. In other words, by changing the value of E , we can
expect to obtain the better results. From the practical point of view, the
value of E can be controlled by adding additional mass along the Y- axis.
Namely, by definition,

E - A - (3.17)

When a dumbbell mass for example is attached along Y-axis, as shown in
Fig. 6,

4,& - Ato + 1 3.8(3. 18)
C6  Cli. +

where Ab , Bb,, Cb, are the original moments of inertia (without dumb-
bell mass), and I is the additional moment of inertia about either the X or

Z axes by virtue of dumbbell mass.

From Eq. (3.17) and (3.18), therefore

19



E E 21 (3.19)

where A. = 4 + Cio 8°

or in nondimensional form,

A A A

E E + 21 (3.19)

where j AI A

Furthermore, several other coefficients of the characteristic equations are
affected by the dumbbell mass, i. e.

A A A

A A i

C C. 1 (3.20)
AA A

A A A

F -- F-41
where subscript o means the original values without dumbbell mass.

After substituting Eq. (3. 19') and ( s. 20) into the characteristic
Eq. (3. 16), it was solved on the IBM 7090 for two sets of variables b/a, b'/a
and T The principal results are shown in Table 3 and Fig. 7.

Figure 7 shows clearly, as expected, that the dumbbell mass
is effective to improve the stability of lateral motion. The best performance
or the minimum number of orbits to X amplitude is about 0.38 orbits at b/a =

A A mltd saot0 8obt tb/

4.0, b'/a = 3.0, 1 = 0.8 andI = 0.3. This value is of the same order as
the best damping of longitudinal motion obtained in Ref. 1. Figure 7 pre-
sents kinks in the plot of orbits to half amplitude and jumps in the plot of
period. This is because the least-damped mode changes at these points from
one mode to another.

(iv) By the above-mentioned numerical computation, the best
stability was obtained for combination of variables b/a = 4.0, b'/a = 3.0,

.= 0. 8 and I = 0. 3 and this value (OA = 0. 38) appears to be very good
from the practical standpoint. 2

However, since these numerical values were chosen more-
or-less arbitrarily, the better performance will be expected for another
combination of variables around these values.

The so-called 'steepest-descent method' (see Ref. 3) is
conveniently applied for solving the optimization problem like this. The
actual procedure of our problem is described in Appendix 1. The numerical
values which were used for calculation are as follows:

20



Starting conditions: (1) (b/a)* = 3. 0, (b'/a)* = 2.5
AA

r = 0.70 I* = 0.15

(2) (b/a)* = 4. 0, (b'/a)* = 3.0

A

=0.80 I* =0.30

Small perturbations: 4 .6 = 0.01 = 0.01
A A

7. = 0.001 ,I = 0.001

Weighting numbers: 0 = 100 0 = 100

Q(A=1 (rA = 1

The results are shown in Table 4 and Fig. 8. Figure 8 shows
clearly that the least-damped mode is improved remarkably by this method.
Namely, as shown in Fig. 8, the damping or orbits to half amplitude of the
starting point is nearly 0. 5 orbits in this example, but it is about 0. 28 orbits
after 12 times of interation of the computation. The optimum combination
of variables corresponding to this optimum damping mode is as follows:

b/a = 3. 3231 b'/a = 3. 0872

A A

= 0. 6368 I = 0. 2184

A

Since these variables except I affect the longitudinal stability
as well, then the longitudinal stability must be considered simultaneously to
obtain the best overall performance of attitude stabilization of a satellite. It
means some compromise between longitudinal and lateral stability is probably
necessary and the best combination of those principal variables should be
chosen from this point of view. No attempt is made here to demonstrate
such a compromise solution, since it becomes essentially a design problem
very much dependent on the particular configuration.

IV. CONCLUDING REMARKS

The lateral equations of motion which are derived for a particu-
lar compound satellite system are the homogeneous equations and hence the
disturbed motion is only the transient motion and no forced motion occurs,
unlike the longitudinal motion.

The numerical calculations were separated into two cases,
i. e. the general case and the case with fixed yaw-stabilizers. Since the
latter is more convenient to deal with and also considered better from the
practical point of view, it was mostly discussed by the numerical examples.
The results show that the best performance of lateral motion or the decay
time to I amplitude is roughly 0. 28 orbits for the following combination of

21



variables:

b/a = 3.3231 b'/a = 3.0872
A A

r.= 0. 6368 1 = 0. 2183

However, to obtain the best overall performance of attitude stabilization of a
satellite, some compromises or in other words some changes of the value of
variables from this optimum combination are probably necessary for its de-
sign.

The principal objective of this analysis (both Parts I and I)
has been to show that the basic concept presented for passive attitude
stabilization can lead to acceptably short damping times. This is seen to
have been successfully accomplished.
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APPENDIX 1

Application of the Steepest-Descent Method to Optimize the Stability of
Perturbed Motion of the Satellite (see Ref. 3)

For the optimization problem stated in Section 3. 3 (iv), we
have to solve the characteristic equations and find the real part of the roots.
However, since the mode of motion to be optimized is the antisymmetric
mode of the lateral motion, the characteristic equation is expressed by the
sextic equation as follows:

+- + +e:o 0 (1)

where

(2)
(/= 1, ---- 4)

and (k are the 'control' variables, i. e.

A

= dumbbell mass inertia

P2 = V roll-stabilizer length

P, = O ' yaw-stabilizer length

T7 damping coefficient of roll-stabilizers

Roots of the characteristic equation are given,in general, by

A- - (3)

if all the roots are complex, j = 1, 2, 3

if the roots are real, 0,j =Oand j = 1, 2, 3 ...

The stability criterion is the number of orbits to I amplitude O and

o. f/0 (4)

Therefore, 0.ma corresponds to IjI mi or nj max because nj< 0
for the stable motion.

At the starting point, the control variables are

II, ,=o , 7:=

and the roots of the equation are
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Consider small perturbations of the control variables about the starting point,
i.e.

A 'A 6_ ,, A

#A A~ A

These perturbations cause small changes of the roots,

Since A or n is a function of coefficients ai , then

[ (5)

When n1 > n 2 > n 3 at the starting point, n 1 should be chosen as the value
to be optimized (i. e. minimized) from Eq. (4).

In order to apply the steepest-descent method, we define

<) - ~( (6)

where 04 are the positive weighting numbers. To maximize c/dn for a
small perturbation under a constraint condition given by Eq. (6), con-
sider the quantity

r a a ~ (7)

where is a Lagrange multiplier. The maximum of Sn occurs when

Substituting Eq. (81) into Eq. (6)
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or
2 __ (9')

Substituting Eq. (9') into Eq. (8')

S -(10)

Since Jn should be negative, 4 must be chosen so that - is

negative from Eq. (5), i. e. when 
is

or

For the next step, Pk = '+ d* (k = 1 ... 4) are the starting points
and the same procedure is repeated. This process should be repeated several
times until the gradient dyd, or

__i - ( IM (12)

is nearly zero. The optimum value of n is then obtained.
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TABLE 1

(a) Antisymmetric Modes (with rigid yaw-stabilizers)

Hinge Period Orbits to Hinge Period Orbits to

Damping Orbits Amplitude Damping Orbits Amplitude
_ T O1 _ T O2

b/a = 3.0 b'/a = 2.0 b/a = 3.0 b'/a - 2.5

0.2 0.4715 0.3093 0.2 0.4713 0.3143
0.7553 0.7312 0.7758 0.7503
2. 3201 5.1603 1. 9188 3.5618

0.3 0. 5116 0.2093 0.3 0.5099 0.2150
0.7232 0.4705 0.7483 0.4703
2. 3018 3.4716 1.8953 2.4129

.0.4 0. 6043 0.1476 0.4 0.6056 0.1591
0.6580 0.4106 0.6783 0.3613

2. 2759 2.6436 1.8621 1.8633

0. 5 0. 7413 0. 1030 0. 5 0. 7677 0. 1074
0.6299 0.5496 0.6371 0.4907
2.2426 2.1667 1.8205 1.5674

0.6 1.0384 0.0806 0.6 1.1325 0.0827
0.6226 0.6946 0.6286 0.6293
2.2028 1.8734 1.7739 1.4143

o.7 -- 0.0573 0.7 -- 0.0524
-- 0. 0797 -- 0. 0965

0.6193 0.8342 0.6251 0.7607
2. 1585 1.6941 1.7283 1.3565

0.8 -- 0.0364 0.8 -- 0.0359
-- 0.1317 -- 0.1479

0.6175 0.9706 0.6232 0.8880
2.1128 1.5940 1.6889 1.3641

1.0 -- 0.0248 1.0 -- 0.0247
-- 0. 2099 -- 0. 2296

0.6157 1.2377 0.6212 1.1363

2.0309 1.5531 1.6339 1.4911

1. 2 -- 0.0194 1.2 -- 0.0194
-- 0.2842 -- 0.3037

0.6148 1.5009 0.6202 1.3802
1. 9718 1.6365 1.6023 1.6867



TABLE 1 (a)
(continued)

Hinge Period Orbits to Hinge Period Orbits to
Damping Orbits j Amplitude Damping Orbits Amplitude

1T O A.  T 01

b/a= 4.0 b'a =2.5 b/a 4.0 b'/a 3.0

0.2 0.4638 0.5124 0.2 0.4641 0.5243
0.6884 0.7993 0.7043 0.7916
1.7331 7.0810 1.5183 5.7644

0.3 0.4832 0.3533 0.3 0.4827 0.3636
0. 6723 0. 5059 0. 6902 0. 4971
1.7254 4.7951 1.5094 3.9414

0.4 0.5224 0.2865 0.4 0.5178 0.2996
0.6378 0.3418 0.6617 0.3306
1.7149 3.6802 1.4974 3.0700

0.5 0.6186 0.1709 0.5 0.6395 0.1807
0.5667 0.4587 0.5638 0.4100
1.7019 3.0386 1.4829 2.5877

0.6 0.6761 0.1239 0.6 0.6983 0.1272
0.5648 0.6313 0.5655 0.5760
1.6869 2.6388 1.4668 2.3084

0.7 0.7665 0.1000 0.7 0.7982 0.1016
0.5640 0.7811 0.5655 0.7176
1.6703 2.3820 1.4503 2.1525

0.8 0.9317 0.0845 0.8 0.9891 0.0853
0.5636 0.9224 0.5653 0.8503
1.6531 2.2192 1.4344 2.0788

1.0 -- 0.0531 1.0 -- 0.0500
-- 0.0836 -- 0.0937

0.5631 1.1937 0.5652 1.1039
1.6196 2.0742 1.4073 2.0870

1.2 -- 0.0326 1.2 -- 0.0322
-- 0.1411 -- 0.1494

0.5629 1.4575 0.5651 1.3499
1.5913 2.0778 1.3876 2.2148



TABLE 1

(b) Symmetric Mode (with rigid yaw-stabilizers)

T 2_ _ T O

b/a = 3.0 b/a = 4.0

0. 1 0.4555 0. 9716 0.1 0.4631 2.2868

0.2 0.4574 0.4858 0.2 0.4634 1.1434

0.3 0.4605 0. 3239 0.3 0.4640 0.7623

0. 4 0. 4650 0. 2429 0.4 0. 4648 0.5717

0. 6 0.4785 0. 1619 0.6 0.4671 0.3811

0. 8 0.4996 0. 1215 0.8 0.4705 0.2859

1. 0 0. 5313 0. 0972 1.0 0. 4749 0.2287



TABLE. 2

(a) Antisymmetric Modes (with hinged yaw stabilizers)

Yaw-Hinge Period Orbits to Yaw-Hinge Period Orbits t6

Damping Orbits Amplitude Damping Orbits Amplitude

T O2 T 2

b/a =3.0, b'/a = 2.5 7= 0.70 0.30 1.1255 0.0488
__ .__ ____0.6141 0.6923

1.3534 0.4042
0.03 1.6896 0.0627 -- 0.2445

0. 6056 0.9390 -- 7.0609

1. 0048 1.9908
12. 273 4.0895 0.40 1.2127 0.0429

0. 6171 0.6929
0.06 1. 5765 0.0618 1.4880 0.4477

0.6047 0.8725 0.1828

1. 0182 1.0400 9.5489

14,571 2.2202

0.60 -- 0.0290
0.10 1.4435 0.0604 -- 0.0410

0.6050 0.8010 0.6202 0.7041

1.0487 0.6679 1.6097 0.5674

36. 287 1. 3944 -- 0. 1388.

-- 14. 463
0.15 1.3078 0.0580

0.6070 0.7430 0.80 -- 0.0201
1. 1060 0.4953 -- 0.0456

-- 0.5617 0.6216 0.7141
3. 1268 1.6534 0.6678

-- 0. 1239
0.20 1.2090 0.0551 -- 19.349

0. 6096 0. 7121
i.1817 0.4259 1.0 -- 0.0158

-- 0,3900 -- 0.0474
4.5016 0.6225 0.7215

1. 6743 0. 7466
-- 0. 1167
-- 24. 223



TABLE 2 (a)
(continued)

Yaw-Hinge Period Orbits to Yaw-Hinge Period Orbits to

Damping Orbits - Amplitude Damping Orbits 2 Amplitud
. T O2 T 2

b/a = 4.0, b'/a = 3.0, 7 = 0.80 0.30 0.7721 0.0664
0.5550 0.8908

0. 03 0. 7803 0. 0789 1. 1725 0.5952
=- 0 . 1920

0. 5557 1. 1765 0.1920

1.0025 3.4077

9.8861 3.6481 0.40 0.8294 0.0613
0. 5564 0. 8564

0.06 0. 7741 0. 0779 1. 2472 0. 6096

0.5548 1.1314 14 0.10

1. 0097 1. 7670 7 3070

11. 393 1. 9226

0.60 1.8030 0.0617
0. 10 0. 7667 0. 0763 0. 5588 0. 8301

0.5541 1.0725 1.3326 0.7279

1.0256 1.1243 0.0560
21. 347 1.1822 11.083

0.15 0.7601 0.0741 0.80 1.3035 0.0780
0.5537 1.0081 0.5603 0.8238
1.0540 0.8195 1.3690 0.8535

0.4771 0. 0289
2. 3336 14. 834

0.20 0.7577 0. 0716 1.00 1.1883 0.0810
0. 5539 0. 9570 0. 5613 0. 8231
1.0898 0. 6841 1.3873 0.9623

0 3213 0.0220
3. 4126 18. 574



TABLE- 2

(b) Symmetric Mode (with hinged yaw-stabilizers)

Yaw-Hinge Period Orbits to Yaw-Hinge Period Orbits to
Damping Orbits Amplitude Damping Orbits Amplitude

Al AT O2 ___, T o!
A 1 1

b/a =3.0, b'/a =2.5. T =0.70 b/a =4.0 b'/a = 3.0 = 0.80

0.10 0.04879 0. 1387 0.10 0.4704 0.2857
1.0197 0.5644 1.0065 0. 9720

0.20 0.4879 0.1387 0.20 0.4705 0. 2857
1.0864 0.2822 1.0268 0.4860

0. 30 0.4879 0. 1387 0.30 0.4705 0.2856
1.2345 0.1881 1.0635 0.3240

0.40 0.4880 0.1387 0.40 0.4705 0.2856
1.6042 0.1411 1.1223 0.2430

0.60 0.4880 0.1388 0.60 0.4705 0.2856
0.0617 1.3656 0. 1620

-- 0. 1970

0.80 0.4880 0. 1389 0.80 0.4705 0.2856
-- 0.0399 2.3887 0.1215
-- 0. 3052

1.00 0.4880 0. 1388 1.00 0.4706 0.2857

-- 0. 0303 -- 0. 0659
0.4010 -- 0.1845



TABLE 3

Dumbbell Mass Effect (Antisymmetric Mode)

Dumbbell Period Orbits to Dumbbell Period Oroits to
Mass Orbits Amplitude Mass Orbits I Amplitude

A 4

b/a = 3.0, b'I/a = 2.5 - = 0.70 b/a = 4.0 b'/a = 3.0 7- = 0. 80

0 -- 0.0524 0 0.9891 0.0853
-- 0.0965 0. 5653 0.8503

0.6251 0.7607 1.4344 2. 0788
1.7283 1.3565

0. 02 1.0032 0.0879

0. 01 -- 0. 0529 0. 5672 0. 7925
-- 0.0982 1.4550 1.8416

0. 6275 0. 7370
1.7509 1.2677 0.04 1.0182 0.0906

0.5689 0.7408
0.02 -- 0.0535 1.4773 1.6336

-- 0.1000 0.06 1.0342 0.0935
0. 6298 0. 7146 0.5705 0.6943

1.7750 1. 1845 1.5014 1.4503

0.03 -- 0.0540 0.08 1.0513 0.0967
-- 0. 102103 0.6921 0.5719 0.65230. 6 3 2 2 0. 6 9 3 21 . 2 8. 8 7

1.8007 1.1061 1.5278 1.2879

0.04 -- 0. 0545 0. 10 1.0697 0. 1001
-- 0.1043 0.5732 0.6144

0.6346 0.6729 1.5569 1.1434

1.8282 1.0323 0.15 1.1226 0.1106

0.06 -- 0.0556 0.5757 0.5340

-- 0. 1097 1.6462 0.8440

0.6393 0. 6352 0. 20 1. 1871 0. 1253

1.8900 0.8965 0.5771 0.4705
1.7784 0. 6089

0.08 -- 0. 0566
-- 0.1166 0.25 1.2544 0.1507

0.6441 0.6007 0.5771 0.4203

1.9631 0.7738 2.0464 0.4162

0.10 -- 0.0577 0.30 1.2200 0.1993
-- 0. 1259 0.5757 0.3809

0.6489 0.5692 3.5189 0.2879

2.0520 0.6613

0.15 -- 0.0601
-- 0. 1846

0.6610 0. 5006
2.3865 0.3995



TABLE..t4

Steepest-Descent Method

Period Orbits Orbits to Period Orbits Orbits to 2

T Amplitude T Amplitude

b/a = 3. 00 b'/a = 2.50 b/a = 3. 2550 b'/a = 2. 7978

(1) 1 =0.70 I =0.15 (7) A AT-, 0.70 1 0. 15 13 = 0. 6727 I = 0.1823
-- 0.0601 1.4910 0. 1363
-- 0.1846 0.6391 0.3720

0.6610 0.5006 2.5173 0.3386
2.3865 0.3996 b/a = 3. 2892 b'/a = 2. 8489

b/a =3. 0667 b'/a =2. 5444 (8) - - 0.6673 I = 0.1881
(2) A Ar .67 .18

T = 0.6962 I = 0.1547 ,_
1.3517 0.1472

-- 0.0734 0.6352 0.3537
-- 0.1422 2.5909 0.3306

0.6547 0.4750
2. 4001 0. 4059 b/a = 3. 3158 b'/a = 2. 8997

(9) A A
:7 7~ =06617 1 =O.1941

b/a = 3. 1267 b'/a = 2. 5916
(3) A 1 I 2621 0. 1595

= 0. 6922 1 = 0. 1597
0. 6316 0. 3366

3.7710 0.1034 2.7060 0.3205

0.6492 0.4513 b/a =3.3344 b'/a = 2. 9496
2. 4024 0.4089 (10) A 0

b/a = 3. 1800 b'/a = 2. 6408-

(4) A ' 1.1994 0.1736
= 0. 6878 I =0.1650 0.6284 0.3205

2.0745 0.1103 2.8896 0.3093

0.6444 0.4292 b/a = 3. 3443 b'/a = 2. 9980
2.4021 0.4070 (11) AS'l7=0. 6496 1 =0. 2063

b/a = 3. 2266 b/a =2. 6914 7"t =_0_64 6_10. _06

(5) 1% A . 534O. 1893
(5 = 0.6878 1 = 0.1650IO=_0._1650. 6256 0. 3055
1.6606 0.1179 3.1932 0.2977

0.6402 0.4085 b/a =3. 3448 b'/a = 3.0443
2.4063 0.4009 (12) A A

r) i 0.6432 I = 0.2124
b/a = 3. 2135 b'/a = 2.7470

(6 A 1. 1187 0.2067
(6 = 0.6777 I =0.1767 0.6235 0.2916

1.7407 0.1267 3.7465 0.2863

0. 6434 0. 3914
2. 4677 0.3433



TABLE 4
(continued)

Period Orbits Orbits to * Amplitude
T 10

b/a 3. 3231 b'/a = 3. 0872
(1) A

0.6368 I = 0.2184

1.0975 0.2263
0.6244 0.2787
5. 7041 0. 2696

b/a = 3. 3068 b'/a = 3.1285
(14) A A

= 0.6301 I = 0.2243

1.0747 0.2462
0.6237 0.2667

-- 0. 2262
0. 3085

b/a. = 3. 3970 b'/a = 3.1156
(15) A A

= 0. 6289 I = 0.2204

1.0479 0.2323
0. 6090 0. 2726
3.6660 0.3092
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