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FOREWORD

This report consists of the first and second parts of the three part
analytical portion of the High Angle of Attack Theory (third phase) of VRC's
prograx;q of developing methods for assessing the non-uniform flow fields
of wing-propeller slipstream aerodynamics. The overall program,
consisting of four (4) phases as described in Ref. 1, was undertaken to
generalize and extend the basic Rethorst Lifting Surface Theory (Ref. 2).

The first phase (Ref. 3) was comprised of an application of the basic
Single Jet (Propeller Slipstream) Theory (Ref. 2) to delineate optimum
finite wing planforms. In the second phase (Ref. 1) the Single Jet Theory
was generalized and extended into a Multiple Jet Theory. The generalizations
and refinements of the second phase have established a solid foundation for
the third phase (present report).

The three parts of the third phase effort are comprised of:

1. Wings located at various heights in the jet

2. Highly cambered wings as used in deflected slipstream
V/STOL arrangements

3. Tilt wing configurations where the jet is at an angle to the
free stream flow

The present report contains the basic theorectical development of
the first two parts enumerated above. This portion of the third phase effort
has greatly extended the applicability of the analysis by encompassing

deflected slipstream V/STOL arrangements currently under development.




SUMMARY

A lifting surface theory has been developed for wings located
at arbitrary heights and high angles of attack (up to the inception of
flow separation) in a stream containing an arbitrary number of multiple
jets (propeller slipstreams). This theory extends and generalizes the
formulation of T. Y. Wu and Richard B. Talmadge (VRC Report No. 8)
which was based on the original Rethorst Lifting Surface Solution.

The present theory was developed by first analyzing the simpler
single jet case and then extending the analysis to encompass multiple
jets. Thus, the analysis is systematically presented in the following
order:

l. Wing at an Arbitrary Height in a Single Jet - a method

similar to that employed in VRC Report No. 8 for the wing located along
the axis of the jet was used to extend the solution to a wing located at
any height in the jet.

2. Wing at a High Angle of Attack in a Single Jet - the lifting

surface method of Welssinger was applied to chordwise wing sections each
of which is treated in accordance with its height in the jet as determined

in the previous step.

3. Wing at Arbitrary Height and High Angle of Attack Extending

through Multiple Jets - the above single jet analyses were extended to the

case of a wing immersed in a stream containing an arbitrary number of jets.
The jets were located symmetrically in the spanwise direction.
The above generalized theory encompasses a broad spectrum of

V/STOL aircraft. The prediction of wing-slipstream interactions afforded

by the present analysis permits optimization of such V/STOL aircraft.
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I. INTRODUCTION

This paper provides an extension to the work of T. Y. Wu and
Richard B. Talmadge, (1) who considered the problem of a wing at a
small angle of attack placed along the center line of a number of jets.
Previous attacks on this problem are listed and discussed by Wu. The
effect of varying the height of a wing in jet slipstreams has not been
considered previously to the knowledge of the author. A solution is
obtained in the present paper for a wing at an arbitrary position and angle
of attack, consistent with the assumption of non-separated flow, in a stream
containing a single or a number of circular jets symmetrically placed along
the wing.

The problem of a wing at an arbitrary height in a single jet is treated
in Section II by similar methods to those used by Wu for the wing at the center
of the jet. In this latter case the wing is represented by a bound vortex line
centered along the quarter~chord line of the wing, plus a trailing vortex
system, the boundary condition on the wing being satisfied along the three-~
quarter-chord line. The solution for a wing at a moderate angle of attack in
a single jet is presented in Section IIl using the Weissinger method in which
the wing is divided chordwise into a number of sections; the solution for cach
section of the wing is then given by the relevant solution of Section II corre-
sponding to the height of the section. In this way a bound vortex line is
placed at the quarter~chord point of each section and the boundary conditions
necessary to determine the vortex strength are satisfied at the three~quarter-
chord point of each section. The problem of a wing at moderate inclinations

extending through a number of jets is attacked in Section IV by extensions




from the single jet case using the techniques developed by Wu.

The solutions described above are derived from a superposition of
infinitesimal vortex elements. The solution for each vortex element is
found by splitting the elerment into a two- and a three-dimensional part. The
image system due to the presence of a circular jet in the main stream is
easily determined for the two-dimensional part. A similar image system
for the three-dimensional part is assumed plus a remainder term, which is
then determined by the boundary conditions on the jet boundary, A feature of
this approach is that the complicated parzt of the analysis is contained in the
remainder term, which foz the examples computed by Wu so far has contributed
only a small armount ¢to the total lift. No justification for neglecting this part
has yet been found however and it remains necessary to include it in the
present treatment.

Certain simplifying assumptions are made as follows. The flow is
assumed incompressible and inviscid, in which case a velocity potential exists
for the flow inside and outside the jets, though this potential need not be con-
tinuous across the jet boundary. The jet boundary may thus be regarded as a
circular vortex sheet. The slipstream jets are assumed to be circular in
cross section having a velocity Vj parallel to the main stream of velocity Vo.

The coefficient
o= Vo/Vj (1)

is formed. The jets are assumed to be only slightly distorted by the wing so
that the boundary conditions on the jet boundary may be applied on the undis-

turbed circular boundary. These boundary conditions are the kinematic
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condition that the flow just interior and exterior to the jet boundary must be
parallel, and the dynamic condition that the pressure must be continuous
across the jet boundary. Dealing for the moment with a single jet of unit

radius whose axis is taken along the x-axis, the velocities outside and inside

the jet are taken to be

- - ~—
\4 V.=

i+ 2
, V.i+Vvo.
o j j ¢J (2)

where Y5 and (pj denote the perturbation velocity potentials outside and inside
the jet, respectively. The boundary conditions on the jet boundary may then be

expressed as

8y ¢ . rZ >
8q°= pqu on q =¥y +z =1 (3)

acpj _ aqoo
ox M x

on q= 1 (4)

where in the latter a linearized Bernoulli equation has been used. Egq. 4

may be integrated from x = - to give

(pJ =] p,(po on r=1 (5)

where it has been assumed that the potentials vanish at. x = - oo.




II. SOLUTION FOR A WING AT AN ARBITRARY HEIGHT

IN A SINGLE JET

A. FORMULATION

The analysis presented in this section is concerned with a wing repre-
sented by a bound vortex lying along the line given by x = 0 and z = -h from
y= -b1 to y = bZ’ and its trailing vortex system. A superposition of these
solutions along the chord will then be used in Section 3 to represent a wing at a
moderate angle of attack in the jet. The jet is located with its axis along the
x-axis and is taken to have unit radius (see Fig. 1l). A point in the y-z plane

is expressed as
r=y+iz= qe16 (6)

and a point on the wing, y = n, is given by

r = n -ih = se” ¥

o for =-b, = n =< bZ (7)

1S
The solution for an infinitesimal element of bound vorticity has been

given by von Karman (a derivation is given by Wu). The result for a bound

vortex element of strength I'(n)6n, located along the wing x = 0, 2 = -h,

for n<y<n+ 6n is
5 = 8¢, + 6¢, (8)

where




z+h
(y-n )2+(z+h)2

60, = 4= T(M8NF (y-n,z4h) = g=C(n)én

5¢ 4 zl;f‘(ﬂ)ﬁnf‘z(x ,y=n, z+h)

z+h x
(y-n)°Hz+n)¢ [x°Hy-n) Hz+h)*]Y *

zl-,;F(n)bn

The velocity potential in 8 has been split into two parts 6% and 6¢3, repre-
senting the two- and three-dimensional parts of the solution. The effect of

the jet on the solution 8 for the vortex element will be derived in parts B, C,
and D of this section, for the two= and three-dimensional parts of the solution,
respectively. The solution for the whole wing will be given in part E by inte-

grating the vorticity distribution I'(n) ffom y= -b, to y = b,.

B. IMAGE SYSTEM FOR THE TWO-DIMENSIONAL PART OF THE SOLUTION

The effect of the jet, zepresented by the boundary conditions 3 and 5,
on the two-dimensional part 6(p2 af the vortex element 8 is determined
in this section. A simple method to do this is to express 6(p2 as the
difference of logarithmic terms representing eimple line vortices situated
very close together. The effect of the jet is found for each line vortex by
choice of a suitable image system to satisfy the boundary conditions 3 and 5
on r = 1, the boundary of the jet. Two separate cases of the vortex element

2 2

lying outside or inside the jet are to be considered, thatis s = n '+ h2 >1

or sz <1, respectively. The two-dimensional part of the solution is then




(i) s > 1, i. e. for vortex element outside jet
€
1 1 2 ., 2 h
;—T;F(n)én{Fl(y-n.Hh) + —S-;[(n -h ") F,(y- —37 .z+:-z)
b¢@,= + 2nhF (y - & z+h)1} for q >1 (9)
¢2_ n 3 Y :z ’ ;’Z 1 q

2 r(mén{ (1= F (y=n, z+h) - e Fi(n, )} for q <1

(ii) s <1, i. e. for vortex element inside jet

71171" I'(n)dn { (l-¢ 2)Fl(y-'q, z+h)} forq > 1
6g02=
€
74-1; I'(n)dn { Fi(y-n, z+h)- -% [(nz-hZ)Fl(y- lz ) Z +£Z ) (10)
8 s s
n h
+ ZnhF3(y-—z y Z +--2- )] - elFl(n,h)} for q <1
s 8
where
1,2  (1-p)?
“17 T+l * €= _EZ_
+p )L TR

(11)

Fsly,z) = —'—

y +z

It may be noted that the terms Fl(n, h) in the solutions above are constant
terms in the potential and hence may be omitted; their inclusion resulted from
using the boundary condition 5 on the potential rather than 4 and its deriva-
tive.

The two-dimensional part of the solution corresponding to a lifting

vortex line of given circulation distribution I['(y) extending from y= - bl to




y = bZ' may now be obtained from 9 and 10 by linear superposition. Hence
one obtains

b '
2 ] h
4w ‘pz = 5 b r(ﬂ)Fl(Y-TI. Z+h)d"] - € ZS‘ h,r(ﬂ)Fl(Y-'ﬂ. Z"'h)d'f‘]

1
.. 35.-11- ) Sh2$ C(n) [(nz_hz)F (y- T 2+ By
SRINRRE s Lo St

+ ZnhF3(y- 37, z+£2— )] dn forq>1, (12)
s s

2 b by
drp,= S‘ , CEE{y=m, zthldn = ¢, ;S‘ ot S‘h, 2F(H)F1(Y-n.z+h)dq

1

h
- ‘1§ LR [tn20dF(y- 25 24 25)

_h' 8 -] 8
+ 2nhF3(y_ 117 A z+—132- )] dn for q <1, (13)
s s
where
h'=41-n%.

C. THE THREE-DIMENSIONAL PART OF THE SOLUTION FOR THE VORTEX
ELEMENT LOCATED OUTSIDE THE JET

The effect of the jet on the three-dimensional part 6@, of the vortex
element 8 is determined. The vortex element is taken to be located outside
the jet, i.e. s > 1; the case of 8 < 1 is dealt with in Section Il-D. The image
method used for the two-dimensional part cannot be used here as the problem
is considerably more complicated. The technique--introduced by Wu--of using

a similar image system as the two-dimensional one, plus a remainder term




which is then to be determined by the boundary conditions 3 and 5, will be

used. Using 8 and 9, the proposed form for the vortex element is

5¢3 = % r'(n)én { (pc'>+ FZ(x. y=n, z +h)

+ } [(nz-hZ)FZ(x,y- ':‘z z+-:-‘z )+2nbF ,(x,y- 32 , z+;‘lz )] }
forq>1, (14)
5, = 31;1‘(71)6*1 {cpJ'-+ (1-¢ ,)F ,(x, Y-n.z+h)} for q <1, (15)
where
Taber) = 2w (IT T e

and F, has been defined in 8. Here (p(') and (p‘% are the remainder terms
left in the potential after subtracting the F -functions representing a convenient
image system: gp;, (p:i satisfy Laplace's equation outside and inside the jet,

respectively.

Application of 3 and 5 yields the following boundary conditions on

1

¢, and @;

((P:i' H‘p'o)qzl = €1P- {-F Z(X 'Y =T Z+h)

Sy [(n%-02F e, y- Ly ety ) 42nmr x,y- Ly 2+ 20]} an

< -]

= - € -ga { FZ(x,y-n,z+h)

178 3¢ )
('5_q— - ¢ 3g

+ g (0P oy Dy By ) 2nmr y- Ty =+ 2]} ae

q=1




where

y = q cos 6, z = qsin 0 (19)

and q = 1 must be substituted on the right-hand side. From 17 and 18, or
from subsequent forms of these expressions, it may be shown that (pc', and
(p:i and their derivatives are well-behaved near both x = 0 and x = oo.
Also (p'o and (p"j are odd functions in the x-variable, which leads to the

following representations of these harmonic functions

® <(0)
{sin me S‘ 5'° (K, s)K_(kq)sin ko dk

2
Y = 7 0

318

0

e c’Dc(°)(k )K_ (kq)si locdk} f >1 20
+ cos m 0 m s S - q)sin or q ’ ( )

Ao

— w .
(pj' = Z {sin m6 g} 5(12“" s)Im(k,q)sin kx dk
mz=

0

+ cos m®6 5\:0 Cg)(k, s)Im(kq)sin kx dk} forq< 1. ()
The functions Im and Km are the modified Bessel functions of the first
and second kind, respectively, as defined in Ref. 2. K,  is used in the solution
outside the jet, and I __ is used inside the jet, to ensure that (p; and ¢; will
be regular at q = o0 and q = O, respectively. The super-indices (o) and
(j) chacterize the region of definition of the functions S and C, i.e. outside
or inside the jet. The functions S and C are to be determined from the
boundary conditions 17 and 18.

The expressions on the right-hand sides of 17 and 18 are now ex-

panded into similar series and integral forms used in representing ¢;) and




S e e e sses

(pj' above. The integral representations of the F-functions, demonstrated by

X
2 2 2.-3/2
F,(x,y,z) = — - =z V (E"+y"+27) dg, (22)
> ’ yrﬂz (xz+y2+zz)1/z J

are used in 17 and 18 to give the following relations

X
8
(@.-p@ ) _ = pe {(sine +h)( [§2+82+1-25 cos(8+ a)] '3/"'dg
J o’'qg=1 1 I
- 1;hx[xzsz+s?'+l-25 cos(9+a)] -1/2} (23)

LYy g
<_6q_° = “_B.C:L) q=1= € { x(sin o+h)[x2+s?‘+1 - 28 cos (8+a)] -3/ 2

2 -3/2

- hx[s-cos(9+a)][xzs +8%1-2s cos (8+a))

x
s
"5865 (q sin 6+ th) [€2+ qZS 414 2sq cos (8+a)] -3/ ng}
x
(24)

in which q = 1 has to be substituted on the right-hand side.

Tne following expansions in terms of Bessel functions are used in 23

(4)

and 24. These relations are given in Watson or may be deduced from

relations there. They are

. _ > [
x(x£+ sZ+1-Zs cos 0) 3/2= 14"-5' k sin kao(kJ.Z+l-Zs cos 8) dk (25)
0

s

x . w k

(7 (6% s%41-28 cos 8~ 2at = %S' L sin kx dk ( txo(:Jszn-zs cos 8)dt
vYx

(26)




2 2. (7 .
(p " ~v )S‘ xIn(px) Kn(vx)dx ’\{l.Kn(_Vy)In_l(W) + vKn_l( vy)In(py)} (27)

Ko(tJl+ s & 2s cos 0)

0
= Ko(ts)Io(t) + ZZ Km(ts)lm(t) cos m9 for s > 1
m=1
© (28)
= Ko(t)Io(ts) + Zz Km(t)lm(ts) cos m®9 for s < |}
m=1

sin BKO(th&+1 - 2s cos 8)

I$e
N (120K, (50 - 1 (0K, (st)] sin no o 15
n:l
10's) (29)
= Z [In-l( st)Kn_l(t) - In+l(st)Kn+1(t)] sin n® for s < 1
n=1

Using such identities as above, Egs. 23 and 24 may now be written in

the form

(<pj-u<ﬂo)q:1
%) o ) 1 K
- ) e {sm o = KI5 - K,(ks)I_(K)]

QO
. zz (B 1K (01 (5) - K_(ke)L_(K)| cos « sin m(x6)
m=1
% )] sin o cos m(a+9))} dk

$ 1K (sKIT_(K)+ fz K_ (1]

(50)

- 11 -~




2e @ 1 -k
= S sin kx {—k sin « [I(].(Sk)ll(s) - —Z Kl(k)Il( —s- )]
S

A8

;2 k[K;n(ks)Ir'n(k)-;]iz K. (KL (X)]sin a cos m(a+6)

1

e

- }'sﬂ [ Km(ks)I;_n(k)+ K;n(k)lm( %)] cos asin m(ar+9))} dk

(31)

e r el DG G crcte R Lt e at v eNo < e
m m m

m
The boundary conditions 3 and 5, represented by 30 and 31, are
now in a form suitable for comparison with similar expressions obtained from
the expansions 20 and 21 assumed for the solution. The Sm and Cm coef-
ficients in 20 and 21 may then be determined. Hence
a1 _I' K_(ks)

S(::l)(k,s) = Zel{% [-Im( %) + Ll - - ] COs a cOsS ma
l-e K(I_K_ +K_ I )
m m m m

Lk 2kI_1' K’ (ks)
+[_7 Im(g) + : ; sin « sin ma} (32a)
s - k(I_K_+K_ 1)
m m m m
i) I_K' 4K 1 o
S (k,s) = 26(1-¢ )k , , {E—K (ks)cos a cos ma
™ l-e k(I_K_+K T ) m
m m m m

+ K'rn(ks) sin o sin ma} (32b)

- 12 =




2kI_I' K _(ks)
miIm m

- - ] Cos8 a 8in ma
l-e 1k( Ime+ Kmlm)

' 1
1 .+ ,k ZkImIme(ks) .
= _Zlm(g')+ - - sin @ COs ma
s l-elk(l K +K 1 )
mm mm
{(32c)
(i) ImK'm+ Kml;n m
C'97(k,s) = 2¢.(1-¢ )k e — K (ks)cos « sin ma
m 1 2 S 1 ks m .
l-¢ Zk(I K +K I )
m m mm
- K;n(ks)sin a cos ma} (32d)

Here, the argument for the Bessel functions of argument k has been omitted
for brevity. Egqgs. 32 provide the coefficients necessary to evaluate ¢(", and
(pji from 20 and 21 and hence the three-dimensional part of the solution for

the vortex element lying outside the jet is established.

D, THE THREE-DIMENSIONAL PART OF THE SOLUTION FOR THE VORTEX
ELEMENT LOCATED INSIDE THE JET

In this section a solution is developed for the three-dimensional vortex
element given by 8 in the presence of a circular jet, for the case in which the
element is located inside the jet, i. e, 8 < 1. Similar techniques to II-C are

used. The vortex element is represented by
6<p3 = Tl{r_ '(n)én {(p;> + (l-¢ Z)Fz(x,y-n, z+h)} forgq>1 (33)
6@, = 711'1? I'(n)én { (P.'i +F ,(x,y-n,z+h) - :—2; [(T\Z-hz)FZ(x,y- -';’7 y x4 %‘z )
+ ?.nhF4(x,y- ﬂ'Z » B+ 'P'Z & for q<1 (34)
8 8

- 13 -




Here (p(') and (p‘; are the remainder terms left in the potential after sub-
tracting the F-functions representing a similar image system to the two-
dimensional one (see 10). The harmonic functions (p;, ‘P'j are odd in x,

and regular near both x = 0 and x = o; they may therefore be represented by

the expansions

2 < ®© (o)
¢, = = Z {sin mé SO Tm (k, s)Kxn(kq)sin kx dk
m=0

ao
+ cos meS b9k, s)K__(kq)sin kx dk} forq >1 (35)
0 m m

= o

1 2 . j .

@ = = Z {sm mé6 S\o T(rix)(k’ s)Im(kq)sm kx dk
m=

QO
+ cos mGS\ D9k, s)I_ (kq)sin kx dk} for q<1 (36)
0 m m

The potentials 33 and 34 may be substituted in the boundary condi-

tions 3 and 5 to give

2 -3/2

x
s
(¢3-H¢;)q=l= el{(sin 0+ h)§x f§2+ s "+ 1-2s cos (6+ a)] d§

-1
-l—hx[xzsz+ s2+l-25cos(6+ a)] /&} (37)
s

8. b0,
(—a—qg -p#) = e {x(sin 9+h)[x2+ sz+l-23 cos (8- a)] -3/2
q:l

2 -3/2

- hx[s- cos (6+ a)|fxzsz+ s +1-2s cos (6+ a)]

x

3 S, 2
- 3a C (q sin 8 + hqa)[‘, +q
q vy

st+ 1-28q cos (6+ 11)1,-3/ ¢ dg}

(38)

- 14 -




in which q = 1 has to be substituted on the right-hand side. Integral repre-
sentations of the F -functions similar to 22 have been used to obtain 37 and

38. The identities 25-29 are used to express 37 and 38 in the expanded

form
C 2, @ 1 k
(¢J_-,“po) =— S' sin kx{sin a[K (K1 (ks)- =5 K( -s—)Io(k)]
q:l 0 S
oo
+ zz ([Km(k)lr'n(ks)+—17 Kr'n(is‘-)xm(k)] A @ coh) sllen O)
m=1 s
+ % [Km(g)lm(k) - Km(k)Im(ks)] cos a sin m{a+ 9)) } dk
(39)
80, 9, ey o . 1 .k
<—5€ - -ga-]-> =1= — v\o sin kx{— k sin a(Kl(k)Il(ks) - S—Z Kl(;)ll(k)]

1<k [K;n(k)ll'm(ks)-;l-z K;n( %)I;n(k)] sin o cos m(a+ )

+
318

= %1- [Km(-}sf)I;_n(k) + K;n(k)lm(ks)] cos a sin m{a+ 6)) } dk

(40)

The boundary conditions 39 and 40 are now used to determine the

- 0 !
coefficients T | and Dm of the expansions 35 and 36 for ?s and (pj as

- 15 =




1 t

I K +K I

Ti::)(k,s) = &l(l-e 2)k fRgn - m m { 'kms Im(ks)cos a cos ma
l-elk(l K +K I )
m m m m
1]
+ Im(ks) sin v sin ma} (4la)
" - N Z.kaKr'nIm(ks)
TJ(k,s)= Zel{g K (;)+ 5 ; ]COSQCOSma
m m 1-¢ k(I _K 4K I
1 m m mm

2kK_ K 1 (ks)
m mm

) ] sin a sin ma} {4lb)

o
~
BA—

w|x

l-e k(I K +K I )
1 m m mm

I K +K I
m m mm {
)

l-e k(I K +K I
1 m m mm

LU (ks) cos « sin ma
m

(o)
D' (k,s) = 2¢(l-¢ )k =

- Ir;l(ks) sin « cos ma} (4lc)

2kK K 1 (ks)
m mim

[K (£)+ ]cos o sin ma
m

(j) <
DY (k, s) -

24

Ak

l-e K(I K +K I )
1 m m mm

1 !
2kK_ Kl (ks)

- ] sin o cos ma} (414d)
s l-¢ 1k(I K +K I )
m m mm

The argument for the Bessel functions of argument k has been omitted. The
three-dimensional part of the solution for the vortex element lying inside the

jet may now be obtained from 33, 34, and 35, 36 together with equations 4l.
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E. SOLUTION FOR A LINE VORTEX DISTRIBUTION

The solutions obtained previously for an arbitrarily placed vortex
element are now used 1o determine the solution for a vortex line of distri-
bution I'(y). The vortex line lies along the line x = 0, z = -h, from
y = -b,to y= b). The two- and three-dimensional parts of the solution
are added together, using the relevant solution for the vortex distribution

inside and outside the jet, to give for the perturbation velocity potential

oix, v, z)
Q= ¢, for q > 1; gp:(pj for g <1
where
bZ '
4Tr(po= S‘ I'{n)F({x,y-n,7+h)dn - e ,(\ ,I‘(n)F(x,y-n,zHl)dq
-b v .h
1
-h' 1
[ 2 2 h
+e1<5 +S" )71'(7])[(1] -h )F(x,y-lz-,z+—2~)
-bZ h s S s
+ 2nhGix, y- Dy , 2+ 8 )]d
m Y :7 ’ ? N
& e
+—2- S ( K (kq)sm kx
T vy
m=0
1 b 1
~-h 1 h
sin me[ (‘ + (‘, )F(n)S(O)(k,n)dn + (‘ ‘r(n)T(O)(}i,‘])d'|]
“—bz “h m ¥ -h m

i b 1
=l 1 (o) b (0)

+ cos m#8 S‘ + (‘ . JTMIC “ T (k, n)dy + S‘ LMD (K, m)dy i
“h m h n

(42a)
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b ' b

2 -h 1
4n¢e. =5‘ I'(n)F(x,y-n,z+h)dn - ¢ » (S‘ FS\ ')[‘(n)F(x,y-n,zﬂn)dq
J 'bl -b, -h

h' :
co 0 Lrm[tndFe y- Ay e Ryydn
v-h s s

1]

+ 2nhG(x,y- 32- ,z+£2-)] dn
S

s

&L [e 6}
+2) g I_(kq)sin kx
m 0 m
m=0
' b ' =
-h 1 . h .
8 {sin me [(f + >r<n>sg}(k. man+ {0 rmt o nan
v-b, vh Y -h i
' b ' 9
-h 1 . h )
+ cos me[(S +(‘ ' ) I‘(n)C(XJIi(k, ndn + (" ‘F(n)D(HJI)(k. n)dn }dk
-b, Yh “-h 4
(42b)

In the above expressions, the functions F and G are given by

F(X,Y,Z) = FI(Y.Z) + FZ(X.Y. Z) = '7_2'—2 [1 + x(x:+yz+zz)-1/2] (433.)
y +z2
G(x,y,z) = F3(y,z) + F4(x,y,z) = _-21—2 [1 + x(x2+yz+zz)-l/2] (43b)
y +2
respectively.
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III. SOLUTION FOR A WING AT A HIGH ANGLE OF ATTACK
IN A SINGLE JET

A. FORMULATION

A solution is presented here which determines the effect of a single
Jet slipstream on a wing held at an angle of attack which is not small. Angles
of attack sufficient to cause separation of the flow are excluded. This section
presents the solution for a single jet located centrally along the span of a wing
whose planform is taken as rectangular and whose chord is untwisted. This
solution will be extended in Section IV to the multiple jet case. Further ex-
tensions to cases of non-rectangular planform and small twist follow from the
method used in this section but they are not investigated.

The Weissinger method is used to determine the flow over a wing at a
moderate angle of incidence. In this method, the wing is divided chordwise into
a number of sections. The flow past a particular section is approximated by
a vortex line distribution along the quarter-chord line of the section. The
solution for this flow is obtained from Section II, taking into account the
position in the jet of the relevant section. The total solution is then the sum
of the solutions over all the sections. The boundary condition of zero normal
flow at the wing is then applied at the three-quarter chord point of each section
and at a sufficient number of points along the three-quarter chord line to com-
pute the assumed vorticity distributions to reasonable accuracy.

The wing is taken with its leading edge along the line x =0, z =1,
for |y|< b, and the chord line (from leading to trailing edge) at an angle «a

to the stream, e.g. see Fig. 2. The wing shape is taken to have the form

z' = S(x') (44)
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where the coordinates x', z' run from the leading edge along the chord to
the trailing edge and perpendicular to it, respectively. The shape of the wing

in the x,z coordinates is taken as

z = H(x) (45)

where H(x) .is to be found from the equations

H(x) =2 - x' sin o + S(x') sin o ,
. , (46)
x = x cos a+ S(x) sin o
The projection of the chord on the x-axis is given by
¢, = ccosa (47)
where c¢ is the chord length of the wing.
The wing is divided into N secctions. Let
‘1
A section is defined by the range
- - 24
(n l)d,N< x < ndN for n=1,2,...,N (49)
A vortex line distribution is placed along the quarter-chord line of each
section, that is, along the line given by
1
X = (n-l)dN + ZdN = x_, say, (50)
and
= = -h
z = H(xn) o 8ay - {(51)

The boundary condition an the wing will be evaluated along the three-quarter
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chord line of each section, that is, along the line given by

A
|

= (n-l)x:lN + %dN = Xn, say, (52)

z= H(X )= H_, say. (53)

n

The vortex line distribution at the quarter-chord line of the nth

section is represented by I'(y) = I‘n(y). The solution for this vortex distri-
bution along the line x = X, 2= -hn, is obtained from the solution given in
Section II-E by substituting (x-xn) for x, hn for h, and Fn(y) for I'(y).

Call this solution (pn(x,y,z). Hence

(Pn = (P(X'xn’Y'Z ’ I = rnp h= hn) (54)

and the total solution, summing over all the sections of the wing, is given by

N
=) ¢ (55)

B. FOURIER EXPANSION FOR THE CIRCULATION

For the case of a wing square in planform with a circular jet located
along the mid-span, it is convenient to adopt the following notation (see Fig. 3).
At the three-quarter chord line of each section of the wing the span is divided

into two regions: R outside the jet and R inside the jet. That is,

o,n 1,n

R, : |y|<h and R h < |y|<b (56)

o,n’

where

h = 1-h (57)
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The angles qao n and t,bl a2t each section are defined by

bcosy _ _ for hr'1 <|ly] < b (58)

<
1

bcosy =h cosy, for |yl <h;1 (59)

<«
N

The circulation functions I‘n(y) are expanded as Fourier series in
terms of the angles \po,n, 4‘1,n in the regions Ro,n and Rl,n' In deciding
on the particular form of these functions, it is instructive to look at the local

lift distributions. By the Joukowsky law, the lift at a section of the wing is

given by
ln(y) =1 Vlocalrn(y) (60)
The lift distribution is continuous across the boundaries of the jet. Hence

1 '
I"n(hn- 1hn -0) = pl“n(hn- 1hn + 0)
and (61)

] 1
rn(-hn- 1nn+ 0) = pI‘n( -hn- 1hn - 0)

From this it can be seen that the circulation function I"n(y) has a disconti-
nuity at the jet boundary. Also, in order to account for a small slipstream
rotation, odd functions of y in I'" are allowed inside the jet. The proposed

expansion for I‘n(y) is

2A

Y A% gin g =T in R

. \,n o,n o,n o,n

\=l ,

r +A(l) +B(l) cos +§ A(l) sin Ay =T in R
o,n o,n o,n 1,n /A, A,n o,n 1,n

A=l
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t
in which A and A may depend on n; that is, the number of terms taken in the

expansions may vary with distance of the section downstream. The choice of
A and A will be determined by the accuracy required in the solution con-

(1)

o,n

In 62 the terms A and

sistent with the computing procedure adopted.

B(ol)n cos 411 n introduce a discontinuity in the circulation at the jet boundary.
’ ?
The slipstream rotation is represented by the term B(;)n cos 411 n and the

terms involving AZX, nt

Application of the conditions 61 of the continuity of lift at the jet boundaries

gives
A-1
(1) _ (o) :
Ao,n_ (p-l)z AZ)\+1’ns1n(2X+l)Bn (63)
A=0
A
1 .
B(o’)n = (p - 1)2 A(;))z’n sin 2\g3 (64)
A=0
where .
1 h
B, = cos " —bﬂ (65)

On neglect of slipstream rotation and with a wing symmetric about the mid-

span, the circulation will be an even function about the mid-span which indicates
(1) _ (o) _ 1) _
A 2\, n" A 2\, n° 0 and hence Bo,n =0
The total lift on the wing is given by

N
L:Y L (66)
>

n
n=1

where Ln is the lift developed by each section of the wing. That is, using

60 and 62
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o . s o D

L, = 4pbV, { 5 Voly ndy + ) er‘l,ndy} (67)
R R
o 1
Substitution of the expansions 62 for roa and o, then yields

L
I T N 0 | B S 1)
2 hn(Ao,n+ ZAl,n) +.‘TbAl,n

8pr.j

A-1 . .
(o) sin ZXBn sin 2()\+1)/3n ’
*‘“‘”bz A2K+l,n3 ax %) (e8)

A=0

C. DOWNWASH DISTRIBUTION

In order to apply the boundary condition of zero normal velocity at the
wing, it is necessary to calculate the downwash. The boundary condition will
be applied along the three-quarter chord line of each section of the wing, that

is along x = Xr, z = Hr (see 52 and 53). The downwash velocity at x = Xr

is defined as

wly) = [a@]
=~ L%z
x:Xr,zzHr
N
o]
= .[g z (p(Xr-xn,y,z; I = Fn, h= hn)] (69)
= Z=Hr

where ¢ is given in II-E. The downwash is split into its even and odd

functions of y, which are denoted by

! 2
Yo,ev T Wo 0d for |y > He= ¥1-H;

1

j,ev W_j,od for |y| < Hr
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The subscripts o and j again denote the regions outside and inside the jet.
Using the expansion 62 for the circulation functions [’ in the

expression 69, the downwash at x = Xr may be e¢valuated in the following

form:
N o o]
4n( )—Y N N N 4+ 2 Oo'nk(x-x)
-"Wo,ev+wo,od_L_ 1°a Y 2Nn T 35, ™ 081 r 'n
n=l m:O
(k $in © sin B K _(kq) + Lcos 8 cos m6 K (kq))
m q m
h'
o) no o
[ ]r (mstie, man+ § - Taln )T‘m’(k.n)dn)
““n
+<k sin® cos mé K (kq)- %— cos 8 sin mB K (kq))
h,
(o) (o)
[ ] L (n)C (k,n)dn + E-h. I (n)D(k,n)dn)(dk
n
(71a)
g @
> (™
-4TT(WJ’€_ =0 od Z { Nn+ 4Nn + SNn + ;50 sin k(Xr-xn)z
n= m=0

x (k sin @ sin mO I mika) + ?cos 6 cos m® I (kq))

'

-h h
n b : n .
9 (Ub + fh']rn(n)s(r;’l)(k,n)dn + .rnm)Tﬁg}(k,n)dn)
n

-h
n

. ! m .
+(k sin 8 cos m® Im(kq) S S cos O sin m® Im(kq))

-hn (—-b ()
X g + r (-q)C-' (k,n)dn + (I
b -Jhn

. (r.)D(J)(k n)dn) dk}

-hn

(7ib)
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H

where q2 = y2+ Hi‘ and 0 = ta,n.l _;'_r have to be substituted on the right-

hand side. The N functions are defined by

- (0) o w
an = 4b V S‘ lIo + 210 - 3Io]
X_

L (1) (1)
+4bhnvj(on[1+5 1]+B [ I-_11]

2A

+S (l)[ "-In])

20' 370 (72a)
A=x1

2A
N (1) ki1 i m )
¥ Z A)\,n[ 1o * 2lo - 310] (7ev)
=1
A
B B
. a2 alo) n ur n T
3I\n = 4b Vjelz X n 21010 +101n-[3n+ 1110 +1111'r-31,1

B B
n w n w
“12% Ta2fweg_T19%0 Ta9Tw-g (72c)

2A

_ ; (o) Bn ] Bn 014 _ Bn_ ¢
4, = - Vj‘zL, \. n o +1I"-Bn+ oI+ ?-I“-Bn 315 31“_;3 (724)
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2A

2 \_' (o) "-Bn Tr-Bn Tr'-Bn "-Bn
shh=® ~® Ve, Mon Liofs.  *ulg  -1208. -~ 19%8 ]
x'l n n n n

- 4bh Ve (A(l)[ I+
nVi¢1 \Ao,n'13

(1) -
14l =1t = ol T+ B [ I+ 70 =791 - 5l
2A'
(1) - - . - )
+ Z Ay nT1olo *1tfo ~12% " 19% ! (72e)
A=l

In the above expressions a dash on a Bessel function denotes differentiation
with respect to the argument. The I functions are defined in Appendix L.
The even and odd parts in the N functions are determined by taking A\ odd
and even, respectively, in the series terms together with the terms con-

(1) in the even part and B ()

taining A
o,n o,n

in the odd part. The remaining
terms on the right-hand sides of 72 may be split into their even and odd
parts by taking the even part to contain only odd values of m in the series

containing Sm and Trn and even values of m in the series containing Crn

and Dm. The odd part is then given by the remaining terms in these series.

D. BOUNDARY CONDITIONS ON THE WING

A slipstream rotation is considered which has the following properties.
The slipstream may have a rotational velocity component about its own axis.
The angular velocity is denoted by w(q), where q is the radial distance from
the axis; w 1is taken positive if the rotation is counterclockwise when viewed
from the rear. It is assumed that lemax << Vj. The slipstream rotation

is assumed to have no effect outside the jet. Its effect inside the jet is a

change in the fluid direction at the wing, resulting in an effective variation of
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wing incidence. A variation of the angular velocity w(q) in the downstream
direction may be included using the analysis presented here, but this will

not be done.

The local geometric angle of attack of the wing along the three-quarter
chord line of the rth section of the wing is denoted by ar(y). It is assumed
that the geometrfc wing incidence is symmetric in y, i. e. that ar(y) = ar( -y).

The boundary condition of the tangency of the fluid velocity at the wing gives

1
wiX ,y) = V_a (y) for | y' > H, (73a)

2 2 2 2N U
w(Xr,y) -Jy +H u(Jy +Hr )sin ﬁ; = Vjar(y) for |y| < Hr (73b)

along the three-quarter chord line of each section of the wing, that is, for
r=1,...,N. The positive square root is taken in 73b. The definition 70,

splitting the downwash w into its even and odd components inside and outside

the jet, may be used to achieve a similar splitting of 73 as

wo,ev(xr’y) = Voar(y) for H'r < y<b (74a)
Wy odXgr¥) = O for H_< y<b (74b}
Wi o (XY = Viay) for 0< y< H_ (74c)
wj,od(xr'y) = ‘Iz-f_{—: w(m) sin -HLr for 0 < y < H;

(74d)




Equations 71 and 74 provide a system of linear algebraic equations
LU I VR

A((') s in
o,n o,n

for the determination of the coefficients \,n’ A\,n )
the Fourier expansion 62 of the circulation. The boundary condition repre-
sented by 74 must be applied at sufficiently many points y along the wing
to obtain a determinable system of equations for these coefficients. If an
equal number of coefficients is used at each section, the number of equations
involved will be N times that of the single section wing used in the example
treated by Wu. A feature of the present work, however, is that the singularities
present in the Wu solution (where the boundary condition is applied on z = 0)
do not appear. This is due to the presence of terms of the type (Hr+ hn)2

in the denominator of the integrais in the Appendix; these terms never vanish
and prevent a singularity in the integral. Under these circumstances the
constrains on the coefficients sufficient to exclude such singularities, as
adopted by Wu, are relaxed here. The boundary condition 74 must be applied
at a compensating number of points y along the wing to make up the equations

released by the relaxed constraints.
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IV. EXTENSION TO MULTIPLE JETS

A. NOMENCLATURE

A system of 2J jet slipstreams, symmetrically placed with respect

to the mid span, is considered. The wing span is divided into (2J+1) regions,

denoted by Rv , v=20,1,...,2 which are defined as follows: Ro is the
region outboard of all the jets, RZv -1 is the region inside the yth jet pair,
v = 1,2,...,J, counted from the wing tip toward the center, RZv is the

region between the vth and the (v+1)th jet pairs. The width of these regions

will vary in the downstream direction according to the inclination of the wing.

The boundaries of the regions along the y-axis are given by the points

bo= b’bl’bZ""'bZJ’b2J+1’ = 0, b_ZJ,...,-bl,-bo = -b.

The center of the vth jet is along the line defined by z = 0 and

[

+ b, )

VA N —Z_(b 2v

2v -1

The wing will be taken to have a square planform and to have no span-
wise twist. At a station x downstream, therefore, the wing will be a distance
h below the center-line of the jets. The intersections of the wing with the
boundary of the vt jet at the station x is givenby z = -h and y = a, ih' 5

where h -h 2, which we denoted by y = €5, -1 and y = C,, respectively.

Hence a point y in the region Rv may be found from

y = ¢ coquS , s=0,1,...,v (75)
At the point y = <,
_alv) _ -1, Sy _
¢S—B! = cos (—C—;) s=0,1,...,v {76)
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Fig. 4 gives a guide to the nomenclature defined above.

B. FOURIER EXPANSION FOR THE CIRCULATION

The Weissinger approximation will be used to determine the circulation

distribution over the wing. The lift is given by

N N
L= Z S En(y)dy = °f Z g Vlocalrn(y)dy
1 span oy © span

n=

where I‘n is the circulation distribution at each section of the wing. The lift
distribution is continuous at the boundaries of the jet. Hence at the points

z = -h, y= C1sCorecrsCog

n, 2v-1{82,1=1B=0) = Wl ole,, 1 -iBH0)

(77)

-ih+0) = uI’ (c,, -ih-0)

rn, ZV-I(CZV n, 2v

where the second subscript on I" denotes the region in which I' is defined.
The circulation distribution I“n(y) at each section is defined in each

region Rv, for v = 0,1,...,27, by

T y) = V., (y) (78)

where

A -1
o
(o) .
Fn’o(y) = Z Az)d_l’nsm (2)‘“)%,:1
A= 0

A -1

r (y)=rT (y) + a4 Al) in (2\4+1)

n, v bt S n,v -1 y n, o 2X+l,nnn wv.n
A=0
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Here the dependence of the angles 4 on the wing section chosen has been
noted. The region Rv is also dependent on n, being defined by

Cy.n z yz c H,n where S 5 5 a, -Jl - hn . An alternative writing
of 78 is

v

r, = Z ‘s) Z A(j\)ﬂ,n sin (2"“”’5,;1} for v=0,1,...,2J

s=0

with
Aol o

o,n

Ouly odd multiples of the angles § are taken in 78, which relies on the
assumption that the geometric incidence of the wing and the rotation of the
slipstream be symmetric about the mid-span.

The boundary conditions 77 may be used to express the coefficients

A(V) in terms of the unknown coefficients A(s) in the form
o,n 2X+l,n
(}.L-].) v -1 V:l,3,...
(v) _ (S) (s) (V)
Ao,n =11 A2X+1, sin (Z\+1)B for
(—‘ —1) 0 v = 2, 4,
[ s=
(80)

The total lift may now be evaluated as

(v) b (v (
gﬁ 3 Z v n[ o,n tzA ]+ (k- l)z Z [(CZV n~ S2v -1, 2Ly S
pb =1 v=0

n

(el
+Cv,nz Ax+1,n X

sin 2(x+1)3(2"+1) - sin 2(x+1)3(2") )] 2
AA+1)
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C. VELOCITY POTENTIAL

The velocity potential of a vortex element at an arbitrary height with
respect to a single jet slipstream has been determined in Section II. The
method used there involved the construction of the image system of the vortex
element in the jet. The two-dimensional part of the solution was found directly
this way. A similar image system was used in the three-dimensional part of
the solution, leaving a remainder term which was evaluated analytically.

The velocity potential due to a vortex element placed in a system of multiple
jets will be constructed using this image method as follows. The vortex
element has images due to each jet separately. Each image then has further
images due to the rest of the jets. An i‘mage system of infinite order is
thereby generated. An approximate solution is presented which takes into
account the primary image system and the first order corrections due to these
images, i. e. the image-image contributions. However, only the primary
image system is used in the remainder term of the three-dimensional part of
the solution. It is anticipated that this term is already small and the first
order corrections are neglected.

The two-dimensional part of the velocity potential, denoting the potential
outside all the jets by %, and the potential inside the Xth jet by ¢j, \’ is

made up from the following contributions. The factor ?117 '(n)dn 1is omitted.

(I) For a vortex element I'(n)dn located at y = n, z = -h, taken outside the

jets
Fl(y-n,zi-h) plus a sum over v of the image in each jet, i.e.
€ n-a
2 .2
o —~—7 [ (n-a, ) 5-ROF(y-a, - ——ty—) 2 + —2
(tn-a )"+n"] (n-a )"+h (n-a )"+h

+ 2(n -av)hF3(same argument as Fl)]
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This latter function will be denoted by X,

(l-e 2)Fl(y- n,z+h) plus the images of this image due to the other jets,
AS TR {

i.e. a sum over all v £ X\ of (l-e¢ 2) X,

(II) For the vortex inside the Ith jet, £ #£ X\

(l-¢ Z)Fl(y-n,z-h) plus this image reflected in the other jets, i.e. a
%o

sum over all v # ¢ of (l-¢ 2) XV
(1-¢ ) °F ( +h)
Py ) ime ) Fly-n. 2

(III) For the vortex inside the )\th jet

(po 3 same systermn as (II)

in all the other jets gives the contribution (l-e Z Xv summed over

Fl(y—n,z+h) and the single image - X, - The vortex element reflected
LSRN { 2)

all v # \.

The construction of an image system to represent part of the three-
dimensional component of the solution is accomplished as above for the two-
dimensional part; the remainder term is approximated by the primary image
system only. The complete velocity potential may now be written down.

Using the substitutions

y-a = 1 cos 6 z r sin 6
v v v v

v

a =r cos © zZ=r sin ©
y + v -V -V -v VN

and the symmetry about the mid-span, the velocity potential, Por outside the
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jets is given by

b
4ncp0= S bI‘('q)l?(x, y-n, zth)dn -

- {l-¢

™A

5)

? C

21

"
—

[of

(i/%-«
i [N

1 1 21

v=

(oo}

2 smkx
m=

0

e

oL
™

=1

It

€2¢-1

J
€ 2}: S‘ I‘(n)[F(x.y-n.z+h)+F(x.y+n.z+h)]dn

=1 ch

J
b
< ' ]
+ S F(n); Z’l [X(n.av) + X (-n.-av)]fdn
v=

21 -1 . '
(‘ r(n [ x (n,a,) +x (-n.a,)]dn

2t-1 \ \ \ \
S‘ I(n) [x(n,a) +x(-n,-a ) +x (-n,a ) +X(n,-a )] dn
C

21 2¢ -2
x sin mO K (kq[)[((‘ + ( )1"( LS(O)(k,ridq

vYe

+
cos m91 Km(kq l) [(

2041 C21-1

vYc

21

(.sz Sczz-z) (o)
+ rC{nC' Y
J°21+1 €211 m

21-1
(o)
+ ‘S‘Cu r'(n)D m(k.n )dn

€21-1
. ( r(mr‘rg’(k.n)dn]

k,n)dn

]

-24+1 -24-1 (o)
+ sin mO_le(k%) S +SC )F(Tl)Sm (k,n)dn

C_2t42 =21
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.21

r (1! (k, n)dn]
o241

C_21+1 €_21-1 (o)
+ ( )IWmCm(hnMn

+ cos me_le(kq_l) [

ve

2142 =21

Y )
+ (' r(n)D(r‘:1 (k,n)dn §dk
[V
C_21+1

]
where Xx (n .au) is the extension to three-dimensions of the function X,

used above, that is

Y [(n-a )9 Y Y (n-a )%n (n-a )%h

+ 2n —av)hG(same argument as F) ]

The velocity potential, @, ,, inside the B et is given by

b
smg; \= (e ) § ClIFGey-n, 2eman

J c
21-1
- € ,(1-¢ 2); 5 r(n)[F(x,y-n, z+h) + F(x,y+n, z+h)] dn
— c

=1 “2t
J €,y J
+ (l-e Z)Z S F(n)[z {X'(n.av)+x(n.-av)+x(-n,av)+x(-n.-a\,)}
0=1 Car+1 v=1

-x (n,a,) - x'(-n.a,)] dn
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(.sz-l

+ r'(n) [F(x.y-n. z+h)-(l-¢ 2)'Z [F(x.y-m z+h) + F(x,y+n .z+h)]

Can

+(1-¢ 2)2{ Z [x'(n ra )+ X (n, -av)] - x'(n "x)}] dn

v=1

€21 “21- G)
x sin mellm(kql) S\ + S‘ Z)r(n )Sm (k,n)dn
2041 C21-1

~C21-1 :
+§ 7 ety (k,n)dn]

€21

C21 (-sz- ()
+ cos mellm(kql) (S + Z)r(f] )Cr;]1 (k,n)dn

(v
€a+1  C21-1

€24-1 :
+ 077 repld) (k.n)dn]

Py

c c
~22+1 21 -1 .
(i)
i r(n)s?(k,n)d
D mG_!Im(kq_!)[(Sc + S‘c ) (n) m( n)dn
=24+ 2 -21

€21

7 rr@ e )dn]
C.2141

C_2141 €21-1 G)
+ cos mO_IIm(kq_l) S. + S I‘(n)CnJn (k,n)dn

C.a+2 S

.21

+ S' r (n)o(ri) (k,n )dnl } dk
C.2e41
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D. DOWNWASH AND BOUNDARY CONDITIONS

The downwash distribution corresponding to the velocity potential
for the multiple jet case obtained in the previous section may be obtained in
similar fashion to the simple jet case (see 71). The integrals involved will

be those listed in the Appendix. It is not intended to write down the downwash

here as it is a complicated expression. Assumption of a slipstream rotation
of the type described in III-D will lead to similar boundary conditions to 73

in each region R (see also Wu), and the determination of the coefficients in
the expansion 79 for the circulation will proceed as before from the solution

of a system of linear equations,
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V. CONCLUSIONS AND RECOMMENDATIONS

Prediction of the spanwise lift distribution on a wing at an arbitrary
height and high angle of attack extending through multiple jets (propeller
slipstreams) has been accomplished by the present theory.

Implementation of the theory requires both an extensive machine
programming effort and experimental confirmation. The mathematical
complexity encountered in the theory requires close coordination between
the analytical and machine programming efforts.

It is therefore recommended that the following two (2) steps be
undertaken:

1. Extensive machine calculations - a programming effort
directed towards systematically developing a generalized calculation
program employing the wing and slipstream geometry as inputs should be
undertaken. This program should then be used to calculate spanwise 1ift
distributions of a broad spectrum of arrangements to (1) delineate significant
trends due to non-uniform flow effects and (2) provide results for comparison
with experimental data.

2. Systematic Experimental Program -~ wind tunnel tests to
confirm the analytical results and determine real fluid effects should be
conducted. The tests should be designed to yleld accurate spanwise lift
distributions of wing-slipstream arrangements selected from the analytical

study above to yield a meaningful confirmation of the theory.
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APPENDIX

B

o

A series of integral functions denoted by kI were introduced in

Section III-C. These integrals will be defined in the following and the param-
eters used in their definitions will be noted as arguments. A number of
supplementary functions are used which are given by

2 2
(y - b cos 8)°- (Hr+ hn)

A(9) = > > sin O
2
[(y - b cos 8)7+ (Hr+ hn) ]
B(8) = [(y - b cos 6)2 + (Hr+ hn)z] =L sin ©
ClO) = [(X_-x )% (y -b cos )%+ (H + h)21V/2
B r n y r n
b cos 0 - hj
D,(8) = sin ©
! [bzcosze + hz]z
n
Zbh sin B cos 6 h
b cos O n
D (0) = Yy - H_+
2 (b°cos’0 + hn)‘;l Bleoslo + hi LS eIl eu )
2 h 2
b cos 6 n
E(0) = |y - Y P
1 chosze + h2 r b cosze + h
n n
2 2] -1
E,(8) = Y'zbczosez LIRETE s
b cos 8+ h b cos 64+ h
n n
-1/2
2 -1
L = [(X_-x )+ E,(8)]
( h_ ) 2
M(8) = H_ +
r b cosze+ hrz1
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The integrals nlg are defined by

B
llg (y,b,H_,h_,\) = 50 A(8) sin 10 d

B
B - N ;
L (y,b H b X L x A = (X - x ) 3 A(8)C(8) sin \O d6

® (y,b,H ,bh ,X A= (X -x_)H_+h )ZCB B(8)C3(8) sin 6 46
3a Yo Py H By R X - r 'n r n ‘Ja sin

(ﬂ\'
J (y,b,H_,h )= VOA(O)dG
mw
51 (y’b'Hr’hn’xr’xn) = (Xr—xn) 50 A(6)C(0)de
I (y.bH . h X .x )= (X -x )H_+b)2 ( Ble)c3(e) ae
6 VY2 P R R X S r°'n rn Uy
(-TT
71 (y,b,Hr,hn) = A(06) cos 6 d6

v o
(-TI'
81 (y’b'Hr’hn’xr’xn) = (Xr-xn) A A(0)C(0) cos 6 do
I(y,b,H ,h ,X ,x )= (X_-x_)H_+h ) (" so)c3o) 0 de
9 Y, 0, r’n’ r:xn = r xn T o .J'O CcCOS8
1B (y,b,H ,h,\) = (‘B D.(8)E,(6)E2(8) sin \6 d8
10 Y22 rr Bns - Vg 1 1 2 n

B
B _ 2 .
llIa (Y.b.Hr. hnoxr:xnv X) = (xr'xn)S‘a Dl(e)El(e)EZ(e)ue) sin IX:) de

B
lzlf (Y.b.Hr:hnaxr,xn. X) = (xr'xn)‘g‘a DI(G)EZ(Q)L3(9)M(6) sin )\9 de
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bt

13I (Y!err;hn) = ‘S‘ DI(G)EI

0

gl (o b H b X x )= (X

15

(-TT
16! (b H ,h )= A D, (6

]

17! (vab, H b X, x )

lBI (y,b, Hr’hn’xr’xn)

8
19Ia(y'b’Hr’hn'xr’xn’ M

ol (v,b,H Lh X _,x )= S

I (y b,H_,h ,X_,x_) (

(e)Egm) o

-X )S‘ G)E(OE (G)L(e) de

I (y,b,H_,h ,X ,x )= (X -x) . D,(6)E (e)L (8)M(6) d6

v 0

)El(e)Ej(e)L(e) o5 O &)

(X -Xx ) (. D (G)E (6)E (G)L(G) cos 6 d6

Yo

(X -X ) (. D (B)EZ(B)L (6)M(0O) cos 6 dB

v 0

B 2
= ya DZ(G)EZ(G) [2+ 3(Xr- xn)L(B)

3.3 .
= (xr-xn) L7(8)] sin \6 d6

T 2 3.3,
. D,(8)E’(8) [2+3(X _-x_)IA8) - (X -x )7L (6)]de

D (O)E (9) [2+ 3(X -X )L(8)

21 '’ n’ " r’ 'n vo

(X _-x_)°L>(8)] cos 6 d0
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