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INTRODUCTION

The impetus for study of close-in phenomena of buried explosions stems from a desire to

understand how the explosive disturbance generates stdlamic waves at distances far from underground

explosions. It is certain that the elastic waves produced are characterized by features of the initial

explosion and by properties of the propagating medium as well. Delineation of the characteristics of

the close-in disturbance provides insight into the manner of seismic wave generation by explosions, a

central aim of the Vela-Uniform Program.

The close-in region aboiut a buried explosion may be described as that in which wave propagation

is nonelastic. This close-in region may be subdivided into at least two distinct subregions which are

characterized by the manner of the medium's response to the explosive disturbance. In the region

immediately adjacent to the explosion where disturbance of the medium is intense, wave propagation

is by means of shock waves; this region is termed hydrodynamic or fluid. At distances farther

removed from the explosion center, the shock wave disturbance decays to such an extent that the

medium no longer responds as a fluid but not to the extent where the medium's behavior is yet elastic.

This nonfluid-nonelastic region i characterized by many possible complex phenomena whose details

are largely unknown. Processes such as yielding, plastic flow, crushing and cracking, phase changes,

anomalous compressibility, and viscosity are likely to be encountered in this region. In spite of the

vast number of existing experimental and theoretical publications xi these prmcesses, it is important

to realize that little Is actually known about these phenomena particularly as they may apply to under-

ground explosions. However, numerous and valuable data from measurements in the nonfluld-

nonelastic region about buried explosions await detailed theoreticl description, and from these, it is

hoped, we can glean information.

Significant progress has been made during the past two or three yearn in theoretical calculations

of the wave disturbance from buried explosions in the close-in region. Most strtig is the success

of these calculations for the disturbance in the hydrodynamic region. It seems certain that the general

featsires of shock wave propagation in the hydrodynamic region are correctly described by the theory.

However, quantitative agreement between theoretical predictions and data recently obtained from

measurements in the fluid region is not in every cae obtained, indicating that refinements in theory

are required.
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Understandably, much less progress has been made in detailed calculations of the wave disturb-

ance in the nonfluld-nonelastic region. This lack of success is principalk, a result of our ignormuce of

the medium's properties in this region. For this region a model of the medium is required which

describes its properties and dynamic behavior under the conditions created by buried explosions.

Criteria for dynamic yielding must be established, the influence of phase changes evaluated, the signi-

ficance of viscosity and strain rate effects determined, and other possibly significant phenomena

investigated before an adequate model can be obtained.

Once a realistic model is obtained, then the explosive disturbance may be theoretically described

throughout both the fluid and nonfluld-nonelastic regions to the point where the disturbance is elastic.

At that region in space about the explosion where the disturbance is described and where the medium

responds elastically, the explosion source characteristic# for seismology may be considered obtained.

At present, the greatest barrier to a fuller understanding of seismic wave generation from buried

explosions is the lack of knowledge of the medium's properties in the nonfluld-nonelastic region.

Much of the information required for construction of an adequate model can be obtained from laboratory

experiments. The remainder must come from direct measurement during full-scale explosion experi-

ments.

The research described in this report is an attempt to obtain some information about close-in

phenomena which will be helpful to the realization of objectives In the Vela-Uniform Program. Specific

alms of this research have beo the development of instruments capable of making measurement& in

the nonelastic region about buried explosions, investigation of medium properties of geologic solids

relevant to atudies of the close-in region, and development of a theory for description of spherical

wave propagatimi from buried exploalon.

Instruments developed are a peak shock pressure gage for measurement of 100- to 00-kilobar

shock pressures In sWlids and long-period. large-litude displacement gages for measurements in

the nonuid-nnnelastic region. All instruments develope have been tested In field experiments with

nuclear exoslona under condblions for which they wore desipe. The tests have been success al

and the Instruments developed are currently bn uased to collect data from experiments with buried

nuclear e plosions.

Medium properties Invelgatled have been Huanelots and the lhamlot elastic Uznls of geologic

materials. Hutmuo of volfnal tuff and two tp of porous sou have ben mesered. Also the

lotlusace of porosyll and water contmn en the Himmlots of porow media has been examhed. Hie

_
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elastic limits have been investigated by means of a new technique employing quartz piezoelectric

crystals to measure directly the strss-time profiles of finite amplitude waves in rock specimens. By

this technique some qualitative information has been obtained from measurements of stress wave pro-

files in granite, basalt, and halite.

A phenomenologlcal description of spherical wave propagation from buried explosions has been

developed and compared with experimental data. The express purpose of this effort has been to obtain

a simple analytical description without resort to the formidable difficulties of a more rigorous mathe-

matical approach and without detailed consideration of the numerous possible complex phenomena

which occur in the close-in rgion. O itrctives were to obtain, in terms of a few parameters which

characterize gross properties of media, expressions for the decay of wave pressure with distance

which could then be compared with numerous available data. Calculations have been compared with

data from both nuclear and chemical explosions in granite, halite, volcanic tuft and desert alluvium

over the complete range of pressures found ir. all regions from the hydrodynamic to the elastic. The

results of calculation are prese-atly is accurate as those of other- methods.

0-t
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Section 1

HYDRODYNAMIC SHOCK PRESSURE GAGE

A. J. Chabai, R. C. Bass, and H. L. Hawk

Background

The purpose of developing an instrument that can measure pressures of amplitude from 0.1 to

I megabar (100 thousand to I million atmospheres) is to obtain data on the shock wave decay with

distance in the hydrodynamic region about buried explosions and to provide information for the evalua-

tion of theoretical calculations. Conventional pressure gages can not operate at the extreme pressure

levels associated with shock waves in solids, nor are their principles of operation generally applicable

for extension to the high pressures in question. Indeed, the material of which the gage is constructed

may be a significant perturbation on the shock wave whose pressure is to be measured. At shock

pressures of 0.1 'to I megabar all materials suffer a large compression and so any transducer will

have its physical form drastically altered; in short, it will be destroyed by shock waves. The extreme

pressures and high accelerations associated with shock waves present a difficult environment for any

transducer. Clearly any transducer in this environment must complete its measurement before it and

its component circuitry and cabling are destroyed.

Of the five hydrodynamic quantities - pressure, density, temperature, particle velocity and shock

wave velocity - which characterize any shock wave, the one most susceptible to direct measurement is

shock wave velocity. Particle velocity comes next in case of measurementc Pressure and temr"-rature

behind shock waves in solids have never been directly measured. While direct measurements of

density behind shock waves in solids have been made by flash-X-ray techniques in laboratory experi-

ments the method is not considered feasible for use in a field gage.

The boundary conditions at a shock front specifying conservation of mass and momentum contain

the four unknown hydrodynamic quantities - pressure, density, particle velocity, and shock velocity.

If any two of these can be measured, then the remaining two quantities are determined by the conserva-

tion equations. In laboratory experiments 1 on shock waves in solids, shock velocity and particle

velocity are measured; shock pressure and density are then inferred from the conservation equations.

*From measurements of free surface velocity particle velocity is inferred (see Reference 1).
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This laboratory technique has been adopted by Lombard in development of a peak shock pressure gage

1for field use. Another laboratory technique used to determine hydrodynamic quantities behind shock

waves is the impedane c-mismatch method. In this method use is made of some material whose

tlugoniot is known, and measurement of only one quantity, shockvelocity, is required in order to infer

pressure, density, and particle velocity. Since shock velocity is more easily measured than particle

velocity the principles of the impedance-mismatch technique have been chosen for the development of

the peak shock pressure transducer described in this report.

Other methods for measurement of peak shock pressures, employing new and different principlesi

are currently being investigated. For example, Lombard3 has made use of electric current released

by Lucite under the influence of shock pressure. It is found that over a certain range of shock pressures

the peak current released by Lucite is directly proportional to peak shock pressure.

Research is also being conducted to develop shock pressure gages capable of measuring pressure

as a function of time behind the incident shock fronts. Significant progress along these lines has been

made. Keough and Bernstein 4 have employed a technique where the changes in resistance of a wire

over which a shock wave is passing are related to the pressure changes behind the wave. Manganin

wire appears to be the most promising sensor. The percentage increase in wire resistance is a linear

function of shock front pressure over the range investigated (10 to 150 kilobars). Measurement of

pressure-time history behind a shock wave can be made for times of the order of tens of microseconds

before the gage is destroyed.

Another gage being developed 5,6 for measurement of shock wave pressure-time profiles consists

of a disk-shaped cell filled with distilled water into which two silver electrodes are inserted. Applying

a potential to the electrodes and passing a shock wave through the cell results in an output signal which

varies directly with incident shock pressure and directly with the initially applied potential. No signal

is observed with zero applied potential. Pressure-time waveforms are observed for periods of 10 to

20 psec and have shapes similar to those obtained with the manganin resistance wire gage.

While not all of the pressure gages currently under development have been extensively tested in

field experiments, their eventual use ,v ill provide much information about wave propagation in the non-

elastic region about buried explosions.

As a result of research activity in shock pressure transducers, roughly 25 measurements of peak

shock pressure have been successfully performed during the past two years in the hydrodynamic region

t '



about buried explosions. The measurements weie made using the impedance-mismatch gages and the

Lombard2 gage. Shock pressures recorded 7 ,8 ,9 have been from 20 to more than 600 kilobars in granite,

volcanic tuff, and desert alluvium. These pressure measurements have yielded valuable information

and, together with independent measurements of shock wave position as a function of time, provide the

basis for confidence in the theoretical description of shock wave propagation in the hydrodynamic region

about buried explosions.

Impedance- Mismatch Shock Pressure Gage

Conservation of momentum and mass at the front of a shock wave are specified by the equations1

P Z p Vu (1.1)

and
pO V = p(V-u), (1.2)

where P, p, and u are respectively pressure, density and particle velocity behind the shock wave,

V is shock velocity, and p is the density of the medium into which the wave progresses. In Equations

1.1 and 1.2 it is assumed that the medium is at rest, u° = 0, and that ambient medium pressure, Po'

is essentially zero. The increase in internal energy, E-Eo, is given by

E- E = IP i~) (1.3)

The Hugoniot of a material is a relationship between P and p and represents the locus of the

thermodynamic states which can be attained in the material by means of shock waves. Every material

has a unique Hugoniot. From laboratory experiments 10 it has been found that for most solids shock

velocity is a linear function of particle velocLty over a wide range of shock pressures,

V = C+ Su . (1.4)

Eliminating velocities in Equations 1.1, 1.2 and 1.4, the Hugoniot is obtained in terms of the

material constants pop C and S:

p o2Pp(P 0P)P oS S I0 ] 0 1.5)

jPS-P(S-l 2
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By eliminating shock velocity from Equations 1.1 and 1.4 another form for the Hugoniot can be

expressed in terms of pressure, particle velocity, and the material constants:

P = po(C+Su)u (1.6)

The principle of operation of the impedance-mismatch gage is an extension of well known1

laboratory techniques and is illustrated by the following example. Consider a plane shock wave

progressing through a medium whose Hugoniot is unknown, and assume that this incident wave

encounters two or more different materials of known Hugoniot in its path (see Figure 1. 1).

P I V Material
2

Medium
Pl Material

P ~0
0 Material

u Po 3

u =0
0

Figure 1.1 Shock Wave Incident on Dissimilar Materials

At the interfaces of the materials with known Hugoniots, shock waves are transmitted into these

materials and waves are reflected back into the medium. By measuring the shock wave transit times

through materials 2 and 3, shock pressure in each material is determined since their Hugoniots are

known. This information together with a measurement of the incident shock velocity allo)ws the

incident shock pressure to be inferred.

The known Hugoniots (Equation 1.6) of materials 2 and 3 of Figure 1.1 are illustrated in Figure 1.2

together with the medium Hugoniot, 1, considered unknown. From the shock-wave transit-time

measurements in materials 1, 2, and 3 we obtain shock velocities, and with the known values of

material densities, shock impedance, po V . is determined for each material.

By Equation 1.1 it is seen that shock impedance is represented by a line of slope poV passing

through the origin of coordinates in Figure 1.2. Since the momentum equation must be satisfied and

since the pressure of the shock wave must be given by one of the points on the Hugoniot curve, the inter-

section of the line of slope p0 V with the medium Hugoniot curve determines the pressure and particle

velocity of the shock wave whose Impedance is p 0 V. This point of intersection is given by the solution

14



of Equations 1. 1 and 1. 6 once p0V has been measured. It is because the Hugonlots of materials 2 and 3

are known that pressures P2 and P and corresponding particle velocities u2 and u3 may be obtained

from shock transit time measurements in these mazerials.

P

0 0a (2)

,((3)

( ) /

\/1

P2' (PoV)01 :

/ (3 1

/ \/

IPI 1 rnP 3

.2 u1 3

Figure 1.2 Illustration of Peak Shock Pressure Determination From
Pressure-Particle Velocity Diagram

Now the transmitted pi 3ssures and particle velocities established in materials 2 and 3 are

determined by the strength of the incident shock wave in the medium material, 1. Since the shock

impedances of materials 2 and 3 differ from the medium impedance, the transmitted shock pressures

will be different from those of the incident shock and waves will be reflected back into the medium

material at the interfaces. Applying the conservation equations to the system of waves resulting after

the incident shock passes an interface, it is found that pressure and particle velocities of a reflected

wave must lie on a curve called the wreflection Hugoniot." 1Of 1 2 This curve, illustrated by Ir for the J

medium material in Figure 1.2, represents the reflected wave traveling in a direction opposite from

the incident wave and determines the locus of states, (P, u), which may be attained by reflected waves i

starting from the shocked state, (PI, ul)I From the boundary conditions that pressure and particle

15
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velocity must be continuous across an interface, itis seen that the intersection of curves Ir and 2 of 3
figure 1.2 determines the values of pressure and particle velocity for both the transmitted and reflected

waves at the interface between materials 1 and 2. In this case it is seen that the reflected wave is a

shock wave (P 2 > P1 ) since the shock impedance of material 2 is greater than that of the medium

material. Similarly, considering materials I and 3, it is seen from Figure 1.2 that from this interface

a rarefaction wave (P3 < P ) is reflected since (p V) 3 < (p V).

It is found I experimentally that within a few percent the reflection Hugoniot, I r, is the mirror

image of the Hugoniot curve, 1, about the line u = u. Consequently the reflection Hugoniot may be

expressed as

P po [S(2Ul-U)2 + C(2u-u)] (1.7)

The points (P 2P u2 ) and (P 3 u 3), establi3hed by shock transit time measurements in materials 2

and 3, are also points on the unknown Hugoniot of the medium (noted by open circles in Figure 1.2).

The impedance-mismatch gage can make use of this fact in obtaining information on the Hugoniot of the

medium material.

If materials 2 and 3 are chosen to have a higher and lower shock impedance than the medium as

shown in Figure 1.2, then the incident shock pressure may be estimated by interpolation as that

pressure, P1m' determined by the intersection of the line of slope (poV)I and a line joining the points

(P 2# u2 ) and (P3 u3 ) on the Hugoniot of materials 2 and 3. If the two materials of known Hugoniot both

have higher or lower shock impedances than the medium, then an extrapolation procedure may be

employed to establish Plm ' The interpolated pressure, Plm' will, as seen in Figure 1.2, always be

greater than the incident shock pressure, PI; however, it is found empirically from examination of the

interpolation procedure for various combinations of materials 1, 2, and 3 and for various incident

pressures, PV. that the difference between P1m and P1 resulting from interpolation will, in almost

every case, be much less than the maximum combined percentage error (25 percent) expected from

other sources in the measurement process. A 10 percent error appears to be a more realistic error

incurred in P1 by a straight line interpolation procedure.

Once P and also u are obtained Equation 1.7 and the points (P 2 . u2 ) and (P 3. u3 ) may be
Im im 2

utilized to estimate the unknown Hugoniot of the medium. Since medium density Pol in known and ulm

has been obtained, the two unknown constants, S1 and C1, which determine the medium Hugoniot

"c.
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I7
(Equation 1.5), may be evaluated. This procedure gives at least an estimate of the Hugoniot in the
vicinity of the pressure, P From similar measurements of shock pressure at different levels of

the incident pressure, P1 (at different distances from an explosion), additional Hugoniot points and

values of C and S near the pressure P1 are obtained, which, when all taken together, provide an

estimate of the in situ medium Hugoniot curve (curve 1 of Figure 1.2) over the range of measured

pressures.

It must be emphasized that the impedance-mismatch method of measuring shock pressures is

strictly applicable only to strong shock waves. At lower wave pressures where, for example, phase

changes may be induced in the medium material, the Hugoniot (curve 1 in Figure 1.2) will have a cusp

or point of inflection, and the reflection Hugoniot (curve lr) will likely not be the mirror image of the

Hugoniot, particularly that portion of the reflection Hugonlot which joins the initial shock point (P1 . u1 )

with a lower impedance point such as (P3 ' u3 ) in Figure 1.2. Fortunately, it appears from presently

available data that even marked phase changes induced by shock waves in geologic materials do not

produce marked cusps or deviations from a smooth (P-u) Hugoniot curve (Equation 1.6) whose C and S

values are evaluated by strong shock measurements. In addition, that portion of the reflection

Hugoniot joining points such as (PV u ) and (P3' u 3) in Figure 1.2 is actually an adiabat which is

absolutely unknown for geologic materials and which, more than likely, has no inflection points as does

a Hugoniot with phase changes. The observation that a Hugoniot curve in the P-u plane is not grossly

altered from a continuous curve as given by Equation 1.6 by phenomena such as phase changes, and the

qualitative belief that the adiabatic portion of the reflection Hugoniot will be a continuous curve and

nearly equal to the mirror image of the Hugoniot, tend to be compensations for errors incurred in

Plm when an impedance-mismatch gage is used at pressure levels where phase changes may occur.

Until more precise methods are available for measuring shock pressures, it is felt that the impedance-

mismatch technique will provide reasonable values of incident shock pressure even at pressures where

phenomena such as phase ehanges cause cusps or departures from a smooth Hugoniot curve.

To test the impedance-mismatch method of determining incident shock pressures, laboratory

experiments were conducted in which 2024 aluminum (whose Hugoniot Is known 1) was used to represent

the medium. Brass and Plexiglas were used as the mismatch materials 2 and 3 of known 10, 13

Hugoniot. Plane shock waves were generated in the aluminum using TNT and Composition-B explosives.

The 210-kilobar shock from TNT and the 350-kilobar shock from Composition-B expected in aluminum

were measured by the Impedance-nismatch method with errors of about 5 percent.
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As envisaged for field use in drill holes radial to an explosion center the impedance-mismatch

gage will hve a large circular disk (Figure 1.3) cut from rock cores taken at or near positions in the

medium where pressure measurements are desired.

MEDIUM MA ERIAL

SHOCKWEWAVE

IN DETECTORS

(13,,,s;

Figure 1.3 Schematic of Impedance-Mismatch Gage Assembly

A typical arrangement of the basic elements for an impedance-mismatch gage is shown in Figure

1.3. On the flat surface of the large circular disk of medium material (8 inches in diameter and 1 to 2

inches in thickness) are mounted three smaller disks (dimensions 1-1/2 inch diameter and I cm thick).

The two disks of mismatch material and the small disk of medium material have their centers on a

circle of 1-1/2 inch radius and are spaced 120 degrees apart. Diameter-to-thcknse ratio of the small

disks must be about 2 or more in order to avoid the influence of edge effects 1 0 on detectors as the shock

wave progresses through the disks. Shock wave detectors are placed at the center of the back face of

each of the small disks (numbered 1. 2 and 3 in Figure 1.3). In addition, three shock detectors

(numbered 4, 5 and 6) are placed on the back surface of the large disk. These latter three. mounted on

is
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a circle of 3/4-inch radius, are spaced 120 degrees apart and located symmetrically to the small disks

as shown in the figure.

Detectors 2 and 3 each in combination with any one or all of the dt'ectors 4, 5 and 6 serve to
determine shock transit times in the mismatch materials. Detector 1 with 4, 5 or 6 establishes transit

time in the medium material. Thus, for example, in the case of a normally incident plane shock wave,

the impedance slopes, (p oV)l. (PoV) 2. and (poV) 3 , required n Figure 1.2 for determination of medium

shock pressure, may be obtained from transit time measurement of detector combinations 1 and 4,

2 and 5, and 3 and 6, respectively.

When the incident wave is not normal, correction for tilt (angle between the longitudinal axis of

the large medium disk and a normal to the plane of the incident shock wave) must be made. It is for the

purpose of measuring shock tilt that three detectors, 4, 5, and 6, are used on the large medium disk.

Detectors 4, 5, 6, and 1 form a set of four noncoplanar points which in principle are sufficient to

determine both degree of shock tilt and shock velocity in the medium material.

Consider, for example, a plane wave incident on the shock gage and tilted with respect to the

longitudinal axis of the gage of Figure 1.3. Suppose that detector number 4 first senses the shock wave.

Construct a cartesian system of coordinates with the center of detector 4 as origin and with one of the

coordinate axes parallel to the longitudinal gage axis. Then from the four equations

vat14 , Ax 1 4 cosa I + &Y1 4coOO 2 + &zl4COo*3

Vat54 Ax 54cosaI + Ay 54cosa2 +Az 54cos 3

VAt64 8 Ax 6 4 Cs I + AY64cosa2 + bz6 4 cosa 3  (1.8)

1 a cos a I  +cos a2  +  coo 3  #

incident shock velocity. V. and its direction cosines cooasI coa 2, and coae 3 may lie determined in

terms of the known positions of detectors 1, 5 and 6 with respect to detector 4 and in terms of Ino

measured time differences At 14 . At 54, and At64. A solution of t.e equations is pomiible only it the

four detectors are not coplanar. It in assumed that a field gage can be located with some degree of

accuracy so that shock wave tilt will not be too great and so that possible shock wave retraction effects

will be neglible.
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For experiments in which drill holes radial to an explosion center are not feasible but in which

vertical drill holes to the depth of an explosion center are available, the Impedance-mismatch gage can

be a rectangular slab with elements mounted on the back face in a manner similar to that shown in

Figure 1.3. Whenever a gage is placed in a vertical drill hole, orientation of the gage will be required.

t Field experience with orientation has shown that, by means of gyroscopes attached to gages, an axis

normal to the gage or slab face may be aligned in a 1000-foot-deep hole to within 1 degree with a

horizontal line passing through the explosion center.

In final form for field installation the gage will be mounted Ln a canister which protects the working

elements of the assembly and to which the signal cables and gage lowering equipment may be attached.

The front surface of the medium disk must, of course, be completely exposed so as not to impose a

perturbation on the pressure measurement. Bonding the medium disk to the J situ mattrial is discussed

below.

Shock Wave Detectors

Several types of shock detector element 3 have been considered for use with the Impedance-

mismatch gage. The properties of both piezoelectric ceramic detectors and shorting pin detectors have

been examined. In addition, a shorting 'circular twitch' type of detector has been investigated. 14 Up

to shock pressures of about I megabar, piezoelectric ceramics of lead-zirconate-titanate -re found to

be by far the best; however, anry detector element of fast rise time (-10 " 8 seec) 74nd output of 10 or

more volts would serve as well.

In Figure 1.4 &re shown the components of a PZT oetectir which has proven to be extremely

reliable. A ,smli wafer* of PZT, 0.120 inch Ut diameter by 0.020 inch in thickness is sandwiched into

a small brass housing onto which a standard Microdot coaxial cable connector is attached. For use

with an impedance gage the assembly is simply cemented into position, usually with an epoxy mixture.

It has been found that the PZT detector of Figure 1.4 releases considerable amounts of charge

over a relatively wide range of pressures. For example, at a shock preasure of 300 klobaers about 100

volts are generated by the PZT wafer across a SO-ohm resistive load. As shock pressure is increased.

however, the output signal progressively decreases. Precise experiments by Reynolds and Seay s

have shown a marked decrease in charge per unit ra released by PZT as shock pressure increases

from 30 to 150 kilobars. Our invesigations of the PZT detector shown in Figure 1.4 indicate that

*MbWined from Clevte Corp.. Electronic Compmnts Div., 3405 Perkins Ave.. Cleveland 1. Ohio.
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output voltages from PZT are still sufficiently high and usable in a pressure gage ap to 1 -megabar

pressures. At 1-megabar pressure, the output is about 10 volts across a 50-ohm load. At shock

pressures in excess of 1 megabar PZT ceramics are not adequate as detectors for field gages. For

shock wave detection at pressures in excess of 1 megabar, we have used the 0.032-inch coaxial self-

shorting pins manufactured by Edgerton. Germeshausen and Grier. Inc.; however, the shorting pins do

not have the same reliability that PZT ceramics have at lower preasures. Investigations of different

types of piezoelectric ceramics other than PZT are being made in the hope of finding one which will

operate at pressures above I megabar.

CUTAWAY VIEW OF STANDARD BRASS INNER PZT BRASS OUTER
JICRODOT COAXIAL ELCTRODE CERAMIC ELECTROIX
CABLX CONNECTOR (CLVITE PZT-4)

10-32 NP
THREAD

.0.X,54 ooLL(.055)

CHAWER X.094 DEEP

094 .. 120 .125 IODA

135 - . 020

SCALE - 10/1 APPRCOX

Figure 1.4 Assembly Drawing ot P-T Shock Wave Detector

Delay Time Codin Mixer Ctrivut

When a shock wave is nearly normally incidont on the gage of Figure 1.3. ottput signals from

detectors 4. S. and 6 will be early coincident, Also, depending on te incident Phock pressure and the

material of the medium nd ismatch disk,. signals from detectors 1. 3, and 3 may occur nearly

sumutaneously. In addition, sAce the degree of tilt of the shock wave at the pressure alge eannot be

known before a measurement Is made, one does not know, for oxample. which ot detectors 4, S. or 8

will give an output signl first. To Identify each detector signal and to distinguish umambigutwoly those

signals which occur nerity slmultansoualy, a d4y time coding mixer circuit has been developed.

____ ____ ____ ____ ____ ___ 21



An electronic circuit 16 (Figure 1.5), developed for use with an impedance- mismatch pressure gage.

S is employed to identify detector output signals and to allow the times at which a shock wave activates the

detectors to be measured with some precision.

WL
IMPNEDMICE UME m TIME DELAY

OWE ASSEMMBLY COOING MIXER 1 4 6

CIRCUITRY WI
otli-im Dame

3 4 1

se. 3 mm ~la mm "] ta.

- W., 3W

U-1-

10 ~~1 ismm "W"

losat 
a a T 

I T

Figure I.S. Circuit Flow Diagram for Time-Dolay Coding Mixer Circuitry

'the time delay coding mixer ITDCM) circuit performs the functiwn of delaying in time ovvera| of

the output signals from detectors and mixing these signai in appropriate combin.ations for recording.

Delaying 1ignas by prescribed arnouts serves the purpose of Identifyilg signals with part iclar

detectors and of ncreasing the separation in time of those signals which occur nearly simultaneously

(two output signals are considered simultaneous when they are stiparated in timn by an amount which is

leas than the pulse width of either signal). Provisions are made in the TDCM (or receiving pulses fruin

a pulse generator for presaht calibration of time delays and for receiving a ser time signal.

From Figure 1.5 io seen that ou4tput signals from detectors 4. S. f,. and I - which measure swok

velocity and tit a( the shock wave in the meim - are delayed and mixed in the TVCM circuit snd fed ow

on a single line. channel A. to the r erdlf station. Signals from detctrs 2. 4. and t6- which

measure shock velocity in ono mismatch material - am delayed, mUed. and ted ne on channel D.

SimUarly, siSnals from detectors 3, 4. ad 5 on chmael C determine shock velocity In the other mismaich
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material. There is some redundancy of signals on channels B and C used to obtain velocity in the mis-

match material. This redundancy has been specifically designed into the circuit as a safeguard against

the possible failure of one or two of the PZT detectors, 4, 5, and 6.

Figure 1.6 is a block diagram of the TDCM. Its principal circuit for reception of signals from the

detectors inyolves for each detector an "and" gate, a 26 psec blanking monostable multivibrator (MV),

a delay MMV and inverter (for detectors 4, 5, and 6 only), a pulse-shaping MMV, an "or" gate, and an

emitter follower. The subsidiary and optional enabling circuit consists of a 120 jpsec delay MMV, an

inverter, and an enabling MMV for operation of the "and" gates.

AI.ISIATIGC PLSS

GIUCATE DALY cM ii SHAPININGI

OU s PULSE Olt X TTI
R

ENABLING CIRCUIT

Figure 1.6 Block Diagram of Time-Delay Coding Mixer Circuit

The optional cnabling circuit has been designed for use with pressure gages that will be placed

very close to explosions. Its purpose is to blank out any early extraneous signas from an explosion

and prevent them from triggering the TDCM and recording scopes. When used, the enabling circuit,

as shown, provides a 50 0 -Msec .long signal which activates the "and" gates and makes them receptive

to detector signals from 120 /sec to 620 Jsec after zero time. The time at which the "and" gates are

activated and the duration of activation can be varied to suit the requirement of a particular pressure
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gage. At shock pressure gage positions where it is felt that extraneous signals will not be truublesome,

the enabling circuit is not used, the "and" gates are bypassed, and detector signals are presented

directly to the 26 Msec delay MMV's.

In the main TDCM circuit, the 26 psec blanking MMV's are used to eliminate noise and undesired

signals, such as cable breaks which may occur after the measurement signals are obtained from

detectors.

The delay MMV's take the nearly simultaneous signals from detectors 4, 5, and 6 and delay each

signal by a different amount so that it may be identified with the detector which generated it. The panic-

ular values of delay times shown in Figure 1.4 were more or less arbitrarily chosen and can be varied

according to estimated shock wave transit times in the gage and to meet conditions required for record-

ing.

From inverte~rs or directly from blanking MMV's. signals are passed to the pulse-shaping MMV's

after first being differentiated. Output from a pulse-shaping MMV is a single positive pulse of 0.2 psec

duration and of about 8-volt amplitude (see Figure 1.7).

Figure 1.7 Output of Pulse Shaping MMV, 2 Volts/cm, 0.1 psec/cm

Fig-are 1.8 shows the typical operation performed by the TDCM on the signal from detector

number 6.

Output signals from detectors 1, 4, 5, and 6 - after being delayed, inverted, differentiated, and

shaped - are mixed by the "or" gate and then passed to an emitter follower whose output is channel A.

!n Figure 1.9 are shown output displays which are expected from channel A during calibration and for a

normal incidence shock wave with a velocity of 2.5 mm/psec in a medium disk with a thickness of 1 cm.



010 BLANKING MMV OUTPUT
0 26

SOy 16jus DELAY MMV OUTPUT

o 16

0 16 INVERTER OUTPUT

SHAPING MMV OUTPUT
4 0.2 ILSO©

Figure 1.8 Typical Operation of TDCM, Signal Output From Detector No. 6

4 5 6 4 5 6

i I ' I I I I I II i II

0 5 8 10 II 15 is 20 Uset 0 4 7 12 20 see

CALIBRATION MEASUREMENT

Figure 1.9 Channel A Displays During Calibration and for a Shock Wave of Normal Incidence

A prototype TDCM circuit has been built and its characteristics and electronic operation evaluated. 1 6

Figures 1.10(a) through 1.10(e) present detailed circuit diagrams of the TDCM. Figures 1.11(a) and 1.11(b)

show two views of the prototype circuit. Channel A, B, and C outputs resulting from calibration signals

applied simultaneously to simulate detector signals 1 through 6 are shown in Figure 1.12. Stability tests

indicate that delay times produced by the TDCM are constant to better than 0.02 psec over periods of more

than 30 minutes.
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Figure 1.12 Calibration Traces of Channels A. B and C.
1 ot/m 2 psec/crn
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A plane wave explosive experiment was conducted to test the TDCM operation at shock pressure

levels similar to those expected in the field. Composition-B explosive was used to generate a 450-kilobar

shock wave in brass. On the back surface of the brass plate were placed three shock detectors (corre-

sponding to 4, 5, and 6 of Figure 1.3). In addition a 1 cm thick disk of brass with a shock detector on its

back surface (corresponding to I of Figure 1.3) was mounted on the back of the brass plate. The test

then was an evaluation of the channel A portion of the TDCM. This test was successful and the TDCM

circuit functioned properly.

Performance of the TDCM circuit appears adequate for field use. Modifications of the basic

circuit can be made to accommodate specific applications without undue difficulties.

With the TDCM circuit the impedance-mismatch gage can operate as described, yielding shock

velocity in the medium, degree of tilt of the shock wave, shock pressure in the medium, and information

on the medium Hugoniot in the vicinity of the medium shock pressure.

Bonding Gage to Medium

A practical consideration which has not received sufficient attention to date is that of bonding the

pressure gage to the medium at its emplacement position. A grout mixture is desired which will be

convenient to use and will make a good bond or contact between the medium and the gage in its drill hole.

More important, a grout mixture is required whose Hugoniot matches that of the medium. If the grout

has a shock impedance much different from that of the medium then a significant perturbation may

be made on the pressure measurements. The preparation of grout mixtures with Hugoniots matching

those of a given rock medium, at least over a small range of pressures where a measurement is con-

templated. is felt to be a relatively easy task. An analysis 1 7 of the synthesis of Ifugonlots of multi-

component materials has indicated how the grout preparation problem may be approached.

Shock Pressure Measurements About Nuclear Explosions

The Impedance-mismatch gage as described above has never been used to measure shock pressures

in a field experiment. The principal reasons for this have been (I) that no adequate electronic circuitry.

such as the TDCM, was avaiile for proper recording of pressure gage signals and (2) that no oppor-

tunity has arisen where an impedance. mismatch gage could be placed near an underground explosion for

a meaningf l evaluation of Its performance. Now that the impedance-miamstch gage has been developed.

It In ready for field trials Measurements of peak shock pressure wil be attempted at the 1-, 0.6-. and
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V
. 0.4-megabar pressure levels using impedance-mismatch gages in a scheduled nuclear explosion (Shoal) in

granite.

As a result of research conducted on the impedance-mismatch gage, simplified shock pressure gages

have been fabricated, tested, and used in field experiments. Shock pressures created by buried nuclear

* explosions have been successfully measured with these gages. However, in each case where a simplified

gage was used, no absolute measure - in the sense of that derived from an impedance-mismatch gage - of

shock pressure was possible. Rather, to derive shock pressures from measurements it was necessary

to make the assumption that the medium Hugoniot was known. The desirability of a gage which gives

direct measurements of shock pressure is clear, for with this type of gage the reliance on possibly erro-

neous assumptions regarding medium Hugoniots is avoided and, to a certain extent, the requirement of

extensive laboratory determinations of medium Hugoniots is eliminated.

To date, 23 attempts have been made with simplified gages to obtain peak shock pressures in the

hydrodynamic region about nuclear explosions. Except for one in granite rock, all measurements were

made in desert alluvium, a porous, weakly consolidated soil. Of the 23 measurements, the one in granite

and 14 in desert alluvium are considered reliable and the remainder are felt to be of doubtful or little value.

In desert alluvium, shock pressures were measured using Plexiglas gages placed in vertical drill

holes to the same depth as that of the explosion. The choice of Plexiglas for gage material was dictated

by the fact that it is not possible to machine and prepare a sample of poorly consolidated alluvial soil for

use In a pressure gage and by the fact that the Hugonlot of Plexiglas matches reasonably well that of desert

alluvium over a workable range of pressures.

The difficulty of not being able to machine and work soil cores will probably persist, and any shock

prt-woure gage used in soil measurements will probably require u subiditute material which can be worked

and whose Hugoniot is as similar as possible to that of the soil. In view of this. it will be necessary to

make laboratory determinations of "Ll Hugoniots so that suitable substitute materials can be selected.

Materials which can serve as substitutes for soUl may be obtained by reviewing All available data on

Hugoniuts in the hope o finding one which is nearly the same a, that of thu soil medium, or by synthr-

ulsing 1 materials so that their Hulioniots match the mi liugonlet at least over a range of pressures

where measurements are contemplated.

The reasonaly close match between Hlugoniota of Plexigbls anmd desert aluvinm to shown In

Flivre 1.13. From meaurements of shock velocity In Plxijla. shock presare in Plexowas ta obtaned

(solution of Spuationm 1.1 and 1.6). This pressmre thUm in taken to be the hok pretmwe In desert

aU~WAMm at tOe POsi tlmo the Plexigla gagp.
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Two types of gages have operated successfully in desert alluvium, one a rectangular slab gage and

the other a ring-type gage. The Plexiglas slab gage is shown in Figure 1.14. One or more pairs of PZT

shock detectors identical to those of Figure 1.4 were employed in each Plexiglas gage of Figure 1.14. A

pair of detectors were accurately spaced about 2 inches apart along the direction of shock propagation

and spaced about 1 inch apart along a direction transverse to that of shock wave propagation.

Tm

Figure 1.14 1r" t and %4e View& o Ptexiglap Sab Gage Uaed in resert AUlluvim

Attached to and above the slab gage are a Syrosee and a motor to rotale and poi on the aisg Rear

the bottom of its vetical hole, With gyrosco drift tak no acemi the W may be allomod asimuth-

ally to wIn I dee. After the s g ia pashine de drill hole Is (Wed with mive i trom the

am amres in whkkk " pge hale was drwed.
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To avoid the great inconvenience of orienting the slab gage, a ring gage han been developed which

requires no azimuthal alignment. The manner of ring gage operation is illustrated in the diagram of

Figure 1.15. Two cylindrical rings of PZT are the shock detecting elements. Electrical leads are

attached to the inner and outer radii of each PZT ring and taken out to the surface through the axially

located tube. Details of construction and operation may be found in Reference 1& In Figure 1.16 is shown

a raster oscillogram of ring gage signals obtained in a field experiment with a buried explosion in desert

alluvium. The amplitude of the pulses derived from the PZT rings is about 300 volts. These pulses were

obtained at a position where the shock wave pressure was 150 kilobars. Timing pips on the record occur

at I sec intervals.

I
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Shock pressure data obtained to date from the two types of gages used in desert alluvium are plotted

in Figure 1.17 as a function of scaled distance from explosion center. Each open circle point represents

a shock pressure measurement from one explosion. The triangles and squares occurring in pairs signify

two pressure measurements from a single explosion. The solid curve of Figure 1.17 is obtained by calcu-

lation using methods described in Reference 8. Data of Figure 1.17 have also been plotted in Figure 4.11

of this report for comparison with Bishop's calculations.

The reliability of shock pressure measurements in desert alluvium may be ascertained by compari-

son of data with the dotted curve of Figure 1.17. This dotted curve is an indirect and less accurate

indication of shock pressure versus distance obtained from independent measurements of shock wave

position as a function of time.

Shock time-of-arrival data obtained from buried explosions in desert alluvium are shown scaled in

Figure 1.18. The solid curve of Figure 1.18 is calculated by methods given in Reference 8 and the dotted

curve is a best fit to all the data. An analytical expression was obtained for the dotted curve from which,

by differentiation, shock velocity as a function of distance from explosion center was estimated. Since

shock velocity is now known at any given position, the shock pressure at any position can be determined

from the Hugoniot curve (Figure 1.13 , 1.20, or 1.21) of the medium. Shock pressure as a function of

distance from the explosion estimated in this manner from shock time of arrival data is the dotted curve

shown in Figure 1.17. Since direct shock pressure measurements are consistent with the independent

shock wave time-of-arrival measurements, it is believed that the shock pressure data are reliable and

descriptive of spherical shock wave propagation in desert alluvium.

Data of Figures 1.17 and 1.18 were obtained from various explosions among which the maximum

ratio of two explosion energies was in excess of 50. Since data of Figures 1.17 and 1.18 scatter nicely

about a single curve in each figure, the measurements verify that spherical shock phenomena scale as

the cube-root of energy release, W, expressed in kilotons.

Scatter in the data of Figures 1.17 and 1.18 is attributed to lack of precise values of explosion

energy release, to experimental errors in measurement, to the possibility that all explosions were not

perfectly spherical, and also to the fact that the medium Hugoniot was very likely not the same for all

explosions.
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There is good evidence (see discussion below on Hugoniots of porous soils) to indicate that relatively

small changes in the porosity or water content of desert alluvium or any other porous medium make sig-

nificant changes in the Hugoniot. Shock pressure gages used to obtain the data of Figure 1.17 were made

of Plexiglas whose Hugoniot is similar to that of completely dry desert alluvium. It is possible that the

IHugoniot of Plexiglas was no longer a good match for the Hugoniots of desert alluvium in those experiments

where the porosity and moisture content of the medium were appreciably different from those assumed

(Figure 1.13 or 1.20). If this is true, then the data of Figure 1.17 will require some correction after the

influence of porosity and moisture content on the Hugoniot of desert alluvium is known. Another observa-

197tion that water content may significantly alter the medium Hugoniot has been made by correlating time-of-

arrival data from various experiments with some gross measure of water content in the medium obtained

from drilling logs. If experiments are grouped as "dry! " damp,'" and "average" according to moisture

condition indicated for the medium, the three separate distance-time curves, similar to the one shown in

Figure 1.18, are obtained from the data for desert alluvium. A best fit made to each of these three groups

of data reveals a smaller standard deviation than that for the average curve given in Figure 1.18 when all

data are taken together. The interpretation of this result is that moisture content in the medium does

noticeably alter the medium Hugoniot.

A somewhat different modification of the impedanice-mismatch gage was used to measure peak pres-

sure of a shock wave generated by a nominal 5-kiloton nuclear explosion (Hardhat) in granite. For con-

struction of the gage a core of granite was obtained from near the point of measurement and machined into

a circular disk 7 inches in diameter and 2 inches thick. The granite disk was placed in direct contact with

a 7-inch-diameter, 2-1/2-inch-thick disk of (2024) aluminum as shown in Figure 1.19. Shock transit

times through each disk were recorded with PZT crystals placed at the granite front surface, where con-

tact with the shock was first made, at the granite-aluminum interface, and at the aluminum back surface.

Three sets of three crystals positioned in this manner and on axes 120 degrees apart were installed as

insurance against the possible failure of one or more crystals. If at least two of the three sets of

crystals functioned without failure, then, in addition to shock velocity in each disk, the tilt of the shock

wave with respect to the longitudinal axis of the circular disks would be obtained from Equation 1.8. One

cable for each of the three sets of crystals was used to bring out the signals.

The gage assembly was inserted at the bottom of a drill hole whose axes made an angle of 36 degrees

with a line joining the gage position and the explosion center. The hole was then filled with a grout whose

sonic impedance matched that of granite. Shock impedance of the grout mixture was not known.
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Insufficient time was available prior to the experiment to prepare a grout whose Hugoniot matched that of

granite at the pressure level expected.

Because the instrument drill hole was not truly radial it was desirable to obtain a measurement of

shock tilt. It %as for this purpose that the three sets of three shock detectors were employed.

Results of the granite shock pressure experiment are shown in Table 1.1. From measured shock

velocities pressures were determined using Equations 1.1 avid 1.6.

TABLE 1. 1

Shock Pressures From a Nuclear Explosion in Granite

Density Shock path Transit time Shock velocity Pressure in disk

Disk (gm/cm 3) (cm) (usec) (mm/psec) (kb)

Granite 2.68 4.07 6.27 6.48 450 ± 50

Aluminum 2.79 5.08 6.10 8.33 514 ± 100

The shock wave pressure measured in granite during the Hardhat explosion is consistent with an

independent measurement made by Lombard 7 at a nearby position.

It must be noted again that the pressures listed in Table 1.1 are not direct measurements but were

deduced from shock velocities by assuming that the Hugoniots for granite2 and aluminum I were known.

The purpose of placing ar, aluminum disk behind the granite disk is now seen to be an attempt to

check the validity of the assumption regarding the granite Hugoniot. If the Hugoniot assumed for granite

were tne same as that for the granite disk in the gage, then the reflection Hugoniot for granite (Equation

1. 7). passing through the measured granite pressure point, would intersect, in a P-u plot such as

Figure 1.2, the accurately known aluminum Hugoniot (Equation 1.6) at the pressure measured in the

aluminum disk. Apparently the Hugoniot assumed for granite was correct since the 514-kilobar pressure

measured in aluminum was within experimental error of the 540 kilobars indicated by the solutions of

Equations 1.5 and 1.6.

For a more comprehensive description of the hydrodynamic measurement performed on the Hardhat

experiment, Reference 8 should be consulted.

Aside from experimental errors it is seen from the measurements of shock pressure performed

thus far that the greatest Lncertainty associated with the data resides in the assumption that the medium

Hugoniot is well known. Accuracy of the shock pressure data from experiments in desert alluvium
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depends on the validity of the assumption that the Hugoniot of in situ desert alluvium is the same as the

laboratory determined Hugoniot of dry reconstituted alluvium samples and nearly the same as the Hugoniot

of the Plexiglas used in gages. As pointed out, there are strong indications that these assumptions for

desert alluvium are not absolutely correct because the moisture content of the medium was not zero for

all the field experiments but apparently varied. This variation from zero moisture content results in a

Hugoniot different from that for a perfectly dry material. Accordingly, the desert alluvium pressure data

have inherited a certain unknown inaccuracy resulting from the Hugoniot assumption.

T'he granite pressure of Table 1.1 is consistent with the pressure measured in aluminum and indi-

cates that within experimental error the Hugoniot assumed (least square fit of available data) for the in

situ medium was correct. However, had the granite and aluminum pressures been widely inconsistent,

no pressure data would have been obtained and the only information provided by experimental results

would be that the assumed Hugoniot was prcbably incorrect.

If there ig a high degree of confidence that a medium Hugoniot is well known then there is absolutely

no need for attempting elaborate and difficult pressure measurements. All that is required is a measure-

ment of shock wave arrival time at various positions from an explosion, center to obtain a distance-time

curve such as that shown in Figure 1.18. Since the medium Hugoniot is considered well known and time-

of-arrival measurements can be made simply and accurately, shock pressure may be deduced at various

positions from the explosion as was done to obtain the dashed curve of Figure 1.7. However, it seems

unlikely that we will ever have this much confidence in a Hugoniot assumed for any geologic material

in situ.

To make our shock pressure measurements more meaningful, it is important to divorce the

measurement technique from any assumptions regarding the medium Hugoniot and to attempt some

relatively direct measurements of shock pressure. Hopefully, the impedance mismatch pressure gage can

accomplish this task, at least in rock type geologic media.

Hugoniots of Porous Earth Materials

In conjunction with development of shock pressure gages for use in soil media, an examination of

soil Hugoniots has been necessary. Since, as mentioned previously, cores of poorly consolidated soils

cannot easily be worked and prepared for fabrication of shock pressure gages, a particular material whose

Hugoniot is very nearly the same as that of the soil in question is substituted In the gage. After laboratory
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determination of the soil Hugoniot, the properties required by the substitute material Hugoniot are made

known. Hugoniot data on soils are also necessary for performing calculations of shock wave propagation

in these media.

Data have been obtained on the Hugoniots of desert alluvium, volcanic tuff, and a medium called playa.

Volcanic tuff is a porous rock, well consolidated (relatively well cemented and firm). Desert alluvium is a

very poorly consolidated (friable) soil, and playa is an alluvial soil relatively well consolidated. These

materials are representative of the media in which shock-pressure measurements are currently being

made. Core samples of desert alluvium and of tuff which underlies this alluvium were obtained at various

depths from Area 3 of the Nevada Test Site (NTS). Playa samples were obtained from Frenchman Flat,

Area 5 of NTS.

Sample preparation of these materials and the techniques employed to obtain Hugoniot data are given

in another report. 2 0 Majority of the data are from samples that were completely dry, i.e., any moisture

contained in the samples obtained from cores was removed by baking before Hugoniot experiments were

conducted. The remainder of the data are results of investigations into the effects of porosity and water

content on the Hugoniot of the dry material. Data are summarized in Table 1.2 at the end of this section.

In Figure 1.20 are plotted data for dry desert alluvium. Porosity of this material is about 30 per-

3cent, and the initial density of samples ranges between the values of 1.38 and 1.80 gm/cm . The squares
21

and triangles of Figure 1.20 represent data from the earlier work of McQueen and Marsh, Shock wave

velocity and particle velocity behind the wave, plotted in the figure, indicate raw data from which shock

pressure and density may be determined using Equations 1.1 and 1.2. It is pointed out that the squares

and triangles of the figure are data obtained from soil samples taken from one location in the medium.

Circles represent data from samples taken at different locations in the same medium, which probably

account- for the scatter in the data, since the alluvium is highly inhomogeneous. Also shown in

1 17
Figure 1.20 for comparison is a line through Hugonlot data for aluminum and a line estimated for

nonporous desert alluvium. A synthesized Hugoniot 1 7 for dry desert alluvium of 40 percent porosity

is also plotted on the figure.

Curves may be drawn through the data of Figure 1.20 in a number of ways. We have drawn two

curves to designate the range of densities likely to be encountered in a desert alluvium me dium and for

which there are some data. It is seen that most of the data fall within that region of the figure bordered

by the two curves. Hugonlot data and the curves of Figure 1.20 have been replotted in Figure 1.21 to

show shock pressure as a function of relative specific volume, v/v , where v is shocked volume of the

medium and v° is initial specific volume. For the dry samples of alluvium whose initial density, P0 .
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r1 3was 1.8. the derived grain density was 2.46 gm/cm and for the samples of density p. = 1.54, grain

density is given as 2.24 gm/cm

By comparison with Hugoniots of most other (nonporous) materials the Hugoniots of desert alluvium

are most unusual. It is seen that the alluvium Hugoniots are double valued functions of density and that

the Hugoniot has a region of pressures over which the slopeaP/s). of the curve is negative. Hugoniots

22,23
of porous metals have been found which demonstrate similar characteristics.

A qualitative explanation of the shape of alluvium Hugoniot curves may be as follows. In porous

soil individual particles of density PG are separated by void spaces so that the average density is po" A

shock wave passing through the material does work by collapsing the void spaces, by overcoming the

internal friction between particles and by deforming and compressing the particles. The increase in

internal energy (Equation 1.3) as a result of shock compression is greater for a porous medium than for

a similar nonporous medium when shock pressures in each medium are equal. This may be seen from the

diagram of Figure 1.22.

P

p n

v vG
P O p v0v

Specific Volume

Pip"e 1.22 Comparison ot nergy Deposition by hok Waves in Porous and Nonporous Solids

7Ue inrease in specfc Internal energy given by Xquatlon 1.3 Ie represented In Figure 1.22 by the

triangular area. vc pvu for' the nonporous material end is Wess than the ares pv for the porous
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material. Since the increase in Internal energy behind the shock wave is equal to the increase in material

kinetic energy (from Equations 1.1 and 1.2) it is also seen that the kinetic energy imparted to a porous

material will be greater than that imparted to a similar nonporous material when shock pressures in both

materials are equal. It is for this reason that porous Hugoniot curves such as shown in Figure 1.20 will

be below the Hugoniot of the nonporous material. Consequently, in porous materials similar to desert

alluvium. internal energy and particle velocity will be greater and shock wave velocity will be less than

that produced by a shock wave of the same pressure in the material with no void spaces. Because internal

energy in the porous material is greater than in the nonporous material, temperatures behind the shock

waves in porous materials will be greater. These higher temperatures in porous materials may have

effects such as shock-induced phase changes at pressures lower than those at which phase changes occur

In nonporous materials. Also the higher temperatures resulting in porous media from shock compression

may account for the region of negative slope. (AP/Op). demonstrated by the Hugoniots in Figure 1.21.

The shape of the alluvium Hugoniots in Figure 1.21 between 0 and 100 kilobars is possibly described

by the collapsing of void spaces, the principal mechanism of medium deformation in this pressure range.

A small change in shock pressure results in a large change in specific volume. Between about 100 and

200 kilobars phase changes are being initiated by shock waves passing over particles of the medium. At

pressures in excess of 200 kilobars the effect of shock heating is sufficiently intense in the porous material

that increases in shock pressure are accompanied by decreases in density. Also in this pressure region

the two alluvium Hugoniot curves appear to be coalescing. . e.. as shock pressure increases above about

300 kllobars fewer and tower void spaces remain, and a given shock pressure compresses both materials.

of different initial density. to very nearly the same density. Eventually. at pressures of the order of half

a megabar, both porous and nonporous materials are compressed to the same density by a shock wave of

a given pressure. It may be that at some pressure greater than about 0.S magabar the Hugonlot curves of

porous alluvium are identical to a Hugoatlot of a nonporous alluvium medium. It must be remarked that.

in all the alluvium experiments conducted. apse. in the samples was occupied by air at atmospheric

pressure. What influence this small mass of gas may have on he flugonlot Is not actually known.

I
While those qualitative speculsUons may not be perticularly Mlumliating they serve to illustrate

the complexity of phenomena involved and the difficultis likely to be encountered in formulating theoretical

descriptions of porous soil Hugmlis.

The 0.S-co -br Hugonlot point for desert aluvum represents the uper limit of shock proure

attainable In laboratory experiments. is prmeat y Impossble to genrate pressures much higher than
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this by conventional methods. As a consequence of this limitation additional Hugoniot information in the

pressure region above 0.5 megabar must come from other sources such as experiments about nuclear

explosions or theoretical investigations. While experiments with nuclear explosions will be considerably f

more difficult than laboratory experiments, shock pressures as high as 10 or even 100 megabara may be

achieved and valuable Hugoniot and thermodynamic information can be obtained. Attempts 1 7,21. 8 2 9,30

have been made to calculate Hugoniots of materials for shock pressures between 0. 1 and I megabar; how-

ever, the successes of these methods have not been striking and great reliance cannot be placed on the

calculated results. Much more work is required in the theoretical calculation of Hugoniots for geologic

media, particularly those media with high void content.

An implication of the alluvium Hugoniot data shown in Figure 1.21 Is that Gruneisen's parameter,

r a v(aP/EW) , for desert alluvium Is not a constant but likely a strongly varying function of specific
I

volume. v - . This implication is significant to theoretical calculations of spherical shock wave props-

gation in desert alluvium or other porous geologic media. In these theories24 .2 5 the Mie-Gruneisen

equation of state, which contains the parameter f, Is commonly invoked and Gruneisen's r is usually

taken to be constant. While for many materials 1 110 r as nearly constant or only a slowly varying function

of specific volume, the data for alluvium indicate that r Is not constant kaut varies appreciably with

specific volume.

Gruneiasen's parameter for solids is analogous to the ratio of specific heats for gases and determines

how rapidly pressure falls off behind the shock front and the amount of cooling experienced by a medium

particle in adiabstlc expansion. These processes are important in determining how rrpidly peak shock

pressure falls off with distance and the rate t which a shock wave to propagated from the eplosion

Source.

Prom the alluvium deto of Figure 1.21 estimates of Grunteisen's r and its variation with volume may

be made in a number o( ways. For example from Ow measured lugoniot ad the Dugdale-MaeDonald or

Sster relations I for r. values of C for deert alluvium may be computed. Also estimates of r may be

obtained using the method of A'tahuer|t for porous iron. Ovaluatioms f Crunese°s parameter for

desert auvium by thes varlous methods reults In a, cenfusoig array of vmlues

Theoretical eacul= s8 ,14, of sophrlcl shock we" propgatioms In deser$ allwiam with

constan value of r (both 0.5 nmd 1) have yielded predletio of shock positim vors time whc are

teeraLly in eocellhnt agremde with experimmal data (eg.. se Filure 1.11 and also Figure I of

.efeo.nwe s). aob the desert alluvium Imn~ dat bdme t t r is definte, no consan. a
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wonders how the spherical shock calculations can give correct answers with constant values of r. It is

not known whether agreement between calculations and data is fortuitous, whether shock position versus

time Is not sonsi ve to large changes in F demonstrated by alluvium, or whether the Mie-Gruneisen

equation of state is not applicable to a porous soil medium. However, in order to have confidence in the cal-

culatlons the r variation indicated by desert alluvium must be understood and its Implications for theoret-

ical results must be evaluated more fully.

Figure 1.23 shows data obtained for a volcanic tuff from Areas 3 and 16 of the Nevada test site.

The dry tuft has a density of 1.46 gm/cm3 and a porosity of 27 percent. These Hugonlot data are different

from those reported by Lombard2 for tuff from Area 12 at NlTS Lombard's tuff had a density of 1.7 and

a porosity of about 24 percent. His data points for dry tuft lie aove those shown for the dry tuft in

Figure 1.23. Data for saturated tuft are Mlso shown in Figure 1.23.

Figure 1.24 presents Hugoniot data for the playa medium of Area S at the Nevada test site. 'he

density of samples received from the field was 1.47 Em/cm . Completely dry. these samples had a

density of 1.41 gm/cm3 . The porosity of playa is estimated to be about 50 percent.

From Figures 1.20. 1.23. and 1.24. it is observed that between S0 and 200 kilobars the Hugonioas of

dry desert alluvium, dry tuft. and playa are essentially identical.

In Figure 1.25 are shown the results aa a few experiments with a fine pure silica sand. These

experiments were conducted to obtain information on the effe"s of porosity and water content on "uspnio .t

The silica sand used is composed of particles 50 percent o( which have diameters less than 7

microns. Maximum particle site is about 150 microns. Grain density of the sand ts LBS irtem,

same as that of crystalline quarto. For experi nts. the sand was ; ckod 0 to rv densities of 1.5O owW

3
11.05 gm/cm " . Corresponding porosities are 41 percent and 23 perceot. It is seen that the hilther density

dry sand data lie above thos of the lower density dry sand and in a direetion toward the lIhon tat e-ive

for crystalline quarts 3 . 33Ishown a the top at Figure 1.25. Alkw shown in the figure are data for *,ator-

stlumed sand with a density of 1.90. S one the porosity o the watmr-saturated sa nd i the ume aso that

of the lowest curve in the figure. it Is s tht adi tion at writer to Vi the void s pae In this i'lwiA ifts

the t11osiot upward by a considerable aot making the a1urated oa mucth leas eO presin#e. Ths

a decrease In porosity or an i a se in water conent of a porous iatetlal rems In a hkiher shock

preMss Ift same relive densIty Is aeIeve tse Vlae rd l.UL
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In the close-in region about buried explosions in porous media, this means that stronger than

expected shock waves will be propagated if the water content of the medium is greater than expected or if

the porosity is less than expected. For experiments with explosions in porous media it will be essential

to obtain information on the in situ porosity and water content.

Summary

An impedance-mismatch pressure gage has been developed which is capable of measuring peak shock

wave pressures of amplitude 0.1 to 1 megabar in the hydrodynamic region about buried explosions. In

addition the gage provides information on the medium Hugoniot and a means of measuring degree of tilt

of the shock wave.

Techniques employed in measuring shock wave pressures have been tested, and shock pressures

have been measured in experiments with buried nuclear explosions. By comparison with independent

hydrodynamic measurements the shock pressure data have been shown to be reliable. These data are

currently being employed to evaluate and refine theoretical calculations of spherical shock wave propaga-

tion in solid media.

Limited investigations have been made of Hugoniots of porous geologic media. Some unusual features

of flugoniots for porous media have been revealed which were not previously observed in Hugoniot

studies of other (nonporous) materials. Moisture content and porosity are found to be significant param-

eters influencing the Hugoniot of porous materials. Possible applications of the Hugoniot data for porous

media to theoretical calculations of shock propagation in these media have been pointed out.
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TABLE 1.2

Hugonlot Dsta for Porous Aarth Mterials

00 V U P
(am/cm 3 ) (mmlasec) (mm/Slsec) tkb) p /A Source

Desert Alluvium - Poroeity. 5 to 30%

1.44 2.66 1.00 38 0.624 NTS. Area 3

1.56 2.90 0.97 44 0.666 lITS. Area 3

1.54 3.41 1.58 33 0.537 S Area 3

1.50 3.65 1.57 56 0.570 NTS. Area 3

1.70 3.70 1.52 N 0.5389 NTS. Area 3

1.46 4.35 .45 154 0.437 R'1". Area 3

1.64 4.36 2.3* 171 0.452 TS. Area 3

1.38 5.25 3.27 237 0.377 NTS. Area 3

1.77 5.89 3.37 3M 0.428 NTSo Area 3

vlIcanic Tuff - Porosity. 27%

3 ,t 2.24 0.95 31 0.576 NTS Area 3 (IM' deh)

t 1,46 3.70 .58 35 0.573 NITS. Area 3 (3500' depth)

3.46 4.28 2.25 143 0.47 NITS, Area 3 (1500' depth)

1.40 4.20 2.50 153 0.405 XTS. Area 3 IS0 dp$" )
1.4 4.s 2.90 0 0.393 M Area 3 (S00' pk)

1.46 .58 1.00 0.127 IS Area IA

1.46 3.55 1.57 52 0.116 PIT. Area I6

3.46 4.03 L.0 147 0.380 NM Area 16

1.45 4.24 A45 1"3 0.420 M Area 16

Water S.004 VoICAnM TWIT

1.7 3.42 0.90 13 0.737 PIT Area I

I.N4 4.24 1.4 308 0.60 M Area 16

1.7S 5.49 2.3 270 04W3 NSAresm

sI
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~TABLE 1. 2 (Coat)

00% v u p
(gm 3cm

3  (mmlusec) (MMl188c) (kb) io P Source

~~Plqya - Porosity, "-50%; Water Content, "-6%

1.41* 2.70 1.04 40 0.615 NTS. Area 5

1.41* 4.40 2.48 148 0.436 NTS Area 5

1.47 3.00 1.08 48 0.640 NTS. Area S

1.47 2.58 1.04 39 0.597 NTS. Area S

1.47 3.69 1.60 87 0.566 Nrs. Area S

1.47 4.47 2.52 166 0.436 NTS. Area 5

1.47 4.36 2.50 160 0.427 NTS. Area S

1.47 5.07 3.54 264 0.302 NTS. Area S
1.47 5.24 3.52 271 0.328 NTS, Area S

ry Silica Sand- Porosi,. 40%

1.5a 3.13 1.17 56 0.626

1.s 3.23 1.16 59 0.641
3.59 3.42 1.63 as 0.S29

I.M 3.47 1.10 93 O.S10
1.56 4.26 3.25 ISO 0.472

1,6 4.24 2.23 5ls 0.474

IDtZ Mic a Sand - Parealty. 23%

2.03 3.45 3.07 75 0,590

2.34 3.70 1.46 116 0.40S
03 4.75 7.03 i10 0, 575

1.0 4.Sl 0.98 90 0.784

1.91 5.00 1.4s 143 0.710

1.95 5.63 IM4 III Oe.fss
2.00 $.S 1.93 16 0.655

Z;Vw o f tre, m J00-oot depth wore comploeley dry.

R.mAbbdtr of eXPvrtWns were wh samoope fm about
SI-toem deph as mclvd from fl.d. 1 ,#d in wax cos nlor-
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Section 2

DYNAMIC RESPONSE OF GEOLOGIC SOLIDS TO LARGE AMPLITUDE STRESS WAVES

R. C. Bass, H. L. Hawk, and A. J. Chabai

Introduction

Propagation of large amplitude stress waves in solids is reasonably well understood when com-

pressive stresses are in excess of about 100 kilobars. At these stress levels material rigidity is

negligible, the stress wave is a steep-fronted shock, and a fluid model is used to describe wave propa-

I gation in the solid. For small amplitude stresses, say less than about 1 kilobar, an elastic model is

often sufficient to describe the response of the solid. Between these limits, when amplitudes of com-

pressive stresses are of the order of 1 to 100 kilobars, there is no general model which effectively

describes the dynamic behavior of solids, particularly geologic solids.

.In this range of nonfluid-nonelastic stresses phenomena such as yielding, fracture, strain rate

and relaxation effects, anomalous compression and viscosity are expected to occur and may play

dominant roles in determining the detailed structure of the compressive wave profile. Principally

because an adequate model does not exist for the description of nonfluid-nonelastic behavior of geologic

solids, there is at present no theory of spherical wave propagation from buried explosions which is

capable of reproducing wave profiles that have been observed in experiments. It is believed that, once

a reasonably realistic model were formulated, theoretical calculations of spherical wave disturbances

could be made which would yield wave profiles similar to those observed in experiments.

If a model can be obtained allowing accurate calculations of nonfluid-nonelastic stress wave propa-

gation, then elastic disturbances resulting from buried explosions in geologic m:,dia can be predicted

and seismic phenomena may thereby be better understood.

To study nonfluid-nonelastic behavior of solids, use is made of plane compressive waves of large

amplitude, a7, produced by explosives or by high velocity projectile impacts. In these experiments, a

one-dimensional state of strain, (1-p /p), is achieved. Often the single, step-function type of
0

wave pulse introduced into the test specimen by these means is unstable because the condition for
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stability, aca/a8c > 0, has been violated. As a result two waves are propagated through the specimen.

Simple examples of some stress-strain curves leading to double wave profiles are shown in Figure 2.1.

X

IDEAL
FLUID MEDIUM

(a)

FLUID MEDIUM,
NONZERO

ELASTIC LIMIT

(b)

MEDIUM WITH
MIXED PHASE y
REGION

/ ji
(c)

MEDIUM WITH
ANOMALOUS
COMPRESSION

(d)

Figure 2.1 Some Stress-Strain Curves Leading to Two-Wave Profiles

Figure 2.1(a) is an example of a stress-strain relation or 'Hugonlot" (Equation 1.5 of Section 1)

for an ideal solid in which waves of any amplitude are stable. In Figure 2.1(b) is illustrated a
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stress-strain curve exhibiting a finite yield strength or "Hugoniot elastic limit.* This curve gives rise

to a double wave structure consisting of an elastic precursor which propagates with the sonic velocity

of the specimen and a second higher amplitude wave of slower velocity. Double wave profiles resulting

from yielding have been observed in metals, 2. 3,4 in quartz, 5 ,6 and also in rock materials. 7

A double wave structure as shown in Figure 2.1(c) may also result from polymorphic phase

transitions induced in the test specimen by the incident wave. The phase transition mechanism has been

invoked to explain double waves observed in iron, 2 quartz, 6' 8 and rocks. 7 '9,1 0 Phase transitions

induced in solids by shock waves seem to occur generally at stresses in excess of 100 kilobars. How-

7
ever, Gregson and Grine suggest that in carbonate rocks phase transitions may occur at stresses as

low as 30 kilobars.

Figure 2.1(d) illustrates a medium with a stress-strain curve having a region of anomalous

compressibility. Over this range of stresses a steep-fronted wave cannot be propagated and becomes

elongated as it travels through the specimen. Plane wave experiments 6 have shown that fused silica

has a stress-strain curve similar to that of Figure 2.1(d).

If a medium is characterized by viscous or dissipative effects the rise time of a wave front such

as shown in Figure 2.1(a) will not be steep but will appear more like that illustrated in Figure 2.2(a).

That viscous effects may be significant has been demonstrated by noticeable variation in rise times

observed in plane wave experiments with metals. 4 ' 11

If relaxation phenomena occur in conjunction with yielding, wave profiles such as shown in

Figure 2. 1(b) may appear more like those of Figure 2.2(b). Very definite relaxation effects have been

witnessed in iron, 4 , 1 1 steels,4 and quartz. 5 . 6

It is apparent that a realistic model describing nonfluid-nonelastic behavior of geologic solids

may be quite complex since a natural material may, for example, exhibit several of the phenomena

illustrated in Figures 2.1 and 2.2. Mechanisms of these various phenomena are largely unknown, even

for metals. For comprehensive discussions of wave instability, viscosity, anomalous compression.

relaxation, and yielding, the reader is referred to the literature, particularly two excellent review

articles by Wuval112.13 and the references contained therein.

The extent to which geologic solids demonstrate nonfluid-nonelastic effects such as considered

above has not been sufficiently investigated. The purpose of the work described here has been to initiate

experiments by which these various effects may be observed and to perform a survey of a few rock
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materials with large amplitude (I to 100 kilobars) stress waves of high strain rates (103 to 106 sec- I

under conditions similar to those created by buried explosions. These experiments were designed to

yield sufficient data to at least characterize the responses of various rock materials and to provide

guiding information which might assist in formulations of reasonable models. More specifically,

objectives were to investigate In rock materials of current interest the magnitude of the dynamic yield

point if one exists, the extent of viscous properties which might influence the rise times of propagated

waves, the possibility of occurrence of anomalous compression in rocks, and whether or not rock

materials demonstrate relaxation effects.

(a) Wave in Viscous Medium

(b) Wave in Medium With Nonzero Elastic Limit Demonstrating
Stress Relaxation

Figure 2.2 Wave Profiles for a Viscous Medium and Wave Profile With Stress
Relaxation After Yielding

In order to realize these aims it has been necessary to develop an Instrument capable of measuring

large amplitude stresses with high time resolution.
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Description of Quartz Stress Gage

4,14
The new X-cut* quartz crystal technique perfected by Neilson et aL. for examination of

stresses in metals has been adopted for the observation of stresses in geologic solids. Since quartz

has a higher dynamic elastic limit than that expected of most geologic materials, it is an ideal trans-

ducer for investigation of stress-time wave profiles. The dynamic elastic limit of X-cut quartz has

been reporteda5 6 s about 50 kilobars. X-cut quartz has also been shown 15 to have a linear piezoelec-

tric response to at least 25 kilobars.

Quartz transducers used to obtain stress-time profiles in solids have been found to compare

favorably with other techniques such as the optical. 5,. capacitor, 11.16 slanted resistance wire, 17 and

pin2,3 methods, all of which measure free surface velocities rather than stress directly. The great

advantages of quartz transducers are their ability to measure stresses directly, their high time resolu-

tion, and the relatively little effort required for their use.

Illustrated schematically in Figure 2.3 are two experimental arrangements for observing stress-

time profiles in rock specimens. An explosively generated plane shock wave is transmitted into the

specimen and then into the positively oriented* X-cut quartz crystal.

Figure 2.0 Schematic of Wave Profile Experiments

Crystals oriented so that the stress wave is made to propagMte along the crystallogrphdc X-dirctlon.

The crystal is positively oriented when a compressive stree produces on the face farthest from the
specimen a voltage which ts positive with respect to that on the other face.
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For small values of the resistor, R, the circuit current, i, is given4 , 14 by

AdCQ(R aa (xt
S-- w[ -QF'QXB'.Jt

,'xF  +x dx =(XF, t) - ,~Bt (2.1)

where A is the area and w = (xB - x F), the thickness of the quartz crystal. The sonic velocity in

quartz is CQ; d = e 1 1 /c 1 1 is the one-dimensional strain piezoelectric coefficient; U'Q(XF t) is the

time variation of the stress wave in the crystal at the front surface, XF, next to the shocked specimen;

and aQ(xB, t) is the time variation of the wave leaving the back face, xB . Note that for t < W/CQ.

before the stress wave front reaches the back surface, aQ(x t) = 0, so that time variations in

current give a direct measure of the pressure-time profile in quartz at the quartz-specimen interface.

For times t ?_ w/CQ the current is proportional to the stress difference across the crystal.

To determine the amplitude of the stress history in the shocked specimen from the quartz stress

history at the interface, the degree of mismatch at the interface must be examined.

Consider the one-dimensional wave system at a time just after transmission of the wave into

quartz.

I V
01 02 a% a

I I o
2 Q

l I 2 PQ PoQ

u u2  uQ U oQ =0

t
Interface

By conservation of momentum across the transmitted wave in quartz, we have

aQ-P QVQuQ = ZQuQ (2.2)

where aQ and u. are stress and particle velocity, respectively, behind the transmitted weve,

PoQ is the quartz density ahead of the wave, V is the wave velocity in quartz, and is the quartz im-

pedance. Similarly, across the incident wave in the sample we had before the wave reached the interface

a I PolVIu I ZIu 1  (2.3)
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Across the reflected wave, momentum conservation gives

a2 "a = + (V2+u 1 )(u 1 - u2 = Zlr(U1 - u2 )  (2.4)

where Zlx Lis the reflected wave impedance of the sample relative to the flow ahead of the wave.

Dividing Equation 2.4 by Equation 2.3 and making use of the interface boundary conditions, u 2  UQ,

a2 = aQ results in

Q u2)(.5)
UU I Zl  

1

u2 UQ oQ z1
Since - -y ,1 -Equation 2.5 reduces toUl Ul a1 ZQ

-1 + Z lrQ

Thus the stress a (t) behind the incident wave in the specimen is given in terms of the quartz

interface stress, aQ(t), and an impedance factor as

M a (t) = ZoQ(t) (2.6)
1Z1lt + Z Ir/

provided the transmitted wave in quartz has not reached the back face, xB

Having limited ourselves to stresses in quartz less than the elastic limit, the crystal impedance

is simply ZQ = p QCQ, where CQ is the appropriate elastic wave velocity.

To completely determine the impedance factor of Equation 2.6, it is necessary to make the approxi-

mation that Zlr = Z r Pol C1 where C1 is the elastic wave velocity in the specimen. The close

agreement of stress time profiles obtained by quartz transducers with those obtained by other means

mentioned above indicates that the impedance approximation is sufficiently accurate.

The use of quartz crystals for stress transducers functioning as described and according to

Equation 2.1 is novel and different from the usual application of quartz crystals to measure stresses.

In the common application, dimensions of the crystal transducer are small compared to a stress wave-

length; the wave transit time in quartz is much less than the time variations in the stress wave, and the
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total charge released by the crystal is proportional to the average stress imposed on it. In the Neilson

application, wave transit time in quartz is much greater than time variations in the applied stress, waves

of length less than the transducer dimensions may be measured, and the specimen-quartz-interface stress

is proportional to the quartz current output.

In all our experiments X-cut crystals of synthetic alpha quartz* were used. The crystals were

positively oriented* and generally were 1/2 inch in diameter and 1/8 inch thick. Crystals of this size

were calibrated by R. A. Grah,.mn of Sandia Corporation with step-function type wave profiles at two pres-

sures, 14.5 and 23.7 kilobars, resulting from high velocity projectile impacts. At these pressures the

piezoelectric constant, d (average value = 2.05 x 10 - 8 coulombs/cm 2-kilobars), of Equation 2.1 was

found to vary less than 5 percent for the initial step-function rise of the input wave. At a time when the

wave has progressed halfway through the crystal the value of d has increased by about 10 percent. When

the wave has reached the back surface of the quartz crystal the value of d is on the average 40 percent

higher than it was initially, but at this time the stress-profile measurement is completed. That d is not

strictly constant is a consequence of both mechanical and electrical edge effects in the crystal. In our

survey of stress profiles from rock materials we have neglected the variation of d with distance of

wave travel into the crystal and have used a constant value, d = 2 x 10 - 8 coulombs/cm 2-kilobar.

The primary purpose for using the configuration of Figure 2.3(b) was to increase the separation

between the elastic precursor and the main shock wave entering the transducer crystal from the

shocked rock specimen. For some of the rock materials studied it was found that the elastic precursor

and main shock wave had velocities which were not greatly different. As a result the main shock wave

entered the transducer crystal immediately after entry of the precursor and made examination of the

precursor amplitude and profile difficult if not impossible.

The time-distance diagram of Figure 2.4 illustrates the difficulty encountered. For a given driving

pressure at the rock-explosive interface, two waves are generated in the rock specimen, the elastic

precursor wave of nearly constant velocity, C S , and a shock wave of velocity V S , whose value depends

on the drivingpressure. At the rock-quartz interface, the elastic precursor first enters the transducer

at time t I and, after adjusting its amplitude according to the degree of impedance mismatch (Equation 2.6)

*Obtained from the Valpey Crystal Corp., 1244 Highland Street, Holliston, Mass.

Negatively oriented crystals may also be used but only over a limited range of stresses. 1 8
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between rock and quartz, proceeds through quartz with the elastic velocity of quartz, CQ, emerging at

time t However, before time t 3 , the rock shock wave enters quartz at time t 2, transmitting a shock

wave into the transducer.

TIME

* II I

ROCK I
SPECIMEN I QUARTZ

I gt4

- -T -- DISTANCE

Figure 2.4 Time-Distance Diagram of Double-Wave System in Rock and Quartz Transducer

If the transmitted wave of velocity VQ has a sufficiently large amplitude, impurity atoms o" .he

quartz lattice in the region behind this wave are ionized, as suggested by Neilson 14 et al. As a result

of ionization the electric field breaks down and conduction of electrons occurs behind the shock wave.

Thus, after time t2 , the quartz no longer operates according to Equation 2.1 but by other means.19

In order to obtain information on the elastic precursor, we must try to satisfy (t 2 - t 1 ) ?_ (t 3 - t I

which gives us a condition on the ratio of specimen-to-transducer thicknesses, S/w >_ CsVs/CQ(CS - VS).

Since CQ is fixed and the quartz thickness, w, cannot be greatly varied, specimen thickness, S, is

governed by the magnitudes of precursor velocity, CS , and shock velocity, V S , in the specimen.

Another condition of the thickness, S, is that the thickness-to-diameter ratio of the specimen be suffi-

ciently small so that a true plane wave is maintained in the specimen as it progresses into the quartz

transducer.

At some shock pressure (overdriving pressure) in the specimen, which is determined by the shape

of the specimen Hugoniot, the elastic-plastic two-wave structure is no longer generated, the elastic

wave is said to be overdriven by the larger amplitude shock or plastic wave, and at this pressure V S is
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equal to CS. At shock pressures somewhat below this level, CS > V S but the difference (C S - VS) is

small and the condition on S/w cannot be met. In the range of pressure from the Hugoniot elastic limit

pressure to the overdriving pressure, Hugoniots of rock materials under test are either not well defined

or not known at all. As a result, it is not possible, prior to making a wave profile measur'ement, to

accurately estimate magnitudes of V S which rnvay be achieved by different driving explosives so that the

condition on S/w can be realized.

By making the quartz crystal shown in Figure 2.4 a stress transmitter rather than the transducer

and placing another quartz crystal as transducer behind it, the difficulty of an early entry of the shock 4i

plastic wave is alleviated. In this configuration, the first and second wave arrivals are separated in

time by an amount (tp - t e ) which is greater than the separation time (t 2 - t 1 ) when no stress transmitter

is used.

In Figure 2.5 are shown oscillograms of the elastic precursor in Armco iron, which was used-to test

the two transducer assemblies of Figure 2.3. The amplitude of the elastic wave just after the initial rise

is about 6 kilobars. Sweep speed for all traces in Figure 2.7 was 0.2 psec/cm, except for the top trace

in (a), where it was 0.1 psec/cm. All the quartz crystals used to obtain the records shown had diameters

of 1/2 inch and thicknesses of 1/8 inch. TNT was the driving explosive in each experiment.

The record traces of Figure 2.5(a) were obtained from quartz crystals in direct contact with a

1/2-inch-thick piece of Armco iron, which served as one electrode for the transducer. The symbol A-Q

is usea to note this type of assembly. In this experiment the plastic wave from Armco entered the front

surface of the quartz transducer after entry of the precursor but before the precursor arrived at the

transducer back surface. Thus one sees the 6-kilobar precursor followed in time by the large-amplitude

(> 100-kilobar) plastic wave which takes the trace off scale. These records are similar to those

observed by others' 11, 14 in Armco iron.

Figure 2.5(b) compares the signals from one experiment with two quartz transducers on a 1-inch-

thick piece of Armco. The top trace of (b) is from a transducer in direct contact with Armco (A-Q),

and the lower trace is from a transducer with a 0.2-mil aluminum fol placed between the Armco and

quartz (A-A1-Q), as shown in Figure 2.3(a). The traces are essentially identical, indicating that the

0.2-mU aluminum foil is not a serious perturbation to the wave from Armco. In this experiment the

plastic wave from Armco does not arrive at the front surfece of the quartz until after the precursor

transmitted into quartz has traversed the thickness of quartz. The time at which the precursor wave in

quartz reaches the quartz back surface is noted by an abrupt swing of the trace downward, owing to the
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ELECTRODE RELATIVE SWEEP ARMCO
ASSEMBLY GAIN pssec/m THICKNESS

A-0

A-0 1/2 0.

A-0 1/ 0.2

A-AI-Q 0.2

A-0 I0.2

A-0-Q 0.2

Figure 2.5 Quartz Transducer Oscillograrns from Armco Iron

With Three Types of Electrode Assemblies:
(a) quartz directly on Armco iron,
(b) quartz with aluminum foil on Armco.
(c) quartz on quartz on Armco with gold electrode.
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term TQ(XB° t) of Equation 2.1. The time difference between the start of the trace and the time at which

it turns downward is, within experimental error, the calculated elastic wave transit time in quartz.

Records of Figure 2.5(c) are from an experiment identical to that described for Figure 2.5(b)

except that the lower trace of (c) is from a transducer in contact with a quartz blank (A-Q-Q), as shown

in Figure 2.3(b). This transducer arrangement is also shown in Figures 2.6 and 2.7. The traces of

oscillograms (b) and (c) indicate that the Armco elastic precursor is very well reproduced by quartz

transducers in either assembly configuration of Figure 2.3. From these experiments with Armco iron

it was concluded that the quartz transducer technique would be adequate to examine stresg-Llme profil14

in rock materials.

EPOXY CEMENT

DIELECTRIC VENT PORT

DOW CORNING NO. 4 SILICONEDIELECTRIC

1/8"-1 / ALUMINUM HOUSING

UG 255U COAXIAL~CONNECTOR

1"

ALUMINUM ELECTRODE

DIELECTRIC INSERTION PORT

QUARTZ SENSING CRYSTAL

(GOLD PLATE BOTH FLAT SURFACES)

QUARTZ STRESS TRANSMITTING CRYSTAL
(GOLD PLATE BOTH FLAT SURFACES)
(SILVER PLATE EDGE)

Figure 2.6 Assembly Drawing of Quartz Crystal Transducer
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Figure 2.7 Photo of Quartz Stress Transducer

Experimental Results

Rock samples examined with the quartz crystal transducer were obtained from drill cores, cut to

various thicknesses and ground smooth and flat. The diameter-to-thickness ratio of samples was

always in excess of 2.5. Aluminum (2024) or steel (4340) was the driver plate placed between sample

and explosive as shown in Figure 2.3(b). Explosives used were TNT, Baritol, and Nitroguanidine.

The q-iartz transducer employed for all experiments described here was that of Figures 2.3(b), 2.6, or

2.7. Current output of transducers was measured on Tektronix 555 and 531 oscilloscopes as the voltage

drop across a 50-ohm resistor. Timing markers and voltage calibration signals were also recorded

along with signal traces. In many, but not all, experiments velocity of the first wave was meisured

by recording wave transit time through the specimen.

Granite

Granite rock samples utilized in experiments reported here were obtained from a location near

Fallon, Nevada and are referred to as Shoal granite. Typical wave profiles recorded by the quartz

transducer on two thicknesses of Shoal granite are shown in Figure 2.8. Rise times of waves to the

first peak are noted by arrows labeled tr . Time of arrival of the second wave is noted by arrows labeled

ts = (t - t ). The scale to the right of the figure indicates the magnitude of stresses in the granite wave
5 4 3*

and is deriv2d from the voltage scale to the left using d = 2 x 10- 8 coulombs/cm 2-kilobar in Equation 2.1

and Z = 1 in Equation 2.6. Between the times tr and t s there appears to be a relaxation of peak stress

in the first wave. The stress profiles of Figure 2.8 prior to the time t are believed to be elastics

precursor waves in granite.
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Figure 2.8 Stress Wave Profiles Observed in Two Thicknesses of Granite

Although the dynamic yield stress of granite is expected to be quite high (Grine 2 0 has reported

36 kilobars for another type of granite), it cannot be conclude(" from the records of Figure 2.8 that

Shoal granite has an elastic limit of 60 kilobars. There are two reasons for this. First, the dynamic

piezoelectric coefficient, d, for quartz ia not .,ell known at stress levels near or above 50 kilobars,

and second, at about 50 kilobars quartz itself begins to yield 5,6 and is no lunger an adequate transducer.
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Calibration of quartz crystals with diameter-to-thickness ratio of 5 by projectile impact experi-

ments has shown2 1 that d increases fairly linearly with increasing stress, being 2.05 x 10- 8 and

2.48 x 10- 8 coulombs/cm 2-kilobar at 25 and 45 kilobars, respectively.

From this information we may surmise that the peak amplitudes of waves in Figure 2.8 are some-

what more than 40 kilobars and probably less than 50 kiobars. Because the precursor amplitude in

granite is higher than was expected, the wave profiles observed were obtained with the quartz transducer

operating in a region where its piezoelectric properties are not well known. Consequently, the wave pro-

files obtained for granite (except for experiment number 188) must be regarded as being of a qualitative

nature.

Table 2.1 is a list of experiments performed with various thicknesses of Shoal granite showing the

explosives used and the rise times and second wave arrivals observed.

TABLE 2.1

Shoal Granite Experiments
(1 cm thick Aluminum Driver)

Sample Rise time Second wave
Experiment Explosive thickness t arrival time

No. type SG(c'n) (sec) ts (psec)

215-1* TNT 0.340 -0.1** -0.24
215-2* TNT 0.986 0.14 0.40
189 TNT 2.480 0.34 0.47
197 TNT 4.032 0.71 0.80

216 Baritol 0.340 0.06 0.22
208-1+ Baritol 0.582 0.08 0.27
204 Baritol 0.824 0.16 0.28
203 Baritol 1.062 0.16 0.38
208-2+ Baritol 1.320 0.28 0.42
192 Baritol 2.415 -0.55 --

188 Nitroguanidine 2.615 -0.6

* Both granite samples on one TNT experiment
**Doubtful result
* Both granite samples on one Baritol experiment

In Figure 2.9 are plotted granite wave profiles obtained from experiments with TNT. Since from

Table 2.1 rise time, t r , appears to increase linearly with increasing sample thickness we have plotted

as abscissa the dimensionless time, T"- tCG/SG , using the average value of first wave velocity in

granite, C. 0.57 i 0.03 cm/Msec, obtained from independent measurements. Small arrows in the

figure indicate the times, t. , considered to be second wave arrivals. The pressure scale on the right of
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the figure is provided to show only the magnitude of stresses involved and, just as in Figure 2.8, over-

estimates stresses particularly at higher stresses and later times. From Figure 2.9 it is seen that the

reduced rise time is roughly constant for all thicknesses of granite except for the tiinnest sample,

SG = 0.34 cm. The wave profile for this sample seems to be anomalous. The reason for the anomaly is

unknown; it may be that the wave in the sample was ,ot plane or was tilted or possibly that the sample

was not uniform and homogeneous. That the reduced rise time is nearly constant for all the other sample

thicknesses suggests that granite exhibits dissipative or viscous effects.

Granite wave profiles produced by Baritol explosives are shown plotted in Figure 2.10. Here again

the reduced rise time for all thicknesses of granite is roughly constant. Note that the reduced rise time

for the sample of 0.34 cm thickness is about the same as for the other thicker samples and does not

appear to be anomalous as was the case for the 0.34 cm thick sample driven by TNT.

T- N , IJ IVxNI'M t fl 170.
**V 4 4 4. M X?.7

Ho 48CM RANII

0,~'0

Figure 2.9 Granite Stress Wave Profiles as a Function of Reduced Time for TNT E'xperiments

iILI

Figure 2.10 Granite Stress Wave Profiles as a Function of Reduced Time for Baritol Experiments
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The influence of driving pressure on the rise time of waves in granite is seen in Figure 2.11 where

profiles initiated by TNT, Baritol, and Nitroguanidine in samples about 2.5 cm thick are shown. Driving

pressures produced in granite by TNT, Baritol and Nitroguanidine are about 200, 130 and 40 kilobars,

respectively. Evidently the rise time decreases as driving pressure increases. The wave profile from

the Nitroguanidine experiment is particularly interesting. Peak amplitude of the wave is about 35 kilobars,

and this value may be considered as having some reliability since quartz transducers function properly at

these stress levels. There is no evidence of a second wave arrive, before one transit time of the wave in

quartz, from which we may conclude that the Hugoniot elastic limit in Shoal granite is in excess of 35 kilo-

bars. If the elastic limit were less than about 35 kilobars a double wave structure would certainly have

been observed. The Nitroguanidine plane wave generator used in this experiment was fabricated by W.

3
Benedick of Sandia Corporation. Density of the explosive was 0.41 gm/cm . Shock pressures generated

in aluminum by Nitroguanidine with this density are found 2 2 to be between 40 and 50 kilobars.
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Figure 2.11 Effect of Driving Pressure on Rise Time of Waves in Granite

Because the first wave stresses in granite were so high the quartz crystal transducers found

themselves operating at stress levels where their piezoelectric properties are not known and at stress

levels near which quartz itself yields. Consequently we do not have great confidence in the times denoted

for second wave arrivals in Figures 2.9 and 2.10, There are, however, other indications that a double
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wave structure is exhibited by Shoal granite. First wave velocities appear to be nearly constant,

CG = 0.57 ± 0.03 cm//Msec, regardless of sample thickness and driving explosive. If a single shock wave

were stable in granite the more energetic explosives would produce waves of higher velocity; this was

not observed. Also, if the first wave velocity is constant the second or shock wave velocity, VG, in

granite may be calculated from

V G= a+ (2.7)

and compared with other Hugoniot data for Shoal granite. From the values of ts and SG listed in

Table 2.1 one obtains the average values of second wave velocity, V = 0.500 cm/psec, from TNTG

experiments and VG = 0.493 cm//jsec from Baritol experiments. Knowledge of the shock pressure

generated in the aluminum plate by TNT and Baritol enables one to determine the pressure and particle

velocity associated with the second wave in granite. By the standard impedance-mismatch technique

(e. g. , see Figure 1 of Reference 6) one obtains the following Hugoniot data for Shoal granite:

P = 163 Kbar, u = 0.118 cm/Msec, V = 0.500 from TNT
2 2 *G

P2 = 133 Kbar, u2 = 0.096 cm/isec, V = 0.493 from Baritol.
2 2 G

To obtain the above figures it was necessary to estimate the flugoniot elastic limit, P of Shoal

granite. This *as taken as 50 kilobars. Other assumed values of P1 between 40 and 60 kilobars change

the values of P2 listed above by less than 10 percent. The two Hugoniot data obtained from the quartz

crystal measurements are shown along with other Hugonlot data 2 3 in Figure 2.12. That the quartz

crystal data are consistent with Hugoniot data obtained by other means suggests to us that a double wave

stracture is actually being observed by the quartz transducers.

Results of wave profile experiments with quartz crystal transducers strongly point to the existence

of a two-wav structure in Shoal grarite at driving pressures below about 300 kilobars. The experi-

mental records do not demonstrate this positively, however. If a double wave structure exists, as

appears to be the case, the granite precursor amplitude or dynamic yield strength is felt to be in excess

of 35 kilobars and probably between 40 and 50 kilobars.

In the wave profiles measured there appears to be a relaxation of stress after the first peak or

yield stress in granite is achieved. As noted before, this relaxation may be instead some idiosyncrasy

of the quartz transducer. Further calibration experiments on quartz transducers are required with 50-

kilobar waves and with various wave profiles or strain rates before the relaxation can be definitely

assigned to the granite waves.
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Figure 2.12 Quart-- Crystal Data Plotted With Hlugoniot Data for Granite

A more definite result of the grrnite experiments is that the rise time of the first (and possibly only)

wave increases with increasing distance of wave travel in granite. This observation is considered as

evidence for viscous behavior of granite.

It must be emphasized that the interpretations given the records obtained from Shoal granite with

quartz crystal transducers are largely qualitative and certainly not unique. Before more definitive

information on granite may be obtained further experiments are required.

Salt

Samples of rock salt used in wave profiles experiments were obtained from a location near

Winnfield, La.. and are referred to as Cowboy salt. All samples were highly nonuniform in the snse

that they were permeated by numerous cleavage and shatter cracks. Density of Cowboy salt was

2.15 gm/cm 3 and the average first wave velocity measured was 0.40 t 0.02 cm/psec. slightly less than

the reported24 seismic velocity. 0.438 cm/psec.

The crystal transducer of Figure 2.6 was used in all experiments. Because a very low precursor

25
amplitude in salt was expected, of the order of I or 2 kilobars, explosives In direct contact with salt
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or explosives with a driver plate such as aluminum could not be used as it was feared that the high driving

pressures generated would overdrive the elastic precursor. The driver plate chosen for the salt experi-

ments was 4340 steel f~om which waves of amplitude 16 to 25 kilobars are obtained, 4 depending on the

Rockwell C hardness of the steel. These waves in 4340 are actually the elastic precursors of steel. TNT

explosive was used to initiate the waves in steel.

In Figures 2.13 and 2.14 are shown the results of wave profile measurements in salt. For each

experiment a quartz transducer was placed on the back surface of the 4340 driver plate as well as on the

salt sample. By this means the wave profile produced in steel by TNT and transmitted into salt was

measured. The topmost profiles of Figures 2.13 and 2.14 are the waves entering the salt samples; lower

profiles in the figures are those from salt.

Salt sample thicknesses for Figures 2.13(a) and 2.13(b) were 2.54 and 2.01 cm, respectively. In each

of these experiments the 4340 driver plate was 7.62 cm thick. The quartz transducer used to obtain the

profiles of Figure 2.13(a) was 1/4 inch in diameter by 1/8 inch thick, while that used to measure profiles

of Figure 2.13(b) was 1/2 inch in diameter by 1/4 inch thick.

In Figures 2.14(a) and 2.14(b) the 4340 driver plate was 2.54 cm thick, and the salt sample thick-

nesses were 1.05 and 0.886 cm, respectively. Diameter and thickness dimensions of quartz transducers

were 1/2 inch by 1/8 inch for both experiments of Figures 2.14(a) and 2.14(b).

Impedance factors, Z, of Equation 2.6 used to reduce records were 2.02 for steel to quartz and

0.784 for salt to quartz.

That the wave profiles measured in 4340 steel are not identical in Figures 2.13 and 2.14 is due to

the fact that the steel driver plates did not all receive the same heat treatment, and consequently they are

expected to yield different profiles. 4 The Rockwell C hardness of steel drivers in Figure 2.13 is not

known. For the steel drivers of Figure 2.14 the hardness is estimated to be between 35 and 50.

It is difficult to make a comparison of the stress profiles from salt because of the different stress

profiles transmitted into it and because of its different thicknesses. Nevertheless, it can be seen that

under roughly similar conditions (see Figure 2.13) the salt profile amplitudes at a given time may differ

by as much an a factor of two. Perhaps these differences In salt profiles are a result of the nonuniform-

ities in samples. All of the salt stress profiles do, however, have the same general shape, a slowly

rising wave form without prominent maxima or peaks. If Cowboy salt had a Hugoniot elastic limit at

about I or 2 kilobars and a stress-strain curve simlar to that of Figure 2.1(b). a double wave structure

should have bean observed from the driving pressure of 4340 steel. Since the wave profiles observed in
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salt are more nearly slmilar to those of Figure 2.1(d) it is felt that the stress-strain relation of Cowboy

salt has a region of anomalous compressibility for stresses in salt less than 20 kilobars.

Basalt

From Area 18 (Danny Boy site) of the Nevada test site a sample of basalt rock was obtained for

wave profile experiments. A stress wave profile measured in basalt is shown in Figure 2.15. A plane

wave explosive generator, Baritol explosive, a I cm thick aluminum driver plate, and the transducer

assembly of Figure 2.6 were used to obtain the profile of Figure 2.15. Density of the basalt sample was

2.67 gm/cm and measured first wave velocity was 0.524 cm/psec.
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Figure 3.15 Streas Wave ProfUe In BasUlt
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Erkman 6 in a basalt of density 2.82 gm/cm. 3 BiAweat the time of peak stres and the time of setnd

wave arrival a relasatin In stress of about 7 kilobars occurs.
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The second wave arrival time is clearly noted. From Equation 2.7, we may estimate the second

wave velocity, as was done for granite, and calculate a point on the basalt Hugoniot. Shock velocity is

found to be 0.485 cm!/sec. Using 38 kilobars as the Hugoniot elastic limit end the appropriate aluminum

reflection Hugoniot, shock pressure and particle velocity associated with the second wave are 127 kilobars

and 0.102 cm/psec. This datum is consistent with other Hugoniot data 2 3 for basalt..

Unlike the transducer used with granite, the quartz transducer which measured the basalt profile

of Figure 2.15 operated at stress levels below the dynamic yield stress of quartz where the piezoelectric

response of quartz is relatively well known. As a result, considerably more reliability may be attached

to the basalt profile than to the granite profile.

Conclusions

The quartz crystal technique developed by Neilson14 for the measurement of stress wave profiles

in metals has been adapted for studies of stress waves in rock materials. -This new technique is capable

of measuring stresses directly with high time resolution at stress levels below about 45 kiobars.

A cursory examination has been made of three rock materials to investigate the properties which

characterize nonfluid-nonelastic stress wave propagation. Results of experiments indicate that Shoal

granite exhibits a viscous nature whose effect is to lengthen the rise time of a step-function type stress

twave as it propagates in granite. Rise times of waves in granite appear to be influenced by the driving

pressure. The Hugoniot elastic limit of Shoal granite is in excess of 35 kilobars and probably is

between 40 and 50 kilobars.

Cowboy salt appears not to have a Hugoniot elastic limit during times over which observations were

made; rather the wave profiles observed in salt suggest that the stress-strain relation for salt is such

that compressions are anomalous at stresses below about 20 kilobars.

A wave profile measured in basalt established the Hugoniot elastic limit as nearly 40 kilobars and

also indicated that relaxation effects exist in basalt.

While these initial experiments have not provided reliable quantitative information on the rock

materials examined, they have pointed out some effects which will require consideration in the formula-

tion of models of nonfluid-nonelastic behavior of geologic solids. Before accurate calculations can be

made of nonfluid-nonelastic stress wave propagation from buried explosions, the results of laboratory

plane wave experiments must first be understood.
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Section 3

LONG-PERIOD DISPLACEMENT GAGES

J. W. Wistor, J. A. Beyeler, and G. J. Hansen

Instrument development for observation of long-period earth displacement produced by under-

ground explosions has been directed toward relative displacement devices (long-base strain gages),

inertial displacement gages, and electronic single and double integrators.

Stretched-Wire Gages

The spring-loaded wire gages used by Sandia Corporation on Plumbbob Projects 1. 5 and

26.4b are typical examples of state-of-the-art stretched-wire relative displacement gages. The

gage system comprises a spring-loaded music wire stretched under continuous tension between a

fixed anchor and a spring-loaded drum in the transducer unit. An auxiliary helical extension spring

is used to preload the main music wire to ensure optimum frequency response from the system.

The music wire is operated within a flexible metal tube, which permits free movement of the wire

and effectively decouples it from the surrounding medium (Figure 3. 1). This instrument had a

usable displacement range of about +20 inches and a response of 20 milliseconds per foot to a step

displacement. A modified form of this gage was used at several locations on the Small Boy event

at NTS.

The Small Boy instrumentation consisted of three deep drill holes which contained particle

motion gages at various depths between the surface and 400 feet. The displacement gages used in

these drill holes were constructed in the following manner:

A large canister at the bottom end of each instrument array housed the spring-loaded dis-

placement pickoffs and the preload springs. The remote displacement zeroing and spring tension-

ing mechanisms were housed In satellite canisters at various locations in the uphole portion of the

array. These satellite canisters, which also contained velocity gages and accelerometers, acted

as the forward anchor points for the displacement gage arrays (see Figures 3.2, 3.3, 3.4, and

3.5). These gages could measure up to 70 inches of relative displacement and were operated over

spans of from 100 feet to 375 feet.
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Fi gure 3. 1 Stretched-Wire Relative Displacement Gage (two configurations)
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Figure 3.2 Assembled View of Small Boy 375-foot Instrument Array
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Figure 3.3 Installation of Small Boy 375-foot Instrument Array
(Note main canister and one satellite canister.)
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Figure 3.4 Small Boy Main Canister Detail
Showing Four Displacement Pickoffs

Figure 3.5 Small Boy Satellite Canister Detail Showing
Music Wire Takeup Winch and Canister Orienting Unit
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In retrospect several recommendations can be made with respect to long-span displacement

gage assemblies. First, any long-base, spring-loaded music wire gage system should be limited

to about a 200-foot span. For longer spans frictional forces between the music wire and flexible

metal decoupling tubing become so large that, even with additional wire preloading, gage response

time is seriously affected. Second, for the particular type of relative displacement gage under

discussion - i.e., one in which the displacement pickoffs and music wire preloading springs are

located at the bottom or remote end of the instrument array - overall system response time is in-

fluenced by several additional considerations. In this system the ground displacement signal ar-

riving at the forward anchor at time t is not sensed by the displacement pickoff until some later0

time (to + At), where the additional delay time At is determined by the transit time of a sonic wave

in the associated length of music wire and the response time of the displacement transducer-music

wire system. In this system the frictional and inertial forces required to accelerate the music wire

assembly degrade the system response. In the alternate system (displacement transducer and pre-

load spring forward), the response time of the displacement pickoff is the most significant part of

the delay time. Fortunately the portion of the delay time associated with the transit time of the

sonic wave can be calibrated out of the response equation with reasonable accuracy. For the Small

Boy event the advantages associated with remotely locating the displacement pickoff were felt to

outweigh the disadvantages, particularly because of the peculiar geometry of the Small Boy instru-

mentation plan. Primary advantages were of course associated with the additional shielding afforded

by remote location. Thus instrument disturbances due to nuclear and electromagnetic radiations

and to ground shock were minimized. For performance details consult Reference 1.

For additional information on the Plumbbob type relative displacement gage system, see Refer-

ences 2 and 3.

Rigid-Rod Gages

A second type of relative displacement device consists of a rigid rod, one end of which is se-

curely anchored to the test medium. The rod is enclosed within a flexible metal housing contining

self-align.g bearings at fixed intervals. The metal housing decouples the rod from the test

medium, and the bearings permit free rod movement and damp out transverse rod vibrations. A

distance transdwer is used to measure the relative displacement between the free rod end and a

second fixed anchor (Figures 3.6 and 3.7). Several 10-foot gages in various configurations, set
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up in the laboratory to simulate the buried condition, were excited by an electrodynamic shaker.

First significant resonances for 3/8- and 1/2-inch-diameter rods occurred in the region of 300 to

450 cycles per second. Smaller diameter rods resonate laterally at frequencies so low as to pre-

clude their use. Two 10-foot gages were buried near each of two 5000-pound HE bursts and per-

formed satisfactorily (Figure 3.8a). Several 10-foot gages were built with a remote zeroing capa-

bility for Gnome and NTS. A record obtained from this gage at a distance of 950 feet from the Gnome

explosion is shown in Figure 3.8b, and an NTS record in Figure 3.Bc.

Recently the original 10-foot relative displacement gage has been extensively redesigned.

These modifications have produced several advantages. Smaller and more sensitive displacement

pickoffs can now be used. This reduces the active gage span from 10 feet to 3 feet with no reduc-

tion in gage sensitivity. Strains between the limits 2 microinches per inch to 20,000 microinches

per inch can be measured with this device. For deep hole installations the remote rod unlatching

and transducer zeroing mechanisms have been redesigned; this has produced a shorter and smaller

diameter motor and transducer housing, consistent with installation in smaller diameter drill holes.

The length has been reduced from a nominal 16 inches to 10 inches and the diameter from 5 inchcs to

2.25 inches. A recent test of this device near a buried 1000-pound HE detonation at the Coyote test

field yielded good displacement data.

Inertial Displacement Gages

In order to measure ground motion directly, a reference point must be chosen which remains

fixed with respect to the earth. Since such a reference point must, in general, be located at a great

distance from the point of motion, it ig more convenient to use an Inertial type of displacement gage.

Furthermore, when studying large-amplitude displacements, a gage having a sensing-element motion

(with respect to the gage case) of only a fraction of the case movement is desirable.

Two mechanical-type inertial displacement gages were designed and constructed. In both of

these, the relative motion between sensing mass and case is reduced by coupling the linearly moving

sensing mass to a flywheel. This is accomplished with a rack-and-pinion gear in the first gage and

a recirculating ball nut in the second.

The moving rack In the first instrument is fastened to a mass carried on a ball bushing which

rolls on a splined shaft. The flywheel-and-pinion shaft is mounted on precision ball bearings (Fig-

ure 3.9). If M is the mass of the ball bushing assembly, R is the pinion gear radius, and I is the

moment of inertia of the flywheel assembly, then the case motion, D, is given by:
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where y is the relative motion between tile case and tile ball bustling.

Th'ie output signal is gene:rated from a r~otary differential tca||sformer.

The second instr'ument .onlsists of a helical-splined shaft which supports a recirculating ball-

screw nut of the type used on some automotive steering gears. The inductive pickoff includes a

ferrite ring mounted onl the, b:all-serew uut aind four laminated, soft iron armatures attached to tile

case. rhP armatures are tape.-ed and their coils wired in a four-arm bridge configuration (Figure

3. 10). In this gage, the case motion, D), is given by;

D I + 16--) y, (3.2)
_p

where I is the moment of inertia of the ball-screw nut assembly, m is the mass, p is the pitch of tie

screw (linear advance per revolution), and y is the linear displacement of the nut with respect to the

case.
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Figure 3.11 Spring-Driven Test Sled

Displacement-versus-time curves were plotted from the displacement sled test data of both the

rack-and-pinion and helical-splined inertial displacement gages (Figures 3.12 and 3.13).

Maximum deviation of the rack-and-pinion curve from the true displacement was less than

5 percent of the peak displacement amplitude for the first 1. 5 seconds on one run, and 8 percent for

the first 2.3 seconds on a second run. These runs were made with different initial driving forces.

As the sled slows to a stop. the deceleration forces decrease to a point where they are comparable

to the frictional forces in the gage, and the gage error increases. In both of the runs mentioned

above, the peak displacement amplitude was about 20 inches, and the sled came to rest in approxi-

mately 2-1/2 seconds. The present threshold sensitivity of the gage is 0.04 g.
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Figure 3.12 Sled Test of Rack-and-Pinion Gage - Model 31
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Figure 3.13 Sled Test of Helical-Splined Gage

The internal friction of the helical-splined gage was high enough to produce errors as large as

30 percent of full scale after the first oscillation of the sled. For this reason, together with the

facts that its physical size becomes excessive when designed for large displacements and its cost

is much greater than the rack-and-pinion device, our efforts were directed toward improvement of

the rack-and-pinion gage.

The prototype rack-and-pinion and helical-splined inertial displacement gages were exposed

on the HE test mentioned previously. Because of the small motion expected, the flywheel was removed
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from the rack-and-pinion gage. Performance of the helical-splined gage was unsatisfactory because

of excessive friction. The rack-and-pinion gage indicated a peak displacement of 1.0 inch and a

residual permanent offset of 0.25 inch (Figure 3.14a). A precise preshot and postshot survey of a

gage-mount bolt showed a permanent displacement of 0. 28 inch. Since the maximum relative error

of this type of gage usually occurs near the end of the record, and the recorded peaks coincided with

the crossover points of a velocity gage located nearby, it is believed that the record was a good rep-

resentation of actual ground motion. This gage was later used at NTS for surface motion measure-

ments.

1.0

0.5HVt -
-0. 1

0 100 * 200 300 400 500 600 700 800 900

Time (milliseconds)

-(a) 5000 pounds HE surface burst - radl! d"!(rf-aceinent
a 50 feet from burst at depth of 2 feet.

6.

4.0

2.0-

0 100 200

Time (milliseconds)

(b) Hardhat event, NTS, radial displacement at shot depth,
600-foot slant range.

Figure 3.14 Typical Records From Inertial Displacement Gage
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The rack-and-pinion gage has been repackaged and modified to permit installation in deep drill

holes (both vertical and horizontal). The new external configuration is a 6-inch-diameter sphere,

and provision has been made for a remote leveling and calibration capability after the case has been

grouted in position (see Figures 3.15 and 3.16). Twelve were built for use at Gnome and NTS. The

record obtained at the 950-foot station at Gnome (Figure 3.17a) indicates a residual displacement to-

ward ground zero which is probably not true. This discrepancy is explained by reference to an ac-

celerometer record from the same location (Figure 3.17b). It is seen that accelerations are small

after about 0. 15 second. Frictional forces in the gage are therefore becoming more significant com-

pared to acceleration forces, and the gage indication is not reliable after this time. This character-

istic was also evident on the sled tests. A record from Hatrdhat at NTS is shown in Figure 3.14b.

Figure 3.15 External Configuration of Inertial Displacement Gage
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(b Ground acceleration record, 950 feet from
Gnome event at shot depth.

Figure 3.17 Displacement and Acceleration Records From a Nuclear Explosion in Halite
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Several ideas have evolved for gage designs which use the same basic operating principle but

which should exhibit less friction than present models.

( Velocity Gages

Recently considerable effort has been directed toward a redesign of the SRI type velocity gage.

This device is basically a highly overdamped, low natural frequency, pendulum accelerometer.

This new gage, in conjunction with a single-stage electronic integrator, has yielded good displace-

ment data on experiments conducted with buried HE detonations and the displacement test sled.

This modified velocity gage has been specifically designed to extend the range of particle velocity

measurements into the 300 ft/sec region and to withstand shock loads in excess of 1200 g. To effect

this capability a complete redesign of the pendulum suspension system and pendulum and armature

assembly was necessary. Several other changes were made in order to improve the accuracy and

repeatability of these gages. A system for filling these gages with DC 200 damping fluid under

vacuum was designed. This eliminates damping ratio changes (with consequent amplitude and fre-

quency response errors) caused by air admixture in the damping fluid. To accommodate tempera-

ture expansion of the damping fluid a flexible bellows assembly was incorporated in the base of the

velocity gage. Figures 3.18 and 3.19 show various views of the present design.

£J

Figure 3.18 Experimental Velocity Gage, Type DS-B(H)
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Figure 3. 19 Disassembled Experimental Velocity Gage Showing Two Case Configurations

During the recent experiments conducted on subsurface 1000-pound HE detonations, these

gages successfully measured peak particle velocities between 0.1 ft/sec and 235 ft/sec; corre-

sponding peak accelerations ranged from 0.5 g to greater than 1500 g. The 235 ft/sec peak velocity

was measured at shot depth, 7 feet from the center of a 1000-pound HE sphere, detonated in desert

alluvium. A reproduction of this velocity gage record is shown in Figure 3. 20.

This velocity gage was later recovered. Extensive postshot tests showed no gage damage;

however, a slight loosening of the E-coil hold-down screws was observed. As a result of this test

the E-coil hold-down assembly has been redesigned. The hold-down fixture has been strengthened,

and epo, is used to lock the E-coll and hold-down screws in place. Transient gage response records

derived from experiments conducted on the displacement test sled are shown in Figures 3.21 and

3.22.

The experimental velocity gages discussed above fall into two categories. One type is basic-

ally a low-range model using a brass pendulum, used to measure particle velocities in the range

0. 1 ft/sec to 25 ft/sec. Production models of this gage are referred to as type DS-B(H). The "B"
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refers to the brass pendulum material and the "H" refers to the horizontal mode of operation. The

second type of velocity gage is similar to the above in overall design; however, the pendulum is

constructed of aluminum alloy. This model, referred to as type DS-A(H), is designed for operation

in high g regions and is normally used to measure particle velocities in the range of 10 ft/sec to

300 ft/sec. The experimental velocity gage record of Figure 3.20 was obtained with a gage of this

type. The two experimental velocity gages referred to in Figure 3.21 as U 1 X, and U 2 X are identi-

fied as follows: U X is an early prototype of the DS-B(H) model; U 2X is an early prototype of the

DS-A(H) model.

Electronic Integrators

Because of the problems of design, calibration, and installation of velocity and displacement

instrumentation, we have long desired to be able to obtain velocity and displacement data by integra-

tions of accelerometers. Several attempts to perform integrations using operational amplifiers

with capacitive feedback have been made in the past. However, long-term carrier system drift and

operational amplifier zero drift have caused the results to be unsatisfactory. This section reports

progress made in overcoming these difficulties and describes the development of long-term stabilized

single and double integrators.

Single Int egrators

The basic circuit for performing integration with operational amplifiers is shown in Figure

3. 23a. The current through R is i = (e. - C )/R. Since an ideal amplifier draws no input current,1 5

this current is also the charging current for the capacitor, C. The voltage across C is

V = es -c (l+A)c.

Therefore if A>> 1, V can be written

V =Ae = f id f  ci ,)dt.c o C R-
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Since e 2 -e /A and A is very large, the equation becomes e0 e ~ edt, which shows that
a 0 R

the output voltage is directly proportional to the integral of the input voltage. In general an opera -

tional amplifier circuit can be shown as In Figure 3. 23b. If A is very large (10 4 to 10 8), then

es 7 0. Therefore, E 0/E1 ' Z f /Z I.

Using Laplace transform methods to analyze the circuit shown in Figure 3. 23a we obtain

1 - and Z R where Sj4

E T RS o RCS
I I

Taking the inverse transform we obtain

'I f fedt.

which Isi the same answer obtained previously. Therefore the ratio of feedback to Input Impedance

will be usaed throughout this report to determine circuit performance.

The circuit of igure 3. 23a suffers a number of difficulties In~ its practical appileation. A

typical iniatruntentation siystem coniitsi of a velocity or 4celerion guge whoov response is 4mpli-

fied by at carrier amplifier; outpit uf the carrier amplifier fis then !ed to the integration circultry.

The output voltage of the carrier amplifier varies slowly (uppros~mately * 56 my) with time. and,

whets bpplied to the circuit of Figuee 3.1*3A. caudes 0 to vary several volts, which I* sufficient to

saturate the signal recorder. It addition, all actual operanal amplifiers require a small DC' cur-

rent flowing through Zft to stabilive them. Tis curr.9 varies from amplifier to amplifier, and for

the amplifie~rs being used (the Astrodatu - 110) is ab)out 25 to $O ntlcromicroamperes. This

current continuously charges; the capacitor C and, unless bled off, allows e ato agii rise to sixtura-

To solve these problems the circuit shon In Figure 3. 23c was Invwntgaltd With this cir-

cuit we obtan:



Zf S
E z (lRsIc IS+IlR;c-?

Let T R C R C a stabilization time constant.
c 1 1 2 2

Then

E
0 S

i RIC 2 S+I/Tc)

and for a unit step function input

t e-t/T
o RIC 2

Therefore it can be seen that, for t less thaat 0. 1 to & thisa circuit will Integrate with less than 10

per.ent error. In practte it is possible to obtain values at Tf V zO ieconthli or more with good

long-term stability. This allows accurate integratioi over about S *e.eond,. For molt measure-

ments the dat4 is obtained in less than I second. The single-ntegration clrcut employed in our

tests was that of Vflure 3.23c.

Double Int ato,

The pravilral problemrs ssorimet with double-integrotlan iruta airt much more severe

than thte of Aingle integrators. The mtet common mvthod of perflrfting double iriegr4tion Ia to

use two single integruaoro in series. Thi. yielitd the following form for a step input:

St I IT

A system of this type will work; hwoever, it has severa) major prlemas. The orm at the ex-

peonlil requires Oat T re tOw two I gtrators to series be tWe " large as T for a s4"oe

isqlrewtoyi*elOw sw wore. Thse W. OwmitmI owo o r a~lt takegraw Is ist

*pass bea of the soeau am is therefore Imgsseod.
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Much of the series amplifier drift problem can be overcone by using the circuit shown in

Figure 3. 23d for which

E - 2(S + 1/2R2C 2)

E S2C
i (RS)CC (S + 2/RIC 1 )

1 1 211

22

Let R1C = 4R C. Then for a step input e = t IR2C C which is the form for true double inte-
1 1 2 2' 0 1 1 2'

gration. However, the circuit of Figure 3. 23d is very unstable. Some means of compensation

must be supplied to eliminate the instability. The simplest method is to apply a leakage path from

output to summing point and to block long-term drift in e i as shown in Figure 3. 23e. This circuit

produces an oscillatory form in the output voltage for all values of R other than Rc  R If R isc c 2* c

made equal to R2, the circuit is stable and we have

E 2S  (S + I/2R2C2)

E. 2 2RC C2  L (S + 1/R2C2 ) (S + 2/RC (S + 1 2RCb

If RC = 4R2C and 2RIC = R2C then
1 22 1 b 22

2 2S 3 1 ] - Cb 1( S l/ 2
3JI R CIC2  (S + 1/ R2C 2  (S 2 3 22

For a step voltage input we obtain

Cbt2  t/RC t2

2 2C 2  c .

e 2R22C2 e'/22= 222c etTc'*

This is the form desired, performing short-term double integration but having long-term stability.

Tc R 82 C 2 must be made large to obtain accurate data. R2 is limited to < 2x10 ohms for

stability: therefore C 2 is determined when T is specified. This means the gain of the circuit is
2 c

controlled by the value of Cb. For the actual circuit Cb is calculated to be several hundred
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microfarads. Low-leakage capacitors of this magnitude become physically impractical, and there-

fore this circuit has limited application. To attempt to eliminate these problems the circuit in

Figure 3. 23f was investigated. fC >> C and R3>> R weobtai

b 1 3 2

E - Zf ; 2S [  (S+1/2R2 C3 )" )]
E. . 2 32 + IlRCCi

Z i R CC (S + RC)(S 2 + 2S/R2C I1 13 3 3 1 1l'll b

2S [ (S + 1/2R2 C3 )

RIC2C3  L(S + IRC)(S + 2/RIC I ) (S + 1/2RICb)J,1133 3 1 11b

and if RI C -- 4R2C 3 and 2RI Cb  R3C 3  then we again obtain the proper form

I o 23 l P 2bC 3S3
Ei R C C 3  [(S + 11R CRR 3 S

1133J 2 3 3 3C'3

In this case we find that if R3 and C3 are specified and Cb is limited to a reasonable value, gain

can still be adjusted by varying R2 . This circuit can be built with reasonable components and

double integrates nicely; however, it is very unstable because the voltage divider formed by R3

and R 2 severely limits the steady state stabilization current flowing from output to summing point.

Stabilization can be restored by placing a capacitor in series with R2 to block the direct current

path. The circuit shown in Figure 3. 23g is then obtained. Making the assumptions that C > > C
b 1

and R 3 > R2 we see that

Z ! [(S + 2/R C1 ) (S + 1/2RICb) ]

2 1(s + l/2R2 C 3 ) (S+2/R 3 C2)
3f (S + 11R 3 c 3) (S + I/R 2C2 )
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Let RCI  = 4R2C 3 and R 3C 2 =4 RIC b andR 2C 2  R3C 3  Tc -

Then

E 0  Zf 2 [ S -C bITS
R2 CC (S + I/ 3C13 T2 C (S + T)3

which is again the form desired.

This circuit has been constructed and operated with many values of T and gain. With valuesc

of R 3 < 2x10 9 it will hold zero to +100 mv for long periods of time. It can be constructed with com-

ponents of reasonable value and, depending upon the gain desired, accurate double integrations

over several seconds can be obtained. Results of some recent experiments using the displace-

ment test sled are shown in Figures 3. 21 and 3.22.

Sample Determination of Components

For purposes of example the sled run shown in Figure 3.22 will be used. In this case it was

desired to (a) single integrate acceleration to obtain velocity, (b) single integrate velocity to obtain

displacement, and (c) double integrate acceleration to obtain displacement,

Acceleration (A) = 50 g

Velocity (U) 10 ft/sec

Displacement (D) = 3 feet

Using the relationships U = At, D = Ut, and D = (1/2) At 2 , the values of the integrator gain con-

stants can be determined. For case (a) above we obtain

RIC 2 = t = U/A = 10/(50) (32. 2) = 6.21 x 10 - 3 seconds where all components

are designated as shown in Figure 3.23c.

Next, values for R2 and C are chosen as large as possible consistent with the desired

stability. For the example, R 2 x 10 ohms and C1 
f 18x10 6 farads.

2U
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If 1 R C c R Te, then

2 -3 9 -6
T = RIR2CIC2 = (6.21 x 10 (2 x 10) (18 x 10 224

or

T = 14.95 seconds
C

R1 = Tc/C1 = 14.95/18 x 10 - 6  8.30 x 105 ohms,

C2 = Tc/R 2 = 14.95/2 x 109 = 7,5 x 10 - 9 farads.

Using the same method for case (b) we obtain

R C = t = D/U = 3/10 = 0.30 second.
1 2

Let
9

R2 = 2 x 10 ohms

C1 = 18 x 10 - 6 farads.

Then
2 9 -6T (G.30)(2 x 10 ) (18 x 10 - ) 10800,C

or

T - 104 seconds,

ci

R1  T Tc/C 1 = 104/18 x 109 6 = 5.8 x 106 ohms,

C 2 = Tc/R 2 = 104/2 x 109 = 52 x 10 - 9 farads.

For case (c) the circuit of Figure 3.23(g) is used and we obtain

T 2c C 3/C t2 = 2D/A = 6/(50) (32.2) = 3.73 x 10

Let R3  2 x 109 ohms andC b  18 x 10- 6 farads.

Then

C3 t 2Cb/R2 (3.73 x 10 - 3) (18 x 106)/(4 x 1018) = 16.8 x 10 " 27 ,

C3  2.56 x l0 "9 farads

and

T c = R3 C = (2 x 10 ) (2.56 x 10 . ) 5.12 seconds.
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For the equations to hold, R must be much greater than R2 . Therefore let
3 2'

R = 100 R2 .

Then
4 7

= 2 x 10 ohmsi R2

and
7 -7

C 2 = Tc/(2 x 10') = 2.56 x 10 farads.

Since

R 3C 2 = 4R1Cb

R1 = (2 x 109 )(2.56 x 10-7 )/(4)(18 x 10 - 6 7.1 x 106 ohms

and

C1 = 4R 2 C3 /R 1 = (4) (2x 10 7) (2.56 x 10" 9 )/(7.1 x 106 2.88 x 10 - 8 farads.

These circuits were constructed and the data shown in Figure 3.22 were obtained. It car be

seen that in all cases waveforms from integrated channels closely resemble the output of trank -

ducers measuring the functions directly. In addition all peak data are accurate to well within

+10 percent.
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Section 4

SPHERICAL SHOCK WAVES FROM UNDERGROUND EXPLOSIONS

R. H. Bishop

Introduction

In order to improve understanding of cratering and seismic-coupling phenomena - especially

for extrapolating from chemical to nuclear explosions -- an analysis of shock waves in solid media has

been made. Only spherically symmetric waves are assumed, in uniform unbounded media; these waves

are analyzed throughout the entire range of distances from close to the explosion center to distances

where linear elastic theory is applicable. Principal results derived from the analysis are pressure-

distance decay laws for various geologic materials. Time history profiles are not obtained, but the

"effective shell thickness" parameter (which is obtained as a function of the radial distance) indicates

the general scale of the shock-wave radial profile, without reference to its shape.

The partial differential equations expressing conservation of mass, momentum and energy, the

constitutive relations of the medium in which an explosion occurs, and the appropriate boundary and

initial conditions are in principle sufficient to describe completely the wave disturbance generated by

an explosion. In practice, however, a general and complete solution is extremely difficult mathemati-

cally. Considerable progress toward a solution has been made in the last few years by use of electronic

computers, particularly in the immediate or hydrodynamic vicinity of the explosion. Nevertheless, at

present there appears to be no computer calculation capable of predicting values for an explosion dis-

turbance which agree with experiments in the variety of media in which data have been obtained and

over the complete pressure range from hydrodynamic to elastic.

In addition to the mathematical difficulties, lack of kncwledge of media constitutive relations is a

major shortcoming. Since methods of solution by computer techniques are relatively difficult and not

readily available for general use, a simple, analytical, and easily applied method of solution is highly

desirable. It is the aim of this report, first, to make those simplifying approximations and reasonable

assumptions for the unknown constitutive relations of the medium so that an analytic solution may be

obtained; and, second, to evaluate the resulting solutions by comparison with experimental data.
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In the present report, solutions are obtained which are analytic in each of the several different

pressure ranges associated with explosive disturbances. Over each range, an approximate relation

between stress and strain is described by a set of constant parameters, and a corresponding analytic

expression relating pressure and distance is obtained which holds only within that range.

It is known experimentally and from theoretical considerations that an arbitrary initial pressure-

distance profile generated by an intense initial disturbance in a medium is generally not maintained during

subsequent propagation; it rapidly approaches a certain "steady-state" ultimate shape. The "front" of

this ultimate hydrodynamic profile is very steep, almost discontinuous, and the 'tail" has a nearly

unchanging shape during propagation, being roughly exponential. Taylor (1950) 2 2 has shown that the shape

of the hydrodynamically stable profile of a sufficiently strong spherical shock wave depends only on the

adiabatic exponent of the medium. Moreover, the profile remains always "similar" -- I. e., a given

fraction of the front pressure is always located at the same relative location between the explosion center

and the shock front position at each instant of time, provided the shock remains sufficiently strong.

During subsequent propagation at lower pressures, two changes take place: (1) the scale of the profile

varies as the front moves along; (2) the shape of the profile varies with R. As a simplifying assumption,

we ignore the change in profile shape (2). This change is small as long as the transition from ambient

pressure to front pressure is irreversible. Even assuming an invariant profile shape, one must still

take account of the change of scale (1). since this is a first-order effect and cannot be neglected even in

an approximate analysis. It is useful to define a separate parameter to account for the change in scale

of the radial profile which occurs during propagation at relatively low front pressures -- i. e., when the

shock Is not "strong" in the sense defined by Taylor. This parameter is related to the radial distance

(at any instant) from the wave front to a point on the profile where the pressure has decreased to a given

fraction of the front pressure. This distance defines a 'shell thickness, y. which contains most of the

wave energy.

Use of the "shell-thickness$ parameter simplifies the mathematical description of shock propaga-

tion. The fundamental partial differential equations, which contain time as an independent variable.

are required to describe the transient approach to a steady radial profile shape. Assuming a steady

shape to have been reached at some early time, we derive ordinary differential equations In which the

bidependent variable is the wave front radius. R, at any instant of time. Integration of these equations

gives the curve of pressure as a function o radial distance in any given medium. This latter curve is

the principal object of concern in the following analyses, ince most of the available data from experiments
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can be compared with it. In order to derive the curve, however, the constitutive (stress-strain) relations

of the medium must be known in each pressure range. The initial steady shape of the radial profile is

determined from Taylor's analysis, but the change of shape which actually occurs during subsequent

propagation is ignored in our analytic approximate solutions.

Stress-Strain Description of a Solid Medium

The Hugoniot curve refers to the set of all shock front conditions (p , ps) that can be reached from

a given initial condition (pl pl ) . In a gas, one may use the following Hugoniot (Taylor, 1950),22

- + 1 + (Y - 1) (ps /P1
Vs/V 1 + (+ ) (ps 1

provided that the parameter 7 is defined as

Y= 1+(psv - pv )(E - E)

in which p is pressure, v is specific volume or reciprocal of density, and E is specific internal energy.

The subscripts 1 and s refer to regions ahead of and behind the shock wave, respectively.

The parameter y is equivalent to the exponent of a reversible adiabat only for "weak" shocks, so

that Ps - P1 is small compared to p1 . In general, -( is a function of ps.

In terms of the relative fractional change of volume, or "strain," c = 1 - v s/V , and the over-

pressure, a = P - pl, the Hugoniot may be reduced to

lE (1/2)(y + 1) +ypl/a . (4.1)

When a is large compared to p, Equation 4.1 approaches the well known limit ps/Pl C (Y + 1)I(Y - 1)

for "strong" shocks; and when a is small compared to p1 Equation 4.1 corresponds to the differential

form of the reversible adiabat, (da/dp)1 = y1 Pl1 - 1 , in which -1 is the value of y corresponding to

the ambient condition (p,, pl). That is, y approaches -1 as a approaches zero.

Equation 4.1 can be applied to a solid medium, but the parameter -1 may vary rapidly with the

front pressure, a . For solid media, we make the assumption that the product yp I in Equation 4.1 may

be replaced by the reversible adiabatic elastic modulus S1 . The quantity y in this product must also

be replaced by y1 . By definition, S1 = Pl(da/dp)1 , and it is well known that the plane wave propa-

gation velocity, C 1 , corresponding to infinitesimal longitudinal strains is (da/dp)1/2 . Thus,
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2
SI = -ip, z PlCI . Equation 4.1 is then expressed in terms of S 1 for any solid medium,

a/l P Cl(l+X)= SI(I + X)= S (4.2)

in which x is defined as

x = (Y + 1)a/(2plC2) (4.3)

The stress-strain ratio a/c in Equation 4.2 defines a finite-strain modulus, or "shock modulus,"

S . Thus, we interpret x as the relative fractional correction which converts the elastic-wave

modulus, S 1 , to the shock modulus, Ss

The modulus correction, x, in Equation 4.2, has a simple expression in terms of the shock-front

propagation velocity, U. This is derived from the Rankine-Hugoniot equation for conservation of mass

across a shock front, us/U = c , in which us is the particle velocity at the front. Eliminating E

between this equation and Equation 4.2 and using the momentum equation, a = plusU, we obtain

x = (U/C1 ) - 1 (4.4)

It should be recognized that the strain, c, in Equation 4.2, takes place in a direction parallel to the

directioi of plane-wave propagation, so that there is no change of volume in any transverse direction.

Howevc:r, there is always a transverse stress field accompanying the longitudinal stress, a

If x is negligible compared to 1, each stress component is directly proportional to the longi-

tudinal strain, c . In this case the strain at the front is infinitesimal, and the corresponding waves

are said to be "sonic" or "acoustic." In a solid medium, the transverse stress field depends on

Poisson's ratio as well as on the elastic modulus S1. When a is large compared to S1 and x is

large compared to 1, stresses generated in a solid by shock waves are termed "hydrodynamic." When

a is comparable to S and x is comparable to 1, the quantity a is neither acoustic nor hydrodynamic,

nor is it simply related to the longitudinal strain, c

Reversible Strain

Let us consider a spherical compressive wave in a small volume of rock subjected to a uniform

lithostatic pressure, p I. This pressure is due to the weight of air and rock at depth hs below the

surface and is approximately equal to B + phghs, where Ph is average density of rock, B is barometric

pressure, and g is gravitational acceleration. As a spherical shock moves along, the front pressure

will eventually decrease to a value less than that necessary to open radial (hoop-stress) cracks. If the
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shock overpressure, a= Ps Pl ° is replaced by a static overpressure of the same magnitude at the wall

8
of a spherical cavity, Lamb (1960) has shown that the static tangential stress, at, due to the excess

radial stress, aR is given by at = (1/2) (a R - 2 pl), provided that the medium is linearly elastic. When

aR exceeds 2pl, the cavity wall is subjected to a tensile hoop stress. When at reaches some critical

value, T, radial cracks will be formed. If we assume that this static relationship can be extended to a

shock wave, the parameter T is equivalent to a dynamic tensile strength in the medium. Then the shock

front stress, ah, corresponding to the onset of radial cracking is defined by the equation

T = (1/2) (A - 2Pl) or a = 2(T +pl ) .

The actual maximum reversible stress, pr, cannot exceed this limit, but it may have some smaller value.

Thus, in general, pr is less than or equal to 2(T + p1 ).

Since S 1 p = lC 1 , the reversible adiabatic exponent -f in a solid medium at a moderate

3
ambient pressure, pl may be relatively large. For example, if p1 

= 2 gm/cm , C1  4 km/sec and

P 1 
= 60 bars (1000-foot depth), -y > 103

When x is small compared to 1, the strain is small and y approaches the limit, '1 " Since y

is generally large compared to I in any solid medium, and S1 = 1p 1 , Equation 4.3 is practically

equivalent to

x = a/2pI (a<p) . (4.5)

When a is less than pr, the relation between stress, a, and strain, c, is given by Equations

4.2 and 4.5. Evidently, the stress is directly proportional to the strain only when x is negligible com-

pared to 1. In general, the relation may be nonlinear even when the strain is reversible (a < pr

because x is not necessarily negligible compared to 1. To see this, we observe from Equation 4.5

that x may have any value less than p r/2p1, and p r in turn, may have any value less than 2 (pl + T).

Thus, x may have any value less than 1 + T/p 1 .

Cracking Zone and Crushing Zone

When the radial stress, aRP exceeds the reversible limit, p r radial cracks will appear first,

due to tangential tensile stresses at the spherical wave front. In a range of higher values of peak radial

stress, tangential cracks may be expected to form as a result of shear stress failures. Consequently,

separate rock fragments will result from a combination of processes resulting in tangential and radial

cracks. As the radial stress increases, the fragments may break up, until a granular composition is

left as the "crushing-strength," c' is approached. We call pc the effective dynamic compressive
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strength. If the peak radial stress, aR. is less than Pc, each fragment tends to retain its shape; in

this range of stress there is no excessive transverse bulging, and the tangential compressive stress

component is negligible compared to the radial stress component. After the first radial cracks have

appeared, the tangential stresses become zero, and the radial stress component becomes dominant.

All these conditions apply approximately to any radial stress, aRP which is less than the dynamic

compressive strength, Pc " The region of a medium in which the stress a R has values such that

pr < aR < pc is termed the "cracking zone," and in this zone the radial stress component is considered as

the only stress of importance in a first approximation.

Because the radial stress, aR, is directed perpendicularly to any concentric spherical surface, it

will diminish inversely as the square of any radial distance in the cracking zone. This is readily seen

from the equilibrium equation in spherical coordinates,

aaR 2(a - a)
- + R 0

511 R

in which the tangential stress, at, is set equal to zero. The radial stress, aR , which is a solution of

this equation, varies inversely as the square of the radial distance, R.

This variation is strictly true only for a static radial stress field. We shall assume that the

inverse-square law is also obeyed for wave-front stresses in the cracking zone, (pr < aR < PC). It should

be recognized that if the radial stress, aR, exceeds the crushing strength, Pc, the transverse stress

components can no longer be neglected even in a first approximation. In the cracking zone, each rock

fragment tends to resist a change of shape, which is described by a finite-strain shear modulus, ps "

As the radial stress increases in the cracking zone, resistance to change of shape begins to disappear as

fragments are broken down into smaller and smaller particles of more regular shape. These ultimate

particles tend to resist change of volume rather than change of shape; hence, the shear modulus, pa,

becomes negligible in that range of stress which exceeds the crushing strength, p c; this range will be

termed the "crushing zone." Now, the stress-strain relation can be described by a finite-strain shock-

wave bulk modulus, k s
s

In order to determine a stress-strain relation for a medium which applies to both the cracking zone

and the crushing zone, we express the dynamic shock modulus, s , in Equation 4.2 in terms of the

shock-wave bulk modulus, ks, and the shock-wave shear modulus, s . By analogy with the acoustic

2modulus, S1, representative of infinitesimal strains and expressed by S1 = k + (4/3)p I C1 , we

define finite strain or shock-wave moduli by the corresponding relation, Ss = k + (4/3)p . Using
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2the well known relation pj = plC2 , where C 2 is the velocity of infinitesimal shear waves, the acoustic

2
bulk modulus, k, can be expressed in terms of the acoustic plane wave modulus,S:

kjS1 = I - (4/3)(C 2 /C 1)2 (4.6)

hn the cracking zone, it is expected that Poisson's ratio remains nearly the same as its "acoustic"

value. Thus, k/]ps = k/p, k /k = p/p = f, and S = fS 1, where f is a constant factor. Solving

Equation 4.2 for x gives

xc = (4/3)(Ms /S 1 ) + f(k/S 1 ) -1 (4.7)

in which the subscript c refers to the crushing zone or the cracking zone. In the crushing zone, as

already explained, the finite-strain shock-wave shear modulus, p1s" becomes negligible, and

Equation 4.7 reduces approximately to

1 - (4/3)(C/C )2 ] - 1 (4.8)Xc  f

In the crushing zone, the factor f is not strictly constant, as in the cracking zone, but depends on

the amplitude of the stress a . In the absence of experimental data, we shall assume Equation 4.8 in

conjunction with Equation 4.2, for the stress-strain relation in the crushing zone. In Equation 4.8,

the factor f is equal to the ratio S s/S1 , in which Ss is the "rapid-strain" shock modulus, and S

is the "slow-strain" acoustic modulus. It has been observed by Wuerker (1959) 2 6 for "mine rocks"

and by Watstein (1953)2 4 for concrete that the ratio of a rapid-strain modulus to its corresponding

slow-strain modulus is about 2. In accordance with these experiments, we use f = 2 in Equation 4.8,

so that the modulus correcLion x in the crushing zone becomes
2

= 1 - (8/3)(C 2 /C 1)2  
(49)

Hydrodynamic and Plastic Ranges

When the front pressure, a, exceeds a certain minimum value, pm. individual particles merge

to produce a continuous fluid with high viscosity, which exhibits "plastic flow." When the pressure

exceeds a still higher limit, pH" the medium displays a completely hydrodynamic character as a low

viscosity fluid. We can determine an approximate value for pm by substituting x = xc into
2

Equation 4.3, and replacing a by pr, which gives pm = 2x p C /(,y + 1). This result follows from the
m cl

fact that we have identified the highest pressure in the crushing zone with the lowest pressure in the

plastic zone. The expression for p involves the parameter y. From experimental Hugoniot data,

,y may be evaluated using Equations 4.2 and 4.3. It is found that -y is about 2 or 3 in most geologic
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materials. These values for -y are accurate in the hydrodynamic range of pressure, a > PH , but

approximate in the plastic range, pm< a < PH

In the hydrodynamic pressure range, a > pH' "y is very nearly constant. In the plastic range, 'y

is a slowly varying function of a, so that in subsequent calculations we shall take it to be constant for

all pressures, a > pro and equal to its value when a > p 1 1

Pressure Zones Near an Explosion

The schematic diagram of Figure 4.1 illustrates the various pressure regions surrounding an

tuiderground explosion. The modulus correction, x, in these same pressure regions is shown as a

function of a in Figure 4.2 for a typical earth material. The information of Figure 4.2 has been

converted to a stress-strain diagram'in Figure 4.3.

Table 4.1 summarizes the modulus corrections and the stress-strain relations for the various

pressure ranges.

The only certain information we have about the properfies of solid media is their elastic constants

and their Hugoniot, illustrated in Figure 4.2 by the two regions of the curve where the slope is unity.

Between these extreme limits of pressure our knowledge of medium properties is imprecise, if not

negligible. The two straight-line portions of the curve in the acoustic and fluid pressure ranges must be

connected in some fashion. We have made this connection by assumption, using the relations listed in

Table 4.1.
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TABLE 4.1

Modulus Correction and Stress-Strain Relation in Various Pressure Ranges

Condition of medium and Stress-strain relation.
Zone range of pressure Modulus correction x a versus C

I Continuous solid, reversible a __ 211 1 1
istrains. a < Pr 2 plIIIk- 'I

II Cracked solid, large ,2(+1

fragments or radial cracks. X= f 14 1 I E

r cI II

f >__2
C

Ill Crushed solid, small r 4C2 2  PlC (l c
particles. pC c~~ X f l-I)( or<J- (I +/ xc

piastic, a> pm x 2p C 2  =  ( 2

Shell Thickness and Wave Energy

Let us take the shock-wave energy, Ws, as twice the kinetic energy in a spherical volume of

radius R, the distance from explosion center to shock front. Near the front, the kinetic energy per

unit mass is known to be practically equal to the internal energy per unit mass, provided the front

pressure is large compared to ambient. Thus

Ws = 4q 2r 2dr

in which pr is density and ur is particle velocity at radial distance r from the center of explosion.

We now define the effective shell volume, Vs, to be equal to a/Psus),. in which p8 is density and

is particle velocity at the wave front. Then

11 r (Pr/ps ) (Ur r dr
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The shell volume, V . can be expressed in terms of its thickness, y, and outer radius R. so that

22
Vs  4zrR yF. in which

F I - (y/R) + (1/3) (/R) 2 . (4.10)

Now, letting n = r/R. the shell-thickness ratio y/R is found from

y/R = (I/F) I (pr/ps)(ur/Us )22 4.1i

Equation 4. 11 applies generally to any spherical shock wave, provided the front pressure is large

compared to the ambient pressure, p I.

It follows from replacement of ypl by S1 -in Equation 4.1 that p l/p approaches ( - I(y + 1)

when a is large compared to s I . From Equation 4.3, this same condition results in a large value

of x, regardless of whether a gas or a solid is being considered. Taylor (1950) 2 2 in his analysis

assumes the asymptotic front condition pl/P = (7 - 1)/(- + 1); accordingly, Taylor's analysis can be

applied to a solid medium when x is large compared to I and the shock wave is strong.

Taylor's theory provides radial profiles for inclusion in Equation 4.11. In terms of Taylor's

variables, # (n, y) and Vin, 7), the result is

o4 zn% d (4.12)

in which the subscript, o, designates a strong shock wave. The values of (y/R) calculated

from Equations 4.10 and 4.12 and Taylor's formulas for # and 0 appear in Figure 4.4. This shows

that the hydrodynamic shell-thickness ratio (y/R) is a function only of the medium parameter, '

and does not depend on R.
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Figure 4.4 Relative Shell Thickness Versus Adiabatic Exponent for Hydrodynamic Shock Waves
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Strog Sock Enery ad Pressure

It Is seen (Figure 4.4) that the shell-thickness ratio (y/R) is Invariant as R Increases, provided

*Y remains constant and the shock wave remains strong; when x is large compared to 1. a shock is

defined to be strong. regardless of the type of medium. Any spherical blast wave can be described

adequately by two parameters, namely, front pressure., a, and shock energy, W . The shock energy

2
can also be expressed in terms of the relative shell thickness, y/R, and the energy density, paus . at

3 2 2the front. From preceding definitions, W = 4w Rp Fy/R. Energy density. p us, is related to
S 55S

2
front pressure. a. since the change of kinetic energy is (I/2)u5 = (I/21o(v1 - vs ) /

22Taylor (1950) has shown that there is a simple relation between the front pressure, o, and the

total blast energy, W . This quantity is defined as the total kinetic and internal energy associated

with all the material inside the entire sphere of radius R. It Is sometimes convenient to separate the

total blast energy, W into two parts. The shock-wave energy, W s , has already been described. It

is associated with the spherical shell whose outer radius is R and whose inner radius is R - y. We

now define the 'core" energy, Wc, to be equal to W - W . The core energy, W, is associated withc t s*c

the spherical volume whose radius is R - y.

Taylor (1950) 2 2 defines a dimensionless pressure, f(n, v), analogous to the relative density, tp,

and relative particle velocity, #, which we have already used in Equation 4.12. From Taylor's result

in our notations, the front pressure, o, is given by

a = B(y)W R_ 3  (4.13)
t

where

B(Y) f( + 1) + (2/ Y) (-y - 1)_ I

and x >> 1. It is calculated from two definite integrals through the use of Taylor's formulas for V0,

and f.

I if) n da

j f(n, Y)n dn .

The function S() is plotted in FIgure 4.5
A
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Figure 4.5 Relative Pressure Versus Adiabatic Exponent for Strong Shock Waves

From the strong-shock energy relations, W = puF(y/R) , us = ca/pl° c = 2 /(y + 1), and

Equations 4.12 and 4.13, we find that W = 2 7r(' + i)R 311()a, W /Wt = 2#(y + I)I(y)B(7), and also that

W /W = I - Ws/W . The ratio W /W designates the fraction of the total energy which is partitioned toc t5 St
shock propagation (i.e., in the shell), and the remainder is retained by the core. These fractions depend

on the medium; for strong shocks (x >> 1) they are functions of y only. It is also evident that for strong

shocks the fraction of energy partitioned to shock propagation is independent of the front radius, R,

provided y is constant. For example, when y = 3, W /W - 0.8. Thus, only 20 percent of the total
a t

energy is retained by the core in this case; whereas, when y a 1.4, W/W - 0.42 aid nearly 60 percent

of the energy is retained by the core.

Heat Energy Loss From Shell

As shown in the last section, there is no significant loss of energy from a strong spherical shock-

wave shell, since y is nearly constant. As the spherical front radius, R, increases, however, the

shock necessarily becomes less strong, and eventually there is an appreciable net loss of energy from the

shell. Then W5 becomes a variable, depending on the shock front radius R at any given instant. Since
the adiabatic expansion curve of a medium lies above the Hugoniot curve (Figure 4.6), the net loss, Q4
(per unit mass), is always less than the heat, Q, which corresponds to a Hugoniot expansion curve, in
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which the final specific volume is the same as the initial specific volume. Let us define

s G GQ (4.14)Inx
S

where

Qs = heat which is ultimately lost from the shell and retained by the core;

Q = heat associated with the Hugoniot expansion curve of Figure 4.6;

G x = factor which depends on shock strength; nd

G = factor which depends on type of medium. a
m

As we have seen for strong shock waves, the shell energy, W s, remains constant as the front

moves along. Therefore, for strong shocks, must be zero, although Q is never zero. For shocks

which are not strong, neither Q or Q is zero.
5i
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Flgure 4.6 Sock Energy Relatoins: Pressure Versus Volume
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The heat Q is the approximate energy deposited in a solid medium if a <PH since the final

specific volume v , is nearly equal to the initial specific volume. It is to account for these observations

that it is convenient to introduce the two parameters G and G . Also, by the introduction of parametersIn x

G and G explicit consideration of adiabats, which are completely unknown for geologic media, is
m x

avoided. The shock strength parameter G must go to zero as the shock becomes strong in order to
x

account for Taylor's result that the shell energy, W s, remains constant. The factor Gm is a medium

parameter which can be evaluated approximately from an experimental determination of the Hugoniot in

the plastic zone. Explicit forms for G and G will be presented in the following sections.m x

Referring now to Figure 4.6, the heat energy Q per unit mass is illustrated graphically on a

pressure-volume diagram as the area between the Rayleigh line, AC, and the Hugoniot curve. The area

enclosed represants the approximate net hea% energy, Q, deposited in a unit mass of condensed material.

Using the analytic Hugoniot curve described by Equations 4.2 and 4.3, the heat fraction is given by

2h z Q/u 8,1/2 - (Ix (1+ I/x) In (I + x) - 11 (4.15)

in which u2 = a(v -vs )  /P represents twice the kinetic energy at the shock front, and is

shown in Figure 4.6 as the rectangle ABCD.

When x is small compared to 1, Equation 4.15 reduces approximately to h = x/G; and h

approaches 1/2 when x is large compared to 1.

Energy Propagation

From the definition of the effective shell volume Vs w0 P u2V . Differentiating this with

respect to the front radius R,

dW/dR a Ps(V, (du'/dR) + u(dV/dR)]

in which we neglect the change in front density Ps compared to changes in u5 and V5 * Consider the

energy loss dW from the shell which results when a shock front advances from radius R to radius

R + dR. Then dWa/dR - .4wRR pQ. in which P1 Is the ambient density of the medium. Eliminating

dW/dR from the last two equations provides a differential equation describing variation of shock energy.

us, with distance. R. Using Equation 4.14 and introducing a R Iy we obtain

(a36
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q (I/F)zhG mG (Pl/Ps) (4.17)

in which q is a parameter which denotes the heat energy loss from the shock-wave shell. The variable

z represents the ratio of the front radius R to the effective shell thickness y.

Shell Thickness in L±ydrodynamic Zone

In order to integrate Equation 4.16 in the hydrodynamic zone where -Y is nearly constant, we use

2the Hugoniot Equations 4.2 and 4.3 and eliminate c through the energy relation us = aECp * This gives

u 2 a-C pl (I + l/x) I in which a = (1/2)(-y + 1) and x = af/SI . From these results,

2 -2 -1 2 -1 2x-1us  a PI SIx ( +X) , and dlogu /dlogx = (2+x)(1 +x) " , whenoyis constant. Now we can

obtain a differential equation from Equation 4.16 which relates the variation of x with R to the variation

of z with R in the hydrodynamic zone,

.d logx + ( [x" 3 + q _l/F)(d log z
log R 2 +x L d log F/J

It is evident that this equation cannot be integrated until z is expressed in terms of x and R. Let us

assume that

dlogz/dlogR = 1/( +x) , (4.18)

and also that this relationship is valid over all ranges of pressure. It is apparent that Equation 4.18

applies to strong shock waves, where x is large compared to 1, since we have already seen (Figure 4.4)

that Taylor's theory requires z to be constant if y is constant; and so for very strong shock waves,

d log z/d log R = 0. Very weak shock waves, or acoustic waves, correspond to values of x which are

very small compared to 1. These also are described by Equation 4.18, since z = Rly and y remains

constant, independent of R so that d log z/d log R = 1. Each "infinitesimal" Fourier component of a

very weak disturbance travels at the same "acoustic" velocity, C1 , as is evident from Equation 4.4,

since x approaches zero for acoustic waves. Therefore, an acoustic wave pulse does not disperse; it

maintains a constant radial extension whose scale is measured by the effective shell thickness, y.

Using Equation 4.18, we obtain a differential equation which describes the variation of x with R

in the hydrodynamic zone,

-d log x\ . 2 + 3x + q(1 + x) (4.19)
Vd logR) 2 + x

where q is defined by Equation 4.17, and F has been set equal to 1. Referring to Equation 4.10 and

Figure 4.4, we see that y/R is relatively small for strong shock waves, and F is nearly equal to 1 .
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The ratio y/R will become even smaller for weak shock waves, because y tends to remain constant

when R increases, as already pointed out. Therefore, we can assume F = 1 for any shock wave, with

adequate accuracy.

By eliminating R, a differential equation for z is obtained from Equations 4.18 and 4.19, which

is valid in the hydrodynamic pressure range (y = constant),

d log z 2 +x (4.20)
dlogx (I +x)12+ 3x+ q(l +x)]

Now we refer to the definition of q in Equation 4.17, and set F = 1. Each remaining factor in

Equation 4.17 must be evaluated in order to integrate Equation 4.20. First of all, it is evident that q

is directly proportional to z, and the differential Equation 4.20 is consequently nonlinear in the

dependent variable z. Moreover, it will become apparent that the remaining factors defining q in

Equation 4.17 are complicated functions of the independent variable x. An approximate analytic method

is desired in order to avoid numerical integration of Equation 4.20. Fortunately, one can derive an

analytical appro:imation which is sufficiently accurate for most practical purposes.

Loss Factor, q, in Hydrodynamic Zone

It can be shown from Equation 4.20 that z is a slowly v..rying function of x when x is greater

than about 5, regardless of the variation of q with x. This corresponds generally to the hydrodynamic

pressure range described in Section 2. Consider now each of the remaining factors in Equation 4.17

which determine the shell energy loss parameter q. In Equation 4.17, F = 1 and h is a function only

of x given by Equation 4.15. From Equation 4.15 it is seen that h is a slowly varying function of x

when x is greater than 5. From Equaticns 4.2 and 4.3

pl/ps = 1 - 2(1 +yf -(1 + l/x) , (4.21)

showing that (pI/Ps) is also a slowly varying function of x when x is greater than 5, and when Y

is between 2 and 3, values typical of hydrodynamic pressures in solids.

In Equation 4.17 and Equation 4.14, G is a shell energy-loss factor which depends on shockx

strength, and G depends on the type of medium. We have seen that G approaches zero as xm x

becomes large. By analogy with Equation 4.18, let us assume that G= 1/(1 + x), so that Equation

4.14 becomes

G - (I + x)(Qs/Q) , (4.22)
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and Equation 4.17 becomes

(1 + x)q = Gm zh(pl/p)= q 2  
(4.23)

From Equation 4.22 we see that G is a slowly varying function of x in the hydrodynamic zone.

Note that G cannot become large as rapidly as x, because Qs/Q must approach zero as x increases.

This observation indicates that q2 in Equation 4.23 is a slowly varying function of x, since each of the

other factors has already been shown to be a slowly varying function of x. As a result, we assume that

some constant average value (q2 ) = qa can be used in evaluating Equation 4.20,

( logz\ 2 + x
d log x/ (1 + x)(2 + qa + 3x)

which can be integrated to give

I b- 2
/x ) /1 +b/x3b(b- 1)Z/z i 1+- (4.24)

in which

b = (I/3)(2+qa) (4.25)

In Equation 4.24, z = z. when x = xi, and in Equation 4.25,

qa = Gm Zaha(Pl/Ps) (4.26)

In Equation 4.26, we first examine the variation with respect to x of each of the factors over the

hydrodynamic range of pressures.

In order to determine z in Equation 4.26S, let us find an average value for z over the hydro-a

dynamic range of x. To do this, it is sufficient to examine Equation 4.24 for all values of x in the

hydrodynamic range which are smaller than x = 100. It is unnecessary to consider Equation 4.24

for larger values of x since z remains practically the same as the strong shock limit, (y/R)°  1/z °

given in Figure 4.4. This conclusion also follows necessarily from Taylor's theory, because the

actual density ratio pl/ps given by Equation 4.21 differs from Taylor's limit (,y - 1)/(,y + 1) by less

than 1 percent when x is greater than 100.

From Figure 4.2 we find that x is the lowest values of x in the plastic zone, and from Table 4.1
c

it is seen that the same stress-strain relation is used in both the plastic zone and the hydrodynamic

zone. In Figure 4.2, the transition between hydrodynamic and plastic pressures occurs where x x. .
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Below this point "y is not constant, and the hydrodynamic equations in which a constant value of -y is not

assumed are not strictly valid. If y is taken to be constant, as a simplifying assumption in the plastic

range, (x c <x < x H ), we can make an additional simplifying assumption in order to avoid calculating a

separate lower limit xc for the hydrodynamic-plastic range in each medium. We shll assume x 2 = 1/2

for the "effective-average" lower limit of this range in each medium, and 'the corresponding pressure will

be called the "hydrodynaimic termination pressure," P 2 (see Figure 4.2). As determined from Equation

4.3, we obtain p 2 = S1 /(,y + 1). This may not be the "best" choice that can be made. Ideally, one should

perform a separate analysis of the (curved) plastic zone and determine the variation of x with a without

restricting it to follow a linear relationship (i.e., constant -y) as we have just done. However, the

parameters of an extensive geologic formation are not sufficiently uniform to make such an effort reward-

ing, and our objective here is to make reasonable and simplifying assumptions so that the problem is

tractable in analytic form.

From Equation 4.25, it is evident that b is always greater than 2/3, since qa is never zero in the

hydrodynamic range of pressures. It follows from Equation 4.24 that the greatest possible values of z/z

occur when b has the smallest possible value, namely b = 2/3.

Therefore, evaluating Equation 4.24 between limits x. 100 and x 2 = 1/2, and assuming b = 2/3,
1

we obtain the greatest possible value for z 2 , namely z2 = 1. 8z . Here z2 is the value of z at the hydro-

dynamic termination pressure, P 2 , and 1/z i = l/z 0 is the asymptotic limit (y/R)o , shown in Figure 4.4,

at the high-pressure end of the hydrodynamic range, where x. = 100. An average value of z can be taken1

to be half way between 1.8z and z, so that z = 1.4z . Because of the assumption b = 2/3, this

particular average is an upper limit for any medium, which is approached only by a nearly loss-free

medium such as halite or granite. From experimental data we find that xH = 3.5 and b = 3.28 in tuff,

which differs considerably from the lower limit, b = 2/3. In tuff, it is found that z = 1.16z . Fora o

desert alluvium, b = 12.8, and z is less than 1.16z . It turns out as a result that an average value fora o

z in any rock medium, including alluvium, is given by z = 1.2z with adequate accuracy. This is the

value we shall use in Equation 4.26 for all geologic materials.

Returning again to Equations 4.15 and 4.21, it can be seen that Loth h and (p1 /Ps) are quite slowly

varying functions of x when x exceeds 10, since y in a solid medium is generally greater than 2 and

less than 3. Referring to Equation 4.24, we see that z changes very slowly when x exceeds 10, for

any possible value of b. Therefore, we need only consider how these quantities vary in the range from
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x x. = 1/2 to x 1 10. The same is also true of G , given by Equation 4.22, as we have already

shown that Gm must be a slowly varying function of x when x exceeds 10; then p 1 /Ps approaches

(y - 1)/(y + 1), and Taylor's theory becomes applicable, at which point Qs/Q approaches zero.

Referring now to Equation 4.22, we recall that x = xH at the upper limit of the plastic zone. It is

expected that the heat loss, Qs , should be approximately equal to Q for any value of x less than xH in

the plastic zone. In the plastic zone where xc < x < XH' Equation 4.22 is simplified by this assumption,

giving G = 1 + x. As explained previously, the general plan of calculation is to obtain an average form

h, (p /Ps ) and Gm over the range from x - 0.5 to x = 10. It is not clear how G m varies when x

exceeds x H . Possibly a good average for Gm over the stated range is the value -corresponding to the

point where x = xH. Then an approximate average of G m to be used in Equation 4.26 is (Gm) = 1 + XH'

In principle, one should now take the average of h(p 1/p s ) over the entire range of x from 0.5 to 10.

However, it was not possible to evaluate G for any value of x greater than xH . For this reason, it ism

expected that a better average for the triple product Gm (p /P s)h might result from emphasizing the upper

end of the range of x near x = 10 when an average for the double product (p1 /Ps)h is being calculated.

Since pl/Ps is a decreasing function of x and h is an increasing function of x, the product varies quite

slowly even for values of x less than 10. Therefore, it is sufficient to evaluate (p /P s)h at x = 10 in

order to obtain a satisfactory average to be used in Equation 4.26. From Equations 4.15 and 4.21 we find

1110 = 0.336, and (pl/Ps)1 0 = 1 - (20/11)/(1 + y). Using these expressions together with the preceding

equations, (G = 1 + xt and za = 1.2zo, we obtain a general expression for the loss term, qa ,in

Equations 4.25 and 4.26,

q a = (0.4)z ° (1 + xH)[I - (20/11)/(,y + 1)] (4.27)

In Equation 4.27, z is obtained from Figure 4.4 and a known value of y for the medium. Values ofo

- and of xH for the medium are obtained from a plot of x versus a using experimental Hugoniot data,

and from Equation 4.3. As in Figure 4.2, we obtain xH from the point at which the plot of x versus

a first departs "significantly" from the hydrodynamic straight line where y is constant. Below this

point, the medium is plastic and y is not constant. The exact location of this departure is more or

less arbitrary. As a rough guide, one can assume that the departure is "significant "when the actual

value of x differs by about 30 percent from the value of x obtained by extending the hydrodynamic

straight line.
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Variation of Pressure with Radial Distance

Hydrodynamic Pressure Range

In the hydrodynamic pressure range where a is greater than p2* the value of x at any distance

R Is found by integrating Equation 4.19, using also Equations 4.23 and 4.25,

R/R. = (x /x) 1/3 / 1 + b/x ,h 3 (4.28)

where R = R i when x = x , and from Equation 4.3 we obtain the pressure, a/ai = x/xi It should

be observed that -y is assumed to be constant.

Crushing Zone

2When the wave-front pressure, a, Is less than p m we take xc = 1 - (8/3)(C 2C ) as shown

by Equation 4.9. We see from Figure 4.2 that, in general, the hydrodynamic termination pressure,
P2 is nearly equal to pr. Thus, a constant value of x determined by x from Equation 4.9 can be

used without excessive error for any pressure less than P 2 and greater than the crushing strength, pc.

This particular modulus-correction for the crushing zone is merely an estimate, made necessary by

lack of experimental data.

Shock-wave propagation in the crushing zone is not described by Equation 4.28 since y in the

crushing zone varies rapidly with pressure a . In the crushing zone we use Equations 4.16 and 4.18,

with r = 1.

- (d log u2 /d log R)= 3 + q - 1/(l+x , (4.29)

in which q = G m(Pl/PS)zh( + xc) . Here the heat factor, h, is xc/6 from Equation 4.15, using

the approximation for small x. The factor G is obtained from Equation 4.22, in which we assumem

that Qs/Q = 1.0 for the crushing zone, so that G m = 1 + xc . This combines with Equation 4.9 to give

G m = 2 - (8/3)(C 2 /C) 2

It is seen from Equations 4.21 and 4.9 that pl/Ps is nearly equal to 1 in the crushing zone, Therefore,

G zx c

6(l +x)
c
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and Equation 4.29 becomes

- (d logu s/d log R) 3 - (1- z cGm /6)/(1 +x) (4.30)

Since u 2 a C/Pl it follows from Equation 4.2 that us  a 12 S(l x n Equation

becomes

-d log a/d logR = 3/2 - (1/2)(I - zx cG m/6)/(l +x c) . (4.31)

Dividing Equation 4.31 by Equation 4.18, with subscript c in crushing zone,

.. (d log a/d log z) = I + 3x /2 + x zG /12

c c m

which can be integrated to give

2 + 3x
c

alai (z zi/Z) 2 exp -(G/m12)x(z - zi)]  (4.32)

In Equation 4.32, z z when a a. The ratio z/z i is obtained by integrating

Equation 4.18,

1
1l+x c

z/z. = (R/R.) o (4.33)1 1

in which a = a. and z = z. when R = R.

Cracking Zone and Reversible Zone

When the wave-front overpressure, a, is less than the crushing strength, Pc' and greater

than the reversible limit, pr' the pressure varies inversely as the square of the radial distance, R,

as assumed in Section 2 for the cracking zone. Thus,

a/. = (R./R) 2
, (4.34)1 1

in which a a a. when R = R.1 1

When a is less than pr the strains are reversible and qa = 0. Thus, b = 2/3 according to

Equation 4.25, and x in the reversible zone is given by Equation 4.5. The curve of a versus R is found

from Equation 4.28 with b = 2/3, x = a/2pl, so that

R/R /) 1 3 ( + 413c /3 (4.35)
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when a is less than pr" In Equation 4.35, p1 designates the ambient pressure. When a P - pt is

much smaller than p,. Equation 4.35 approiaches R = constant/a , and the pressure, a. falls off

inversely as the first power of the radius, R. This range corresponds to acoustic overpressures. for

which x in Equation 4.5 is very small compared to I.

Table 4.2 lists the stress-decay formulae associated with the various conditions of the medium.

and the corresponding ranges of pressure.

TABLE 4.2

Stress Decay Laws in a Solid Medium
I

Zone Condition of medium and range of stress Stress-decay law

I Continuous solid, reversible strains, 3 1 + 4p/3u 2

a < Pr a/a i (Ri/R) 1 + 4p /3cr.,

II Cracked, large fragments or radial a/a. = (Ri/R) 2

cracks, pr < a < P c

2+ 3x
C

2(1 + x(Ri/R) C

In Crushed, small particles, c/a. - (Ri/

ep mxczi)I,RIIxc I

2 - b-

IV Fluid, hydrodynamnic or plastic, caa (R /R) 3  1 p 1 ~ba/7+1
a> P2 . P2  m r I + 2plC2(b/ai)/(y + 1) J

Initial Conditions

In order to use Equation 4.28 to calculate the relation between a and R in the hydrodynamic zone,

one must first obtain the "initial value," xi, at some given radfus, Ri. Since x i r (I/ 2)(y + 1)a t /pl C2

from Equation 4.3, it is evidently necessary to calculate the pressure, ai, at some given initial radius,IR i . This pressure can be calculated for a strong shock wave (x >> 1) in a solid, using Taylor's

formulae given above. Strong shock wa' x >> 1, are always produced by buried nuclear

explosions.

137



An underground chemical explosion does not produce a strong shok wave, v accor .

a fraction of the incident energy of a detonation wave is transmitted past the boundary at the surrounding

medium. The remainin energy is reflected back into the detonaton products. In order to calculate the

transmitted ener one must first obtain the energy and pressure of the incident detonation shock wave.

For chemical explosions, the front pressure, psly of a detonation shock wave is obtained from

the Rankine-Hugoniot mass and momentum conservation relations.

UsD AD (4.36)

PsD =p aDusD ApaD2 (4.37)

in which A = (I - Pa/P.)D and usD is particle velocity behind the detonation front. The ambient

density of the undetonated explosive is designated as Pa and the detonation front velocity is D.
-1

Parameter A is the relative fractional volume change from the ambient specific volume, a . to

-1

the shock front specific volume, Ps The factor A is nearly equal to 0.25 for several types of

explosives (Cook, Keyes. and Ursenbach, 1961, Lutzky, 1960). '10

In order to find the pressure, Pt, of the shock wave transmitted into the surrounding medium,

one must first obtain the reflection pressure as a fuction of the reflection particle velocity in the

explosive detonation products. When the reflection pressure, p, is greater than the incident detonation

front pressure, psD' the reflection particle velocity, u, is less than the particle velocity, USD of the

incident detonatiout wave, and the curve (p, u) is described as a "reflection Hugoniot." When the

reflection pressure, p, is less than psD' the reflection particle velocity, u, is greater than UsD

and the curve (p, u) is termed a *reflection isentrope."

These reflection curves are not generally known from direct measurements, but formulae for

calculating an explosive reflection Hugoniot or isentrope have been given by W. E. Deal (1958).6

Deal's results can be expressed as follows in our notation. When the reflection pressure, p, is

greater, than the incident front pressure, psD' the reflection Hugoniot is

1/2

=/ A2 + (A~ A12 - (4.38)

A2  1 + (1/4)(l - A) 1(1 - U/UD 2

A3  1 - (1/2 - A)(1 - A)'(1 - u/u sD2
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When the reflection pressure, p. is less than P the reflection isentrope is

-ll
U/UsD I+ ,l -(p/Psfl. (4.30)

= (1/2 - A)(1 - A)-'

The transmitted pressure, Pt and the transmitted particle velocity, u t correspond to the point

of intersection (pt, ut ) of the reflection curve (p, u) with the Hugoniot curve (a. us ) of the surrounding

medium. The Hugoniot curve (a, us ) of the surrounding medium is generally obtained from laboratory

experiments. If direct measurements are not available for the medium in question, one can use a

theoretical Hugoniot, derived from Equations 2.2 and 2.3 in Section 2, and the kinetic energy relation

2
at the front, (c /2)( /) = (I1 /2)u _ which is independent of the shock strength. It is found that

2 2a 9

-- (4.40)
s pl('Y + 1)(1 + l/x) (4-.

2 +(4.41)
2p C

2

Here C is the longitudinal wave propagation velocity for infinitesimal strains in the medium. As

already mentioned in Section 2, the adiabatic exponent y in the hydrodynamic pressure range is about

2 for hard rock, and about 3 for porous wet rock and porous soils. When x is small compared to 1,

Equations 4.40 and 4.41 reduce to the correct relation, a = pIClu , for small acoustic overpressures

(compared to the modulus plC2), regardless of the particular value assumed for y in the hydrodynamic

pressure range. Therefore, we can use the same constant value of y in Equations 4.40 and 4.41 over

any intermediate pressure range with reasonable accuracy. For very strong shocks, x is large corn-

pared to 1, and Lquation 4.40 reduces to the simple relation, a = (1/2)&Y + )pU

Shell Thickness Ratio

In order to calculate the shell thickness of the spherical shock wave transmitted into the surround-

ing medium from an incident explosive detonation wave, it is first necessary to find the shell thickness,

y of the explosive detonation wave, using Equation 4.11. This gives the (constant) shell thickness-e

ratio, me ye/Re , at any spherical detonation front radius, Re , in th-3 explosive, using known

relations between (pr/pe), (Ur/Us), and n a r/R e for an explosive which has a given undetonated density, p
r r/ a) ee

These relations are termed mradlal profiles." Such profiles have been calculated by Lutzky (1960)10
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3for several explosives, including TNT at a density P 1.58 gm/cm Radial profiles for pentolite,

RDX, tetryl, and RDX/TNT have also been calculated.

It is sornetimes necessary to obtain the shell thickness ratio, z - y /R aa a a for an explosive

whose ambient undetonated density, pa' is not the same as the particular density, pe' for which radial

profiles have been calculated. An approximate method for finding za (at density pa ) from a known value,

2aazeo calculated at density pe, is given by Bishop (1962a).

z/z (Da/D)2 (4.42)Za/e a •

Here Da represents the detonation front velocity which corresponds to an explosive density, Pa, and

D is the velocity which corresponds to a density, pe e

In order to determine the shell thickness ratio, zt  = yt/Rt, of the shock wave transmitted into

the surrounding medium, compared to the shell thickness ratio, za /Ra, of the incident detonation

wave at the medium boundary, we observe that, in a time ya /D , during which the detonation front moves
a

a distance y, the wave front in the medium moves a distance Yt, in a time Yt/Ut, where U is the

initial shock front propagation velocity in the medium near the boundary. Since the detonation shock

wave can supply energy "effectively" only during the time Ya /Da the effective shell thickness, Yt, of
a

the shock wave in the medium near the boundary is the same as the distance that its front moves in the

same time. Thus, YiDa Yt/Ut, or y/y = U /D . In terms of the shell thickness ratio z, this
a t t t ta t a

relation is equivalent to zt (D a/U t)(z a)(R t/R ). Since Rt is essentially equal to R near the

explosive-medium boundary, we have, finally,

zt/Z a - D /U t .(4.43)

t a a/

The shock front propagation velocity, UV. in the medium can be found from

Ut - pt(PUt)' , (4.44)

since Pt and ut have already been determined.

It is sometimes necessary to adjust the transmitted pressure, pt, and the transmitted shell

thickness ratio, zt . If Pt Is equal to or greater than the plastic flow upper limit, pH# for the medium,

the pressure is said to be "hydrodynamic" (refer to Figure 4.2). In the hydrodynamic pressure range,

the hydrodynamically stable shell thickness ratio, z yo/Ro, is given by the graph in Figure 4.4

as a function of the adiabatic exponent, y . V Pt is greater than PH and at is greater than zo, there
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is an unstable balance between the pressure, Pt, and the shell thickness ratio, zt  The shell thickness

ratio must rapidly shift to the stable value, zo, and the front pressure, Pt, simultaneously shifts to a

corresponding stable value, p. The shift is completed at a minimum stable radius, Ro, given (Bishop,

2
1962a) in terms of the initial radius, Rt, at the explosive-medium boundary,

= 0R ( - 2/z Rt (4.45)

The stable pressure, po, is found in terms of the transmitted pressure, Pt, the transmitted modulus

correction, xt, and the stable modulus correction, x,
0I

P0  Pt(x/X) (4.46)

In Equation 4.46, the stable modulus correction, x, is obtained by solving the following quadratic

equation, (Bishop, 1962a)
2 :

3a[(1 + Ix) -I

xo/x (zo/Zt)(Rt/R)" 1 + l/x) (447)I. j

in which a = (1/2)(7+ 1) and xt = (Ut/CI) 2 _ I

Comparison of Calculations With Experiments

Numerous measurements have been made of particle velocities resulting from explosions in various

geologic media. Also, from new developments In instrumentation, a considerable number of direct

measurements of pressure have recently been obtained, principally in the hydrodynamic zone. Peak

particle velocity data may be converted to peak wave front pressures by the momentum relation,

o = pI Uua, If the density, p,, and wave front velocity, U, are known.

The numerous data which have been obtained over the past few years have largely defied accurate

theoretical description. Only within the last two years has significant progress been made in attempts

to calculate peak wave pressure as a function of distance from explosions in geologic media. Needless

to say, very little progress has been made in calculating the particle velocity waveforms which are

observed. The foremost difficulty In the theoretical calculation has been and ccatinues to be our great

lack of knowledge about the properties of these media, without which meaningful and accurate calculations

cannot be performed.
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Extensive data have been obtained from both chemical and nuclear explosions buried in four media: I
granite, halite, volcanic tuff, and desert alluvium. These data have been plotted in Figures 4.7 to 4.11,

together with curves calculated from equations derived in the preceding sections. Figure 4.12 compares

pressure-distance curves resulting from nuclear explosions in various media.

Hugoniot data used in the calculations for the four media are shown in Figures 4.13 through 4.16.

In these figures, the modulus correction, x, is obtained by substituting experimental Hugoniot data into

Equation 4.4. Other properties of the media required in these calculations are shown in Table 4.3.

Note that in Table 4.3 the infinitesimal dilatational velocities, C, are obtained from the measured

wave velocities, U, using C1 Z U/(I + xc) I1 2 , from Equation 4.4. As may be observed from the data

of Figures 4.7 through 4.11, very few, if any, measurements were made in the acoustic regions around

the explosions. In an acoustic region, pressure or peak particle velocity varies inversely as the distance

from the explosion, and the acoustic wave front propagates with the velocity, C1 . Since almost all of

the measurements of wave arrival were made in the crush-crack zone where peak particle velocities

decrease with distance according to a negative power greater than 1, we interpret the measured velocities

as being those of finite amplitude waves, and determine CI from them by the above formula.

TABLE 4.3

Medium Properties

Average Measured Infinitesimal Minimum hydro-
Explosion density wave velocity wave velocity dynamic preasure

Medium serie# or P1  U C1  x x PH
type event (gm/cm 3 ) (km/sec) (km/sec) _c H (kilobars)

Granite Hardhat 2.67 5.51 5.2 0.111 2.18 0.72 530

Halite Cowboy 2.15 4.42 4.2 0.094 2.16 0.23 90

Halite Gnome 2.15 4.83 4.6 0.094 2.16 0.23 108

Tuff Hobo 1.85 2.444 2.07 0.385 3.0 3.5 125

Ttff Rainier 1.85 2.445 2.07 0.385 3.0 3.5 125

Alluvium Scooter 1.6 1.206 1.04 0.333 3.0 14 135

Alluvium Teapot Ess 1.6 1.077 0.92 0.333 3.0 20 135

1. Perret, 1963a; Chabal and Bass. 1963
2. Murphey 1960, Nicholls. Hooker, and Duvall, 1960
3. Weart, 1960
4. Young, 196I
5. Perrot, 1961
5. Perret, 1961b6. Perrer. 1 963b

7. Sachs and Swift, 1955
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To illustrate the method of application of the formulas summarized in Table 4.2, we describe briefly

the procedure followed for obtaining the calculated curves of Figures 4.7 to 4.11. For chemical explosions,

values of the transmitted quantities Pt, ut, and Ut in the medium at the explosive boundary, R = Rto are

determined by the point of intersection of the medium Hugoniot (a, us ) with the reflection curve (p, u) of

the explosive, as described under "Initial Conditions" and shown in Figure 4.17 for desert alluvium. The

200
0 Mc QUEEN AND MARSH.

LOS ALAMOS MEMORANDUM
GMX-6-491, DEC. 1961:

180 0 BASS, HAWK, AND CHABAI (1962)

160
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Figure 4.17 Desert Alluvium Hugoniot and TNT Reflection Isentrope

(Pa z 1.375 gm/cm3)
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shell thickness ratio, zt, of the transmitted wave at the boundary is determined by Equations 4.43, 4.42,

and 4.11, in conjunction with the radial velocity and density profiles of the explosive, as explained under

"Initial Conditions." The initial value of the pressure, a,, in Equation 4.28 is pt; similarly, we have

x i  xt , and the initial radius Ri is Rt. If PH> Pt > P 2 ' a is calculated as a function of R by

Equation 4.28, as indicated in Table 4.2, to the distance R at which a = P2 and x = 1/2. The
2 x2

value of p2 is obtained directly from P 2 
= Pt(x 2 /xt), where x t = (Ut/C1)2 - 1.

The value of b must also be computed for use in Equation 4.28. By Equations 4.25 and 4.27, b

is readily evaluated in terms of the medium constants y and xH, since the shell thickness ratio, I/z o,

equal to (y/R) , is given as a function of - in Figure 4.4.

The initial value of the shell thickness ratio, z., in Equation 4.24, is equal to the transmitted

shell thickness ratio, z t , at the boundary. Since x i = x t , and x 2 = 1/2, we can evaluate the shell

thickness ratio,. z2 , from Equation 4.24, at the hydrodynamic termination point where the pressure, a,

is equal to P2 . In the range from a = p2 to a = pc, the pressure as a function of distance is determined

by Equations 4.32 and 4.33, in which the initial pressure, pi, is equal to P2' and the parameter z i

is equal to z2 . In the crack zone, pc > a> Pr, pressure decays inversely as the square of distance

(Equation 4.34), and in the reversible zone, a < pr the pressure falloff is by Equation 4.35.

Since there are no data available regarding the values of pr for geologic materials, we must

estimate pr from wave pressure and particle velocity data of explosion experiments. In Figures 4.7 to

4.11, we note the minimum pressure level at which a varies inversely with the square of R; for pressures

smaller than this value (which we take to be pr), the falloff rapidly approaches an inverse R dependence.

Values of p estimated in this manner are listed in Table 4.4

From explosion experiments we can also obtain a value for the dynamic compressive strength, Pc'

of an earth material by observing the maximum pressure at which a varies inversely as the square of R.

Fortunately, laboratory determinations of the static value of p c provide a helpful guide (Duvall and

Atchison, 1957; Warner and Violet, 1959). 7 , 23 As has been mentioned, laboratory tests reveal that the

dynamic strength, PC, is about twice the static value for several materials (Wuerker, 1959; Watstein,

26,241953) . Whether or not these results from tests on laboratory samples can be applied to gross

regions of material in situ is unknown. Nevertheless, such determinations of even static compressive

strengths give valuable information for order of magnitude comparison.
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TABLE 4.4

Summary of Explosions and Corresponding Numerical Quantities Used in Calculations

Hydrodynamic Deduced
termination values medium

TNT Ambient Calculated initial values (x2 = 1/2) constants

Medium and radius Energy pressure a. R R 2 - p
type of Rt release p, = pghs 1 2 R z

explosion (feet) Wt (bars) (kilobars) (feet) zi xi (kilobars) t z2 (bars)

Granite, 33.7 5 kt 80 45,400 4.0 10.5 100 227 0.75 15.6 4000 250

nuclear,
Hardhat

Halite, 0.156W V/3Various, 60 87 TNT 10.4 0.18 Nonhydrodynamic 2500 10

TNT (pelletol), 20 lb to radius initial pressure

Cowboy 1000 lb Rt

Halite, 28.4 3 kt 76 28,900 3.88 10.5 100 144.5 0.97 16.3 2500 10

nuclear,
Gnome

Tuff, 240 ft., 1,54 968 lb 11.4 76 1.54 12.1 2.57 14.8 1.47 14.5 1400 5

TNT (pelletol),
Hobo

Tuff, 1000 ft., 0.156Wt 103, 516, 64 76 TNT 12.1 2.57 14.8 1.47 14.5 1400 80to 200

TNT (pelletol), and radius

Hobo 973 lb Rt

Tuff, 23.5 1.7 kt 25 to 60 3,960 7.18 8.0 100 14.8 1.38 10.5 650 -

nuclear,
Rainier

Desert 14 106 lb 7.4 (131) (14.0) (22) (15) 4.3 1.61 8.7 6 1

Alluvium, TNT, 29 18.7 8.0 3.4
Scooter

Desert 18.75 1.2 kt 4.4 680 11.5 8.0 100 3.42 1.46 8.9 - -

alluvium,
nuclear,
Teapot ESS I

It should be noted that quantities p c and pr listed in Table 4.4 for desert alluvium are estimated

from the Jangle HE-2 data points plotted in Figure 4.11. The dynamic compressive strength of halite has

been measured directly by Nicholls, Hooker, and Duvall (1960).12

With regard to the determination of z i in Equation 4.24, this is generally equal to z t (Equation 4.43)

for most chemical underground explosions, but it is possible for zt to exceed z with certain combinations

j 150



of explosives and media. Here, 1/z ° is the hydrodynamcally stable shell thickness ratio (yIR) obtained
0 0

from Figure 4.4. If, moreover, the initially transmitted pressure, pt. exceeds the hydrodynamic limit,

PH, as noted under 2Initial Conditions,' zt is then an unstable shell thickness ratio and rapidly shifts to

the stable value, zo . Simultaneously, the pressure, pt, shifts to the stable value Po determined from

Equations 4.45, 4.46, and 4.47. In Table 4.4 the initially transmitted values in parentheses for the Scooter

explosion represent unstable quantities in desert alluvium.

For nuclear explosions where the starting pressures are extremely high and the initial disturbance

is fully hydrodynamic (c >> pH), we take any value for xi which is greater than 10, for example, xi = 100.

Then ais given by a. = 2plC2Xi( + 1), from Equation 4.3. Using known values of a., W, and -f, the
Te i  tsgvnb i-

corresponding initial radius, Ri, is obtained from Ri [Ber)Wt la 1 / 3  Equation 4.13. Now in the

hydrodynamic range, a > a > P2. the pressure, a, varies with distance, R, according to Equation 4.28,

and the subsequent calculational procedure is exactly as described above for chernical explosions. Note

that in the present context, z i = zo, and z- I is given in Figure 4.4. For complete details of each of the
0

explosion experiments listed in Table 4.4. reference may be made to two research reports by the author

(Bishop, 1962a, 1962b).
2

The energy release, W, of the Hardhat nuclear explosion in granite is listed as 5 kt in Table 4.4.

It should be pointed out that there is an uncertainty In this value (obtained from rLdiochemistry) of about

30 percent. The error associated with the 3 kt value for Gnome is in excess of 30 percent, but the errors

for the remaining nuclear explosions in Table 4.4 are believed to be less than 20 percent.

Also in Table ?.4, it is to be noted that the initially transmitted pressures (j = from the pelletol

(TNT, Pa - 1) chemical explosions in halite are less than 100 kilobars, and consequently are definitely

not hydrodynamic (see Figures 4.9 and 4.14).

The initial shell thickness ratios (Yi/Ri = I/z i) in Table 4.4 are of the order of 0.1 for all the

explosions listed, indicating that the effective length, yi, of the wave transmitted into each medium is of

the order of magnitude of 10 percent of the starting radius, Ri .

Values of pl, listed in Table 4.4, refer to the lithostatic pressure at the depth of the associated

instrumentation from which data were obtained. For the Rainier explosion, p1 varies from 25 to 60 bars,

corresponding to the depths of the various velocity gages used in that experiment (Perret, 1961). 14 As a

result, one might expect the values of P0 and Pr deduced from Rainier to differ somewhat from those for

the Hobo explosions, since these quantities may depend upon depth.
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Note that. for a nuclear explosiaon. the parameter at in Table 4.4 refers to the radius of an

equivalentO sphere of TNT that would release the same total energy. Wt. The density. a. of the equiva-

lent TNT spbere is assumed to be 1.0 gm/cm3 for Gnome, Hardbat, and Rainier. which are compared to

TNT (peletol) explosions in corresponding media. Therefore,

R f (19.7Nkilota)l s3

The density. p is taken as L375 gm/cm3 for the Teapot Ess and Nougat nuclear explosions in alluvium,a!

since these are compared with the Scooter explosion (Figures 4.11. 4.17). for which Rt = 14 feet.

There is always a hydrodynamic zone surrounding any tamped nuclear explosion tim releases more

energy per unit volume than TNT. It was shown from Taylor's strong-shock theory (Equation 4.13) that

initially R. -B(-)wt/i]1 /3 with good accuracy, provided x is greater than, 10. Therefore, the particu-
1i T o t

lar distance. Ri, at which any high pressure, oiO occurs (xi > 10) will be proportional to the cube root of

the energy, W. It is then evident that the radial distance, R, will be proportional to Wt1/3 at any given

pressure, o, in the crushing zone, the crack zone, or the reversible zone. Cube-root scaling in each

low-pressure zone results from the fact that the termination radius, R2# at the beginning of the crushing

zone is proportional to W1/3. This last proportionality arises from the fact that o is a function only of

(R/R i ) in the hydrodynamic zone of a given medium (see Table 4.2), and Ri, in turn, is proportional to

1/3
Wt

In Figure 4.7 are shown data obtained from experiments with pelletol (TNT) explosions in volcanic

tuff (Hobo). One series of experiments was conducted at 240-foot depth and another at 1000-foot depth.

Scatter in the data is very great. The source of scatter is unknown; it may be due to uncertainties in the

values of Wt, gross medium inhomogeneities, large experimental errors, or a combination of these. In

order to give an Idea of the effect of an inhomogeneity, a curve has been drawn in Figure 4.7 representing

calculated pressures in a homogeneous medium with acoustic velocity C1 = 2.8 km/sec and density

p1 = 2.2 gm/cm 3. Although such a hypothetical medium does not represent actual tuff characteristics, it is

interesting to observe that only a slight change in the sonic velocity, C, results in a considerable change

in the transmitted pressures. 4

Data from the nuclear explosion in tuff (Rainier) are seen in Figure 4.8 together with the calculated

13pressure-distance curve. Also shown is a curve for Rainier calculated by Nuckollh (1959), and data of

Figure 4.7 from the Hobo experiments at 240 feet.

Figure 4.9 illustrates data from various explosions in salt media (halite). The data are very good,

and are well described by the calculated curves within the limits of experimental error. rhe dotted curve
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is from a computer calculation by Seidl (Letter from Lawrence Radiation Laboratory to Sandia Corporation,

Albuquerque, New Mexico, October 10. 1961) for a nuclear explosion in halite.

Data from the 5 kt nuclear explosion in granite (Hardhat) are plotted in Figure 4.10. Except for the

two valuable and independent measurements of shock pressure near 500 kilobars. the remaining data are

all at pressures less than 4 kilobirs. It is seen that not enough measurements were made in the elastic

region; consequently, it is difficult to estimate the reversible limit stress, pr from the pressure data of

this figure. The comtuter curves calculated by Seidl (Lawrence Radiation Laboratory Memorandum,

Livermore, California. UOPKA 62-6, January 19, 1962) agree nicely with the two data points near 500

kilobars, but below 10 kilobars Seidl's curves lie definitely above the experimental data points.

Numerous data from explosions in desert alluvium (Figure 4.11) cover almost completely the range

of pressures from 500 kilobars to 0.1 bar. Most of the data are results of velocity measurements. In the

alluvium hydrodynamic region, shock pressures were measured directly in the Nougat series of nuclear

explosions using a new nimpedance-mismatch* gage described in Section I of this report. Since several

of the yields, Wt . of the Nougat explosions are classified, only the scaled distances (R/R t ) can be

presented with the measured pressures. Considering the probability that the desert alluvium medium was

not identical for all the explosions of this series, it is believed that agreement between calculations and

experimental data is excellent.

The theoretical curve for the Teapot Ess alluvium (C1 = 0.92 km/sec) has been plotted in Figure 4.11

as a solid line. It is seen that the Teapot Ess experimental points agree quite well with this curve. The

same is generally true of the Nougat experimental points, but the scatter is much greater than that of the

Teapot Ess points.

It is evident that all but one of the Nougat points, as well as all of the Teapot Ess points, are below

the corresponding points of the Scooter explosion (TNT). This is probably due to the exceptionally high

value of the Scooter alluvium dilatational velocity (C1 Z 1.04 km/sec) rather than to any great difference

between nuclear and chemical explosions in the same type of alluvium.

It must be emphasized that the discontinuity in the slope of each calculated curve (Figure 4.12) at the

hydrodynamic termination pressure, P2 0 is not realistic, but is a consequence of the assumption that y'

remains constant throughout the hydrodynamic and plastic zones down to the termination pressure, p2 , as

*shown by the dashed 45-degree straight line in Figure 4.2. Experimental Hugoniot data (Figures 4.13 to

4.16) reveal that y is not strictly constant except for a range of pressure (a> which is much greater
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np2. In the region of pressure near p. T has an average value which differs from that of the higher

pressure region which was used in the calculations. The effect of including a variable y in the calcula-

tions would be to remove the discontinuity and to produce a smooth pressure-distance curve which would

lie above each one shown in Figures 4.7 to 4.11. in the vicinity of the pressure P2 . The difference in

pressures would be comparable to that between the experimental Hugoniot curve (Figures 4.13 to 4.16)

and the projection of the 45-degree straight line from the hydrodynamic zone.

Discussion and Conclusions

Review of Assumptions

Calculations have been made, using a constant parameter y in the plastic zone, where the relation

between log a and log x is actually a curve. Let us examine the resulting error in halite. Referring to

Figure 4.14, we obtain the "constant y" termination pressure, P2' from the intersection of the x = 1/2

line with the 45-degree hydrodynamic straight line, which gives 132 kilobars. The "exact" value of P2

is obtained from the curved graph at x = 1/2, which gives 139 kilobars.

Another assumption of consequence is the use of f = 2 in Equation 4,8. The modulus ratio,

f = S/S is defined In terms of the "rapid-strain" shock modulus, Ss . and the "slow-strain" acoustic

modulus, S1. The modulue ratio, f, is a useful parameter only in the crush-crack zones, where it is

nearly constant. i the reversible zone, f = 1 + x, which is not constant; nevertheless, it is possible

to estimate the upper limit of f for wave front pressures near the reversible limit, where a pr

Since p < a < p in -he crack zone (Figure 4.2), the upper limit of f in the reversible zone should pro-

vide en estimate for the nearly constant value of f in the crack zone (and also in the crush zone). As

shown following Equation 4.5, x may have any value less than or equal to I + T/p1 in the reversible

zone. Here, pI is the ambient pressure, and T is the dynamic tensile strength. Therefore, f may

have a maximum value of 2 + T/p 1 in the reversible zone. The value of f in the crack zone is probably

comparable to 2, since the term T/p1 does not apply to the crack zone. The constant value f = 2 is

consistent with experimental data for several types of solid media (Wuerker, 1959; Watstein. 1953). 2 6, 24

We have also used the constant value Gm a 2 in the crushing zone (pc < a < P2 ) when making

calculations. As shown in the derivation of Equation 4.30, the relation G - 1 + x leads to

m 8/3)(C2 /C 1 in the crushing zone. It has been found that G - 2 gives a better fit to the

experimental pressure distance points (Figures 4.7 to 4. 11). In the derivation of Equation 4.30, it should

be noted that the heat loss expression h I Q/u 2s x /6, Ia ony approximate. It is well known that

a c
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the energy, Q, is not the exact heat loss because the Hugoniot expansion curve (Figure 4.6) only approxi-

mates the true adiabat curve. Therefore, the better numerical value of 2 for Gm may be interpreted as

an empirical factor which adjusts the product hG in Equation 4.17 so that it has a more correct averagem

value over the entire range of pressures in the crushing zone.

In the hydrodynamic and plastic zones, we have used the relation (Gm) I + xH in order to

evaluate Equation 4.26. Since the exact value of Qs/Q in Equation 4.22 is unknown when x is greater

than xH, we have used the equality Qs = Q only when x is less than xH .

The parameter xH is evaluated from the curve of x versus a (Figures 4.13 to 4.16). It is taken as

the point where x on the curved graph is about 30 percent different from the corresponding intercept

(a = constant) on the projected hydrodynamic 45-degree straight line. This point is defined physically in

terms of the minimum hydrodynamic pressure, PH'

xH = (1/2)(- + l)PH/(PIC1)

The medium is said to be plastic at lower pressures where P2 < a < PH. If an experimental Hugoniot

curve is not available, one can determine xH from the above expression if the minimum hydrodynamic

pressure, PH' can be estimated -- for example, by interpolation from Table 4.3. It is also necessary

to have a numerical value for the acoustic dilatational velocity, C It is evident from Table 4.3 that y

is about 3 for porous rock, and about 2 for nonporous rock. The acoustic dilatational velocity, C1 , also
2

determines the "termination-pressure" p2 , defined by the condition = 1/2, so that P2 = 1C1 /(y + 1).

It must be noted that the dilatational acoustic velocity, C, is not generally identical to the measured

wave front velocity, U, but is calculated from the equation C1 a U(1 + x)-1/ 2 . The modulus correction,

2
x, is equal to xc  1 - (8/3)(C /C ) in the crush-crack zones, and x - a/2p, in the reversible zone.

Thus, x is not usually negligible compared to 1, and the wave front velocity, U, corresponds to that of a

finite- amplitude disturbance.

Conclusions

The properties of a solid medium which determine the manner of spherical wave propagation from

buried explosions have been described by means of a correctior factor applied to the known elastic

2
modulus, pICI, of the medium. Presumably, elastic properties are well known. Also, information is

available (Hugoniot data) concerning the hydrodynamic behavior of solid media. However, at the inter-

mediate stress levels where finite amplitude stress waves produce such effects as plastic flow. crushing,

and cracking, no experimental information is available for geologic materials. Modulus corrections are
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consequently estimated over the range of stress levels where these nonlinear phenomena occur. From

these modulus corrections, stress-strain relations are obtained for geologic media over the range of

stresses from acoustic to hydrodynamic. A

By introducing the concept of wave front shell thickness and by considering the energy associated

with an explosive wave disturbance, simple ordinary differential equations are derived whose solutions

give analytic expressions for peak stress as a function of distance from explosions. The shell thickness

of a spherical wave front represents the distance behind the front which contains essentially all the

energy carried along by the wave. Explicit consideration of the time dependence of the wave disturb-

ance is avoided by use of the shell thickness concept, and, because of this, calculations are greatly

simplified and result in analytic solutions.

Results of this phenomenological description provide estimates of peak stress at all distances

from buried explosions; these estimates, when compared with experimental data, are as accurate as

those of the more sophisticated calculations obtained from electronic computers.

The shortcomings of the description are evident and have been emphasized. At the expense of mathe-

matical rigor and detailed description, simplifying assumptions are introduced in order that an analytic

solution may be obtained. Nevertheless, despite the approximate nature of the equations, values of

stress versus distance may be computed for buried explosions which agree with measurements to better
ta

than an order of magnitude over the complete range of stresses from hydrodynamic to acoustic.
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