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FOREWORD 

This report consists of the first and second parts of the three part 

analytical portion of the High Angle of Attack Theory (third phase) of VRC's 

program of developing methods for assessing the non-uniform flow fields 

of wing-propeller slipstream    aerodynamics.     The overall program, 

consisting of four (4) phases as described in Ref.   1,  was undertaken to 

generalize and extend the basic Rethorst Lifting Surface Theory (Ref.   2). 

The first phase (Ref.   3) was comprised of an application of the basic 

Single Jet (Propeller Slipstream) Theory (Ref.   2) to delineate optimum 

finite wing planforma.    In the second phase (Ref.   1) the Single Jet Theory 

was generalized and extended into a Multiple Jet Theory.     The generalizations 

and refinements of the second phase have established a solid foundation for 

the third phase (present report). 

The three parts of the third phase effort are comprised of: 

1. Wings located at various heights in the jet 

2. Highly cambered wings as used in deflected slipstream 

V/STOL arrangements 

3. Tilt wing configurations where the jet is at an angle to the 

free stream flow 

The present report contains the basic theorectical development of 

the first two parts enumerated above.     This portion of the third phase effort 

has greatly extended the applicability of the analysis by enconapassing 

deflected slipstream V/STOL arrangements currently under development. 



SUMMARY 

A lifting surface theory has been developed for wings located 

at arbitrary heights and high angles of attack (up to the inception of 

flow separation) in a stream containing an arbitrary number of multiple 

jets (propeller slipstreams).    This theory extends and generalizes the 

formulation of T.   Y.   Wu and Richard B.   Talmadge (VRC Report No.   8) 

which was based on the original Rethorst Lifting Surface Solution. 

The present theory was developed by first analyzing the simpler 

single jet case and then extending the analysis to encompass multiple 

jets.     Thus,  the analysis is systematically presented in the following 

order: 

1. Wing at an Arbitrary Height in a Single Jet - a method 

similar to that employed in VRC Report No.   8 for the wing located along 

the axis of the jet was used to extend the solution to a wing located at 

any height in the jet. 

2. Wing at a High Angle of Attack in a Single Jet - the lifting 

surface method of Weis singer was applied to chordwise wing sections eaoh 

of which is treated in accordance with its height in the jet as determined 

in the previous step. 

3. Wing at Arbitrary Height and High Angle of Attack Extending 

through Multiple Jets - the above single jet analyses were extended to the 

case of a wing immersed in a stream containing an arbitrary number of jets. 

The jets were located symmetrically in the spanwise direction. 

The above generalized theory encompasses a broad spectrum of 

V/STOL aircraft.    The prediction of wing-slipstream interactions afforded 

by the present analysis pernnits optimization of such V/STOL aircraft. 
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I.     INTRODUCTION 

This paper provides an extension to the work of T. Y.   Wu and 

Richard B.   Talmadge, who considered the problem of a wing at a 

small angle of attack placed along the center line of a number of jets. 

Previous attacks on this problem are listed and discussed by Wu.     The 

effect of varying the height of a wing in jet slipstreams has not been 

considered previously to the knowledge of the author.     A solution is 

obtained in the present paper for a wing  at an arbitrary position and angle 

of attack,   consistent with the assumption of non-separated flow,   in a stream 

containing a single or a number of circular jets  symmetrically placed along 

the wing. 

The problem of a wing at an arbitrary height in a single jet is treated 

in Section II by similar methods  to those used by Wu for the wing at the center 

of the jet.    In this latter case the wing is represented by a bound vortex line 

centered along the quarter-chord line of the wing,   plus a trailing vortex 

system,   the boundary condition on the wing being  satisfied along the three- 

quarter-chord line.     The solution for a wing at a moderate angle of attack in 

a  single jet is presented in Section III using the Weissinger method in which 

the wing is divided chordwise into a number of sections;  the  solution for each 

section of the wing is then given by the  relevant solution of Section II corre- 

sponding to the height of the  section.     In this way a bound vortex line is 

placed at tht   quarter-chord point of each section and the boundary conditions 

necessary to determine the vortex strength are satisfied at the three-quarter- 

chord point of each section.     The problem of a wing at moderate inclinations 

extending through a number of jets is attacked in Section IV by extensions 



from the single jet case using the techniques developed by Wu. 

The solutions described above are derived from a superposition of 

infinitesimal vortex elements.    The solution for each vortex element is 

found by splitting the element into a two- and a three-dimensional part.    The 

image system due to the presence of a circular jet in the main stream is 

easily determined for the two-dimensional part.    A similar image system 

for the three-dimensional part im assumed plus a remainder term,  which is 

then determined by the boundary conditions on the jet boundary.    A feature of 

this approach is that the complicated part of the analysis is contained in the 

remainder term,  which for the examples computed by Wu so far has contributed 

only a small amount to the total lift.    No justification for neglecting this part 

has yet been found however and it remains necessary to include it in the 

present treatment. 

Certain simplifying assumptions are made as follows.    The flow is 

assumed incompressible and inviscid,  in which case a velocity potential exists 

for the flow inside and outside the jets,  though this potential need not be con- 

tinuous across the jet boundary.    The jet boundary may thus be regarded as a 

circular vortex sheet.    The slipstream jets are assumed to be circular in 

cross section having a velocity   V.   parallel to the main stream of velocity   V  . 

The coefficient 

* = vo/v. (1) 

is formed. The jets are assumed to be only slightly distorted by the wing so 

that the boundary conditions on the jet boundary may be applied on the undis- 

turbed circular boundary.    These boundary conditions are the kinematic 
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condition that the flow just interior and exterior to the jet boundary must be 

parallel,  and the dynamic condition that the pressure must be continuous 

across the jet boundary.    Dealing for the moment with a single jet of unit 

radius whose axis is taken along the   x-axis,  the velocities outside and inside 

the jet are taken to be 

v*   =   V  i  + v^    , v. =   V.i+Vö> (2) o o v ^o ' J J J 

where   <p      and   <p.   denote the perturbation velocity potentials outside and inside 

the jet,   respectively.     The boundary conditions on the jet boundary may then be 

expressed as 

^o *Pj Jl~l    , 
8^- =   ^^ on   q  =\y   +2    =1 (3) 

and 

9<Pj 9<P0 

^r ^"air       on <i= 1 (4) 

where in the latter a linearized Bernoulli equation has been used.     Eq.   4 

may be integrated from x  =   -co   to give 

(p.  =   \i.(pQ        on     r = 1 (5) 

where it has been assumed that the potentials vanish at   x =   - co. 
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II.    SOLUTION FOR A WING AT AN ARBITRARY HEIGHT 

IN A SINGi-E JET 

A.    FORMULATION 

The analysis presented in this  section is  concerned with a wing repre- 

sented by a bound vortex lying along the line given by   x =   0   and   z =   -h   from 

y =   -b,   to   y =  b,,  and its trailing vortex system.    A superposition of these 

solutions along the chord will then be used in Section 3 to represent a wing at a 

moderate angle of attack in the jet.    The jet is located with its axis along the 

x-axis and is taken to have unit radius (see Fig.   I).     A point in the   y-z   plane 

is expressed as 

iG .,. r =   y +  iz =   qe (6) 

and a point on the wing,    y =  r) ,    is given by 

r    =   T]   - ih =   ae~la    for   -b.S  n   ^ b^ (7) 

The solution for an infinitesimal element of bound vorticvty has been 

given by von Karman (a derivation is given by Wu).    The result for a bound 

vortex element of strength   r(Ti)6r|,  located along the wing   x =   0,   z =   -h, 

for   T| < y < r) + 6r|    is 

5<p =   ^2+   5<p3 (8) 

where 



(y-n) -Hz+h) 

6<jP3   = -5^r(T1)6T|F2(x,y-T1,2+h) 

(y-Ti)  +<z+h)       [x  -Ky-n)   +<z+h)   p 

The velocity potential in 8 has been split into two parts   6^   and   fyP,,  repre- 

senting the two- and three-dimensional parts of the solution.    The effect of 

the jet on the solution 8 for the vortex element wiU be derived in parts B,  C, 

and   D   of this section, for the two* and three-dimensional parts of the solution, 

respectively.    The solution for the whole wing will be given in part £ by inte- 

grating the vorticity distribution    T(r\)   from   y=   - b.   to   y= b,. 

B.    IMAGE SYSTEM FOR THE TWO-DIMENSIONAL PART OF THE SOLUTION 
m        mm  ——fcwMw—— ■,■■■■■ mm ^m m   ,   mm — ^a——ip*^*^^       ^ i ■        « ■■■  ma^mam^m ■ 

The effect of the jet,  represented by the boundary conditions 3 and 5, 

on the two-dimensional part   6y?2   oi the vortex element   8   is determined 

in this section.    A simple method to do this is to express    b<P ?   »• the 

difference of logarithmic terms representing simple line vortices situated 

very close together.    The effect of the jet is found for each line vortex by 

choice of a suitable image system to satisfy the boundary conditions 3 and 5 

on   r =  1, the boundary of the jet.    Two separate cases of the vortex element 

lying outside or inside the jet are to be considered, that is   s   s^+h    >1 

or   s    < 1,  respectively.    The two-dimensional part of the solution is then 
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(i)     s > 1,  i. e.   for vortex element outside jet 

^ r{T1)5T1|F1(y-T1.z+h) + l^[(T1
2.h2)F1{y-^5-.z+-^) 

s 8 8 

6<p2= ) + 2r1hF3{y - ^ ,i +-^)|| for   q >1 (9) 

■^:r(T1)6T1|{1.62)F1{y-T1,i-Hi) - (x. ^(ti.h) J   for q < 1 

(ii)    8 < 1,   i. e.   for vortex element inside jet 

-L r(T1)dT1 | (l-€ 2)F1(y-T1, z+h)| for q > 1 

-^ r(T1)dri { F^y-T!. z+h)- -\ [(^^h^F^y- ^ , z + ^ ) 
8        L 8 8 

+ 2T1hF3(y--3z,z+^)]    -CjFjCruh)}    for q <  1 

6<pz = 

where 

€   = 1-/ (u^i 

and 

(10) 

(11) 

F3(y.2) = -V4 
y   +z 

It may be noted that the terms    F.(T|,h)    in the solutions above are constant 

tern^s in the potential and hence may be omitted; their inclusion resulted from 

using the boundary condition   5   on the potential rather than   4   and its deriva- 

tive. 

The two-dimensional part of the solution corresponding to a lifting 

vortex line of given circulation distribution   r(y)   extending from   ys   - b.   to 
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Y =  hy,  may now be obtained from   9   and   10   by linear superposition.    Hence 

one obtains 

b. '2 r-b 

-bl 

4ir<p2=\        rC^F^y-n, z+Mdn- €2J      rC^F^y-T), «+h)dTi 

+ 2T1hF3(y- ^ z+-^ )1 d^ for q > 1 ,      (12) 
s s      J 

4Tr<p2= J rdnJF^y-ii.z+^dT,   - €2 M +J,     jrl^F^y-^, z+^dr, 

^ -h      8 ^ 8 S 

+ 2T1hF3(y- 11^ , z+^ )J d^ for q < 1,       (13) 
s s 

where 

h^^l -h2   . 

C.     THE THREE-DIMENSIONAL PART OF THE SOLUTION FOR THE VORTEX 

ELEMENT LOCATED OUTSIDE THE JET 

The effect of the jet on the three-dimensional part   6<p3   of the vortex 

element   8   is determined.    The vortex element is taken to be located outside 

the jet,  i. e.    s > 1; the case of   s < 1   is dealt with in Section Il-D.    The image 

method used for the two-dimensional part cannot be used here as the problem 

is considerably more complicated.    The technique--introduced by Wu--of using 

a similar image system as the two-dimensional one,  plus a remainder term 
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which is then to be determined by the boundary conditions 3   and   5,  will be 

used.    Using 8   and   9, the proposed form for the vortex element is 

6^3= -^j:r(T1)6T1|<iP;+F2{x.y-ii.z-rti) 

+ ^ r(Tl2-h2)F2(x,y- V Z+-T )+2nhF4(x.y- ^ . z+-^ )] } 
S       L S 8 8 S J 

for q > 1 , (14) 

6<p3   =^rr(T1)6T1|^:+(l-€2)F2(x.y-T1,2i+h)J for   q < 1 ,        (15) 

where 

F(x,y,z)=     / 2    —j—2
X rrn. (16) 

4
 yN-z^     (x^^^+z^)1/^ 

and   F,   has been defined in   8.    Here   (p'    and   cp!    are the remainder terms 

left in the potential after subtracting the   F-functions representing a convenient 

image system:    (f   ,  <p\   satisfy Laplace's equation  outside and inside the jet, 

respectively. 

Application of   3    and    5   yields the following boundary conditions on 

w'     and   w\ 

(<Pj- M</'o)q=1 = <1^{-F2(x,y-T1, z+h) 

±\ r(t1
2-hZ)F2(x.y-^,z + ^)+2r1hF4(x.y-^,z+-^)l} (17) 

sL ' ss s s 

+ -\  r(T1
2-h2)F2(x.y-^z.z + ^z)+ Z^hF^.y-^.z+^j)]}     (18) 

8 S S S 8       J 



where 

y =   q cos 9,        z =   q sin 9 (19) 

and   q =  1   must be substituted on the right-hand side.     From   17   and   18( or 

from subsequent forms of these expressions,  it maybe shown that <p^   and 

<p.   and their derivatives are well-behaved near both   x = 0   and   x =   oo. 

Also   <p      and   (f.   are odd functions in the   x-variable,  which leads to the 

following representations of these harmonic functions 

oo 

<p'0=   §/       | sinn^V      S(
i^{k,s)Km(kq)sin kx dk 

m= 0 0 

+   cos m9 \       C^lk, s)Km{kq)sinkxdk J for q > 1, (20) 

oo 

(p. =    - y>     isin m9 \       S<J'(k,s)I    (k,q)8inkxdk 

m= 0 

+   cos m9  \       C^i
){k>s)Im(kq)sin kx dk> for q < 1 .        (21) 

The functions   I       and   K       are the modified Bessel functions of the first m m 

and second kind,   respectively,  as defined in Ref.   2.    K       is used in the solution 

outside the jet,  and   I       is used inside the jet, to ensure that   <p     and   (p.   will 
J 

be regular at   q  =  oo   and   q  =   0,  respectively.    The super-indices   (o)   and 

(j)   chacterize the region of definition of the functions   S   and   C,  i. e.   outside 

or inside the jet.    The functions   S   and   C    are to be determined from the 

boundary conditions   17   and   18. 

The expressions on the right-hand sides of   17   and   18   are now ex- 

panded into similar series and integral forms used in representing    <p     and 
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q}'.   above.     The integral representations of the    F-functions,   demonstrated by 

F2{x,y,z)=   -f—J   ~2 f—TTT2=   z   \     < e Z+y 2+z^)"3'   Z <M,        (22) 
y+z       (x+y+z)' ^0 

are used in   17    and   18   to give the following relations 

x 

(<p'.-K<p' )   _.=   ^   |(sinG+h)\        [ ^Z+82+l-2sco8{e+a)| "^^dl j o  q-l 1 ( ^ x 

- i-hx[x2s2+s2+l - 28 cos(e+a)] ~1/2 > (23) 

f-g-?- ^-yj-)        = ^ { x(sine+h)[x2+32+l-23 cos (B + a)] '^ Z 

- hx[s-cos(e + a)]f x2s2+s2+l- 28  cos (B + a)] "^ 2 

x s 
-•|-J     & (^ sin e+hq2) [eZ

+q
2
s
Z

+l^ 2sq cos (O+a)] "^d^} 

(24) 

in which   q =  1   has to be substituted on the right-hand side. 

Tne following expansions in terms of Bessel functions are used in    23 

(4) 
and    24.     These relations are given in Watson       or may be deduced from 

relations there.     They are 

x(x2+s2-H-2s  cos e)"3' 2=  - \      ksin kxK   {kl/s2+l-2scos 9) dk      (26) 
IT J _ o      l 

\        (l^ s2+l-Zs cos e)"3^2d| =    -V      t sin fcx d^  Vi     tK  (t Js2+l-28 cos 0) dt 
.y' "   J «      K ^i i i. O       ^ «^0     " "-k 

(26) 
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(/-v^j^xy^K/vxW     v|1.Kn(vy)In_1(My) +    -^^Uy »Mfxy)} (27) 

Ko(tVl l+sZ-2s cos  0) 

CiJ 

=   K   (ts)I   (t) +   ^y      K    (ts)!     (t)  cos me for s > 1 
o o /, m m 

m=l 
oo 

=   K   (t)I   (ts) +    ^y      K    (t)I     (ts)  cos me for s <   1 
o        o l_j rn        tu 

m=l 

(28) 

sin eK„(t JsZ+l -  2s cos e) o' 
uo 

I     K-l^^n-l^^  - In+l(t)Kn+l
(st)] Sin ^ 

n=l 

(X) 

/        Vl<St)^-l(t>- W,St)Kn+l(t)]Sinne 

for s >  1 

(29) 

for  s <    1 

n=l 

Using such identities as above,   E^qs.    2i and  24 may now be written in 

the form 

=   iül1   C^sinkx  isin »f-^Vk)^!)  .K1(ks)Io(k)l 
^     J 0 ^ s 

■    z^S   (ELfK    (k)I    (-)-K    (ks)!    (k)] co8u sin m(>+e) T       /,    \ ks   l     m        m   s m m 
m=l 

+ [K*  (sk)I    (k)+  -U K    (k)l'  (~ )] sin a cos m(ü^em dk 

(30) 
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Ze,   poo 
—    \      sin kx ^ -k sin a [K^skJI^s) - -ij K1(k)l.( j )] 

\j s 

CO 

+ 2)  (k[K'   (ks)!* (k)--LK'   {k)l' (J)]8in a cos m(a+e) 

m=l 

-T"[Km(ks)Im(k)+Km(k)Im(l)]  cos^sin m(»fe)U dk 

(31) 

t i 
where    K       and   I       denote the derivative of   K        and   I 

mm mm 

The boundary conditions    3    and    5,   represented by   30    and    31,   are 

now in a form suitable for comparison with similar expressions obtained from 

the expansions    20   and    21   assumed for the solution.     The   S        and   C        coef- 
mm 

ficients in    20   and    21   may then be determined.     Hence 

2kI„lJ„K_(ks) 
cos a cos ma S(o)(k,S)=   Ze./SL    -I    ( k)+ —mm   S2 _ m lU«   L    m   s        l-<  k(I    K    xK    l' ) J l-€nk(I    K    -i-K    . 1      m   n^       m m 

r i           i            2kl    l'   K*   (ks)          "I . 
lT',k,                 mnnmx .             \    , i-,  \ 

h —T I    (—) +   ; j  suiQ'SinmQ'>    (3 2a) 
Ls^   m   S          l-e.kd    K    +K    I    ) J ' 

1mm       m m 

ImKm+KmIm S J' (k, s) =   2€ n(l-£ -))k    21—HI—. j—   I .— K    (ks)cos a cos ma 
m 1 2       ,        i./T    w'   . «■    T'  \     ( ks     m 

,, m   m      m m I )k      ; — I 
l^.kll    K    +K    I    ) l 

1mm       m m 

+   K    (ks) sin a sin ma> (3 2b) m J 

12 



( r^     r k 2kIr«CK
W<k8) 1 i m   I      T    / k > m m   m > 

,   <■:— I - I    {■—) +     Q08  a am ma Ijks   L      m   s K.   +K    !'  )   J 
1mm       m m 

r . , 2kl    l'   K    (ks) "I l 
IT'/KV, mmm . I 

-   —f I    ( —) +       |   sin or co« ma} 
IT2  m 3 l-^kd    K' +K    l'  )J ( 

2kl    I    K    (ks) 
mmm 

:.k(I    K'  +K    -    , l      in   m      m m 

{32c) 

I    K1   + K    l' 
_(i) i,      \       -,it        \i           mm       mm /   m ,,    ,,    . C^(k,s) =   ZeJl-eJk ; r   < 3—K    (k8)cos  a si 

m i ^       l-€ ,k(I    K    +K    I    ) l K8     m 
in ma 

,k(I    K    +K    I    ) 2mm       m m 

K    (ks)sin a cos ma/ (32d) 

Here,  the argument for the Bessel functions of argument   k   has been omitted 

for brevity.     Eqa-   3 2 provide the coefficients necessary to evaluate   <p-   and 

(p.    from    20   and   21   and hence the three-dimensional part of the solution for 

the vortex element lying outside the jet is established. 

D.    THE THREE-DIMENSIONAL PART ÜF THE SOLUTION FOR THE VORTEX 

ELEMENT LOCATED INSIDE THE JET 

In this section a solution is developed for the three-dimensional vortex 

element given by   8   in the presence of a circular jet,  for the case in which the 

element is located inside the jet,  i. e.    s < 1.    Similar techniques to   II-C   are 

used.    The vortex element is represented by 

5<p3= —nri^ |<^+  (!-« ^F^x.y-ruz+h)} for q > 1 (33) 

6^3= ^:r(T1)6n   |^+F2(x,y-TUz+h) - -\ [(T1
2.h2)F2(x,y-^ .«+-^ ) 

+   2*ihF4(x,y-^,s+-^^ for   q<l (34) 
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Here   <p      and   (f.    are the remainder terms left in the potential aft^r sub- 

tracting the   F-functions representing a similar image system to the two- 

diniensional one (see 10).     The harmonic functions    (p   ,   <p.    are odd in   x, 

and regular near both   x =   0   and   x =  oo; they may therefore be represented by 

the expansions 

oo 

cp'   =   -   )   < sin mO  \      T(o)(k, s)K    (kq)sin kx dk ^o        IT   /^  I Jn       m      ' m    M 

m=0 

+ cos me  \      D[°)(k,s)Km(kq)sin kx dkj     for q > 1     (35) 

oo 

<p!=  -   )    /sin me  \       T(j)(k, s)I    (kq)sin kx dk 

m= 0 

4-   cos mO  \       D(o)(k,s)I    (kq)sin kx dkl     for q < 1      (36) 

The potentials    33    and    34   may be substituted in the boundary condi- 

tions    3    and    5   to give 

x 

((p\-\i.(p' )   _,= « j <(sin 6 + h) \       \%   + s   + l-2s cos (e+ a)] " '      d^ 

-- hx[x2s2+s2+i-2s cos(e^ a)] "   ' ^ (3 7) 

'8«p' d<p\\ 
-R fj.  * -^  j       -\xe . \ x(sin e +h) [x   + s   + l-2s  cos (6^  a) 

hx[s- cos (6+ a)][ x   s   +  s   +i-Zs  cos(e-t-a)J~  ' 

x s 
■|-   \        (q sin e +   hqZ)[f:,?- +q2sZ+l-Z3q cos  (e+ a)]~i/ * dt} 

(38) 
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in which   q -   1   has to be substituted on the right-band side.     Integral repre- 

sentations of the   K-functions similar to    22   have been used to obtain   37   and 

38.    The identities    25 - 29   are used to express    37   and   38   in the expanded 

form 

2«       p co / 1 w 
((p.-KP0)        =-~   J       sinkx^sin «[^(Mljks)--^^ |)Io(k)] 

q 

+ 2 

m=l 

y    (t   (k)l' (ks)+-i?K' (^)I    (kHsin a cos m(c*Q) 

^-|K    (-)I    (k) - K    {k)I    (ks)|cos a sin m(a+e)) >dk ks L   m   s    m m        ni        J / ' 

(39) 

i      _    t 

Q — i u s 

GO 

+   2 

m=l 

GO 

>    (kTK'   (k)l'   (ks)-^, K'   ( -)l'   (k)| sin a cos m(cH-6) ^  Y   L   ni m 2     nn   s    m     J 

K    (-)l'   (k) + K'   (k)I    (ks)    cos o sin m(a+e))| dk L   m   s    m mrn        J / ) 
m 
s    L   rn" s '  m 

(40) 

The boundary conditions 39    and    40   are now used to determine the 

Lents    T        and   D        of the expansions    3 5    and    3 6   for    <p      and   (D.    a: mm r ^o T j 
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m 

,   v                                                 I    K'   +K    l' 
^(o)-.       v         >    /i         \i          mm       m rn (    m T     ,,    . T_(k, s)=    ZtJl-«    )k . —   ^   1r-I     (ka)co8  a cos ma 

1 ^      1-tMl     K     +K     I     )   i   KB    m 

1      mm       rn m 

+   I     (ks)  sin  u sin mo>> (41*) m J 

2kK_KLl__(k«) 
>8 mo ^)(kf3)=2     /m      K    (ii)+   m^m        cos  a co. 

1       mm        mm 

r,        ,     ,              ZkK    K'   l'   (ks)       "I v 
1    ..'   , k .                    m    m m . . I      / ^^ \ - -^y K    ( —    -    ; ;—       3in  a 3m ma >     (4ib) 

U1     m   S l-c,k(I    K    +K    l'   )J ' .k(I     K    +K    I     )• 1      mm       mm 

,   >                                                         I     K'   +K    l' . 
— (o),.       .         T/i         \,               nnm        mm lnnT/.. Dx   '(k,s)=    Z€,(l-€    )k    ; —    ^ T— I     (ks) cos  a sin mö 

m l-e.kd    K    +K    I    )    I Ks    m 

1mm       mm 

-I(ks)sinQ'COsmQ'/ (41c) nn ; 

... r r u 2kK     K'   I    <ks)        1 
D(j)(k.s) =   ZcJgL     K    (ii) +   m   7m         cos  a m      ' l\ks   L   m   s ^ K'   +K     j'      J sin ma 

.k(I    K    +K    I    ) 
1       nn    m        mm 

r i  • k    ^^^C^8)   i ) —j K     ( —) ■ —       sin a cos ma>  (41d) 
Lg^     m   S l-c.kd    K    +K    I    )J ' .k(I    K    +K    I    )• i      m   m       m m 

The argument for the Bessel functions of argument   k   has been omitted.     The 

three-dimensional part of the solution for the vortex element lying inside the 

jet may now be obtained from   33,   34,  and 35,   36 together with equations 41. 
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E.     SOLUTION FOR A LINE VORTEX DISTRIBUTION 

The solutions obtained previously for an arbitrarily placed vortex 

element are now used to determine the  solution for a vortex line of distri- 

bution    r(y).     The vortex line lies  along the line    x. =   0,   z =   -h,   from 

y =   -b-, to    y =   b..     The   two- and three-dimensional parts of the  solution 

are added together,   using the  relevant solution for the vortex distribution 

inside and outside the jet,   to give for the perturbation velocity potential 

(^(x, y, z) 

(p =   (f for    q>l; if   -   ip.    for    q^l 

where 
b hi 

4Tr<po=   (        r{T1)F(x,y-T1.7+h)dn    ■  «,' 
-J 

r(r|)F(x, y-ri, z+h)dn 

T 
'        b. 

+ e (f        +f.    )   -iTr(n)f(M2-h2)F(x,y-^I>z + JiT) 
W-h       »>h    /    s4 s s" 

+ 2rihG(x, y- X^ , z + -^j) I dn 

oo 

+ -     /        \       K     {kq)si 

m= 0 

X   < sin m9 

+  cos rnö 

in kx 

i b 

(r' + r, )r(T1)s
(ü)(k.T1)dr1 + r (r(ii)T(°)(k>M)d^ 

A ^ -b ,    J h    ' m ** -h 

b .     " h r.- j -h 
r(T1)c

(^){k,n)dvl + ^ ^r(T1)D
(

]^
)( 1! 

(4Za) 
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b2 /       -h' ^ 
lTT(p.=  \ r(r|)F(x, y-r), z+h)dn - €  ,  I    \ (- (fM:;> (r|)F(x>y-T1, z+h) d^ 

h' 

+ Zr1hG(x,y- ^j 'z+-^)]  dT1 
s s 

CX) 

+ -}      \      I     (kq)sin kx 
*  LJ     J o     '" 
m=0 

!sin mG    f ' +   \        I r(T1)s
(j)(k, n)dT1 +  C     r(Ti)T(

if
)(k,r,)(il. 

m ^ _h' 

+ cos m0 •(j)/i.    _^..    x    C        r-/_^o<J) + f 

] 
J! r{n)CVJ'(k> n)a-, + \     r(T1)D

,J'(k,ri)dn| ^dk 

(42b) 

In the above expressions,   the functions    F    and    G   are given by 

F(x,y,z) =   F^y.z) +   Fz(x,y,z) =—2-^—2   [l +  x{x"+y   +z   )" '    J    (43a) 
y   + z 

GU.y.z)  =   FJy.z)  +   FJx.y.z) =   -X_  [l +   x(x2+y   +z2)" /    ]    (43b) 2.    Z      2.-1/2- 
1      I 

y  + z 

respectively. 
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III.      SOLUTION FOR A WING AT A HIGH ANGLE OF ATTACK 

IN A SINGLE JET 

A.    FORMULATION 

A aolution is presented here which determines the effect of a single 

jet slipstream on a wing held at an angle of attack which is not small.    Angles 

of attack sufficient to cause separation of the flow are excluded.    This  section 

presents the solution for a single jet located centrally along the span of a wing 

whose planform is taken as rectangular and whose chord is untwisted.     This 

solution will be extended in Section IV to the multiple jet case.     Further ex- 

tensions to cases of non-rectangular planform and small twist follow from the 

method used in this section but they are not investigated. 

The Weissinger method is used to determine the flow over a wing at a 

moderate angle of incidence.    In this method,   the wing is divided chordwise into 

a number of sections.     The flow past a particular section is approximated by 

a vortex line distribution along   the quarter-chord line of the section.    The 

solution for this  flow is  obtained from Section II,   taking into account the 

position in the jet of the relevant section.     The total solution is then the sum 

of the solutions over all the sections.    The boundary condition of zero normal 

flow at the wing is then applied at the three-quarter chord point of each section 

and at a sufficient number of points along the three-quarter chord line to com- 

pute the assumed vorticity distributions to reasonable accuracy. 

The wing is taken with its leading edge along the line   x = 0,   z  = I, 

for     |y I < b,   and the chord line (from leading to trailing edge) at an angle    a 

to the stream,   e. g.   see Fig.   2.     The wing shape is taken to have the form 

z' = Six') (44) 
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■where the coordinates   x ,   z     run from the leading edge along the chord to 

the trailing edge and perpendicular to it,   respectively.    The shape of the wing 

in the   x, z    coordinates is taken as 

z =   H(x) (45) 

where   H(x)  .is to be found from the equations 

H(x) =   I      -    x     sin a +  S(x )  sin a  , 

(46) 
x =   x    cos   a +  S(x )  sin a 

The projection of the chord on the    x-axis is   given by 

c.  =   c cos   a (47) 

where    c    is the chord length of the wing. 

The wing is  divided into    M    sections.     Let 

dN=      W (48) 

A section is defined by the range 

(n-Ddj^ <   x<    ndN for   n=   l.i,...,N (49) 

A vortex line distribution is placed along the quarter-chord line of each 

section,  that is,   along the line given by 

x =   (n-l)dN +   ^dN =  xn,     say, (50) 

and 

z =  H(x   ) =   - h   ,    say . (SI) v   n n ' 

The boundary condition an the wing will be evaluated along the three-quarter 
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chord line of each section,   that is,   along the line given by 

and 

x =   (n-l)dN +    4dN =   Xn,   say, (52) 

z =  H(Xn) =   Hn,   say . (53) 

The vortex line distribution at the quarter-chord line of the   n 

section is  represented by    r(y) =    I"   (y).     The solution for this vortex distri- 

bution alone the line   x   =   x   ,   z =   -h   ,   is obtained from the solution given in 6 n n 6 

Section   II-E   by substituting   (x-x   )    for   x,    h      for   h,   and   T   (y)    for   r(y). 

Call this solution   w   (x.y.z).     Hence ^ n 

w     =   <ö(x-x   ,y , z  ;     T  = F   ,   h=   h   ) (54) ^n        ^ n ' n n 

and the total solution,   summing over all the sections of the wing,   is given by 

N 

*   =    )      (O 

n=l 

B.     FOURIER EXPANSION FOR THE CIRCULATION 

For the case of a wing  square   in  planform with a circular jet located 

along the mid-span,   it is  convenient to adopt the following notation (see Fig.   3). 

At the three-quarter chord line of each section of the wing the span is divided 

into two regions:   R outside the jet and   R, inside the jet.    That e o,n J l,n •' is, 

where 

R,      : lyl   <   h'       and     R        :       h'   <  I yl < b (56) l,n I 7 I n o,n n       I 7 J 

h' = Vi - hi <57) n » n 
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The aneles    4J and   U'i at each section are defined by 0 T o, n l,n / 

y =   b cos + for        h    <  \y\ <  h (58) 
' o, n n      ' 7 ' 

y =   b cos 4* =  h    cos Vi for    I yl   < h (59) 7 o,n n 1, n ,,, n 

The circulation functions    F   (y)    are expanded as Fourier series in 

terms of the ancles    dj ,  <l> ■, in the  regions    R and   R,      .     In deciding 
* xo,n'      l,n 6 o,n l,n fe 

on the particular form of these functions,   it is instructive to look at the local 

lift distributions.     By the Joukowsky law,   the lift at a section of the wing is 

given by 

The lift distribution is continuous across the boundaries of the jet.    Hence 

F   (h   - ih   - 0) = ^r   (h   - ih    +0) 
n    n n ^   n     n n 

and (61) 

T   (-h   - in   + 0) =   LiF   (-h   - ih     - 0) 
n       n        n ^   n       n        n 

From this it can be seen that the circulation function    F   (y)   has a disconti- n 

nuity at the jet boundary.    Also,   in order to account for a small slipstream 

rotation, odd functions of   y   in   F    are allowed inside the jet.     The proposed 

expansion for   F   (y)    is 

2A 

>    A(.o)   sin \4; = F in    R 
£j       K,n o,n o, n o, n 

rjyi ^   4bV.{ X=1 2A' (6 2) 
n J 

F        +A(1)    +B(1)cos^1      +   >    A*1*    sin X4; sF. in R. 
o,n        o,n        o,n lin    /J       X,n o,n l,n i,n 

X=l 
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in which   A    and   A    may depend on   n; that is,  the number of terms taken in the 

expansions may vary with distance of the section downstream.    The choice of 

A    and   A      will be determined by the accuracy required in the solution con- 

sistent with the computing procedure adopted.    In 6Z the terms   A and 

B         cos i|i.         introduce a discontinuity in the circulation at the jet boundary. 

The slipstream rotation is represented by the term   B cos 4^ and the r r ' o,nl,n 

terms involving   A^. 

Application of the conditions 61  of the continuity of lift at the jet boundaries 

gives 

A-l 

A***     =   (n - 1)  y     A(°> sinUV+l)0 (63) o,n /, ^A.+ l,n n 

A 

B(1)    =((1-1))    A{°1       sin l\ß (64) 
o, n        n /^        Z\, n K n 

\=0 

where 

1    h 

^n=   COS        -^ (65) 

On neglect of slipstream rotation and with a wing symmetric about the mid- 

span,  the circulation will be an even function about the mid-span which indicates 

pSlX      =  A^     =   0   and hence   ß(1)     =   0. 
Z\,n 2\,n o,n 

The total lift on the wing is given by 

N 

L = V     L (66) 

n=l 

where    L      is the lift developed by each section of the wing.    That is,   using 

60   and   62 
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L    =   4pbV.   i    \       V   F        dy +  \      VT,     dy\ 

Substitution of the expansions    6<i   for   F and   F, then yields o, n i, n 

(67) 

n 

8pbV; 
h'(Aa) +5A(i)  )+>A<0> 

n     o. n     4     1, n        4        l.n 

A-l 

+ (|i-l)b Y    A^* ^ ^ 2\+l,n 
X=0 

sin   Z\3 sin  2(X.+1)^ 

4X 4<X+1) (68) 

C.     DOWNWASH DISTRIBUTION 

In order to apply the boundary condition of zero normal velocity at the 

wing, it is necessary to calculate the downwash. The boundary condition will 

be applied along the three-quarter chord line of each section of the wing, that 

is along x = X , z = H (see 5Z and 53). The downwash velocity at x = X 

is defined as 

x = X   , z=H r r 
tN 

~    )   (/?(X   -x   ,y,z; r = r   .  h=  h   ) dz    ^   r      r      n'^' n' n'J z = H 
(69) 

n=l 

where    (p    is  given in   II-E.     The downwash is split into its  even and odd 

functions of y,   which are denoted by 

w(y) = 

w +   w     ^ , o,ev o,od 

w.   „      +  w.      , 
J,ev J.od 

for   |y |   >    H^. =   "^l - H 

for   |y|   <     H' 

(70) 
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• Hl 

The subscripts    o   and   j   again denote the regions outside and inside the jet. 

Using the expansion    62   for the circulation functions    T       in the 

expression    69,   the downwash at   v ;   X      ma\  be evaluated in the following 

form: 

N   , 

o,ev        o.od        Z-   J   ^    n       ^   n       ^ 
n=l l 

CO 

+    -   \      sin k(X   -x   )  ) n TT  J r     "   L 
m=0 

( 
m k sin 9 sin  mö K     (Wj)   •   —cos  6 cos m6 K    (kq) m q m 

-h 

) 

(IT ^ I^. J rn( n^lk. ,)dn +$_* r^ )T^(k.. )d, ) 
n n 

+( k  sin 6 cos mB K*   (kq)- — cos  6 sin mG K    (kq) ) \ m    n       q nn    n / 

dk 

(71a) 

-4TT(W + w       ^) = )    I   iN     +   AN     +   cN     +    -\      sin k(X^-x   )  ) j.ev       j.od       L,   I   l   n       4n       5n ^Jn 'rn^ 
n=l l U m=0 

(k sin 6 sin m9 I     (kq) +  —cos 9 cos rn9 I    (kq) I in 9 sin m9 I     (kq) +  —cos 9 cos rn9 I    (kq) 
m     M q m    n ^ 

+ 1 k sin 9 cos m9 I    (kq) cos 9 sin m9 I    (kq) J y m    n q m    ^   I 
i i 

(7lb) 
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H 
where    qZ =   yZ+   H^   and    6 =   tan'1   -y-      have to be substituted on the right- 

hand side.     The   N    functions are defined by 

iN 
1   n ^»SI <'„!,•:+2c-3-: i 

\=i 

^^(^'„U'^-^OT1^1-,11 

ZA \ 

(7 2a) 

2A 

2   n 
\=1 n ' n 

-^HV.^A^t.I^I-.lUB^l,!^.-,!! 

2A 

+ 

2A 

S  A
(1)
 r  i7" + i11 - i" 11 2,   AV.nl   lo + 2^      Vo 7 

3    n 
4b 2V ^1 40) 

X, n 
X=l 

lO^" + 10I7T-ßn
+ l^o     + ll1^^ 

{7 2b) 

12 o    ' 121TT-3n" 19 o 19 TT-/3n 

2A 

T     =   -4b2V.c J    A<x
0) 

4 n j   Z ^       \ 
X.>1 

5)   j   T
3n   .    .IT        .     /n jtr        _    A _    .tr 

.nj^o    +lITr-ßn
+2Io    +   2^^    3^       3^-^ 

(72c) 

(7 2d) 
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-, T~ /     v tr-ß TT-3 Tr-0 TT-ß 

5n j  1^       X,nl10 3n 11 ßn IZ ßn 19 ßn 
X» 1 

- ^h' V.€.   (A(1)   [.,1   + ..1 - .J -   ,ftI 1 + B(1)    \ wl + .-1 -"»I -   „l] n   j   1   \    o,n  13 14       15        20 o,n    16       17       18        21 

2A, v 
+ y     A^    [,„!*   +nITr -.^ -^l" ]) (72e) /_,        X,n    10  o      11 o     12 o      19 o    / 

X«l 

In the above expressions a dash on a Bess el function denotes differentiation 

with respect to the argument.    The   I   functions are defined in Appendix I. 

The even and odd parts in the   N   functions are determined by taking   X   odd 

and even,   respectively,  in the series terms together with the terms con- 

taining   A in the even part and   B in the odd part.    The remaining 

terms on the right-hand sides of   7 2   may be split into their even and odd 

parts by taking the even part to contain only odd values of   m   in the series 

containing   S        and   T        and even values of   m   in the series containing   C 

and   D    .     The odd part is then given by the remaining terms in these series. 

D.     BOUNDARY CONDITIONS ON THE WING 

A slipstream rotation is considered which has the following properties. 

The slipstream may have a rotational velocity component about its own axis. 

The angular velocity is denoted by    u(q),   where   q   is the radial distance from 

the axis;   u    is taken positive if the rotation is counterclockwise when viewed 

from the rear.    It is assumed that  I ool <<   V..     The slipstream rotation ' max j r 

is assumed to have no effect outside the jet.     Its effect inside the jet is a 

change in the fluid direction at the wing,   resulting in an effective variation of 
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wing incidence.    A variation of the angular velocity   u(q)   in the downstream 

direction may be included using the analysis presented here,  but this will 

not be done. 

The local geometric angle of attack of the wing along the three-quarter 

chord line of the    r        section of the wing is denoted by    a (y).    It is assumed 

that the geometric wing incidence is symmetric in   y,  i. e.  that   a (y) x   or (-y). 

The boundary condition of the tangency of the fluid velocity at the wing gives 

w(Xr.y) .   Vo*r(y) for | y|   >  H^. (73a) 

w (Xr.y) -Vy2+Hr  ^Vy2+Hr )8in ir =  Vjar(y)     for   1^    <   Hr    (73b) 

along the three-quarter chord line of each section of the wing, that is, for 

X m 1,. . . ,N.     The positive square root is taken in 73b.     The definition   70, 

splitting the downwash   w   into its even and odd components inside and outside 

the jet,  may be used to achieve a similar splitting of   73   as 

w (X   ,y) =  V   <* (y) for     H*   <   y <   b (74a) o,e»      r  ' o   r ' r       ' 

wo>od(Xr.y)=   0 for     H^<   y<   b (74bf 

w4   _V(X     y) =   V a (y) for   0<   y<   H* (74c) 
j,cv      r j   r r 

w      d(Xr.y) « Vy2+Hr "^y2-1-", ) 8in    H"       for   0 <   Y <   H J» r 

(74d) 

- 28 - 



Equations    71    and    74   provide a system of linear algebraic equations 

for the determination of the coefficients   A "     ,    A.       ,    A        ,    B in K,n X,n o,n o,n 

the Fourier expansion   62   of the circulation.    The boundary condition repre- 

sented by    74   must be applied at sufficiently many points    y   along the wing 

to obtain a determinable system of equations for these coefficients.     If an 

equal number of coefficients is used at each section,  the number of equations 

involved will be   N   times that of the single section wing used in the example 

treated by Wu.    A feature of the present work,  however,  is that the singularities 

present in the Wu solution (where the boundary condition is applied on   z =   0) 

do not appear.     This is due to the presence of terms of the type   (H   + h  ) 

in the denominator of the integrals in the Appendix; these terms never vanish 

and prevent a singularity in the integral.     Under these circumstances the 

constrains on the coefficients sufficient to exclude such singularities,   as 

adopted by Wu,   are relaxed here.       The boundary condition 74  must be applied 

at a compensating number of points   y   along the wing to make up the equations 

released by the relaxed constraints. 
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IV.     EXTENSION TO MULTIPLE JETS 

A.    NOMENCLATURE 

A system of    ZJ   jet slipstreams,   symmetrically placed with respect 

to the mid span,   is  considered.     The wing span is divided into   (2J+1)    regions, 

denoted bv   R    .     v   =   0,1, . . . , ZJ    which are defined as follows:    R      is the 
' v o 

region outboard   of all the jets,    R,      i    ^s ^e region inside the    v jet pair, 

v   =   1, Z J,   counted from the wing tip toward the  center,     R is the 

region between the    v and the    ( v + 1)        jet pairs.    The width of these regions 

will vary in the downstream direction according to the inclination of the wing. 

The boundaries of the  regions along the    y-axis are given by the points 

V   b'bl'b2 bZJ'b2J+l'   ~-   0' b-ZJ'--- '-bl'-bo =   -b • 

The center of the    v jet is along the line defined by   z =   0    and 

y-+a     ,      a     =-T{b-)      1+b,) 1        —    v v 2       Zv -1 Zv 

The wing will be taken to have a square planform and to have no span- 

wise twist.    At a station     x   downstream,   therefore,  the wing will be a distance 

h   below the   center-line of the jets.     The intersections of the wing with the 

th ' 
boundary of the    v        jet at the station   x   is given by   z =   -h   and   y =   a     + h , 

- / Z v  - 
where   h   = «1-h   ,   which we denoted by   y =   c-,      ,    and   y =   c.,    ,   respectively. 

Hence a point   y   in the region   R       may be found from 

y =   cg cos A> 3   .        s =   0,1, .... v (75) 

At the point   y =   c 

4,9 =ß(
8
v) =   cos-1!  ^-) 8=0.1 v <76) 

s v =   0,1, . , . ,2J 

- 30 



•fig-   4   gives a guide to the nomenclature defined above. 

B.    FOURIER EXPANSION FOR THE CIRCULATION 

The Weissinger approximation will be used to determine the circulation 

distribution over the wing.    The lift is given by 

N .   N 

L=l     l fn(y)dy=   Pl   i VloCairn(^ 4-/
1   ^ span t-'1 ^ span n=1 r n=1        ^ 

where   T      is the circulation distribution at each section of the wing.     The lift 
n 

distribution is continuous at the boundaries of the jet.    Hence at the points 

z =   -h.   y =   c^c^... .c2J 

F      ?     Ac-,     ,-ih-O) = toP      ,      Jc,     .-ih+0) 

(77) 

r    ,   .(c,  -ih+o) =   ^LF    , (C?  -ih-o) 
n, Zv-l     Zv '     n, Zv      Zv 

where the second subscript on   F    denotes the region in which   F    is defined. 

The circulation distribution   F   (y)    at each section is defined in each n 

region    R   ,   for    v   =   0,1,.... 2J,   by 
V 

rjy)   =   4bV.FniV(y) (78) 

where A   -1 o 

rn.o^   =   I      A(20Ul.n8in{2X+1)Vn 
X=0 A   -1 v 

F (y) =   F Ay)+A(v)   + 'S     A^*       sin {2K+1H n, v   ^ n,v-1 ' n, o       £j 2X.+l,n Tv,n 
\=0 
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Here the dependence of the angles    ijj    on the wing section chosen has been 

noted.    The region   R       is also dependent on   n,   being defined by 

v,n 

of   78   is 

y   >     c v +1, n 
where    c =   a     - Jl - h2 

v,n        v       i n 
An alternative writing 

with 

A -1 

F (y) =   ">     |A(S)
    +    >     A^xi       sin{Z\+l)^a  „Mor   v=   0.1,..., 2J n,vKy'       IJ    I    o,n        IJ        2X+l,n s.nJ 

s=0 X=0 
(79) 

jo) 
o.n 

Only odd multiples of the angles  4>    are taken in    78,  which relies on the 

assumption that the geometric incidence of the wing and the rotation of the 

slipstream be symmetric about the mid-span. 

The boundary conditions 77 may be used to express the coefficients 

A in terms of the unknown coefficients    A ,,.  ., in the form o.n <:\+l,n 

jv) 
-1 

s=0 

A -1 s 

I   <>l A [ll,     sin(Z\+l)ß(v) 
2X+l,n "s,n 

X=0 

for 

v = 1, 3,. . . , 2J-1 

v = 2, 4,. . . , 2J 

(80) 

j 

The total lift may now be evaluated as 

N    .  2J r -, J        2v   r 

8Pb^       n=l    v = 0 
As-1 

+   c .n/, A2X+l,nV 
sin Z\ß 

vaO    s=0 

(2v + l) 
s ,n 

(c, - c,      ,     )A{8) 

2v, n       2v -1,n      o ,n 

sin Z\ß 

-zr 
(2v) 
s, n 

sin 2(X+ 

 3(rrn /J ' 
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C.     VELOCITY POTENTIAL 

The velocity potential of a vortex element at an arbitrary height with 

respect to a single jet slipstream has been determined in Section II.     The 

method used there involved the  construction of the image system of the vortex 

element in the jet.     The two-dimensional part of the solution was found directly 

this way.     A similar image system was used in the three-dimensional part of 

the solution,   leaving a remainder term which was evaluated analytically. 

The velocity potential due to a vortex element placed in a system of multiple 

jets will be constructed using this image method as follows.     The vortex 

element has images due to each jet separately.    Each image then has further 

images due to the rest of the jets.    An image system of infinite order is 

thereby generated.    An approximate solution is presented which takes into 

account the primary image system and the first order corrections due to these 

images,  i.e.   the image-image contributions.    However,  only the primary 

image system is used in the remainder term of the three-dimensional part of 

the solution.     It is anticipated that this term is already small and the first 

order corrections are neglected. 

The two-dimensional part of the velocity potential,  denoting the potential 

outside all the jets by   (p     and the potential inside the   X       jet by   <p.   . ,   is 
" o J» ^ 

made up from the following contributions.     The factor    -r- r(T|)dr|    is omitted. 

(I)    For a vortex element   r(T|)dTi    located at   y =   r| ,   z -   -h,   taken outside the 

jets 

FJy-Tj.z + h) plus a sum over   v   of the image in each jet,  i. e. 

<Pc 
€1 \    . a .2^, ^v h 

v 

,.. tl .TTTTZ  I   VT1-*v) -h )*Vy-av-- -_,, z + ^-j 

+ 2(T)-a   )hF   (same argument as    F 
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This latter function will be denoted by     X 
V 

^■Ai 
(l-€ ?)F.(y- r|, z+h)   plus the images of this image due to the other jets. 2'  r 

e.   a sum over all    v   ft    \   of   (l-t ?)  x 

(II)   For the vortex inside the    (        jet,    I   t  \ 

, 1 (l-€ ;))F,(y-ri, z-h)    plus this image reflected in the other jets,   i. e. 

sum over all     v t t        of   (l-€ ,) X 

^j.tfij*1-^2^^'2^ 

(III)   For the vortex inside the    \        jet 

(f } same systenn as (II) 
o 

^My-1"!!55'^)   and the single image    -X. .     The vortex element reflected t - \ 2 

e other jets gives the contribution   (l-t    )    X       summed over 

(F^y-Ti.z 

in all the 

all   v    / 

The construction of an image system to represent part of the three- 

dimensional component of the solution is accomplished as above for the two- 

dimensional part; the remainder term is approximated by the primary image 

system only.     The complete velocity potential may now be written down. 

Using the substitutions 

v-a=rcos6 z=r     sin 6 7      v v v v v 

y +  a     =   r      cos 6 z =   r      sin 6        , '   '      v -v -v -v -v 

and the symmetry about the mid-span,  the velocity potential,    (p   ,   outside the 
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jets is given by 

4ir<p =     (       r(r1)F(x,y-r1.z+h)dT1-€ ,;      \ rl^) CF(X. y-T!. z+h)+F(x, y+r,, z+h)]d» 
■ b x~     /-

C2i-1 

b J i 
J      r(T1)j  ^    [x'(t1>av) +  X,(-r1.-av)][dTi 

J c 2i-l 
-(l-€2)y     V r(T1)[x

,{T1,af)  + x^-ri.a^ldT! 
f = 1        C 2i 

J      J C2f-1 

-€2 
J     ^   J r(r|) [x'lin.a^) + x'i-T!,-av) +X,(-T1>av) +X

,
(T1.-av)] d^ 

1=1  v=l     CZ( 

J        <X) 
2 Y  V C00 .^ + —    >       ) \      sin kx 

i=lm=0 u 

x   sin me„ K     (kqjll   \ ♦"    \ fF^jß^ (k, Ti>d n 
l-     C2< + 1 2f-l 

+ C  "     r(Ti)T(°)(k,n)dn 

rosme,   Km(kqi)l(r   2i + J    2i"2) nW^k. ^d, 

+   r r{T1)D
(
i^

)(k,T1)dT1 

zt 

'-iKm<k^)[(lc"2l+   +Jc"2i'1)r(ti)s(^(k.r1ydT1 +   sin m6 

•-2<+2 s--2i 
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J r(Tl)T^)(k,T1)dr, 
c 

+ 

''-2/ + 1 

cos mS^K^kq^)      M -He jr(r1)C^){k,T1)dT1 
-2i+2 "-Zi 

+  C r(Ti)D(
i^

)(k,T1)dT1   I dk 
*/c-2i + l "' 

where     X  (ri ,a   )    is the extension to three-dinnensions of the function   x 

used above,  that is 

x,(T1'aw)=  r^ btt *   K(T1"av)Z"h2Hx,y"av", ^frr •z + - -TTl) [(il-a^)   +h  ] L>> '     v ^-ay)   +h ("H-a^^)   +h   / 

+ ,!(r| -a   )hCKsame argument as    F) ] 
The velocity potential,    (P.   . ,  inside the    X       jet is given by 

J» K 

a 

4Tr^.   x=   (l-«2)\       r(Ti)F(x,y-ri.z + h)dT1 

-b 

J 
v   r 2i"1 

(l-€2))       \ r(T1)[F(x,y-T1,2+h)  + F(x,y+T1)z+h)]drl 

i=l     C2i 

J c 

+   (l-.2) lY    V r(Tl)     /   {«'(^.»v)* *'(Tl.-av)+x,<-Tl'av>+,f,(-T1'-aw)} 
i=l     c2i + l Lv.! 

vl -X ("H.»^ - X (-^.a^)      dt! 
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\ r(Ti)   F(x,y-Ti, z+h)-(l-€ 2)2 lF(x.y-Ti, z+h) +  F(x, y+t] , z + h)J 

+ (l-«2) 

J      oo           ^ 

i=lm=0 

x sin mO-^Ckq^) id: 
L 

v= 1 

av)+ X{Ti.-av) J- x^.a^JJ dri 

if21 + r"y^>- 
V    C2i+1 C2i-1/ 

r1)di1 

'Zi-l 
,(j), 

+ cos   meiIm(kqi) 

+ 1 r(t1)T^Mk.T1)dT1 
Jc2i 

.V     C2i+1 C2i-l/ 

r"2i-l () 

2i 

+ sin nn9    .1    (kq   .) (r     + r   Vt^sli ^^^ 
L^   c-2i+2 -2i   / 

£2i r(T1)T
(

rJi
)(k.T1)dT1 

-2i + l 

+ cos mO   .1    (kq   .) -1 m     ^-i (i"c"2'+1+i'c
2'"1)r('1,c-,k'n)d'1 

•        c-2i+2 c-2i    ' 

? dk 

c 

r(T1)D
(

rJi
)(k,T1)dT1 
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D.     DOWNWASH AND BOUNDARY CONDITIONS 

The downwash distribution corresponding to the velocity potential 

for the multiple jet case obtained in the previous section may be obtained in 

similar fashion to the simple jet case (see    71).    The integrals involved will 

be those listed in the Appendix.    It is not intended to write down the downwash 

here as it is a complicated expression.    Assumption of a slipstream rotation 

of the type described in III-D   will lead to similar boundary conditions to 73 

in each region   R     (see also Wu),   and the determination of the coefficients in 

the expansion   79   for the circulation will proceed as before from the solution 

of a system of linear equations. 
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V.     CONCLUSIONS AND RECOMMENDATIONS 

Prediction of the spanwise lift distribution on a wing at an arbitrary 

height and high angle of attack extending through multiple jets (propeller 

slipstreams) has been accomplished by the present theory. 

Implementation of the theory requires both an extensive machine 

programming effort and experimental confirmation.     The mathematical 

complexity encountered in the theory requires close coordination between 

the analytical and machine programming efforts. 

It is therefore recommended that the following two (2) steps be 

undertaken: 

1. Extensive machine calculations - a programming effort 

directed towards systematically developing a generalized calculation 

program employing the wing and slipstream geometry as inputs  should be 

undertaken.     This program should then be used to calculate spanwise lift 

distributions of a broad spectrum of arrangements to (1) delineate significant 

trends due to non-uniform flow effects and (2) provide results for comparison 

with experimental data. 

2. Systematic  Experimental Program - wind tunnel teats to 

confirm the analytical results and determine real fluid effects  should be 

conducted.     The tests should be designed to yield accurate spanwise lift 

distributions of wing-slipstream arrangements selected from the analytical 

study above to yield a meaningful confirmation of the theory. 
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APPENDIX 

A series of integral functions denoted by   , I        were introduced in 

Section III-C.     These integrals will be defined in the following and the param- 

eters used in their definitions will be noted as arguments.     A number of 

supplementary functions are used which are given by 

(y - b cos Q)*- (H   +   h   )Z 

AO) =      * ^p     sin 9 
[(y  - b cos 9)   +   (H   +  h   )   ] 

BO) =   f(y - b cos e)2 +  (Hr+  hn)2!"1 sin G 

CO) -   [ (X   - x   )Z+   (y  - b cos e)Z +   (H   +  h   )Z]-l/Z 
1 ^    r       n ' ' r        n 

D^G) 

D2(e) 

b   cos   6  - h n 

rbzcos2e + h2i2 

' n' 

sin G 

(b2cos2G +  h   ) n 
e+   hn    A     r      b2cos2e+   h2   J 

Ejie) 

E2(G) 

b cos G 
y ~~2 2 2 

b   cos   G +  h n 

Hr + r2 T, b   cos   G +   h 

b cos G        \ 2 +   /H    + ^n \ 

b2cos2G + h2   y I     r b2co82G +  h2     / 

UB)     = 

M(G) 

[(XT- x^)^ +   E'l(Q)] r       n c 

(H    +      .     h? j- \ 
\     r b   cos^G +  h^      / 
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The integrals      l"    are defined by 6 n a 7 

.1^   (y.b.H   ,h   ,\) =    \    A(e) sin XO de 
la-7'    '     r'n' J 

2I^   (y,b>Hr.hn.Xr.xn>X) =   (Xr- xn)j,    A(e)C(e) sin XG dQ 

Aß   (y.b.H   ,h   .X   .x   ,X)=   (Xt.-xTi)(H7.+hTi)
2r    B(e)C3(e) sin XG dG jQf'rnrn rn       rn^ ̂

a 

.1   (y.b.H     h   ) =    \   A(G)dG 

5I (y.b.Hr,hn.Xr,xn)   =   (Xr-xn) J    A(G)C(G)dG 

6I   (y.b.Hr,hn,Xr.xn) =    (Xr-xn)(Hr+hn)Z J    B(G)C3(G) dG 

= C" -I   (y.b.H     h)    =\      A(G) cos G dG 
' r     n ^ 0 

-I   (y.b.H^.h   ,X     x^)   -   (X^-x   )  T     A{G)C(G) cos G dB 

QI (y.b.H^.h   .X^.x^) -    (X   -x   )(H   +h   )2  C    B(G)C3(G) cos 6 dG 

10I^   {y,b,Hr.hn>X)   =   r     D1(G)E1(G)E2(G) sin XG dG 
"a 

„I*3  (y.b.H   .h   .X   .x   .X) =   (X^-x^)!"    D1(G)E1(G)E2(e)U8) sin XG dG 

12I^   (y.b,Hr.hn.Xr.xn.X)=    (Xr-xn)V    D1(G)EZ(G)L3(G)M(G) sin XG dG 
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13 
r (y,b,Hr,hn) =  T   D1(e)E1(e)E^e) de 

I(y,b,H   .h   ,X   ,x   ) =   (X   -x   )   \      D1(e)E1(e)E^(G)L(e) de w'rnrn rnj„       1 1 Z 

r 

15i (y,b)Hr,hn,xr.xn) = (xr-xn) \   D1(e)E2(e)L (e)M(e)de 

.A (y.b.H ,h ) =   f    D1(e)E,(e)EJ(e)L(e) cos e ae 
lb rn ^Q! I c 

,_! (y.b.H ,h .xr.x ) r (x -x ) \    D (e)E (e)E^e)E(e) cos e de 

1Qi (y.b.H .h ,x ,x ) = (x -x ) V    D1(e)E (e)L3(e)M(e) cos e de 
18       7rnrn r     n   ^ Q       1 Z 

19if(y.b.Hr.hn.xr(xn.M- J   D2(e)E^(e)[2+3(Xr-xn)L(e) 
a 

- (x -x )3L3(e)lsin \e de 

Z0I   (y,b.Hr.hn.Xr(Xn) =   J     D2(e)E^0) [2+3(Xr-xn)E(e)  - (X^xJ3 L3( e)l d0 

„I   (y   b.H   .h   .X   ,xJ =    T   D,(9)E^e)[2+   3(X^-x^)L(e) 
r'-n'     r'    n'        j 0     2V    '     ^ r     n 

-(x -x )3L3(e) 1 cos e de 
r      n 
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