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ABSTRACT

A general discussion of the theory of backward-wave oscillators is

presented and the propagation and impedance characteristics are determined

for a backward-wave oscillator having a circuit consisting of four coupled

ladders placed across the narrow dimension of a waveguide. Propagation curves

and impedance curves are presented for both the fundamental forward and the

backward-wave components for several values of pitch and ladder plane spac-

ing. A larger pitch or ladder plane spacing increases the frequency corre-

sponding to a given phase constant.

The results indicate that the coupled-ladder backward-wave oscillator

can be an effective source of microwave power.
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I. INTRODUCTION

Oscillators have lon, been the subject of research and particular interest

has been shown in extending their operation to higher frequencies. Backward-
1

wave oscillators, whose principle of operation will be described briefly in

the following section, have been constructed at microwave frequencies and at

millimeter wavelengths. Some of their advantages include wideband operation

and ease of tuning using only one voltage. They may also become important

sources of submillimeter waves.

Helices have been used as the slow-wave circuit in a number of backward-

2
wave oscillators. To increase the power output of traveling-wave tubes,Putz

and Van Hoven 3 suggested paralleling helices, which they did in 2-, 4-, and

9-helix arrays. Another type circuit that lends itself readily to parallel

arrays is the ladder circuit. A successful oscillator using a ladder-type

circuit was reported by Karp4 ,5 who obtained oscillations at 1.5 millimeters.

Convert 6 has successfully operated backward-wave oscillators using comb or

vane-type circuitls consisting essentially of half ladder planes in the sub-

millimetei region. Paralleling of ladder planes has been considered by a number

of authors 7 ,8 ,9 and is the configuration of interest in this paper.

The fact that the axial electric field is enhanced and also extended in

area by placing several ladder planes together so that the fields couple leads

to an increase in the effective interaction impedance and hence to an increase

10
in the power output. At millimeter wavelengths this property of coupled

ladders becomes even more attractive because the field strength from a single

Superscript numerals refer to the References which appear at the end of this

of this report.,
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ladder dies off so rapidly on each side of the ladder plane. The purpose

of this investigation is to explore the feasibility of constructing a

coupled-ladder oscillator at millimeter and submillimeter wavelengths.

Section II describes the general. theory of backward-wave oscillators

and Section III contains the specialized theory of propagation and impedance

characteristics of four coupled ladder planes in a waveguide. The dis-

cussion of results and conclusions appear in Section IV.

-2-



II. THEORY OF BACKWARD-WAVE OSCILLATORS

The following two sectionb describe the physical basis for the operation

of backward-wave oscillators and give a brief theoretical derivation of the

determinantal equations for oscillation. A number of parameters that are

important in analyzing oscillator performance are defined.

2.1 Physical Basis of Operation

A periodic circuit such as the ladder plane shown in Fig. 1 can be used

h/p «< 1
pA << 1

p
i h

Fig. 1. Single infinite conducting ladder plane.

as a delay line or slow-wave circuit to support the propagation of an infinite

number of electromagnetic waves moving in either direction with phase velocities

less than the velocity of light. A backward wave is a wave which has its phase

- 3 -



and group velocities in opposite directions. If the velocity of an electron

stream as determined by the beam voltage is approximately synchronized with

the phase velocity of a backward wave, the wave moving in the reverse direc-

tion increases in energy so that a signal introduced at the collector end can

be amplified. For sufficiently high current density in the electron beam and

for a given length of circuit, the gain becomes infinite and oscillations

will occur. A tube constructed to take advantage of this method of operation

is called a backward-wave oscillator.

A picture of the operation of the oscillator can now be formulated.

When the electrons in the beam encounter the strong r-f fields near the output

of the tube at the gun end, they are speeded up or slowed down according to

whether the axial electric field of the circuit is positive or negative.

Thus, the electron beam acquires velocity and current modulation. The modu-

lated beam traveling near the slow-wave circuit gives up kinetic energy to

the circuit wave traveling at about the same velocity as the beam. The

interaction between the circuit and the electron beam is'strong only for

frequencies having the phase velocity near the electron velocity. By limiting

the current only the lowest mode of operation will be excited and a single

output frequency will be obtained. Since backward-wave circuits are always

dispersive with the phase velocity being a function of frequency the fre-

quency of operation may be tuned by changing the beam voltage.

Since the strength of the fields diminishes rapidly away from the circuit,

only those electrons immediately adjacent to the circuit are strongly affected

by the circuit fields. Fuller utilization of the power in the electron beam

-4-



and hence higher efficiency and power output can be realized if the transverse

area of high fields extends over more electrons. Parallel ladder planes placed

close together so that the fields couple strongly offer a large area of high

interaction impedance when flooded with electrons and hence offer the possi-

bility of high power output from such an oscillator.

2.2 General Theory of Oscillation

The theory of operation of backward-wave oscillators has been discussed

by many authors. 1 1'1 2 ,1 3'1 4'1 5'1 6'1 7 Following Pierce, a brief small-signal

steady-state analysis of backward-wave oscillators is developed by consider-

ing separately the effects on a transmission line of an adjacent electron

beam (circuit equation) and the effects on the beam due tu the fields of

the transmission line (electronic equation). These two equations are com-

bined to find the propagation constant of the combination. The oscillation

condition in this section for a backward-wave oscillator is derived by

allowing the backward-wave gain to be infinite. In later sections specific

results for a coupled-ladder backward-wave oscillator are obtained.

The circuit equation is derived by considering an infinite backward-

wave transmission line with shunt admittance per unit length Y and with

series impedance per unit length Z shunted by an electron beam with total

convection current i moving with velocity u in the plus z-direction as
o

shown in Fig. 2. The group velocity v is in a direction opposite to thatg

of the phase velocity v for the backward waves. There will be a displace-p

ment current L per unit length flowing from the beam to the circuit to

change the picture from that of the ordinary transmission line.

-5-



0 pDisplacement current LI per unit length

- p
VVg

vZ

Fig. 2. Backward-wave transmission line and beam.

Because the group velocity is in the minus z-direction, energy flow is also

in the minus z-direction and the differential equations for the transmission

line become

- ZI

-=YV+ 
L

where a term has been added to account for the displacement current from

the beam. Combining the preceding equations we find that

a2V - ZV =-Z 31 (2.1)

In the absence of an electron beam the right-hand side is zero and the
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voltage solution is in terms of exponentials, depending upon the natural

1/2
propagation constant of the line P 0 0 + Jo = (ZY)/ The impedance

of the line can be defined as

K = (Z/Y)1/2 = Z/r

Propagation of the principal mode with the beam present will be

assumed to vary as exp (jcD - Pz) where P = a 4 jo is the propagation

constant of the coupled system. Let E represent the z-component of elec-

tric field. Then since

E=-W -V = IV6z

differentiation of Eq. 2.1 leads to the circuit equation

P P2 K

Ei (2.2)
p2 _ r2

0

By assuming that r-f effects are small compared with d-c effects, we

may obtain the small-signal electronic equation by combining Maxwell's

equations, the continuity equation for charge, and the Lorentz force equa-

tion as applied to an electron stream acted upon by an axial electric field

E. This equation is

J eo/ 2Vo

i = j e 2 2 E (2.3)

(p- - + P q
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where I is the d-c beam current and V is the beam voltage. The beam0 0

velocity u0 is related to the beam voltage through the equation

u 0 (2 0)1/2 1(Vo) /2

o= --)((V4)

C C 506

where T is the charge-to-mass ratio of the electron and c is the velocity

of light. The term P2 takes into account localized space-charge fields
q

and may be shown to be expressible by

2 R2 2 2

2 = _a = ._ P . 0e(2.5a)
q 2 - 2 Vu u o

0 0

where o= (nJ u )1/2 = 1.83 x 108 J I/2/V 1/4 is called the plasmap 0 00 0 0

frequency and R is a reductic- factor which is less than one and takes

into account the finite beam size. J is the direct current density in
0

the beam, Pe = W/uo, and Q is called the space-charge parameter of

Pierce. Since Pierce's gain parameter

1 o 1/3

C = ) (2.5b)
wV0

in most practical tubes is much less than one, Eq. 2.5a may be written

W _. w(4QC 3) 1/2  (2.6)
q

The equation for the propagation constant r can now be obtained by

combining Eqs. 2.2 and 2.3
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2 0eC 3 rr2 (27
( 2p) r , joe) 2 + Pq 2 27P

e o

The parameter d, which is related to the cold circuit loss, and the

synchronism parameter b will now be introduced and Eq. 2.7 will be reduced

to a simpler expression. As the circuit waves should be approximately

synchronized with the beam waves, let

ro = Je (1 + bC) - eCd (2.8)

and

r = JC5 (2.9)

where the unknown quantity is 5 and C < < 1. Equation 2.7 now becomes

2 1
(b + jd) - -4QC (2.10)

Letting the three solutions of Eq. 2.10 be designated by b1) 52' 53, we

find three propagation constants

P = j " CS , v = 1, 2, 3

and three propagating waves

3 -Pvz

E(z) L E e V (2.11)
v1

V=l
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where the amplitude constants E may be found after boundary conditions

V

are imposed.

The boundary conditions are that at the output end of the tube

(at z - 0) the velocity and current modulation are zero. These two con-

ditions together with Eq. 2.11 give three equations in the unknowns

E1, E2 , E3.

3

L E = E(0) (2.12a)
v1V=l

3 E

2 V =0 (2.12b)
8 + 4QC

b EL 2 V V= 0 (2.12c)
v=l + 4QCV

The solutions of Eqs. 2.12 can easily be found in terms of E(0) provided

b, d, and QC are known. The total uniform distributed loss 2 in db may

be related to the loss parameter d in a tube of length L (yet unspecified)

by the equation

I = 20 log10 exp Pe CdL - 54.6 dCN (2.13)

where N = PL/2A is the number of wavelengths in the length L. Since QC

may be found in terms of known tube parameters by Eq. 2.5, only two

10 -



parameters in Eq. 2.11 remain unknown, b and CN, provided something can be

done with E(O).

If the tube is to oscillate, the gain must become infinite in

length L

E(0)
E(L) -

and since E(0) is finite, E(L) must go to zero. Simultaneous solution of

Eq. 2.10, together with the oscillation condition

3 -r L

E(L)= 0 = E e

v=l

5 + 4QC eCL5

1 1 _ - e e( 1 . 2)  (51 . 3) e

2
b2 + 4QC eCL2

+ 0 2 3) (52 1) e e 2

2
S 53 + 4QC eCL53

+ -3 . ) (5. 52 ee (2.14)

will thus determine CN and b for start oscillation with the given values

of loss and space charge. Generally a length is decided upon which will

be long enough to produce oscillations for the available beam voltage,

and values of current required for start oscillation are then found from
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the relationship

(CN) startI= ( t) N (2.15)
0

From Eq. 2.8 the phase constant of the circuit wave is 0 e( + bC) = W/v

so that the phase velocity v = u (1 + bC), and therefore the determined

value of b makes it possible to find the frequency of oscillation from

the dispersion characteristics of the circuit.

Consideration of the preceding results will indicate that there pos-

sibly is more than a single set of conditions for oscillation, and this

14
turns out to be true as found by Walker. The higher order modes of

oscillation can be avoided if the operating current is held to eight to

ten times Istart"

In Section II, backward-wave oscillation has been considered first

from a physical basis and second from a more quantitative viewpoint. The

requirements for oscillation have been found for a backward-wave oscillator.

The next step will be to determine the parameters of the coupled ladder

circuit. In Section II1, the dispersion and impedance characteristics of

a coupled-ladder circuit will be obtained.
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III. THEORY OF COUPLED LADDERS

In the following two sections the theoretical dispersion and impedance

characteristics of four coupled ladder planes placed across the narrow

dimension of a waveguide are derived. Curves are presented which show

graphically the changes in dispersion and impedance due to variations in

pitch and ladder plane spacing.

3.1 Dispersion Characteristics

The dispersion diagram indicates graphically the dependence of phase

velocity on frequency and is commonly shown as an w-P diagram with the

frequency parameter as ordinate and phase constant as abscissa. In this

work, k = o/c will be plotted versus P, each normalized to the cutoffO

wave number k = w /c = 2iT/ . Normalizing the phase velocity v to thec c c

velocity of light, we obtain

k k/k
v -- = c = tan * (3.1)

c 0 /

where * is the angle which a straight line through the origin and point

of interest on the dispersion curve makes with the P/k axis. Use willc

be made of Eq. 3.1 in a later section when the beam voltage will be found

as a function of frequency.

Consider the problem of a wave propagating axially down a lossless

circuit which is periodic in the z-direction. Assume sinusoidal excitation

with the phase reference propagating with a phase velocity v. The electric

- 13 -



field vector with the phase dependence separated out may be written in

the form

J(W - z)

e(x, y, z, t) = Re [i(x, y, z) e_ (3.2)

with Po = w/v. Since Eq. 3.2 shows the phase dependence separated out,

the vector E(k, y, z) is a function of the geometry of the slow-wave

circuit. The operator Re will not be written until it need be expressed

explicity later. A similar development holds for the magnetic field vector

X, with fi(x, y, z) representing the geometrical function.

Appropriate forms for E and H will be needed which will satisfy

Maxwell's equations and the boundary conditions in thz lossless ladder

cell consisting of two infinite conducting ladder planes of the type shown

in Fig. 1 intercepting two symmetrical' ," placed conducting side planes as

shown in Fig. 3. The side planes have been placed a distance c from the

center of the ladder slots. Effects of circuit loss will be introduced

later.

Let " be expanded into a longitudinal Fourier series 1 8 with period p

so that Eq. 3.2 becomes

e~ j ( n z / p ) J(at " oZ)

E(x,yz,t) = n(X,y,z,t) z nj(X,y) e- nnz/p) e (3.3)

n= -w n
= 

-w

where n (x, y) is the function describing the variation of the nth axial

space harmonic of E(x, y, z) with the transverse coordinates. It is

- 14 -



T -

a

IC

Fig. 3. Basic interaction cell formed by two infinite ladder
planes and two symmetrically-placed side planes.

convenient here to define the phase constant of the nth space harmonic as

n 0 o +  -p (3.4)

with associated phase velocity vn =

Since the ladder plane can be considered periodic in y (see Fig. 3)

can also be expanded into a series of transverse space harmonics. The

axial component of electric field with even excitation about the y - 0

plane becomes

S(xqy,z,t) = zn(X,y,z t) = i (Wt'PnZ)
z i znm '.E (X) coo e

n= -w m-0 n= .wM nmOmy

(3,5)
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The axial component of the magnetic field vector is

00 00 00~x y  00 J (° t - n Z )

z (x,y,z,t) 7 7 n(xsy~z,t) 1 (x sin tmy ez j zn Z Zznmx
n= -w m=-O n= -oo m=O

(3.6)

The factors E (x) and H (x) show the x-dependence of the n,m componentznm znm~f

of the axial electric and magnetic fields respectively.

Maxwell's curl equations and the orthogonality properties of the
19

trigonometric functions give for the transverse fields

1 F
tnm 'k 2  2 6  

t xgznm-JnVtJ4] (3.7a)
n

g ~ FW11 o(.b
tnm k 2  P2 L znm n tznm

n

where

t x + y (3.8)

The notation A and indicates unit vectors in the x and y directions.

In the light of Eq. 3.7 all field quantities can be found as soon as

E znm(x) and H znm(x) are known. The boundary conditions will now be applied

to determine m and P0.

- 16 -



Consider now the ladder structure shown in Fig. 4. Let the ladder

thickness be neglected (let h-# 0 in Fig. 1) and assume infinitely thin,

perfectly conducting planes at x = a, a + 2g, and a + 2g + d. With three

regions defined as in Fig. 4, E znm(X) and H znm(x) can be written in one-

half the ladder structure and symmetry properties can be used for the other

20,21
half. The field functions must si cisfy the boundary conditions

x (nml -gnm2 ) = 0 (3.9a)

( nmi " nm2 = 0 (3.9b)

ux (1 - ) = (3.9c)1 2 s

" ( 1 2 = P /C (3.9d)

where ps is the surface charge density, J is the surface current density5

and i is a normal unit vector. In addition they must satisfy the wave

equation everywhere

V,(.nm} =k2 {.n (3.10)

The boundary condition that at the conducting walls at y = _ c the tangen-

tial electric field must go to zero gives, using Eq. 3.5, that

m= (2m + )n/2c.

- 17 -



T
d

"of
II

H-C H- c

Fig. 4. Slow-wave circuit consisting of four coupled ladders

across the narrow dimension of a waveguide.
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With a Roman numeral superscript to designate the region the appropriate

axial field functions for the longitudinal mode can be written with con-

stants as indicated which will be found by application of the boundary

conditions.

Region I:

cosh ynmx  (3.11a)

znm nm cosh y nma

~s infl Ynx

H I n mcs (X) = B n (3.11b)
nm cosh ynm a

Region II:

E 1 (x) cosh y . [x- (a + g)j + 1 sinh ynm Ix- (a + g) (3.11c)
znm nm coshy rng nm sinhy gnm

Hs inh nm x- (a + g)] cosh ynm [x - (a + g)]
HI  (x) = D + D' ... (3.11id)

znm nm cosh ynmg  nm sinh y nmlg

Region Ill:

III sinh ynm [x - (a + 2g + d)]
E l(x) =F (3.1lie)

znm nm sinh ynd

cosh Yn x - (a 4 2g + d)]H I(x)--G" (3.11f)
znm nm sinhy nmd

- 19 -



where

2 2 2 k2 (3.12)
Ynm =n +m -3

The electric field excitation will be assumed at the outside ladder

plane (x = a + 2g) and will be considered to have a zero y-component

since the presence of the conducting ladder plane would tend to short out

the g fields. The e fields are thus everywhere zero and from Eq. 3.7Y Y

there follows

Zn~n =(3.13)
3y n x

With the definition

e a (3.14)
nm %u Ynm

it follows that

B = e A (3.15a)
run nm .n

D = e c (3.15b)
rn rn nm

D' = e C' (3.15c)
run nm nm

G = F (3.15d)run nm nm

- 20 -



Also,

znm e n m 9znm
y Ynm x (3.16)

and Eq. 3.7 now yields

2 k2

m znm (3.17)
ynm j(4a 2 3m

~nm

With Eq. 3.9a the P fields can be matched across each ladder plane

to give

A =C -C'nm nm nm

-F =C + C'

nm nm rim

which leads to

C 1 (A - F (3.18a)nm 2 nm "nm)

C' - (A +F (3.18b)
nm 2 m nm

Equation 3.9c can now be used to assure continuity of the magnetic

fields across the ladder planes. Because of the slots cut in the ladder

- 21 -



planes, there can be no axial current and thus

NI (a,y,z,t) = I (a,y,z,t) (3.19a)

y y

I(a + 2g,y,z,t) =(a + 2g,y,z,t) (3.19b)
y y

With Eq. 3.17 the H functions in the three regions are found to beynm

2 k2 sinh 
(nm

x

H I  (x) m " A (3.20a)
ynm j(41yn m  nm cosh y nma

t 2 - k (A - F ) sinh Y x (a + )]

H (x) m tim tim-nML
ynm ji4  Ynm L2 cosh ynmg

(Am + Fri) cosh y.[ - (a + g)]1(.2b
2 sinh ymg (3.20b)

2 -k 2  cosh ynm [x - (a + 2g + d)]
H (x) m F (3.20c)

yn~m 30L Ynm runm sinhy rnd

Substitution of Eqs. 3.20 into Eqs. 3.19 now yields

- 22 -



00 0 2 k 2
2- [A rmtanh yma + (A -F nm ) t anh y g

n--oo m=O rm n

+ (An + Fnm) coth Ynmg cos y eri =0 (3.21a)

0 2 2 k2

z T. -M Y- A m- F m)tanh y mg -( m+ F )m cth y g
F)n nOm

_j~nz

- 2 Fnm cothy yrmd cost my e -0 (3.21b)

Comparison of the preceding two equations shows that they can be

equated so that the orthogonal properties of the functions may be used

to equate the summands to obtain

A coth ynmd + coth ynmg  F
nm tanh Ynm a + cothyg 3.2n

Substitution of Eq. 3.22 into Eq. 3.21b and use of hyperbolic identities

yields

- 23 -



S m Fm [I + tanh ynm (a + g) tanh ynmg coth Ynmd

n= -w m=O nm L

+ tanh ynm (a + g) + tanh ynm9 cos my e = 0 (3.23)

The constant F appearing in Eq. 3.23 will now be evaluated bynm

specification of the excitation. Let the outside ladder plane at the qth

ladder slot be excited with an axial electric field which is constant

across the slot axially. Transversely, the e field must be zero in thez

ladder plane except in the slot where a cosine variation will be assumed.

Expressed mathematically,

c j (W t - p q)
0o 2b

5

-b < y < b, pq - < z <pq + 2

9 z (a + 2g,y,z,t) = (3.24)

0, elsewhere in the rectangle

- c < y < c, pq - E < z < p q + 2

Since

P (a + 2g,y,z,t) - 7 0 F cos 2m + 1) e e - 0nZ)
z Z E nm 2c

fli-w m-0

(3.25)
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then from Eq. 3.24 and Eq. 3.25 it follows from the orthogonality of the

functions that

Ee 0
p  q-4-5/2 b

F -o os Ay cos (2m + I) e 2c dydz
nm cp f/ 2b 2

pq - 5/2 -b

E Fcos (2m + 1) 2 cos (2m+ )

o.24 E( E
cp TC 2Tm+l + (2m + 1) 1.- c b c b

jp n /2 -jp n /2

e - e

2jp n2Jn

[n Cos 2m + 1) !b

pc b (2m + ) 2 1.n_ b) 2

c
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s L.n -
~2

E = r- ' (3.27b)
n P n2

so that

F n E -E r E 
( 3 . 2 7 c )

For simplification of the notatirn the following definitions are also

useful:

Z (3.2 7d)

n n--*. m m=O nm n m

In the next section the magnitude of the total nth component of axial

electric field at various points in the ladder structure will be required.

These expressions will be derived now. From Eqs. 3.25 and 3.27 it follows,
22

using a summation formula of Coitin. that the magnitude of the nth com-

ponent of the axial etectr1. field at the center of the outside ladder

plane is

26



e (a + 2g, O,z,t) =FEO E. E
znnm I. IL m

coE [(2m + 2 L b

-- E E 4 L1 2c-

c M (2m-) 
T

C

It sin[I b( \

-E E 4 C
4 cos

c b

sin~ '

(22 -b= E E b.

CoC

E o En  (3.28a)

At the center of the inside ladder plane the magnitude of the field
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component is

e (a,O,z,t) = E  (a)zZ E nm
m

= -F - n _ nm -IFnm -

m m m Fnm

=M E° En  (3.28b)

where M is the ratio of the magnitude of the field at the inside laddern

plane to that at the outside ladder plane and is expressible in a rapidly

convergent form by

M I i+ E-m I

m

cos 2m + 1) a coth Ynmd tanh Ynma

- c (2m+ 1)2 ( )2 coth ynmg + tanh ynm a
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At the center of the ladder structure it is found that

E9 (OO$zpt) E 7 1  (0) = 7 A sech yal
zn znm Irunm

m m

I -Fnm ( u ) sech Ynma

=EO E N (3.28d)

where N is the ratio of the magnitude of the field at the center ofn

the structure to that at the outside ladder plane and is expressible

in a convenient form by

N 4 1 _I cos (2m+ 1) icJ coth y d + coth y g

n -b L2 tanh ynma + cothy nmg sech ynma

c m (2m +1)2 ()

c

(3.28e)

The equation for 0 n, the ratio of the nth component of axial electric
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field midway between the two outer ladders to the field at the outside

ladder, is found from

Ez (a+gOzt) = E  (a 4. g)zn Z znm
m

-F F + I sech yg
2m n m nm

=E E Q (3.28f)o n n

so that

\-Cos (2m+l1) ib coth y d + coth y
Q 2- 1 ( (Tn ynma + coth nm + sech y g
n b tanh ar cth Yng

c m (2m+ 2  / 1) 7

(3.28g)

The quantity TIn (e) which is the ratio of the magnitude of the nth

component of the axial electric field at a distance ed, 0 < e < i,
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from the outside ladder to that at the outside ladder, is found as follows:

Z (a+2g+Gd,O,z,t) E II  (a+2g+6d)
zn znm

mI

sinh [ynmd(l - e)

mFnm sinhy d
m

= E E n (e) (3.28h)

when

4 I~ L cos [(2m + 1) 2tc sinh [ymd(l - L3

n m (2m + 1)2 (i) sinhnm

Reference to Eq. 3.28a shows that 1 > 1 (e) O.n

The phase constant P can now be obtained from Eq. 3.23. As is common

in this type of analysis, we are unable to match the fields throughout the

entire ladder region and so we shall set y = 0 and z = pq, q an integer,

and match the fields at the center of each slot. With this done and with

the definitions that

c = X 2c
c
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and

L~-n (J+ah~~ a Yn dah~ n

J

7n/ + r m
L 1+ tanh [ 21 k tanh 2 k ct C

c c

+ ahLYRA+Ii+ tanh 'ra (3.29)

Equation 3.23 yields the determinantalequation for Po:

(2m +1) 2 -(.t-[2 1inosF(brn+1Y-1]
k s 2_ p k 2 cos2m + 1)

2 c L =0

np 1 p 2c k

(3.30)

where

n o 2n (3.31)
k k c -

c c 2c

and

(2m+1) 2 

(3.32)
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Values of 0/k and corresponding values of k/k have been obtained0C C

from Eq. 3.30 for a number of special cases using the Burroughs Datatron

205 digital computer. The results for the zero-pitch (current-sheet)

approximation were obtained previously and appeared in earlier reports.
3 ,24

The curves shown on the w-P diagrams in Figs. 5 and 6 give a good indica-

tion of the effect on the dispersion of changes in pitch and ladder-plane

spacing. It can be seen that a larger pitch or ladder plane spacing

causes the curve to shift upward. The information about the phase character-

istics of the coupled ladder circuit will be useful in the design of the

tube.

Another item of interest, especially for theoretical considerations

of power output, is the impedance characteristics. This topic will be the

subject of the next section.

3.2 Impedance Characteristics

In the previous section the theoretical propagation characteristics

of coupled ladder circuits were derived. This section will derive the

impedance expression and present the results graphically. The interaction

impedance gives an index of the strength of one of the space harmonics of

the axial electric field with reference to the total power in the mode of

interest. Let Kn, the axial interaction impedance of the

nth space harmonic at the top ladder be defined as follows:18

8 (a + 2g,O1 z,t) 2

K (a + 2g) = zn (3.33)n 2 (.3
20n Wav
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Fig. 5. Propagation constants for four coupled ladder planes in 2:1
waveguide. The curves were computed for values of a/c - g/c
- 0.01, 0.03 and 0 10 with p/2c - 0 2. b/c - 0.5, and
6/p - 0.5.
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0.5 with a/c = g/c - 0.10, b/c - 0 5, and b/p = 0.5.
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where Wav, the total time-average power carried by the mode, is expressible

in terms of the fields by the Poynting theorem.

a+2g+d 

W S = 4 J Pdydx (3.34)

S 0 0

Using the complex forms of the field vectors P may be expressedZ

P i Re (gx Reg . ! i NeEy

z 2 2 x y 2 /,xnmL ysr
nm sr

(3.35)

Use of Eqs. 3.7, 3.16, and 3.17 gives 9 and N *
xnm ysr

Pn CYzrInm

xn 2 3x
Ynm

(3.36)

2 k2

Nr ezsr
ysr 2 )x

a-P 3sr
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From Eq. 3.35 it follows that

P 2 _ k2 . k2

Re r !znm z sr
z z 2 Yx 6x

nmsr Ynm Ysr

2 2v- n p r dE dE

l Re n r znm zsr

= eL 2 2 dx dx
nmsr Ynm Ysr

J(ps p n)z

Cos tmy cos tr y e (,-Pz

2 _ 2

P t2 - k dE dE
1n r, zrn zsr

41 -L,2 2  dx dx
nmsr Ynm Ysr

£cos [(r + m + 1) y ] + cos (r - m) c cos [2 (s-n)z] (3.37)

The average power must be independent of z, so Eq. 3.37 may be averaged

over z

p(q + I

p cosFp (s - n)zI dz = sn (3.38)
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where 5 is the Kronecker delta defined to be unity for like indices

and zero if the indices are different. Thus, s:= n.

Let the y-integration now be performed to yield

coj [(r + m + y] + cos r - m) c dy = r c (3.39)

_ Y rm

0t

so that r = m also. Therefore, Eq. 3.37 simplifies to

P (t 2 y dx )2
k)n mdE znm (3.40)

nmnm

The average power can now be found from Eq. 3.34.

22 a idEI 2

W C n ( k  m F2 2 f (drdx
av 2- 3 .. nm L F 2  dx/

nm ¥nm nm nm 0

a+ 2gIIa 2 d d
2E 2 ~

2 / . -2-,g d.,,.)J
+ 2 dx' dx+ F2  x -xj

Vnm Fm a ¥nm nm a+2g

(3.41)

Let the quantity in the braces in Eq. 3.41 
be known as S SI + SII

nm nm run

+ S II. Using Eqs. 3.11, we can now find S . The following forumlas
-m 38 m
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will be useful:

2Ynmf sinh 2 Ynm(x - ) dx = sinh (X 4) cosh (X - )) - (X- )
nmjmrim nm n Ynmx

(3.42a)

2y nm sinh ynm(x - 0) cosh Ynm(x - 4) dx i sinh2 Ynm(x _O4) (3.42b)

2 ynm cosh 2 Ynm(x - 4) dx = sinh Ynm(x - 0) cosh Ynm(x 4)) + Ynm(x - )

(3.42c)

Then, with the definition using Eq. 2.22 that

A coth ynmd + cothy nmg
T nm (3.42d)
nrm F tanhY + cothy ng(nm Ynma  nmg

it follows from Eqs. 3.11 and 3.42 that

I 2y rM a2 sinh 2 y nmx
S 2 fA dxnm 2 fn nm cosh 2 ynma

nm o nm

=T 2  { tanh - m(3.43a)
rm Ynm cosh2 y
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and also, with Eqs. 3.18

2y a+2g h2  (+
SI  2ynm  C2 sinh [ x - (a + g)nm F 2 a nm cosh 2 Ynm

nm a n

sinh y n x- (a + g)] cosh y n - (a + g)]
nm nm sinh ynmg coshy nmg

" C.2 cosh 2 ynm[ - (a + g dxnm snh2 Ynmgm

1 (Tnm+ 1) tanh yg -
2 m Lcosh 2 Yg+n (m sih 1 ) d2xnm

-- tanh ymg + 2 (3.43b)

tanh Yig cosh Ynmg

and finally that

a+2g+d cash 2 y ,(a+2g+d Yi d

sIm 2 n dx = coth d+ y dru F u sinh 2 y m sinh 2 y d

nm a+2g Ynmd n

(3.43c)
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Therefore, with Tnm given by Eq. 3.42d one may write

S = T2  tanh a a sech 2  a'
nm nm 1 nm nm nma:

1 2+2" (Tnm + 1) tanh ynmg - y g sech Ynm

2(~ ) Fm 2mrm m

1 ( 2 1 ) 2  tanh yng + y g sech 2 Y J

+ coth ynmd + Ynmd csch2 Ynmd (3.44)

The power flow, with Eqs. 3.27 and 3.41, becomes

c E 2  k n 2 " 2 2
W = - E2  E 2 S (3.45)

av 2n n m nm
nm Ynm

It is convenient to normalize Eq. 3.45 to the cutoff wave number k .
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1/2
With o - (4/e) 1 120t, the the average power I low ma y l- wrjt it,

E2  ( (2m + 1)2
E l k O 2 1o 4 z k n E E 2 S (3.46)k -2 ---m' C--. , n m 1

av 4 k k nm-- C 7 nm Y nm) c

where Po/kc is found from Eq. 3.30.

Equations 3.28a, 3.33, and 3.46 can be used to find the interaction

impedance of the vth harmonic at the center of the outside ladder plane

2 2  k 2c[ v p~c()2
k 2 k_ 2c p

V a2k no2" k ( )2 (2m +)2

iT P____k __C___ n 2  
Q2

3 k n m nm
nm (Ynm) c

kc

(3.47)

The ratio of the backward-wave impedance (v = -1) to the forward-wave
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impedance (v = 0) can also be found. From Eq. 3.47

K 1 (a+2g) sin2k 2c 2k 2c
K 1(3.48)

K0 2ag si 'or
sin 2 k 2c p2 k 2c

Considering the case where the rung width of the ladders is equal to the

slot width, 5/p = 1/2, we obtain

K-1 (a+2g) = K0 (a+2g) 
2  c (3.49)

c -

Numerical values for K0(a+2g) and KI(a+2g) have been obtained on

the Datatron 205 digital computer and curves are presented in Figs. 7,

8, 9, and 10 for two values of pitch and for three spacing distances.

The backward-wave impedance is highest for large pitch (corresponds to

high voltage) and small spacing (very little current).

-, 43 -



1000

100 c ' c =  
0 1 -

(ohms)

1.0

.10

.01
1.0 1.2 1.4 1.6 1.8 2.0

k/k
C

Fig. 7. Forward-wave impedance at the center of the outer ladder for four
coupled ladders in 2:1 waveguide. The curves were computed for

values of a/c = g/c 0.01, 0.03 and 0.10 with p/2c = 0.2,
b/c = 0.5, and b/p 0.5.
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Fig. 8. Forward-wave impedance at the center of the outer ladder for four
coupled ladders in 2:1 waveguide. The curves were computed for
values of p/2c = 0.2 and 0.5 with a/c = g/c = 0.10, b/c = 0.5,
and 5/p - 0.5.
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Fig. 9. Backward-wave impedance at the center of Lhe outer
ladder for four coupled ladders in 2:1 waveguide.
The curves were computed for values of a/c = g/c =0.01,

0.03 and 0.10 with p/2c = 0.2, b/c = 0.5, and 5/p =0.5.
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Fig. 10. Backward-wave impedance at the center of the outer
ladder for four coupled ladders in 2:1 waveguide.
The curves were computed for values of p/2c = 0.2
and 0.5 with a/c = g/c = 0.10, b/c = 0.5 and 5/p = 0.5.
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A more complete analysis is needed, one that will show the average

impedance presented to the cross-section of the electron stream. An

average value of I0 Kn for use in Pierce's gain parameter C3 (see Eq. 2.5b)

will be determined by using the equation

a+2g d c K (xy)

(I K) =4K (a+2g) J (x,y) K(a+2) dy dx (3.50)o n av n f IKn(+g
0 0

Since there will be a distance s away from the ladder planes where due to

interception there is essentially no current the current density in the

(rectangular) beam of sides 2q, 2r can be approximated with the discon-

tinuous function

J (x,y) = J inside the rectangles
0

0 < x < (a - s), (a + s) < x < (a + 2g - s)

(a + 2g + s) < x < q

-r < y < r (3.51)
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and J(x,y) is zero otherwise. The impedance function can also be approxi-

mated. Since Kn(x,y) varies as the square of the magnitude of the axial

electric field, the variation of K with y is
n

K (y) = cos (3.52)
n 2b

The variation of K with x is also found from the axial electric
n

field functions. Since the nth component of axial electric field de-

pends in a rather involved way upon x, En (x) will be computed at selected

points and these points will be connected with the hyperbolic curves

shown in Fig. 11. The values of Mn, Nn 0 , TI n are given by Eqs. 3.28.

The normalized impedance functions for use in Eq. 3.50 are

Region I:

n Ncosh cosh - x (3.53a)K .n a+2g, n KaNn

Region II:

n2
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Region III:

K (x) 2 (a+3g53c)

n 2  - - sinh (- I (a+2+d) (3.53c)

nK (a+2 g) s jnh d

where T is found from 9 (see Eq. 3.28i) through the relationship

si (I -i)h H I (0) sinh r (3.54a)

For large T Eq. 3.54a becomes

1 1
-L I n 11 (0) (3.54b)

n

From Eqs. 3.50, 3.51, and 3.52 it follows that

c K (xy) ( (X) r
JXY y= j 2g n Cos 2 ( )dy

fJ(x,y) K- d K K (a+2g) I2b

n 0

= rJ(x) -a-- + -. " in l (3.55)
K n(a+2g)l Arj

n b

-51



The final evaluation of (1I K ) avusing Eq. 3.50 depends only on the

evaluation by Eq. 3.42 of the integrals of the expressions given by

Eqs. 3.53. Then, with q - icrl4 for a round beam of radius r Eq. 3.50

yields

(I Kna oi 2 n (a+2g) + ar (3.56)

where the reduction factor 2

an +L. (I aI+ aI) (3.57a)

is found from

a-s KIW

a a+g dx (3.57b)
n Kf n g0

a+2g-s KII

n I~ K n(a+2g) dx(3.57c)

itr/4 KIIIW

CrI KIx) d (3.57d)
n = f KR(a+2g)
a+2 g+_s n
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The equations for the theoretical propagation constant and impedance

parameter are derived in Section III. Curves of these parameters for

various pitches and ladder plane spacings have been presented to provide

design information.
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IV. DISCUSSION OF RESULTS AND CONCLUSIONS

The theoretical propagation and impedance characteristics of four

closely-spaced ladder planes in a waveguide have been found and curves

have been presented to show the results graphically.

In Section II, a general discussion of the theory of backward-wave

oscillators was given. In Section III, the propagaLion and impedance

equations for four coupled ladders in a waveguide were derived and solved.

Curves were presented for phase shift versus frequency and interaction

impedance versus frequency for both the fundamental forward- and backward-

wave modes for various values of pitch and ladder plane spacing. Larger

values of pitch or ladder plane spacing increase the frequency corre-

sponding to a given phase shift. The backward-wave impedance is highest

for large values of pitch and small values of ladder plane spacing.

On the basis of this study a ladder-type backward-wave oscillator

appears to be feasible at millimeter wavelengths. Future plans include

the construction and test of a 40 kMc oscillator using a coupled-ladder

circuit.

- 54 -



REFERENCES

1. R. Kompfner and N. T. Williams, "Backward-Wave Tubes," Proc. IRE,
Vol. 41, pp. 1602-1611, November 1953.

2. R. W. Grow, D. A. Dunn, J. W. McLaughlin, and R. P. Lagerstrom,
"A 20 to 40-KMC Backward-Wave Oscillator," RE Transactions on
Electron Devices, Vol. ED-5, pp. 152-156, July 1958.

3. J. L. Putz and G. C. Van Hloven, "Use of Multiple Helix Circuits

in 100 Watt CW Traveling-Wave Amplifiers," IRE Wespon Record 1947,
Vol. I, Part 3, pp. 138-142.

4. A. Karp, "Traveling-Wave Tube Experiments at Millimeter Wavelengths
With a New, Easily Built, Space Harmonic Circuit," Proc. IRE, Vol. 43,

pp. 41-46, January 1955.

5. A. Karp, "Backward-Wave Oscillator Experiments at 100 to 200 Kilomega-

cycles," Proc. IRE, Vol. 45, pp. 496-503, April 1957.

6. Y. Ta and G. Convert, Electron Tubes at Millimeter and Submillimeter

Wavelengths, Compagnie Gn4rale de Pl4graphie Sans Fil, Paris, France,

October 13, 1961.

7. R. M. White, C. K. Birdsall, and R. W. Grow, "Multiple Ladder Circuits

for Millimeter Wavelength Traveling Wave Tubes." Proc. of the Symposium

on Millimeter Waves, Polytechnic Institute of Brooklyn, March 31,

April 1, 2, 1959, pp. 367-402.

8. E. A. Ash, "A New Type of Slow Wave Structure for Millimetre Wave-

lengths," J.I.E.E., 105 B, 1958, Suppl. 11.

9. E. A. Ash and A. C. Studd, "A Planar Slow Wave Structure for Millimetre

Wave Generation," Microwave Tubes, Proc. of the International Congress,

Munich, pp. 292-294, New York, Academic Press, 1961.

10. E. A. Ash, "A Note on Impedance and Saturation Power of a Multiple

Ladder Array at Millimetre Wavelengths," Journal of Electronics and

Control, Vol. X, First Series, pp. 39-43, January 1961.

11. J. R. Pierce, Traveling-Wave Tubes, Princeton, D. Van Nostrand Com-

pany, Inc., 1950.

12. D. A. Watkins and E. A. Ash, "The Helix as a Backward-Wave Structure,"

Journal of Applied Physics, Vol. 25, No. 6, pp. 732-790, June 1954.

13. H. R. Johnson, "Backward-Wave Oscillators," Proc. IRE, Vol. 43,

pp. 684-697, June 1955.

- 55 -



14. L. R. Walker, "Starting Currents in the Backward-Wave Oscillator,"
Journal of Applied Physics, Vol. 24, No. 7, pp. 854-859, July 1953.

15. R. D. Weglein, "Backward-Wave Oscillator Starting Conditions,"
IRE Transactions on Electron Devices, Vol. ED-4, pp. 177-179,
April 1957.

16. R. G. E. Hutter, Beam and Wave Electronics in Microwave Tubes,
Princeton, D. Van Nostrand Company, Inc., 1960.

17. H. Heffner, "Analysis of the Backward-Wave Traveling-Wave Tube,"
Proc. IRE, Vol. 42, pp. 930-937, June 1954.

18. D. A. Watkins, Topics in Electromagnetic Theory, New York, John
Wiley and Sons, Inc., 1958.

19. C. C. Johnson, Field and Wave Dynamics, Textbook in preparation at
University of Utah.

20. S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio,
Second Edition, New York, John Wiley and Sons, Inc., 1959.

21. W. K. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, Reading, Massachusetts, Addison-Wesley Publishing Company,

Inc., 1955.

22. R. E. Collin, Field Theory of Guided Waves, New York, McGraw-Hill
Book Company, Inc., 1960

23. R. W. Grow, "Theoretical Propagation and Impedance Characteristics
of a Finite Number of Coupled Ladders," 18th Annual Conference on
Electron Tube Research, Washington University, Seattle, Washington,
June 29, 30, and July 1, 1960.

24. L. S. Bowman and R. W. Grow, "Microwave Propagation in a Circuit

Consisting of Four Coupled Ladders," Technical Report ONR-1, Univer-
sity of Utah, May 1, 1961.

25. R. L. Thurston, "Beam Coefficient for a Coupled-Ladder Traveling
Wave Tube," B. S. Thesis, University of Utah, June 1962.

- 56 -

m m m | ! ! ! ! !w |



DISTRIBUTION LIST

NO. OF NO. OF

COPIES AGENCY COPIES AGENCY

2 Asst, Sec, of Defense for Research 5 Armed Services Technical
and Development Information Agency

Information Office Library Branch Documents Service Center
Pentagon Building Arlington Hall Station
Washington 25, D, C. Arlington 12, Virginia

6 Director, Naval Research Laboratory 2 Chief of Naval Research
Technical Information Officer Electronics Branch (Code 427)

(Code 2000) Department of the Navy
Washington 25, D, C. Washington 25, D. C.

Commanding Officer 1 Commanding Officer
ONR Branch Office ONR Branch Office
The John Crerar Library Building 346 Broaf y
86 E, Randolph Street New York 13, New York
Chicago 1, Illinois

2 Commanding Officer
Commanding Officer Office of Naval Research
ONR Branch Office Navy #100, Fleet Post Office
1030 East Green Street New York, New York (Box 39)
Pasadena 1, California

1 Office of Technical Services
Electronics Research Directorate Technical Reports Sections

Library Department of Commerce
Air Force Cambridge Research Center Washington 25, D. C.
Laurence G. Hanscom Field
Bedford, Massachusetts 1 Office of Ordnance Research

Box CM, Duke Station
Commandez Durham, North Carolina
Air Force Office of Scientific Research
Washington 25, D. C. I Director
ATTN: SRY National Science Foundation

Washington 25, D. C.

Technical Information Officer
Signal Corps Engineering Laboratory 1 Director, Naval Research
Fort Monmouth, New Jersey Laboratory (Code 5220)

Washington 25, D. C.

Director, Naval Research Laboratory
(Code 6430) 1 Librarian

Washington 25, D. C. U.S. Naval Ordnance Laboratory
White Oak, Maryland

2 Chief, Bureau of Ships (Code 816c)
Department of the Navy
Washington 25, D. C.



NO. OF NO. OF
COPIES AGENCY COPIES AGENCY

I Chief, Bureau of Ships (Code 327) 1 Director
Department of the Navy U. S. Naval Electronics
Washington 25, D. C. Laboratory

San Diego 52, California

1 Chief, Bureau of Aeronautics
(Code EL-412.l) Chief, Bureau of Ordnance

Department of the Navy (Code RE P)
Washington 25, D. C. Department of the Navy

Washington 25, D. C.

2 Librarian, National Bureau 
of

Standards Chief, Bureau of Ordnance
Department of Commerce (Code RE 9)
Washington 25, D. C.

Applied Physics Laboratory
1 Advisory Group on Electron Tubes Johns Hopkins University

Secretary, Working Group on Semi- Silver Spring, Maryland
conductor Devices

346 Broadway 1 Solid State Development Branch
New York 13, New York Evans Signal Laboratories

Belmar, New Jersey

1 Commanding Officer

Wright Air Development Center I Solid State Group
Wright-.Patterson Air Force Base, Ohio Hughes Aircraft Co.

Research and Development
1 Research Laboratory for Electronics Laboratories

Massachusetts Institute of Technology Culver City, California
Cambridge, Massachusetts

1 Navy Representative, Project Lincoln
Massachusetts Institute of Technology
Building B, Lincoln Laboratory
P. 0. Box 73
Lexington 73, Massachusetts

1 Commanding Officer
U, S. Army Signal Research and

Development Laboratories
Fort Monmouth, New Jersey
ATTN: SIGRA/SL-PFA

1 Library
U. S. Naval Ordnance Plant
Indianapolis, Indiana


