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IMPACT PHYSICAL PROCESSES REVIEW

PREFACE

A continuing effort has been conducted on hypcrvelocity impuet .......

within RAND for several years. Applications of the results have been

made to the problems of the meteoroid hazard, satellite vulnerability,

and ICBM defense. This Memorandum presents some new information in

this area and compares some of the earlier work with recent experimen-

tal data.
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IMPACT PHYSICAL PROCESSES REVIEW

The so-called volume-energy law, or two-thirds law, is an

1 empirical fit which has been used by many writers to predict penetra-

tion by hypervelocity fragments. A comparison is drawn between this

law and vell-controlled high-velocity experimental results which have

been obtained recently. The comparison reveals that the data fit the

law satisfactorily at relatively low velocities but deviate from it

in a marked way as impact velocities increase. It is therefore incor-

rect to extrapolate this law to predict impact effects in the meteor-

velocity range.

The experimental data are shown to agree well with the author's

earlier impact predictions based on a hydrodynamic model. * The agree-

ment of penetration by aluminum spheres impacting 1100-r aluminum

targets is particularly good. Penetration of the same spheres into

2024 alloy is less in all cases at corresponding velocities. It is

observed that the ratio of the penetration in the two alloys increases

vith impact velocity, ranging from about 50 per cent at 3 km/sec to

75 per cent at T.5 km/sec, which suggests that the relative importance

of strength wanes with waxing velocity. The 25 per cent change in

penetration occasioned by increasing the strength by a factor of 7.5

emphasizes the insensitivity to strength at high Impact velocities.

Irreversible heating, accompanied by the creation of entropy,

always occurs in a shock. Transit of the target by the shonk system

produced in hypervelocity impacts leaves the target material. in a

heated state. It is shown that impacts in the meteor-velocity range

create enough heat by this mechanism to vaporize and liquefy portions

*Published in RAMW P-1662, Effects of a Meteoroid Inact on steel
and Aluminum in Space. 3



IMPACT PHYSICAL PROCESSES REVIEW

presented scaling laws to account for projectile-material influence

on a shock-impedance model. Publications are cited vhieh deny the 4

existence of this effect. CUmpa1olons are drawn between the two

theoretical predictions and recent vell-controlled experimental

results. The effect of projectile material is unambiguously demon-

strated, and excellent agreement Yi.i the shock-impedance law is found.

The agreement is found to extend over a wide range of projectile

materials, from copper and steel on the one hand to plastics having

specific gravity less than unity on the other. It is concluded that

by combining the shock-impedance law with the earlier predictions on

the hydrodynamic model, the penetration by projectiles of any material

into aluminum targets may be predicted up to velocities of about 20

km/sec. Above this impact velocity, the effects or melting and

vaporization are expected to become important in estallshing the

crater dimensions. The role of projectile material in this physical

regime has not been studied as yet.

5
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IMPACT PHYSICAL PROCESSES REVIEW

SYMBO•S

a = constant used in fit

B, BUI - Brinell hardness number

B-A . subscript indicating projectile of material B incident on
target of material A

b - constant used in fit

Dh = hole diameter

d = projectile characteristic dimension

E = projectile kinetic energy

e a base of Naperian logarithms

F = normalized penetration ratio (defined on p. 40)

m = constant used as exponent

n constant used as exponent

P - pressure

p a penetration

r - radial distance in cylindrical coordinate system

t = target thickness

u = particle velocity

V = crater volume

v = impact velocity

x = distance parallel to axis in cylindrical coordinate system

S= exponent in fit of penetration as a function of density

S= normalized penetrltion (p/d)

PAY PB = density of materials A and B, respectively

p9 = projectile density

Pt = target density

S= material yield strength1
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IMPACT PHYSICAL PROCESSES REVIEW

I. CRATERING IN THICK TARGETS . . .

VOLUME VERSUS ENERGY

The idea has been put forth by many writers that the volume of

the crLter produced in a thick target is proportional to the kinetic

energy of the projectile which produced it. If one assumes also that

the crater geometry remains similar throughout a region of the veloc-

ity spectrum, then the two assumptions taken together lead to the

hypothesis that penetration is proportional to the two-thirds power

of the impact velocity. In practice, both assumptions encounter

difficulties.

For impacts between projectiles and targets of like materials,

the similar-geometry assumption is usually well founded in the hyper-

velocity regime, the craters being approximately hemispherical. How-

ever, for impacts between unlike materials, substantial deviations

from hemisphericity are observed, and the geometries do not remain

similar as the impact velocity is changed. For example, iron or

copper spheres striking aluminum targets at 2 or 3 km/sec produce cra-

ters whose depths are about equal to their diameter. At about 7 km/sec,

these spheres yield craters whose depths are about 80 per cent of their

diameters. The ratio for hemispherical craters would be 50 per cent.

Projectile geometry can also produce departures from hemispheric-

ity, even for like-material collisions at very high velocities. For

example, aluminum jet pellets impacting 2024 aluminum targets at 10

km/sec are found to produce craters whose depths are 80 per zent of
.

their diameter. The pellets have lengths about three times their

Personal communication from J. Kineke.

8



IMPACT PHYSICAL PROCESSES REVIEW

diameter-. The variation of crater geometry with Impact velocity for

this type of projectile has not been thoroughly investigated..

The assumption that crater volume is proportional to projectile

kinetic energy encounters difficulty at any fixed velocity when one

considers projectiles of various materials impactin on a given target

material. More and more experimental data are accumulating which dem-

onstrate that projectiles of the denser materials are more efficient

in producing craters, in that they produce a greater crater volume per

unit kinetic energy. If one wishes to take account of these experi-

mental data and still retain the physical flavor of the "volume-

proportional-to-kinetic-energy" hypothesis, he must choose a different

constant of proportionality for each set of projectile and target

materials. Several attempts have been made to fit the variation of

the proportionality constant by correction factors of the form

In such fits, n is an empirically determined constant. In Ref. 1, we

propose a physical ba.nin for the success of such density ccrrections,

but it is shown there that n has a slight velocity dependence. Of

course, the v dependence is an empirical fit which is valid only

over a limited portion of the velocity spectrum.

Examination of log-log plots of penetration versus impact veloc-

ity reveals the power of velocity on which the penetration depends.

The power is given by the slope of such plot. Typical plots show a

linear dependence of penetration on velocity at low velocities. The

slope of the curves generally decreases with waxing velocity, and for

9



"IMPACT PHYSICAL- PROCESSES REVIEW -.

many metals becomes approximately 2/3 in the velocity range of 3 to
5 km/sec. This velocity r ehas-been extensive1yj-i fte-in _

the last few years, and the 2/3 value of the slope has been cited as

substantiating evidence for the volume-energy law. Such arguments

ignore the difficulties cited above.

Experimental data have recently been accumulated in the velocity

range of about 6 to 9 km/sec. These data quite clearly demonstrate

that the penetration increases with a power of velocity less than 2/3.

In addition, actual measurement of the crater volumes indicates that

they increase less than linearly with projectile kinetic energy.

It should be emphasized that the "two-thirds law" is only ar.

empirical fit. No defensible physical theory has been set fort4i to

support it. An early attempt in this direction was made by Whipple,

who proposed that the kinetic energy of the projectile was used to

melt the material in the crater as well as the projectile. Under

this assumption, all the material in the crater receives exactly

enough internal energy to melt it, and the volume of the melted

material is thus proportional to the kinetic energy of the projectile.

However, the physical understanding which we now have of the process

indicates that the average internal energy imparted to the crater

material increases with impact velocity. Thus, to assume that the

projectile energy goes almost entirely into heating would lead to

the prediction that the penetration increases with a power of the

velocity which was less than two-thirds. Moreover, Whipple's theory

does not explain the pronounced effect of projectile density on the

crater dimension.

10



IMPACT PHYSICAL PROCESSES REVIEW

__Another notion proposed was that in expanding, the crater did

work against a yield strength, a , of the metal being deformed. Thus-,

the work done in forming the crater is Vo, this work being supplied

by the projectile's kinetic energy. Under this model, the constant

of proportionality between kinetic energy and volume is just a which

should. be a characteristic of the target material only. Again, the

dependence of crater dimension on projectile material is not explained.

Despite the difficulties which the volume-energy law encounters

in the lower-velocity range, and its lack of theoretical justifica-

tion, it has become common practice for writers to extrapolate the

law to cover the meteor-velocity range of 11 to 72 km/sec. The prac-

tice has become so common that a worker in another field who surveys

the literature is liable to accept the validity of the extrapolated

volume-enerGy relation only on the basis of the number of writers who

have made this extrapolation.

Recent carefully controlled experiments at the higher velocities

have been conducted which demonstrate that the volume-energy law is

not being followed. For each combination of projectile-target materials,

it is found that the volume increases more slowly than the energy, with

the result that the ratio, V/E, decreases as impact velocity rises.

Some examples will be given to illustrate this fact.

For the purpose of drawing comparisons, we will consider the

penetration law recently proposed by Eichelberger and Gehring, (2)

which states that in thick target impacts, hemispherical craters will

be formed for which

V 4 x 10-9(1)

11



IMPACT PHYSICAL PROCESSES REVIEW

-here V is the crater volume in cubic centimetersp E, the projectile

get material in kilograms per square millimeter. This relation is

asserted to be valid over the meteor-velocity range and to hold for

projectiles of any material.

Figure 1 shows the values predicted by Eq. (1) for penetration

of aluminum projectiles into the 1100-F alloy of aluminum, compared

with experimental results. The experiments were conducted by Atkilns()

and Liles and Goodman( 4 ). Both sets of experiments utilized spherical

projectiles fired from light-gas guns, and the projectiles were fired

in sabots to prevent erosion in the gun barrel. Liles and Goodman

reported the Brinell hardness numbers of their targets to lie in the

2
range of 15.9 to 17.8 kg/mm . The average value of 16.85 was used

in evuluating Eq. (1) in order to plot it in Fig. 1. The prediction

of the author, which was calculated on a hydrodynamic model,(5) is

shown as the shaded region in Fig. 1.

At the lower experimental velocities, Eichelberger and Gehring

obtain good agreement with the data. However, above about 5 km/sec

the experimental results deviate from their predi.*tion. The reason

for the deviation becomes evident if we consider the variation of

the energy-volume ratio as a function of impact velocity. This is

plotted in Fig. 2. Liles and Goodman measured the crater volumes

individually by accurately metering a liquid into them. Eichelberger

-10and Gehring predict a constant V/E ratio of 2.42 x 10 cc/erg,

whereas the midpoint of the experimental data goes from about 1.8 x

i0l10 at 3 km/sec to about 1.1 x 1010 at 7.5 km/sec.

12
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20

0 L~iles andl Goodman
1,0 •A Atkins

0.8 Bjork

0.6

I I I I I ' , I I I I | I
24 6 810 20 40 6080I00

Velocity (km/sec)

Fig. I-Penetration of aluminum projectiles into 1100-F aluminum

targets (The theoretical point at 5.5 km/sec is nearly

obscured by the experimental data)
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2.5
Eichelberger and Gehring-'-.W

2.0-

1.5 -

& /Z
0

.5 -0 Liles and Goodman

A Atkins

Q I I I
0 2 4 6 B10

Velocity (km/sec)

Flg.2-Ratio of crater volume to projectile kinetic
energy as a function of impact velocity for
aluminum spheres on 1100F aluminum targets
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IMPACT PHYSICAL PROCESSES REVIEW

The values of V/E measured by Liles and Goodman(4) for copper

spheres Impacting--on 1100-F aluminum targets -aze-shown-4-n4gl v asi

functions of impact velocity. The values are notably higher than for

aluminum projectiles, running from about 2.6 x 10-10 cc/erg at 3 km/sec

to about 1.9 x I0"10 at 6.5 kin/sec. The model of Eichelberger and

Gehring, which does not differentiate among projectile materials,

still predicts the constant value of 2.42 x 10"10 cc/erg. For this

particular combination of projectile and target materials, Eichelberger

and Gehring obtain fair agreement at the lover impact velocities but

again depart seriously from experiment aq the experimental values of

V/E decrease with velocity.

For completeness, the volume-energy ratio found by Tles and

Goodman(4) for copper targets is plotted in Fig. 4 as a function of

velocity. In this case also, the volume-energy ratio is found to

decrease with velocity, and the ratio for copper projectiles is sub-

stantially higher than that for aluminum projectiles at the same

velocity.

For these targets, which have Brinell hardness numbers ranging

from 48.9 to 50.9, the equation of Eichelberger and Gehring predicts

a constant V/E of 0.802 x 10-10 for both projectile materials. Their

prediction is plotted in Fig. 4 as the flat line. Besides failing

to make the important distinction between projectile materials, their

prediction departs seriously from the experimental results as the

impact velocity increases.

The straight lines bracketing the data groups in Figs. 3 and
4 have been inserted only to illustrate the data trend. They should
not be extrapolated. 15
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0

2.5 0

Eichelberger and Gehring

0 0

0002.0

0
U

o

0

1.0

0.5 0 Liles and Goodman

0 II I I
0 2 4 6 8 10

Velocity (km/sec)

Fig. 3-Ratio of crater volume to projectile kinetic
energy as a function of impact velocity

for copper spheres on 1100-F
aluminum targets
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o Aluminum on copper

1.0 a Copper on copper

0

,0.8 - Eichelberger and Gehring

7 0.6

0,4

0.2

0 ' t
0 4 6 8 10

Velocity (km/sec)

Fig. 4-Ratio of crater volume to projectile kinetic

energy as a function of impact velocity for
aluminum and copper spheres on copper targets

(Data due to Liles and Goodman(Z))
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IMPACT PHYSICAL PROCESSES REVIEW

The hypothesis that crater volume is directly proportional to

projectile kinetic energy rests solely on empirical grounds. In the

lower velocity range, where the hypothesis holds fairly well, the

constant of proportionality is a function of both the projectile and

target materials. There is no theoretical justification for extra-

polating the relation outside the regime where the empirical fit was

obtained. Indeed, for copper and 1100-F aluminum targets, where well-

controlled experimental data at very high impact velocities exist,

the hypothesis of constant volume-energy ratio is found to be incorrect.

HYDRODYNAMIC PENETRATION

Penetration of aluminum pro4ectiles into aluminum targets at

velocities of 5.5, 20, and 72 kin/sec were calculatea on the hydro-

dynamic model and published by the author in 1958.(5) The projectile

geometry considered in these calculations was that of a square cylin-

der (length equal to diameter), which moved along its axis of symmetry.

The results are plotted as the shaded region in Fig. 1. The ordinate

in this figure is the normalized penetration, p/d, where p is the

penetration depth and d is the length of tk:e projectile.

Since no other projectile geometries have been treated theoretically,

one must examine experimental data to determine how to apply the theory

to other projectile shapes.

A way of comparing the penetrations of spheres and square cylinders

was suggested by Collins and Kinard( 6 )based on their experiments with

both types of projectiles. For a given set of projectile-target mate-

rials they found that the penetration depended only on the projectile

length, rather than on the projectile mass. Choosing the cylinder

18
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length (which equals its diameter) and the sphere dlimeter as harac- .

teristic -419 ins ;4dt plot -Cf1 phi 4FdUi 1jnw t -eIo6 ~ ~ I_
which were identical for their data. The surprising conclusion is that

a sphere of given diameter produces the same penetration as a square

cylinder which has the same characteristic dimension, but which weighs

50 per cent more. Their data included cases of aluminum-on-aluminum

impacts.

A possible criticism of their data is that it was apparently taken

with unsaboted projectiles, and that aluminum projectiles have been

found to lose a substantial fraction of their mass by erosion during

flight through the launch tube.

On the other hand, Halperson and Atkins have presented data taken

with aluminum spheres and cylinders fired in sabots.(7) For pene-

trations into the 1100-F aluminum alloy, their conclusion is that at

a given impact velocity, the crater volume per unit projectile mass is

the same for both geometries. The projectile masses were reported as

1.27 gm, but the dimensions of neither the cylinder nor its crater were

specified. For this reason, one cannot be certain whether their result

is in agreement with Collins and Kinard or not. Any diseareement is

likely to be on the order of 10 per cent in penetration, which is com-

parable with the theoretical uncertainty and the scatter in even the

best experiments, as illustrated in Fig. 1.

For irregular geometries, where one dimension greatly exceeds

another, it iF difficult to assign a characteristic dimension. In

this case, some success has been obtained by choosing the equivalent

sphere diameter as the characteristic dimension, i.e., the diameter

of the sphere having the same mass as the projectile. In Section IV
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we will show that this yields a satisfactUry treatment of flat disks,

for exsAp,,,ythq teel d,1c"- e3 a

Laboratories (HML) explosive accelerator, and the plastic disks fired

by the Ames Research Center ligbt-gas gun.

However, even this treataent breaks down for the case of short,

oriented rods. To exemplify this, the jet pellets fired by BRL at

10 kin/sec have a length about 3 times their diameter and strike the

target oriented end-on. The normalized penetration calculated using

the equivalent sphere diameter greatly exceeds that expected from

spherical projectiles striking at the same speed. The craters pro-

duced by the jet pellets are deeper and narrower than hemispherical.,

uhich is probably the source of the difficulty. However. they are

not deep and narrow enough to be treated on the I a of shaped-charge

jet theory. It is felt that more theoretical work is necessary in

order to explain the penetration of short, oriented rods.

The theoretical craters were felt to contain a possible exror of

+ 10 per cent, which is denoted by the height of the shaded region.

The portion of the theoretical craters below the original target sur-

face was observed to be hemispherical within the limit of the error.

It was also noted that the three calculated points could be fitted

within the limits of the error by a curve having the form

.~vl/3d

In view of the fact that the fastest experimental shots at that time

lay in the range of 15,000 to 17,000 ft/sec (and there were very few

of these), and that the experimental results differed among themselves
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by a factor of two or more, the error cited seemed small indeed., and

a more refined fit did not smem jutstified. Bowyer, tbe exqellea*7t 7

agreement of the theoretical points with recent experimental data,

which extends into the velocity range treated theoretically, justifies

a more careful treatment. Accordingly, the theoretical points are

connected in Fig. 1, and in the following figures of the same type,

by a smooth curve.

The equation of the curve is

=11.*02 exp {~ (2)d -0.295
v

where v, the impart velocity, is given in km/sec. The form of the

fit was chosen to produce a smooth change of curvature on a log-log

plot of p/d versus v. It is noteworthy that this fit agrees with both

the magnitude and slope of the experimental data. For a given value

of velocity, the possible error in p/d should still be taken to be

10 per cent. For 2.100-F targets, it is believed that this equation

will be accurate to within the limits of error prescribed for the

velocity range of 5.5 to 20 km/sec. At lower velocities, the equation

will overestimate the penetration because of material-strength effects

which the hydrodynamic model does not consider. At higher velocities,

for reasons discussed in the section on melting and vaporization, the

equation will underestimate the penetration. It is anticipated that

penetrations will be about 40 per cent higher than predicted by the

equation at impact velocities of 72 km/sec.

Assuming that the craters are hemispherical and employing Eq.
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(2) leads one to the relation -

~~~~ .. .. .... . 2. v O0.295 J

for the volume-energy ratio. Since the equation for p/d is cubed to

obtain this expression, the limits of error are now - 33 per cent.

Tce shaded region in Fig. 2 shows the volume-energy ratio specified

by Eq. (3). All the experimental points are encompassed by the theo-

retical region. Despite the large uncertainty, it is clear that a

substantial reduction in V/E with increasing velocity is predicted and

verified by the experimental data.

STRI21GV! £FFECTS

Since the hydrodynamic model neglects material strength, the

question naturally arises as to how well it simulates the actual

physical process of an impact in a metal. Most investigators feel

intuitively that the material strength must play an essential role

in deteruitning crater size.

In order to gain an insight into this question, we may consider

penetrations into the various alloys of aluminum. These alloys are

interesting in that they have essentially the same elastic properties,

such as Young's modulus, sound velocity, and bulk modulus, but widely

varying strength parameters. For example, the Brinell hardness num-

ber of the 1100-F alloy (commercially pure aluminum) is about 16,

whereas the BHN for the 2024-T3 alloy is about 7.5 times as large,

or 120.

in Fig. 5, the penetration of aluminum spheres in the two alloys
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Is compared. At low velocities the penetration in 2024-T3 is about

-. ..- "- 50 per cent of that in I100-P. At 7.5 Ikm/sec the ratio hasa UOca..

to 74 per cent. These experimental results strongly suggest that the

ratio of penetrations in the two alloys is drawing closer to unity as

the impact velocity is increased. The theoretical considerations on

target melting discussed in Section III indicate that at 20 km/sec

and above the ratio will be essentially unity.

The experimental penetrations in the lov-ctrength 1100-F alloy

are seen to be in excellent agreement with those predicted by the

bydrodynamic model(5) which is shown as the shaded region.

Since the two alloys are identical in almost all respects eŽ:cept

strength, the reduced penetration in 2cx24-T3 must be ascribed to a

strength effect. At the present time no satisfactory theory exists

to calculate the penetration reduction due to material strength. We

will discuss two considerations which suggest that the formulation of

such a theory will be extremely difficult.

First, the penetration is already very insensitive to strength at

7.5 ln/sec, an increase of BU by a factor of 7.5 causing a reduction

of only 26 per cent in penetration. If one sought to fit the penetra-

tion in various alloys by a factor involving some power of N•, e.g.

p/d (BHN) m

or by linear interpolation

p/d - a + b(BHN)

he would obtain nearly the same result because of the insensitivity.
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Moreover, If he chose any other strength parameter, e.g., shear

*........strength or tensile strength, he could obtain nearly the same results,

since the various strength parameters correlate quite well among

themselves. Therefore, it is anticipated that experimental data

will not distinguish definitively among the various strength para-

meters and their functional relation to penetration reductions.

A more basic difficulty arises from the fact that the final

stages of crater formation occur in target material which has been

conditioned by the initial shock.(8) At least one physical parameter

is definitely knuown to be altered by this conditioning, namely, the

temperature. One can easily imagine that others might be also, in

view of the severe compression and re-expansion which the .iaterial

has suffered. Thus the notion of using a normal-temperature strength

parameter to scale high-velocity penetration is open to serious

question. The parameter modification by shock-conditioning must be

taken into account.

With the experimental results before us, however, it is probably

safe to scale over the small penetration range by an expression of

the form

p/d = 2.75 1 BA 0.15

which may be expected to predict penetrations in the various aluminum

alloys at 7.5 kmn/sec.
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3 I1. -MTING AND VAPORIZATION

SHOCK HEATING AS A FUNCTION OF PARTCIZ VEWCTY.

When a hypervelocity projectile encounters a target surface, it

generates a shock wave in the target. The shock propagates into the

target material with supersonic velocity and is the first physical

manifestation of impact which any element of the target feels. The

shock's passage sets the target material into motion and heats it.

In view of the creation of entropy in the shock front, the target

maturial is left heated even after expanding back to zero pressure.

Figure 6 shows the temperatures produced in four metals as a func-

tion of snock pressure. The numbers plotted in the figure pertain to

material that is initially at zero pressure, is acted upon by a single

shock of maximum pressure P, and then expands adiabatically back to

zero pressure. The temperature after release is plotted as a function

of the peak pressure.

For a given material, the pressure behind a shock may'be expressed

as a function of only the change in particle velocity across the shock.

(Particle velocity is defined as the velocity of each material ele-

mtent.) In hypervelocity impact, it is common to consider the target

as being at rest, so that the peak pressure may be expressed as a

function of only the particle velocity behind the shock. In that case

the release temperature may also be expressed as a function of particle

velocity only. This is done for aluminum in Fig. 7, where the left

ordinate scale gives particle velocity in km/sec, and the right ordi-

nate scale gives the release temperature as well as the state to which

the material reverts. 26
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The curves in Fig. 7 shou the peak particle velocity as a func-

~ioi~ bf~dýpthaln the macis'of sý#Iuetry as' alaiI7~td :in R

The curves in the figure are indexed by the Impact velocity. Since

these calculations referred to the impact of aluminum projectiles on

aluminum targets, the initial particle velocity is half the impact

velocity. Thus, the curve pertaining to an impact at 72 km/sec shows

a particle velocity of 36 km/sec for small depths. Because the solu-

tion along the axis remains one-dimensional in nature until rarefac-

tion waves from the target surface reach the axis, the curves aln

remain flat for a considerable depth. After this point, the peak

particle velocity decreases with depth. Either the particle velocity

or the release temperature may be read from the graph as a function

of depth.

EFFECT OF TARGET MELTING ON CRATER SIZE

For the impact at 20 km/sec, it may be seen that the target

material is melted to nearly the crater depth cf 40 cm predicted

purely on the basis of hydrodynamic flow. Thus, at about this impact

velocity, one may expect that craters in all alloys of aluminum Vill

have about the same depth, since the material strength does not influ-

ence the shock to a measurable degree at depths of less than 40 cm,

and the melting characteristics of the various commercial alloys are

similar. At impact velocities greater than 20 km/sec, the melted

region will extend below the predicted craters. For example, at 72

km/sec the melted region is seen to extend to about 78 cm, which may

be compared with the 55-cm penetration predicted in Ref. 5.
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The numbers quoted should be considered preliminary estimates,
•,-•u ..... •hichmicahbe re nJld when o hr;h n~~~io eo i•~ ...

which znigi b, o%

To reflect this fact, the estimated-crater depth is shown as a dashed

line in Figs. 18 and 19. However, it is possible to make some obser-

vations on the physics of the cratering process with more certainty.

At impact velocities above 20 km/sec, the crater dimensions are deter-

mined essentially by the extent of the melted region. The fact that

a new physical mechanism becomes important at higher velocities stands

in contrast with the belief of Eichelberger and Gehring (2) that the

physical mechanisms they considered were the only important ones over

the meteoric-velocity regime.

The notion that material melting determines the crater size is

strongly reminiscent of Whipple's hypothesis discusced in Section I,

and the question logically arises as to whether '•hipp. .'-i be cor-

rect for high vviuclibes. The ansver to this question comes from an

examination of Fig. 7. Consider the case of an impact at 72 ki/sec.

The melted zone extends to about 78 cm, which we estimate to be the

depth of the crater. However, the graph shows that the target material

is completely vaporized to a depth of about 20 cm, is a mixture of

liquid and vapor at a temperature of 2720°K to a depth of 45 =m, is

liquid at a temperature substantially above the melting point down to

about 66 cm, and is a mixture of liquid and solid at 9320K down to

the final crater depth. In short, the average specific internal energy

to which the crater material finally reverts is much greater than the

heat of fusion. In addition, energy is delivered to other sources,

e.g., kinetic energy and heating the material outside the crater.
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Thus, a oonsideration of the energetics of the process indicates that

Whipple must considerably overestimate the crater at the higher velo-

cities.

Although the depths delineating the various state regimes may

be slightly revised in the future, the qualitative physical observa-

tions are still expected to apply.

For impacts at velocities below 20 km/sec, the initial shock

heating reduces the material strength and enhances the validity of

the hydrodynamic model used in calculating the crater sizes. The

reduction in strength may be expected to bring the craters in 1100

and 2024 alloys into closer and closer correspondence as the impact

velocity is increased.

31



IMPACT PHYSICAL PROCESSES REVIEW

-111. PHYSICS OF~ MIflI-MGETJ5~UW ION.W.

Calculations based on the hydrodynamic model were made for alumi-

num cylinders striking aluminum plates at a velocity of 20 km/sec.

The cylinder was chosen to be 10 cm long and 10 cm in diameter. Two

target thicknesses were considered, namely, 1 and 2 cm. Although spe-

cific dimensions are prescribed in these examples, the problem is

scalable, so that only the ratios of the dimensions are physically sig-

nificant. Thus the results correctly describe the process where a

square (length equals diameter) cylinder impacts targets whose thick-

nesses sie one-tenth and one-fifth its length.

Figure 8 illustrates conditions 2.56 4sec after initial impact.

In this figure and the following similar ones the x-axis is the axis of

cylindrical symmetry, so that the target plate is depicted by the two

parallel lines, x = o and x = 2 am. An arrow in the figures denotes

the particle velocity at the arrow's tail. The dashed line is the in-

terface between projectile and target material. Pressure contours for

the pressure values of 0•.1, 1, 2, and 3 megabars are also shown.

Upon impact, two shocks are created, one moving into the target

material and one moving upstream in the projectile material. For this

particular set of conditions the shock moves upstream at about the same

rate that the projectile moves forward, with the result that the shock

remains nearly stationary relative to the target. In other words, the

shock moves backward at about 20 km/sec relative to the projectile ma-

terial, and the projectile material moves forward at 20 km/sec until

it encounters the shock.
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Fig.8-Aluminum cylinder (IC-cm diameter, 10-cm length)
striking 2-cm aluminum plate at 20-kmn/sec.
Conditions: 2.56 J1L sec after initial contact
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The bottom half of Fig. 8 illustrates conditions along the axis
of symmetry at this time. It may be seen that the projectile mste4- -

moves unimpeded at a velocity of 20 km/sec until It reaches the left

shock. In these calculations, the shock is purposely smeared out some-

what. The smearing is necessary in order that the numerical equations

used be stable. In the actual impact, the shock would represent a

discontinuity in velocity, pressure, and density at about x = 0, where-

as the figure illustrates that these variables undergo a rapid, but

continuous, change between about x = -1 and x = 1. On crossing the

shock front, the material velocity is reduced to 10 km/see, the den-

sity is raised to about 5.6 gm/cc, and the pressure is raised to about

5 megabars.

At the time of 2.56 psec represented in the figure, the shock

moving into the target has encouitered the rear target surface and

blown it off. As a result, a rarefaction wave moves into the shocked

material. As may be seen, the material velocity increases smoothly in

the rarefaction wave, and the pressure and density undergo a smooth de-

crease to zero values. The smooth variation corresponds to physical

reality in this case. Reference to Fig. 7 shows that the shock is

sufficiently strong to partly vaporize the target material. The mate-

rial in the rarefaction wave will thus consist of a mixture of aluminum

vapor and molten droplets, so that the pressure and density in the rar-

efaction must decrease smoothly in manner illustrated.

As the process progresses, the rarefaction wave will overtake the

left shock and decrease its strength. That is, we may expect to see

smaller peak pressures behind the left shock, we may expect to see a
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smaller velocity drop as projectile material crosses the shock, aBdo ye-

may expect to see smaller densities. In effect, a race is ocoamng be

tween the shock and the rarefaction overtaking it. If the shock main-

tains sufficient strength when the rear surface of the projectile

reaches it, the rear surface vlli be thoroughly shattered and dispersed.

If not, large fragments of the rear portions of the projectile will

survive and continue their flight unimpeded through the hole punched

in the target by the front portions of the projectile.

In addition to the rarefaction due to the back face of the target,

lateral expansion of the projectile is occuring which also generates

rarefactien waves. The pressures in the shock are high enough to mewe

the target material laterally, as is shown by the arrows moving upward

into the target material. Behind the target, the material can expand

laterally into a void, and so the expansion proceeds faster there. The

region influenced by the lateral expansion can be identified by the

velocities which have acquired an r-component of velocity.

The continuation of the process described is shown in Fig. 9, which

pertains to the time of 4.2 psec. Both rarefactions have eaten into

the shocked region, reducing the pressures there. In spite of the

pressure reduction which has occured at this point, it is interesting

to note that the projectile, which was originally 10 cm in length, is

at this time compressed into the region between x = 5.3 cm and x =

-1.6 cm. The pressures in the shock, which is about to encounter the

back of the projectile, range from about 2 megabars on the axis to

about 0.2 megabars at the cylinder periphery. This is sufficient to

thoroughly shatter the projectile.
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Fig. 9-Aluminum cylinder (10-cm diameter, 10-cm length)
striking 2-cm aluminum plate at 20 km/sec.
Conditions: 4.20 /4 sec after initial contact
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.. The final stage of the procesa is shown in Fig. 10. At this time -

of 9.86 wsec, sufficient expansion of the material has oc-ured to fi --

der all pressures zero. Density contours are plotted instead of pres-

sure contours. On the model used in the calculation, the material is

represented as a continuum, and the density is calculated on that basis.

In reality, the material has undoubtedly broken up into particles at

this time. "'he density reported may be expected to give quite accu-

rately the density, averaged over particles and voids.

Unfortunately, there is no known method of estimating the particle

sizes present in the diverging spray shown in Fig. 10. Were such an

estimate possible, a complete description of the damage to be expected

from this spray might be given. Available experimental evidence indi-

cates that for a given projectile-target system the spray particles be-

come smaller with increasing impact velocity. A qualitative discussion

of the expected damage will be given later in this Memorandum.

One can see from Fig. 10 that the velocity field essentially ra-

dlates from a single point, the point being on the axis of symmetry at

-8.8 cm. That is to say, if each velocity vector were projected back-

ward to the axis of symmetry, it would intersect the axis at about -8.8

cm. One such constructed line is shown dashed in the figure. The flow

is thus conical in nature, and further inspection shows that along a

ray from the cone's apex, there is a positive velocity gradient, so that

in flight the spray is elongating as well as expanding laterally. This

implies that each particle will proceed with unchanged velocity from

this time forward because there are no pressure forces and no material

will accumulate in the future to create any, in view of the positive

velocity gradient. 37
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Be- -o 1.aue of the conical nature of the flow, it is physically mn- mean-

ingful to prescribe the momentum per unit solid angle about the cone's

apex. This quantity will remain fixed no matter how far the spray

flies. One should note that this may be said only of a conical-type

flow. In Fig. 11 the momentum per unit solid angle about the conical

apex is shown as a function of angle from the axis of symmetry. To

calculate these numbers, cones having 5-deg increments in apex half an-

gle were laid out, and the momentum of material contained between them

was summed.. This momentum was then divided by the solid angle bounded

by the two cones. The number thus obtained is plotted at the angle

halfway between the two cones. The points are then connected by

straight lines.

The results from both the 1- and 2-cm targets are shown, and the

effect of target thickness is otvious. The spray from the thin target

is more concentrated at the smaller angles, and the maximum dispersion

angle is smaller. The physical ivason for this will now be discussed.

In the series of Figs. 12 to 14, the impact of the same cylinder

with a 1-cm target is presented. The qualitative features of the proc-

ess are exactly the same. Quantitatively, a few differences appear.

In Fig. 12, which pertains to a time of 2.'(5 psec, it may be noticed

that the left shock has been carried forward slightly. The reason for

this is that the shock propagation velocity increases with shock strength,

and the rarefaction from the rear of the target weakens the shock more

quickly than in the case of the thicker target. For this reason, the

shock will be weaker at corresponding times than the shock in the other

case.

The lower pressures from this suurce lead to less lateral expansion.
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1his explains why more mass is carried in the forward direction and

the iixim=u dispersion angle is smaller, as Shown in Fig. iU.

For the same reason, the strength of the shock which reaches the

rear projectile surface is also smaller, ranging from 1 megabar to some-

what less than 0.2 megabar in this case. These pressures should still

be sufficient to thoroughly shatter the projectile.

Finally, a smaller hole will be produced in the thinner target,

since less impulse per unit lateral area is applied to it, and the

pressure in the thinner plate is more rapidly relieved by rarefaction

waves. The final hole radius is estimated from these calculations to

be about 9 cm for the thin target and about 12 cm for the thicker one.

It is clear from these considerations that the diameter of a hole

created in a thin target will always be smaller than the crater diam-

eter produced in a thick target. Figure 17 shows roughly how the hole

diameter in a thin target will vary as a function of target thickness.

The ordinate of the figure is D /d, where D is the hole diameter and
h/ h

d is the characteristic dimension of the projectile. The abscissa,

t/d, is the target thickness in units of the projectile dimension. The

figure indicates that in the limit of zero target thickness, the hole

diameter approaches the projectile diameter, so that D h/d approaches

unity. As the target thickness is increased, the hole diameter -.n-

creases rapidly until it reaches the limiting diameter, corresponding

to the thick-target crater diameter. This limit is reached when the

target thickness is of the order of the projectile dimension. After

this point, the hole diameter on the entrance surface will remain es--

sentially constant, but with further increase in target thickness a
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Fig. 15-Expected hole diameter (Dh) at constant impact

velocity as a function of target thickness(t) for 1100-F
aluminum targets. Quantities are expressed

in units of projectile dimension (d)
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constriction will appear below the entrance surface. This is Illus.

trated in the irwet in Fig. 15. Below the constriction the hole en.-

latges due to spallation of the rear surface. The portion of the hole

due to spallation will vary erratically from sample to sample and will

also depend on such factors as the strength ani brittleness of the sam-

ple. As the target thickness is further increased, the diameter of the

constriction will decrease, finally becoming zero when the target at-

tains a thickness of about three-quarters of the thick-target crater

diameter. Figure 15 is sketched for the case of aluminum striking a-

luminum at 7 km/sec, a reasonable satellite orbital velocity. For this

case, the thick-target penetration is about 2.75 projectile diameters.

Therefore, the maximum hole diameter is about 5.5d, and the closure of

the constriction occurs for a target thickness of about 4.1d.

The discussion of the physical process of thin-plate perforation

has disclosed that such plates are amazingly efficient in shattering a

hypervalocity projectile. Of course, the plate pays the penalty of

having a hole blown in it during the process, and the hole dimensions

have been discussed in the preceding section. We will now consider the

damage which the spray of fine particles emerging from the rear surface

may be expected to cause.

The damage will be a function of standoff--the separation between

the back of the first plate and the next surface to be encountered. At

small standoffs, the impact craters of the individual spray particles

will overlap, with the result that a single rather deep crater would

be produced in a thick target. In a thin target at small standoff, a

clean perforation may be expected. The criterion for this type of
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perforation is that a sufficiently high pressure be built up in the

second target to occasion behavior of the hydrodynamic type. The-shock,

upon reaching the rear of the second plate, musT blow it off and allow

the momentum to proceed through in the manner just discussed for the

first plate. If this occurs, almost all of the momentum passes through

the second sheet, leaving only a clean perforation, and producing very

little bulging or other distortion of the plate. At larger standoffs,

the individual impact craters produced by the spray particles cease to

overlap, and in a thick target, only the dimpling of the individual

craters will be apparent. In a thin target, however, if the individual

craters do not perforate the sheet, the momentum of the spray pa-ticle

is entirely trapped within the plate. It may even be somewhat enhanced

because of producing back splash. For such cases the behavior of the

plate may be deduced by calculating the pressure pulse (pressure as a

function of time and position) which acts upon it and solving the re-

sulting problem in mechanics. The pressure is equal to the time rate

of momentum arrival per unit area, a quantity which may be calculated

from the theoretical data presented in Figs. 10 and 1i.

Some general observations may be made on the nature of the pres-

sure pulse receivea by the second plate. At any given angle, 6, the

total momentum per unit area received by the second plate is a function

of standoff, since it varies inversely as the square of the distance

from the apex of the conical flow. Because of the velocity gradient

along a given ray, the time required to impart this momentum will in-

crease linearly with distance from the apex point. Thi,, the peak pres-

sture at any given angle may be expected to fall off inversely as the

cube of the distance from the apex point.
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-' --- ~ .. At very"great standoffs, t-he _1 6 -tffi i a--w-f

the pressure pulse very well, and the only damage expected is the pit-

ting due to the individual fragments present in the spray. The depth

of these pits will vary linearly with the dimension of the fragment

which produces them. Therefore, an assessment of the damage from this

source requires a knowledge of the fragment sizes present in the spray.

As standoff is decreased, the pressure pulse will produce a bulge in

the plate, whose severity increases with shorter standoff. The bulging

deformation produces tension in the plate and stretches the material

so that it thins out. At some critical standoff, the material in the

bulge fails in tension, the failure originating at the crown. This

failure is accompanied by cracks which propagate down the sides of the

bulge as the sides flare out, forming large petals. The effects of

standoff are very critical in this region, the bulge either remaining

intact if no tensile failure occurs or petalling fully in the event of

failure. The petalling failure usually produces much larger holes in

the second plate than the primary projectile would produce in the ab-

sence of the first plate.
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While scaling by metans of the F-facters is regarded as most

accurate, a rougher but more convenient scaling is also possible. An

empirical fit to the resulLs of F-scaling may be written in the form

.A(v) ( ) PA(v) + 1/3 (10)

where 0A(y) pertains to targets of material A. The functions, 1A'

may all be presented on one graph, as in Fig. 16. In general, a-scaling

agrees with the more accurate F-scaling to within 10 per cent. Calcu-

lation of the F-factors demands the knowledge of the shock Hugoniot of

the projectile material at the impact velocities of interest. Where

this information is not available, one may still use (3-scaling to

give a reasonable first estimate. The F-factors for aluminum targets

are shown in Fig. 17.

In Fig. 18 the scaling law is tested against recent experimental

data. All of the data in the figure pertain to 11OOF aluminum targets.

The data of Atkins, shown as circles in the figure, were obtained by

firing saboted aluminum spheres. The data are presented unsealed in

the figure, and good agreement with the author's theoretical results

is obtained, as previously noted. The data of Liles and Goodman, (4)

shown as triangles, pertain to saboted copper spheres impacting 1100-F

aluminum. These data have been scaled down by the appropriate F-factor,

shown in Fig. 17. If the scaling law is correct, the two sets of data

should be brought to the same curve by this treatment. The scaling

law gives remarkably exact agreement with the experimental data.
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The preceding constitutes a well-controlled test of the scaling

law, since the mass, geometry, and velocity of all the data were well,

known. In particular, there is an unambiguous characteristic dimen-

sion to use for the projectile, namely, the sphere diameter.

The data of Kineke are shown as the dark dots in Fig. id, WFhile

the agreement is apparently good, more treatment was required before

plotting. Kineke accelerates flat steel discs by explosive means.

The characteristic dimension of these projectiles was taken to be the

diameter of the equivalent sphere, that is, the steel sphere which

has the same mass as his projectiles. It may be observed that such

treatment brings his data into extremely good correspondence with the

other two bctter-controlled sets. The agreement of his fastest point

with the theoretical prediction of the author is encourging.

In Fig. 19 the scaling law is tested for the case of 2024-T3

targets. The data have been treated in the same way, the aluminum

projectile points being presented unsealed, and the other projectile

points being scaled so as to bring them onto the aluminun curve. The

data all lie below the theoretical prediction of the author, as dis-

cussed in the section on strength effects. There is more scatter at

lower velocities for this target material, but the different data sets

are coalescing satisfactorily at the higher velocities.

The shock Hugoniot data for the plastic projectiles are not

available at the experimental velocities shown, so that 13-scaling was

required. At 7 to 10 km/sec. the data for plastic, aluminum, and steel

projectiles--materials that span a large part of the projectile-

material spectrum--are broutit together satisfactorily.
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it is believed that u3i)g the theoretical predictions of the

author for aluminnum-aluminum and iron-iron impacts and derivzing the

penetrations of other proj-ectile materials in these targets by-means

of the scaling lav just discussed will give an accurate estimate of

any projectile penetration into these structural materials up to a

velocity of 20 km/sec. Above that velocity, the possible effects of

target melting must be taken into account.
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ABSTRACT

Numerical techniques have been used1 to treat the hydrodynamic

phase of axisymmetric hypervelocity impact. A series of iron-on-iron

impact calculations are discussed in which the projectile velocity and

target thickness are each varied over a wide range. An equation-of-state

correlation and dimensional analysis then lead to a general description
of like-metal impacts. Further, an observed late time asymptotic solution

within the stages of the interaction for which the hydrodynamic approxi-

mation is valid is used to predict the dependence of crater size upon

Impact velocity. For velocities between about 5(10)5 and 2.5(10)7 cm/sec

crater dimensions increase as the 0.62 power of impact velocity.
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At sufficiently high Impact velocities the pressures which arise in

the early stages of a projectile-target interaction are very large compared

to the material yield strength. During this phase of the interaction, it

is appropriate to neglect strength of materials and to treat the problem

as one in hydrodynamics. A satisfactory description of the material flow

in hypervelocity impact must inclufe a realistic equation of state for the

target and projectile materials; for the hydrodyanaics problem, the neces-

sary equation of state information can be formulated as a relation among

the scalar pressure, the density, and the specific internal energy.

In the later stages of the interaction, as the disturbance engulfs

more target material, the hydrodynamic pressures become comparable to yield

stresses. It is then inappropriate to neglect material strength, and the

hydrodynamic approximation ceases to provide a valid solution to the problem.

In this case an elastic-plastic material, for example, should be represented

by a suitable relation among the stress tensor, the strain tensor, and the

specific internal energy; also the yield strength must be specified as a

function of the state of the material. Such a formulation would then replace

the scalar equation of state that is applicable in the hydrodynamic regime.

A complete material description for all of the states of Interest, and

its successful application to the impact process, would be very satisfying.

Such a program would provide a direct comparison between theoretically

determined impact craters and those which have been reported extensively

from experimental programs. On the other hand, the hydrodynamic phase of

the interaction is considerably less difficult to analyze than the strength-

dependent phase. Also, the hydrodynamic equation of state is relatively

free from uncertainties in material properties. It therefore seems desirable,

both for reasons of simplicity and accuracy, to concentrate first on the

hydrodynamic part of the interaction and the conclusions which can be drawn

therefrom. The present paper is devoted to this objective. While the

hydrodynamic approximation precludes the explicit treatment of the final
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stages of crater formation, it nevertheless proves possible to establish

relations by which the experimental crater data at attainable velocitlees

can be-extrapolated to the highest velocities of interest. -. .

For simplicity, only like-material impacts are considered in the

present discussion, and the projectile geometry is kept constant as a

right circular cylinder of aspect ratio unity. Several parameters of the

system are studied, the most important of which are projectile velocity,

the equation of state of the interacting material, and the relative thick-

ness of the target plate.

The basic approach has been to develop and solve numerically a

system of finite difference equations which correspond to the appropriate

hydrodynamic equations of compressible fluids. This is accomplished by

means of the SPEAR hydrodynamic code using the IBM 7090 computer. The

Eulerian form of the difference equations, in which the independent space

variables define a fixed axisymmetric coordinate system through which the

mass moves, has been adopted for solving two-dimensional, time-dependent

impact problems. The differencing method consists of dividing the Eulerian

space into a finite number of small cells (having rectangular cross sections

and axial symmetry) through which the mass, represented by many discrete

mass points, moves and interactd in accui with the usual conservation

equations and the material equation of state. Pressure, velocity, density,
and specific internal energy are given for each cell in periodic printouts;

also pictorial displays of the mass distribution and the velocity fie;ld or

subregions thereof are afforded by computer plotting routines. Solutions

obtained with the SPEAR code are in good agreement with available analyti-

cal results on flows involving shock and rarefaction waves, the differences

being attributed to the above finite difference approximations in the par-

titioned space and discrete mass representations. The present SPEAR code

is the product of a continuing development program to improve the accuracy

and economy of two-dimensional hydrodynamic computations. An excellent

discussion of the general logic underlying an Eulerian discrete mass point

representation is to be found in the PIC literature by F. Harlow and

associates. (I)

The first reported work on the time-dependent hydrodynamics of

.impact, other than analytical models based on rough approximations, was
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by 3. L. Blork. B2ork employed a computational scheme which was similar

to the pmeaent one and. has reported results, in particular, fop aliminum .

projectiles striking aluminum targets and for- similar iron-on-iron impacts.

The approach differs from the present one, however, in that the hydrodynamic
approximation was used to describe the entire interaction, so that strength

effects were necessarily invoked somewhat artificially to arrest the flow

whpn pressures became small. This led to a crater size whichp for the

lowest velocities considered, was actually in fair agreement with high-

velocity experimental results. The consequent crater volume, however, was

proportional to projectile momentum. The experimental data at high velocities,

and also the results of the present investigation, indicate a crater volume

which is very nearly proportional to projectile kinetic energy.

Section II of this report is devoted to specifying the appropriate

governing equations for impact hydrodynamics. Section III is a discussion

of the metallic equations of state that were used in the computations.

Section IV is a detailed description of results from a typical impact

problem--namely, the interaction of a 4 cm/Asec iron projectile with an

iron plate. Section V is an application of dimensional analysis to develop

scaling relations by whiih the known impact hydrodynamics of one metal can

be transformed to a general description of like-material impacts. Section VI

is devoted to impact on thick targets, with particular emphasis on the late-

stage hydrodynamic equivalence and the consequent determination of crater

size as a function of velocity. Finally, Section VII consists of some

summarizing remarks.

II. THE CONSTITUTIVE EUATIONS; SIMLE LINEAR SCALING

The first step in the analysis of hypervelocity impact is that of

defining the important physical processes and associated constitutive

equations which should be included in a theory of impact. The neglect of

strength, already indicated in the previous discussion, makes possible the

use of a simple pressure, density, energy equation of state, and is justi-

fied in the present application by the fact that the pressures of interest

are typically two or more orders of magnitude greater than yield strengths.
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7> ..... The neglect of thermal -conduction is justified by a simple calcula-

ti n- -71651' a-_:rb-jotUlA of typi'cal linear divinsion A and yeloaQW, %ý t.
time for the hydrodynamic phase of the interaction is of the order 10/o/v ... . .

The thermal diffusion distance in this time, using a typical metal diffusivity

of h = 0.5 cm2 /sec, is of the order x = f = (0.5) 10/Fvo. Hence, the

ratio of diffusion distance to A is x/L = and using v 0 =106 cm/ec

shows that x/A is as large as 0.6 only if A is less than 5 x 10 cm. For

larger projectiles, thermal conduction is not significant as a perturbation

to the hydrodynamics.

The magnitude of the viscosity which is appropriate for impact work

is much more uncertain than the thermal diffusivity or the yield strength,

and the justification for excluding viscous phenomena from the theory is

accordingly somewhat less direct. First, very large viscosities can be

excluded on the grounds that the consequent thick shock fronts would be

observed in shock-wave experiments as a continuous acceleration of the

free surface upon shock ar'r'ival. Such evidence can lead to the conclusion

that viscous phenomena are not important unless projectile dimensions are

less than about 0.1 cm, but the considerations leave open the possibility

that this critical size may be substantially smaller. A much smaller

projectile size for the viscosity threshold is, in fact, indicated by

experimental impact data and is discussed in connection with scaling in

the following paragraph.

If thermal conduction and viscous effects are negligible within tne

hydrodynamics, the results are subject to simple linear scaling. Specifi-

cally, the solution for a problem in which a typical length A can be scaled

to larger or smaller sizes by the use of a scale factor F on all lengths

and times; i.e., A--•FA, t--#Ft, and the dependent variables P, p, i are

not affected by the transformation. The validity of simple linear scaling

follows directly from the fact that the governing Rankine-Hugoniot and

continuous flow equations (below) are homogeneous in the distance and time

variables. The inclusion of viscosity or conduction terms, on the other

hand, introduces second derivatives in th- continuous flow equations and

the scaling no longer applies. As has been indicated above, these terms

will dominate the interaction for sufficiently small geometries. It is
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"therefore- of interest to inquire whether experimental impact data exhibit

depar-turea.sfr-om :simplewaca-ingi, -th queition~haq-been.pwp 'db qvr~
authors in recent correlations of the available impact data.0 1  Present

evidence indicates that the scaling remains valid down to the smallest

projectiles studied. Eichelberger and Gehring,4)" in particular, cite data
for projectile masses ranging from 10"ll to 10 grams, or projectile dimen-

sions in the range 10-4 to 1 cm. Thus, the present data indicate that
viscous phenomena (or thermal conduction) are not seriously affecting

impact results for projectiles of 10"ll g, i.e., linear dimensions of the

order of 10"4 cm. It is therefore appropriate to neglect viscosity in the

treatment of impact problems involving larger projectiles.

The exclusion of strength, conduction, and viscous effects from the

theory leaves us with a hydrodynamics which is composed of shock-wave com-

pressions, satisfying the Rankine-Hugoniot jump conditions, and compressible

continuous flow (usually expansions) during which the entropy of a mass

element remains constant and the governing equations are:

+ (pi,) o 0

+ (a V~ +' V VP - 0

9+T .+ VE-- Pý -÷ . vv,

The SPEAR hydrodynamics code is formulatc . for describing such interactions,

and results therefrom can be scaled in accordance with the simple linear

scaling laws defined above.

III. FRUATIONS OF STATE

In the present study, materials are subjected to shock pressures

which range from a few tenths of a megabar to about 1000 megabars, and

.are subsequently free to expand as the pressures are relieved by rare-

faction waves and by flow divergence. For accurate calculations, it is
necessary to have a realistic thermodynamic description of the material

for the entire range of interest.
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"The formulation of a suitable equation of state has been given
previously(5) by one-.oQ the authors. Tps equation of state hIs ;the form

E [a b Ep + A4 + I

for condensed states of the material, and

P = aEp + [Ep + Ae-(V/Vo - . e-a(V/Vo - 1)2

E J

for expanded states, where P, E, p = 1/V are pressure, specific internal

energy, and density, respectively, and 1 = p/Po' • = 1 - 1.

The parameters c,o are constanes controlling the rate of convergence

to the ideal gas form, P - afp, which is assumed valid for highly expanded

states. The other five parameters are different for each material and are

chosen to provide good agreement with experimental shock-wave data at low

pressures and, at high pressures, with theoretical results obtained by

Cowan from the Thomas-Fermi-Dirac model of the atom. The equation-of-state

results for aluminum are plotted as Figs. 1 tuid 2. Other mectals for which

the equation of state has been formulated are W, Cu, Fe, Be, Ti, Ni, Mo,

and Th.

A simple approximate representation of vaporization is given by an

appropriate choice of the states to be represented by the condensed sad

expanded formulations. The condensed form is used for all states V < Vol

and also for Vs > V > V. provided E s E.. Here, V. is the specific volume

Sand E s is the specific internal energy for the liquid at the P = 0 vapor-

ization point. The expanded formulation is employed for the remaining

states V > Vo, E > Es. The representation leads correctly to an infinite

expansion when shock-heating is sufficient to cause vaporization. A

similar distinction between solid and liquid is unnecessary in the present

hydrodynamics approximation.

In the case of iron, a polymorphic transition at low pressure

(0.13 megabars) has been ignored in the equation-of-state formulation.
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SWjivmtal shook-wave data bt-qn about 0.3 oegaars an 5 mesabars and

Thomas-Fermi-Dirac results at-higheri presues ýark hoever, reproduced by

the present formulation. While the polymorphic transition is known bo lead
to interesting effects which are peculiar to iron, these do not occur at

the high pressures (0.5 megabars and above) of interest in the present

investigation.

IV. A TYPICAL IMPACT AND RELEVAN CODE CONSIDERATITiS

The typical impact of a cylindrical iron pellet, having a diameter
(1.842 cm) equal to its length, and an iron target, having a thickness of
several pellet diameters, is shown for various times as Figs. 3 through 10.
The left-hand border of each figure is the axis of symmetry, which coincides
with the projectile's line of flight. In this problem, the impact velocity
is 4 cm/gsec and is positive upward. For each time shown, there are two

pictures, one of which gives the mass distribution as discrete points and

the other shows the corresponding velocity field. Both representations

are superimposed on a rectangular grid, through which the mass particles

are moved in accord with the usual energy, momentum, and mass conservation

equations and the equation of state. The problem is solved numerically with

the SPEAR code, which relates these equations, expressed in conservative

finite difference form, to the system of cylindrical cells of rectangular

cross section defined by the grid. Complete energy conservation has been
of great value in the code development program and provides a continuous

energy check during computation for detecting instability and round-off

errors. All of the quantities entering the difference equations are

averages over the corresponding cell volume and may be considered as

representing the values at the geometrical center of the cell.

Two rather important parameters which influence the accuracy of the

results are the number of discrete mass points per cell and the relative

size of the cells. In zoning a problem, the numiber of particles per cell

in an initial configuration can range from I to 81. Maximizing this

quantity, although desiraole for optimum mass resolution, is usually
prohibitive because of increased computing time and resulting higher costs.

Sufficient accuracy in the present investigation has been obtained by using
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U!

Figs. I through 10

Several stages in the impact of a 4 cm/Lsec iron projection on an

iron plate. In each stage both the mass distribution and velocity field

(plotted as vectors from cell centers) are shown. Note that the velocity

plot is depicted on a slightly enlarged space scale. Times for the various

pictures are:

TOP B0TOM

Fig. 3 0.0 Lsec 0.21. isec

Fig. 4 0.42 0.63
Fig. 5 0.84 1.04
Fig. 6 1.25 1.46

Fig. 7 1.66 1.88
Fig. 8 2.26 3.02

Fig. 9 3.81 4.60
Fig. 10 5.39 6.18

In these and the subsequent plots of mass and velocity distributions, the

interaction is axisymmetric about the left-hand axis, and the projectile

strikes the plate from below.
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from 4 to a maximum of 16 particles per cell. The 4-cm/Lsec problem required

only 1.75 hours on the IBM 7090 comuter to reach the 7-•sec ti* im ti• .

fow. -At the state of maxi.mum... .... ikon, the problem has ......k tinbh

of 48 megabars and agrees to 5% with theoretical plane-wave predictions.

The plane-wave theory, however, is relevant for comparison only so long as

the flow is not influenced by rarefaction waves. As indicated by the velocity

fields of Fig. 4, lateral rarefactions reach the center of the projectile at

about 0.5 4see.

The maximum number of cells in the current version of SPEAR cannot

exceed 2000, but cells can be of different sizes by zoning with variable

Ar and Az spacing. If variable zoning is required, the best results are

obtained when the aspect ratio of adjacent cells varies by no more than a

factor of two. One zoning technique, used successfully throughout the

current investigation, is to zone the cells in the target on a nearly equal

area basis within several pellet diameters of the impact center, thus pro-

viding uniform space resolution in the more important regions of the flow.

At the time of impact, shock waves are transmitted in both directions

from the projectile-target interface. By the time the shock wave traverses

the projectile, the projectile is completely embedded in the target, and

(as suggested by simple plane-wave considerations) the energy at this time

is approximately half kinetic and half internal and is distributed over a

mass which is twice that of the initial projectile. This state of maximum

compression is then relieved by means of rarefaction waves from the free

surfaces and by spherical divergence within the target. The expanding

shock wave can be seen in the figures as moving well ahead of the actual

crater cavity and lip formation. The pressure profiles that define the

shock front are !;)wn for several times as Fig. 11. A more extensive plot

of the shock wave attenuat:.on is presented as Fig. 12, which shows the peak

shock strength as a function of distance from the impact center.

The analysis in the following two sections makes frequent use of

certain radial and axial momenta which are produced by the impact. The

axial momentum is defined as the sum E miv1 over all cells i for which the

axial component of velocity vi is positive. This momentum is initially

that of the projectile, and typically increases more than an order of

magnitude during the hydrodynamic phase of the interaction. The radial

80



-HYDRODYNAMICS OF HYPERVELOCITY IMPACT

r 100 -_ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _1__ _ _ _ _ _ _ _

60

so i40 -

20

t .2SEC\
4.0-a

, 2.0

w- I.71z SEC
a.

1.0 1t*3.8p.SEC
0.8 -/

0.6 /
d

0.4 /

0.2

0.1 I I jI I
Is 20 • 24 26 28 30 32 34 36 36 40 42 44

J (CELL)

LI I I !I

0. I. 2. 3. 4. 5. 6.

r (CM)

Fi 8 . ll--Pressure versus distance along axis at three successive
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Fig. 12--Shock pressure as a function of distance along axis
in the 4 cm/4sec problem
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momentum is analogously defined as E miui for cells in which ui > 0, the

summation being further restricted to cells z > 0 within the original front _4

surface of the target. The radial and axial momenta for the 4 cm/psec

problem are plotted as Fig. 13. These integrated momenta provide precise

measures of the magnitude of the impact disturbance and have been especially

useful in the quantitative comparisons of interactions.

Many other properties of the interaction are provided by SPEAR in

regular data printouts. The data presented in the present section are

typical of the results which are obtainable from the several volumes of

listings, which include individual cell quantities as a function of time.

V. DIMNSIONAL ANALYSIS; SCALING RELATIONS FOR METAIS

In order to avoid the necessity of treating each new material indi-

vidually, it is desirable to establish (approximate) scaling relations by

which the known solutions for one metal can be transformed to any other

metal. The success of such an undertaking depends upon whether the indi-

vidual equations of state can be expressed in a dimensionless form that

is essentially the same for all metals. To this end, a natural choice

of dimensionless variables is p P/po2 = 1 - V/Vo, and e - E/c•.

Similarly, velocities of interest are made dimensionless by dividing by co,

so that shock-wave velocity and shock-particle velocity, respectively, are

D/c 0 and v/c 0 . Here, eo is defined by c2 = o p/ap) evaluated at P 0.

The consequent correlation of the Hugoniot curves of the various

metals is seen as Fig. 14, where the dimensionless pressure p is plotted

against shock-particle velocity v/i.. For the nine metals, the curves

agree with a mean curve (e.g., Fe or Ni) to about + 7%. The same agree-

ment would be obtained by plotting the shock-wave velocity D/c or the

compression t against V/c 0 , since D/co = p/(v/co) and 0 = (v/co) 2 /p from

the Rankine-Hugoniot equations. A plot of f versus p would show a + 10%

agreement with the 4 indicated by a mean curve.

The above correlation is sufficiently accurate to be useful, and the

present paragraph is devoted to a discussion of the associated physical

similarity of impacts: The only properties identifying a specific metal

in the correlation are p cC. Thus, for a family of geometrically similar
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Fig. 13--Axial and radial momenta, 4 cm/psec problem
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impact configurations, one needs po, Co, the impact velocity vo, and some

characteristic length o0 in order to have a completely specified problem. __

The solution for a given dependent variable must then be some Amanction of

PO , co Vo0 A0 and the independent variables z, h, t. The condition that

the solution be dimensionally correct restricts this functional dependence

to the special forms:

U/oCo0-=fl ro-,oo
V/Co ~7 ° 3•, To,- 'o

Vocz r t°ocv c

P/Pa 4c T T

Thus, impacts which are initially geometrically similar, and for which the

projectile "Mach number" vo/co are the same, have the same solution in

dimensionless variables; i.e., P/Poco, u/co, etc., are the same in two

such impacts for the same values of z/Ao, r/to, tco/40 . It is therefore

a straightforward matter to transform the known solution for one metal to

the solution of an equivalent problem for another metal. Similarly, a

complete determination (various geometries and all v0 /c 0 ) of the impact

hydrodynamics for one metal provides a basis for the general hydrodynamic

description of like-material impact.

The above scaling relations are, of course, approximate insofar as

the agreement among the individual equations of state is approximate. The
task of evaluating the accuracy of the scaling relations by direct consider-

ation of errors in the equation-of-state correlation is, however, quite

tedious. Instead, several computations have been made for impact problems

which should be the same under the proposed scaling. The comparison of

computed results with those obtained by scaling then affords a direct test
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of the accuracy of the scaling relations. The results of these comparisons

are discussed in the following paragraphs.

Three problems were computed in which a 1-cm diameter by l-cm longi ............-

cylindrical projectile strikes a plate of 1-cm thickness. Materials in the

three problems were W, Fe, and Al. Impact velocities for the interactions

were 107, 107 and 1.3 x 107 cm/sec, in proportion to the respective co of

the materials. Several stages in the W-W interaction are shown as Fig. 15.

Of particular interest in the present section, however, are tests of the

scaling relations which are afforded by the problems: Initial shock pres-

sures for the W, Fe, and Al are 662, 266, and 149 megabars, respectively.

When divided by the p c 2 from the equation-of-state formulations, the

corresponding reduced pressures 215, 208, and 199 agree to about 8%.

Further, the flow configurations at corresponding times (= tc 0 A 0 ) are

reproduced as Fig. 16, where the interactions are seen to be almost identical.

Finally, the total positive momenta, (EmIvi summed over all cells for which
vi is positive) have been computed as a function of time. The curve for Fe

is plotted in Fig. 17, where also the curves obtained by straightforward

scaling of the Al and W data are plotted for comparison. The curves agree

within about 5%.

An additional comparison was made for Fe and Al in which the plate

thickness was 5 cm, other problem parameters being the same as in the above

series. Comparisons of the flow configurations at corresponding times are

given as Figs. 18 and 19. Momentum curves from the two problems are plotted

as Fig. 20. Agreement is comparable to that indicated above for the thin-

plate impacts.

In the present investigation, iron has been studied more extensively
than any other metal. In general, the above tests of the scaling relations

indicate that the results from the computations for iron can be transformed

to other metals with an uncertainty of some 5% or less in most quantities

of interest. This accuracy is sufficient for most applications, and the

scaling relations will be used to generalize the computed results.

A final remark may be made in connection with a possible modification

of the scaling relations. A choice of dimensionless variables based on the

shock-wave velocity for some finite compression (e.g., D for V/Vo = 0.5)

in place of the sound speed c. would lead to a better equation-of-state
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Fig. 17--Positive momenta versus time for the thin-plate impacts; for pur-
poses of comparison with the iron curve, the Al and W data have been scaled;

the curves would agree if the equation-of-state correlation were exact
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impacts with thick ( five projectile lengths) plates
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Fig. 19- -Flow configuration at corresponding times in the Fe-Fe and Al-Al
inpacts with thick (five projectile lengths) plates
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correlation at pressures of interest and a consequent improvement in the

scaling accuracy. Errors incurred by the scaling process would apparently

be reduced by a factor of two or three. Such scaling relations may be

used in future work where increaseC accuracy is desired, but it will be

necessary first to verify the procedure by a series of comparisons such as

those described above for the c0 correlation.

VI. IMPACT ON THICK TARGETS; THE LATE-STAGE ASYMPTOTIC SOLUTION

A series of impacts have been studied in which an iron projectile

interacts with a thick iron plate. The projectile, in all cases a right

circular cylinder with equal length and diameter, impacts at velocities

of 5 x 105, 106 , 4 x 106, 107, and 2.5 x 107 cm/sec. The plate thickness

was chosen sufficiently great that no disturbance reaches the back surface

during times of concern in the present section.

For the purpose of comparing results from two computations, it is

desirable to hav, comparable cell size and mass resolution. This objective

was met by dividing the problemo into two sets--one with velocities 5 x 10 ,
106, and 4 x 106 cm/sec and the other with 4 x 106, 107 and 2.5 x 0 cm/sec

(the 4 x io6 cm/sec problem being repeated). Within each set, the target

space and mass resolutions were identical and the projectile mass was chosen

to keep projectile kinetic energy constant. Initial shock strengths in the

various problems range from 1.5 megabars in the .5 x 105 cm/sec problem to

1580 megabars at 2.5 x 10 7 cm/sec.

Although detailed descriptions of the individual impacts are excluded

from the present discussion for the sake of brevity, it is of particular

interest to inquire whether the impact disturbance retains, at late times,

a qualitative dependence on the impact velocity. Specifically, do impacts

at two different velocities have late-stage asymptotic solutions which are

essentially the same except for a simple scale factor? The affirmative

answer to this question makes it possible to use the established equiva-

lence and simple scaling in order to extrapolate experimental impact data

to the highest velocities of interest.

The most direct test of equivalence in late stages of the flow is

made by comparinE mass configurations, pressures, and velocities. Such a
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6
comparison is seen as Figs. 21 and 22 for impacts at 4 x 10 cm/sec and
107 c/sec. A i.iUkAthe two problems were selecteA9__h

basis that the shock pressures-(radial direction) were-eqiil (I.9 megabars-)+

A comparison of the mass distribution wid the velocity fields in the figures

shows that the flows are essentially the same. Sizable differences are

limited to a relatively small mass of debris in the vicinity of the collision

point, for which the pressures are now substantially less than those carried
by the shock wave.

More extensive comparisons of corresponding times in the above pair

of problems indicate that the 4 x 106 cm/sec flow is on a slightly larger

scale, by a factor F = 1.04 + 0.05. (Since the mass ratio in the two problems

was chosen to keep projectile energy constant, an F - 1 would imply exact

energy equivalence.) A more precise determination of F, however, is afforded

by comparing integrated quantities for the two flows: In Fig. 23 are plotted

the curves for the total positive momenta within the flows. The 4 x 106

cm/sec flow is seen to have the larger momentum, although the ratio of momenta

in the two problems at late times is substantially less than the initial ratio

of 2.5. The failure of the two unsealed curves to agree at late times implies

that the impacts are not exactly equivalent on an equal energy basis. Agree-

ment at late times is, however, obtained by enlarging the 107 problem by a

scale factor F = 1.05; i.e., times in the 107 problem are increased by a

factor 1.05 and momentum by a factor (: .05)3. The consequent scaled curve

is indicated as a dashed line in the f.,gure. Also indicated for comparison

is the 107 problem when scaled to have the same initial momentum as the

4 x 106 problem.

A comparison similar to the above, but using instead the total

momentum normal to a plane containing the axis of symmetry, indicates a

value F = 1.04 + 0.03.

The results given above are assumed sufficient to show that the two

intere.-tions have the same late-stage asymptotic solution when the 107 cm/sec

problem is scaled by a factor F = 1.05 + 0.02. Thus, the impacts are equiva-

lent if the ratio of the two projectile masses is

( 07 \62 1 5.
4 x1 (1.5 )39
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Fig. 21--Comparison of the lat -time mass configurations for the 107 and
the4 x100cm/eeiron problems
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or for projectile linear dimensions in the ratio - 1.75. The two

impacts then lead to the same late-stage effects, such as the crater depth•

p. It is desirable to express this latter r~sult in the more conventional

form*

p/d = k (Vo/co) ,

where d is the projectile dimension, k, 0o are constants, and vO is the

projectile velocity. Denoting the two impacts by subscripts 1 and 2 then

gives

d 2 . v a or Q:= log 1.75 = 0.61

Thus, for fixed projectile size, crater dimensions increase as the 0.61

pvwer of impact velocity in the range 4 x 106 cm/sec to 107 cm/sec. The

uncertainty + 0.02 in F corresponds to an uncertainty + 0.02 in a.

Considerations similar to the above have also been carried out for

the other problems in the present series. Consequent values of a are:

= 0.61 + 0.02 for the velocity range 107 to 2.5 x l07 cm/sec;

a 0.62 + 0.03 for the 106 to 4 x 106 cm/see velocity range;

a= 0.65 + 0.07 for the 5 x 105 to 106 cm/sec range.

The quoted error limits on a are offered with some reservation

because of possible undetected consistent errors within the computations.

Tests have been made, however, with improved space and mass resolutions to

explore the dependence of the momentum curves, and 'hence a, on the finite

difference approximations. Similarly, equation-of-state variations have

been made to investigate a possible dependence of results on assumed

material properties such as the simple representation of vaporization.

The results of all checks have indicated a negligible effect on a.

*The most general dimensionally consistent form is p/d = f (v /c).

But f = k (v 0 /c 0 )a is suitable provided a is only a weak function of vo, as
will be the case.
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The success of the present approach depends on demonstrating hydro-K dynamic equivalence prior to the onset of material strength effects. It

should be noted that the method will fail at sufficiently low velocities

(probably around 2 to 3 x 105 cm/sec for iron), when strength effects cannot

be neglected throughout the early nonequivalent phases of the interactions.

A second, less fundamental, limitation arises at low impact velocities in

that increased mass resolution is required for the accurate computation of

weak hydrodynamics. The above relatively large uncertainty in a for the

5 x 105 to 106 cm/sec range, in particular, can probably be reduced by using

more particles to represent the material. The associated uncertainty in

penetration (5%) is, however, not large within the indicated twofold change

in velocity.

It is sufficiently accurate and very convenient to take a to be a

constant independent of impact velocity. Using the average value a = 0.62

for the entire range, the general expression for penetration can then be

written

p/c = k (vo/co) 0 6

where p, d are standard dimensions for the crater and projectile, respec-

tively; co = (ap/ap)al/2 at P = 0, p = P0 ; v0 is impact velocity, and the

dimensionless constant k can be determined from a single experiment. It

should be noted that the exponent 0.62 is independent of the metal under

consideration by virtue of the dimensional analysis considerations of

Section V. The constant k, however) depends on strength properties and

must be determined separately for each material. Resulting extrapolations

for the experimental data on iron and aluminum are seen as Figs. 24 and 25.

VII. CONCLUSION

Numerical techniques have been applied to nbtain a solution to the

hydrodynamic equations which govern the early phase of the hypervelocity

impact process. Late stages of the interaction, where deformation forces

are no longer great compared to the yield strength, have not been treated.

Within the hydrodynamic phase, however, it is found that the late time
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asymptotic solution is independent of the impact velocity except for a

4sixle scale factor. This means, in particular, that the (untreated) late-

. stage deformation problem is the same for all impact velocities. The

determination of scale factors from the computations and the data from a

single hypervelocity impact experiment for the material then permits one

to completely specify the crater dimensions as a function of impact velocity.

The result is that the early stages of the impact process are completely

determined by the hydrodynamic theory, and over-all effects, such as the

final crater, are determined by a combination of experimental and theoretical

results.
It is fortuitous that these considerations have led to a determination

of cratering effects. The asymptotic solution within the hyirodynamic phase
will not occur at low impact velocities, where strength effects become

important in early stages of the interaction. In order to extrapolate the

experimental cratering data, on the other hand, one must have at least one

impact experiment for which the velocity is sufficiently high that the

asymptotic solution can be assumed. For most materials of interest the

necessary impact velocities have been exceeded by a factor of two or more

and the results are available from data tabulations.(3)

The alternative to the present approach would appear to involve the

explicit treatment of the late-stage strength-dependent deformation. As

noted in the Introduction, such an undertaking requires a substantially

more elaborate computation than the hydrodynamic problem, and also non-

trivial uncertainties must be expected in connection with material strength

properties for high strain rates. It therefore seems probable that the

most reliable predictions of cratering phenomena, for velocities greater

than those attainable in controlled experiments, are to be made by the

hydrodynamic approach which has been used in the present stuay.

A number of important aspects of impact have not been considered.

Among these are the collision of unlike materials, the effects of pro-

jectile shape and the impact behavior of nonmetallic solids. It is

expected that continuing work along lines indicated in the present report

will make it possible to understand and predict the effects of these

variations.
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ABSTRACT

A computer program (PICWICK) has been developed for the

solution of the equations governing the visco-plastic model for hyper-

velocity impact. The program is capable of comparing various

equations of state, flow-resistance coefficients, and fracture criteria.

Some choices for these relations are briefly discussed and the com-

putational method, on which the computer program is based, is described.

A series of calculated flow-fields depicting iron-iron impact

illustrate the bounded instability of the basic numerical scheme. That

this problem may be overcome is then demonstrated by two series of

flow-fields calculated for lead-lead impact situations. The results

show the rapidity with which the shock intensity decreases due to

geometrical divergence and, consequently, lead to the conclusion that

consideration of the pressures generated at impact cannot serve as a

valid basis for neglecting target strength.
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INTRODUCTION

The response of metallic materials when subjected to hyper-

velocity impact is assumed to be governed by the visco-plastic model

presented previously(. The model describes the behavior of metals

under impulsive loading so intense that the elastic and strain-hardening

effects may be assumed to be negligible. On the other hand, it meets

the physical requirement that the inertial (compressibility), viscous,

and strength effects be included(2. Thus, the stress tensor, ij' and

the strain-rate tensor, Dii, are assumed related according to

7. - p 6i + p(Dj -- L divu ij), (1)

where 6 is the Kronicker delta, p the thermodynamic pressure,

Mthe flow-resistance coefficient, and u = (u, v, w) is the velocity

vector. Here p depends only on thermodynamic state but g depends

as well on the invariants of the strain-rate deviator. Both relations

must be specified if (1) is to provide a constitutive equation for a

material.

Given the required relations for p and ., (1) may be incor-

porated into the partial differential equations expres sing the conservation

of momentum and energy. The resulting equations together with the

continuity equation then govern the behavior of the medium subjected

to intense impulsive loading providing it remains continuous. In the

case of axially symmetric impact (see Fig. 1), the equations in

Eulerian form, reduce to

(Mass) L + r

(Radial fu u u -z ( ) + rr 6 s rz

Momentum) . ( t u + v u -ar p +Srr J r +z

(3)
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PROJECTILE

L jjO

I-I

Figure 1.

Illustration of projectile-target configuration just before impact.
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(Axial P I v+ v = +S +Ir
a -t-z - zzr ...

(4)

(Energy) p 77 + u -a+rv-a + p divu = pD. (5)

Here pis the density, I the specific internal energy, and the following

notations have been introduced:

2~ a -. l(ry) avP=-p-3  divu divu = +3 r z

S 1AD 2Av S uD 2ja
zz zz = z rr rr = r J,(6)

1Au +v ) u
Srz rzD =M +•r $ = Dz 6 r r

I ~ a +'+ 2  2 -2
D z+ (D2r+ D + D Y (divu)

In writing (6) we have assumed that the flow is strictly adiabatic.

Since equations (2) through (6) do not apply to a discontinuous

medium provisions must also be made for material fracture. The

rupture of the material and its subsequent ejection from the crater

during the cavitation process accounts for a large percentage of the

final crater volume.

CONSTITUTIVE RELATIONS

For each material requiring calculations the equation of state,

the flow-resistance coefficient, and the fracture criteria for a dynamic

tri-axial stress condition must be specified. Actually, none of these

have been firmly established by experiments under the severe con-

ditions of pressure, strain-rate, and temperature which occur during

hypervelocity impact. At the present state of knowledge it is neces-

sary to extrapolate boldly from data observed under far less severe
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(3)
conditions. In a recent paper some of the available experimental

__ date were brought together within a framework geneftlnWbUili to -i

permit the construction of tentative constitutive relations for the

plastic - hydrodynamic regime that are sufficiently realistic for

engineering and physical calculations. Rather than repeat the dis-

cussion given there we will concern ourselves principally with those

choices for the constitutive relations for which calculations are

currently being carried out.

It should be emphasized, however, that the method of solution

that has been developcd, to bc described later, is capable of handling

various choices for the equation of state, the flow-resistance coefficient,

;?nd the fracture criterion. Several choices have indeed been written

into the cnmputer program as sub-routines so that they may be readily

changed.

In the compressive regime the most reliable equation of state

available has been determined by the Los Alamos group from velocity

measurements of shock waves induced by high explosives. The pres-

sure is expressed as a function of density and specific internal energy:

p = f (0, I)

It is also necessary to provide an equation of state for the tensile regime

since rarefaction regions occur near the edge of the projectile-target '

interface during the early stages of the process, and near the lip of the

forming crater during the later stages. Apparently no experimental

data are available under these extreme conditions. It seems reasonable

and expedient to use the tangent line cf f (p, I) to extend the equation of

state into the tensile regime (Fig. Z):

h 0•, 1) [- = 0+ [f]
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f (POI)

(a)

F(p,I)

f (p,I)

ff (pI)(

S= /Po-I

h(p,I) (b)

Figure 2. Schematic of equation of state:
(a) Function equal to pressure in compressive region.
(b) Extrapolation into tensile region.
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The statically determined pressure-compression data of Bridgman fits

the Los Alamos data. Hence, when I 0 the above extrapolation is

equivalent to assuming that in the neighborhood of p = 0. the bulk

modulus of the metal in tension is the same as its value in compression.

Explicit expressions for f (p, I) and h (p, I) have been given elsewhere. 01 R)

In our original formulation of the visco-plastic model the flow-

resistance coefficient was assumed to be simply

S
1(D) = n + oITI2 So)0 TB- (7)

= (1 71 < So)

where S denotes the static yield shear stress of the material, ?1o0

denotes the viscosity factor, and the second Invariant of the stress deviators
2 2 2

r = ;A D , is a measure of the deformation experienced by the medium.

Thus, the material was considered rigid if stressed below its yield

strength, whereas above this value it was assumed to behave as a

Newtonian viscous liquid.

Actually both Ta and S are not constant but depend on the

thermodynamic state of the medium:

r - 1 (1, p) So - S (I, p).

Both decrease in value if the specific internal energy (essentially the

temperature) is increased while holding the pressure constant,

--•I)po < 0 (W-I TS) P< 0;

both increase in value if the pressure in increased while the internal

energy is held constant,

0 0(- S )1 > 0
101
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~~~~~ls I//J -ao :,

M4

II.l

Io0I

oE, ()Zi PI

II)

(CS)

Figure 3.

Schematic representing the dependence of the shearing stress

on the rate of deformation: (a) Effect of •, (b) Effect of in-

ternal energy (or temperature) and pressure.
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In order to explicitly account for these effects, the definition of the

flow-resistance coefficients may be written as iollows:

I p #(I, p, D)

Sfl, P) i+ ?(I.P) (IDI + )I (8)-11 ID+ s (I. p)

The internal energy pressure, and strain-rate dependence of A are

depicted schematically in Fig. 3. The quantity c > 0 is introduced

chiefly to remove the moving surface of separation between the rigid

and fluid regions of the medium. This not only simplifies the calcula-

tions, however, but is also more realistic because the stresses now

depend upon the strain-rate in a continuous manner. Under prolonged

loading this model permits deformation to occur even for 171 < S, but

the impact mechanism is completed long before such creep effects can

occur.

Alternate forn, that are being considered for the flow-

resistance coefficient include the following

IDI + c S (I, p)

S (I, p) I + In I + S (Ip) ID+}]
IDI +S (I. )

Imax (Do61

w= max (D, IDI) 1 + T In ,ID ) 1  (11)

In the above relations T is the absolute temperature and 6, 0 W1 s 1'
V are experimentally determined material constants; D is given by

0 0

Do 0- exp (-X /T).

Approximate values for these constants and the bases for proposing the

relations (8) through (11) have been presented elsewhere.( 3 )
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One criterion for material rupture may be reduced under the

assumption that the fracture occurs whenever both the pressure is

negative (i0 e. hydrostatic tension exists) and the second invariant of

the stress deviator exceeds a critical value:
p < 0 and I'' T I •-- rc (12)

cr

The critical value of a will depend upon the temperature and theer

length of time during which the stress is applied.

A rational assumption is that the damage suffered by a segment

of the medium is cumulative; that is, in each small time increment

the fracturc will proceed at a rate appropriate to the RtreRs distri-

bution and temperature occurring during that time increment. In the

numerical scheme, however, the stress field is expressed in Eulerian

coordinates, and excessive bookkeeping would be required to account

for the cumulative damage suffered by the material particles. It is

therefore assumed that damage is accumulated only for the time

interval, 6t, corresponding to one time cycle of the numerical scheme.

Under these assumptions the fracture criterion for which there

is apparently the most experimental data for uniaxial dynamic con-

ditions generalizes to give(3)

f exp [ 5t = t 0t I I T I

where to 0, X* and w* are material constants. To determine the point at

which fracture occurs, replace I Ir by its critical value, acr, and

accumulate only for time 6t to get

=cr -L- X T ln (ot/t

In terms of the specific internal energy, the relation is approximated

by
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ac - [ I 300))ln i.].(13)••;): ... • cr = W * " 0 In -

where c is a mean value of the specific heat.

From experimental results over a wide range of stresses and

temperatures Zhurkov (4) has deduced empirical values for these con-

stants for a number of metals. These values as well as an alternate
(3)

fracture criterion have been presented elsewhere

METHOD OF SOLUTION

in developing a finite difference formulation of the equations

governing the axisymmetric impact problem, the extension of an

existing scheme devised for two-dimensional hydrodynamics is a

natural approach. Several methods of treatment have been used for

those problems dependent upon two or more space coordinates. These

variations usually employ (a) Langrangian coordinates in which the

mesh of cells is imbedded in the medium and moves with it, (b) Eulerian

coordinates which are not fixed in the medium but are usually stationary

in the laboratory frame of reference, or (c) a mixed Euler-Lagrange

system which attempts to take advantage of the better features of both

fixed and moveable coordinates.

The chief difficulty with schemes employing Langrangian co-

ordinates is the large distortion which is involved in the present problem.

The Eulerian systems have the disadvantage that to account for the

projectile-target interface and the free surfaces of the projectile and

target is extremely difficult. These are the basic reasons for the

decision to adopt the particle-in-cell method which has been developed

at Los Alamos(5.6.7) and to extend it to account for the resistance to

flow and fracture. A step-by-step prescription for carrying out the

numerical calculations for the visco-plastic equations has been pre-
S,(8)

sented previously ; here the scheme will only be described in general

terms.
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An axial section of the projectile-target configuration is I

superposed by the fixed space mesh used to describe the subsequent

motion of the configuration. On this plane of symmetry the cells of

the space mesh appear as rectangles with sides of length 6 r = h by

6 z = k; each cell is actually a toroid of revolution, Fig. 4. The pro-

jectile-target material is represented on this axial plane by discrete

mass points called "particles"; each particle is actually a circle about

the axis of symmetry. Each particle is assigned a fixed mass whose

value is proportional to the radius of the cell within which it lies

originally, i.e., at t = 0. The r and z coordinates of each particle

are stored in the computing-machine memory. These are changed in

time in accordance with the subsequent motion of the material through

the fixed mesh of computational cells. The conservation of mass is

therefore automatic.

At the end of the nth time cycle the mass (equal to the sum of

the masses of the particles located in that cell) velocity, pressure, and

specific internal energy are associated with each cell. To obtain the

corresponding data at the end of the (n + 1)th time cycle one makes a

three-phase calculation. In Phase I the cellwise field functions are

changed neglecting the motion of the medium. Thus, the transport

terms are dropped from the momentum and energy equations and (3),

(4) and (5) are replaced by difference formulas for computing tentative

new cellwise velocity components and specific internal energy. In

Phase II the mass particles are moved according to the velocity of the

cell in which it is located and the velocities of the neighboring cells.

In moving, the particles carry their share of the cellwise energy and

momentum with them; the field functions are then recalculated to

account for the motion. In Phase MI various functionals are computed

which furnish checks on the accuracy of the calculations. For example,
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TO P CONTINUATIVE BOUNDARY

(2 2 2 .... .....2 !1) (2) (3) ..... .......

4d 4
. 0

I- eld NO.OF CELL COLUMNS IN PROJECTILE ca
ZLI .9= NO.OFCELL ROWS IN PROJECTILE U.
PROJECr-1k >

> /-TILE/ )9: NO. OF COLUMNS IN MESH

y z NO.OF ROWS IN MESH :

00 z
() TARGET/// / 0

x 0

(Y ' ) (Y2- ) ( ') .......... .. ...... ...... t.......... .... • ') ¢ '
(y• ) (y ) (y ) ... ............ .. ' ..... ........... •• ) •

BOTTOM CONTINUATIVE BOUNDARY

Figure 4. Rectangular mesh superimposed on the projectile-target con-

figuration at instant Af impact (t = 0).
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books are kept on the total axial momentum and total energy of the

system. These quantities are rigorously conserved during the cal-

culations of both Phases I and II (no truncation error). ..

No mass particles are permitted to cross the left boundary

of the mesh (axis of symmetry) as this would violate the assumption

of rotational symmetry. No such restriction applies at the top,

bottom, and right boundaries of the mesh; these are treated as

"continuative boundaries". Accordingly, the boundary cells along

these three sides are treated as interior, being bounded on the outside

by cells with identically the same properties in any instant as their

adjacent interior neighbors.

Special considerations are required when computing in a cell

adjacent to an empty cell (if the cell itself is empty no calculations

are made). The velocity of the empty cell is then assumed to be equal

to that of the cell being computed; the pressure and the viscosity stresses

are assumed to vanish on the boundary of an empty cell.

At the end of Phase II of each time cycle, a tentative value for

the pressure to be used in the next time cycle is first computed for

each cell ()
o0.

p5ý f(10 i I J if a 1

i i i 1 0
0 (14)

h I

P

0

Then the hypothesized fracture criterion is applied to the cell and if

satisfied one sets pJ = 0. If the criterion is not satisfied the metal
1 SJ

remains a continuous medium in cell ( i) and one sets p i .p

For example, if the fracture criterion of (1Z) and (13) is being

applied one sets
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p..=0"j.JJ -0 1I - .o. (15) '_c

= pi otherwise

If the material in a cell does satisfy the fracture criteria then that

cell is tagged and given special consideration in the subsequent Phase I

calculations since the material within it is no longer part of the con-

tinuous medium. In calculating neighboring cells it is treated in the

same manner as if it were empty; the field variables in the cell itself

are left unchanged. The tag is removed at the end of the Phase I

calculations.

As time goes on, the size of the crater increases and the stress

wave propagates further into the target. More target material must

then be covered by the calculation mesh than is necessary at earlier

times. As the dimensions of the disturbances increase, however,

sufficient resolution may be obtained by using a larger net size, in

both time and space, than was permissible during the initial stages of

the process. It is therefore advantageous to repartition the system

during the course of a computational run.

The method of repartitioning used 4is to double the linear

dimensions of the cells, i.e., four of the original cells are combined

to form a single enlarged cell in the new mesh. The area covered by

thc mesh is thus increased fourfold without increas ng the number of

cells in the mesh. To assure that the storage capacity of the computer

is not exceeded, it is also required that the total number of mass

particles in the new mesh is no greater than in the original mesh. The

method provides for this if the original number of particles per cell,

N, is a perfect square. The procedure is illustrated in Fig. 5 for the

case of N = 4.
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2h

2k 3 4

a (= 1,2,3,4) DENOTES
ONE OF THE FOUR
SUB- CELLS WHICH
TOGETHER FORM THE
NEW ENLARGED CELL

Figure 5.

Schematic representation of the repartitioning in which the mesh
area is increased four-fold.
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COMPUTER PROGRAM (PICWICK)

The computational procedure taxes both the memory capacity A
and the speed of most computers. The optimum programming logic

depends upon the trade-off between computation time and storage

capacity of the particular computer used. In developing PICWICK, a

computer program for the IBM 7094 that uses only internal storage,

careful use was made of movable storage. This was found to be very

important because the nearly optimum resolution thus obtained is

apparently just sufficient to make useful calculations possible without

resorting to super computers, such as Stretch, or time consuming

external memory.

Mass, energy, and axial momentum are conserved during the

repartitioning process, but losses from the mesh prior to repartitioning,

either by particle motion or by diffusion across the mesh boundaries,

cannot be recovered. If the repartitioning is delayed too long the

loss of mass, energy and momentum across the continuative mesh

boundaries will introduce large errors. To avoid this PICWICK has

been written to automatically repartition whenever the pressure in a

given number of cells adjacent to the continuative boundaries exceeds

a specified value.

The basic particle-in-cell method of computation is inherently

unconditionally unstable, but the amplitude of the oscillations about

the true solution is bounded. Moreover, the amplitude may be made

as small as desired by taking the time increment of each computational

cycle, 6t, small enough(9). The stability limit on 6t is often more

restrictive than the accuracy requirement on 6t. In some cases the

preferred method of merely choosing 6t very small may require too

much computer time.
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In order to allow for adding stability to the difference equations
(7)used in Phase I, an "artificial viscosity" of the form(7

q (au 0) 6 ax

has also been included. Here a and u are constants to be determined
0

by numerical experiment. This device is more often necessary when

using PlCWICK for the special case that the flow-resistance coefficient

is set equal to zero, pi = 0, i.e., when considering the perfect fluid

model. With p > 0 the required stability may be produced by the

components Srr and Szz of the tensor Sij, provided ; > 0. 25 (a u ) p 6x.

The presence of the real viscosity has other and more "real"' effects.
Its presence affects not only the other components of S but also con-

tributes to P in a significant fashion. Both real and artificial viscosities

were also included in the earlier one-dimensional calculations with the

visco-plastic model~1 ' 2)

The stability problem is illustrated by the first series of

computer results presented in the next section.

CALCULATED FLOW FIELDS

Calculations using PICWICK are currently in progress. In

the p.-esent paper computed flow-field& are presented for the following

four impact situations:

(i) Iron projectile of height 0. 8 cm and diameter 1. 6 cm

impacting a thick iron target at v = 0.863 cm/p-sec.

(ii) Lead projectile of height 0.8 cm and diameter 1. 6 cm.

impacting a thick lead target at v = 0. 526 cm/p -sec.

(iii) Lead projectile of height 0.8 cm and diameter 1. 6 cm

impacting a thick lead target at v 0 =2.21 cm/&-sec.

(iv) Iron projectile of height 0. 8 cm and diameter 2. 0 cm

impacting a thick iron target at v = 0. 863 cm/14-sec.
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In cases (i), (ii), and (iii) the iron and lead are treated as a

perfect fluid, i.e., the special case i = 0 and cr = 0 16 treated. In±

case (iv) iron is treated as a simple viscous fluid with 1A = 0. 8 megapoise

andcr =0.
cr

In all of the calculations presented nine particles per cell were

used and, initially, the dimensions of each computational cell were

h = k = 0. 1 cm. No artifical viscosity was used, i.e., q = 0. The

computer results depicting the flow fields at various stages of the

cratering processes are presented in Figs. 6 through 17. An arrow

in the figures represents the velocity vector for the material particle

located at its tail at the indicated instant of tL.ie after impact. In

each figure the initial impact velocity vector, denoted by v, and the

original projectile dimensions are also shown for scaling purposes.

Isobars are superposed on the flow fields.

It takes a finite time for the rarefaction wave to propagate to

the axis of symmetry from the edge of projectile-target interface where

it is generated. Until the rarefaction region arrives the flow remains

one dimensional. From symmetry it is clear that where one dimensional

flow persists, the interface will be located a distance of v t/2 below
O

the original interface position.

The calculations for iron-iron impact at 0. 863 cmr/M sec = 0),

case (i), are depicted in Figs. 6 through 9. This sequence of results

is presented to illustrate one of the pitfalls of the basic particle-in-

cell method of numerical solution. In Fig. 6 the flow-field is behaving

correctly and in Fig. 7 an instability is just becoming apparent. In

Fig. 8 the instability has caused the separation of the compressed

behind the shock front into two sub-regions even at the axis of symmetry.

There is no physical mechanism for this effect as no rarefaction wave

has yet progressed to the compressed region.
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[RON V.a 863 CM//SEC

- -j~.Z2,55 ýS 20 TIME CYCL.ES

N- 9 PARTICLE5/CELL

~Psp2 MB

.Figure 6.

Flow field when iron is considered a perfect fluid (jA 0), 0. 255 ASsec
after impact at 0. 863 cm/MA sec.
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Figure 7. Flow field when iron is considered a perfect fluid (JA = 0),
0.3831A sec. after impact at 0.8b3 cm]/Msec.
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rRON V0.' .83 SMf~ EC
ZAt.512. /a5EC 40 TIME CYCLES

~V6 N 9 PARTICLES /CELL

LL

P= MB

Figure 8. Flow field when iron is considered a perfect fluid (p 0),
0524sec. after impact a~t 0.8b3 cm/MAsec. Note the

separation of compressed region behind shock wave into
two subregions.
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IRON Y,, .863 E

Hi 60 TIMEF CYCLES
I II Vo I h k ICI1

V0~~ h-k-.1C

N a.9 PARRTICLE$/CELL

S. /"' / / • '. , / l .7-

r:~~a MB p.5M

p=4 148

Pa,5 MB

Figure 9. Flow field when iron is considered a perfect fluid (J4 = 0),

0.7691A sec. after impact at 0.8b3 cm/A sec. The instability
persists but remains bounded. It is apparent that the
instability would not be detected if only the flow field were
studied without observing the pressure field.
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The choice of 6t 0.0128gsec is therefore too large

for sufficient accuracy. The instability persists in Fig. 9.

but has not become significantly worse; this indicates that the

instability is bounded.

The calculations for lead-lead impact at 0. 526 cm/M sec, case

(ii), are depicted in Figs. 10 through 13. Lead is more compressible

and has a lower sound speed than iron. The choice of bt = 0. 021 p sec

was found to be sufficiently small for accurate results to be obtained in

this case. The sequence of figures illustrate the transition from one-

dimension flow near the projectile-target interface to axisymmetric

flow in which lateral flow and the ejection of material from the crater

by backward flow are the predominant features. Figure 12 is of

special interest as it shows the shock front just after it has reached

the bottom continuative boundary (denoted by the short dashed line at

the bottom of the figure). Five time cycles later the mesh was auto-

matically repartioned. Subsequently the time step is also doubled. In

Fig. 13 the flow-field is depicted 5.39 jssec after impact.

The calculations for lead-lead impact at 2.21 cm/1sec, case

(iii), are depicted in Figs. 14 through 16. The choice of 6t = 0. 005,

dictated by our stability and accuracy requirements, was found

satisfactory. After only I 1z sev from the instant of impact the top of

the projectile has already penetrated below the original target surface

and the backward flow of the material from the rear of the projectile

and from the edge of the forming crater are well under way.

Figure 17 is included to demonstrate the ability of PICWICK

to handle physical models other than perfect fluids, case (iv). At this

time no long runs have been made with g > 0, but they are planned.
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Figure 10.

Fl1ow field when lead is considered a perfect fluid (A=~ 0), 0. 633 $Asec.
after impact at 0. 526 cm/Mu sec.
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LEAD V• .526 ZA C/ýASEC
-At- 2.96/4SEC 14o TiME CYCLES

" h-k -. I CM
SV N .9 PARTICLES/CELL

' '4

LL

Figure 12. Flow field when lead is considered a perfect fluid (M = 0),
2.961A sec. after impact at 0.526 cm/A sec. The shock
front has reached the bottom continuative boundary which
is denoted by the short dashed line in the lower part of the
figure. 132
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Figure 13. Flow field when lead is considered a perfect fluid (IA 0),
5.39 IAsec. after impact at 0. 526 cm/MAsec. The
computational mesh has been repartitioned.
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Figure 14.

Flow field when lead is considered a perfect fluid (4 = 0), 0. Z51 ;sec.
after impact at Z. 2 1 cm/l sec.
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Figure 15.

Flow field when lead is considered a perfect fluid (As=O), 0. 351 A sec.
after impact at 2.21 cm/M sec.
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Figure 16.

Flow field when lead is considered a perfect fluid (14= 0), 1. 004 p sec.

after impact at 2.21 cm/;& sec. 136
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Figure 17. Flow field when iron is considered a viscous fluid (H = 0. 8),
0. 386 j~sec. after impact at 0. 863 cm/14 sec.
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CONCLUSIONS

A computer program (:PICWICK) has been developed which is

capable of comparing various proposed equations of state, flcw-

resistance coefficients, and fracture criteria. Some choices for these

relations have been briefly discussed and the computational method on

which the computer program is based has been described. Up to the

present time, however, the calculations have been made principally

for the special case in which the impacting bodies are treated as a

perfect fluid, i.e. j 0 and = 0.
cr

Some important observations can already be made from the

flow-fields plotted from these early results. It was demonstrated

that unless care is taken significant errors can result from a bounded

Instability which is inherent in the basic numerical method. In Fig. 8

'this manifaeted itself by a separation of the compressed region behind

the shock front. It is of interest that this same type of behavior is
(10)

apparent in the flow-field depicted in Fig. 7 of Bjork's paper

It is also important to notice the rapidity with which the

intensity of the shock is decreased by the geometrical divergence of

the problem. Comparison of Figs. 10 and 13, for example, shows

that the shock strength decreased from 1. 8 mb to 0. 3 mb in only 5. 391sec.

The cratering process is really just getting started; it will continue

for well over a hundred microseconds with ever decreasing shock

strength. Pressures operative immediately after impact are clearly

not representative for the greater part of the cratering process and

cannot serve as a valid basis for neglecting the strength of the target.

The calculations for the cases (ii) and (iii) are continuing.

Cases (i) and (iv) are also being run with smaller values of 6 t. A

series of calculations in which the resistance to flow and the fracture

are also included is planned.
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ABSTRACT

Finite difference techniques are used to solve the continuum equations

in two dimensions with axial symmetry. The Tresca yield assumption is

used in an equation of state that describes elastic, elastic-plastic, and

hydrodynamic flow. Problems are presented where stress waves are in-

duced in solids from the detonation of high explosives, and from the impact

of two materials. The effect of strength of materials on wave shapes and on

exterior boundaries is shown as a function of time.

142



THE CALCULATION OF STRESS WAVES IN SOLIDS

Mark L. Wilkins and Richard Giroux

Lawrence Radiation Laboratory, University of Californda

Livermore, California

March 11, 1963

INTRODUCTION

In recent years experiments on impact loading of metals have

demonstrated the existence of elastic-plastic effects in the hundreds of

kilobars range (Ref. 1). The implication is that the hydrodynamic model

is not sufficient to describe the stress behavior of metals at these pressures.

To study the effects of anisotropic stresses in a material, a computer pro-

gram, HEMP code, has been developed to solve the continuum equations in

two dimensions with axial symmetry.

While experiments have demonstrated the existence of a departure

from hydrodynamic theory at relatively high pressures, the rheological

equation of state at these pressures is not well defined. The equation of

state used here will provide a theoretical description applicable to a wide

class of practical problems, but uses simple idealizations of the outstanding

features of the real phenomena. It is felt that experiments in conjunction

with calculations will be an effective way of determining properties of mate-

rials at high pressures.

This article is arranged in three parts:

Part I Description of the HEMP Code

Part II Discussion of the Equation of State Used

Part III Application to Stress Wave Problems

PART I. HEMP CODE

The equations listed below are solved in Lagrange coordinates by finite

difference techniques. Sliding interfaces are allowed between an elastic and

a hydrodynamic region, but not between two elastic regions. However, an

elastic region may slide along a fixed boundary.
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-iThe strgaae are decomposed into a hydrostatic coriRonert P (all t btee

stress- components equal aan_ a-nisotroop c•roib~z~i n f f,--•- -L ) .
which describes the resistance of the material to shear distortion. The stress

deviators are calculated in terms of an incremental stress resulting from an

incremental strain. The time derivative of the stress-strain relations [Eqs.

(4)) gives the desired ordered sequence and provides the integrating factor when

the material element changes from an elastic to an elastic-plastic state (Ref. 2).

It should be noted that the time derivative does not mean that the stresses are

rate dependent.

The stresses are incremented in the X-Y coordinate system and must be

corrected for any rotation in this plane that may have occurred during the interval

from n to n + I (Ref. 3). This comes about because, if an element rotates through

an angle w in the interval from n to n + 1, the strsles• at n will no longer be re-

ferred to the X-Y coordinate system in their ncw position. Therefore, the

stresses at n must be transformed to the X-Y coordinate system by a rotation

through the angle w (see page 94, Ref. 4). The transformation equations result

in a correction & that is added to the stresses of Eq. (4). The angle w is given

by: sin w = 1/2 la/ax - 8x/a.v '-

Basic Equations of the HLM1-. Code

(1) Equations of motion in X-Y coordinates with cylindrical symmetry

about the X = axis:

aT 8T T
xx + Xy 00 pi

a, - yX Y pB

de (
_- yyýd y-. (P + q)
E deT.- -(P + q)

1yy yy
~2edee, ( q)
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"(2) Equation of continuity:

(3) Energy equation:

e • + de " + xy•--(P +q) '+ VL xx xx + ry YY •ee + 0 0 + Txy c •y

(4) Artificial viscocity:

q C po (V/V)2 A/Vq=0

where

0
C = constant

A = zone area

0
p = reference density.

(5) Equation of state:

de. = -ix - + 6

de yy - - - +6
Stress V1 yy
components .3 e

where

S= shear m odulas

6 = correction for rotation (see text)

Velocity xx= = Y"

strains yy "+
ST3ýyxy •'U B

Hydro- [P = a(I 1) + b(T1 - 1) + c(N - 1)3 + dr1E
static 0
pressure 1/V p/p
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Tresca yield conditionS. .. ...... ~ ~des- s de~m n "
(r. - .r < 0

where

- 0 = shear strength.

de dde-max and dCmin are the mnaximum and minimum of the thrce principal
stress deviators deOr de de

T?~ and a

Notation;

X, Y space coordinates

SX velocity in X dii-ection

Y velocity in Y direction

xx,, 1yy' T0of T total stresses

de rxx de TyI de a' 0  stress deviators

Exx IyyI C go, Cxy strains

P hydrostatic pressure

V relative volume

E internal energy per original volume density.

The dot over a parameter significs a time derivative along the particle path.

PART II. EQUATION OF STATE

This discussion refers to Eqs. (5) of Part I.

The elastic range is described by Hooke's law written in terms of natural

stress-strain. At the elastic limit, the yield condition of H. Tresca (1868) is

used since it has been very successful in describing the flow of ductilc ,maetals.

This assumption states that the plastic flow begins when the maximum shear

reaches the resistance of the material to shear T0 . The yield conditions must

be independent of the coordinate system. In each cycle, therefore, the three
stress deviators de de and de are transformed to the principal stress

de. decoordinate system, giving the three principal stress deviators e 1 . a?, and
dee- 3 . The maximum shear is given by -r =(-max - qmin)/2 (Ref. 4), where

rmax and a min are the maximum and the minimum of the three principal stresses.

The projections of the radius vector in the principal stress coordinate system are

adjusted such that r < 0.-r The stresses in the X-Y coordinate system will then

be adjusted in the same way by the transformation equations.
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SThe.obtained-£rp H'

assumed that one-dimensional Hugoniot data measure the hydrostatic pressure

plus the shear distortion stress. Using the shear strength at the elastic

limit for aluminum, T0 = 0.00149 mb calculated from C. D. Lundergan data

(Ref. 5) and the Hugoniot data of J. -M. Walsh (Ref. 6), the equation of state for

aluminum becomes:

0 .= u.00149 mb

= U.248 mb

P = 0.73 (T - 1) + 1.72 (ij - 1)2 + 0.4 (n - 1)3

0
p =2.7

n1 = p/p
0

.

We are considering that the only motion is in the X direction. The

constants in the pressure relation have been chosen such that the total stress

= -P + decrxx reproduces the elastic data up to the Hugonlot elastic limit.

In terms of the Lanm constants, X + R, the equations give: -Zxx = (k + 2ýL) AV.

Beyond the elastic limit the equations reduce for the one-dimensional case to:

-Ex, = +P + 4/3 *r0 and -Exx reproduces the Hugoniot data. The equations

[Eqs. (4)] will give as an unloading path -;,xx = +P - 4/3 r.0.

The above description allows the material to unload first elastically and

then plastically along a curve offset below the hydrodynamic pressure. Calcula-

tions show that even though Tr0 is small compared to a given total stress "2xx'

the effect on the wave structure is very pronounced. This is because rare-

factions behind a Rhoclt wave ran travel faster than they would with an all-hydro-

dynamic material (see Fig. 1).

The value of To can be made a function -_Af prciz-urc to du_ -,ribe the fact that

some materials can support more shear with increasing pressures. If 7 0 is set

to -, the program will describe a completely elastic case. If r" is set to zero,

the stress deviator will automatically be set to zero and a hydrodynamic descrip-

tion will result. This would be the case when distortion is taking place at low

pressure and enough work has been done to melt the material.

In resum6, it is seen that the one-dimensional Hugoniot measurements,

together with a shear modulas 4 and a shear strength To, have been extended to

describe a three-dimensional stress system by means of Eqs. (4). The yield
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point from elastic 1u.pastic flow is deter~~db~
_he e elastic-plastic t

when Tr0 is set to zero-.- The-latter yield criterion could be based on the

internal energy in a mass element.

PART III. APPLICATION TO STRESS WAVE PROBLEMS

Figure I shows the stress, -E"xx as a function .f position X in an

aluminum target plate for different times. The stress was a result of a flying

aluminum plate with a velocity X = 0.08 cm/A.sec striking the target plate. The

elastic precursor can be seen travelling in front of the plastic wave. The step

behind the plastic wave is a regiult of the elastic relief wave travelling faster

than the plastic relief wave. The relief waves result when the reflected impact

shock reaches the rear surfaces of the flying plate. The calculation was made

using the constants given for aluminum in Part II (TO = 0.00 149 mb) and the

equation of state of Part I [Eqs. (5)].

Figure 2 shows the result of a cylindrical charge of high explosive deto-

nated in contact with an aluminum plate. The point of detonation was the upper

right-hand corner on the line of cylindrical symmetry (upper horizontal line).

The high explosive was PBX 94/04 and the aluminum equation of state used

"10 = 0.00149 rob.

Figure 3 shows the same problem as above, but with an arbitrary shear

strength To = 0.010 rob.

Figure 4 shows the stress waves in an all-elastic medium resulting from

a spherical detonation. The explosive (Comp B) was originally in a I-cm-radius

sphere and was detonated from the center. The elastic material extends from I

to 5 cm and has the elastic parameters for copper. The figure shows stresses

versus radius. To the left of the interface, shown by the dotted vertical line,

is the hydrodynamic pressure of the high explosive. To the right are the radial

and tangential stresses plotted positive in compression. The stress connecting

to ti... 'gh-cxplosive pressure is the radial stress. An additional shock

originating from the hydrodynamic spherical cavity can also be seen. The

point of interest here is that the radial stress goes into tension behind the spher-

ically expanding frunt. The head-on interaction of two spherically expanding

shocks (for example if Figs. Z and 3 had high-explosive charges on both sides of

the aluminum) could result in a fracture when the two tension tails met. This

geometry has been studied experimentally by C. R. Cassity (Ref. 7).
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Figure 11

Timie sequence (in microseconds) of a cylindrical HE charge
detonated against Al with sh~ear strength TP - 0.00149 mb.
The shaded. zones give the position of the stress front.
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Time seq~uence (in micoroseconds) of a cylindrical HE charge
detonated. against Al vith shear stren~gth 1, - 0.010 Mb.
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- -. I_-Figure 5 shows the impact of a flying iron cylindrical disk striking an
aluminum target. The aluminum shear strength To 0.00149 mb. -The upper

horizontal line is the axis of cylindrical symmetry.
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A HYPERVE LOCITY IMPACT MODEL
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ABSTRACT

A simple mathematical model of crater formation by a
hypervelocity impact has been Oeveloped. The model predicts
the depth and duration of penetration into thick ductile
targets by compact deforming projectiles which are small
compared to the final crater volume.
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The craters formed in thick targets by compact projectiles,
at velocities high enough to destroy the p~ojectiles, are

TZ-- -frequently observed to be approximately hemi'spheri6al, Based."
on this observation and the assumptions that the particle
velocity field about a growing crater is similar to that of a
translating spherical boundary, and that crater growth is
resisted by a similar stress distribution to that of infinite
solid exposed to hydrostatic pressure on a spherical internal
boundary, a mathematical model of the penetration, P, into a
material of density,00, and strength, S, formed by a projectile
of mass, m, and velocity, v, has been developed.

A sphere of radius, r, moving in a fluid at rest at infin-.
ity, has an additional apparent mass equal toF2/3Trr3 , due to
the kinetic energy supplied to the flow about the sphere.

An infinite solid loaded internally on a spherical surface
by a normal pressure, p, develops a tangential tensile stress
on the loaded surface. if p = 2S plastic flow occurs. If the
target is semi-infinite with a hemispherical cavity forming on
the surface the projected area of the cavity being Irr 2 , the
force normal to the plate is pfrr = 2lrr 2 S. The work done in
plastically forming a hemispherical crater would then be the
flow pressure p integrated over the crater surface 21'r 2 and
integrated again along r

W =f2S(21yr2)dr = 4/3 1rr 3 S. (i)

Assuming impact has occurred the momentum of the system
is (m+P2/3irr 3 )P and the mechanical resistance to penetra-
tion is the tension on the yielding crater surface 2irrr2S.
Since there are no external forces

dE [(m+I2/3 r3) PJ + S2 frr 2 = 0. (2)

The case being considered is that of P r and = r

(m+ 02/3irr 3 )r +i'2.7rr2 i 2 +S21Tr 2 = 0. (3)

(•+2/31fr 3 )fd1 + ( 02 412 Or11dr = 0. (4)

(M+2/3.frr3)(t2+S)1/2 K. (5)

The constant of integration, K, is evaluated by equating
the initial projectile kinetic enerQy, E, to the sum of the
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.... kinetic energy and the work of deformation of projectile and
_ target when r = a. The parameter, a, is defined as the radius

of a sphere of target material having the 5ame mass as th - :•'
projectile. Since equal though oppcsite forces are acting on
the projectile and target, the work of initial deformation
is assumed to be equal.

M v2 m :2 + l/2e2/3ffa3t2 + 2(4/3%a 3 S) (6)

but by the definition of a, 02/3 fra 3 - m

so that at r = a

2 = 2/3(v2 - 40) (7)

and K = 3/2 M(2/3 v2 - 5/3 S) (C8)

The maximum value of r occurs when E = 0; therefore
since the final penetration is P = r max and combining equa-
tions (5) and (8) with i = 0

S 2/3v2 2 / 3 /3W 77-r (9)

For a spherical projectile, and a target of the same density
the penetration in calibers

.674 r 2.5) 82- 1(10)

Some representative predictions of this model are
tabulated below.

S Velocity in KM/sec for

dynes/cm2  KM/sec P/d=l.4 P/d=l.8 P/d=2.3

Low alloy steel 7x10 9  .3 3.0 6.0 12.0

Mild steel 3x10 9  .2 2.0 4.0 8.0

Aluminum 24ST 3x10 9  .33 3.3 6.6 13.2

Aluminum, soft 5x10 8  .13 1.3 2,6 5.2

Lead 108 .03 .3 .6 1.2
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can.If P is known the duration T, of the cratering process
_cal be computed using equation ý5) and the condition that
P = r when r = 0.

2 1/2 +2/ 1 (11)

(M+2/3 frr3) T)

Separating variables:

.4 P dr
T = a;32 (12)

T(2a3 Pj .. i
(2a 3 +r3)2-

If the projectile volume is small compared to the final crater
volume, i.e. P»>>a 3 , (12) approaches

T P lf 1 (-r/p) d(r/P) (-1/2)!(-1/3)!•l_(r/l6 = \-lO).

= . 3(13)

As an illustration equation (13) predicts that hypervelocity
ci.terinq of lead will persist for about 120 microseconds
per cm. of final depth while the duration in a hard aluminum
alloy such as 24ST will be about 11 microseconds per cm.

This model is considered applicable where the initial
inertial pressure 1/2&v 2 is an order of magnitude greater
than the mechanical strength of the materials of both
projectile and target. There are ddditional limitations
in that the crater shape was initially specified rather
than derived and some phenomena which would be especially
significant for brittle targets have been neqlected.

161



A BLAST-WAVE THEORY OF CRATER FORMATION
IN SEMI-INFINITE TARGETS't

by

William J. Rae'•' and Henry P. Kirchner

Cornell Aeronautical Laboratory, Inc.
Buffalo 21, New York

This research was sponsored by the National Aeronautics and SpaceAdministration under Contract No. NAS 3-2121

Research Aerodynamicist, Aerodynamic Re search Department

Staff Scientist, Computer Research Department

163



BLAST-WAVE THEORY OF CRATER FORMATION

ABSTRACT

An analytic formulation of the problem of crater formation is presented, .

using the methods of blast-wave theory. The approximations on which this

approach is based are chiefly concerned with the self-similar, or progressing-

wave nature of the solution, with the type of state equation used, and with the

extent to which the conservation of energy and momentum can be fulfilled.

These approximations and the limitations which they impose are reviewed,

particularly as applied to the problem of shock propagation in solids. Neglect

of momentum conAervation is shown to be a good approximation, but use of the

Mie-Griineisen equation of state is found to be largely incompatible with the

assumption of similarity. An approximate nonsimilar solution for impact-

generated shock propagation is derived, and displays excellent agreement with

observed shock-wave trajectories.

To derive a penetration law from any solution, some point in the trajectory

must be chosen as the crater radius. The strong influence of this choice on the

pnetration law is discussed, and it is argued that the target strength should

play a role in its determination. A simple choice of the crater-formation

criterion, related to the intrinsic shear strength of the target, is utilized in

conjunction with the nonsimilar solution, to derive a penetration law which

correlates a large amount of data.
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INTRODUCTION

The fluid-mechanical approximation pioneered by Bjork is commonly - -

accepted as a proper description of the early phases of target deformation

due to hypervelocity impact. In such a model, the motion of any small mass

element is assumed to be governed by the pressures acting on its faces,

while resistance to shear deformation is neglected. The differential equations

that govern such inviscid motion are the usual Euler equations expressing the

conservation of mass, momentum, and energy, together with the equation of

state of the comprcssible medium. These differential equations contain two

spatial variables, as well as the time, and the problem of solving them is ex-

tremely difficult. To date, the only solutions that have been reported are the

numerical results of BJork. 1,2

The purpose of this paper is to present an approximate analytic solution

of the same set of equations. The solution is achieved by adapting the tech-

niques of blast-wave theory, which has produced such rich dividends in the

study of various high-energy fluid-flow problems. 3,4.5 The spirit of the

approach is to simplify the analysis wherever possible by making certain

approximations to the true physical situation. We seek generality and sim-

plicity in the results. Some exactness in specifying details of the problem

must, of course, be sacrificed.

The blast-wave theory has been developed, over the years, as a means

of describing various high-energy gas flows. In order to apply such a theory

to the problem of cratering by high-speed projectiles, each of its approxima-

tions must be carefully examined in this new context.

The most important approximations can be grouped into three main
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categories; first, those concerned with the assumption of a self-similar

form of solution, 'second, those-associated with the eqia t•l-o dist eof'th- ..

medium, and third, those dealing with the extent to which global energy-

and momenturn-conservation conditions can be satisfied. After a brief re-

view of the basic fluid-mechanical equations in Section 1, these three

categories are discussed in dctail in Sections 2, 3, and 4. Following this,

Sections 5 and 6 present two different approximate solutions for the time-

history of the shock as it penetrates the target. Finally, Section 7 takes up

the question of crater-size prediction.

The assumption of similarity discussed in Section 2 supposes that

the flow pattern behind the shock that advances into the target is always

the same, if viewed on a scale given by the depth to which the shock has

penetrated at that instant. This approximation has the effect of suppressing

time as an independent variable, and constitutes a key mathematical sim-

plification. At the same time, it imposes certain restrictions, the most

important of which is that only certain forms of the state equation are per-

mitted. Section 3 discusses the extent to which the Mie-Gruneisen equation

approximates the permitted form. It is found that only the extremely high-

pressure states of a Mie-GrUneisen material fulfill the required form, and

in that range, the true equation of state can be replaced by a perfect gas of

constant specific-heat ratio. In every impact, the shock ultimately degener-

ates to a stress wave, so that the high pressures required for the perfect-

gas approximation are only achieved during a small portion of the process.

Thus, a realistic description of shock propagation in solids requires a

solution which accounts for the nonsimilar nature of the problem.
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To conserve the total energy and momentum of the impacting particle,

the solution must allow for spatial variations in two dimensions, and con--..-.

sequently a set of partial differential equations must be solved. Section 4

describes approximate solutions of these equations along the axis of sym-

metry, and compares these results with those obtained using only one spatial

variable, the distance from the impact point. Solutions with only one spatial

coordinate can conserve only the total energy of the system, and are found to

be practically identical with the more complicated two-dimensional solutions.

A corollary of this finding is that the energy of the projectile is the more im-

portant parameter, its momentum playing only a secondary role. In Section 4,

the physical reasons for this behavior are described, and its implications on

simulation of hypervelocity impact are discussed.

Sections 5 and 6 are devoted to a description of the trajectory traced

out by the shock as it propagates through the target. The classical Taylor

solution for self-similar motion of a shock through a perfect gas is reviewed

in Section 5. With this as a background, we then present in Section 6 an

approximate solution which allows for the nonsimilar nature of shock propaga-

tion in solids. In this solution, the shock speed tends naturally to the stress-

wave limit at large time. Comparisons with experimental observations in

transparent targets, and with Bjork's calctilated shock trajectories, reveal

an excellent correlation over a wide range of conditions. This correlation

uses only the energy of the projectile, and the density and stress-wave velocity

of the target. The fact that data up to an impact speed of 30 Km/sec are all

correlated suggests that impact-generated shock propagation follows essentially

the same mechanism over the entire speed range.

168



BLAST-WAVE THEORY OF CRATER FORMATION ------

To predict crater size, the solution for shock position as a function -7Z

_ of time is not enough. Section 7 points out that an auxiliary criterion is

needed, to identify the point at which the crater will form. The correlation

presented here indicates that the choice of this criterion is the most import-

ant factor in determining the ultimate penetration law. In Section 7, the

question of choosing a proper crater-formation criterion is not settled, but

several choices are discussed. One of these is shown to be capable of

correlating a large amount of data, through proper selection of a certain

constant.

The net effect of these studies has been to reveal the potentialities and

the limitations of blast wave theory, as applied to crater formation in semi-

infinite targets. Considerable progress has been made, notably in establish-

ing the relative unimportance of momentum conservation, and in identifying

the nonsimilar nature of the problem, and its connection with the Mie-

Griineisen state equation. At the same time, a great deal of work remains

to be done in certain other areas, especially in regard to the formulation

of a suitable criterion for crater formation.
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1. BASIC EQUATIONS i "

When a particle strikes a target surface at high speed, large amounts

of energy and momentum are quickly transferred to a very small portion of

the surface. Consequently, a strong shock wave is driven into the target,

generating extremely large pressures, typically measured in megabars.

Because these pressures are so large compared with the material strength,

one is led to the approximation that the impacted medium behaves like an

inviscid, compressible fluid. In fact, the justification for such an approxima-

tion is not provided by the magnitude of the pressure themselves, but must

come from a consideration of their gradients. Consider a small mass element

The net force acting in the x*-direction is proportional to lar - ; thus

the neglect of resistance to shear deformation requires -ft • •a- To

replace this comparison of gradients by a simple comparison of pressure with

strength, is to assume that rates of change in the two perpendicular directions

are of the same order, and that the proper orders of magnitude to use for

and T are the impact pressure and material strength at high strain rates.

There appears to be no reason for doubting either of these assumptions in

the early stages of the impact process. Thus the problem of determining the

response of the target material becomes essentially that of solving the fluid-

mechanical equations (conservation of mass, momentum and energy) together

with the equation state of the medium
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SMass: (1) .

Momentum: (2)

Energy: (3)

Equation of State: (4)

e =

Here, /0 denotes the density, -f the pressure, e the internal energy per

unit mass, A- the entropy per unit mass, and - the velocity vector. The

symbol 19Y is the convective derivative

i(5)

it- U -

in which t is the time and V the gradient operator. It should be noted

that the assumption of an inviscid fluid has been made by setting the right-

hand side of Eq. (2) equal to zero. If shearing forces were to affect the motion,

they would appear in this equation. Consistent with this approximation, energy

changes arising from viscous dissipation and heat conduction are omitted from

the energy equation. In addition, energy changes due to radiation and chemical

change are neglected. Thus the conservation of energy simply states that for

each element of mass, changes of internal energy de. are balanced by changes

in the flow-work term tdý . Alternatively, this condition may be expressed

by stating that the entropy of a given mass element does not change after it

has been processed by the shock.
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i -Finally, it should be noted that the use of an equation of state implies

the assumption of thermodynamic equilibrium.

It is assumed that the target motion is symmetric about an axis normal

to the original target surface. For such an axisymmetric flow, the scalar

forms of the equations of motion in spherical coordinates are

r ( x, y plane is the
target surface)

4-M V.4-4 - 4 ~ (6)

t 4" 14 +- ÷ý- .- (7)
ar r •V 9 r

;ie +-a I " 4 -Z ÷ý - *(9)
ar r~

e =F 0\ (10)

Here U and tvf denote the velocity components in the Jr- and - directions

respectively. Equations (6) to (10) constitute five relations for the quantities

P - , it , W and e . One can also work with the entropy, rather than the

internal energy, in which case the last two equations are replaced by
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The boundary conditions that apply at the shock wave, i.e. at v= k(i

state that the discontinuities in velocity, pressure, density, etc. across the

wave are given by the Rankine-Hugoniot relations. For a shock advancing

into a medium at rest these are

(4= D
at U1p

E -~ (14)

In the analysis of this paper, it is assumed that the shock wave is always

hemispherical in shape as it advances into the target. This assumption is

based on observations of shock shape in lucite6, 7 and in wax8 ' 9 under hyper-

velocity impact conditions. Further verification comes from the nearly
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hemispherical shape of the craters formed at high impact speed.

*At this point, then, the fluid-lrechanica!-problem posed is the solution

of Eqs. (6) to (10), which describe the motion of an inviscid, compressible

fluid, behind a hemispherical shock wave advancing into a semi-infinite

target. Ur

The motion must be such that the boundary conditions (13) to (I5) are satis-

fied at the shock, while along the surface r- ,(9) (whose location is unknown)

the pressure and material density must vanish.

The solution of such a boundary-value problem is an ext.emely difficult
1

task. To date only numerical solutions have been presented. The object of

the present paper is to review the approximations of blast-wave theory and

then to apply them in an effort to derive an analytic solution.
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Z. SIMILARITY ASSUMPTION AND ITS IMPLICATIONS

Mathematically speaking, the most important approximation made in

the blast-wave theory is the assumption that the flow is self-similar, i.e.

the distributions of the various physical quantities (such as pressure, density,

etc. ) at each instant are taken to be the same when viewed on a scale de-

fined by the shock radius at that instant. Thus each quantity, instead of

depending separately on the time and on the distance ' from the impact

point, is assumed to be a function only of the combination . This

reduction of the number of independent variables constitutes a significant sim-

plification in the differential equations that must be solved. The essence of

the similarity assumption is to suppress time as an independent variable. This

is done by introducing the similarity coordinate

r (16)

and by redefining the velocity components, pressure, density, and internal

energy by the dimensionless functions

V.r ( r, 9, k.J 6191 ) (17)

When these relations are substituted into Eqs. (6) to (9) and derivatives with

respect to r and t are replaced in terms of derivatives with respect to

one finds that all explicit time dependence can be suppressed from the

differential equations if one chooses

,.S = t At (18)
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Thus, out of the whole set of solutions of the basic equations, the similarity

assumption restricts us to that subset for which the shock radius is propor-

tional to a power of the time. When this is done the basic equations become

+ + - 2. + -E Cit(19)

7 0+t thr ty 0o + t-ho (20)174

+ + +(21)

The parameter P/ which appears here is for the moment unspecified.

After elimination of time as an explicit variable in the differential

equations, the next step is to see if the boundary conditions are compatible

wvith the similarity assumption. At the shock ( = --7."4 19 4 4¶'

equations (13), (14), (15) and (10) become

Rog) VIA(24)

- 31 (25)

* ~ =F ~ ),.(26)
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The first three of these are independent of the time if the initial pressure

.n the undisturbed medium-. . sl p.. d wt/. which is of

the order of the pressure being generated at the shock. This condition will

certainly be met whenever the fluid-mechanical model is appropriate. Thus

the question of whether a similarity solutio'n is compatible with the boundary

conditions depends solely on whether the form of the internal energy function

: is such as to permit the time dependence to be eliminated from Eq. (26).

Sedov10 has pointed out that this can be done whenever the internal energy

is of the form

e~ (27)

where T) is any function of the density. For such a case, Eq. (26) becomes

~,gJ) ~(,9~~§1 60, ))1 (28)

and all explicit time dependence is eliminated. Thus a self-similar solution

is possible whenever the medium obeys the equation of state (27). In this case,

the boundary values at the shock can be conveniently found by solving Eqs. (23)-

(25) for 40 . ,and interms of

001)=-P(,e (29)

'O7- (30)

When these relations are substituted in Eq. (28), the result is an expression

which can be solved for the density ratio at the shock
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The fact that the density ratio is constant in the fundamental prerequisite for

similarity. The other quantities at the shock are found from Eqs. (29) and (30).

From the point of view of applicatior to shock propagation in solids, the

most important implication of the similarity assumption is its restriction to

state equations of a special kind. In the next Section we indicate the extent to

which real materials are described by such a special family of state equations.
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3. THE EQUATION OF STATE

For-most solids, the equation of-state approriate in the range of-pres-

sures generated during hypervelocity impact is the Mie-Gruneisen relation

e 6, ) - ec __ ) (32)orfp)

where the subscript C denotes the cohesive contribution and where t- is

the Gr{uneisen constant, which depends weakly on f . The cohesive contribu-

tions can be found from measured shock wave data. Along the Hugoniot, Eq.

(3Z) takes the form

-) - PC (33)

Subtracting this from Eq. (32) then gives

e- e ) --- (34)

The Mie-Gruneisen equation can be rearranged as

e . t - o)(35)

where

r(36) r(3)

By comparison with Eq. (27), it can be seen that only the leading term of

Eq. (35) can be accommodated in a self-similar solution. Such a solution

will therefore be valid only when the pressure is sufficiently high that /4)
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is small in comparison with the leadig" terin. In fact, every impact will span

-a time interval-dur-ing which. thisapproximati=1a"i:s_ "__Nthmr=eite . ._ . : -"

pressures at which &ý) is too large to be neglected are nevertheless suffi-

ciently high that the compressible-fluid approximation is still well justified.

Thus the similarity solution can describe only the early phases of the fluid-

dynamic process. A proper description at later times requires a nonsimilar

solution which accounts for the presence of the term 4(?) For the moment

we defer this somewhat more difficult problem, and examine what can be done

with the similarity solution itself, keeping in mind that it will apply only to the

earlier stages.

Some of the theoretical analyses of shock waves in solid media 1 use the

approximation that the state equation can be represented by that of a perfect

gas with constant specific-heat ratio , namely

= (37)

For this case, Eq. (31) reveals that the density ratio at the shock has the

constant value 4'9' ) -+ --

The use of a perfect gas may be viewed as an approximation to the leading

term of the Mie-Gruneisen equation, if the Grýneisen factor is re-

placed by the constant value 1-1 . This approximation, with _( chosen in

the range from 2 to 4, amounts to a high-pressure approximation to the Mie-

Gruneisen relation, and it makes available all the results of the extensive
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literature dealing with blast waves in perfect gases. It should be borne in

mind, -Of. course, that the similarity's6lutidi'isiodTY lfrfitedt-r-th/ e-df-6tions-

made with a perfect gas model. The variation of r could be accounted for,

but is neglected as a matter of convenience. When the perfect-gas approxi-

mation is made, the energy equation becomes

4- 4- t4 (38)

In terms of the similar functions, this is

In addition to this identification with the Mie-Gruineisen equation, a

perfect-gas approximation may also be examined by seeing how accurately it

represents the isentropee of a given material. This is done in Reference 13

for the case of iron, where it is shown that the approximation of a constant Y"

is satisfactory for describing the high-pressure states of iron as long as the

function & () does not become significant.

Section 5 below gives a description of shock propagation due to hyper-

velocity impact, based on the perfect-gas approximation throughout. In

Section 6, we present a solution which accounts for the influence of the non-

similar term 6 ý) in an approximate way. In addition, Section 6 in-

dicates work currently in progress, which properly accounts for the

nonsirnilar effect.
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4. CONSEVAT ION OF ENERGY AND MOMENTUM

The total energy and momentum of the-system must-be conserv.ed, aa_ -" -

may be confirmed by forming the proper volume integral of the vector equa-

tions of motion, Eqs. (1) to (3). The actual integrals, whose values must be

constant, may be derived as follows: Consider as the mass element a ring

of volume rdr 49 .2irr¢ si . The total energy E_ and momentum P are

E [ei-j(- ')} ./. L2-rr' slye drd

o o

fj(G fC4SZrrr' sirli 9rd&
0 (41)

/ _ k R S' o 56 a fCs 0 -• s, Sid
Here we encounter a fundamental difficulty. If we are to have a self-similar

solution, the differential equations require #e,=it. However, a single value

of A/ will not permit both of the relations above to be independent of time.

Constancy of energy can be achieved only with A/ = 2/5, while momentum con-

servation requires Al = 1/4, and in either case the parameter A is used to

match the quantity being conserved. Thus it appears at first glance that a

satisfactory solution cannot be achieved under the assumption of similarity.

Reference 13 describes one method for overcoming this difficuity. The essence

of the idea is that A/ is determined by a totally different consideration, and

a second free parameter is introduced in such a way that both conservation

conditions may be satisfied simultaneously.
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.... IIt is clear, pf %ourse, that any solution which hopes to satisfy both - ._-

-conservation conditions simultaneously n-ikit flape--prdviiMon for mA~s ejec- - -.--.- -

tion from the expanding crater. Consequently, a solution which supposes

that the flow is one-half of a spherically symmetric disturbance (ignoring

variations in the 6 - direction) cannot satisfy momentum conservation. On

the other hand, such solutions are considerably simpler than those which per-

mit variations in the 9 direction. In the remainder of this Section, we first

describe the symmetric solution, and then take up the question of approximate

solutions in which provision is made for mass ejection. An important conclu-

sion emerges from the comparison of these two, namely, that the vastly

simpler spherically-symmetric solution is for practical purposes identical

with the more complicated solution which allows for mass ejection.

When the flow is spherically symmetric, ar and all derivatives with

respect to L vanish, and the similarity equations become ordinary differen-

tial equations. Denoting the ordinary derivative with respect to 4 by a

prime, these are

/ + 2.-(42)

-1- 4(*-) 4 L 0 (43)
4 (44)-

The parameter 1( may be thought of as related to the Grineisen constant,, as

mentioned earlier. These equations may be solved explicitly for the deriva-

tives in the form
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,-_.A.l (• + JZ 2. _ .-
q•'=~A 1? ("•'•• 46)

'= (47)I (c.-• --•

From Eqs.(37), (23)-(26), the boundary conditions at the shock can be found

as f ,) - -(,) - =. _Z•.t (48)

Equations (45) to (48) (with Al = 2/5) were first presented by G. I. Taylor 1 4

who worked out a few numerical and approximate analytical solutions for

ranging from 1. 2 to 1. 67, the range appropriate for gases. Subsequently, an

analytic solution (also with Al = 2/5) was published independently by J. L.
15 16 17

Taylor , Latter , and Sakurai . Simultaneously with G. I. Taylor's work,

Sedov' 0 had also found this analytic solution.

The parameter /A must be specified before solutions of these equations

can be found. It appears that physically acceptable solutions exist only when

N' = 2/5, a value which conserves the total energy, as noted above. When A/
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is taken to b e different from 2/5, the solution exhibits infinite slopes.

Reference 13 presents results typical of those found- in the range .25 <4/< .4

when a solution of this sort is attempted. This nonexistence of symmetric

solutions apparently explains the difficulty encountered by Davids et al18 in

attempting to find a spherically symmetric solution for constant momentum.

In what follows, d is chosen as 2/5, and the terms "constant-energy"

and "spherically symmnetric" are used interchangeably in referring to the

solution.

Solutions of these equations for f( in the range from 2 to 20 are presented

in Reference 13. Figures 1 and 2 show typical results, for the cases Y = 3

and y = 16. These figures display the usual feature that the density drops

off rather sharply behind the shock, indicating that most of the mass processed

is concentrated near the shock. For Y> 7, a cavity begins to form at small

10values of • , as pointed out by Sedov , and the particle velocities show a

marked increase near the edge of the cavity.

The problem of obtaining solutions when e is included as an independ-

ent variable is considerably more difficult. The basic equations are partial

differential equations and, as pointed out in Reference 1 3, they are of mixed

character, containing both elliptic and hyperbolic regions. Furthermore,

they must meet a zero-pressure boundary condition along a line whose loca-

tion is unknown in advance. To make matters worse, the differential equations

contain a parameter A/ whose value is unspecified. No attempt has been

made to solve these equations; instead, partial solutions are sought by restrict-

ing attention to conditions along the axis of symmetry. In this way we can learn

a great deal about the solution with relatively little effort. Along the axis of
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symmetry

[ •=9 o, o('4uI e '-) o• .< , . . .

the similarity equations take the form

+ +,(0, + Z (49)

(50

"" 1

where primes indicate ordinary derivatives with respect to• , and where the

quantity t-(-L) is given by

(The factor 2 originates from'the contribution of the term 4J C& 9 .)

Except for the presence of V in Eq. (49), these are identical with the Taylor

equations for a spherically symmetric disturbance, discussed above. The

function tr(Ap,) represents the influence of off-axis conditions, as must be

expected whenever a partial differential equation is specialized to a single

line in the plane of its independent variables. The boundary conditions at the

shock are

ON = f (1) i (53)

Equations (49) to (51) may be solved explicity for the derivatives in

the form _ • -4
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(55)-

I Y (56)

These obviously have a singularity at the point where the denominator

vanishes. This quantity is the special case, for 0d = 0, of the function

discussed in Reference 13, whose sign determines whether the partial differen-

tial equations (19), (21), (39), have elliptic or hyperbolic character. The point

on the axis of symmetry where the denominator changes sign corresponds to the

intersection of this line with the axis. In order that the solution may pass

smoothly through this point, the numerators in Eqs. (54) to (56) must also

vanish there. Reference 13 points out that such a condition is achieved if the

function

vanishes at the same point.

The function Z' (-) cannot be chosen arbitrarily. Thus the only para-

meter that can be used to guarantee a smooth crossing of the sonic point is

A/ , and this consideration forms the criterion for the choice of Al . For

each e , and a specification of t(-v) , d/ is chosen so as to provide a

continuous transition through the singularity. Thus N will in general be a

function of . It should be noted in passing that this problem never comes

up in the spherically-symmetric, constant-energy case. There the vanishing
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of the denominator always coincides with either the origin (for y < 7), or

with the edge of the cavity (for '(> 7), and the entire -flow field'-is elliptic ...

in that solution.

In order to actually obtain a smooth crossing of the singularity, Eqs.

(54) to (56) must be solved for various values of A/ (and given •/ ) until

such a crossing is found. Before such an integration can be done, T'(',)

must be specified. However, no rigorous determination of 1&64) and with

it ,can be made without solving the full partial differential equations.

Approximations to d. may be found by approximating t and then integrat-

ing Eqs. (54) to (56). Instead of approximating Z" itself, one may instead

relate tr to other physical quantities which may be approximated more easily.

In particular, by differentiating Eq. (21) with respect to , and then specializ-

ing for the axis of symmetry, one finds

+ V -t+_ + L N, 0 ) (59)

from which it is seen that approximations to the pressure distribution can be

used to generate corresponding approximations to V't . This process can be

continued, of course, by taking higher-order derivatives, with respect to 6

of any of the equations of motion. Each of the resulting expressions will con-

tain at least one unknown function, so the utility of the procedure is dictated

by one's ability to approximate the unknown function. For this purpose, Eq.

(57) is especially useful. At the shock, the pressure is uniform, while behind

the shock it begins to decrease. The rate of decrease is faster near

as the influence of the vacuum outside the developing crater makes itself felt.

Qualitatively, the pressure dibtLilution would be expected to have the appearance
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The quantity - (-q/0) , which is essentially the curvature of these lines

at 6 = 0, will be zero at the shock and will become negative with increasing

magnitude as q falls below one. Such considerations suggest the approxima-

tion

S(Y.,) = K (4) f(-q o) (58)

where 1< and a are constants. Crudely, one may think of this approxima-

tion as fitting a cosine variation to the curves above, with a multiplicative

function of v introduced in such a way as to guarantee zero curvature at the

shock.

The constants 0a and < must be chosen so as to yield values of C"

which are at most of the same order as that of

Figure 3 shows results which have been found for the case aI = 1, and

S= 10. For a given value of ' , and selected values of N/ , the equations

are integrated by a Runge-Kutta procedure, starting from the shock values

given in Eq. (53). A smooth crossing of the singularity is achieved with the

value .' = 375, and the distributions of density, particle velocity, pressure

and the function r are shown in the figure. The results given here are typical

of those which occur for other values of 1ý . In addition, some calculations

have been made with K = 1, and the results are not far different from those
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shown here.

"" . Ili general, it is found that values of corresponding to a smooth cross-

"ing of the-singularity are quite close to the value 2/5 that applies for the sym-

metric, constant-energy solution. Furthermore, the quantity t' does not

attain an appreciable value until some distance away from NZ = 1, where the

density has fallen to a low value. Thus we might expect that, near the shock at

least, these solutions will not differ greatly from the constant-energy solution.

This is indeed the case. Figure 4 compares the two types of solution for 2" = 3

and shows that, along the centerline at least, the motion of most of the mass in-

volved is well approximated by the solution for d = 2/5. One may expect this

trend to persist even for 9 > 0, suggesting that the Taylor solution will in gen-

eral be an excellent approximation to the considerably-more-complicated-

asymmetric solution. The comparison shown in this figure is typical of the re-

sults found at other values of ý(

So far as blast-wave theory ij concerned, then, the energy of the projectile

plays the dominant role, its moiijentum being of only secondary importance. In

assessing the significance of this finding, it is well to bear in mind three different

flow models that might be considered. In addition to the two described above, it

is also possible, in principle, to find a solution in which provision is made for

mass ejection, but which has zero net momentum:

symmetric
model

"• I -

Our conclusion about the relative unimportance of momentum conservaiLion

requires only that 0- first two of these models give nearly identical predic-

tions. The fact is that we find close similarity to the correct flow pattern
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even for the Taylor solution, in which the momentum varies as a function

"- --- • of time.

One plausible physical explanation is based on the experimental obser-

vation19 that targets struck by hypervelocity projectiles often acquire momenta

many times that of the projectile, implying that the material ejected from the

target must also carry several times the projectile momentum. Thus it

appears that the momentum of the projectile itself makes only a minor contri-

bution to the over-all conservation process.

A corrolary of this conclusion is that the conditions of hypervelocity im-

pact can be simulated by any experiment which duplicates the energy of the

incident particle, irrespectivc of whether its momentum is correctly matched.

In particular, any intense source of short-pulse electromagnetic radiation,

such as the output of some currently available lasers, should be capable of pro-

viding such a simulation. Such an experirnetal technique appears to hold

promise, and the basis for it is discussed in some detail in the Appendix.

It is important to keep in mind that the predominant importance of energy,

as revealed by these solutions, does not necessarily imply that crater volume

will be scaled by the projectile energy. Actually, energy scaling is a feature

which applies only to the rate of propagation of the shock wave itself. A

description of the variation of crater size with various parameters of the im-

pact process requires that the solution for shock radius be converted into a

prediction of crater size. Whether the final result of such a process (which

presumably will call material strength into play) will still be scaled by the

energy of the process, is a question that is unresolved at this point.

As a final word of caution, it must be emphasized that our present data
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concerning the unimportance of momentum conservation are restricted to

the similarity, or strong-.shock limit. It remains to be determined whether---

the same results will be found at lower pressures, where the nonsimilar

nature of the problem must be considered.

In the next two Sections, we restrict our attention to solutions in which

only the energy is conserved. Thus, the solutions are spherically symmetric.

These solutions are used to develop an expression for the rate of shock prop-

agation as a function of the kinetic energy of the impacting particle.
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5. TAYLOR SOLUTION FOR SHOCK PROPAGATION

This Section reviews the well-known solution for a spherical blast . ..

wave in a perfect gas, in order to provide a background for the quasi-

steady solution presented in the next section. By using the constant-energy

distributions of pressure, density, and particle velocity described in the

Section above, an explicit description of the shock propagation can now be

given if the total energy E of the system is specified. The sum of the

internal and kinetic energy of the fluid set into motion is given by the intergral

over a hemisphere

f e+ 2?.)-p rrzdr - 4 (L2 /,"A-,-

(59.)

where

, ) f'(--r- --, + ,- (60)

This integral has been evaluated for the values of b/ mentioned above, by

substituting in Eq. (60) the analytical solution. The results are shown in

Figure 5.

If the total energy E is now specified, a simple differential equation

for e(t) results

e . '. (61)

The term Zri-b J, is three times the target mass processed up to the

time t Thus, 3 7t, (1') may be thought of as a dimensionless coefficient

giving the ratio of the mass-averaged value of e£•34. to the quantity * ,'
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i.e

7---..... 5r, (•) - --______ _____ (62) ..

Since R, is proportional to the energy at the shock

4-

we obtain

z' ______ (64)

Because most of the mass is concentrated near the shock, the mass-averaged

value of any quantity is very nearly its value at the shock. Thus the factor

4/3 (y+÷ýy- is a good approximation to =, , as shown in Figure 5. This

factor originates from Eq. (63), which states that, the larger the value of

*' , the larger must be the shock speed if a given energy per unit mass is

to be achieved behind the shock. We may attach the same significance tor,(Y':

if a given energy is to be distributed in two materials for which the VEA. differ,

the shock speed will have to be greater in the material having the larger .

The solution of Eq. (61) is the classical Taylor solution for a strong

blast wave

~a251 ' (65)

Here the influence of i is shown more clearly. For a given E and A
the shock radius will grow more rapidly for large values of -bl
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To apply Eq. (65) to a given case, the total energy - and the value

of the parameter •' must be_-sprecified. In all the &ppl4ca2tions made below,

this energy is taken to be the kinetic energy of the impacting particle. The

value of K' is associated with the magnitude of the Gruineisen factor, ,

and hence it would be expected to lie in the range from, say, 2 to 3. Values

even larger than this might be considered, especially in the range where

the function /• is too large to be neglected. Reference 13 makes

application to problems in which ý is chosen to be as large as 20, in an

effort to match the full Mie-Grtlneisen equation.
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6. QUASI-STEADY SOLUTION FOR SHOCK PROPAGATION 7

The similarity solution described above will be valid only in the limit .

of extremely high pressure, where the density ratio across the shock is

constant. In an actual impact, however, such-a condition is not met, espe-

cially during the later stages of the cratering process, when the shock

strength begins to decay toward that of a stress wave.

Thus a proper description of shock propagation in real materials calls

for an analysis in which the nonsimilar features of the problem are correctly

accounted for. Analyses of this sort have been done for gases, with varying

degrees of approximation. Notable among these is the perturbation method,

explored by Sakurai0, among others. Applied to the present problem, the

perturbation analysis would seek the first-order departure from similarity,

for the case where A(?) is small, but not negligible, compared with

A more powerful approach, valid over a wider range of pressure, has been

developed by Oshima z, who calls it the "Quasi-Similarity" solution. The

casence of his method is to solve the problem for a range of values of the

shock Mach number tr , defined as ks/C , where C denotes the target

sound speed. For each value of t,4 , the correct boundary values are used

at the shock, and certain terms are included in the differential equations to

approximate the nonsimilar effect. The analysis leads to a solution for the

shock Mach number as a function of time, starting from the blast-wave limit

( 14= 00 ) and tending toward the acoustic limit ( f = 1) at large time. At

each instant, the distributions of pressure, density, etc., are given, once

the shock Mach number is known. For air, Oshima's solution agrees well with

experimental observation and with machine solutions, both in regard to the
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K-shock propagation, and to the distributions behind the shock.

-Oshima' a method is being applied to the propagation of shock waves -•

in solid media, but the results are incomplete. As an interim solution, we

have worked out an analogous, but more approximate description of the

shock propagation, which we shall identify by the term "Quasi-Steady. " We

assume that the distributions of pressure, density, etc., at any shock speed

are the same as the self-similar, perfect-gas distributions which would have

the same values at the shock. Thus, at the instant when the shock speed is

such as to create a density ratio at the shock of 1. 5, the solution is assumed

to be the self- similar solution for o. ; when 1.4, the solution

is assumed to be that for • = 6, etc. Thus the right values at the shock are

always used (as is the case in Oshima's work), but the distributions behind

2Zthe shock are not correct. However, the quasi-similar distributions for air

at moderate shock Mach numbers show a qualitative resemblance to the present

results 1 3 for J( in the range from 2 to 20. Thus, because most of the mass

is concentrated :near the shock, we may expect the quasi-steady solution to

be a ,useful approximation.

The starting point for the analysis is the energy-balance integral

z 27rAý4, R ZX(i) (66)

In a similarity solution, 'e is taken to be a constant, related to the Grineisen

factor. We now propose to allow e -to vary, so as to match conditions at the

shock at each instant. This is very simple for a large number of materials,
11

whose Hugoniots are well approximated over a wide range by

(67)
as = c + 5 -1
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For such a material, ' is related to the shock speed by

____it (68)

Use of this in Eq. (66) leads to a simple relation between shock speed and

shock radius. Defining a length scale R,, by

(69)

equation (66) can be rewritten in the dimensionless form

,?s t[ )(70)

Figure 6 shows this relation for .5 1. 2, 1. 5, and 2. 0. It is important to

note that the shock speed approaches C when R_ becomes large, because

as aŽ---c w'--,.0 , and X', --*0 . Thus the quasi-steady solution tends

toward the acoustic, or stress-wave limit, at large time. Figure 7 shows a

8comparison of Eq. (70) with the experiments of Fraiser and Karpov . The

exact value of S for the target is probably somewhere in the range from

1. 2 to 2, and theoretical predictions for both values are shown. The data,

which lie quite close to the stress-wave velocity, are well predicted by the

quasi- steady theory.

By using Eq. (70) to give k, as a function of e. , a simple solution

for the shock trajectory can be found from the identity

0 (71)
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Figure 8 shows this relation for the three values of S mentioned before.

Larger values of S are associated with faster shock propagation, a mani-

festation of the same phenomenon as that due to ý" in the perfect-gas

approximation. Also shown on this figure are the experimental data of

Eichelberger and Gehring6 and of Halperson and Hall7 for a Lucite target,

as well as the shock histories calculated by Bjork for iron striking TuffZ,

1
and for iron striking iron . The agreement found here, over such a wide

range of impact conditions, indicates that the quasi-steady theory is a

useful apporximation, especially at times greater than Of course,

in the early stages of the impact process before the projectile has been

destroyed, the shock propagates at a constant speed. It is only after this

early phase that our approximation of an instantaneous point-release of

energy becomes valid. We may in general expect the measured trajectories

to begin with a constant-spedd phase (i?,C-2 t), followed by a transition to a

power-law behavior (IF.", tj) , with 4,d between .40 and 1.0, depending

on the duration of the impact phase. This exponent increases toward 1. 0

again at large time, as the (constant) stress-wave speed it: approached.

For c'/ greater than about 1.0, the correlation of Fig. 8 is quite good,
0

although some scatter is still present. There is not enough data, at present,

to determine whether this remaining scatter represents an additional impact-

speed dependence, or whether it is simply an effect of S not properly

accounted for by the quasi-steady theory. The application of Oshima's

method, currently in progress, will shed considerable light on this question

by properly accounting for the influence of the state equation, but the re is

obviously a great need for further measurements of shock-wave trajectories,
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--- especially:inn meta~ls.-
Ithasbe~en-observed -that the characteristic time- .t-e ch-rctrbs tie or -shack p-r-opkg4-

tion in Lucite is considerably shorter than the'time during which material

is ejected from an aluminum or lead target, under identical impact conditions,

and the difference is sometimes attributed to the dynamic strength of the

plastic at high strain rate. In this regard, it is interesting to note in Fig. 8

the close correlation between Bjork's calculations in iron ( 5 I. 1. 6) and

the experimental observations in Lucite ( 5 -. 1. 5), all at approximately

5 km/sec. This correlation indicates that in both substances the characteristic

time for shock propagation is Io/, , which is actually smaller for metals

than for Lucite, due totheir larger values of Assuming that impact-

generated shock waves propagate in essentially the same manner in all metals,

this correlation would suggest that the duration of material ejection may be

considerably longer than, say, the time requiredfor the shock to degenerate

down to some preassigned fraction of its initial strength. Again, measure-

ments of shock propagation within the target are needed to resolve the question.

208



BLAST-WAVE THEORY OF CRATER FORMATION

7. METHODS OF CRATER-SIZE PREDICTION

• -T~e sticcees Of the -above -ana-ljss "n preditmg shack pogaton is r----

quite encouraging. However, from the viewpoint of spacecraft design, it

does not solve the problem at hand, namely, to predict crater size. To

accomplish such a task, additional analysis is needed. It is important to

understand that every theory of crater formation contains two ingredients:

first, a theory for predicting the shock-wave time history, and the flow of

material behind it, and second, a criterion for choosing some point in the

trajectory as the crater radius. Bjork 1, for example, chooses the instant

when a stationary region of zero pressure can be found, and identifies this

region by the appearance of a distribution of small velocities, which are ran-

* 12
domly oriented. Other authors, for example Davids and Huang , have

used different criteria, and we shall present below some considerations of

still another.

Before doing so, however, we must emphasize the central importance

of the crater-formation criterion. The correlation shown in Figure 8 may

be taken as evidence that, so far as shock-wave propagation is concerned,

no essentially new phenomena occur over the impact-speed range up to

30 km/sec. Thus, any change in the penetration law, compared to its low-

speed behavior, must be accounted for largely by the criterion used in

*Such a criterion cannot be applied in conjunction with the present solution,
which never predicts a stationary region. Indeed, there is no mechanism,
except for the influence of external forces, or for very special shock-wave
interaction patterns, by which an inviscid fluid can be permanently brought
to rest. Any analytic solution would predict that the pressure and particle
velocity tend asymptotically toward zero at large time, of course, but their
distributions are always nonzero, continuous, and never display a random
orientation.
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defining the crater radius.

This paper makes no effort to settle the queation. of hQwofhie crater-

formation criterion should be chosen. We wish only to draw attention to

the fact that its choice is a crucial element in determining the penetration

law.

On the other hand, we do share with some other authors the impres-

sion that the material strength must play a role in the crater-formation

criterion. The establishment of a crater of fixed size implies that material

has been brought to rest, and as noted above there is no mechanism for

accomplishing this feat within the framework of an inviscid theory. Thus

it appears that at large time, a transition must be made to a theory which

accounts for the strength of the target. Indeed, the entire hydrodynamic

analysis begins with the approximation that the motion of any mass element

is controlled by the pressures on its surfaces, while its resistance to shear

deformation can be neglected. Whenever the inviscid theory itself predicts

pressures comparable to or less than the shear strength of the target, the

fundamental approximations are clearly in error. Thus we ought to assign,

as a boundary for application of the hydrodynamic theory, some level of

pressure comparable with the target strength.

Reference 1 3 not only adopts such a boundary for the fluid-dynamic

theory, but actually employs it as a crater-formation criterion. In that

work, the crater radius is assumed to be equal to the shock radius at the

instant when the pressure behind the shock has decayed to the intrinsic

strength (/Zr , C being the dynamic shear modulus. This criterion was

used in .:•nnjtincuction with the similarity solution, to deduce a penetration law

ZlO
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which displayed reasonable agreement with experiment. "1

Now that a more realistic description of the shock propagation is

available (from the quasi-steady theory outlined above), it is of interest to

investigate the penetration law derived from the same criterion. If we re-

quire that the pressure generated at the shock be equal to a strength level

designated for the moment as F , we find from Eqs. (14) and (67) that

the corresponding shock speed is given by

A* i + 4S C (72)
c. a.

Figure 9 gives the corresponding value of the shock radius, which, by this

criterion, would be taken as the radius of the crater that will ultimately

develop. Thus, the crater radius also scales with 12o

- = -q-& /' (73)

where V is the impact speed and le is shown in Figure 9. It is obvious

that a large amount of experimental data could be correlated by this formula,

by an empirical choice of thc strength level F In fact, by choosing

,, (/2 ,o'Ac)"- , (wherePcl. is in cgs units, and the Brinell hardness 6

is measured in the customary units of kilograms force per square millimeter),
6.

the penetration law recommended by Eichelberger and Gehring is recovered.

Figure 10 shows a typical correlation, for aluminum projectiles striking copper

targets, The parameter k has been chosen by matching the data

at 3.97 km/sec.

It is interesting to note that AZ - 4. 85, which, according to Figure 6 (with

5 1 1. 54) means that the shock was traveling at approximately 1. 3 tinies
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the stress-wave speed when it passed the position corresponding to .-

While these results are encouraging, they nevertheless contain an

empirical factor whose significance is not clearly defined at present. Thus,

extrapolations to higher impact speed cannot be made with confidence. Our

conclusion is that there is a need for an analytical crater-formation criterion

whose accuracy is comparable with that of the present quasi-steady (and of

the forthcoming quasi-similar) solution. We feel that the target strength will

play a role in this criterion, but that considerable work remains to be done.
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CONCLUDING REMARKS

..... ur goa in A is researach ha ie n an anayt e descrip~eonW-Wf'lpyper-.

- velocity impact. To this end, the approximations of blast-wave theory have

been reviewed to determine how well they apply to the problem of shock-

wave propagation in solid targets. Most of the literature of blast-wave theory

deals with the symmetric problem of a point release of energy in a gas. To

adapt these analytical methods to the present problem, then, modifications

are required in two areas: first, two spatial coordinates must be considered,

and secondly, the equation of state appropriate to a solid must be used.

Solutions which allow for spatial variations in two directions have been

found to be very close to the corresponding one-dimensional solutions in all

important respects. Thus, the energy transferred by the impacting projectile

is the dominant parameter, its momentum playing a minor role. Predictions

of shock-wave trajectories based on this concept display excellent agreement

with experiment.

The second area in which modifications of the classical blast -wave

theory are needed is more significant. The nature of the state equation of

solid materials, together with the fact that relatively weaker stages of shock

propagation are of interest in this problem, make the assumption of similarity

a weak one. Thus, shock propagation in solids is characteristically non-

similar, in contrast to the situation normally encountered in gaRes. To

account for this feature properly, analytical methods for treating nonsimilar

problems must be used. Fortunately, the required methods are available,

and are at present being adapted to this problem. As an interim solution, a

crude approximation can be constructed from the similarity solutions

themselves.
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This solution, referred to here-by the tcrin "Quasi-Steady," shows re- . .

-markable-agi•ee.mxent with-the limited shock-wave trajectory-ditai ia~alale

at present. Data of this sort are the only kind that can serve as an un-

equivocal check on a hydrodynamical theory. Comparisons with final crater

dimensions involve other aspects of the theory, especially the criterion

used to define crater size, tnd are consequently not suitable as a check on

the shock-propagation theory.

Ultimately, the practical gcal of all research in this area is to establish

the penetration law, especially in the high-speed regime which is experiment-

ally inaccessible at the present time. From this point of view, the most im-

portant aspect of these studies has been to reveal the pivotal importance of

the crater-formation criterion on thepenetration law. The currently available

evidence suggests that impact.-generated shock propagation is essentially the

same over the speed range from 4.6 to 30 km/sec. Thus, any difference in

penetration law is felt to originate from the crater-formation criterion. The

present work makes no effort to establish what this criterion should be, though

it is felt that it should be related to the strength of the target. As an example

of such a criterion, a simple choice related to the pressure being generated

at the shock is shown to provide a basis for correlating a large amount of

data. These results are encouraging, but still contain an element of arbirari-

ness, and their extension to the higher impact-speed range requires the

development of a more satisfactory criterion.
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APPENDIX
SIMOIETION O•'METEORd•f IMIPA:CT BY i-tEROY REL -.AS-E---

A major conclusion reached above is that crater formation is controlled

chiefly by the energy of the impacting particle, its momentum playing only a

secondary role. Thus we may expect to simulate hypervelocity impact by any

experiment in which- a strong shock wave is driven into a target by the deposition

of energy in any form.

It is of central importance, in considering ury j'm•,"iation of this type,

to be certain that the mode of energy deposition does in fact drive a strong

shock wave into the target. We shall return to this question below, but for

the moment we assume that this condition has been achieved, and present the

results that follow as a consequence.

The severity of a high-speed particle impact may be judged by the

strength of the shock wave driven into the target. Knowing the Hugoniot data

for the target and projectile, it is possible to solve for the shock strength as

a function of the impact speed. Fo± the case of energy deposition by some

other means, we must now identify the parameters which determine the initial

shock strength. The quantity that does this is the power being absorbed by the

target, per unit area in the plane of the shock. To see why this is so, consider

a plane shock wave of unit area advancing at speed US into a medium of

undisturbed density :

'The fact that such a simulation is possible was first pointed out to the authors
by Dr. Franklin K. Moore.
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UV = 0

In unit time, this shock processes an amount of mass given by obUs dt , per

unit area, and raises it to the energy (per unit mass)

Thus the rate of energy acquisition by the material behind the shock, per unit

time and area, is

power/area= Zgs--1 (--•//) ± tU,

The strength of any shock wave may therefore be characterized by the amount

of power per unit area which it delivers to the medium through which it

travels. The Hugoniot curve for iron is interpreted in this light in Figure 11,

where it is seen that weak shock waves ( / 1.3 ) impart about 100

watts/cm while extremely strong shocks (/z 3) transfer to the medium

11 2
some 101' watts/cm . These o'rders of magnitude are typical of metals. It

is interesting to note that the experiments reported by Altshuler et a12 3

11 2
achieved shock waves of strength equivalent to 4 x 1011 watts/cm

For a given projectile-target combination, there is a one-to-one corre-

spondence between impact speed and the power density at the impact point.

Their relation is shown in Figure 12 for iron-on-iron. The point to be noted
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is that any experimental technique capable of driving shock waves of strength

greater than 1011 watts/cm can simulate impact conditions which are at

present beyond the capability of conventional projection techniques. One

energy source that appears to be suitable for sluch an application is the laser.

13 2By focusing the beam from such a device, power densities of 1013 watts/cm

delivered in less than a microsecond, can be delivered 2 4 with existing equip-

ment. The fact that the maximum output of these devices is currently being

improved at such a rapid rate indicates that, even in the presence of losses,

simulation by a laser beam is a promising experimental technique.

The calculations presented in Figure 12 start from the hypothesis that

the energy absorption takes place by means of a blast-wave mechanism.

Particularly in the case of electromagnetic energy deposition, this assumption

needs careful scrutiny. There would appear to be little doubt that this is the

correct mechanism when the rate of energy input is sufficiently high. It is

known that the mechanism of energy absorption in gases changes, at some

point, from one of linear heat conduction to the nonlinear shock-wave mechan-

ism. Exactly where such a transition will occur in the case of solid media

is not at present known, although it is presumably amenable to theoretical

analysis. The conclusions reached above are based on the assumption that a

shock wave will be the correct mechanism whenever the incident power density

exceeds 1011 watts/cm2 .

The use of such a device was suggested by Mr. A. Hertzberg.

224



BLAST-WAVE THEORY OF CRATER FORMATION

ACKNOWLEDGEMENT ..

The application of blast-wave theory to this problem was originally

suggested to the authors by Dr. Franklin K. Moore. We are also indebted

to Dr. Walter E. Gibson, Mr. A. Hertzberg, and Dr. NormanS. Eiss, Jr.,

for many valuable discussions.

Technical monitoring of this program was provided by Mr. James J.

Kramer and Mr. Robert J. Denington of the Lewis Research Center. The

authors are very grateful to these gentlemen for many helpful suggestions.

2Z5



BLAST-WAVE THEORY OF CRATER FORMATION

LIST OF SYMBOLS

C Velocity appearing in the relation t 4,- u.

e Internal energy per unit mass

Total energy

f Dimensionless pressure, l//l, tes
Dimensionless internal energy e/

X, (i,) Integral defined by Equation (60)

Exponent defining rate of shock propagation: C., to

1P Pressure

P Total momentum

F Strength level at which inviscid solution is terminated

Shock Radius

Length scale for shock propagation,

6; Spherical coordinates

A. Entropy per unit mass

5 Dimensionless parameter in the relation 44 = C+ •'-4

t Time after impact

UL, G-j Velocity components in the jr. and &-directions, respectively

6(o) Function appearing in Mie-Gr•{neisen state equation

r('p) Gruneisen factor

Specific-heat ratio in perfect-gas model

Similarity coordinate, •/Is (t)

Dimensionless velocity, U4/• , positive in the direction of

increasing I
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Density function in state equation which allows similarity

solution

Dinmensionless density, //A.

Mass density

Shear Stress

T- . 2. 1 6te (0~)

c) Dimensionless velocity, 1.r//k positive in the direction of

increasing

( ') • Evaluated at the shock

() Evaluated before, after, the shock

) •€ Denotes cohesive contribution

Evaluated along the Hugoniot

L )/ Ordinary derivative,
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SPHRICAL SHOCK WAVE AND CAVITY EXPANSION IN METALS

by

N. Davids, H. H. Calvit, and 0. T. Johnson

A theory of crater formation by impact awaits better understanding of

the process of shock-wave propagation in solids, especially waves with

spherical symmetry. This paper studies theoretically and experimentally

the non-steady motion of metallic spheres initiated by explosive blast in

a spherical cavity. The method of progressing waves is applied to deter-

mine the radius vs. time diagram of the propagtion of the wave into the

material and leads to values for cavity sizes. The assumptions are made

that the material in the vicinity of the cavity possesses a polytropic

equation of state, that entropy is constant for an element of material,

and that the total energy•.is constant in time. The original partial differ-

ential equations of the problem are then reducible to a succession of ordin-

ary differential equations. Using the Rankine-Hugoniot relations as initial

conditions at the shock front, these equations have been integrated using a

numerical program developed for a number of metals and the construction of

r,t-diagrams carried out with values for particle velocities and'pressure

variation on the inner surface. The solutions of the differential equation

of progressing waves have been studied by constructing a colution diagram,

which is similar to a hodogmph plane. An analysis was made of this plane

and the role played by the singularities of the differential equation. The

appropriate solution curve starts very close to a positive node of the equa-

tion, then approaches very close to a saddle-type singularity in a corner of

the plane which has been found to represent a meaningful physical boundary

230



SHOCK WAVES AND CAVITY FORMATION

C4o4 Iton, namely that pressure and velocity tend asyMptotically to ZeQ ..

-- -- -with increasing time in the proper manner.

Using an equation of state for Aluminum (obtained from data from Los

Alamos publications) there is obtained the expansion of a cavity of 1.7 cm

radius in a thick Aluminum sphere, filled with 31.6 grams of Pentolite, to

its final measured value of 3.0 cm. The initial pressure, which is of the

order of 300 kilobars, drops to less than 100 kb in less than 2 microsec-

onds. At this time the shock velocity drops to its acoustic or elastic

value in the material. However, the cavity continues to expand to its

final stage in a time of 80 microsec. The simultaneous drop of pressure,

velocity, and departure of the medium from the polytropic equation of

state signals the termination of the shock regime. This appears as a tri-

angular region on thc r,t-diagran, bounded by the shock front, the inner

cavity, and the line t = 2 microsec. Beyond this time the material of the

zone continues to flow radially outwards essentially as an incompressible

fluid.

The assumption that metals behave similar to gases as a result of an

explosion or impact, is limited to this shock zone, which is shorter in

duration than may have been expected. From the known outward displace-

ments of the outer radius of the sphere - (.1 inch) the increase in cavity

volume is accounted for geometrically.

A bbikilar Lime scale of events may be expected to take place in aft im-

pact crater, that is, the shock wave regime should be terminated essential-

ly before the flow of material both radial and tangential, has started.
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The Ballistic 1Researok 1AbQr.*$rj 1. Qkgrasan ProylinjG3Wn i 'n _

ducting a parallel experimental program on thick e.luminum spheres and have

furnished data needed for this analysis.

In each test, a 32 gram spherical 50/50 Pentolite explosive charge is

detonated in the center of a thick walled aluminum sphere with the explo-

sive in contact with the spherical cavity surface. The sphere cavity is

approximately 34 mm in diameter (each cavity was machined to assure snug

acceptance of the explosive charge). The spheres are machined from cast

aluminum blocks. Provisions for inserting the explosive charge are accon-

plished by machining a threaded well in the sphere that extends radially

from the sphere central cavity to the surface. The explosive is inserted

by attaching it to a threaded plug which can be screwed into the sphere

well until the explosive is seated in the cavity. The plug extends beyond

the sphere surface and is used as an attach point for rigid mounting of the

entire assembly.

Testing included spheres of two sizes. The initial tests were con-

ducted with spheres having a diameter of 178 mm; later tests were conduct-

ed with 254 mm diameter spheres.

Measurements of initial free surface velocity and maximum rmdiml•-

pansion are accomplished by the use of two capacitance type displacement

gages. These gages merely indicate the change in capacitance resulting

from the variation in separation distances of two condenser plates, the

gage constitutes one plate and the sphere surface the other.

Cathode ray oscilloscopes were used to record the displacement-time

histories of the sphere surface.
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The scope sweeps were triggered by an ion~zation probe inserted into j
the explosive detonator well; the sweep start also provided a time zero

point.

Measurements of the inner cavity and outer surface diameters were

made before and after each test. Caliper measurements of the outer sur-

face diameter are in reasonable agreement with the oscillograph records.

1. fI•ODUCTION - Description of the Problem

The Ballistic Research Laboratory (ML), Aberdeen Proving Grounds, is

engaged in conducting an experimental program of internal explosions in

small cavities in metal spheres. This paper presents the results of both

the experimental and an ana.ytical study of the problem, with particular

emphasis on the propagation of shock waves in the metal inmediately after

detonation of the explosive.

Figs. 1 and 2 show a 7 inch sphere of altminum such as has been used

to date in BRL experiments. The phenomena, and hence their analysis, which

result from detonation of the explosive in the inner cavity, are complex

because different effects predominate in different parts of the material.

Thus, there is an innermost zone or spherical shell where very large ra-

dial displacements have occurred under temperatures and pressures far be-

yond the range of conventional mechanical behavior. The material is in

some type of "fluid" state in this zone and shows relatively little ten-

dency for cracks to initiate there. Next, there is an intermediate zone

of the sphere where the material begins to exhibit more normal mechanical

behavior, as evidenced by the many small tension and shear cracks which have

formed there. A few of the stronger cracks which get started may penetrate
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1.55

IA

Failures due to
Reflected Wave

Zone A - No damage, other than that of
reflected wave

Zone 8 Heavily damaged

Zone C -"Fluid" zone
Note - Dimensions are approximate

FIG. 2 - ALUMINUM SPHERE - POST SHOT.
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into the adjacent regions and ultimately reach the boundaries. Finally,

there is an outermost zone dominited by the effect of the external bound-

ary of the sphere. Here reflection effects such as scabbing cracks are

often observed.

The transition between successive zones are not exact, but in some

specimens, rather surprisingly enough, are fairly sharply delineated.

In this paper we shall make an analysis of the innerm3at shock zone.

Its direct aim is to provide a description of the shock process in the

matal. More specifically a useful theory must furnish a time for the dura-

tion of the process, the size of the zone influenced by the shock front,

values for the displacements, and thermodynamic variables of pressure,

density, and temperature in the material. A useful tool is the r,t-dia-

gram which shows the path made by a set of concentric spherical shells.

This diagram is possible because of the single space coordinate.

The problem of the shock expansion of spherical cavities is closely

related to that of crater formation by hypervelocity projectiles. The

features we have outlined above are present in the crater problem as well.

The crater problem carries with it, however, the further complication of

tangential flow, thus requiring two space coordinates. Except for the

presence of the plug shown in Figs. I and 2, the arrangement for the

blasts have spherical symmetry, and we may reasonably assert that radial

motion occurs, so that all the physical quantities of the problem depend

on only one space coordinate. There is however, a slight actual depart-

ure because of the plug or because of asymmetrical detonation, and which

are not important to the problem.
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2. Sphez'icai:l Blocs MeAi Sequence -of U±ects

Just as the study of the problem has been conveniently divided up in-

to spatial zones, we can divide up the sequence of events in the spherical

blast process for detailed analysis as follows:

a) Initial Stage - Here the detonation wave of the exploding gas

makes contact with the solid and then generates a shock wave in the solid.

This stage might be considered as terminated when the density in the solid

has dropped to its free space value, at the inner cavity.

b) Expansion Stage - The compressed solid expands radially outward

and actually forms the cavity. This stage is dominated mostly by inertia

forces.

c) Final Stage - Here the shock wave dccays, permanent deformation

of the cavity stops, and the material has undergone some permanent plastic

strain.

The first stage lasts up to about 2.5 microseconds. The second turns

out to be relatively long and can take up to about 100 microseconds or

even longer. It must, of course, be understood that these phases need not

be distinctly separated events in time, especially the terminating phase

of the expansion.

5. Basic M1-athematical Equations of Shock Waves

Because of spherical symmetry our problem is reducible to a radial

and a time coordinate. Shock wave propagation in a solid is very closely

related to that of a spherical wave in a gas. We may make the following

assumptions about the medium:

1. Thermodynamic equilibrium holds (see [21, p. 3), i.e. that changes
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-I - of state are adiabatic. By this we mean that entropy is constant alon4'a

__ . . . "Particle path", i.e., a fixed element of the medium.

2. The medium is a perfect fluid, i.e., any rigidity or shear effects

are neglected.

3. The effects of entropy changes are negligible, i.e., that the pres-

sure is a function of the density alone.

4. The total energy available for the motion is fixed.

If the medium were assumed to be polytropic with the adiabatic exponent 7,

we would have,

f(p,Q) - pp- const. A (3.1)

The conservation laws in Eulerian form, with subscripts denoting partial

derivatives, become

Pt + u P + Ur + 2ua/r o (mass) (3.2)

U. + UUr + p/p - 0 (momentum) (3.3)

0+ ulpp)r = o (state) (3.4)

The third of these equations is not quite equivalent to ( ), since it

only expresses the fact that the entropy is constant along the path of an

element, and does not imply its constancy throughout. This is a differ-

ence from the case of plane waves; another difference from the equations

of one-dimensional flow is the additional term 2up/r occurring in (3.2)

which stands essentially for the spherical attenutation of the wave. This

term, of course, if very important to the problem.
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-j .• A coglete geometrical deseriptlon of the disturbance is afforded .by -

the construction of an rjt-diagram, as shown in Fig. 3. Here the solid

lines represent the motion of the points of a spherical surface, referred

to as a "particle". The most prominent feature in this diagram is a dis-

continuity, or shock front which propagates through the material at the

head of the disturbance. This curve, together with the cavity boundary,

defines a region (shaded in the figure) in which the solution to the sys-

tem of partial differential equations (3.2) to (3.4) applies. Certain

boundary conditions, to be discussed later, must be satisfied. However,

the difficulty of the problem is that, unlike the conventional boundary

value problems, here the boundary curves are themselves unknown, and must

be found as part of the problem. In fact, the determination of these two

curves are the most important part of the problem.

4. The Method of Progressing Waves

The idea of this and similar mathematical methods is to reduce the

partial differential equations to ordinary ones, by assuming the specific

form for the shock front curve and imbedding it in a one-parameter family

of curves. These curves are called "progressing waves". For general de-

tails of the method, see [2] p. 419-433. The method was used by R. G.

Newton (4] to analyze blast shock problems, and a similar method is being

used by Rae and Kirchner [18] in studying meteroid impact phenomena.

Our "progressing wave" solutions are defined to be of the form,

with • = rt-4a

S= t5 D23
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FIG 3 - CAVITY EXPANSION AND PARTICLE TRAJECTORIES
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p/P , (.e) .... g2p

where a, (, 5, e are parameters, and U, D, P functions to be de-

termined. By introducing this variable E we have defined geometrically

a family of surfaces , = const. in the r,t-plane, bhich will play an im-

portant role in the analysis. Although these are not the trajectories of

the particles of the medium, we shall see that the shock front belongs to

this family or surfaces.

We now substitute the expressions (4.1) into the equations of motion

(3.2)-(3.4), enabling us to eliminate the explicit factor t by properly

choosing the exponents, thereby leaving a system of functions of one inde-

pendent variablc . This is accomplishcd by letting

6 =2P3 ; (=a - 1 (4.2)

See [17] for details.

This leads to the set of ordinary differential equations:

E DI/D= -(B+ U' + 3U)/(U -a 4.i))

u' U - u (u-) (u - 1) + (5 + 20 + 3u 7 )Pj/I. (4.4)

dP/dU P'A U' = PEN(U) + PQ(U)]/[R(U) + * (u)]

F(U,P)/G(U,P) (4.5)

where, after sirmplification
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N(U) v U(3a -I- 2U) + - a) U -2

Q(U) = [(2 - C- l)51/(u- a) + 27

R(U) = uu - a)(1 - U)

s(u) =5 + 2+ 3U7

The latter is the basic differential equation for progressing waves. After

the appropriate solution has been found for P = P(U), the function g =

9(U) is found by a quadrature of (4.4) and the density function D(g),

from (4.3).

These progressing wave solutions, as we shall see, provide a suf-

ficiently general mathematical description of an expanding cavity reason-

ably consistent with the given conditions of initiation of the process.

There remains the problcm of choosing the two paramcters a and 5.

A condition of constant entropy is not in general satisfied by a

spherical wave because of its attenuation. An alternate assumption is

that the motion is adiabatic, i.e., has constant total energy. This is a

reasonable one for the cavity expansion process, because of its short dura-

tion, provided certain secondary effects are neglected. With ý = g, re-

presenting the shock front at a time t, the total energy in the fluid

shell (potential + kinetic) at time t is given by

E(t) = f (-) 4ar 2 dr÷ f Ou2 4ir 2 dr (4.6)

r 0r
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where ro ot is the Inner radius of the 'shell (Fin. .) 1 and - t.

__.... is the location of the shock front.

Using the substitutions in (4.1) and assuming t is constant, we

obtain

E(T) -4it ' U2) t' D(Q) dt (4.7)
E(T) =4t 5  5Q -72 f

to

Since the integral is independent of t, we make the energy independent

of time by satisfying the relation

5 ÷+a- 2-= 0 or - 2- 5a (4.8)

5. Boundary Conditions at Shock Front

We shall narrow down the number of parameters by requiring the com-

patibility of our solution with the basic Rankine-ilugoniot conditions

across a shock front. If the undisturbed and disturbed medium parameters

are uo, 0) PO0  and ul, PI, p1  respectively and the shock wave velo-

city is C, then these relations are (see [2], p. 123-4), for a polytropic

medium and wh~en rhe undisturbed state is a rmedium at rest, with uo = 0, we

obtain

I (C - u1) - p0c -0 (5.la)

P u1 (C u1) - (p -p) -0 (5.1b)

1 2 1 1P

1 Ul T _- )(C- u1) - pl U1 - 0 (E0 = 0) (5.lc)
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With -• = /(7-i)/(;÷i), if p0  is negligible,

C = c (1 - 2) (5. 2a)

P1  = poUlCapPo c2 (l- 2) (5.2b)

PllPo = (7 + l)/(v - i) = iC2 (5.20c)

c= v--7pd /,7

The last quantity is conveniently referred to as the "sound speed" in shock

wave analysis. These relations apply Just as well to a spherical or curv-

ed surface as to a plane, since the effect of spherical divergence (the

2a/r term) on a finite or sudden Jump is of higher order. This may also be

shown geometrically by considering an infinitesimal surface element of the

shock front. Since = rt - along the shock front, c = dr/dt = a

ta-I.

From (4.1) and the relations (4.3) the Rankine-Hugoniot equations be-

come

t 1 D(a - U) -po ail to = 0 (5.3a)

tb23l 2 DU (C, - u) - t5+20 tl2 DP = 0 (5.3b)

t+ D 2 (1 U2 + 1 P) tl (a-u)'t>+3 El DPU = 0 (5.3c)
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We note that the time factor cancels in (5.3b) and (5.3c), so that they

are automatically satisfied, but to secure independence of time in (5.3a). . .......

it is necessary to make

5 - 0(5.3d)

With this condition, and the relations (4.2), the assumed form for the

progressing wave solutions reduce to

u = r/t U(t) p = (r/t)2 D(k) P(4) (5.4)

S= D(0) P/P (r/t)2 P(t) with t = rtc

This solution shows that on the shock front or free surface, where t is

constant, the physical quantities such as velocity, pressure, density, and

wave velocity are constant on the rays r/t = constant. This also dimen-.

sionalizes the functions (5.4) correctly.

The complete set of exponents is now

a 2/5 c /

(5.5)p= -0.

Initial Conditions

Since • = on the shock front, we have, Just behind it,

u( =) = a(. - P2) _ DA/(, + 1) (5.6a)

=l ,Po/P2 (5.6b)
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2 2 2)~ 2 1,
PQJ 22~) a= i~/(7 + 1) (5.6c)

with a = 2/5.

The right side of equations (5.6) give us, for a specified material,

a definite initial point in the P-U plane, through which a single solu-

tion curve is determined in general. Note that the constant t,, still

undetermined, is not needed for this, We will discuss in Section 9 how

this ccnstant may be determined.

6. Fquation of State of Aluminum

In Fig. 4 is shown a straight-line lnGrithmic fit of the relation-

ship between pressure and relative density for 24ST aluminum in the range

between 100 and 400 kilobars, the data being taken from [3]. This fur-

nishes the polytropic-type relation

P .o 7 *6G = 52.7 lOM kb<p 400 kb (6.1)

where p is in kilobars.

A few points are shown beyond the 400 kb range based on additional

data taken from [31. Here there is a slight but consistent departure from

the equation of state (6.1). However under the conditions of our explosion

the range of pressures does not exceed 400 kb.

Below about 100 kb we have a transition to elastic-plastic or elastic

behavior. The nature of this transition is considerably uncertain. We may

also note that, unlike gases, the value of 7 is very high, i.e., relative-

ly small density changes occur under very high pressures.
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The polytropic-type equation of state is a vAz,.convenient one to -

use for metals provided the pressure range is restricted, such as in (6..).

It has the advantage that the progressing wave procedure in Section 4 can

be carried through. However, such an equation of state must always be

modified at low pressures since the density of a solid does not tend to

zero with the pressure. Other equations of state have been used, e.g.

Sedov in (11[, and Stanukovich [15], have used the formula

p = A [(P/Po)7 - 1] (6.2)

For aluminum, the values A = 187, y = 4.27, Po = 2.7 provide a good

fit to the data points of Fig. 4.

Further discussion of equations of state for solids is given by

Huang [14].

7. The P, U-Diagram

Using the condition of constant energy, the 2/5-power law holds, and

the differential equation (4.5) for progressing waves may be solved. This

was done numerically by means of a FORTRATI program described in [17]. A

family of integral curves in the diagram are shown in Fig. 5. All of them

issue from the singular point A enclosed in a rectangle on the diagram,

and which is located by equating F(UP) = G(U,P) = 0 in (4.5). For our

set of constanLs this point is U0 = 0.0916, P0 = 0.02884. A more de-

tailed analysis of the singular points is Given in (17). It can be seen

that all the curves come out of this "unstable nodal point" along a com-

mon tangent. The point U 0 0, P = 0 is a stable nodal point, or "sink",

and the point Po = 0, U 0 0 is a saddle point. The solution curve for
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the physical problem starts close to the source, then runs over very elos

to the saddle point. There is a unique curve (markcd C in Fig. 5) which

actually runs into the saddle. The accuracy of the computatlons is not

sufficient to distinguish whether our solution actually coincides with

C or not.

Thc "source" point itself represents a shock of infinite strength.

Here the pressure and density just behind the shock front are infinite

(with a finite total impulse, however) and the particle velocity is equal

to the shock wave velocity. This type of condition arises in stress-wave

propagation problems as well, in the form of a 6-function at the wave-

front. See (16]. It is a consequence of the assumed instantaneous (i.e.

step) loading of the material. With such a loading we must start the

propagation of either a zone of infinite pressure if the velocity is

finite, or our front must start out with an infinite velocity.

The end-point of the solution curve C at U = a, P m 0 provides

a very reasonable physical condition of asymptotic character. For, if we

consider any point A in the r,t-plane, Fig. 3, the "particles" must cross

the family of curves

r = •t (7.1)

(shown dotted) from left to right, since we have compression shock. Thus

the particle curve (solid) has aIower slope at A than that of the dotted

curve:

u1;. t
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This condition is al¶0s ,atisfied since al; the solution •flane_ ih"ii- e-A

UP-plane coming out-of the unstable nodal point lie to the left of the -

vertical line U = 0.4. However, for the curve C u -,0.4 r/t as

t -ý a ; i.e. the particle curve is asymptotic to (7.1). The P = P(U)

curves which end in U = 0, P = 0 give particle curves which cross all

the curves of (7.1).

8. The Radius-Time r~t-Diagram.

Figs. 6 and 7 show an r,t-diagram plotted for an initial cavity ra-

dius of 1.698 cm. Pressures in kilobars are also shown on Fig. 6. Thia

figure gives much more detail of the early phase of the expansion up to

t = 2.5 microsec. from its start at t = 0.9 p sec. In this elapsed time

of 1.6 w see the inner cavity has only grown to 1.86 cm, which is only

13% of its ultimate change. However, the pressure has already fallen con-

siderably. At the cavity surface it is down to 50 kb.

We also note that the shock velocity at point labelled P on the dia-

gram is equal to the known elastic wave velocity of the material. Beyond

this point the 2/5-power law for the shock front starts to deviate from

this velocity. Such a condition represents a discrepancy of the progress-

ing wave method from this point on which is inevitable because of the equa-

tion of state used.

Figs. 8, 9, and 10 show hev the pressure, particle velocity and den-

sity decay with time at the inner cavity surface. We note that p

occurs for t = 2.5 A sec. Of course, we may not conclude that p becomes

less than the free space density because the equation of state (6.1) no

longer applies.
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9. Results- -

TADLE 1

Variation of physical quantities along
solution curve and cavity surface

T U P D E R(2)

sec x 1i0 sm/cc ergs x 0l12

.8684 .09302 .02856 451.28(1) 3.5182 -0.0 1.698

.9539 .09312 .02854 438.45 3.4282 -. 188 1.713
l.o62 .09324 .02852 424.25 3.3282 -. 368 1.730
1.186 .09337 .02844 410.10 3.2282 -. 520 1.748
1.329 .09352 .02846 396.02 3.1282 -. 648 1.767
1.495 .o9369 .02843 381.99 3.0282 -. 755 1.786
1.688 .09389 .02840 368.02 2.9282 -. 844 1.807
1.939 .09411 .02836 354.12 2.8282 -. 918 1.828
2.181 .09436 .02832 340.29 2.7282(3) -. 979 1.851
2.496 .09466 .02827 326.52 2.6282 -1.•29 1.874
2.872 .09500 .02821 312.83 2.5282 -1.o69 1.900
3.323 .09539 .02815 299.2194 2.4282 -1.101 1.926
3.868 .09586 .02807 285.69 2.5282 -1.-127 1.954
4.533 .o9641 .02799 272.24 2.22818 -1.148 1.984
5.350 .09707 .02789 258.89 2.1282 -1.164 2.o16
6.364 .09787 .02777 245.63 2.0282 -1.176 2.050
7.636 .09884 .02764 232.48 1,9P82 -i.186 2.087
9.252 .10003 .02749 219.43 1.8282 -1.193 2.127

11.33 .10152 .02731 206.51 1.7282 -1.198 2.171
14.04 .10341 .02710 193.71 1.6282 -1.202 2.219
17.65 .10585 .02686 181.05 1.5282 -1.205 2.272
22.52 .1o90g o2659 168.55 1.42818 -1.207 2.332
29.28 .11331 .02628 156.21 1.3282 -1.209 2.401
38.91 .11914 .-02593 144.08 1.2282 -1.210 2.481
53.07 .12728 .02555 132.17 1.1282 -1.211 2.577
74.76 .13883 .02513 120.56 1.0282 -1.211 2.696

109.5 .15536 .02462 109.38 .9282 -1.212 2.849
168.3 .17866 .02384 98.85 .8282 -1.212 3.058
273.2 .21002 .02241 89.36 .7282 -1.212 3.355
470.8 .24867 .01974 81.30 .6282 -1.212 3.795
865.8 .29068 .01550 74.96 .5282 -1.212 4.465

1717 .32972 .01012 70.40 .4282 -1.212 5.514
3681 .35941 .00478 67.-4 .3282 -1.212 6.968
7404 .37363 .0oo98 65.87 .2282 -1.212 9.257
8357 .360M7 .0oooo 65.67 .1282 -1.212 9.687

(1) See below (3) Free-space density 0 = p0

(2) Cavity radius
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From eq. (4.3), it Can be seen that the t-function admits of an aybi- A0... •

trary multiplicative constant. This constant is determined from the known

Srequired density of the material behind the shock front given by the Rank-

ine-Hugoniot conditions. This is given by (5.2c). From the equation of

state (6.1),

P - 3.5182

P -- 384 kb

Then, from (5.6b) and (5.6c),

D - 3.5182 , P .02856.

For an initial cavity radius of r = 1.698 cm,

t = r(DP/p) / 0.868 microseconds.

This is the value which must be used as the starting time of the cavity

motion in order to put the shock front at the given radius. We finally

must have

S= rt' = (1.698) (.868 x 0-6) 451.28.

10. Energy Considerations

In the theory of progressing waves, an assumption of constant energy

was made (see eq. (4.7) in order to provide the condition (4.8) for deter-

mining 0, and with it, all the other exponents. The energy integral (4.7)

is extended between two points, one of which is located on the shock front

= const. = l and a lower value • = The integral path, such as BC
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k in Fi5. , z~r ~g rbIta1rv bhosen, so long as it terminates on thes
Fg 3•:- niv .e l se

tU L ,.urves.

The ener•J in the disturbed part of the solid will, however, change

with time because its lower boundary, the cavity surface, is not one of

the family of g-curves. Thus the energy values in Table I represent an

integration of the expression in (4.7) taken along the cavity surface

curve. If we extend this integration far enough (say to 100 microsec) so

that point D practically coincides with point C, the values in the

table become asymptotically constant, and we have

C B C D tB

E .f f f . 0 + -f . f
A A B B to

Fram Table 1 we see that the energy does tend to a constant and we have

just shown that this limit is the value of the energy integral (4.7).

E - 1.212 x 1012 ergo (10.1)

If we now suppose that all (or any known fractional part) of the

energy given up by the explosive is transmitted into the solid, then the

shock process could be terminated when the energy reaches the amount avail-

able. It is not possible to determine a precise point of time because of

the asymptotic way in which the energy increases. It is seen, however,

that E reaches 90% of its ultimate value in 3 microseconds, which is a

very short time compared with the expansion process.
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The post-shock expansion presumably must take place under constant

i -_ energy conditions for a "long" period of time, until it Is dissipated by .....

viscosity of the flow, elastic waves, and other nide effects.

For energy available in the explosive, Shear [6] gives the value

"Tta - 1.152 k csal/g

vhich, for our explosive weight of 0.07 lb, gives

ETotal , 1.26 x 102 ergs

Our calculated asymptotic value (10.1) from the progressing wave integra-

tion comes to 96% of this. Thus we have here an independent comparison

to check the theory.

1•.. Experimental Details

The specimens used in the experimental portion of thit study are

thick walled aluminume spheres machined from blocks of 60i.l-T4 and 24ST.

The spheres are of two sizes with nominal outside diameters of eighteen

(18) and twenty-five (25) centimeters. Figure 1 illustrates the general

sphere configuration. The inner cavity is machined to assure snug accept-

ance of a thirty-two (32) gram charge of Pentolite explosive. The thread-

ed well is machined in the specimens in order to accept a threaded alumi-

num plug. The plug is fabricated with a hemispherical cup on the insert

end, in order to seat the expl osive. The small diameter hole drilled the

length of the plug axis provides a means for running the firina line and

ionization probe to the cavity. The portion of the plug extending beyond

the threaded section is used for the purpose of mounting the entire assembly.
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tone fundamental infoomation reurd-rqt f

slats of essentially desterminiin the permanent deformation of the speci-

men the spheres are instrumented to determine initial free surface velo-

City, maximum radial expansion, and the shock velocity through the mater-

ial. Instrumentation for the measurement of the free surface velocity,

and maximum radial expansion consists of two condenser type micrometers.

The grounded free surface of the specimen constitutes one plate of the

condenser; the micrometer plate is spaced a few tenths of a centimeter

fran the free surface.

Quartz disc crystals affixed to aluminum rods of varying length are

used to measure shock time of arrival. These rods are threaded into the

sphere with the crystal surface normal to the sphere radii. (Figure 1).

The output from the condenser micrometers and the quartz crystals

are recorded on cathode ray oscilloscopes. The scope sweeps are trigger-

ed by a simple ionization probe inserted through the plug into the ex-

plosive detonator cavity. Figure 11 illustrates the experimental arrange-

ment.

Prior to assembly and testing measurements of the sphere outside

surface and inner cavity diameters are made. After assembly the con-

denser micrnmeters are calibrated remotely, then the explosive is initiat-

ed. The scope traces are recorded with still cameras using polaroid films.

Table 2 contains a tabulation of the before and after physical

measurements of each specimen. The inner cavity and outer surface dia-

meters are averages of several measurements and do not reflect the asym-

metrical distortion detected in the post shot observations. However, the
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values determined from the recorded data presented in Ta:le )3 do indicate

this non-uniform distortion. The values in Table 2 indicate that the aver-

age increase in the specimen outside diameter is 2,% for the small spheres

and 1% for the larger one. For the inner cavity the post shot diameter

indicates an increase of about 75% for the small specimens except for one

with an increase better than 90%. The two large spheres display increas-

es of better than 100%. In Table 3 the values derived from the oscillo-

scope records are prcsent. The average shock velocities through the

material agree rather well. The difference in free surface velocity be-

tween the 606144: anI the e.ST aluminum is quite apparent. The values

determined for maximum radial expansion tend to indicate that there is

non-uniform deformation occurring.
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*12. Su ry and Conclusions

In this paper we have attempted to study the cavity formation process f

in the metal by determining how the important physical variables of cavity

radius, velocity, pressure, and density vary with time and position near

the cavity. The most prominent general feature of the whole process is

the short time of the "shock" regime as compared with the total time of

the expansion. One general criterion of the end of the shock is when the

supersonic velocity of the shock front drops to sonic, i.e., at the point

P of Fig. 6, where the slope attains the value for elastic disturbances

in the material. The progressing wave curve cannot be used beyond this

point since it would give a subsonic shock velocity. This situation has

occurred after 0.5 microsec.

We note that the highest pressures and densities in the metal are

located just behind the shock front, and trail off with decreasing radius

to minimum values at the cavity boundary. We note that the equation of

state (6.1) which has been used for the calculations has a lower limit of

p . 100 kb. This could also be used as a criterion for shock termination

(point D, Fig. 6). It is reached in 0.7 ii sec. These conditions thus de-

termine a roughly parallelogram shaped region ODPE in the rt-plane for

the validity of the progressing wave region. Note that the cavity has only

expanded 0.1 cm during this period, which is 1/30 of the total observed

increase in radius. We are thus Justified in referring to the shock pro-

cess as impulsive, i.e., the later stages of the process are insensitive

to many features of the shock part. Hence the progressing wave muethod of

integration remains valid for the analysis of the shock zone.
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..The ai totle characteristics of the progressing waves ar-thu1s h.ot

of direct physical interest since they do not apply to the problem beyond

the region described above. The expansion zone, headed by a wave travel-

ling with the dilatationl wave velocity goes on for at least 100 p sec-

onds, during most of which the metal continues to move by fluid or plastic

flow.

The final cavity radius attained is of great interest to the general

problem as this value is directly observable on the specimens after blast.

In principle the prediction of this radius should afford a test of any

theory, but the matter is not so direct as this, since several theories

are involved. It is now evident that the cavity formation process is com-

plicated. It starts under one theory (in which the state of the metal is

fairly well established) but terminates in a different state of the mater-

ial, about which information is almost completely lacking. Several mechan-

isms have been suggested for terminating the cavity expansion:

(1) An energy-level criterion

(2) A temperature criterion

(3) A yield-point criterion

Criteria such as (2) or (3) are tempting because they tend to provide

fairly definite narks as to when the material "freezes", either when a

given temperature, or a given pressure is reached. However, knowledge of

materials is still too incomplete to solve this problem. The total energy

of the moving material stops increasing after the expansion phase has be-

gun, so there is no change in energy. Furthermore, any quantitative use
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Of ener .balanqes yoW2~drequaJtre 5krerul accounting qog al. ~h~zqgoss-

es as well. A discussion of some of these energy questions was given in

the previous section.

We summarize by noting that the following four phenomena are coinci-

dent in time:

1. The shock-wave becomes sonic.

2. The pressure at the cavity surface drops to less than 100 kb.

3. The total energy in the disturbed material reaches 90%• of its

maximum and then levels off asymptotically.

4. The average gas pressure in the cavity (uniform model) equals

that in the metal.

All of these occur close to 2 microseconds after initiation of the

explosion. This delineates a fairly definite time point of changeover of

conditions. Up to this time (t = 2.5 microsec. for the conditions of

this report) we may say the effects of shock predominate. The progress-

ing wave method furnishes an accurate theory for this regime. After this

time a relatively long expansion period occurs at constant energy until

ultimately terminated by degradation processes.

It is felt that more consistency among the measurements would be

attained if rigid quality control on the specimens could be maintained.

However, since these measurements are being made in regions of relatively

low pressure, they are sensitive to inhomogeneity and anisotropy. Effort

will be directed toward further refinement of the experiment.
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ABSTRACT

A semi-empirical model is derived which will, it is hoped,
contribute to the understanding of the nature of waves and
fractures in solids caused by hypervelocity impact.

The distance within a solid at which the shock wave slows
down to an elastic wave is considered as the radius of a "cavity"
to the surface of which a forcing function can be applied to
produce an elastic wave similar to that produced by the impact
.of a high velocity projectile.

By the use of a high-speed computer, the characteristics
of the forcing function are found which will produce the same
effects as those caused by a projectile. This forcing function
can be described by a mathematical series, each term being of a
form for which the general wave equation can be solved. This
permits the computation of particle displacement, particle ve-
locity, and principal stresses within the target.
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NOMENCLATURE

SCI Momentum per unit area of forcing function
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am Mean stress
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ae Tangential stress

- See text

Displacement potential function

wo See text

V2 Laplacian operator
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INTRODUCTION

When a solid body is impacted by a hypervelocity pro-
jectile, the kinetic energy of the projectile is divided among
several physical effects, such as permanent deformations; heat,
light, and vaporization; ejection of most of the projectile
and some of the target material; and shock waves. There is
much disagreement among investigators as to the model or
theory to use in describing these effects. A great deal of
experimental data and considerable theoretical work has been
published during the last few years. Many theories have been
deduced with utmost rigor from rather arbitrary assumptions.
Contradictory empirical relations have been formulated at
various laboratories to fit their specific data. This paper
dealing with the spherical pulse produced by hypervelocity
impact will probably be no exception, but it is believed that
the semi-empirical model described will contribute to the
understanding of the nature of these waves and the effects
produced by them.

A simplified description of the effect of hypervelocity
impact is generally divided into the following stages: (a) The
projectile is imbedded in the target material. (b) The
crater expands very rapidly similar to an explosion. (c) The
velocity of the crater surface decreases, thereby permitting a
shock to become detached from its surface. Material flows
along the wall of the crater and is ejected at a velocity up
to eight or ten times the impacting velocity of the projectile.
(d) Permanent deformation ceases, and the shock decays into a
spherical elastic dilatation wave which continues to dissipate
energy throughout the target. (e) As the wave reflects from
the back or other free surface of the target, as tensile waves,
secondary fractures and deformations occur if the tensile
stress exceeds the fracture stress of the target material.
This fracture stress is much greater than its static strength.

ASSUMPTIONS

In this study, as in all other impact studies, it is
necessary to make several assumptions concerning the phenomenon
of hypervelocity impact. A few of these assumptions are
rather arbitrary, others are based upon the work of previous
investigators, and some are dependent upon the extrapolating
of experimental data.

It is assumed that during the initial stage of impact the
projectile is imbedded in the target material to a depth equal
to the projectile radius. Gehring (1) gives the crater depth
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at this time as the length of the projectile multiplied by the
- ratio of. the square roots of the densities of projectile and

target material. For a Lexan projectile impacting an aluminum --

target (with which most of this study deals) this would give
the crater depth as 1.3 ro instead of ro as assumed. The
effect of this assumption upon final results will be discussed
later. The pressure at this time is very great, and the
values used in this study are those given in the hypervelocity
survey report by Hermann and Jones (2).

The shock front starts out at about the impact velocity.
The strength of the shock rapidly attenuates, and its velocity
slows down to the elastic wave velocity in a very short time.
Davids (3) gives this time as one microsecond (psec) after
impact for a 3/16-in. steel pellet striking a steel plate at
20,000 ft/sec. Kineke (4) gives the time as about 3.5 ýLsec
for a 0.18-g steel pellet striking a Lucite target at 4.6
km/sec. This is in agreement with the author's experimentis
at AEDC which indicate an average of about 3.0 .Lsec for 0.3 x
0.3-in. Lexan cylinders (0.44 g) impacting Lucite targets at
velocities ranging from 14,000 to 21,800 ft/sec.

The shock separates from the crater surface while the
crater is still expanding, but generally slows down to the
elastic wave velocity at a distance within the target about
equal to the final crater depth. Theoretical studies by
Davids (3) and Bjork (5) of steel projectiles (0.475-cm-diam
sphere and 10 x 10-cm cylinder) impacting steel targets agree
with this. Davids' study gives the crater depth as 1.2 cm
with the wave becoming elastic at 1.3 cm. Bjork gives the
crater depth as 19.5 cm, and a plot of distance-time relation
seems to indicate that the wave becomes elastic at about 24
cm. The streak camera record by Kineke (4) of a steel pellet
striking a Lucite target as well as the author's experiments
are also in agreement with this (see Fig. 1). It is assumed
in this study that the shock wave decays into an elastic wave
at a distance within the target equivalent to the final crater
depth (r3.) and that the velocity of this wave is expressed by
the relation

c + L

the velocity of irrotational waves of dilation.
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The material is considered to be homogeneous and iso-
4; tropic. The waves are spherical, and their origin is on the

target surface at the point of impact. This is verified by
photographs of shock waves in Lucite produced by hypervelocity
impact as shown in Fig. 2. Values of the crater depth are
determined from Fig. 3, which gives crater depth as a function
of velocity for various projectiles impacting copper and
aluminum targets. It is assumed that target thickness has no
effect on crater depth if the depth is less than one-half the
target thickness, as shown in Fig. 4.

STRESS RELATIONS

It has been shown (6) that spherical, longitudinal pulse
propagation in a homogeneous, isotropic medium can be speci-
fied by the wave equation,

•2 2 2 V2¢

where 0 is a scalar displacement potential. The particle dis-

placement and velocity arc specified by the relations

u - and v -

If r denotes the radius vector from the point of projectile
impact, the principal stresses are given by the relations (7)

6u
ar =( + 2R) Z- + 27ý (u/r)

r ~r

e \-Jr-) + 2(A + p.)(u/r)

From the principal stress, the maximum shear stress is found
to be

and the mean pressure acting at a point is

++ 3.) 2+ u + 2u)
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The identity relating ar, am, and a. is

SOLUTION OF THE WAVE EQUATION

The propagation of spherical waves in solid elastic media
has been the object of much study, especially among seismolo-
gists (8) (9) and acousticians (10). In general, the approach
has been to consider an infinite homogeneous medium in which
there exists a hollow spherical cavity, within which there is
generated a uniform, time-varying pressure, p. The problem
has been to determine the resulting wave motion in the solid
medium. There has also existed the problem of justifying the
use of linear elasticity for these nonlinear phenomena. When
a charge is fired within a hollow cavity, or when a hyper-
velocity projectile impacts a solid, a wave is generated in
which the stress is much greater than that of the material
strength. This wave diverges from the point of impact, or
site of the explosion, crushing and compressing the material.
This stress wave rapidly attenuates because of loss of energy.
At some distance within the solid the stress will equal the
strength of the material, and at greater distances the
material will be elastic, if viscosity and internal friction
are neglected. This critical distance has been called the
"radius of the equivalent cavity." As previously stated, it
is assumed that this radius is equal to the crater depth
caused by +he impact. This is not to say that an elastic
wave detaches itself from the crater, but rather that the
shock decays into an elastic wave at approximately this
location before the cavity is completely formed.

The boundary condition to be satisfied expresses the
equality of the radial component of stress in the medium at
the cavity surface to the pressure inside the cavity,

X + 2ki) 2X (= [Pt=
r=r 1

If the applied pressure is considered to be an impulse which
jumps from zero to p, at t = 0 and then decays exponentially
with time, and is described by the relation

-U t
p =ple
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the solution of the wave equation given by Blake (10) is

F~2+ao~YJ ( ~\ro/i
Pilrl e-U +" e- 0 1-( ...

Cos [WOT - tan 1 (ao W )]
where

"t= (r_-_r)

c 11 - 2v\•o r 1l\T=•-'

and

c [(1-20)/1/
-1 - 1

This solution satisfies both the wave equation and the bounda-
ry condition.

Allen and Goldsmith (11) have employed this solution to
give a description of a high-amplitude pulse in steel. In
this paper, it was admitted that the form of the forcing
function was assumed for mathematical convenience and that it
probably did not represent the actual situation.

A pressure pulse more closely simulating the actual
forcing function produced by hypervelocity impact may be
expressed by the relation

P - Pl (Kle-ct + K2 e-2at + K3 e-3ut + ..... Kn.enat)

Since each term of this expression is of the form p = ple'Ot

a solution ot the wave equation may be found for each term
( 61 ' 9 h2 4 )3 0 . . . . On ) "

The sum of these solutions is also a solution; therefore,

S= 
01 + 02 + 3 + . . . . Cn
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The area under the pressure--time curve is the momentum per
unit-area of this forcing function and is

f pdt -= ~ 1( + 2 + K3 .4n

The total momentum in the forward direction may be expressed
as

Ms = rr 1 2 C1

The momentum of this pulse is a function of the pro-
jectile momentum (M p) as well as being dependent upon the
target material. As most of the projectile, as well as much
of the target material, is ejected as a "back-splash" at a
very high velocity, the total forward momentum that must be
absorbed by the target may be many times greater than the
initial forward momentum of the projectile (12). Measurements
of momentum transfer (13) have indicated that the ratio of
target momentum to projectile momentum for plastic projectiles
impacting aluminum targets is 1.9 for velocities of 25,600
ft/sec. In Lhib study the ratio of the forward momentum of
the forcing function to the initial forward momentum of the
projectile will be denoted by C2 .

Previous investigators (14) employing a modified
Hopkinson-bar type of experiment have shown that the pressure
pulse does jump from zero to a maximum pressure, has a zero
slope at that point ([dp/dt]t=0 = 0), and then decays expo-

nentially. A forcing function producing a pulse of this
general shape is generated if the values of K1 , K2 , Ks, .
* . Kn are determined by solving the following equations for

the conditions of zero time:

p/p = K1 + K2 + K3 + Kn =1

d(p/pl)/dt = K1 + 2K2 + 3K3 + . . . . nKn = 0

d 2 (p/pl)/dt 2 = K1 + 4K2 + 9K23 + .... n2Kn 0

d(N-1)(p/p)/dt(N-I)= KI + 2 (N-1)K2 + 3 (N-)K3 + .. n (N-l)Kn = 0
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To solve, the number of equations. (N) must equal the~number of
K-termos(n). The value of a- is.given....bytheralation

a =• K1 - +3" ....

The shape of the forcing function and resulting pressure pulse
depends upon the number of terms of the series used. If only
the first term is considered, the results are as given by Allen
and Goldsmith. The response to a step function of pressure is
obtained by setting the decay constant equal to zero.

Table 1 gives the values of K1, K2 , K3, . I . . . Kn for

values of n ranging from I to 15. It will be seen that the
values of these coefficients are the same as the binominal
coefficients and may be readily expanded for values of n
greater than 15. Values of the sum, K, + K2 /2 + KO/3 +
. . K n/, are also given for various values of n. Figure 5
shows the shape of the forcing function for n having values of
1, 2, 5, 10, and 20, with C remaining constant.

CONDITIONS AT THE WAVE FRONT

It can be shown that the relations

v P--ll and o Plrl - Pcv
pcr r r

apply at the wave front. These equations imply that the peak
particle velocity and peak stresses attenuate at a rate
inversely proportional to the radius vector, r. This applies
only during the elastic regime or when r > r1 . For the region
r, > r > ro the attenuation is probably greater than this. At
r 1 the peak pressure may be expressed as

p1 = C3 Po (I)

FRACTURES PRODUCED BY REFLECTED WAVES

The compression pulse diverging from the point of impact
is reflected from the rear face of the target as a tension
wave and may produce damage at, or near, the rear surface.
This damage may appear as a granular fracture at the surface
(Fig. 6a), as internal cracks and bulging of the rear surface
(Fig. 6b), or as a detachment of the target material (Fig. 6c).
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That such fractures are formed by the reflected waves is defi-
S....nitely demons tra ted..by.,týkq:ph9otg~rphsQf, the.. waye r e-flection

niiee tagtPi.2and material fra ture..in te Lucite target showbzin." ig. 2.
Once a fracture has-been-produced, the tail of the pulse is
reflected-as a tensile wave from the--new surface so that a
series of parallel cracks may be formed.

As each fracture is formed, momentum is trapped between
the free surfaces. This momentum may cause a bulge to form on
the rear of the target.

QUANTITATIVE RESULTS

If the values of C2 and C3 were known, a quantitative
analysis of the effect of hypervelocity impact could be made.
An attempt is made to determine these values by applying data
obtained by impacting aluminum targets with 0.3 x 0.3-in.
cylindrical Lexan projectiles.

The photographs in Fig. 7 show the deformation of the
rear surface of a 1.5-in. target as a result of being impacted
with a Lexan projectile at a velocity of 24,000 ft/sec. There
may be seen what appears to be a shock wave. As the pressure
in the range was only 1.4 mm Hg at the time of this shot,
together with the fact that the lighting used would not be
expected to show even a strong shock, and that its velocity is
that of the target surface, it is believed that this is not a
shock, but is attributable to particles being knocked from the
target surface. Figure 8 is a plot of the material dis-
placement as a function of time. The first part of this time-
displacement curve is very similar to those shown by Allen
(15). In agreement with that study, it is believed that the
curve up to about 4 4sec can be associated with elastic defor-
mation. The remaining part of this curve will be discussed
later in this paper. The velocity of the rear surface of the
target is found to be 1125 ft/sec. According to the Goranson
theory (16), the particle velocity in the shock immediately
beneath the free surface is one-half the surface velocity, or
0.017 cm/4sec. This value, together with the crater depth of
1.73 cm as determined from Fig. 2, gives a value of 61.5 kilo-
bars (kb) for p, by using the relation

plrl
pcr

The value of the attenuation constant,
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Fig. 7 Photographs Showing Deformation of Rear Surface
of Aluminum Target
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may now be determined. Obtaining the value of pop from Refer-
ence 2, based upon the impact pressure of Nylon projectiles
and aluminum targets, the value of C3 is found to be 0.5.
This value is dependent upon the value of ro assumed earlier.
Assuming that this value of C3 is a constant over the range
of conditions being considered, it is now possible to draw the
curves shown in Fig. 9.

The shape of the radiating pressure pulse, determined by
a solution of the wave equation, depends upon many variables.
Figure 10 shows the effect of the target material upon the
pulse form. Figure 11 shows the pulse for different values of
the decay constant, a, ranging from 0.1 to 10. Figure 12
shows the pulse shapes for various values of n, r, and a.

Figure 13 is a photograph of a section of a 1.5-in.
aluminum target that has been impacted by a 0.3-in. Lexan pro-
jectile at approximately 20,000 ft/sec. Three definite
internal fractures near the rear of the target may be seen.
These are located at 0.06, 0.11, and 0.15 in. from the rear
surface. From Fig. 9, the value of the peak radial stress as
the pulse approaches the rear of the target is found to be
19.5 kb. By use of a high-speed digital computer, it was
found that a pulse of this magnitude would produce three
fractures at these observed locations if the forcing function
equation had five terms and the decay constant had a value of
3. It is also indicated that the tensile strength of the
target material (99.99% pure aluminum) is about 100,000 psi,
or 6.8 kb. This value is somewhat lower than the value of
140,000 psi for 24S-T4 aluminum alloy as determined by
Rinehardt (14).

For these conditions, and with these assumptions, the
ratio of the forward momentum of the forcing function to the
projectile momentum is computed to have a value of 0.97.

Using an IBM 1620 digital computer, various effects of
the shock wave upon the target material were determined.
Figure 14 shows particle displacement and velocity as the
pulse moves through the target. The numbers on each curve
indicate the time in microseconds. It is seen that as the
wave front reaches any point the material suddenly acquires a
velocity which decreases as the front passes, and oscillates
with decreasing amplitude and frequency. This is more clearly
indicated in Fig. 15, which shows the material displacement as
a function of time.
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1.5-in. Aluminum Target
Impacted by 0.3-in. Lexan
Projectile at Velocity of
20, 000 ft/sec

Fig. 13 Multiple Fractures Near Rear Surface of Aluminum Target
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The values of the principal stresses, ar and oe, are

!,liven in Fig. 16. The strong tangential tensile stresres I
leveloped near the crater seem to indicate that radial
:ýractures might be expected in this area. These may be seen
.n Lucite targets. Fractures beneath the crater and parallel
:o the projectile direction have been observed (17). These
iay be caused by tangential tensile stresses. These radial
'ractures occur while the crater is still expanding, and are
ater subject to very high pressures. They may not occur at
.11, although the tensile stress is greater than that which
)roduces fractures near the rear of the target, because it
tas been demonstrated that the resistance of a material to
-leavage fracture is increased by the application of hydro-
itatic pressure (18). Figure 17 shows the calculated values
if mean and shear stresses.

The compressive pulse is reflected from the rear target
iurface as a tensile wave. The development of tensile stress
:aused by the reflected shock produced by a 1.5-in. aluminum
:arget being impacted by a 0.3-in. Lexan projectile at a
'elocity of 20,000 ft/sec is shown in Fig. 18. The times
It') given are the number of microseconds elapsed after the
:ompression pulse reached the rear surface. If the tensile
:tress does not reach the critical fracture strength of the
iaterial, this tensile wave begins to decrease in magnitude
.fter about 1 4sec. If, however, the stress reaches the
racture strength, a crack parallel to the rear surface is
ormed. The tail of the forward-moving compression pulse will
.hen be reflected as a tensile wave from the new free surface
,roduced by the material failure and may again reach the
racture strength of the material. Figure 19 shows the for-
iation of the three fractures observed in the aluminum target
taving a tensile strength of 100,000 psi.

Momentum, corresponding to a portion of the pulse twice
he length of the spall thickness, is trapped between the
racture and the target surface. This causes the rear of the
arget to bulge outward. If additional failures occur, mo-
mentum will be trapped between these fractures also, causing
dditional internal deformations. This deformation of the
arget surface is seen in Fig. 9 after the initial elastic
otion has occurred. It will also be noted that this bulge
aused by the trapped momentum is formed at a very non-uniform
ate. In fact, the motion practically stops after about 46
sec, mvrive outward again to slow down after about 76 vaec,
nd then again moves outward to come to its final position
fter approximately 100 jisec. This type of erratic motion of
he rear surface may be seen in the data presented by Allen
20), although he attributes it to experimental scatter. The
omplete explanation is not known. It may be due to the
ormation of multiple fractures, but it is difficult to
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IIR - ear Surface

of Target

wTu"

First Fracture

Second Fracture First Fracture

Third Fracture 
First Fracture

Second Fracture

Fig. 19 Formation of Fractures Caused by Reflected Shocks
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reconcile the times involved. These impulses occur about 30
wi$ee apart, :and the fracturf&saf9rm9d at intervals of less! .
than one microsecond. In ardditi•onthts erratic motion may bb
caused by an oscillation of the material being superimposed
upon the bulge formation. If this is the explanation, the
frequency of vibration is about 30,000 cycles/sec; this does
not agree very closely with its computed natural frequency.
A second projectile was fired into a simular target, and the
deformation of the rear surface was almost identical with the
first.

The final material displacement agrees very closely with
the computed value if the portion of the target between the
fracture and the target surface is treated as a plater, clamped
at its edges, and subjected to an impulsive load equal to the
trapped momentum.

Pressure pulses in aluminum caused by impact velocities
of Lexan ranging from 18,000 to 28,000 ft/sec are shown in
Fig. 20. These are shown as the pulses approach the rear
surface of 1, 1.5, and 2-in. targets.

There has been some disagreement whether the spall
increases or decreases with an increase in plate thickness
with constant impact velocities (17) (19). Figure 21 shows
the spall thickness (distance of first fracture from rear
surface of target) as a function of target thickness and
material strength for constant impact velocity. This indi-
cates that the spall thickness may either increase or decrease
with an increase in plate thickness, depending upon the
fracture strength of the target. Figure 22 gives the computed
spall thickness as a function of projectile velocity. These
curves indicate that a decrease in spall thickness occurred
with an increase in velocity. This is opposite that found by
other investigators (17) in the case of aluminum pruujeutiles
impacting steel targets.

A test of the validity of the model presented is whether
or not it will enable one to predict the target damage caused
by hypervelocity impact. Two test shots were made. One was
the impacting of an aluminum target with a cylindrical Lexan
projectile at a velocity of 25,000 ft/sec, and the second was
the impacting of an aluminum target with a spherical aluminum
projectile at 9,800 ft/sec.

The values of the decay constants were determined from
the relation

3.6 poror 1
Q 

--
3p
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The shocks computed for these two shots are shown in Fig.
23. Also shown for comparison is the pulse obtained by
impacting an aluminum target with a Lexan projectile at
20,000 ft/sec. From these, the locations of fractures caused
by the reflected tensile waves were computed. A comparison
of the predicted fractures and the actual fracture locations
is given in Fig. 24. For the condition of a Lexan projectile
impacting the target at a velocity of 25,000 ft/sec, five
fractures were predicted. When the target was sectioned,
polished, and etched, six fractures could be seen. It may be
seen that the first fracture occurred almost exactly at the
location predicted. The distances between the next three were
slightly less than predicted, and the distance between the
4th and 5th was greater than the computed value.

If the results of impacting the target with a spherical
aluminum projectile could be computed, they would indicate
that the projectile shape and density were immaterial, but
that only the size and momentum of the target were relevant.
However, the results are not conclusive: Two fractures were
predicted and two were formed. The location of the first
fracture was approximately 15 percent farther from the target
surface than predicted; however, the location of the second
fracture agreed quite well with its predicted position.

DISCUSSION

Further experimental work is needed to determine over
what range of conditions the ratio of the forward momentum
of the forcing function to the momentum of the impacting pro-
jectile may be considered constant, and upon what factors this
ratio depends. The so-called "attenuation constant" is proba-
bly not constant for the regime to which it is applied. It
might be more accurate to consider this constant as a power of
the radius vector than as a coefficient. More information is
needed concerning the particle velocity, especially the cause
of the erratic motion of the target's rear surface. For an
accurate model, the internal friction and elastic viscosity of
the material should be considered.

The values determined in this study apply only to alumi-
num targets. When an attempt was made to apply these to a
copper target, the computed results did not agree with ob-
served locations of fractures. The time decay constant for
copper is much less than it is for aluminum. It appears, as
would be expected, that the ratio of the shock momentum to the
projectile momentum, as well as the attenuation constant, will
have entirely different values for targets of other materials.
These should be investigted.
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�rd� Prdict�d LocitIofls-%.,�,, / 'A�ctuaI Lo�tI�Ws�

/
/

/ Projectlle 0.25-in. -diam1st /
Aluminum Sphere/ Target: Aluminum
1.5-In. Thick

- Velocity: 9,900 ft/sec

0
E

Actual Locations

5th Predicted Locations

4th

3rd ProJectile: 0.3 X 0. 3-rn.
2nd Lexan Cylinder

Target: Aluminum
1st 1.5-In. Thick

Velocity: 25, 000 ft/sec
0

0 0.25 0.50
DIstance from Rear Surface, cm

Fig. 24 Comparison of Actual and Predicted Fracture Locations
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fOnly the effects along the radius vector normal to the
L:.- target surfaces were considered. As a pulse is reflected4at

-an angle-of incidence other than. zero., rotational and
irrotational waves of dilatation are reflected. The inter-
action of these waves with the compression waves is very
complex, but should be analyzed.

In spite of the limitations and assumptions made in
this study, the model presented appears to have merit in
describing the nature of waves and fractures in solids
caused by hypervelocity impact.
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Introduction and Summary

We consider a semi-infinite volume of water bounded by a vertical wall.

A small material particle, say a metal sphere of 1/4" diameter traveling at

speeds varying from 5, 000 to 15, 000 feet per second, impacts the water nor-

mally through a pre-punched hole in the vertical wall. (The hole is covered,

prior to impact, with a thin membrane which offers no resistance to penetra-

tion by the particle.) An analytical procedure is desired for determining the

fluid particle velocity, density, and pressure behind the shock front and also

the time variation of the shock front itself.

The impact problem thus described is axially-symmetric and involves two

space variables: Z , measured along the line of particle penetration and AI

the radial distance normal to this line, (See Figure 1). At time t since impact

at 0 the spherical shock fr-nt, centered at 0, has radius R(t). This is in keep-

ing with experiments performed at the Lewis Laboratory of the NASA (See Ref. I)

where, using a high speed camera, it is shown that the shock fronts, as repre-

sented by shadow graphs viewed through the sides of a water-filled transparent

plastic tank, are spheres with centers at the point of particle impact into the

water. For the speeds considered here, the material particle stays intact and

as it pcnetrates into the water, a cavity, forms behind it. A typical view of the

situation ten micro-seconds after impact is sketched in Figure Z.

The excellent data of Reference I give, among other things, the shock front

position R(t) and shock front velocity k(t) for equally spaced instants of time

since impact. In attempting to find a mathematical model for determining R(t),

one is tempted to regard the impact problem as an approximate point explosion

322



SHOCK FRONT VARIATION IN TIME

since the particle is stopped after penetrating only a few inches. For a point

explosion, R would vary as t in keeping with Taylur's point blast relations

(Ref. Z); this, however, is not at all in agreement with the data. Again, on the

assumption that R - tN, one can of course determine an approximate N for

each set of data; but these exponents vary widely from 0. 4 to well over 1. 0.

Thus, the point explosion explanation offers no promise of a suitabi,_ model,

In the present paper, based on the "near separation" of the partial differ-

ential equations defining the hydrodynamic behavior of the fluid behind the shock

front when similarity variables of the type employed in treating cylindricaland

planar blast phenomena are introduced, it is shown that the shock front radius

satisfies the differential equation

(1) A& - - . , B > A > 0,
dt -FR R

whose solution is

(2 14 31-_ + kR + k R + k 3 In(RI/ 2 k) +C.
2 3 2

Here k = A/B and C is a constant associated with conditions at the time of im-

pact t = 0.

It is interesting to note that when the constant A is small relative to the

constant B, equation (Z) becomes approximately

(3) R 3 - t)

since C is invariably small. Relation (3) defines shock front variation in a

planar explosion.

The relation (2) verifies all the data given in Reference 1, extremely

closely all the way down to ambiency conditions where the shock wave degrades
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into an acoustic wave. In fact, relation (1) maybe used to determine anly-

tically where this will occur. Putting a = sonic speed in water, one finds that.

R= a when

* (4) 3w -k- I-- B ± ~ A-~J
a 4k B/4k

giving two values for R. one very close tj impact using the - sign, the other at

the far limit of validity for (1) using the + sign.

The quantity B/4k defines the maximum shock front speed,

(5) RMax = B/4k,

which occurs at

(6) R =4k 2, t=•- k' (2L-- +in k) +B C

Relations (4, 5, 6) also corroborate the experimental data of Reference 1.

Thus, k is associated with the shock radius R* where R is a maximum,

(7) k-

and B is then determined from

(8) B = 4 k RMax

The f-r-iorc basic characterization of A and B, or equivalently B and k, in

terms of the physical and dynamical char.cteristics of the impacting particle

and parameters associated with water is not available at this writing but will,

presumably, fall out naturally when the exact combination of similarity vari-

ables renders the defining partial differential equations separable. A "sepa-

rated" system, based on the heuristic derivation of (1), is available for the

determination of A and B, but the appropriate formulation of boundary condi-

tions is not clear. The presence of two parameters, A and B, will allow both
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momerturn and energy conservation in a complete treatment of the problem.-

The significance ofi the presout result is very girea-t i h

the exact differential equation for the shock front makes it plausible that exact

separation of the two-dimensional axially symmetric differential equations will

be made. If so, it will be the first time a two-dimensional impact problem will

have been solved analytically. The application of these results to impact prob-

lems involving solid media where the disturbed region behind the shock is tre'ated

on the basis of non-viscona fluid dynamics then becomes promising from an an-

alytical standpoint.

Caloric Equation of State for Water

As caloric equation of state, we use the approximate expression,

given in Reference 3. Here n = 20/3, ýo = 0. 93894 gm/cm 3 , B(S) is a slowly

varying function of the entropy S. Pressure and density of the undisturbed water

are denoted by pO. eo"

Eulerts Equations

The radial and axial components, Vr and VB , of the velocity of a water

particle behind the axially symmetric shock front satisfy the equations for the

conservation of momentum

SVr+ V BVr + V Vr 1
(10) BYE + Vr + V r - r

Z t B r -a8
(11) Zt+ Vr Br ~ j~

conservation of mass

(12) -t - r (e r Vr) + 0 (iVi) 0
+r r "32
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"and, 4assuming that changce in the state of each particle are'adiabatic, the-- ..

addfi~leW eqiattion . .

(13) DS =0.

Dt

Since eq. (9) may be inverted for S, eq. (13) is equivalent to

(14) (--+ V + V --) ap/ a (_. 1lf l0.

Introduction of Similarity Variables
Consider the momentum equations (10) and (11). Without the term V Vr

eq. (10) describes radially cylindri:al flow, while in eq. (11) omission of the

term Vr 3 gives an equation applicable to planar flow. It is of interest,Br

therefore, tu aee how equations (10) and (11) transform with the introduction

of first the cylindrical similarity variable Y) = r/R nnri then the planar simi-

larity variable ý = Z /Z. These are the variables employed in the study of

cylindrical and planar blast waves originating with line and plane explosions,

respectively. Here R and Z are the cylindrical coordinates of a point of the

axially symmetric shock front.

Des Cl ib,1i± Lhe shock front by R - k ( • , t) and introducing the transfor-

mations

(15) 1 =4-_ v ,'E- v - 0= Iiscq
R R

we find, after numerous computations and simplifications, that equations (10,

11, 12, 14) become:

(656r + +rV )+ "1 9r 9r + r1/I o
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(17) - Y+4)( + V, 3R + -L- 2F+N7F A-1 2'

(18) -lp t+ VZ -a R+ + A-1'')]-~~+)
1 ~ -0

(19) (!:R + FýJ §2) + Or F n 1) _nE~r-{F p

0,

where primes indicate differentiation with respect to 'Y1

These equations are linear in the quantities

(20) !R+ V A A .- 1 , . -

and would allow separation of variables if VE did not depend on . Since the

shock front is spherical, -P will be constant, as the shock moves outward,

along a fixed direction from the point of impact since -aR measures the slope

of the front at a given time. However, if one moves along such a fixed direction,

R will be proportional to R and to R. would behave as some

function of R, so that the shock front would satisfy a differential equation of the

form

(21) = G(R) - AR-1

where G(R) is to be determined and A is a constant.

If instead of the transformation (15) we had introduced the transformation

(ZZ) V- = /r , v _ - = = T ( ), p (o Z

21/2 r 1/2 ' 1/2 \ -

where the shock front is now described by Z = Z(r, t), equations similar to

(16, 17, 18, 19) would be obtained which are linear in the quantities

z z 1 /Z -1/2az(23) -Zt + Vr -- rS I Z -l z ,Z-l

Reasoning as before one would arrive at an equation corresponding to (21) of
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the form

(24) :!.= BR -H(R) ,

where H(R) is to be determined and B is a constant.

Since G derives from V.I as "Y -- o 1, it is natural to identify it with

B R-1I12, consistent with the behavior of the velocity of a planar front; simi-

larly, as 1--+ 1, one would identify H with AR"1 , since it originates with Vr

and Is consistent with the velocity of a cylindrically radial front. Following

this heuristic reasoning, we write the differential equation of the front in the

form

(25) dR B A
dt , R

The solution of eq. (25) is

(2) t = 'B + kR + k 2 RI1 2 + k ln (Rl 2 _k) + C,
2 3 2

where k A/B and C is a constant.

Since R > 0 providing T > k, the log term in eq. (2) will be real for

all R > k0; but since t -0. - oc as 4"-- k+, the log term will be real for

all real t. The graph of R vs. t has the general features showa in Figure 3.

As t -- - oo, the curve approaches the line R = k2 asnymptotically from above,

crosses the R axis at R(0) > 0 and reaches a maximum slope at R = 4k0, where

it has a point of inflexion. To the right of this point, the curve is concave down-

ward- An interesting feature here is the positive value of R at t = 0. This,

however, is an unimportant anomaly of the mathematical model near the point

of impact and is less objectionable, for example, than the infinite shock front

speed at t = 0 in the Taylor model of a point explosion.
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Lastly, we note down the system of ordinary differential equations depa-

rated out of equations (16, 17, 18, 19) when proportionality is dern-anded 0fth .

quantities (20) as 1- - 1. We have,

(26) A( Nj + d + Or Ar + Fl/v =0

(27) A(T B -q..B't~ +2?F) / = 0

(28) AllV' + (qr'P)' + rp) + %P = 0

(29) A{ (yn -1) (IF' + 2F).njF IF n-~I XP + 9r t F'(4,nl_)_ Y n-)l 1P = 0.

In principle, A and B would be determined from conservation of energy and

momentum; then equations (26, 27, 28, Z9) would be solved simultaneously for

5r - 0, I and F, using the Rankine-Hugoniot relations at the shock to

determine initial conditions for the integration. The shape of the cavity will

then be obtained by finding a surface of revolution behind the shock on which

p 0, i.e. F= 0.

Comparison With Experimental Results

In the experiments conducted at the Lewis Research Laboratory of the NASA

(Reference 1) impacts were made into a water-filled transparent plastic tank

with metal sphexes, 7/3Z" in dianeter, of aluminum, steel and tungsten-car-

bide: in addition, one impact involved a copper slug, six inches long, with hemi-

spheric-al end:: of 7/32" diameter. Measurements were obtained giving, among

other things, the shock frout position versus time, from which shock front velo-

cities were obtained graphically.

To check the applicability of the shock front differential equation

(1) dR = B A k = A/B
dt FR R
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a- •t and s~lt•_a•.tionR" -R +

(2) Bt =+/ +.kR + k2 R/ + k ln (R1 1 2 -k) + C

z 3 2

with the experimental results, the first two data points for (R, R) of the Lewis

data for each run were used to determine A, B in (1); this result was then used

in (Z) along with the t value for the first data point to determine C. Equation (2)

was then used to compute t corresponding to all the experimentally determined

R data, and comparisons were made with the experimentally chosen t-data. This

procedure was the natural one in view of the impliit i.-.. in which (?) in-

volves R as a function of t.

We summarize below the results for the six cases for which computations

were made. In the data, R is given in inches and t in microseconds. Values of

t computed from eq. (?) are denoted by tcomp.
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Case I

SI. 1. Aluminum sphere of diameter 7/3Z in.
* - 2. Impact velocity = 7,600 ft/sec. .

3. A = 19,140 in. 2 /sec , B = 93, 300 in. 3 / 2 /sec

k = 0. 20515 in.l/ 2

R 0.57 0.97 1.33 1. 67 2.33 4.15

t 5 10 15 20 30 60

tcomp 5.0 9.8 ].5.0 20.4 32. 1 71.5

After 20 m-sec. , conditions rapidly approach arnbiency; the recorded shock
front velocity at 30 meec, namely 5, 21D ft/sec, is already close to the speed uf
sound in water, 4,715 ft/sec.

Equations (5) and (6) indicate a maximum shock front velocity at R * 168
in. of 9, 500 ft/sec at t 1.21 msec.

Case II

1. Aluminum sphere of diameter 7/32 in.
2. Impact velocity = 6, 690 ft/sec

3. A = 38,226 in. /sec , B = 110,010 in. 3//sec

k = .34748 in.

R .642 .949 1.24 1. 50 1.785 2.077

t 4.16 8.32 12.48 16.64 20.80 24.96

tcomp 4.16 8.22 12.37 16.70 Z.0.85 25.77

Recordcd shock front velocity at t = 24. 96 was 5, 330 ft/sec.

Equations (5) and (6) indicate:

R Max = 6,600 ft/sec at R =.482 in. , t = 2.1 msec

The recorded shock front velocity at t = 4.16 was 6,480 ft/sec and decreased
steadily thereafter.
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Case III

1. Aluminum sphere of diameter 7/32 in.
2. Impact velocity = 6, 230 ft/sec

3. A = 51,378 in2/sec , B = 119,940 in 3//sec

k = .42835 inI/ 2

R .77 1.11 1.44 1.76 2. 38 4.2

t 5 10 15 20 30 60

tcomp 5.0 9.93 14. 93 20.04 30. 62 66. 50

The recorded value of R at 30 msec was 5, 080 ft/sec.

From equations (5) and (6) we have:

RMax = 5,833 ft/sec when R =.734 in. and t 4. 50 msec.

Rt recorded at t = 5 meec was 5,830 ft/sec.

Case IV

1. Steel sphere of diameter 7/32 in.
2. Impact velocity = 6, 130 ft/sec

3. A = 27, 206 tnz/sec , B = 89, 638 in3/2 /sec

k = .30351 in1/2

R .275 .62 .97 1.31 1.99 3.87

t 5 10 15 20 30 60

tcomp 5.0 9.76 15.03 Z0.69 33. 44 77.0

Recorded R at t = 30 msec was 5, 420 ft/sec.

From equations (5), (6) we have:

RMax = 6,150 ft/sec when R =.368 in., t = 6. 2b maec.

At 5 maec, The recorded value of R was 6, 000 ft/sec.
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Case V ... ... '•

1. Copper slug, 6 in. long and 7/32" diam.
2. Impact velocity not recorded.

3. A = 25, 807 in2 /sec , B = 91, 708 in3i 2 /sec

k =.28141 inu/2

R .705 1.05 1.27 1.53 1.80 2.06

t 8.22 12.33 16.44 20.55 24.66 28.77

tcomp 7.84 12.88 16.38 20.31 25.63 30.57

Ambiency conditions prevail shortly beyond 24 msec.

From equations (5), (6) we obtain:

RMax = 6,790 ft/sec when R = .48Z andt = 2. 83 msec.

At 5 mecc, the recorded value of R was 6, 550 ft/sec.

Case VI

1. Tungsten-carbide sphere of diameter 7/32".

2. Impact velocity = 4. 615 ft/sec

3. A z 52,600 inZ/sec , B = 129,080 in3 1 2 /sec

k = .40751 in1 / 2

R .74 1.12 1.47 1.81 Z. 45 4. Z

t 5 10 15 20 30 60

tcorný 5.0 9.92 14.7 19.7 Z9. 7 61.5

•.ailbincy conditions prevail at t = 30 msec.

From equations (5), (6) we obtain:

kMax := 6,600 ft/sec when R = . 665 in. and t = 4.05 msec.

At 5 msec the recorded value of R was 6, 580 ft/sec.
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Figure 1
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Figure 3
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