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ABSTRACT: An identity, relating a certain infiuite continued
fraction to the ratio of two contiguous Bessel functions, is
exploited to derive the representation of a single Bessel
function in terms of a series of products of continued fractions.
This representation is then made the basis of a new method for
computing numerically Bessel functions of the first kind. The
method 1s seen to be especially valuable in computing Bessel
functions of order much larger than unity.
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INTRODUCTION

1. The purpose of this report is twofold. First we will
derive several examples of a class of not widely known identities
which relate Bessel functions to certain contimued frections.
Second, with the ald of one of these identities we will develop
a new method for the numerical generation of Bessel functions by
high speed digital computers. Throughout the report our interest
will center on Bessel functions of the first kind, Jn(z), where
n is any integer and z is an arbitrary real number, although it
will ?g apparent that generalizations to other cylinder func-
tions 1) of integer order and arbitrary complex argument are
possible.

2. As for the numerical computation of Bessel functions,
we have in mind not the preparation of tables but the calculation
of Jn(z) in the midst of a lengthy sequence of calculations by a
digital computer where the value of z is not known ahead of time.
The greatest need for such a routine arises when z and n are both
large. Wwhen n » 2z, the computation of Jn(z) may be efficiently
carried out with the series representation, and when z >»>» n, the

. asymptotic expansion provides the most direct method. However

there is no completely reliable standard method (to our knowledge)
for computing Bessel functions in the intermediate region where

zZ ~ n, especlally when n > 20, To check the accuracy of the
method developed here several short tables of Bessel functions
have been made and included in this report. In no case has the
6th decimal place been discovered to be incorrect.

BESSEL FUNCTIONS AND CONTINUED FRACTIONS

. nece e e o sse sell it has been known that
the ratio of two contiguous Bessel functions may be written as
an infinite continued fraction. This fact follows in an ele-
mentary way from the recurrente relations (Watson, ibid., pp. 45,
153), which may be rearranged in the form:

z 1
Jdn(z) . Z N (1)
In-1(z) g féiliil

"2 ndp,(2)

®#A cylinder functiocn is any function satisfying the Bessel
function recurrence relations. For a full descoription, see
wltgon, Theory of Bessel Functions (Cambridge Univ. Press, 1958),
p. 82,

1l
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The extension of this identity into explicit continmued fraction
form is obvious., If we change from Jn{z) to Jp(2x) to avoid
factors of 1/2 throughout, we obtain

X (2)
Jn(2x) - 7
Jn'l(zx) s M
1 - g‘aﬂgﬂnmg)
L . X%/(n+Yn+3)
1 -,

In the shorthand notation which we will use throughout, Bq. ( 1 )
is simply

Jn(ax) - Xn [}
In-1(2x) 1-Fp (3)

where xn = §, and Fn 1s the specific continued fraction defined
for all n 3 1 by the functional relation

o In¥nil (&)

r
B 1-Ppn
Clearly then, it is possible to represent the ratio of two
Bessel functions, Jp+k(2x)/Im(2x), whose orders differ an
integer, by a product of continued fractions:

Imsk(2x) Xpip (5)
In(2x) pmy 1 Fmer

Such a product ropronntation of the ratio of two Bessel
functions we will denote Pfi+X(2x). We also define P m 1; and,
iftn> n, r: -1/rg'.

4, with these few preliminaries taken care of, we now
state the identity which we will use in the mumerical o-gata-
tions, Paugraph.i0. Several generalisations of this identity
will be given in the fellowing paragvaph. The identity 1s:
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»
1 on . .
Jn(z) L - E eﬂ P" (2) ’ (6)

where €, M 1, &€, m 2 form P | .

A proof of Bq. ( 6 ) is arranged very easily. It depends
trivially on the fact that the P's are ratios of Bessel functions,
and the well-known addition theorem (Watson, ibid., p. 23):

i_ €n Jom(z) = 1. (1)
B=0

Thus we have arrived at - new, or at least not widely known,
result:(*) the represencation of a single Bessel function,
rather than the ratio of two Bessel functions, by infinite
continued fractions,

5. It should be mentioned that other anslogous sontinued-
fraction representations of Bessel functions can be easily
arrived at. For example, in quantum electrodymamics the summa-
tion of certain classes of Peynman diagrams can be shown(**) to
lead to the following identity:

S s P |10 (8)
anzsz - m=0 ’

in which the square of a Bessel function is given by a series
of squares of products (z). This representation depends on
the well-known identity (wWatson, ibid., p. 358):

xg €n [Jm(z)]z . =1, (9)

Also we have:

o0
1 2 1 (-1)" e2™(e) (10)

s — N .

Jn(z) sin z m«0

{¥JT0 the author's knowledge the relatiomsgiven in Egs. (6,8,1Q) do
not appear in the published literature on Bessel functions. In
view of the simplicity of derivation, however, it seems unlikely
that they have heretofore gone unnoticed.

{#*)Z, Pried and J. H. Eberly (paper in preparation). It was
this work which led the author's attention to the subject of the
present report,

3
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and several others slightly more complicated, which we omit here,
but each of which is related in an obvious way to a known summa-
tion identity like Eq. { T ) or ( 9 ).

6. Some similar results appear to be possible with the
Bessel funstions replaced by genersal confluent hypergeometric
functions. However these generalizations are peripheral to our
purpose here, and we will restrict the present dissussion to
Bessel functions of integer order.

CONVERGENCE QUESTIONS
7. A very significant property, from the standpoint of
numerical computation, of the sums like Eq. ( 6 ) is their quite

raplid convergence. Before going further into the matter, though,
several points should be made clear. In the first place, all of
the infinite series and infinite continued fractions whieh will
be dealt with do converge (Watson, ibid., pp. 152-154, et passim).
The series and the continued fractions in all cases represent
analytic functions of both index and argument, with simple poles,
at worst, for singularities. That is, the question of conver-
gence is settled from the outset, and our concern is entirely
for the practical question of speed of convergence. Specifically,
we will be interested in the amswers to these two questions:
Given the continued fraction representation for Jy(s), Bq. (6),
how many terms of the infinite series must we keep to ensure the
desired numerical accuracy; and how shall we truncate the
infinite continued fractiens appearing in the terms of the
series? Thus we are interested in making sufficiently accurate
approximations to the terms in the series as well as to the
series itself. We shall answer the first question first. Assume
that we want to compute Jn(z), and that n and z are both large
and comparable im magnitude so that neither the usual series
representation nor the asymptotic expression for Jn are conven-
iently usable. Thus we turn to the series ( 6 ). PFrom the
definition of the P's in terms of ratios of Bessel functions it
is clear, though, that as far as speed of convergence goes we
need consider only the problem of making M large enough so that
Sy 1s sufficiently c;pse to unity, where Sy is defined to be:

)
su(z) = Z3) €n Jom(z)

We can conclude that convergence is likely to be quite rapiad
after we reach the terms 2m ~ z from inspection of the inequality
(watson, 1bid., p. 49):

Im(z) &€ <3}
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8. In maehine summation, in which the computer is usually
limited to eight significant figures, it is Qf course useless
to consider terms which are smaller than 10-° times the largest
term in the series, so we are interested in knowing, for a
given z, how big the Jom(z) get. Although the maximum value of
Jom(z) 1s known to occur near the point z = 2m, the problem of
determining bounds on the size of the maximum seems to be
unexplored territory. Therefore we wlll be satisfied with the

" oerude, but almost certainly true(*), estimate that for an

z € 100 there will be a term in the series Se, Eq. (7 ),
greater than 0.10. This means that we need take, in the series
Sq, M only so high that Jop(z) € 10-9 for all p > M. A glance
at tables of Bessel functions (**) enables us to construct a
graph to serve as a guide in choosing this value of M, given a
value of z, Roughly speaking, the graph shows that a sufficient
value of M is given by M = & z + 6. The graph is reproduced
below in PFigure 1.

9. Now we must attend to the second question, that of
approximating the infinite continued fractions which appear in
every term of the series ( 6 ). Notice that by repeated use of
the functional relation ( 4 ) we may easily compute all of the
Fn if we already know one of them, Also notice that the higher
tﬁe subscript n, the more rapidly Fnp counverges. Thus our pro-
cedure 1is very simple: we determine what the highest oceurring
subseript is, compute the corresponding F from its form as a
eontinued fraction, and then compute all other F's from it by
means of the relation ( 4 ). The computation of the highest P,
say Fp s 1s straightforward. Written out explicitly, Pp is:

Fp = —XpXp+l
1 - xﬁ1x2+2
1 Xp+2Xp+3
1- xp+3xp+4
1 -

The first step is to comgute only the first level, xgx2+1. If it
is already less than 10-©, then F = 0 is a sufficiefitly accurate
approximation. If not, then the second level is included and the
fraction computed to this approximation. If the_inclusion of the
second level makes a difference of less than 10-8 in the

(*)This estimate was arrived at by inspection of the Tables of
Bess¢l Punctions of the First Kind (Harvard Univ, Press, 1947-
1951). Here are tabulated Jo to Jj335 for O € z < 100.

(#*)Very convenient for this purposé is a table in Jahnke & Emde,
Tables of Punctions, 4th ed. (Dover Publ., New York, 1945),

pp. 171-179. 5
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single-level result, then Fp = XpXps] 18 good enough; and so on
until the inclusion of gne more Eevel affects the preceding
result by less than 10-®, The only remaining matter, the
determination of the highest occurring subscript, is easily
settled. If we are computing Jy(z), and have decided to keep M
terms in the series ( 6 ), then the larger of N and 2M will be
the largest subscript.

EXAMPLES OF NUMERICAL COMPUTATION

10. On the following pages we display some results obtained
by machine, computation of Bessel functions using the continued
fraction method described in this report. The labeling should
be clear. For a given value of z several different Jy's are
computed; then z 1s changed and the Jy's are computed again,
and so on. Most of the values have been checked so far as
possible against standard tables, in particular the Harvard
tables mentioned in Paragraph 8 , and no errors have been dis-
covered in the sixth decimal place. Only near the zeros of the
JN(z) are there errors in the seventh decimal place. 1In at
least one case, J35(10), there was no error until the twenty-
fourth decimal place.

© A
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J3é
UeT71294389E-C2

J24
-0.32381186E-C1

Ji2
C.14925331E-0C

J3é
0.34371736E~C2

Jch
0.78985297€~-01

J12
0.11998265E-CC

436
0.154T76045E-C2

424
¢+17043918E-0C

Ji2
~0438292769E~-C

336
0.64974047E~-03

J2é
0.22C87C99E-0C

Jiz
~0.12946655€E-00

J380
C.143935840-(0

Jie
0.15647528L~00

J¢é
0.486227345-02

Jic
0.10304804:-00

J1g
0.14137213F-CO

J6
U.12702166L-CO

J20
0.67665383€-01

J1R
0.39404874 -01

Jé
0.139336152-00

330
0.409359226E-01

Jie
~0.89281379.~-01

Jé
0.27127728£-01
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436
0.25380371E-C3

J24
C.22714347€E-0C

Jiz
-0.16109C37E-CC

436
0.91988669E-C4

J24
0.1997785CE-CC

Ji2
-0.72867787E-01

J36
0.30830362€-04

J24
0.15504220€E~CC

Ji2
0.72990114E-C1

J36
0.9%5162513€-05

J24
0.10782238E~C0O

Jlz
¢.17301857€~-CC

J20
0.22882923r-01

Jis
~-C.17521880F-00

Jé
-0.113660425-00

J20
0.118090265-G1

Jis
=~0.1T577267L-C0

Jé
-0.15870029F-00

Jao
€.562568110-02

Jie
-C.93111813L-C1

Jé
~0.645470055-01

420
0.246977241-02

JiB
C.34019047:-01

Jé
0.90859228r-01
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Jié6
0e26921725E-CH

J24
C.67729434E-C1

Ji2
0.15657871E-CC

Jie6
0.69409896E-C¢

J24
C.38570C37€~-C1

J12
0.32928689€-01

J36
C.16200121E~-Co

24
0«19929105€-01

Ji2
-0.11899064E-CC

Jae
0.33960712€-C?

J24
(+93306652€-C?

Ji2
~0.20%45822€-CC

10

J30
0.99634806:-~C3

J1¥
Ve 154921001 -CO

J¢
0.17325246:-C0

Ji0
C.36822633£-03

Ji8
C.23157261¢-00

Jé
C.10T7648617-00

J3c
0.124.15367-03

Ji8
0.25108984_-C0

Jé
-0.55.260677-01

420
037849146704

Ji8
0.22352316:-C0

Jé
~-0.17876715C-00
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d = 16

L =15

18

17
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J16
0.63352702E-C8

J24
0.3945R)132E-C2

J12
-C.17624115E~-00

J36
0.104G1692E-C8

J24
C.14996625€E-C2

J1e2
-0.48574816E-01

J36
Ce14835178E-CY

J24
0.50874504E-C)

Jie
0.11240C26E~-QC

J36
C.18091641E-1C

J2é
0.1%5266958€-03

Ji2
0.23666504E-CC

11

J30
0.10393653.-04

Jig
0.17062988t-C0

JE€
-0.15595619¢-C0O

J30
0.25460C677-C5

J1R
C.11381101:-00

Jé
0.715360815-03

436
0.55052391r-Cé

Ji®
C.66848081:-Cl1

Jé
0.166720735-00

J10
0.10374711¢-C6

J16
0.3462%9820-C1

36
020614970.-00
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Z =13

Z =12

=11
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436
G.18507218€-11

J24
0.405063892E-04

Jl2
C.28545026E-0C

J36
C.15512C68E-12

J24
0.90604634E~C5

Jie
0.26153687E-CC

J3é6
0.10345578E~13

J24
C.17332263E-C5

J12
G.19528018E~CC

J36
U.52908568E~-15

J24
¢.27382811E-06

Jie
0.12159979E-C0

12

Ji0
C.167754017 =07

J18
0.15768585F~01

Jo
0.61169156:-01

Jio
C.2282¢7857-08

Ji8
0.62693182(~-02

Jé€
-0.11803%067°-00

J30
0.25522593£-C9

Jie
0.21522497+-02

Je
=0.24372476F-00

320
0.227353R6F-10

J18
0.62803937:-03

Jé
-0.,20158397L-00
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J36 330
0.19782C72E-1¢ C.1551L9637-11
J24 31¢.

0.34632634E-C7

J12
C.63370255€E~01

J36
G.50778833E-18

J24
C.33643764E-CE

J12
0.27392689CE-C1

J3e6
0.82174473€-2C

J24
C.23727489E-0C9

J1e2
0.96238223E-C2

436
C.T74386530E-22

J24
0.11221933E-10C

e
C.26556201E-C2

0.15244249.-C3

Jé
-0.14458822F-C1

RELY
€.769215800-13

J18
0.29878891F-04

36
0.204316537-00

J3c
0.258310C3.-14

J18
045380943t ~U5

Jé
0.33757590€-00

J130
0.53172617:-16

JIR
0.50369681t-06

Jé
0.33919660.-00

13
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1=28.100

J2s
0.21628812E~CC

Jz3
C.62C0358C3¢-C1

Jz21
-0.1581502¢E~CC

1228.2C0
J25
0.213118C7€-CC

J23
0.50743326¢E~-01

Jza21
-0.1634€721E-CC

1=28.300
425
0.2095C394E~CO

J23
0.3932138¢€£-C1

J21
-0.1680387CE~CC

1=28,4C0
J2s
0.20544336E~-CC

Ja3
0.27806593E~C1

J21
~0.17184C53€E-(CC
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Jés
C.16293546£-CO

J2z
-6.61382186L~-01

420
~(<17499898¢t-00

Ji4
0.15501857£-C0

Jaa
~C.72245%61L-01

Jze
~0.17121604F~-CO

Jeeé
C.14670326t-0C0

J22
-6.82788836E-C1

J2¢
-0.16659742€~-CO

Jés
C.13800622£-C0

Je2
-0.929617365£~C1

420
-0.16116301&~-CO

14
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2228.500

228,600

1=28.700

1228.800

J25
0.20093555€E~CC

423
0.16236876E~C1

Ja1
-0.17485183E-CC

Jes
0.1959€0127€~-CL

J21
0.46512783E~C2

J21
-0.17705508E~CC

425
0.1905829CE~-CC

Ja23
-0.69102218E~-02

Jal
~0.17843643E-CC

425
0.10474452E-CC

J23
-0.18406720E-C1

Jeal
-0.17898568E-CC
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J26
0.12894€13.~-C0

Ja2za
-0.10273923¢-C0

420
~0.154913716C~00

J24
0.11954255£-C0

Ja2
-C.112062647F-00

Jao
~0.1479485CE~-CO

J24
C.10982C95¢-00

422
-0.12089£56¢~C0

J4c0
-0.14022993£-C0O

424
0.99802676F~01

J2a2
-0.12920229¢-00

420
-0.13181849¢-00

15



1=228.9CC

1=29.0C0

1=29.10C

2229.20C
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Je5
C.17847197€-CC

J23
-0.297196767€E-C1

Jal
-0.1786966CE-CC

425
0.17177282€-CC

J23
-C.41C38357E-C1

421
-0.17756689E~-CC

J25
0.16465648E~-CC

J23
-0.,5208923¢&€E-C1

Ja21
-0.17559832€E-CC

425
C.15713416€-CC

Ja3
-0.62907C39€E-C}

Jeal
-0.1727968CE-CO

Je4h
0.P9514854.~C1

Jaz
~0.13694223F-CO

420
-C.12275526£-C0O

Ji4
C.78985407c-C1

Ja2
-0.14408C73E-CO

Jeo
-C.113085137-00

Ji4
0.68243892L-C1

Jéz
-0.15G58426€~C0

420
-C.10285661¢t-00

Ja4
0.57321506L-C1

Jaez
-0,15642163C~-CO

Jac
-0.92121730£-C1

16
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1=29.300

1=29.400

1=29.5C0

1229.600
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Ja5
0.14921892€-CC

J23
~0.7344946¢€E-C1

Ja21
-0.16917239€~-CC

325
0.14092565E~-CC

J23
-0.836T4617E-C1

J21
-0.16473942E-CO

425
0.13227113€E-CC

423
-0.9354094¢E~-C1

J21
-0.15951632€~C0C

425
0.12327393€~(CC

423
-0.1030C777€~-C0

421
-0.15352579E~CC

J24
0.4625C942¢-C)

J22
-0.1615641CL-CO

420
-0.80935597t-C1

J24
0.3506€259£-01

422
-C-16596573:-00

420
~0.69356304€: 01

424
0.238C2924£-Cl

422
-C.169663381-00

420
-0.57444610£-C1

J24
0.12497460E-C1

422
-0.17257781¢~-CO

J2cC
-0.,45263553¢-01
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1=29.700

2229.8C0

1=29.900

1=30.000

425
0.11395445€-GC

423
~0.1120353CE~-CC

J21
~0.14679459E-CO

J2s
0.10433488E-CC

423
-0.12058486E-CC

Ja1
-0.13935354€~CC

J25
0.94439177E-C1

423
-0.1286191¢6€E-CC

J21
-0.13123744E~-CC

J25
0.84292965E-C1

J23
-0.136102%3€-CC

421
-0.12248487E-CC
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J24
0.11874785:-02

Jaz2
-Ce17471C17E-CO

420
-0.32878167E-C1
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