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ABSTRACT

Shock relations are established for the dense high temperature

gas, ( f-. IDI C T -' I O ' K  ) , introducing

relativistic concepts. It is assumed that the self-consistent static

electric field does not play a significant role in the shock relations.

From these relations, the heating effect due to the passage of

the shock waves through a degenerate gas is deduced explicitly, in-

dicating large heating effects. The results may be of significance

in understanding the supernova phenomenon.



I. INTRODUCTION

The Rankine-Hugoniot relations for shock waves are the conservation

relations for mass, momentum and energy of the flow in a continuous medium.

These have long been known for the case of the ideal polytropic gas.( I ) P. Lal

and P. L. Bhatnagar(2) have indicated one method for extending these relations

to the degenerate Fermi-Dirac gas. In this paper, we shall rederive these

relations for the F-D gas; we find that our results differ from those of Lal

and Bhatnagar, because the basic physical picture on which the derivation is

based is itself different.

Due to the extremely high mass density in the interior of a white

dwarf or a presupernova star ( Y - 10 6 , 109 gr./c.c.), the matter is com-

pletely ionized and highly degenerate even at temperatures of the order of

109 o K. The electron gas plays a dominant role, and it has been shown by

Landau(3 ) that an ordinary sound wave cannot propagate in a neutral degenera-

tive medium unless the temperature (in energy units) is comparable to the

Fermi energy. On the other hand, Landau has shown that in the presence of

interaction, a new propagation mode, termed zero sound, can exist.

It is our purpose to establish the shock relations for the dense

degenerate gas and to extract some of the physical features a shock wave must

have in such a plasma. We do not consider here how such a shock wave may be

formed, but assuming that shock waves of the zero-sound type exist, we inves-

tigate their properties.

We make the following approximation. The self-consistent static

electric field is not included in the distribution function explicitly. We

expect that the electrostatic energies in the front and rear regions of the

shock wave are of the same order of magnitude so that the contributions to

the enthalpy due to interaction energies will tend to cancel out. This

point should be studied and clarified in the future.
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The phase velocity of the zero-sound is of the order of the velocity

of light, for the temperatures and densities considered, and this property,

together with the conservation of the energy, gives a large heating effect,

perhaps as large as a factor of 20 in temperature. This heating process can

occur almost instantaneously due to the large propagation velocity of the zero-

sound.

Since the existence of zero-sound depends on an interparticle interac-

tion, we have examined the question of whether such an interaction alters the

form of the Rankine-Hugoniot relations. This study is presented in the Appen-

dix, where it is concluded that the form of these relations is unchanged.
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II.

We shall assume extreme conditions of density and temperature, cor-

responding to a presupernova core. We assume

s 109 gro/CoCo 4ensity of mass

T - 10 9  K. Temperature

Under these circumstances, the gas is completely ionized, but the electron gas

is strongly degenerate. The ion distribution is principally determined by the

requirement of electrical neutrality.

The conditions in (1) can be expressed most conveniently in terms of

new variables:

P= Fermi momentum)
"'m

a( Boltzmann constant)

and

EF( E = Fermi energy).k T

These parameters have the following numerical values:

=8 E =1 and A=45 (2)

6

The symbols m and c have their usual meanings: mc2 is the rest energy of the

electron.

Following S. Chandrasekhar() . one finds for the free electron gas

the pressure Pq number Ne, and internal energy U e

rt V- ,,I. 4 a3~~~ M (X)jPX
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with

fcv ~ '~XL~ cU~+)L~s4A4 Aj~(6)

V refers to the total volume. f(x) can be approximated as

f(x) - 2x' - 3x2  for x > 1 (8)

Compared to the above values for the electron gas, it can be shown

that pressue and intern4l energy of the ion gas are negligible. Furthermore,

the number of electrons Ne is related to the density of the gas as

No V (9)
LH

where gi is mean molecular weight per electron, and H is mass of the hydrogen

atom. The mass density is given by

H 3h 

Having in mind that x - 8 for the situation under considerationp one finds that

the internal energy of the gas per unit mass can be expressed as

P
It follows that the enthalpy of the gas of unit mass, i a U + - , can be

expressed as

2t- -3X2.+ 47F1! v('*I)t (12)

Regarding the gas as polytropic with poly-tropic index ( , one finds

(putting f-= 0)

.0__ O >> (33)
6 tX i, 7

In the limit x --, ,one finds approaches 4/3. It is known that in the
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limit x--* O, for which (13) is not valid, (approaches 5/3. Therefore, one

may state that the degenerate electron gas behaves approximately as a polytropic

gas for which r varies between 4/3 and 5/3, depending on the density, and

weakly on temperature.

The entropy of the gas is given as

S 1 (U + PV - NF), ()T

with F denoting the chemical potential. From the definition of the chemical

potential

F -- , (15)
dN

we deduce that

N io ion = e Felectron " N 9 , (16)

because ion and electron gas are bound to each other to satisfy the requirement

of electrical neutrality. We also find

3ion 0( , 6

so that the entropy of the gas can be represented simply by the entropy of the

electron gas. This is found to be (still neglecting E )

V Pir3jt%'C KaF

or

S- 7r K T _
44 HM (per unit mass) (17)

One normally defines the sound velocity as

Csound 6k)etoy(18)

From eq. (17)j, the entropy of the gas is a function only of x- Thus,



if S is held constant, it follows that

43) entropy

since P is a function of x only:

P - mc--- (2x- ) - (20)

Thus, we derive the fact that ordinary sound will not propagate through a

degenerate gas at zero temperature. This situation was pointed out, by Landau,

in discussing the zero-temperature Fermi liquid. In the presence of interac-

tion, Landau proved that there exists another mode, called zero-sound, which

propagates essentially with Fermi velocity.
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Let us now consider a one-dimensional shock.

Subscripts 1 and 2 refer to the front and rear regions of the shock, and q

denotes velocity of the gas relative to the shock region. From Moller's (6)

work, one can write the following equations expressing the conservation of

number of the particles in the flows momentum end energy in the front and

rear regions of the shock wave with respect to the coordinate system to which

the shock region is at rest#

16 & (particle number) (21)

tL4 ~ -_____ (momentum) (22)

It IZ:

si e y ea a(energy) (23)

Equation (23) can be rewritten as follows:

41 1 t - ____
(23a)

These relations, expressing basic physical conservation laws, must of course be

satisfied by the degenerate gas as well as the ordinary gas. The relativistic

conception is introduced in order for this formalism to be consistent with the

fact that the phase velocity of the zero-sound type shock wave is of the order

of the velocity of light.
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The enthalpy of the gas per unit mass, i, in eq. (12) may be written

rigorously to the lowest order in E, as

-mclL _ t j 2~

with

KT -

or

(704') (25)

From eq. (21), (22), and (25), one finds that

_ _ _ _ _ _ _ _ _ (26)

The right hand side can be approximated, an the asumption that, X have the

values given by eq. (2). a.

We then obtain,, solving for the temiperatures

So long as x2-xl > O, one obtains

It will be shown later that x2-x I > 0 is valid always for the physical pro-

cess. This leads to the conclusion that
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with x2-xl , 0. This implies that shock wave heats the degenerate gas and

raises its temperature by a factor of 10 or more for the case with

x2  1.02 x. It is interesting to note that a slight fractional increase in

the num.er density can produce a large temperature rise in the gas.

We now sho that

for the phyalcal process. From eq. (22) and (23a), one obtains

Xaking use of eq. (3) and (10), eq. (31) can be revritten as

or, from eq. (22),

Solving for q in eq. (21), one has

(34~)
.

Substituting l in eq. (34) into eq. (33), one finds that

- ~ 041 (35)

Assuming that

i + c 2  c 2 ,

the right hand side of eq. (35) can be simplified as
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or, by eq. (27),

1.1Thus,, eq. (35) becomes an follows:

-r".- " , ,H I "n hit
•' _ .... (36)

Consider first the case where

i) X2 > X

Equation (36) appears to be true because both sides of the equation become

larger than one and positive.

For the case where

ii) x2 <X 1

one finds that the left hand side is positive and less than one, while the

right hand side of eq. (36) becomes negative, yielding a contradiction. More

careful study reveals that when n, a n2P eq. (36) may hold true. However,

nI 1 n2 implies the case where

1 2
PI 1 P 2

which is, of course, unphysical, so that it should be discarded. Thus, one is

led to the condition

x2 - xI > 0 for the physical processes.

These results imply that the passage of the shock through the medium

increases the density, and greatly increases the temperature. The implications

for advanced-stage thermonuclear reactions seem clear.
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IV. CONCLUSION

It is found that the quantum nature of the neutral Fermi gas must

be taken into account in considering the prop.gation of an acoustic wave

through the gas. We find that a large heating effect is to be expected,

which agrees in principle with current ideas relating to supernova explosions.
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APPENDIX

The Rankine-Hugoniot relations are known to be jump conditions for

shocks, which can be derived by applying the three general principles --

conservation of mass, of momentum, and of energy -- to a column of gas in a

tube. It seems appropriate to begin with Boltzmann's equation as a basic

equation to describe the transport phenomena of degenerate gas.

Let us assume the column covers at time t the interval

a( t) x ( a1 (t), where ao(t) and al(t) denote the positions of the moving

particles that form the ends of the column, and the flow is supposed to be

continuous at the ends of the column. Furthermore, we assume that in the

moving column there is a point of discontinuity whose coordinate x- (t)

moves with velocity (t) - u(t).

Following Kadanoff and Baym( 5 ) , one has the following conservation

laws for degenerate gas:

< (mass) (1)

t)(moentum (2)

f.= - (energy) (3)

where <n(x,t)> is the number density of particles or quasi-particles*

averaged over the various momentum; that is

and (J(x,t)> is the current density of particles averaged over momenta,

We will use the terms particle or quasi-particle interchangeably, depending

on whether the medium is a Fermi gas or a Fermi fluid.
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' with E(p,x,t) total energy of a quasi particle. Here m is a mass of the

particle, U is the external potential, and J(xt) is the momentum stress

tensor, expressible as follows:

f4C~t Ip E1 )( (rx'~ -~ EC(;' (6)

With E (x,t), the energy density, given by

The function f(p,p-;x,t) is defined by

t'l' 7T - ,Ef,, ) (8)

which can be interpreted as the increment of particle energy at (px,t) due to

the addition of a particle at (p/,x,t). Finally

&c,,O V , E (?"X,t j- - ,4 (9)

Considering the limiting process where the length of column approaches

zero, one has generally equations of the form

-, I r . A-
As long as (xt) does not behave like a delta-function, one has

while the second term in eq. (10) yields always

• -~ A)-T.

The third term in eq. (10) yields

h. I IT'a- (12),,,.,°I g~l AP ,
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provided also that does not behave like a delta function. Therefore,

with the assumption

4(1)

eq. (10) gives

This is the jump condition we seek.

With the above reasoning, one gets from eqs. (1), (2) and (3), the

following relations, respectively:

j a. ) .ot (15)

(T ij (ai.,t)> =<T i1 (a., t) > (16)

<j, (al, t)> < CJ I (ao,t), (17)

Here al(t), ao(t) refer to the points front and rear of the discontinuous

shock region. We may also derive from eq. (1), together with the second law

of thermodynamics,

(s (av1 ,t)> < (is (a ,t) > (18)

where s is the entropy per particle. Consequently, in order to obtain the

Rankine-Hugoniot relations for a degenerate gas, one has to evaluate <J(x,t)> ,

<Tij(x9t) > <J. (x,t)> and (J(x,t)s(x,t)>, explicitly under the specific

conditions and interactions of the gas.

In the case of local equilibrium, one has

J - v(y,t) n( xt) v (19)

Tij - mVi(;tt) vj(*,t) n + SiJ P(Xt) (20)

and
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S- V2 n + ? ,, qt + E (tt} (21)

which oviously reduce to the conventional form of the Rankine-Hugoniot relations.

Thus, one is led to the conclusion that the Rankine-Hugoniot relations

have the same structure for a degenerate gas as for classical continuous media,

but that the terms should be expressed properly for the degenerate gas using

the specific interaction between the particles.
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