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SUMMARY 

In many engineering, economic, biological, and statistical 

control processes, a decision-making device Is called upon to 

perform under various conditions of uncertainty regarding 

underlying physical processes.  These conditions range from 

complete knowledge to total Ignorance.  As the process unfolds, 

additional Information may become available to the controlling 

element, which then has the possibility of "learning"' to im- 

prove its performance based upon experience; i.e., the control- 

ling element may adapt Itself to its environment. 

On a grand scale, situations of this type occur In the 

development of physical theories through the mutual interplay 

of experimentation and theory; on a smaller scale they occur 

in connection with the design of learning servomechanisms and 

adaptive filters. 

The central purpose of this paper is to lay a foundation 

for the mathematical treatment of broad classes of such adaptive 

processes.  This is accomplished^ through use of the concepts 

of dynamic programming. 

Subsequent papers will be devoted to specific applications 

in different fields and various theoretical extensions. 
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DYNAMIC   PROGRAMMING  AND  ADAPTIVE   PROCESSES—I: 
MATHEMATICAL  FOUNDATION 

Pilchard Bellman 
Robert  Kalaba 

1.     Introduction \ 

jriie-.p«r^>o«e--o-f'tJtl*s--Jpäper is 150 layi -a foundatlonAfor a 

mathematical  theory  of a  significant  class of decision pro- 

XAS A^U^JL-^ 

cesses which have not as yet been studied in any generality. 

These processes, which ■.will ""be described In some detail^ belcwj 

-wo shall call adaptive. 

They arise in practically all parts of statistical study, 

practically engulf the field of operations research, and play 

a paramount role in the current theory of stochastic control 

processes of electronic and mechanical origin.  All three of 

these domains merge in the consideration of the problems of 

communication theory. 

Independently, theories governing the treatment of pro- 

cesses of this nature! are essential for the understanding and 

development of automata and of machines that "learn." 

We propose to lillustrate how the theory of dynamic pro- 

gramming,  1 , can be used to formulate in precise terms a 
\ 

number of the compleji and vexing questions that arise in these 

studies.  Furthermore, the functional equation approach of 

dynamic programming enables us to treat some of these problems 

by analytic means, and to resolve others, where direct analysis 

is stymied, by coitiputatlonal techniques. 

In ^hla  prtp^r, general questions are treated in an abstract^r^'^n^ttv, 
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fashlon.  In subsequent papers, we shall apply the formal 

structure erected here to specific applications. 

2.  Adaptive processes 

We wish to study multi-stage decision processes, and pro- 

cesses which can be construed to be of this nature, for which 

we do not possess complete information.  This lack of infor- 

mation takes various forms of which the following are typical. 

We may not be in possession of the entire set of admissible 

decisions; we may not know the effects of these decisions; we 

may not be aware of the duration of the processes and we may 

not even know the over-all purpose of the process.  In any 

number of processes occurring in the real world, these are some 

of the difficulties we face. 

The basic problem is that of making decisions on the basis 

of the information that we do possess.  An essential part of 

the problem is that of using this accumulated knowledge to gain 

further insight into the structure of the processes, using 

analytic, computational and experimental techniques. 

From this intuitive description of the types of problems 

that we wish to consider, it is clear that we are impinging 

upon some of the fundamental areas of scientific research. 

Obvious as the existence of these problems are, it is not at 

all clear how questions of this nature can be formulated in 

precise terms. 

Particular processes of this type have been treated in a 

number of sources, such as the works on sequential analysis, cf. 
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Wald, Il4|; the theory of games, cf. von Neumann and Morgenstern, 

131; the theory of multi-stage games, cf. Bellman, [l]. 

Chapter 10; and the papers on "learning processes" of Flood, 

pj, [o ,  7 , Robblns, [ll , Karlin and Johnson, [öj. Bellman, 

2 , Bellman and Kalaba, j31• 

3.  The Unfolding of a Physical Process 

In order to appreciate the type of process we wish to con- 

sider, the problems we shall treat, the terminology we shall 

employ, and the methods we shall use, it is essential that we 

discuss, albeit in abstract terms, the behavior of the conven- 

tional deterministic physical system. 

Let a system S  be described at any time t  by a state 

vector p.  Let  t,,tp,...,  be a sequence of times, 

t-, < tp < •••,  at which the system is subject to a change which 

manifests itself in the form of a transformation.  At time  t,, 

p  is converted into  TTCPTK  at time  t ,  p2 = T1(p-,)  is 

converted into  T2(p2),  and so on, with the result that the 

sequence of states of the system is given by the sequence IPuf* 

where 

f1)      pk+l = TJpk^'     k ' l'2*-"   ' 

The state of the system at the end of time  t  is then 

given by 

(2)       PN+1 = VW'" ^(T^)).--)), 
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where p.  Is the initial state of S. 

If Tk(p)  is Independent of k,  which is to say, if the 

same transformation is applied repeatedly, then the preceding 

result can be written symbolically in the form 

(3)      PN+1 "= TV). 

The interpretation of the behavior of a physical system 

over time as the iteration of a transformation was introduced 

by poincare, and extensively studied by G. D. Birkhoff, |41, 

and others.  It furnishes the background for the application of 

modern abstract operator theory to the study of physical sys- 

tems, as, for example, in quantum mechanicsj of. von Neumann, 

12 1.  The Idea of usln^ this fundamental representation in 

connection with the formulation of the ergodic theorem is due 

to B. 0. Koopman. 

4.  Feedback Control 

With all this in mind, we are now able to introduce the 

concept of feedback control. 

Supposing that the behavior of the system as described by 

the foregoing equations is not satisfactory, we propose to 

modify it by changing the character of the transformation 

acting upon p.  This change will be snade dependent upon the 

state of the system at the particular time the transformation 

is applied. 

In order to indicate the fact that we now have a choice 
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of transformations, we write T(p,q)  in place of p.  The 

variable q indicates the choice that is made.  Consequently, 

we shall call it the control variable, as opposed to p,  the 

state variable.  To simplify the notation and discussion, we 

shall assume that the set of admissible transformations does 

not vary with time. 

If q.  denotes the choice of the control variable at time 

t,,  we have, in place of (3.1), the relation 

(1)      pk+l = T(pk'qk)'  k-1,2,..., 

with pM ,  explicitly determined as in (3-2). 

The associated variational problem is that of choosing 

qi *qp^ • • ■ .»qM so as to make the behavior of the system conform 

as closely as possible to some preasslgned pattern.  We wish, 

however, to do more than leave the problem in this vague format. 
a 

5.  Causality 

Turning back, for the moment, to the deterministic, uncon- 

trolled process discussed in ^3, let us note that the state of 

the system at time  tj, 1  is a function of the initial state of 

the system, and the number of transformations that have been 

applied.  Consequently, we may write 

(^       Pk+1 = '"kK)' 

where p^^ is the initial state of the system. 

For the sake of convenience, let us merely write p  in 
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place of p.,.  Then, the function  fk(p) 
ls easily seen to 

satisfy the basic functional equation 

(2)      f   (p) = f (f (p)),  m.n = 1,2,...   . 

This  Is  the  fundamental  se;nl-group  pix>perty of dynamical 

systems. 

6.  Optlmallty 

iVlth the foregoing as a guide, let us see if we can formu- 

late the feedback control process in the same terms. 

To illustrate the applicability of the functional equation 

technique, let us consider a finite process, of N stages, 

where it is desired to maximize a preassigned function,  ^,  of 

the final state of the system,  p .  This is often called a 

terminal control process. 

The variatlonal problem may now be posed in the following 

terms: 

(1) Max ^(PN)- 

This maximum, which we shall assume exists, is again a function 

of the initial state,  p,  and the duration of the process. 

Let us then introduce the function defined for all states p 

and N = 1,2,...,  by the relation 

(2) f (p) = Max ^(PN), 
q 
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where q represents the set  fq^^q^,...,qNj. 

Let us now introduce some additional terminology.  A set 

of admissiDle choices of the  q,,   q,^q^,...,q 1,  will be 

called a policy; a policy which maximizes ^(PM i ) will be 

called an optimal policy. 

In order to obtain a functional equation corresponding to 

(5.2), we invoke the 

PRINCIPLE OF OPTIMALITY.  An optimal policy has the 

property  that whatever the initial state and initial decision 

are, the remaining decisions must constitute an optimal policy 

with regard to the state resulting from the first decision. 

The mathematical transliteration of this statement Is the 

functional relation 

(3) fN(p) - Max f^dtp,^)), 

N = 2,3,••-,  with 

(4) f (p) = Max ^(TCp^qJ). 
ql 

Further discussion, and various existence and uniqueness 

theorems for the functions  •f1%(p)f  and the associated 

policies will be found In fll. 

In this way, the calculus of variations is seen to be a 

part of an extension of the classical theory of iteration, and 

of semi-group theory. 
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'(.     Stochastic Elements 

In order to treat questions arising in the physical world 

in precise fashion, it is always necessary to make certain 

idealizations.  Poremost among these is the assumption of 

known cause and effect, and, perhaps, even that of cause and 

effect in itself. 

To treat physical processes in a more realistic way, we 

must take into account unknown causes and unknown effects.  We 

find ourselves in the ironical position of making precise what 

we mean by ignorance. 

At the present time, there exist a number of approaches 

to this fundamental conundrum, all based upon the concept of a 

random variable.  Building upon this foundation is the theory 

of games. 

We shall discuss here oniy the direct application of the 

concept of stochastic processes, leaving the game aspects for 

a later date. 

The theory of probabilicjr in a most ingenious fashion 

skirts the forblddeifi region of the unknown by ascribing to an 

unknown quantity a dlatrlbuti^n of value» according to certain 

law.  Having taken this bold Step, it is further agreed that 

we shall measure performance not in terms of a single outcome, 

but in terms of an average taken over this distribution of 

values.  Needless to add, this artifice has been amazingly 

successful in the analysis of physical processes; e.g. 

atatlstical mechanics, quantum mechanics. 
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Fcllowlng this line of thought, we begin to take account 

of unknown effects by supposing that the result of a decision 

q Is not to transform p  into a fixed state  T(p,q),  but 

rather to transform p  into a stochastic vector z whose 

distribution function is dG(z,t,,q),  dependent upon both the 

Initial vector p  and the decision q.  Let us further suppose 

that the purpose of the process is to maximize the expected 

value of a preassigned function, $,     of the final state of the 

system. 

Before setting up the functional equation analogous to 

(6.3), let us review the course of the process.  At the Initial 

time, an initial decision q,  is made, with the result that 

there is a new state p,,  which is observed.  On the basis of 

this information, a new decision,  q„,  is made, and so on. 

It is important to emphasiae the great difference between 

a feedback control process of this type, in which the  q.  are 

chosen stage-by-stage, and a process in which the q.  are 

chosen all at once at some initial time. 

In the deterministic case, the two processes are equiva- 

lent, and it is only a matter of convenience whether we use one 

or the other formulation.   In the stochastic case, the two 

preceBSes are equivalent only in certain special situations. 

We shall be concerned here only with the stage-by-stage choice. 

The analogue of (6.4) is then 

This corresponds to the choice we have of describing a 
curve as a locus of points or as an envelope of tangents. 
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(1) f (p) = MaxV,^tz)dG(z,p,q), 
q  z 

and that of (6.3) Is 

(2) fN(p) = Max^
/7fN_1{Z)dG(z,p,q),  N = 2,3,... .* 

q  2 

This type of process has been discussed in some detail 

in [l]. 

6.  Second Level Processes 

Fortunately for the mathematician interested in these 

processes, the tale does not end here I  It turns out to be the 

case that in a number of significant applications, it cannot 

be safely assumed that the unknown quantities possess known 

distribution functions. 

In many cases, we  must face the fact that we are dealing 

with more complex situations in which far lees is known about 

the unknown quantities.  For a diacussion of the importance 

of these processes in the general theory of design and control, 

see McMillan,  9 ; for a discussion of the dangers and diffi- 

culties inherent In any mathematical treataient, see Zadeh, 

[13]. 
A first attempt in salvaging much of the structure al- 

ready erected is to assume that the unknown quantities possess 

» 
The descriptive version of this equation, when no con- 

trol is exerted, is, of course, the Chapman-Kolmogoroff 
equation, the stochastic analogue of (5-2). 
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flxed, but unknown, distribution functions.  Regarding deter- 

ministic processes as those of zeroeth-level, and the stoch- 

astic processes described in |7 as first-level processes, we 

shall refer to these new stochastic processes as second-level 

processes. 

Although it is clear that we now possess a systematic 

method for constructing a hierarchy of mathematical models, we 

shall restrain ourselves in the remainder of this paper to the 

discussion of second-level processes. 

9-  Additional Assumptions 

Some further assumptions are required if we wish to pro- 

ceed from this point to an analytic treatment.  These are 

I.  We possess an a priori estimate for the distribution 

function governing the physical state of the system, 

which, until further knowledge 1» acquired, we regard 

as the actual distribution. 

II.  We possess a set of rule» which tells us how to modi- 

fy this ä priori distribution so a» to obtain an a 

posteriori distribution when addltloxiai information 

is obtained. 

III.  We possess an ä priori estimate for the distribution 

functions governing the outcomes of decisions, which, 

until further knowledge is acquired, we regard as the 

actual distribution, and, as above, we know how to 

modify this in the light of subsequent information. 
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In this paper, we restrict ourselves to the case of known 

physical states. 

In formal terms, our state vector Is now compounded of a 

point In phase space,  p,  and an Information pattern, 

dG(z,p,q).  As a result of a decision q^,,  there result the 

transformations 

(1)      P0      —> P-L (observed) 

dG(z,p*,q)-^ dH(z>p*,q;p0,G,q1,p1)  (hypothesized). 

On the basis of these assumptions, and considering a con- 

trol process which continues in time as described in ^7, we 

wish to pose the problem of determining optlmai policies.  For 

the first time, »c ajp« considering adaptive pw>cesse» signifi- 

cantly different fTOm those of the usuai detenniniatic or 

stochastic control process. 

10.  Functional Equation» for Socond-level processes 

As before, we Introduce the function 

(1)      fN(p;0(z,p»,q)) » the expected value of ^(pN,QN) 

obtained using an optimal policy 

for an N-stage process starting 

in state  (p,G). 

Depending upon the objectives of the process, only one or the 

other of pM and  GN may enter into jzC.  Examples of both 

extremes abound. 
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Argulng as in the preceding sections, we see that the 

basic recurrence relation Is 

(2) fN(p;G(z,p*,q)) 

= Max^ f   (wjH(z,p*,q;p,G,q1,w))dG(w,p,q1), 
q;L w 

for N = 2,3,...,  with 

(3) f-^piG^p^q)) 

= Maxy7p(w,H(z,p»,qjp,G,q1>w))dG(w,p,q1). 

^1 

These equations are quite useful In the derivation of 

existence and uniqueness theorems concerning optimal policies, 

return functions, and In ascertaining certain structural 

properties of optirftal policies; cf.  1 , I2]« 

If, however, we treat processes which are too complex for 

a direct analytic approach, as is invariably the case for 

realistic models, we wish to be able to fall back upon a compu- 

tational solution.  The occurrence of functions of functions, 

e.g. the sequence  if (p;G){,  effectively prevents this. 

11.  Further Structural Assumptions 

In order to reduce the foregoing equations to more 

manageable form, let us assume that the structure of the actual 

distribution is known, but that the uncertainty arises with 

regard to the values of certain parameters. 
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At any stage of the process. In place of an a priori 

estimate,  G(z,p,q),  for the distribution function, we suppose 

that we have an a priori estimate for the distribution function 

governing the unknown parameters.  Again, a basic assumption is 

that this distribution function exists. 

The functional equations that we derive are exactly as 

above, with the difference in meaning of the distribution 

functions that we have Just described. 

12.  Reduction from Functionals to Functions 

We are now ready to take the decisive step of reducing 

f (p,a)  from a functional to a function. 

It may happen, and we will give an example in a moment, 

that the change in the distribution function, from G(z,p,q) 

to  H(z,p*,q;p,G,q1,w)  is one that can be represented by a 

point transformation.  This will be the case if G and H are 

both members of a family of distribution functions K(z;a) 

characterized by a vector parameter a.  Thus, if 

(1) G(z,p,q) s K(z,p,q;a) 

H(z,p*,qjp,Q,q1,w) s K(z,p,q;ß), 

the change from G to  H may be represented by 

(2) ß = YtP^q-^w). 

Then we may write 
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(3) fN(p,G(z,p,q)) = fN(p;a), 

and (10.2) becomes 

(4) fN(p;a) - Max/
7 f  (w;ß)dK(w;a). 

q1 w 

The dependence upon q.  Is t»y way of (2). 

13.  An Illustrative Process—Deterministic Version 

Let us now show how these ideas may be applied to the 

study of control processes.  Consider a discrete scalar recur- 

rence relation of the form 

(l)      u  n=au + v .  urt=c. v '       n+1    n   n'   0 

Here  u  is the state variable and  v  is the control varl- n n 
able.  Suppose that the sequence  (v } is to be chosen to 

minimize the function 

(2) lu 1 + b Z u£, 
N    k=l K 

subject to the constraints 

(3) WJ < r,  i - 0,...,N - 1. 

Although the precise analytic form of the criterion 

function is of little import as far as the present discussion 

is concerned, we have used specific functions to make the 

presentation as concrete as possible.  Furthermore, the defining 

equation need not be linear. 
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This  Is  a  simple  example of a deterministic  control pro- 

cess.     Introduce the   sequence of  functions  defined by the 

relation 

N 
(^) fN(c)       Min 

lVli 
|u   |   + b  Z ug 

" k:=l K 

where    N    takes on the  values     1,2,...,     and    c     any  real 

value. 

Then 

(5) f-Jc)   =  Min 
lvol<r 

|ac  +  vJ   + b(ac  + vn) 
0 

and  for    N ^>  2,     the  principle of optimality yields  the 

relation 

(6) f (c)  = Min b(ac +  v   )* +  f^rAac  + v   ) 

14.  Stochastic Version 

In place of the recurrence relation of (13.1), let us 

introduce a stochastic transformation 

(1) un+l = 
aun + rn + vn'  u0 = c- 

Here  (^ ]  is a sequence of independent random variables 

assuming only the values  1  and 0.  Let 

(2) r = 1 with probability p 

= 0 with probability  1 — p. 
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The quantity p  Is known, and for simplicity taken to be Inde- 

pendent of n,  although this is not necessary. 

We now wish to minimize the expected value of the quantity 

appearing in (13.2).  This is now a stochastic control process 

of the type described above In general terms.  Call the minimum 

expected value  f (c).  Then, following the procedures of ^7, 

we have the relations 

(3)  Mc) = Min 
lvoKr 

Min 

(/* [lac + vo + ro^ + b(ac + ro + vo)2 ^(^ rn L J 

ac + 

(1 - P) 

v0 f M + b^ac + V0 + 1^ 

|ac + v0| + b(ac + v0)
, 

and, for general  N, 

(4)  fM(c) = Min N I vol <1 
b(ac + v0 + I)

2 + fj^iCac + v0 + 1) 

^l + (1 - p) b(ac i- vn) + f„ ^(ac + v o N-l' 

15.  Adaptive Control Version 

Let us now consider the adaptive control version.  We are 

given the information that the random variables  r  possess 

distributions of the special type described above, but we do 

not know the precise value of p. 

We shall assume, however, that we do possess an a priori 

distribution for the value of p,  dG(p),  and that we possess 
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a known  rule  for modifying  this a priori  distribution on the 

basis of the observations  that  are made as  the process  unfolds. 

If we observe  that  over the past    m + n    stages,   the 

random variables have  taken on    m    values of    1    and    n 

values  of    0,     we  take as our new a priori  distrioutlon the 

function 

f1) dGm,n(p)   = P^1 - pfdGCp)/^1  pm( 1 - p)ndQ(p), 

a Bayes approach.* 

Once we have fixed upon a choice of G(p),  the ä priori 

distribution function at any stage of the process is uniquely 

determined, from the foregoing, by the numbers m and n. 

This simple observation enables us to reduce the information 

pattern from that of the specification of a number, or vector, 

in general, plus a function G „(p)>  to that of the specifl- 
ill f ii 

cation of three numbers,  c and the two integers m and n. 

In thjs way, we reduce the problem from one requiring the 

use of functionals to one utilizing only functions.  This is 

an essential step not only for computational purposes, but for 

analytic purposes as well. 

Let us then introduce the sequence of functions 

|fM(c,m,n)l  defined once again as the minimum expected value 

of the quantity in (13.2), starting with the information 

pattern of m ones and n zeros,     and state  c. 

Then 

 g  
This ia an assumption of the type called for in &9. 

Although reasonable, it is not the only one possible.  There 
are analytical advantages in choosing G to be a beta 
distribution. 
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(2)  f (c,m,n) = Min m,n b(ac + v0 + 1) + \a.c  + v0 + l|j 

+ ^ - Pm,nUb(ac + v0^ + ^ac + vo'] 

where p    Is the expected probability using the probability 
ill f ** 

distribution in (1), i.e.. 

(3) m,n 

/l  pm+1(l-p)ndG(P) 
0   

"Z1   pm(l-p)ndG(P) 

For N ^ 2,  we have the recurrence relation 

(4)  f (c,m,n) = Min 
lvol<r 

m,n b{ac f vn + 1)  4 0 

-f fN_l(ac + v0 +  1,m + 1,n) 

^-Pm^n^N^ + vo); 

+
 ^l(ac + vo'm'n + 1)] 

In this fashion, we obtain a computational approach to 

processes with general criteria and an analytic approach to 

processes with criteria of particular type.  A thoroughgoing 

discussion of the analytic aspects of the solution of processes 

of this nature described by linear equations and quadratic 

criteria will be found in a forthcoming doctoral thesis by 

Marshall Freimer. 
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Prevloua applications of these techniques may be found In 

[2] and [3]. 

lb.  Sufficient Statistics 

The fact that the past history of the process described 

in the preceding paragraphs can be compressed in the indicated 

fashion, so that functions rather than functionals occur, is a 

particular Instance of the power of the theory of "sufficient 

statistics;" cf. Mood,  10J. 

Many further applications of this important concept will 

be found in the thesis of Freimer mentioned above. 

In a number of cases, this compresaion of data occurs 

asymptotically as the process continues; e.g. the central 

limit theorem.  A number of quite Interesting questions arise 

from this observation. 

17.  Discussion 

in the foregoing pages, we have attempted to construct a 

mathematical foundation for the study of the many fascinating 

aspects of the field of adaptive control.  In further papers, 

we shall discuss a number of complex problems which arise from 

this approach. 

From the purely mathematical point of view, we are now 

able to contemplate a theory of continuous control processes of 

adaptive type, obtained as a limiting form of the theory of 

discrete control processes.  A variety of significant conver- 

gence questions are encountered in this way. 
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Furthermore, we can on the same foundations construct a 

theory of multi-stage games. 

Finally, the problem of computational solution is by no 

means routine, and there are a variety of Interesting approaches 

based upon approximations in function space and approximations 

in policy space to be explored. 

From the conceptual point of view, we must face the fact 

that there are many further uncertainties to be examined, in 

the state of the system, in the observation of the random 

effect, in the transmission of the control signal, in the 

duration of the process, and even in the criterion function 

itself. 
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