UNCLASSIFIED

w 423063

DEFENSE DOCUMENTATION CENTER

R
Sur NTIHIG AND TECHEICAL INFORMATION

GATRON STATION ALEXANDRIA. YIRGINIA

UNCILASSIFIED




i
W/
i

BS

COP
[TAINED
OF

10

.
%

Il 3
T = m
_ L5 iy
\M\\\\\\\\\\\ froownd] ﬂ“u MMM ﬂmw WVM
B - - - -
~ . ¢ I,
4\\\ = L & HMWM

g

3

&
i

]

o

&

¢ ¥
1

Y
L.

wn e g =
=i
-

-
AVAILABLE. T
D

Lo 3 e~ P .}
A W = ~ = ryo,5
\ Y 1\ e b =4
o ' e | <1,
S ‘
G2 A e
- = = I ==
4 4 i
£owon
i b = oo
(W MMM = v
=L @
o b )
S T

D
CUMENT CONTAINE
DO

K PAGES THAT
BEEN DELETED

BLAN

THIS

REPRODUCED FROM
BEST AVAILABLE COPY




NOTICE: When government or other drawings, speci-
flcations or other data are used tor any purpose
other than in connection with a definitely related
government procurement operation, the U. §,
Government thereby incurs no responsibility, nor any
obligation whatasnever; nnd the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the anid Arawinga, apecificatlons, or other
data is not to be regerded by implication or other-
wise as 1n nny manner licensing the honlder or any
other peraon ur corporation, or conveying auny rights
or permission to manufacture, use or nell any
patented invention that nay in any way be related
thereto.



PROCELDINGS

OF THE

SIXTH SYMPOSIUM ON
HYPERVELOCITY [MPACT

. °l'"i_

4o

VOLUME 1
PART |

ALGUST 1943




(1] L X R ALY

PROCEEDINGS
OF THE

SIXTH SYMPOSIUM ON
HYPERVELOCITY IMPACT

CLEVELAND, OHIO
APRIL 30, MAY 1, 2, 1963

Sponsored by:
U.S. Army
U.S. Air Force
U.S. Navy

Tri-Service C:=mitfee:
R. J. Eichelbergsr, Army, BRL, Chairman
W. H. Dittrich, Air Force, Det. 4, ASD
W. W. Atkins, Navy, NRL

Contract No.
DA-31-124-ARO(D)-16

VOLUME I
PART |

AUGUST, 1963

The Firestone Tire & Rubber Co. (Conference Host)




a

.
|

bl

LIRLERLL S gt L R MR R AT

Volume II of the Sixth Symposium on Hypervelocity Impact appears in
two parts, Part 1 contains pages 1 through 336; Part 2 contains
pages 337 through 709,

The views, conclusions and recommendations
expressed herein do not necessarily reflect
the official vicws or policies of oither the
United States Army, United States Navy or
the United Statcs Air Force,

ii



TABLE OF CONTENTS

VOILUME 1
PROJECTION TECHNIQUES

TABLE OF CONTENTS

UNPUBLISHED PRESENTATIONS

A CRITIQUE OF ACCELERATOR TECHNIQUES FOR
HYPERVELOCITY IMPACT (Introductory Paper)
A, C, Charters

EXPERIMENTAL AND THEORETICAL STUDIES ON THE
INTERIOR BALLISTICS OF LIGHT GAS GUNS
Paul G. Baer and Horace C. Smith

AN INVESTIGATION OF THE PERFORMANCE OF A
COMPRESSION HEATER FOR USE WITH GUN
TUNNELS OR HYPERVELOCITY LAUNCHERS

Bo Lemcke

COMPUTER ANALYSIS OF WO-5TAGE HYPERVELOCITY
MODLLL LAUNCHERS
R. Piacesi, D, ¥. Gates, and A. E. Seigel

NRL HYPERVELOCITY ACCELERAT OR DEVELOPMENT
H. F. Swift, C. D. Porter, J. J. Condon, and
J. R. Baker

PERFORMANCE OF A THREE STAGE ARC HEATED
LIGHT GAS GUN
J. Eckermnan and W. L. McKay

HYPERVELOCITY AUGMENTATION TECHNIQUES

Witliam G, Howell, Rodney F. Recht, and
Thomas W. Ipson

iii

iii

41

107

155

175

247

305



THE MAGNETOHYDRODYNAMIC HYPERVELOCITY GUN 317
R. L. Chapman, D. E. Harms, and
G. P. Sorenson

INHIBITED JET CHARGE ' e F T
S. Kronman and A. Merendino

SPECIAL EXPLOSIVE PROJECTORS: 1, SHAPED CHARGE 349
ACCELERATOR; II, TARGET PLATE ACCELERATOR
K. N. Kreyenhagen, J. E. Ferguson,
R. R. Randall, and J. P. Joyce

(Confidential} ARMOUR RESEARCH FOUNDATION Vol. IV, 395
TRAVELING CHARGE GUN (U}
Louis A. C. Barbarek

SUMMARY REMARKS 375
H. F. Swift
ATTENDANCE ROSTER 379

AUTHOR INDEX 387

iv




(R —

s reh i o AL £ e 1 A

VOLUME 11 - Part 1
THICK TARGET CRATERING AND IONIZATION

‘TABLE OF CONTENTS

REVIEW OF PHYSICAL PROCESSES IN HYPERVELOCITY ~ =~ p- = =

IMPACT AND PENETRATION (Introductory Papexr)
Robert L. Bjork

HYDRODYNAMICS OF HYPERVELOCITY IMPACT
J. M. Walsh and J. H. Tillotson

VISCO-PLASTIC SOLUTION OF HYPERVELOCITY IMPACT
CRATERING PHENOMENON
T. E. Riney

THE CALCULATION OF STRESS WAVES IN SOLIDS
Mark L. Wilkins and Richard Giroux

A HYPERVELOCITY IMPACT MODEL FOR COMPLETELY
DEFORMING PROJECTILES
J. L. Luttrell

A BLAST-WAVE THEORY OF CRATER FORMATION IN
SEMI-INFINITE TARGETS
William J. Rae and Henry P, Kirchner

SPHERICAL SHOCK WAVES AND CAVITY FORMATION IN
METALS
N. Davids, H. H. Calvit, and O. T. Johnson

FROPERTIES OF SPHERICAL SHOCK WAVES PRODUCED
BY HYPERVELOCITY IMPACT
Ray Kinslow

SHOCK FRONT VARIATION IN TIME FOR HICH SPEED
IMPACT INTO WATER
James F. Heyda

iii

59

105

141

157

163

229

273

321

P 4




VOLUME Il - Part 2

HYPERVELOCITY CRATERING DATA AND A CRATER. -

DEPTH MODEL FOR THE REGIME OF FLUIDITY = -~ -~ - ===

Olive G. Engel

FLUID IMPACT CRATERS AND HYPERVELOCITY - -
HIGH-VELOCITY IMPACT EXPERIMENTS IN
METALS AND ROCKS

H. J. Mcore, R. W, MacCormack, and
D. E. Gault

ENERGY BALANCES IN HYPERVELOCITY PENE TRA TION
R. B. Pond, C. Mobley, and C. M, Glass

THE PARTITION OF ENERGY FOR HYPERVELOCITY
IMPACT CRATERS FORMED IN ROCK
Donald E. Gault and Ezra D. Heitowit

TRANSIENT OBSERVATIONS OF CRATER FORMATION IN
SEMI.INFINITE TARGETS
J. H. Kineke, Jr., and Richard Vitali

INFLUENCE OF TARGET STRENGTH ON HYPERVELOCITY
CRATER FORMATION IN ALUMINUM
J. H, Kineke, Jr,, and L, G. Richards

SOME PHENOMENA ASSOCIATED WITH IMPACTS INTO
ALUMINUM
S. M. Halperson

PARTICLE-SOLID IMPACT PHENOMENA
E. H. Goodman and C, D, Liles

INVESTIGA TION OF THE IMPACT OF COPPER FILAMENTS
INTO ALUMINUM TARGETS AT VELOCITIES TO 16, 000
FEET PER SECOND

C. Robert Nysmith, James L. Summers, and
B. Pat Denardo

IONIZATION ASSOCIATED WITH HYPERVELOCITY IMPAC'L
J. F. Friichtenichtand J. C, Slattery

367

401

419

457

513

525

543

577

591




LN TR

INVESTIGATION OF IMPACT FLASH AT LOW AMBIENT
PRESSURES
Robert W, MacCormack

AN INVESTIGATION OF THE PHENOMENA OF IMPACT
FLASH AND ITS POTENTIAL USE AS A HIT DETECTION
AND TARGET DISCRIMINATION TECHNIQUE

J. W, Gehring and R. L, Warnica

SUMMARY: THEORETICAL AND EXPERIMENTAL
STUDIES OF CRATER FORMATION
R. J, Eichelberger

AUTHOR INDEX

vii

613

€27

683

707




TABLE OF CONTENTS

VOLUME 111
THIN TARGET PERFORATIONS AND PROTECTION

TABLE OF CONTENTS iii
INTRODUCTORY PAPER - EXPERIMENTATION 1
L. Zernow
TWO DIMENSIONAL ANALYSIS OF A HYPERVELOCITY 13
IMPACT UPON A VISCO-PLASTIC PLATE
H. Kraus
A METEOROID BUMPER DESIGN CRITERION 41

P, E. Sandorff

EXPERIMENTAL AND THEORETICAL RESULTS 69
CONCERNING THE PROTECTIVE ABILITY OF
A THIN SHIELD AGAINST HYPERVELOCITY
PROJECTILES
C. J. Maiden

EFFECTS OF 3 TO 12 KM/SEC IMPACTS ON FINITE 157
TARGETS
R. B. Mortenenn, J, E, Ferguson, J. P. Joyce,
and K. N, Kreyenhagen

THIN PLATE PERFORATION STUDIES WITH PROJECTILES 207
IN THE VELOCITY RANGE FROM 2 TO 5§ KM/SEC
R. W, Watson, K. R, Becker, and F, C, Gibson

A NEW SYSTEM OF PROTECTION FROM HYPERVELOCITY 249
PARTICLES
B. W. Reynolds and R, H, Emmons
HYPERVELOCITY PUNCTURING OF SELF-SEALING 281
STRUCTURES

Philip J, D'Anna

AN INVESTIGATION OF THE PENETRATIONOF HYPER- 309
VELOCITY PROJECTILES INTO COMPOSITE LAMINATES
A. R. McMillan




METEOKOID EFFECTS ON NUCLEAR RCCKET SPACE 357
VEHICLE MISSION SUCCESS
William H. Sterbentz and Loren L, Long

SUMMARY: THIN PLATE PERFORATION AND PROTECTIO 387 £
Dale M. Davis o !

AUTHOR INDEX 393

-
PR

ix



VOLUME 1V
APPLICATIONS

TABLE OF CONTENTS :

(Secret) APPLICATION ASPECTS OF HYPERVELOCITY
IMPACT - 1963 (U) (Introductory Paper)
J, M, Brown and P. K, Margolis

(Confidential) JET PELLET PROJECTION TECHNIQUE (U)
S. Kronman

(Confidentiat) HYPERVELOCITY PROJECTILE INVESTIGA-
TION FOR MULTIPLE THIN PLATE
PENETRATION (U)

R. L. Chandler, T. Watmough,
and F. J, Zimmerman

(Secret) LETHALITY OF HOLLOW SHAPES (U)
W. H, Dictrich, D. R, Christman
J. W. Gehring, K. N, Kreyenhagen,
and R, B, Mortensen

(Confidential) A WARHEAD CONCEFT FOR DEFEAT OF
HARD TARGETS IN SPACE (U)
Dale M. Davis

(Secret) AIMED WARHEAD CONCEPTS (U)
Samuel D. Stein, George M. Gaydos,
and Edmund M, Harrity

(Confidential) HYPERVELOCITY IMPACT EXPERIMENTS
WITH LAMINATED COMPLEX TARCETS {U)
C. M, Cox and E. S. Thorn

(Secret-No Foreign) HYPERVELOCITY IMPACTS INTO
ABLATIVE MATERIALS (U)
Mario A, Persechino

(Confidential) DETERMINATION OF PERFORATION ENERGIES
FOR COMPOSITE TARGETS (V)
Murray Rockowitz and Charles A, Carey

21

37

101

151

167

193

235

271

i dij.j.

R




{Sccret) A SHORT REVIEW OF THE STATUS OF THE AERO-

THERMAL PHASE OF THE HYPERVELOCITY KILL

MECHANISMS PROGRAM (U)
Coleman duP. Donaldson

(Secret-No Foreign) LETHALITY OF SMALL FRAGMENTS
VERSUS ICBEM RE-ENTRY
VEHICLES (U)
James J. Dailey

(Secret-No Foreign) VULNERABILITY OF LARGE MISSILE
SY¥YSTEMS DURING THE LAUNCH

PHASE (U)
H., S, Zimney, R. B. Mortensen,

W. A, Rhea, and R. B. Coley
(Confidential) FREE, A HYPERVELOCITY RQCKET
WEAPON (U)
D. €. Lane

{Secret) SUMMARY: APPLICATIONS (U)
W, W. Atkins

{Confidential) ARMOUR RESEARCH FOUNDATICN

TRAVELING CHARGE GUN (U)
Louis A, C. Barbarek

AUTHOR INDEX

ATTENDANCE ROSTER

305

329

345

385

395

417

421

wwmets e




MEMORANDUM ' | »

BM-3529-PR : -
JULY 1863 |

REVIEW OF PHYSICAL PRCCESSES IN
HYPERVELOCITY IMPACT AND PENETRATION
Robert L. Bjork

This vesearch is sponsored by the United States Air Force under Project RAND—
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force.

24 RA 1D g

1700 MAIN ST « SANTA MONICA - CALIOANIA



IMPACT FPHYSICAL PROCESSES REVIEW , :

PREFACE
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A continuing effort has been conducted on hypervelocity 'impa”c‘*; -

within RAND for severs) years. Applications of the results have been
made to the problems of the meteoroid hazard, satellite vulnerability,
and ICEBM defense. This Memorandum presents some new information in

this area and compares some of the earlier work with recent experimen-

tal data.



i
i
i
!
H
!

IMPACT PHYSICAL PROCESSES REVIEW

SUMMARY

The so-called volume-energy law, or two-thirds law, is an
empirical £it vhich has been used by many writers to predict penetra-
tion by hypervelocity fragments. A comparison is drawn between this
law and well-controlled high-velocity experimental results which have
been obtained recently. The comparison reveals that the data fit the
law satisfactorily at relatively low velocltles but deviate from it
in a zarked way as impact velocities increase. It is therefore incore
rect t0 extrapolate this law to predict impact effects in the meteor-
velocity range.

The experimental date are shown to agree well with the author's
earlier inmpact predictions based on a hydrodynamic model.* The agree-
ment of penetration by aluminum spheres impacting 1100-F aluminum
targets is particularly good. Penetration of the same spheres into
2024 alloy is less in all cases at corresponding velocities, It is
observed that the ratio of the penetration in the two alloys increases
with impact velocity, ranging from about 50 per cemt at 3 km/sec to
75 per cent at 7.5 km/sec, which suggests that the relative importance
of strength wanes with waxing velocity. The 25 per cent change in
penetration occasionad by increasing the strength by & factor of 7.5
emphasizes the insensitivity to strength at high impact velocities.

Irreversible heating, accompanied by the creation of entropy,
always occurs in a shock. Transit of the target by the shock system
produced in hypervelocity impacts leaves the target material in a
beated state. It 12 shown that impacts in the meteor-velocity range

create enough heat by this mechanism to vaporize and liquefy portions

*Published in RAND P-1662, Effects of a Meteoroid Impsct on Steel
and Aluminum in Space. )
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IMPACT PHYSICAL PROCESSES REVIEW

presented scaling laws to account for projectile-material influence
on a shock-impedance model., Publications are cited which deny the
existence of this effect. Compaiisons are drawn between the two
theoretical predictions and recent well-controlled experimental
results, The effect of projectile material is unambiguously demon-
strated, and excellent agreement with the ghockeimpedance law is found.
The agreement 1s found to extend over & wide range of projectile
materials, from copper and steel on the one hand to plastics having
specific gravity less than unity on the other, It 1s concluded that
by combining the shock-impedance law with the earlier predictions on
the hydrodynamic model, the penetration by projectiles of any material
into aluminum targets may be predicted up to velocities of about 20
km/sec, Above this impact velocity, the effects or melting and
vaporization are expected to become important in estarlishing the
crater dimensions. The role of projectile material in this physical

regime has not been studled as yet.
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IMPACT PHYSICAL PROCESSES REVIEW

SYMBOLS

constant used in fit
Brinell hardness number

subscript indicating projectile of material B incident on
target of material A

constant used in fit

hole diameter

projectile characteristic dimension

projectile kinetic energy

base of Naperian logarithms

normalized penetration ratioc {defined onm p. 40)
constant used as exponent

constant used as cxponent

pressure

nenatration

radial distance in cylindrical coordinate system

target thickness

particle velocity

crater volume

impact velocity

distance parallel to axils in eylindrical coordinate system
exponent in fit of penetration as a function of density
normalized penetration (p/d)

density of materlals A and B, respectively e
projectile density

target density

naterial yield strength
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IMPACT PHYSICAL PROCESSES REVIEW

I. CRATERING IN THICK TARGETS

VOLUME VERSUS ENERGY

The idea has been put forth by many writers that the volume of
the cruter produced in a thick target 1s proportional to the kinetic
energy of the projectile which produced it. If one assumes also that
the crater geometry remains similar throughout a region of the veloc-
ity spectrum, then the two assumptlions taken together lead to the
hypothesis that penetration is proportional to the two-thirds power
of the impact velocity. In pructice, both assumptions encounter
difficultles.

For impacts between projectiles and targets of like materials,
the similar-gecmetry assumption is usually well founded in the hyper-
velocity regime, the craters being approximately hemispherical. How-
ever, for lmpacts between unlike materials, substantial deviations
from hemisphericity are observed, and the geometries do not remain
similar as the impact veloeity is changed., For example, iron or
copper spheres striking aluminum tergets at 2 or 3 km/sec produce cra-
ters whosc depths are about equal to their diameter. At about 7 km/sec,
these spheres yield craters whose depths are about 80 per cent of their
diameters., The ratio for hemispherical craters would be 50 per cent.

Projectile geometry can also produce departures from hemispheric-
ity, even for like-materlal collislons at very high velocities. For
example, aluminum jet pellets impacting 2024 aluminum targets at 10
km/sec are found to produce craters whose depths are 80 per sent of

thelr diameter.* The pellets have lengths sbout three times their

Personal communication from J. Kineke.




IMPACT PHYSICAL PROCESSES REVIEW "
diameter, The varlation of crater geometiry with impact veloclty for

this type of projectile has not been thoroughly ;pygap@gagggi

The assumption that crater volune 1s proportional to projectile

kinetic energy encounters difficulty at any fixed veloclty when one
considers projectiles of various materials impacting on a given target
material. More and more experimental data are accumulating which dem-
onstrate that projectiles of the denser materials are more efficient
in producing craters, in that they produce a greater crater volume per
unit kinetic energy. If one wishes to take account of these experi-
mental data and still retain the physical flavor of the "volume-
proportional-to-kinetic-energy” hypothesis, he must choose a different
constant of proporticnclity for each set of projectile and target
materials. Several attempts have been made to fit the variation of
the proportionality constant by correction factors of the form

P " o

-

%
In such fits, n is an empirically determined constant. In Ref., 1, we
propose a physical hasis for the success of such density cerrections,
but it is shown there that n has a slight velocity dependence. Of
course, the v2/3 dependence is an empirical fit which is vslid only
over a limited portion of the velocity spectrunm.

Examination of log-log plots of penetration versus impact veloe-
ity reveals the power of velocity on which the penetration depends.
The power 1s given by the slope of such plot. Typical plots show a
linear dependence of penetration on velocity at low velocities. The

clope of the curves generally decreases with waxing velocity, and for

IR
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many metéls ‘becomeé ‘approximately 2/3 in the velocity range of 3"1'0 '

- e O e gt

 PRISRFIRAVE L Lnuom AT 05T BT sad niRdmerry

5 km/sec. This velocity rarii;e has_ eeil extensively 1nv”és'bi

i TR oW o T
d1n

the last few years, and the 2/3 value of the slope has been cited as ) T
substantiating evidence for the volume-energy law. Such arguments
ignore the difficulties clted above.

Experimental data have recently been accumulated in the velocity
range of sbout 6 to 9 km/sec. These data quite clearly demonstrate
that the penetration increases with a power of velocity less then 2/3.
In addition, actual meesurement of the crater volumes indicates that
they increase less than linearly with projectile kinetic energy.

It should be emphasized that the "two-thirds law" is only an
emplrical fit. No defensible physical theory has been set forth to
support it. An early attempt in this direction was made by Whipple,
who proposed that the kinetic energy of the projectile was used to
melt the material in the crater as well as the projectile. Under
this assumption, all the material iu the crater receives exactly
enough internsl enerpgy to melt 1t, and the volume of the meited
material is thus proportional to the kinetic energy of the projectile.
However, the physical understanding which we now have of the process
indicates that the average internel energy imparted to the crater
nmaterisl increases with impact velocity. Thus, to assume that the
projectile energy goes almost entirely into heating would lead to
the prediction that the penetration increases with a power of the
velocity which was less than two-thirds. Moreover, Whipple's theory
does not explain the pronounced effect of projectile density on the

crater dimension.

10



IMPACT PHYSICAL PROCESSES REVIEW

Another notlon proposed was that in expanding, the crater did

work against a yleld strength, g, of the metal being deformed. Thus, .

the work done in forming the crater is Vbo, thils work being supplicd
by the projectile’s kinetié erergy. Under thils model, the constant
of proportionality between kinetic energy and volume is just Sy which
should. be a characteristic of the target material only. Again, the
dependence of crater dimension on projectile material is not explained.
Despite the difficulties which the volume-energy law encounters
in the lower-velocity range, and its lack of theoretical Justifica-
tion, it has become common practice for writers to extrapolate the
law to cover the meteor-velocity range of 11 tu T2 km/sec. The prac-
tice has become 50 common that a worker in another field who surveys
the literature is liable to accept the validity of the extrapolated
volume-cnergy rclation only on the,basis of the number of writers who
have made this extrapolation.
Recent carefully controlled experiments at the higher velocities
have been conducted which demonstrate that the volume«energy law is
not being followed. For each combination of projectile-target materials,
it is found that the volume increases more slowly than the energy, with
the result that the ratio, V/E, decreases as impact velocity rises.
Some examples will be given to illustrate this fact.
For the purpose of drawing comparisons, we will consider the
penetration law recently proposed by Eichelberger and Gehring,(g)
vhich states that in thick target impacts, hewispherical craters will

be formed for which

Vo= hx107Z (1)

11
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IMPACT PHYSICAL PROCESSES REVIEW

vhere V is the crater volume in cubic centimeters, E, ‘the projectile
Kkingtie ensfay 1 érgs, and B, the Brineil LEFIAESE’ nunber bf %‘3 i
get material in kilograems per syuare millimeter. This relation is
asserted to be valld over the meteor-velociiy range and to hold for
projectiles of any material.

Figure 1 shows the values predicted by Eq. (1) for penetration
of aluminum projectiles into the 1100-F alloy of aluminum, compared
with experimental results. The experiments were conducted by Atkins(3)
and Liles and Goodman(h). Both sets of experiments utilized spherical
projectiles fired from light-gas guns, and the projectiles were fired
in sabots to prevent erosion in the gun barrel. ILiles and Goodman
reported the Brinell hardness numbers of their targets to lle in the
range of 15.9 to 17.8 kg/mme. The average value of 16.85 was used
in evnluating Eq. (1) in order to plot it in Fig., 1. The prediction
of the author, which was calculated on a hydrodynamic model,(5) is
shown as the shaded region in Fig. 1,

At the lower experimental velocitles, Eichelberger and Gehring
obtain good agreement with the data. However, above about 5 km/sec
the experimental results deviate from their predi:tion. The reason
for the deviation becomes evident if we consider the variation of
the energy-volume ratio as a function of impact veloclty. This 1s
plotted in Fig. 2. Iiles and Goodman(h) measured the crater volumes
individually by accurately metering a liquid into them. Eilchelberger

-10

and Gehring predict a constant V/E ratio of 2.42 x 10 ce/erg,

vwhereas the midpoint of the experimental data goes from about 1.8 x

10 =10

16" at 3 km/sec to about 1.1 x 10" at 7.5 km/sec,

12
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20
10 -
8F
6 -
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. o3 O Liles ond Goodman
1.0 ™ A Atkins
0.8 i éBjork
06 1
1 b1 (11 131 1 S IO WU S N O ‘
1 2 4 6 8 10 20 40 60 80 100 :
Velocity (km/sec) 1
|
Fig. |— Penetration of aluminum projectiles into 1100-F aluminum

targets (The theoretical point at 5.5 km/sec is nearly
obscured by the experimental data)
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Fig.2— Ratio of crater volume to projectile kinetic
energy as a function of impact velocity for
aluminum spheres on IIOOF eluminum targets
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IMPACT PHYSICAL PROCESSES REVIEW

The values of V/E measured by Liles and Goodmnn(h) for copper

' spheres mpacting on 1100-F aluninum targets are-shown-in-Fig: 3 as RN
? functions of impact velocity.* The values are notably higher than for '
aluninum projectiles, running from about 2.6 x 10”10 cc/erg at 3 km/sec

10 ¢ 6.5 km/sec. The model of Eichelberger and

to about 1.9 x 10~
Gehring, which does not differentiate among projectile materials,

still predicts the constant value of 2.4 x 10710 ce/erg, For this
particular combilnation of projectile and target materials, Eichelberger
and Gehring obtain fair agreement at the lowver impact velocities but
again depart seriously from experiment as the experimental values of
V/E decrease with velocity.

For completeness, the volume-energy ratio found by lLiles and
Goodman(h) for copper targets is plotted in Fig. 4 as a function of
velocity.* In this case also, the volume-energy ratio i1s found to
decrease with veloclty, and the ratio for copper projectiles is sub-
stantially higher than that for aluminum projectiles at the same
veloclty.

For these targets, which have Bripell hardness numbers ranging
from 48.9 to 50.9, the equation of Eichelberger and Gehring predicts
a constant V/E of 0,802 x 10-10 for both projectile materials. Their
prediction is plotted in Fig. 4 as the flat line. Besides failing
to make the important distinction between projectile materials, their

prediction departs seriously from the experimental results as the

impact velocity increases.

*The straight lines bracketing the data groups in Figs. 3 and
4 have been inserted only to illustrate the data trend., They should

not be extrapolated. 15
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The hypothesls that crater volume is directly proportional to
projectile kinetic energy rests solely on empirical grounds. In the
lower velocity range, where the hypothesis holds fairly well;”thé
constant of proportionality 13 a function of both the projectile and
target materials, There is no theoretical Justification for extra-
polating the relation outside the regime where the empirical fit was
obtained. Indeed, for copper and 1100-F aluminum targets, where welle-
controlled experimental data at very high impact velocities exist,

the hypothesis of constant volume-energy ratio is found to be incorrect.

HYDRODYNAMIC PENETRATION

Penetration of aluminum projectiles into aluminum targets at
velocitles of 5.5, 20, and 72 km/sec were calculated on the hydro-
dynamic model and published by the author in 1958.(5) The projectile
geometry considered in these calculations was that of a square cylin-
der (length equal to diameter), which moved along its axis of symmetry.
The results are plotted as the shaded region in Fig. 1. The ordinate
in this figure is the normalized penetration, p/d, where p is the

penetration depth and d is the length of the projectile.

Since no other projectile geometries have been treated theoretically,

one must examine experimental data to determine how to apply the theory
to other projectile shapes,

A way of comparing the penetrations of spheres and square cylinders
was suggested by Coullins and Kinard(s)based on thelr experiments with
both types of projectiles. For a given set of projectile-target mate-
rials they found that the penetration depended only on the projectile
length, rather than on the projectile mass, Choosing the cylinder

18
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length (vhich equals its dliemeter) mnd the sphere diameter as charace

s

teristic ‘diféneions, d; -1éd to plots 6f p/d veFaus “inpact Veloeity ~

which wvere identical for thelr data. The sur‘—:;::ﬁ;smé concl\;sié_n_ -1.';“;&;6.{-' )

& sphere of given dlameter produces the same penetration as a square
cylinder vwhich hes the same characteristic dimension, but which welghs
50 per cent more. Thelr date included cases of aluminum-on-aluminum
impacts.

A possible criticism of their data is that 1t was epparently taken
with unseboted projectiles, and that sluminum projectiles have been
found to lose a substantial fraction of their mass by erosion during
flight through the launch tube.

On the other hand, Halperson and Atkins have presented data teken
with aluminum spheres and cylinders fired in sabots.(7) For pene-
trationgs into the 1100-F aluminum alloy, thelr conclusion is thet at
a glven impact veloclty, the crater volume per unit projJectile mass is
the same for both geometries. The projectile masses were reported as
1.27 gm, but the dimensions of neither the cylinder nor its crater were
specified. For this reason, one cannot be certain whether their result
is in agreement with Collins and Kinard or not. Any disagreement is
likely to be on the order of 10 per cent in penetration, which is com-
pargble with the theoretical uncertainty and the scatter in even the
best experiments, as i1llustrated in Fig. 1.

For irreguler geometries, where one dimension greatly exceeds
another, it 1f difficult to0 essign s characteristic dimension. In
this case, some success has been obtalned by choosing the equivalent
sphere dismeter as the charscterilstic dimension, i.e., the diameter

of the sphere having the same mass as the projectile. In Section IV
19
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we will show that this ylelds e satisfactory treatment of flat disks,

for example, the steel disks acoelerated by .the Ballistic.Resgarch-: ime:

Laboratories (BRL) explosive accelerator, and the plastic disks fired
by the Ames Research Center light-gas gun.

However, even this treatment breaks down for the case of short,
oriented rods. To exemplify this, the jet pellets fired by ERL at
10 km/sec have a length about 3 times their diameter end strike the
target oriented end-on. The normalized penetration calculated using
the equivalent sphere diameter greatly exceeds that expected from
spherical projectiles striking at the same speed. The craters pro-
duced by the jet pellets are deeper and narrower than hemispherical,
vhich is probably the source of the difficulty. However, they are
not deep and narrow enough to he treated on the? 3 of ghaped-charge
Jet theory. It is felt that more theoretical work is necessary in
order to explain the penetration of short, oriented rods.

The theoretical craters were felt to contain a possible exror of
1 10 per cent, which is denoted by the height of the shaded region.
The portion of the theoretical craters helow the original target sur-
face was observed to be hemispherical within the limit of the error.
It was also noted that the three calculated points could be fitted

within the limilts of the error by a curve having the form

E~v

In view of the fact that the fastest experimental shots at that time
lay in the range of 15,000 to 17,000 ft/sec (and there were very few

of these), and that the experimental resuits differed among themselves

20
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by a factor of two or more, the error cited seemed small indeed, and

a more refined fit did not msem justified, However, the excellent

agreement of the theeretical é&inta with recent experiﬁéntﬁl data,
vhich extends into the velocity range trecated theoretically, Justifies
a more careful treatment.. Accordingly, the theoretical points are
connected in Fig, 1, and in the following figures of the same type,

by a smooth curve.

The equation of the curve 1s

g = 11,02 exp { ;%—:12‘9%7 (2)
where v, the impact velocity, is given in km/sec. The form of the

fit was chosen to produce a smooth change of curvature on a log-log
plot of p/d versus v. It is noteworthy that this fit agrees with both
the magnitude and slope of the experimental deta. For a given value
of veloclity, the possible error in p/d should still be taken to be

10 per cent. For 1100«F targets, it 1is belleved that this equation
will be accurate to within the limits of error prescribed for the
velocity range of 5.5 to 20 km/sec. At lowver velocities, the equation
will overestimate {he penetration because of material-strengtl. effects
which the hydrodynamlc model does not consider., At higher velocities,
for reasons discussed in the section on melting and vaporization, the
equation will underestimate the penetration. It iIs anticipated that
penetrations will be about LO per cent higher than predicted by the
equation at impact velocities of T2 km/sec.

Assuming that the craters are hemispheriecal and employing Eq.

21
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(2) leads one to the relation T s T T

snelfs.ng ALY Jravhenld ARIT:oa] msms J0n LIR Tl boalilEe SRS § .
v 396
¥ 29.2_2@,1,{ D_T_ (3)
v

for the volume-energy ratio. Since the equation for p/d is cubed to
obtain this expression, the limits of error are now * 33 per cent.

The shaded yeglon in Fig. 2 shows the volume-energy ratio specified
by Bq. (3). All the experimentel points are encompassed by the theo-
retical regilon. Despite the large uncertainty, it is clear that a
substantial reduction in V/E with increasing velocity is predicted and

verified by the experimental data.

STRENGTI! EFFECTS

Since the hydrodynamic model neglects material strength, the
question naturally arises as to how well it simulates the actusl
rhysical process of an impact in a metal, Most investigators feel
intuitively that the material strength must play an essential role
in deternining crater size.

In order to gain an insight into this question, we may consider
penetrations into the various alloys of aluminum, These alloys are
interesting in that they have essentially the same elastic properties,
such as Young's modulus, sound velocity, and bulk modulus, but widely
varying strength parameters. For example, the Brinell hardness num-
ber of the 1l00-F alloy (commercially pure aluminum) is about 16,
whereas the BHN for the 202L-T3 alloy is about 7.5 times as large,
or 120.

in Fig. 5, the penetration of aluminum spheres in the two alloys
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Fig. 5 — Normalized penetration (p/d) as a function
of impact velocity for aluminum projectiles into
1100-F and 2024-T3 aluminum targets
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is compared. At low velocities the penetrstion in 2024-T3 is about _;

50 per cent of that in 1100-F. At 7.5 km/sec the ratio haa increasedl
t0 74 per cent. ‘These experimental results strongly suggest ﬂiﬁt t‘n; .
ratic of penetrations in the two glloys is drawing closer to unity as
the impact velocity is increased. The theoretical considerations on
target melting discussed in Section ITI indicate that at 20 km/sec

and above the ratio will be essentially unity.

The experimental penetrations in the low-cirength 1100-F alloy
are seen to be in excellent agreement with those predicted by the
hydrodynamnic m.od,e].(5 ) which is shown as the shaded region.

Since the two alloys are identical in almost all respects except
strength, the reduced penetration in 200L-T5 umust be ascribed to o
strength effect. At the present time no satisfactory theory exists
to calculate the penetration reduction due to material strength. Ve
will discuss two considerations which suggest that the formulation of
such a theory will be extremely difficult.

First, the penetration is already very insensitive 1o strength at
Te5 km/ sec, an increase of BHN by a factor of 7.5 causing a reduction
of only 26 per cent in penetration. If one sought to fit the penetra-

tion in various alloys by & factor involving some power of BHN, e.g.
p/a ~ (mm)"
or by linear interpolation
p/d ~ =& + b(BHN)
he would obtain nearly the same result because of the insensitivity.

24
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Moreover, if he chose any other strength parameter, ‘e.g., shear LT

strength or temsile strength, Be could obtein nearly the same remults, - | -
since the various strength parameters correlate quite well among
themselves. Therefore, it is anticipated that experimental data

will not distinpguish definitively among the various strength para-

meters and their funetional reletion to penetration reductions,

A more basic difficulty arises from the fact that the final
stages of crater formation occur in target material which has been
conditioned by the initisl shock.(s) At least one physical parameter
is definitely known to be altered by this conditioning, ramely, the
temperature. One can easily imagine that others might be also, in
view of the severe coupression and re-exponsion which the unaterial
has suffered. Thus the notion of using a normal-temperature strength

paramcter to scale high-velocity penetration is open to serious

question. The parameter modification by shock-conditioning mast be

taken into account. i
With the experimentel results before us, however, it is probably

safe to scale over the small penetration range by an expression of
the form

0.15

16 ¢
p/d 2.75 { BN

which may be expected to predict penetrations in the various aluminum

alloys at 7.5 km/sec.
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SHOCK HEATING AS A FUNCTION OF BART”CLE VELOCITY

When a hypervelocity projectile encounters a target surface, it
generates a shock wave in the target. The shock propagates into the
tearget material with supersonic veloclty and is the first physical
manifestation of impact which any element of the target feels, The
shock's passage sets the target material into motlon and heats it.

In view of the creation of entropy in the shock front, the target
matuerial is left heated even after expanding back to zero pressure.
Figure 6 shows the temperatures produced in four metels as & func-
tion of snock pressure. The numbers plottcd in the figure pertain to
material that is initially at zero pressure, is acted upon by a single
ghock of maximum pressure P, and then expands adiabatically back to
zero pressure, The temperature after release 1s plotted as a function
of the peak pressure.

For & given material, the pressure behind a shock may‘'be expressed
as & function of only the change in particle wvelocity across the shock.
(Particle velocity is defined as the velocity of ecach material ele-
ment.) In hypervelocity impact, 1t is common to consider the target
as bYeing at rest, so that the peak pressure may be expressed as a
functlon of only the particle velocity behind the shock. In that case
the release temperature may also be expressed as a funetion of particle
velocity only, This is done for aluminum in Fig. 7, where the left
ordinate scale gives particle velocity in km/sec, and the right ordi-
nate scale gives the releace temperature as well as the state to vhich

the material reverts, 26
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Fig. 6 — Release temperature as a function
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" The curves in Fig. 7 she the peak particle valoci%&vas a func-

~“Eion '6F “aepth aldng ‘the axis of aymictry as caldulhted ii Ret. .~
The curves in the figure are 1ndei§d Sy fhe 1mp;ct‘vei6ci§y. éiﬁée "
these calculations referred to the impact of aluminum projectiles on
aluminum targets, the initial particle velocity is half the impact
velocity. Thus, the curve pertaining to an impact at 72 km/sec shows
a particle velocity of 36 km/sec for small depths. Because the solu-
tion along the axis remains one-dimensional in nature until rarefac-
tion vaves from the target surface reach the axis, the curves all
remain flat for a considerable depth, After this point, the pesk
particle velocity decreases with depth. Either the particle velocity
or the release temperature may be read from the graph as a function

of depth.

EFFECT OF TARGET MELTING ON CRATER SIZE

For the impact at 20 km/sec, it may be seen that the target
material is melted to nearly the crater depth of 40 cm predicted
purely on the basis of hydrodynamic flow. Thus, at about this impact
velocity, one may expect that craters in all alloys of aluminum will
have about the same depth, siice the material strength does not influ-
ence the shock to & measurable degree at depths of less than 40 cm,
and the melting characteristics of the various commercial alloys are
similar. At impact velocitles greater than 20 km/sec, the melted
region will extend below the predicted craters. Tor example, at 72
km/sec the melted region is seen to extend to about T8 cm, which may

be compared with the 55~cm penetration predicted in Ref. 5.
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,Th?.P“mh¢?i qpoﬁe@,shopld be considered preliming;ydestimates,
which might, be zevised shen & more thorough jhvestigation i copducted.
To reflect this fact, the estimated crater depth is shown as a dgghe@
line in Figs. 18 and 19. However, it 1s possible to make some obser-
vations on the physics of the cratering process with more certainty.
At impact velocities above 20 km/sec, the crater dimensions are deter-
mined essentially by the extent of the melted reglon. The fact that
a new physical mechanism becomes important at higher velocities stands
in contrast vith the belief of Eichelberger and Gehring'Z) that the
physical mechanisms they cconsidered were the only important ones over
the meteoric-velocity regime,

The notion that materlal melting determines the crater size is
strongly reminiscent of Whilpple's hypothesis discucsed In Section I,
and the question logically arises as to whether Vhipple mizlLt be cora
rect for high veiovcauvies. The answer to this question comes from an
examlnation of Fig. 7. Consider the case of an impact at 72 kum/sec.
The melted zone extends to about 78 cm, which we estimate to be the
depth of the crater., However, the graph shows that the target material
is completely vaporized to a depth of about 20 cm, is a mixture of
liquid and vapor at a temperature of 2720°K to a depth of 45 em, is
liquid at a temperature substantlally above the melting point down to
sboul 66 cm, and 1s a mixture of liquid and solid at 932°K down to
the final crater depth. 1In short, the average specific internal energy
to which the crater material finally reverts 1s much greater than the
heat of fusion. In addition, energy is delivered to other sources,

€.g., kinetic energy and heating the material outside the crater,
30

. f REEER

l id%f‘!u 4L




IMPACT PHYSICAL PROCESSES REVIEW

Thus, & consideration of the ensrgetics of the process indicates that
Whipple must considerably overestiinate the cra.teru ;t the higher veio-
cities.

Although the depths delineating the varlous state regimes may
be slightly revised in the future, the qualitative physical observa-
tions are still expected to apply.

For impacts at velocities below 20 km/sec, the initial shock
heating reduces the material strength and enhances the validity of
the hydrodynamic model used in calculating the crater sizes. The
reduction in strength may be expected to bring the craters in 1100
and 2024 alloys into closer and closer correspendence as the impact

velocity is increased,

31
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Calculations based on the hydrodynamic model were made for alumi-
num cylinders striking aluminum plates at a velocity of 20 km/sec.

The cylinder was chosen to be 10 em long and 10 cm in diameter. Two
target thicknesses were considered, namely, 1 and 2 em, Although spe-
cific dimensions are prescribed in these examples, the problem is
scalable, so that only the ratios of the dimensions are physically sig-
nificant. Thus the results correctly describe the process where a
square (length equals diameter) cylinder impacts targets whose thicke
nesges are one-tenth and one-fifth 1ts length.

Figure 8 illustrates conditions 2,56 usec after initial impact.

In this figure and the following similar ones the x-axis is the axis of
cylindrical symmetry, so that the target plate 1s depicted by the two
parallel lines, x = 0 and X = 2 cm. An arrow in the figures denotes
the particle velocity at the arrow's tall, The dashed line is the ine
terface Yetween projectile and target material., Pressure contours for
the pressure values of 0.1, 1, 2, and 3 megabars are also shown.

Upon impact, two shocks are -created, one moving into the target
naterial and one moving upstream in the projectile material. For this
particular set of conditions the shock moves upstream at about the same
rate that the projectile moves forward, with the result that the shock
remains nearly stationary relative to the target. In other words, the
shock moves backward at about 20 km/sec relative to the projectile mae
terial, and the projectile material moves forward at 20 km/sec until

it encounters the shock.
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Fig.8 —Aluminum cylinder (I0-cm diameter, 10-cm length)

striking 2-cm aluminum plate at 20-km/sec.

Conditions: 2.56 X sec after initial contact
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The bottom half of Fig. 8 illustrates conditions along the axis

.i of symmetry at this time, It may be seen that the projectile @é@ﬁr@al‘_<

moves unimpeded a£ A veiocity of 20 km/sec until it reaches tﬁé ieff
shock, In these calculations, the shock 18 purposely smeared out some-
vhat. The smearing is necessary in order that the numerical equations
used be stable. In the actual impact, the shock would represent a
discontinuity in veloclity, pressure, and density at about x = 0, where-
as the flgure illustrates that these variubies undergo a rapid, but
continuous, change between about x = <1 and x = 1. On crossing the
shock front, the material velocity is reduced to 10 km/sec, the den-
sity 1s raised to aboul 5.6 gm/cc, and the pressure is raised to about
5 megabars.,

At the time of 2.56 wsec represented in the figure, the shock
moving into the target has encountered the rear target surface and
blown it off. As a result, a rarefactlon wave moves into the shocked
material. As may be seen, the material velocity lncreases smoothly in
the rarefsction wave, and the pressure and density undergo a smooth de-
crease to zero values. The smooth variation corresponds to physical
reality in this case. Reference to Flg. T shows that the shock is
sufficiently strong to partly vaporize the target material. The mate-
rial in the rarefaction wave will thus consist of a mixture of aluminum
vapor and molten droplets, so that the pressure and density in the rar-
efaction must decrease smoothly in munner illustrated.

As the process progresses, the rarefaction wave will overtake the
left shock and decrease its strength, That is, we may expect to see

smaller pesk pressures behind the left shock, we may expect to see a
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smaller velocity drep as projectile material crosses the shock, and we

may expect to see smaller densities. In effect, a fggg,;g_pggﬁfiiﬁgiié;”*“

tween the shock and the rarefaction overteking it. If the shock maine
tains sufficient strength when the rear surface of the projectile
reaches 1t, the rear surface will be theroughly shattered and dispersed.
If not, large fragments of the rear portions of the projectile will
swvive and continue their flight unimpeded through the hole punched

in the target by the front portions of the projectile,

In addition to the rarefaction due to the back face of the target,
lateral expansion of the projectile 1z cccuring vhich also generates
rarefaction waves, The pressures in the shock are high enough to move
the target materilal laterally, as 1s shown by the arrows moving upward
into the target material, Behind the target, the material can expand
laterally into a vold, and so the expansion proceeds faster there. The
region influenced by the lateral expansion can be identififed by the
velocities which have acquired an re-component of velceity.

The continuatlon of the process described is shown in Fig. 9, which
pertains to the time of 4.2 wsec. Both rarefactiens have eaten into
the shocked region, reducing the pressures there, In spite of the
pressure reductlion which has occured at this point, it is interesting
to note that the projectile, which was origlinally 10 em in length, is
at this time compressed into the reglon between x = 5.3 cm and x =
-1.6 cm. The pressures in the shock, which is about to encounter ihe
back of the projectile, range from about 2 megabars on the axis to
sbout 0.2 megabars at the cylinder periphery. This 13 sufficient to

thoroughly shatter the projectile.
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Fig. 9 —Aluminum cylinder (10-cm diameter, 10-cm length)
striking 2-cm aluminum plate at 20 km/sec.
Conditions: 4.20 j+ sec after initial contact
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= '.l'he rina.l stage of the process is shown in Fig. 10. At this time

R

2.
ot 9.86 psec, sufficient expansion of the materisl has occured to re_u:______r B

der all presswes gzero. Density contours are plotted instead of pres-

sure contours. On the model used in the calculation, the material is

represented as a continuum, and the density is calculated on that basis.
In reality, the material has undoubtedly broken up into particles at
this time. ™e denslty reported may be expected to give quite accu~
rately the density, aversged over particles snd volds.

Unfortunately, there is no known method of estimating the particle

sizes present in the diverging spray shown in Fig. 10. Were such an

estimate possible, a complete description of the demage to be expected

from this spray might be given. Available experimental evidence indi-

cates that for a given projectile-target system the spray particles be-

come smaller with increasing impact velocity. A qualitative discussion

of the expected damage will be given later in this Memorandum.

One can see from Fig. 10 that the veloecity fleld essentially ra-
diutes from a single point, the polnt belng on the axis of symmetry at
-8.8 ecm. That is to say, if each velocity vector were projected back-
ward to the axis of symmetry, it would intersect the axis at about -8.8
cm. One such constructed line is shown dashed in the figure. The flow
is thus conical in nature, and further inspection shows that slong e
ray from the cone's apex, there is a positive velocity gradient, so that
in flight the spray is elongating as well as expanding laterally. This
implies that each particle wiil proceed with unchanged velocity from
this time forward because there are no préssure forces and no material

will aceumulate in the future to create any, in view of the positive

velocity gradient. 37
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! Because of the conical nature of the flow, it is physically meane ) } .

ingful to prescribe the momentum pef unit solid angle about the cone's
apex. This quantity will remain fixed no metter how far the spray
flies. One should note that this may be said only of a conical-type
flow. In Filg. 11 the momentum per unit solid angle about the conical
apex 1s shown as a function of angle from the axis of symmetry. To
calculate these numbers, cones having S-deg increments in apex half an-
gle were laid out, and the momentum of material contained between them
was sumed, This momentum was then divided by the solid angle bounded
by the two cones, The number thus obtalned is plotted at the angle
halfwey between the two cones. The points are then connected by

straight lines.

The results from both the l- and 2-cm targets are shown, and the

effect of target thickness is obvious. The spray from the thin target

is more concentrated at the smaller angles, and the meximum dispersion
angle is smaller. The physical rvason for this will now be discussed.

In the series of Figs. 12 to 1k, the impact of the same cylinder
with a l-cm target is presented. The qualitative features of the proc-
ess are exactly the same. Quantitatively, a few differences appear,
In Fig. 12, which pertains to a time of 2,75 wusec, 1t may be noticed
that the left shock has been carried forward siightly. The reason for
this is that the shock propagation velocity increases with shock strength,
and the rarefaction from the rear of the target weakens the shock more
quickly than in the case of the thicker target. For this reason, the
shock will be weasker at corresponding times than the shock in the other
case.

The lower pressures from thils source lead to less lateral expansion.
39



IMPACT PHYSICAL PROCESSES REVIEW S e

3000

2500

L

2000

1500

1000 1

Momentum /solid angle

500

o 5 10 5 20 25 30 35 40 |
6 (deg) |
I

Fig.ll—Momentum per unit solid angle contained |

in the spray resulting from cylinder (length =

diameter =10 c¢m) striking aluminum plates 3
of thickness | and 2 cm

AT R LT

40




.IMPACT PHYSICAL PROCESSES REVIEW

1 o
sag e 08 t=2.75 psec
10
8 -
Projectile-target
. interface
61
r{cm)
—
4
2 o
—pn
9 L | J
-6 -4 8 10
6 p—
af
Density(gm/cc)
2l Velocity (cm/pu sec)
Pressure (Mb)
L pressne o~ _,
-6 -4 -2 0 2 4 6 8 10
x{cm)

Fig. 12— Aluminum cylinder (length=diameter=10 em)
striking [-cm aluminum plate. Conditions: 2.75

4 sec after initial contact

41




IMPACT PHYSICAL PROCESSES REVIEW
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Fig. 13—Aluminum cylinder (10-cm diameter, 10-cm length)
striking !|-cm aluminum piate at 20 km/sec.
Conditions: 5.75 u sec after initial contact
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gis_;‘e:cplaina vhy more mass is carried in the forward direction and
'itie 'x‘;axim\nn dispersion angle is smaller, as shown in Fig. 11,

For the same reason, the strength of the shock which reaches the
rear projectile surface is also smaller, ranging from 1 megabar tc scme-
what less than 0.2 megabar in this case. These pressures should still
be sufficlent to thoroughly shatter the projectile.

Finally, a smaller hole will be produced in the thinner target,

since less impulse per unit lateral area is applied to it, and the

' pressure in the thinner plate is more rapidly relieved by rarefaction

waves. = The final hole radius is estimated from these calculations to
be about 9 ecm for the thin target and about 12 cu for the thicker one.
It is clear from these conslderations that the dlameter of a hole
created in a thin target will always be smaller than the crater diam-
eter produced in a thick target. Figure 15 shows roughly how the hole
diameter in a thin target will vary as a function of target thickness.
The ordinate of the figure is Dh/d, vhere D, 1is the hole diameter and
d is the characteristic dimension of the projectile., The abscissa,
t/d, is the target thickness in units of the projectile dimension. The
figure indicates that in the limit of zero target thickness, the hole
diameter approaches the projectile diameter, so that Dh/d approaches
unity. As the target thickness is increased, the hole diameter in-
creases rapidly until it reaches the limiting diameter, corresponding
to the thick-target crater diameter. This limit 1s reached when the
target thickness is of the order of the projectile dimension. After
this polnt, the hole dlameter on the entrance surface will remain es-

sentially constant, but with further lncrease 1ln target thickness a
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Impact velocity = 7 km/sec

t/d

Fig. I5—Expected hole diameter (Dy) ot constant impact
velocity as a function of target thickness (t) for 1100-F
aluminum targets. Quantities are expressed
in units of projectile dimension (d)
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constriction will appear below the entrance surface., This is 1illuse
trated in the irset in Fig, 15. Below the constriction the hole en-
larges due to spallation of the rear surface, The portiocn of the hole
due to spallation will vary erratically from sample t¢ sample apnd will
also depend on such factors as the strength and brittleness of the same
ple. As the target thickness 1s further increased, the diameter of the
constriction will decrease, finally becoming zero when the target at-
tains a thickness of about three-quarters of the thick-target crater
diameter, Figure 15 1s sketched for the case of aluminum striking a-
luminum at 7 km/sec, a reasonsble satellite orbital velocity. For this
case, the thick-target penetration is about 2.75 projectile diameters.
Therefore, the maximum hole dlameter is about 5.5d, and the closure of
the constriction occurs for a target thickness of cbout 4,1d.

The discussion of the physical process of thin-plate perforation
has disclosed that such plates are amazingly efficient in shattering a
hypervelocity projectile. Of course, the plate pays the penalty of
having a hole blown in it during the process, and the hole dimensions
have been discussed in the preceding section. We will now consider the
damage vwhich the spray of fine particles emerging from the rear surface
may be expected to cause.

The damege will be a function of standoff--the separation between
the back of the first plate and the next surface to be encountered. At
small standoffs, the impact craters of the individual spray particles
will overlap, with the result that a single rather deep crater would
be produced in a thick target. In a thin target at small standoff, a

clean perforation may be expected. The criterion for this type of
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perforation is that a sufficlently high pressure be built up in the
second target to occesion behavior of the hydrodynsmic type. The-shock,
upon reaching the rear of the second plate, must bdlow it off and allow
the momentum to proceed through in the manper Just discussed for the
first plate. If this occurs, almost all of the momentum npasses through
the second sheet, leaving only & clean perforatlion, and producing very
little bulging or other distortion of the plate. At larger standoffs,
the individusl impact craters produced by the spray particles cease to
overlap, and in & thick target, only the dimpling of the individual
craters will be apparent. In & thin target, however, if the individual
craters do not perforate the sheet, the momentum of the spray purticle

is entirely trapped within the plate. It may even be somewhat enhanced

because of producing back splash., For such cases the behavior of the
plate may be deduced by cslculating the pressure pulse (pressure as a
function of time and position) which acts upon it and solving the re-
sulting problem in mechanics., The pressure is equal to the time rate
of momentum arrival per unit area, a quantity which may be calculated
from the theoretical date presented in Figs. 10 and 1.

Some general observatlons may be made on the nature of the pres-
sure pulse receivei by the second plate. At any glven angle, 6, the
total momentum per unit area received by the second plate is a function
of standoff, since it varies inversely as the square of the distance
from the apex of the conical flow. Because of the velceity gradient
along a given ray, the time required to impart this momentum will in-
crease linearly with distance from the apex polint. Thus, the peak pres-
sure at any given angle may be expected Lo fall off inversely as the

cube of the distance from the apex point.
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R =]

"At Very great Standoffs; he plete WLIIwIthatand the“effetts or™
the pressure pulse very well, and the only damage expected is the pit-
ting due to the indlvidual fragments present in the spray. The depth
of these pits will vary linearly with the dimension of the fragment
vhich produces them. Therefore, an assessment of the damage from thils
source requires a knowledge of the fragment sizes present in the spray.
As standoff is decreased, the pressure pulse wlll produce a bulge in
the plate, vhose severity increases wlth shorter standoff. The bulging
deformation produces tension in the plate and stretches the material
so that it thins out. At some criticel standoff, the material in the
bulge fails in tension, the failure originating at the crown. This
faeilure is accompanied by cracks which propagate down the sides of the
bulge as the sides flare out, forming lerge petels. The effects of
standoff are very criticael in this region, the bulge either remaining
intact if no tensile failure occurs or petalling fully in the event of
fallure. The petalling fallure usually produces much larger holes in
the second plate than the primary projectile would produce in the ab-

sence of the first plate.
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While scaling by means of the F-factors is regerded as most

accurate, & rougher but more convenient scaling is also possible. An _i‘ s

empirical fit to the resulls of F-scallng may be written in the form

Bu(v) + 1/3

xp_ (V) _[®p
“A-A‘v, - (E;) (10)

where BA(V) pertalns to targets of material A. The functions, B,

may all be presented on one graph, as in Fig. 16. In general, B-scaling
agrees with the more accurate Fescaling to within 10 per cent. Calcu-
lation of the F-factors demands the knowledge of the shock Hugoniot of
the projectile material at the impact velocities of interest. Where
this information is not avallable, one may still use B-scaling to

give a reasonable first estimate. The F-factors for aluminum targets

ore shown in Fig. 17.

In Fig. 18 the scaling law is tested against recent experimentul

data, All of the data 1n the figure pertain to 1100F aluminum targets.
The data of Atkins, shown as circles 1n the figure, were obtained by
firing saboted aluminum spheres. The data are presented unscaled in
the figure, and good agreement wlth the author's theoretical results

is obtained, as previously noted. The data of Illes and Goodman,(u)
shown as triangles, pertain to saboted copper spheres impacting 1100-F
aluminum. These data have been scaled down by the appropriate F-factor,
shown in Fig. 17. If the scaling law is correct, the two sets of deta
should be brought to the same curve by this treatment. The scaling

law gives remarkably exact agreement with the experimental data.
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The preceding constitutes a well-controlled test of the scaling
law, since the mass, geometry, end velocity of all the data were well
known. In particular, there is an unamﬁiguoué characterlstic dimen-
sion to use for the projectile, nwmely, the sphere diameter,

The data of Kineke are shown as the dark dots in Fig. 1y, While
the agreement 1s apparently good, more treatment was required before
plotting. Kineke accelerates flat stee) discs by explosive means.

The characteristic dimension of these projectiles was taken to be the
diameter of the equivalent sphere, that is, the stecl sphere which
hes the same mass as his projectiles, It may be observed that such
treatment brings his data into extremely good correspondence with the
other two better-controlled sets. The agreement of his fastest point
with the theoretical prediction of the author is encouraging.

In Fig. 19 the scaling law 1s tested for the case of 2024-T3
targets. The data have been treated in the same way, the aluminum
projectile points belng presented unscaled, and the other projectile
points being scaled so as to bring them onto the alﬁminum curve, The
data all lle below the theoretical prediction of the author, as dis-
cussed in the section on strength effects. There ls more scatter at
lover velocities for this target material, but the different data sets
are coalescing satisfactorily at the higher velocities.

The shock Hugoniot data for the plastic projectiles are not
available at the experimental velocities shown, so that B-scaling was
required. At 7 to 10 km/sec  the data for plastic, aluminum, und steel
projectiles--materials that span a large part of the projectile-

material spectrum--are brought together satisfactorily.
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It is belleved that uaing_-_j;_he 4heoretical predictions of the
author for aluminum-aluminum and iron-iron impacts and deriving the
penetra—tio;\s of of.her projéétile'mterials in these targets I;Ie.ana
of the scaling lawv Just discussed will give an accurate estimate of
any projectile penetration into these structural materials up to a
velocity of 20 km/sec. Above that velocity, the possible effects of

target melting must be taken Linto account.
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HYDRODYNAMICS OF HYPERVELOCITY.IMPACT

ABSTRACT

Numericel technigues have been used 10 tre&t the hydrodynamic
phase of axisymmetric hypervelocity impact. A serles of iron-on-iron
impact calculations mre discussed in which the projectile velocity and
target thickness are each varied over & wide range. An eguation-of-state
correlation and dimensional snalysis then lead to a general description
of like-metal impacts. Further, an observed late time asymptotic solution
within the stages of the interaction for which the hydrodynamic approxi-
mation 1s valid is used to predict the dependence of crater size upon
impact velocity. For velocities between about 5(10)5 end 2.5( ZLO)7 cm/sec
crater dimensions increase as the 0.62 power of impact velocity.
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I. INPRODUCTION

At sufficlently high impact velocities the pressures which arise in
the early stages of a projectile-target interaction are very large compared
t0 the material yield strength. During this phase of the interaction, it
is appropriate to neglect strength of materials and to treat the problem
a8 one in hydrodynamics. A satisfactory description of the material flow
in hyperveloecity impact must include a realistic equation of state for the
target and projectile materials; for the hydrodynamics problem, the naces-
sary equation of state information can be formulated as & relation emong
the scalar preasure, the density, and the specific internal energy.

In the later stages of the interaction, as the disturbance engulfs
more terget material, the hydrodynamic pressures become compareble to yield
stresses. It is then inappropriate to neglect material strength, and the
hydrodynamic approximation ceases to provide a velid solution to the problem.
In this cage an elastlc-plastic material, for example, should be represented
by & suitable relation among the stress tensor, the strain tensor, and the
specific internel energy; also the yleld strength must be specified as a
function of the state of the material. Such a formulation would then replace
the scalar equation of state that is applicaeble in the hydrodynamic regime.

A complete material description for all of the states of interest, and
its successful application to the impact process, would be very satisfying.
Such & program would provide a direct comparison between theoretically
determined impact craters and those which have been reported extensively
from experimental progrems. On the other hand, the hydrodynamic phase of
the interasction is considerably less difficult to analyze than the strength-
dependent phase. Also, the hydrodynamic equation of state i1s relatively
free from wncertainties in material properties. It therefore seems desirable,
both for reasons of simplicity and sccuracy, to concentrate first on the
hydrodynamic part of the interaction and the conclusions which can be drawn
therefrom. The present paper 1s devoted to this obJjective. While the
hydrodynemic approximetion precludes the explicit treatment of the final

62




HYDRODYNAMICS OF HYPERVELQCITY IMPACT

steges of crater formation, it nevertheless proves poseible to establish
relations by which the experimentel crater data at attainable velocitiés
cen be extrapolated to the highést velocities of interest. ~ — — -~ —- —

For simplicity, only like-material impacts are considered in the ‘
present discussion, and the projectile geometry ie kept constant as &
right circular cylinder of aspect ratio unity. Several parameters of the
system are studied, the most important of which are projectile velocity,
the equation of state of the interacting material, and the relative thick-
ness of the target plate.

The basic approach has been to develop and solve numerically a
system of finite difference equations which correspond o the appropriate
hydrodynemic equations of compressible fluids. This is accomplished by
means of the SPEAR hydrodynemic code using the IBM 7090 computer. The
Eulerien form of the difference equations, in which the independent space
variables define & fixed axisymmetric coordlnate system through which the
mass moves, has been adopted for solving two-dimensional, time-dependent
impact problems. The differencing method consists of dividing the Eulerian
space into a finite number of small cells (having rectangular cross sections
and axiel symmetry) through which the mass, represented by many discrete
mass points, moves and interucis in accord with the usuasl conservetion
equations and the materisl equation of state. Pressure, veloeity, density,
and specific internal energy are given for each cell in periodic printoute;
also pictorial displays of the mass distribution and the velocity flald or
subregions thereof are afforded by computer plotting routines. Solutions
obtained with the SFEAR code are in good agreement with available analyti-
cal results on flows involving shock and rarefaction waves, the differences
being attributed to the above finite difference agproximations in the par-
titioned space and discrete mass representations. The present SPEAR code
is the product of & continuing development progrem to improve the accuracy
and economy of two-dimensional hydrodynamic computations. An excellent
discussion of the general logic underlying an Eulerian discrete mass point
representation is to be found in the PIC literature by F. Harlow and
aasociates.(l)

The first reported work on the time-dependent hydrodynamics of

- impact, other than analytical models based on rough approximations, was
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by R. L. »B_,prk_._(e) BJork employed & computational scheme which was similar
to the present one and has reported results, in particular, for aluminum - ..
projectiles striking alumi num targetes and for- similar iron-on-iron -:meécta.
The approach differs from the present one, however, in that the hydrodynamic
approximation wvas used to0 describe the entire interaction, so that strength
effects were necessarlily invoked somevwhat artificielly to arrest the flow
vhen pressures became small. This led to a crater size which, for the
lowest velocities considered, was actually in falr egreement with high-
velocity experimental results. The consequent crater volume, however, wvas

proportionel to projectile momentum. The experimental data at high velocities,

and also the results of the present investigation, indicate a creter volume
which 18 very nearly proportional to projectile kinetic energy.

Section II of this report is devoted to specifylng the approprilate
governing equations for impact hydrodynemics. Section III is a discussion
of the metallic equations of state thet were used in the computations.
Section IV is a detailed deseription of results from a typical impact
problem--namely, the interaction of a 4 cm/usec iron projectile with an
iron plate. Section V 1s an application of dimensional analysis to develop
scaling relations by whish the known impact hydrodynamics of one metel can
be transformed t0 a general description of like-material impacts. Section VI
is devoted to impact on thick targets, with particular emphasis on the late-
stage hydrodynamic equivalence and the consequent determination of crater
size as a function of velocity. Finally, Section VII consists of some

summarizing remarks.

II. THE CONSTITUTIVE EQUATIONS; SIMPLE LINEAR SCALING

The first step in the analysis of hypervelocity impact is that of
defining the important physical processes and associated constitutive
equations which should be included in a theory of impact. The neglect of
strength, already indicated in the previous discussion, makes possible the
use of a simple pressure, density, energy equation of state, and is Justi-
fied in the present epplication by the fact that the pressures of interest
are typically two or more orders of magnitude greater than yileld strengths.
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" The neglect of thermal conduction is Justified by & simple calcula-...
t;on%*‘fi'éi"- apfoaeet:lle 0% typical lineer dimension 4 and velocity vog—;_&he..,_w
time for the hydrodynamic phase of the interaction i8 of the order 1oz/v°-.~—-
The thermal diffusion diestance in this time, using a typical metal diffusivity
of h = 0.5 ca’/sec, 18 of the order x = J/ht = W. Hence, the
ratio of diffusion distance to 4 is x/4 = W, and using v, = 108 cm/sec
shows that x/f is as large as 0.6 only if L is less than 5 x lo'h em. For
larger projectiles, thermal conduction is not significant as & perturbation
to the hydrodynamics.

The magnitude of the viscosity which is appropriate for impact work
is much more uncertain than the thermal diffusivity or the yleld strength,
and the Jjustificetion for excluding viscous phenomene from the theory is
accordingly somevhat less direct. First, very large viscosities can be
excluded on the grounds that the consequent thick shock fronts would be
observed in shock-wave experimente as a continuous acceleration of the
free surface upon shock arrival. Such evidence can lead 4o the conclusion
that viscous phenomena ere not important unless projectile dimensions are
less than sbout 0.1 cm, but the considerations leave open the possibility
that this critical size may be substantially smaller. A much smaller
projectile size for the viscosity threshold is, in fact, indicated by
experimental impact date and is discussed in connection with scaling in
the following paragreph.

If thermal conduction and viscous effects are negligible within tne
hydrodynamics, the resulte are subJect to simple linear scaling. Specifi-
cally, the solution for e problem in which & typicel length £ can be scaled
to larger or smaller slzes by the use of e scale factor F on all lengths
and times; 1.e., £—>FL, t —Ft, and the dependent variables P, p, U are
not effected by the transformetion. The validity of simple linear scaling
follows directly from the fect thet the governing Rankine-Hugoniot and
continuous flow equations (below) are homogenecus in the distance end time
variables. The inclusion of viscosity or conduction terms, on the other
hand, introduces second derivatives in tha continuous flow equations and
the sceling no longer applies. As has been indicated above, these terms
will dominate the interaction for sufficilently small geometries. It is
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therefore. of interest to inquire whether experimental impact deta exhibit
departures. from simple- scaling,:-The question.has been sngvwerped by several. -

authors in recent correlations of the availeble impact dete. 3 Present ) T

evidence indicates that the scaling remains velid down to the smallest
projectiles studied. Eichelberger and Gehring,(u) in particular, cite data
for projectile masses ranging from l()'ll to 10 grams, or projectile dimen-
sions in the range lO'u to 1 ecm. Thus, the present data indicate that
viscous phenomena (or thermsl conduction) are not seriously affecting
impact results for projectiles of 10'11 g€y l.e., linear dimensions of the
order of lo’l‘L cm. Tt is therefore appropriate to neglect viscosity in the
treatment of impact problems involving larger proJjectiles.

The exclusion of strength, conduction, and viscous effects from the
theory leaves us with a hydrodynemics which is composed of shock-wave com-
Pressions, satisfying the Rankine-Hugoniot jump conditions, and compressible
continuous flow (usually expansions) during which the entropy of a mass
element rcmains constant end the governing equations are:

%%4-6-(‘){{):0

i@ -vurvoer=o0
g—%—+ﬁ-VE=-P(%¥-+ﬁ-W)

The SPEAR hydrodynamics code is formulate . for describing such interactions,
and results therefrom can be scaled in accordance with the simple linear
scaling laws defined above.

III. FQUATIONS OF STATE

In the present study, materials are subJected to shock pressures
vhich range from a few tenths of a megabar to about 1000 megebars, and

.are subsequently free to expand as the pressures are relieved by rare-

faction waves and by flow divergence. For accurete calculations, it is
necessary to have a realistic thermodynamic description of the material
for the entire range of interest.
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| The formulation of e suiteble equation of state has been given
| previously(S) by one"of the suthors.’ This equation of stete hgs “the form ‘
P= |a+ > B+ M+ BuZ
+1
2
EN

for condensed states of the material, and

2
P =afp + —E}L + Aue-ﬁ(v/vo - 1) e“a(V/Vo -1)
+ 1
2

EOT\
for expanded states, where P, E, p = 1/V are pressure, specific internal
energy, and density, respectively, and 1 = p/po, p=1-1.
The parameters @,f are constants controlling the rate of convergence
to the ideal gas form, P = eEp, which is assumed valid for highly expanded
states. The other five parameters are different for each material and are
chosen to provide good agreement with experimental shock-wave date at low
pressures and, at high pressures, with theoreticel results obtained by l
|

Cowan from the Thomas-Fermi-Dirac model of the atom. The equatlon-of-state
results for aluminum are plotted as Figs. 1 and 2. Other mctals for which
the equation of stete has been formulated are W, Cu, Fe, Be, Ti, Ni, Mo,

and Th.

A simple spproximate representation of veporization is given by an
appropriate choice of the states to be represented by the condensed end
expanded formulations. The condensed form is used for all states V < Vo,
and elso for vs >VvV> Vo provided E s Es. Here, V5 is the specific volume
and ES is the specific internal energy for the liquid at the P = O vapor-
izetion point. The expanded formulation is employed for the remaining
stetes V > Vo, E> Es' The representation leads correctly to an infinite
expansion vhen shock-heating is sufficient tc cause vaporization. A
similar distinction between s0lid and liquid is unnecessary in the present
hydrodynamics approximation.

In the cese of iron, a polymorphic trensition at low pressure
(0.13 megahers) hes been ignored in the equation-of-state formulation.
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mingptal shock-wave deta be'bween sbout 0.3 megaba.rs and 5 mega.ba.rs and
Thomas-Fermi-Dirac reaults s.t_higher px:eaau:res are 3 however, reproduced by
the present formulation. While the polymorphic transition is known to leed
to interesting effects which are peculiar to iron, these do not occur at
the high pressures (0.5 megabars and sbove) of interest in the present

investigation.

IV. A TYPICAL IMPACT AND RELEVANT CODE CONSIDERATIONS

The typical impact of & c¢cylindrical iron pellet, having a diameter
(1.842 cm) equal to its length, and an iron target, having & thickness of
several pellet diameters, is shown for various times as Figs. 3 through 10.
The left-hand border of each figure is the exis of symmetry, which coincides
with the projectile's line of flight. In this problem, the impact velocity
is 4 cm/usec and is positive upward. For each time showvm, there are two
pilctures, one of vwhich gives the mass distribution as discrete points and
the other shows the corresponding velocity field. Both representations
are superimposed on a rectangular grid, through which the mass particles
are moved in accord with the usual energy, momentum, and mass conservation
equations and the equation of state. The problem is solved numerically with
the SPEAR code, which rclates theee equations, expreased in conservative
finite difference form, to the system of cylindrical cells of rectangular
cross section defined by the grid. Complete energy conservation has been
of great value in the code development program and provides a continuous
energy check during computation for detecting instability and round-off
errors. All of the quantities entering the difference equations are
averages over the corresponding cell volume and mey be considered as
representing the velues at the geometrical center of the cell.

Two rather importent parameters which influence the accuracy of the
results are the number of discrete mass points per cell and the relative
size of the cells. In zoning a problem, the number of particles per cell
in en initial configuration can renge from 1 to 8L. Maximizing this
quantity, although desirable for optimum mass resolution, is usually
prohititive because of increased computing time and resulting higher costs.
Sufficient accuracy in the present investigetion has been cbtalned by using

70

[ el L |

it ind




KT Y }

I 411 ST TV

.

HYDRODYNAMICS OF HYPERVELOCITY IMPACT

Figs. 1 through 10

l e,

Several steges in the impact of a 4 cm/usec iron projection on an
iron plate. In each stage both the mass distribution and velocity field

(plotted a8 vectors from cell centers) are shown.

Note thet the veloeity

plot is depicted on a slightly enlarged space scale. Times for the various

plctures are:

Fig.
Fig.
Fig.
Fig.
Fig. 7
Fig. 8
Fig. 9
Fig. 10

O v & W

TOP
0.0 usec
0.42
0.84
1.25
1.66
2.26
3.81
5.39

BOTTOM

0.21 psec
0.63
1.0k
1.6
1.88
3.02
L.60
6.18

In these &nd the subsequent plots of mass and velocity distributions, the
interaction is axisymmetric about the left-hand axis, and the projectile

strikes the plate from below.
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from Ik to & maximum of 16 particles per cell. The L-cm/usec problem required

JUEFI I,

only 1.75 hours on the IBM 7090 Computer to reach the 7-ysec time in th
flow. At the state of maxim cémpression, the problem hes & shockj'_'_ b eng
of 48 mega.'bars and agree;—t_c; 5i;i£h theoretical plane-wave predictions.
The plane-wave theory, however, is relevant for comparison omly so long as
the flow is not influenced by rarefaction waves. As indicated by the velocity
fields of Fig. 4, lateral rarefactions reach the center of the projectile at
about 0.5 usec.

The maximum number of cells in the current version of SPEAR cannot
exceed 2000, but cells can be of different sizes by zoning with variable
Ar and Az spacing. If veriable zoning is required, the hest resulis are
obtained when the aspect ratio of adjacent cells varies by no more than a
factor of two. One zoning technique, used successfully throughout the
current investigation, is to z20ne the cells in the target on a nearly equal

area basis within severasl pellet diameters of the impact center, thus pro-
viding uniform space resolution in the more important reglons of the flow.

At the time of impact, shock waves are transmitted in both directions
from the projectile-target interface. By the time the shock wave traverses
the projectile, the projectile is completely embedded in the target, end
(as suggested by simple plane-wave considerations) the energy at this time
is approximately half kinetic and half internal and is distributed over &
mass which is twice that of the initial projectile. This state of maximum
compression is then relieved by meens of rarefaction waves from the free
surfaces and by spherical divergence within the target. The expanding
shock wave can be seen in the figures as moving well ahead of the actual
crater cavity and lip formation. The pressure profiles that define the
shock front are siown for several times as Fig. 1ll. A more extensive plot
of the shock wave attenuat.on is presented as Fig. 12, which shows the peak
shock strength as a function of distance from the impact center.

The analysis in the following two sections makes frequent use of
certain radial and axial momente which are produced by the impact. The
axial momentum is defined as the sum I m,v, over all cells i for which the
axial component of veloclity vy is positive. This mementum is initially
that of the projectile, and typically increases more than an order of
magnitude during the hydrodynamic phase of the interaction. The radial
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momentum is analogously defined as T m,u, for cells in which uy > 0, the
sumation being further restricted to cells z > O within the originel front
surface of the terget. The radial and axial momenta for the 4 cm/usec
problem are plotted as Fig. 13. These integrated momenta provide precise
measures of the magnitude of the impact disturbance and have been especially
useful in the quantitative comperisons of interactions.

Many other properties of the interaction are provided by SFEAR in
regular deta printouts. The data presented in the present section are
typical of the results which are obtaineble from the several volumes of

listings, which include individual cell quantities as a functlon of time.

V. DIMENSIONAL ANALYSIS; SCALING RELATIONS FOR METALS

In order to avold the necessity of treating each new material indi-
vidually, it is desirable to eetsblish (&pproximate) scaling relations by
which the known solutions for one metal can be transformed to any other
metal. The success of such an underteking depends upon whether the indi-
vidual equations of state can be expressed in a dimensionless form that
is essentislly the same for all metals. To this end, a natural cholice
of dimensionless varisbles 15 p = P/poci, §=1- v/vo, end e = E/cg.
Similarly, velocities of interest are made dimensionless by dividing by ¢ o’
80 that shock-wave veloclity and shock-particle velocity, respectively, are
D/c, end v/c,. Here, ¢, is defined by <2 = (3P/2p), evalusted at P = O.

The consequent correlation of the Hugoniot curves of the various
metals is seen as Fig. 1%, where the dimensionless pressure p 1s plotted
sgalinst shock-particle velocity v/ o' For the nine meteals, the curves
agree with a mean curve (e.g., Fe or Ni) to about + T%. The same agree-
ment would be cbtained by plotting the shock-wave velocity D/e 0 °F the
compression ¢ sgalnst v/c_, since Dfc_ = p/(v/c,) and & = (v/co)a/p from
the Rankine-Hugoniot equations. A plot of & versus p would shovw a + 10%
agreement with the ¢ indicated by & mean curve.

The above correlation is sufficiently accurate t0 be useful, and the
present persgraph is devoted to a dlscussion of the asscclated physical
similarity of impacts: The only properties identifying & specific metal
in the correlation are p 0?%" Thus, for a family of geometrically similar
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Ampact configurations, one needs p_, ¢ , the impact velocity vo,-"aﬁd some
.characteristic length zo in order to have & completely specifigd problem.
The solution for a given dependent variable must then be some function of
Po? %2 Voo zo and the independent variables z, h, t. The condition that
the solution be dimensionally correct restricts this functional dependence

to the special forms:

v te
2 0 2 r o]
P/PC=f - A e Ny e i ’
Q0 1l <, j’o l’o zo
ooz r
’ 2 » 7 »
o) zo "‘o "‘o

ct
0
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fl

f

le-l"t

v/co

.
T

3

|
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oO |°<

ct

[
o)

th
-
7l

° o] (o) [¢]

z_
) bd 2
o o )
VO 2
p/p =1, 5—;,2—:

Thus, impaects which are initially geometrically similer, and for which the
projectile "Mach number” v / c, are the seme, have the same solution in
dimensionless varisbles; i.e., P/p co, ufc,, ete., sre the same in two
such impacts for the same values of z/4 _, r/zo, tco/l;o. It 1s therefore
e straightforward matter to transform the known solution for one metal to
the solution of an equivalent problem for another metal. Similarly, a
complete determination (various geometries and all vo/co) of the impact
hydrodynamics for one metal provides a basis for the general hydrodynamic
description of like-material impact.

The ebove scaling relations are, of course, epproximate insofar as
the sgreement among the individual equations of state is approximate. The
task of evaluating the accuracy of the scaling relations by direct consider-
ation of errors in the equation-of-gtate correlation is, however, quite
tedlous. Inslead, several computations have been made for impact problems
which should be the same under the propesed scaling. The compsarison of
computed results with those obtained by scaling then affords e direct test
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of the accuracy of the scaling relations. The results of these comparisons
are discussed in the followlng paragraphs. v

Three problems were computed in which & l-cm diameter by l-cm long
cylindricel projectile strikes a plate of l-cm thickness. Materisls in the
three problems were W, Fe, and Al. Impact velocities for the interactions
were 107, 107 and 1.3 x 107 cm/sec, in proportion to the respective e, of
the materials. Several stages in the W-W intersction are shown as Fig. 15.
Of particular interest in the present section, however, are tests of the
scaling relations which are afforded by the problems: Initial shock pres-
sures for the W, Fe, and Al are 662, 266, and 149 megabars, respectively.
When divided by the poci from the equation-of-state formulations, the
corresponding reduced preseures 215, 208, and 199 agree to about 8%.
Further, the flow configurations at corresponding times (= tco/zo) are
reproduced as Fig. 16, where the interactiones are seen to be almost identical.
Finally, the total positive momenta, (Zmivi summed over all cells for which
1 is positive) have been computed as a function of time. The curve for Fe
is plotted in Fig. 17, where alsoc the curves obtalned by straightforward
scaling of the Al end W date are plotted for compaerison. The curves agree
within about 5%.

An edditlional comparison was made for Fe and Al in which the plate
thickness was 5 em, other problem parameters being the same as in the above
series. Comparisons of the flow configurations at corresponding times sare
given as Figs. 18 and 19. Momentum curves from the two problems are plotted
as Fig. 20. Agreement 1s comparuble to thet indicated above for the thin-
plate impacts.

In the present investigation, iron hes been studled more extensively
than any other metal. In general, the above tests of the scaling relations
indlcate that the results from the computations for iron can be transformed
to other metals with an uncertainty of scme 5% or less in most quantities
of interest. This accuracy 1s sufficient for most applications, and the
scaling relations will be used to generalize the computed results.

A final remark may be made in connection with a possible modification
of the scaling relations. A choice of dimensionless variables based on the

v

shock-wave velocity for some finite compression {e.g., D for V/Vo = 0.5)
in place of the sound speed c, would lead to a better equation-of-state
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Fig. 15--Four steges at times 0.0, 0.09, 0.16, and0.65 psec in the interaction
a l-cm thick tungsten target

of & l-cm diameter tungsten pellet, having initial velocity of 10 cm/usec, and
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usec, respectively, while the comparison should be made for times in the exact

ratios 1:1.3:1. Thus, for precise comparisons with the Fe, the AL time should

e incressed by 2% and the W time should be decreased vy 2.5%. A slightly

im.roved correlation is obtained by comparing at exactly corresponding times.)
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Fig. 1l7--Positive momenta versus time for the thin-plate impacts; for pur-
poses of comparison with the iron curve, the Al und W data have been scaled;
the curves would sgree if the equation-of-state correlation were exact
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Fig. 18--Flow configuration at corresponding times in the Fe-Fe and Al-Al
impacts with thick (five projectile lengths) plates
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HYDRODYNAMICS OF HYPERVELOCITY IMPACT

éoffelation at pressures of interest and a consequent improvement in the
scaling accuracy. Errors incurred by the scaling process would apparénxly
be reduced by a factor of two or three. Such scaling relations may be
used in future work where increase¢ accuracy ls desired, but it will be
necessary first to verify the procedure by & series of comparisons such as
those described above for the c correlation.

VI. IMPACT ON THICK TARGETS; THE LATE-STAGE ASYMPTOTIC SOLUTION

A series of impacts have been studied in which an iron projectile
interacts with a thick iron plate. The projectile, in all cases & right
circular cylinder with equal length and diameter, impacts at velocities
of 5 x 105, 106, b x 106, 107, and 2.5 x lO7 cm/sec. The plate thickness
was chosen sufficiently great that no disturbance reaches the back surface
during times of concern in the present section.

For the purpose of comparing results from two computations, it is
desirable to have comparable cell size and mass resclution. This obJjective
was met by dividing the problems into two sets--one with velocities § x 105,
106, and 4 x 10° cm/sec and the other with 4 x 106, 107, and 2.5 X lO7 cm/sec
(the 4 x 10° cm/sec problem being repeated). Within each set, the target
space and mass resolutions were identical and the projJectile mass was chosen
to keep projectile kinetic energy constant. Initial shock strengths in the
various problems range from l.5 megabars in the 5 x lO5
1580 megabars at 2.5 x 107 cm/sec.

Although detalled descriptions of the individual impacts are excluded
from the present discussion for the seke of brevity, i1t is of particular

cm/sec problem to

interest to inquire whether the impact disturbance retains, at late times,
a qualitative dependence on the impact velocity. Specifically, do impacts
at two different velocities have lete-stage asymptotic solutions which are
essentially the same except for a simple scale factor? The affirmative
answer to this question mskes 1t possible to use the established equiva-
lence and simple sceling in order bto extrapolate experimental impact data
to the highest velocities of interest.

The most direct test of equivalence in late stages of the flow is

made by comparing mass configurations, pressures, and velocities. Such a
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LT

comparison is seen as Figs. 2l and 22 for impacts at b x 106 em/sec and

107 Pcm/sec. The: ne::t.icular *bimegﬁgir; the two problems were select: 18,
Lasis that the shock preasurea“(rad.ial direction) were equal (1: eg; a.rs)'":’:v
A comparison of the mass distribution and the velocity fields in the figures
shows that the flows are essentimlly the same. Sizable differences are
limited to & relatively small mass of debris in the vicinity of the collision
point, for which the pressures are now substantially less then those carried

by the shock wave.

More extensive comparisons of corresponding times in the above pair
of problems indicate that the U x 11.06 cm/sec flow is on a slightly larger
scale, by a factor F = 1.0k + 0.05. (Since the mass ratio in the two problems
was chosen to keep prujectile energy constant, an F = 1 would imply exact
energy equivalence.) A more precise determination of F, however, is afforded
by comparing integrated quantities for the two flows: In Fig. 23 are plotted
the curves for the total positive momente within the flows. The bk x 10
cm/sec flow is seen to have the larger momentum, slthough the ratio of momenta
in the two problems at late times 1s substantially less than the initial ratio
of 2.5. The failure of the two unscaled curves to egree at lete timee implies
thet the ilmpacts are not exactly equivalent on an equal enexgy besis. Agree-
nent, at late times is, however, obtained by enlerging the 107 problem by &
scale factor F = 1.05; 1.e., times in the 107 problem are increased by a
factor 1.0% and momentum by & factor (. .05)3
is indiceted as a dashed line in the fugure. Also indicated for comperison
is the 107 problem when scaled to have the same initial momentum as the
4 x 106 problem.

A comparison similar to the above, but using instead the total

« The consequent scaled curve

momentum normal to a plane containing the axis of symmetry, indicates a
value F = 1.0k + 0,03.

The results given gbove are essumed sufficient to show that the two
intere:tions have the same late-stage asymptotic solution when the 107 cm/sec
problem is scaled by & factor F = 1.05 + 0.02. Thus, the impacts are equiva-
lent if the ratio of the two projectile messes is

2
.
( 10 6) L s,

% x 10 (1.05)3
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Fig. 23--Comparison of total positive momente in the b x lO6 cm/sec problem,
the 107 cm/sec problem, and two scaled versions of the 107 cm/sec problem
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or for projJectile linear dimensions in the ratio 3./5.5 = 1.75. The two
impacts then lead to the same late-stage effects, such as the crater depth.
Pp. It is desirable to express this latter résult in the more conventional

¥
form

p/fd =k (vo/co)a ,

where 4 is the projectile dimension, k, ¢, ere constents, and v ° is the
projectile velocity. Denotling the two impacts by subscripts 1 and 2 then

glves
a
v
da 1 _ log éa.g) _
—d]_ = —Vg or @=Ly - 0.61

Thus, for fixed projectile size, crater dimensions increase as the 0.61
puwer of impact velocity in the range U x 106 cm/sec to 107 cm/sec. The
uncertainty + 0.02 in F corresponds to an uncertainty + 0.02 in a.
Considerations similar to the above have also been carried out for
the other problems in the present series. (Consequent values of o ere:

a = 0.61 + 0.02 for the velocity renge 107 to0 2.5 x 107 cm/sec;

6

@ = 0.62 + 0.03 for the 10~ to L x 106 cm/sec veloeity range;

a = 0.65 + 0.07 for the 5 x 10° to 106 cm/sec range.

The quoted error limits on o are offered with some reservation
because of possible undetected consistent errors within the computations.
Tests have been made, however, with improved space and mass resolutions to
explore the dependence of the momentum curves, and hence q, on the finite
difference approximstions. Similarly, equation-of-state variations have
been made to investigate & possible dependence of results on assumed
material properties such as the simple representation of vaeporization.

The results of all checks have indicated a negligible effect on @.

*The most general dimensionally consistent form is p/d =f (vo/c ).
But £ =k (v /co)a is suitable provided a is only & week function of v,, as
will be the case.
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The success of the present approach depends on demonstreting hydro-
dynamic equivalence prior to the onset of materlel strength effects. It
should be noted that the method will fall at sufficiently low velocities
(probably around 2 to 3 x 107 cm/sec for iron), when strength effects cannot
be neglected throughout the early nonequivalent pheses of the interactions.
A second, less fundamental, limitation arises at low impact velocities in
that increased mass resolution 1s required for the accurate computation of
weak hydrodynamics. The above relatively large uncertainty in g for the
5 x 105 to 1.06 cm/sec range, in particular, can probebly be reduced by using
more particles to represent the materiel. The associated uncertainty in
penetration (5%) is, however, not large within the indicated twofold change
in velocity.

It is sufficiently accurate and very convenlent to take o to be a
constant independent of impact velocity. Using the average value g = 0.62
for the entire range, the general expression for penetration can then be

written

P/ = & (vg/eg)® %2

vhere p, d are standard dimensions for the crater and projectile, respec-
tively; e, = (ap/ap)sl/e at P=0,p =p, v, is impact velocity, and the
dimensionless constant k can be determined from a singlie experiment. It
should be noted that the exponent 0.62 is independent of the metal under
congideration by virtue of the dimensional. analysis considerations of
Section V. The constent k, however, depends on strength properties and
must be determined separately for each material. Resulting extrapolations
for the experimental date on lron and aluminum are seen as Figs. 24 and 25.

I. CONCLUSION

Numerical techniques have been applied tc ohtein a solution to the
hydrodynamic equations which govern the early phase of the hypervelocity
impact process. Late steges of the interaction, where deformation forces
are nc longer great compared to the yield strength, have not been treated.
Within the hydrodynamic phass, however, it is found that the late time
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asymptotic solution is independent of the impact velocity except for a

simple scale factor. This means, in particular, that the (untreated) late-
stege deformation problem is the same for all impact velocities. The
determination of scale factors from the computations and the data from &
single hypervelocity impact experiment for the material then permits one

t0 completely specify the crater dimensions as a function of impact velocity.
The result is that the early stages of the impact process are completely
determined by the hydrodynamic theory, and over-all effects, such as the
finel crater, are determined by a combination of experimental and theoretical
results.

It is fortuitous that these considerations have led to a determination
of cratering effects. The asymptotic solution within the hydrodynamic phase
will not occur at low impact velocities, vhere strength effects become
important in early stages of the interaction. In order to extrapolate the
experinental cratering dats, on the other hand, one must have at least one
impact experiment for which the velocity is sufficlently high that the
asymptotic solution can be essumed. For most materials of interest the
necessary impact velocities have been exceeded by & factor of two or more
and the resulis are aveilable from date tabulations.(s)

The alternative to the present approach would appear to involve the
explicit treatment of the late-stage strength-dependent deformation. As
noted in the Introduction, such an undertaking requires a substantially
more elaborate computation than the hydrodynemic problem, and also non-
trivial uncertainties must be expected in coanection with materiel strength
properties for high strain rates. It therefore seems probable that the
most reliable predictions of cratering phenomene, for velocities greater
then those attaineble in controlled experiments, are to be made by the
hydrodynamic approach which has been used in the present study.

A number of important espects of impact have not been considered.
Anmong these are the collision of unlike materials, the effects of pro-
Jectile shape and the impact behavior of nonmetallic solids. It is
expected that continuing work along lines indicated in the present report
will meke it possible t0 understand and predict the effects of these
variations.
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IMPACT CRATERING PHENOMENON

bv

T, D. Riney

Space Sciences Laboratory
General Electric Missile and Space Division
King of Prussia, Pennsylvania

105

[ ]

i ki i



i 1"':1;*

VISCO-PLASTIC SOLUTION OF CRATERING
ABSTRACT

A computer program (PICWICK) has been developed for the
solution of the equations governing the visco-plastic model for hyper-
velocity impact, The program is capable of comparing various
equations of state, flow-resistance coefficients, and fracture criteria,
Some choices for these relations are briefly discussed and the com-
putational method, on which the computer program is based, is described.

A series of calculated flow-fields depicting iron-iron impact
illustrate the bounded instability of the basic numerical scheme, That
this problem may be overcome is then demonstrated by two series of
flow-~fields calculated for lead-lead impact situations. The results
show the rapidity with which the shock intensity decreases due to
geometrical divergence and, consequently, lead to the conclusion that
considecration of the pressures generated at impact cannot serve as a

vzlid basis for neglecting target strength.
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VISCO-PLASTIC SOLUTION OF CRATERING
INTRODUCTION
The response of metallic materials when subjected to hyper=«
velocity impact is assumed to be gove'-;ned‘by‘rﬂ:the vigco~-plastic modell
presented previously(l). The model describes the behavior of metals
under impulsive loading so intense that the elastic and strain-hardening
effects may be assumed to be negligible, On the other hand, it meets

the physical requirement that the inertial (compressibility), viscous,

and strength effects be included(a). Thus, the stress tensor, T,

ij

,» and

the strain-rate tensor, Dij' are assumed related according to
2 -
= - - — di 6
Tij P Gij + N (Dij 3 div u ij) . (1)

where Gij is the Kronicker delta, p the:hermodynamic pressure,

4 the flow-resistance coefficient, and u = (u, v, w) is the velocity
vector, Here p depends only on thermodynamic state but 4 depends
as well on the invariants of the strain-rate deviator. Both relations
must be specified if (1) is to provide a constitutive equation for a
material,

Given the required relations for p and u, (1) may be incor-
porated into the partial differential equations expressing the conservation
of momentum and energy. The resulting equations together with the
continuity equation then govern the behavior of the medium subjected
to intense impulsive loading providing it remains continuous. In the
case of axially symmetric impact (see Fig. 1), the equations in

Eulerian form, reduce to

B, .3 ,, 30 -
{Mass) 5t +u T +v 3. TP divu =0 (2)
. S__=8 3s
(Radial pgi_'_uau +vau)= ) (P+S )+ rr $+ TZ
3t dr dz or rr r 3z
Momentum)
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VISCO-PLASTIC SOLUTION OF CRATERING

- H —

T PROJECTILE

L , 1"0

Figure 1.

Illustration of projectile-target configuration just before impact.
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sl (0 BB - 2 (s, b 2 es,)
. Momentum) : : L wldhe @3mE |

(4) ' -
{(Energy) o g: +u gi +v aB: )+ P divu = uDz. (5)

Here pis the density, I the specific internal energy, and the following

notations have been introduced:

o2 Wrolatw v
P--p-3ud1vu d1vu-r 3 +3z
_ _ v _ _ du
S,2=H Dy =253 S;p "KM D =¥
=) 9 (6)
= =gl & L2V = =252
Srz‘“Drz‘“(az+ar) Sgo~ # Dgg = 2K 3

2_ .2 .1 ,.2 2
D” = D], +3 (D, + Dgg

+niz) - % (iva )’
In writing (6) we have assumed that the flow is strictly adiabatic.

Since equations (2) through (6) do not apply to a discontinuous
medium provisions must also be made for material fracture. The
rupture of the material and its subsequent ejection from the crater
during the cavitation process accounts for a large percentage of the
final crater volume.

CONSTITUTIVE RELATIONS

For each material requiring calculations the equation of state,
the flow-resistance coefficient, and the fracture criteria for a dynamic
tri-axial stress condition must be specified. Actually, none of these
have been firmly established by experiments under the severe con-
ditions of pressure, strain-rate, and temperature which occur during
hypervelocity impact. At the present state of knowledge it is neces-

sary to extrapolate boldly from data observed under far less severe
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(3)

cg;ndigipns. In a recent paper some of the available experimental
da;,jc;a._;‘were brought‘together within a frarhework genéralieéndugh to
pe.'x:;ﬁit the construction of tentative constitutive relations for the
plastic - hydrodynamic regime that are sufficiently realistic for
engineering and physical calculations. Rather than repeat the dis-
cussion given there we will concern ourselves principally with those
choices for the constitutive relations for which calculations are
currently being carried out,

It should be emphasized, however, that the method of solution
that has bcen developed, to be described later, is capable of handling
various choices for the equation of state, the flow-registance coefficient,
and the fracture criterion, Several choices have indeed been written
into the computer program as sub-routines so that they may be readily
changed,

In the compressive reg.ime the most reliable equation of state
available has been determined by the Los Alamos group from velocity
measurements of shock waves induced by high explosives, The pres-
sure is expressed as a function of density and specific internal energy:

p=1flo, ).

It is also necessary to provide an equation of state for the tensile regime
since rarefaction regions occur near the edge of the projectile-target «
interface during the early stages of the process, and near the lip of the
forming crater during the later stages. Apparently no experimental
data are available under these extreme conditions, It seems reasonable
and expedient to use the tangent line cf f (p, I) to extend the equation of

state into the tensgile regime (Fig., 2j:

of
h(o.1)=c[% +[f].
3T Jeo o £=0
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VISCO-PLASTIC SOLUTION OF CRATERING

\ S
Hal) I20 . o - ceim s o

>
/ E=plp, -

(a)

Flp,I) b

flp,1)
f(p,I)
\\\ ,/ .
E=p/p, -

Figure 2,

Schematic of equation of state:

(a) Function equal to pressure in compressive region.
(b) Extrapolation into tensile region.
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VISCO-PLASTIC SOLUTION OF CRATERING
The statically determined pressure-compression data of Bridgman fits
the Los Alamos data. Hence, when I = 0 the above extrapolation is
equivalent to éssﬁming that in the neig];borhood of p = 0, the bulk
modulus of the metal in tension is the same as its value in compression,
Explicit expressions for £(p, I} and h (p, I) have been given elsewhere.(3' 8)
In our original formulation of the visco-plastic model the flow-

resistance coefficient was assumed to be simply

S
D=1 + 15 (Jrl=s)
ot TOT o

(7
© (|T|< So) ’

where So denotes the static yield shear stress of the material, M,
denotes the viscosity factor, and the second invariant of the stress deviator,
1'2 = “2 Dz. is a measure of the deformation experienced by the medium,
Thus, the material was considered rigid if stressed below its yield
strength, whereas above this value it was assumed to behave as a
Newtonian viscous liquid,

Actually both ‘no and So are not constant but depend on the

thermodynamic state of the medium:

n, "~ n(, p) So -~ S (I, p).

Both decrease in value if the specific internal energy (essentially the
temperature) is increased while holding the pressure constant,
I
o o
both increase in value if the pressure in increased while the internal
energy is held constant,

aJ_ >0 ..a—s) >0,
(o]

(o]

112

oy

R B

I h’l‘i b



R -
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8
4
"
e
g SLOPE = 7) (I,p)
& aore » (1,1 + 252!
:
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(a)
1,9

1
; Iz >I|,’|
g
£
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a

101

(b)

Figure 3.

Schematic representing the dependence of the shearing stress
on the rate of deformation: (a) Effect of ¢, (b) Effect of in-
ternal energy (or temperature) and pressure.
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VISCO-PLASTIC SOLUTION OF CRATERING
In order to explicitly account for these effects, the definition of the
flow-resistance coefficients may be written as iollows:

4= u(l, p, D)

- S{(, p) (I, .
=\B'|_+‘;L 1+—g(—12-(lD|+c) (8)

The internal energy pressure, and strain-rate dependence of y are
depicted schematically in Fig. 3. The quantity € > 0 is introduced
chiefly to remove the moving surface of separation between the rigid
and fluid regions of the medium, This not only simplifies the calcula-
tions, however, but is also more realistic because the stresses now
depend upon the strain-rate in a continuous manner, Under prolonged
loading this model permits deformation to occur even for |1'| < S, but
the impact mechanism is completed long before such creep effects can
occur,

Alternate form s that are being considered for the flow-

resistance coefficient include the following

_ s (1, n(I.g) 176
we e | 1o dnleo ©
S (1, 1,
B = TiH— l+1In 1+ %%%(,DI*") (10)
) max (Do, iDI)
K = wl owwn (Do, DN Al + T In Vo . (11)

In the above relations T is the absolute temperature and 5, wl, A 1’
Vo are experimentally determined material constants; Do is given by

Yo
D =
° V3
Approximate values for these constants and the bases for proposing the

(3)

exp (=A 1/T).

relations (8) through (11) have been presented elsewhere,
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Omne criterion for material rupture may be reduced under the
assumption that the fracture occurs whenever both tlge:gressgfe is
negative {i. e, hydrostatic tension exists) and the second'invariant of
the stress deviator exceeds a critical value:

p< 0 and IT\ZO'cr. (12)

The critical value of ocr will depend upon the temperature and the
length of time during which the stress is applied,

A rational assumption is that the damage suffered by a segment
of the medium is cumulative; that is, in each small time increment
the fracturc will proceed at a rate appropriate to the stress distri-
bution and temperature occurring during that time increment. In the
numerical scheme, however, the stress field is expressed in Eulerian
coordinates, and excessive bookkeeping would be required to account
for the cumulative damage suffered by the material particles. It is
thercfore assumed that damage is accumulated only for the time
interval, 6t, corresponding to one time cycle of the numerical scheme.

Under these assumptions the fracture criterion for which there
is apparently the most experimental data for uniaxial dynamic con-

(3)

ditions generalizes to give

t

L JYAT 3
J exp -2 w |7| Ot =to
tl T

where to. X and w* are material constants. To determine the point at
which fracture occurs, replace | T| by its critical value, ocr' and

accumulate only for time 6t to get

= A¥ =T ln(6t/t)| .

cr ¥k

In terms of the specific internal energy, the relation is approximated

by
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1 1 ot .
oy, = o | A% - (E - 300) 1n ok (13)

where c is a mean value of the specific heat,
From experimental results over a wide range of stresses and
(4)

temperatures Zhurkov' ' has deduced empirical values for these con-

stants for a number of metals, These values as well as an alternate
fracture criterion have been presented elsewhere(3).
METHOD OF SOLUTION

In developing a finite difference formulation of the equations
governing the axisymmetric impact problem, the extension of an
existing scheme devised for two-dimensional hydrodynamics is a
natural approach, Several methods of treatment have been used for
those problems dependent upon two or more space coordinates. These
variations usually employ (a) Langrangian coordinates in which the
mesh of cells is imbedded in the medium and moves with it, (b) Eulerian
coordinates which are not fixed in the medium but are usually stationary
in the laboratory frame of reference, or (c) a mixed Euler-Lagrange
system which attempts to take advantage of the better features of both
fixed and moveable coordinates,

The chief difficulty with schemes employing Langrangian co-
ordinates is the large distortion which is involved in the present problem,
The Eulerian systemsg have the disadvantage that to account for the
projectile-target interface and the free surfaces of the projectile and
target is extremely difficult. These are the basic reasons for the
decision to adopt the particle-in-cell method which has been developed

(5,6,7) and to extend it to account for the resistance to

at Los Alamos
flow and fracture, A stép-by-step prescription for carrying out the
numerical calculations for the visco-plastic equations has been pre-
sented previously(e); here the scheme will only be described in general

terms,
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VISCO-PLASTIC SOLUTION OF CRATERING

An axial section of the projectile-target configuration is
superposed by the fixed space mesh used to describe the subsequent
motion of the configuration. On this plane of symmetry the cells of
the space mesh appear as rectangles with sides of length §r = h by
§ z = k; each cell is actually a toroid of revolution, Fig. 4. The pro-
jectile-target material is represented on this axial plane by discrete
mass points called "particles''; each particle is actually a circle about
the axis of symmetry. Each particle is assigned a fixed mass whose
value is proportional to the radius of the cell within which it lies
originally, i.e,, att =0, The r and z coordinates of each particle
are stored in the computing-machine memory. These are changed in
time in accordance with the subsequent motion of the material through
the fixed mesh of computational cells. The conservation of mass is
therefore automatic.,

At the end of the nth time cycle the mass (equal to the sum of
the masses of the particles located in that cell) velocity, pressure, and
specific internal energy are associated with each cell, To obtain the
corresponding data at the end of the (n + l)th time cycle one makes a
three-phase calculation. In Phase I the cellwise field functions are
changed neglecting the motion of the medium. Thus, the transport
terms are dropped from the momentum and energy equations and (3),
(4) and (5) are replaced by difference formulas for computing tentative
new cellwise velocity components and specific internal energy. In
Phase II the mass particles are moved according to the velocity of the
cell in which it is located and the velocities of the neighboring cells,
In moving, the particles carry their share of the cellwise energy and
momentum with them; the field functions are then recalculated to
account for the motion. In Phase III various functionals are computed

which furnish checks on the accuracy of the calculations, For example,
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Figure 4. Rectangular mesh superimposed on the projectile-target con-

figuration at instant of impact {t = 0).
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VISCO-PLASTIC SOLUTION OF CRATERING

books are kept on the total axial momentum and total energy of the
system, These quantxtles are r1gorously conserved during the cal-
culat1ons of both Phasés I and IT (no truncation error)

No mass particles are permitted to cross the left boundary
of the mesh (axis of symmetry) as this would violate the assumption
of rotational symmetry, No such restriction applies at the top,
bottorm, and right boundaries of the mesh; these are treated as
"continuative boundaries'', Accordingly, the boundary cells along
these three sides are treated as interior, being bounded on the outside
by cells with identically the same properties in any instant as their
adjacent interior neighbors.

Special considerations are required when computing in a cell
adjacent to an empty cell (if the cell itself is empty no calculations
are made), The velocity of the empty cell is then agssumed to be equal
to that of the cell being computed; the pressure and the viscosity stresses
are assumed to vanish on the boundary of an empty cell,

At the end of Phase II of each time cycle, a tentative value for
the pressure to be used in the next time cycle is first computed for

3,

each cell (i

j j . Dj
~J epd o 1
pi-f(oi,li) :.fCi—p 120
° (14)
= h (o} Ij) i.f):j=-p{ -1<0 .
i’ 74 i )

Then the hypothesized fracture criterion is applied to the cell and if
satisfied one sets pj 0, If the criterion is not satisfied the metal
remains a continuous medium in cell ( ) and one sets pj Ni .

For example, if the fracture criterion of (12) and (13) is being

applied one sets
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VISCO-PLASTIC SOLUTION OF CRATERING

N
Pi‘ Oxfpi<0

and ( |7} i» %* X % -',%'11 - 300| 1n ‘i_st_/;o Cous)
b

i otherwise

~
=P

If the material in a cell does satisfy the fracture criteria then that

cell is tagged and given special consideration in the subsequent Phase I
calculations since the material within it is no longer part of the con-
tinuous medium, In calculating neighboring cells it is treated in the
same manner as if it were empty; the field variables in the cell itself
are left unchanged. The tag is removed at the end of the Phage I
calculations.

As time goes on, the size of the crater increases and the stress
wave propagates further into the target. More target material must
then be covered by the calculation mesh than is necessary at earlier
times. As the dimensions of the disturbances increase, however,
sufficient resolution may be obtained by using a larger net size, in
both time and space, than was permiasible during the initial stages of
the process. It is therefore advantageous to repartition the system
during the coursze of a computational run,

The method of repartitioning used ie to double the linear
dimensions of the cells, i.e., four of the original cells are combined
to form a single enlarged cell in the new mesh, The area covered by
the mesh is thus increased fourfold without incread ng the number of
cells in the mesh., To assure that the storage capacity of the computer
is not exceeded, it is also required that the total number of mass
particles in the new mesh is no greater than in the original mesh, The
method provides for this if the original number of particles per cell,
N, is a perfect square. The procedure is illustrated in Fig. 5 for the

case of N = 4,
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VISCO-PLASTIC SOLUTION OF CRATERING

h
~

2k -

a(=1,2,3,4) DENOTES
ONE OF THE FOUR

SUB- CELLS WHICH
TOGETHER FORM THE
NEW ENLARGED CELL

Figure 5,

Schematic representation of the repartitioning in which the mesh
area is increased four-fold.
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VISCO-PLASTIC SOLUTION OF CRATERING
COMPUTER PROGRAM (PICWICK)

The computational procedure taxes both the memory capacity

:a.nd the speed of most cofnpdteré. The opt;lmum programr;ing logic

depends upon the trade-off between computation time and storage
capacity of the particular computer used. In developing PICWICK, a
computer program for the IBM 7094 that uses only internal storage,
careful use was made of movable storage. This was found to be very
important because the nearly optimum resolution thus obtained is
apparently just sufficient to make useful calculations possible without
regorting to super computers, such as Stretch, or time consuming
external memory,

Mass, energy, and axial momentum are conserved during the
repartitioning process, but losses from the mesh prior to repartitioning,
either by particle motion or by diffusion across the mesh boundaries,
cannot be recovered, If the repartitioning is delayed too long the
loss of mass, energy and momentum across the continuative mesh
boundaries will introduce large errors. To avoid this PICWICK has
been written to automatically repartition whenever the pressure in a
given number of cells adjacent to the continuative boundaries exceeds
a specified value,

The basic particle-in-cell method of computation is inherently
unconditionally unstable, but the amplitude of the oscillations about
the true solution is bounded, Moreover, the amplitude may be made
as small as desired by taking the time increment of each computational

h'?. The stability limit on Ot is often more

cycle, 6t, small enoug
restrictive than the accuracy requirement on §t. In some cases the
preferred method of merely choosing 6t very small may require too

much computer time,
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VISCO-PLASTIC SOLUTION OF CRATERING

In order to allow for adding stability to the difference equations
(7" :

uged in Phase I, an "artificial viscosity'' of the form

- 1 du
q_z p (auo) 6x ax

has also been included. Here a and u, are constants to be determined
by numerical experiment. This device is more often necessary when
using PICWICK for the special case that the flow-resistance coefficient
is set cqual to zero, 4 = 0, i,e., when considering the perfect fluid
model, With 4 > 0 the required stability may be produced by the
components Srr and Szz of the tensor Sij’ provided u > 0,25 (a uo) p 6x.
The presence of the real viscosity has other and more "'real'' effects.
Its presence affects not only the other components of Sij but also con-
tributes to P in a significant tashion, Both real and artificial viscosities
were also included in the earlier one-dimensional calculations with the
visco=-plastic model(l' 2).

The stability problem is illustrated by the first series of
computer results presented in the next section,
CALCULATED FLOW FIELDS

Calculations using PICWICK are currently in progress., In
the p.-esent paper computed flow-fields are presented for the following
four impact situations:

(i) Iron projectile of height 0.8 cm and diameter 1.6 cm

impacting a thick iron target at v, = 0,863 cm/y-sec,

(ii) Lead projectile of height 0.8 ¢m and diameter 1,6 cm,

impacting a thick lead target at v, = 0.526 cm/u -sec.

(iii) Lead projectile of height 0.8 cm and diameter 1.6 cm

impacting a thick lead target at vy © 2.21 cm/u-sec.

(iv) Iron projectile of height 0,8 crm and diameter 2.0 cm

impacting a thick iron target at v, = 0.863 cm/u-sec,
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VISCO-PLASTIC SOLUTION OF CRATERING

"In cases (i), (ii), and (iii) the iron and lead are treated as a
perfect fluid, i.e., thé special case g = 0 and °ch= 0 is treated, In’
case (iv) iron is treated as a simple viscous fluid with 4 = 0,8 megapoise
and Ocr = 0.

In all of the calculations presented nine particles per cell were
used and, initially, the dimensions of each computational cell were
h=k =0,1 cm., No artifical viscosity was used, i{.,e., Zi = 0, The
computer results depicting the flow fields at various stages of the
cratering processes are presented in Figs, 6 through 17, An arrow
in the figures represents the velocity vector for the material particle
located at its tail at the indicated instant of ti...e after impact, In
each figure the initial impact velocity vector, denoted by vy and the
original projectile dimensions are also shown for scaling purposes.
Isobars are superposed on the flow fields.

It takes a finite time for the rarefaction wave to propagate to
the axis of symmetry from the edge of projectile-target interface where
it is generated. Until the rarefaction region arrives the flow remains
one dimensional, From symmetry it is clear that where one dimensional
flow persists, the interface will be located a distance of votlz below
the original interface position.

The calculations for iron-iron impact at 0.863 cm/pu sec (u = 0),
case (i), are depicted in Figs. 6 through 9, This sequence of results
is presented to illustrate one of the pitfalls of the basic particle-in-
cell method of numerical solution, In Fig. 6 the flow-field is behaving
correctly and in Fig, 7 an instability is just becoming apparent. In
Fig. 8 the instability has caused the separation of the compressed
behind the shock front into two sub-regions even at the axis of symmetry.
There is no physical mechanism for this efiect as no rarefaction wave

has yet progressed to the compressed region,
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VISCO-PLASTIC SOLUTION OF CRATERING

IRON V- .863 CM/ JuSEC

)4t =.255 uSEC 20 TIME CYCLES
v U heked o
S——— R TRy
T
NN
Ll
EEEEEEE
ks 1 [ ] ’
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SR \_;\ AN 4 v p., MB
) \p.? MB
p=3MB

P4 MB

Figure 6.

Flow field when iron is considered a perfect fluid (u = 0), 0.255 usec
after impact at 0,863 cm/u sec.
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Flow field when iron is considered a perfect fluid (u

0.383 4 sec. after impact at 0.863 cm/usec.

Figure 7.
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VISCO-PLASTIC SOLUTION OF CRATERING -

IRON V,.863 CM/MSEC

Jht=.52. puskC 40 TIME CYCLES

h=k=.l CM
N=9 PARTICLES /CELL

Figure 8. Flow field when iron is considered a perfect fluid (y = 0),
0.512 4 sec. after impact at 0.863 cm/ysec. Note the
separation of compressed region behind shock wave into
two subregions,
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VISCO-PLASTIC SOLUTION OF CRATERING
IRON V= .863 cm/,usec
24t= 769 useC
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Figure 9. Flow field when iron is considered a perfect fluid (4 = 0),

0.769y sec. after impact at 0.863 cm/u sec. The instability
persists but remains bounded. It is apparent that the
instability would not be detected if only the flow field were
studied without observing the pressure field.
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VISCO-PLASTIC SOLUTION OF CRATERING

The choice of 6t = 0.0128 ysec is therefore too large
for sufficient accuracy. The instability persists in Fig. 9,
but has not become significantly worse; this indicates that the
instability is bounded.

The calculations for lead-lead impact at 0,526 cm/y sec, case
(il), are depicted in Figs. 10 through 13, Lead is méré compressible
and has a lower sound speed than iron. The choice of 6t = 0, 021 psec
was found to be sufficiently small for accurate results to be obtained in
this case. The sequence of figures illustrate the transition from one-
dimension flow near the projectile-target interface to axisymmetric
flow in which lateral flow and the ejection of material from the crater
by backward flow are the predominant features, Figure 12 is of
special interest as it shows the shock front just after it has reached
the bottom continuative boundary (denoted by the short dashed line at
the bottom of the figure). Five time cycles later the mesh was auto-
matically repartioned. Subsequently the time step is also doubled. In
Fig., 13 the flow-field is depicted 5.39 usec after impact,

The calculations for lead-lead impact at 2,21 cm/gsec, case
(iil), are depicted in Figs, 14 through 16, The choice of 6t = 0,005,
dictated by our stability and accuracy requirements, was found
satisfactory. After only 1l usec from the instant of impact the top of
the projectile has already penetrated below the original target surface
and the backward flow of the material from the rear of the projectile
and from the edge of the forming crater are well under way.

Figure 17 is included to demonstrate the ability of PICWICK
to handle physical models other than perfect fluids, case (iv). At this

time no long runs have been made with g > 0, but they are planned,
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Figure 10,

Flow field when lead is considered a perfect fluid (4= 0), 0.633 usec,

after impact at 0,526 cm/usec.
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Flow field when lead is considered a perfect fluid (u= 0), 1.056 ysec.
after impact at 0.526 cm/ysec.
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LEAD Vo= ,526 CM/uSEC

YAte 2.96 pSEC 140 TIME CYCLES
————————————— 7l R
hek=.l CM it S

N+ 9 PARTICLES/CELL

AXIS OF SYMMETRY

P800 KB
p= 1 MB

Figure 12. Flow field when lead is considered a perfect fluid (4 = 0),
2.96 ysec. after impact at 0.526 cm/usec. The shock
front has reached the bottom continuative boundary which
is denoted by the short dashed line in the lower part of the
figure. 132
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AXIS OF SYMMETRY

Figure 13. Flow field when lead is considered a perfect fluid (y= 0),
5.39 usec. after impact at 0.526 cm/gsec. The
computational mesh has been repartitioned.
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Figure 14,

Flow field when lead is considered a perfect fluid (u = 0), 0.251 ysec.
after impact at 2,21 em/usec.
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LEAD Vo= 2.2 CM/MSEC

244+ 1.004 puSEC
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Figure 16.

Flow field when lead is considered a perfect fluid (u=0), 1.004 ysec.

after irnpact at 2.21 cm/d sec.
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CONCLUSIONS
A computer program (3?1CWICK) has been developed which is

capable of comparing various proposed equations of state, flcw-

resistance coefficients, and fracture criteria. Some choices for these

relations have been briefly discussed and the computational method on
which the computer program is based has been described, Up to the

present time, however, the calculations have been made principally

for the special case in which the impacting bodies are treated as a

perfect fluid, i.e. 4 = 0 and ocr = 0,
Some important observations can already be madc from the

flow-~fields plotted from these early results, It was demonstrated

that unless care is taken significant errors can result f{rom a bounded
instability which is inherent in the basic numerical method, In Fig, 8
thiz manifested itself by a separation of the compressed region behind

the shock front. It is of interest that this same type of behavior is
(10)

apparent in the flow-field depicted in Fig. 7 of Bjork's paper .

It is also important to notice the rapidity with which the
intensity of the shock is decreased by the geometrical divergence of
the problem, Comparison of Figs. 10 and 13, for example, shows
that the shock strength decreased from 1.8 mb to 0.3 mb in only 5, 39usec.
The cratering process is really just getting started; it will continue
for well over a hundred microseconds with ever decreasing shock
strength, Pressures operative immediately after impact are clearly
not representative for the greater part of the cratering process and
cannot serve as a valid basis for neglecting the strength of the target,

The calculations for the cases (ii) and (iii) are continuing,
Cases (i) and (iv) are also being run with smaller values of 6t. A

geries of calculations in which the resistance to flow and the fracture

are also included is planned.
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ABSTRACT

Finite difference techniques are used to solve the continuum equations
in two dimensions with axial symmetry. The Tresca yield assumption is
used in an equation of state that describes elastic, elastic-plastic, and
hydrodynamic flow. Problems are presented where stress waves are in-
duced in solids from the detonation of high explosives, and from the impact
of two materials. The effect of strength of materials on wave shapes and on

exterior boundaries is shown as a function of time.
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THE CALCULATION OF STRESS WAVES IN SOLIDS

Mark L. Wilkins and Richard Giroux

Lawrence Radiation Laboratory, University of California
Livermore, California )

March 11, 1963

INTRODUCTION

In recent years experiments on impact loading of metals have
demonstrated the existence of elastic-plastic effects in the hundreds of
kilobars range (Ref. 1). The implication is that the hydrodynamic model
is not sufficient to describe the stress behavior of metals at these pressures.
To study the effects of anisotropic stresses in a material, a computer pro-
gram, HEMP code, has been developed to solve the continuum equations in
two dimensions with axial symmetry.

While experiments have demonstrated the existence of a departure
from hydrodynamic theory at relatively high pressures, the rheological
equation of state at these pressures is not well defined. The equation of
state used here will provide a theoretical description applicable to a wide
class of practical problems, but uses simple idealizations of the outstanding
features of the real phenomena. 1t is felt that experiments in conjunction
with calculations will be an effective way of determining properties of mate-
rials at high pressures.

This article is arranged in three parts:

Part1l Description of the HEMP Code
Part II Discussion of the Equation of State Used
Part III Application to Stress Wave Problems

PART I. HEMP CODE

- The equations listed below are solved in Lagrange coordinates by finite
difference techniques. Sliding interfaces are allowed between an elastic and
a hydrodynamic region, but not between two elastic regions. However, an

elastic region may slide along a fixed boundary.
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The atrga ey are decomgoaed into a hydrostatic_ component P (all ;h;ee
PR £ 24 et N 3 2

4 Lol e a o daBigifpa R w :«ﬁ;
stress. components equé.T) and an anisotropic component, w(?t?%é‘ tor)

which describes the resistance of the material to shear dxstortx_on-_ The stress
deviators are calculated in terms of an incremental stress resulting from an
incremental strain. The time derivative of the stress-strain relations [Eqs.
{4)] gives the desired ordered sequence and provides the integrating factor when
the material element changes from an elastic to an elastic-plastic state (Ref. 2).
It should Le noted that the time derivative does not mean that the stresses are
rate dependent.

The stresses are incremented in the X-Y coordinate system and must be
corrected for any rotation in this plane that may have occurred during the interval
from nton+ 1 (Ref. 3). This comes ahout because, if an element rotates through
an angle w in the interval from n to n + I, the stresses at n will no longer be re-
ferred to the X-Y courdinate system in their ncw position. Therefore, the
stresses at n must be transformed to the X-Y coordinate system by a rotation
through the angle w (see page 94, Ref. 4). The transformation equations result
in a correction & that is added to the stresses of Eq. (4). The angle w is given
by: sinw= 1/2 [8Y/8X - 8X/8Y 1.

Basic Equations of the HEMP Code

(1) Equations of motion in X-Y coordinates with cylindrical symmetry

about the X = axis:

0T T, T .
3x T aY T Ty CeX
T 9z
axx+ yx+5y zGO-pY
X Y Y
_de -
L. (P +q)
de
= -(P+
zyy v ( q)
_ de _
266 = (P +q)
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$ -

(2) Equation of continuity! . : oh

Voo, 8%, 4
‘ Vv 38X Y ' Y

(3) Energy equation:

de

o ‘ de : de . . :
E=-(P+q)V +V[ T Sxexe oy ny+ %00 *399+Txy ny].

(4) Artificial viscocity:
2 0, 2
q= CO p(V/V)" AN
where
0
C™ = constant
A = zone area

po = reference density.

(5) Equation of state:

dge, _, (¢ .1¥
( Gxx-zp'[cxx 3 V]+6xx
de- : 1 V
S S | Y
Stress ¥y vy 3V 124
components . . P
de. 2 | € ly
00 06 3V
L T =ult ] +6
xy L Xy xy
where
p = shear modulas
6 = correction for rotation (see text)
o 3 ‘o= %
Velocity o 0 ~ Y
strains ; i 8{[ ; i} 81} . 85(
yy - BY xy - 3Rt OY
_ 2 3
Hydro- P=an=-1)+b{n=~-1)"+c(n - 1) + dqE
static 0
pressure n=1/V=p/
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Tresca yield condition

de de 0 CeEimredryoe T saetemast 453
‘ “max ~ ‘rminl 2t <0
where
0 shear strength.

decmax and dc‘rmm are the maximum and minimum of the thrce principal
streas deviators dec‘, deu'z, and deo‘s-
Notation:

X, Y space coordinates

X velocity in X direction

Y velocity in Y direction

Zxx, zyy' EBH' Txy total stresses

deu’ s deo' , deo’ stress deviators

XX vy 66

£ cw, oo cxy strains

P hydrostatic pressure

v relative volume

)8 internal energy per original volume density.
The dot over a parameter significs a time derivative along the particle path.

PART II. EQUATION OF STATE

This discussion refers to Eqs. (5) of Part L

The elastic range is described by Hooke's law written in terms of natural
gtress-strain. At the elastic limit, the yield condition of H. Tresca (1868) is
used since it has been very successful in describing the flow of ductile etals.
This assumption states that the plastic flow begins when the maximum shear
reaches the resistance of the material to shear 0. The yield conditions must
be independent of the coordinate system. In each cycle, therefore, the three
stress deviators detrxx deo,yy and devee are transformed to the principal stress
coordinate system, giving the three principal stress deviators deul. decz. and

deg;. The maximum shear is given by 7 = (¢ - o_: }/2 {Ref. 4), where
3 max min

Tmayx a0d v are the maximum and the minimum of the three principal stresses.

ma min
The projections of the radius vector in the principal stress coordinate system are
adjusted such that 7 < 70. The stresses in the X-Y coordinate system will then

be adjusted in the same way by the transformation equations.
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The, hydrostatic presaure P :is oblained from Higoniot-data ... )
EOACRR R U N PN A T B w5 {0 O

For the purpose ot the-tafeulationt presented thenext dedton, it4s -
assumed that onc-dimensional Hugoniot data measure the hydrostatic pressure :

plus the shear distortion stress. Using the shear strength at the elastic
limit for aluminum, 7% = 0.00149 mb calculated from C. D. Lundergan data
(Ref. 5) and the Hugoniot data of J. M. Walsh (Ref. 6), the equation of state for
aluminum becomes:

0

7 = 0.00149 mb
4 = 0.248 mb
20.73(n- 1)+ 1.72(n - )2 4 0.4 (n - 1)°
po = 2.7
n=p/°.

We are considering that the only motion is in the X direction. The

constants in the pressure relation have been chosen such that the total stress

Zxx
In terms of the Lamé€ consiants, \ + u. the equations give: -Z, = (\ + 2p) AV.

=-P+ deu'xx reproduces the elastic data up to the Hugoniot elastic limit.

Beyond the elastic limit the equations reduce for the one-dimensional case to:
“Syx = tP+4/3 70 and -Z,4 reproduces the Hugoniot data. The equations
[Eqs. (4)] will give as an unloading path ~Eu = tP - 4/3 'ro.

The above description allows the material to unload first clastically and
then plastically along a curve offset below the hydrodynamic pressure. Calcula-
tions show that even though 70 iz small compared to a given total stress 'zxx'
the effect on the wave structure is very pronounced. This is because rare-~
factions hehind a shock wave can travel faster than they would with an all-hydro-
dynamic material (see Fig. 1).

The value of 70 can be made 2 function of prcscure to deccribe the fact that
some materials can support more shear with increasing pressures. If 70 is set
to o, the program will describe a completely elastic case. If 7% 18 set to zero,
the siress deviator will automatically be set to zero and a hydrodynamic descrip-
tion will result. This would be the case when distortion is taking place at low
pressure and enough work has been done to melt the material.

In resumé, it is seen that the one-dimensional Hugoniot measurements,
together with a shear modulas 1 and a shear strength 70, have been extended to

describe a three-dimensional stress system by means of Eqs. (4). The yield
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point'_rf_'_rom :ela.stic' ‘el Ai_c-plastic flow is determiged by thg va
o elastic- plaatic to hydrody_ arnic’flow2a cu ;

when 790 is set to zero. The latter yield criterion could be based on the

internal energy in a mass element.

PART III. APPLICATION TO STRESS WAVE PROBLEMS

Figure | shows the stress, -Z,., as a function «f position X in an
aluminum target plate for diffcrent times. The stress was a result of a flying
aluminum plate with a velocity X = 0.08 cm/usec striking the target plate. The
elastic precursor can be seen travelling in front of the plastic wave. The step
behind the plastic wave is a reault of the elastic relief wave travelling faster
than the plastic relief wave. The relief waves result when the reflected impact
shock reaches the rear surfaces of the flying plate. The calculation was made
using the constants given for aluminum in Part I1 (79 = 0.00149 mb) and the
equation of state of Part I [Eqs. (5)].

Figure 2 shows the result of a cylindrical charge of high explosive deto-
nated in contact with an aluminum plate. The point of detonation was the upper
right-hand corner on the line of cylindrical symmetry (upper horizontal line).
The high explosive was PBX 94/04 and the aluminum equation of atate used
»0 = 0.00149 mb.

Figure 3 shows the same problem as above, but with an arbitrary shear
strength 70 :20.010 mb.

Figure 4 shows the stress waves in an all-elastic medium resulting from
a spherical detonation. The explosive (Comp B) was originally in a l-cm-radius
sphere and was detonated from the center. The elastic material extends from 1|
to 5 ¢cm and has the elastic parameters for copper. The figure shows stresses
versus radius. To the left of the interface, shown by the dotted vertical line,
is the hydrodynamic pressurc of the high explosive. To the right arc the radial
and tangential stresses plotted positive in compression. The stress connecting
to thi liigh-cxplosive pressure is the radial stress. An additional shock
originating from the hydrodynamic spherical cavity can also be seen. The
point of interest here is that the radial stress goes into tension behind the spher-
ically expanding front. The head-on interaction of two spherically expanding
shocks {for example if Figs. 2 and 3 had high-explosive charges on both sides of
the aluminum) could result in a fracture when the two tension tails met. This

geometry has been studied experimentally by C. R. Cassity (Ref. 7).
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i

: t = 2,64 - t = 2,84

:. :» ! 1: ’]

t = 3.24 [/ /\[“

T

/’

/
t= hod‘ Y ~(// / j
/ ,

Flgure I1
Time sequence (in microseconds) of a cylindrical HE charge

detonated sgainst Al with shear strength T = 0,00149 mb,
The shaded zones give the position of the stress front,
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t = 4,04

Figure IIX
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detonated against Al with shear strength
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Figure 5 shows the impact of a flying iron cylindrical disk striking an
aluminum target. The aluminum shear strength ,,.0 = 0.00149 mb. The upper
horizontal line is the axis of cylindrical symmetry.
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A HYPERVELOCITY IMPACT MODEL

ABSTRACT

A simple mathematical model of crater formation by a
hypervelocity impact has been developed. The model predicts
the depth and duration of penetration into thick ductile
targets by compact{ deforming projectiles which are small
compared to the final c¢rater volume,
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The craters formed in thick targets by compact projectiles,
at velocities high enough to destroy the projectiles, are = | i

frequently observed to be approximately hemispherié¢al. Based =~ |

on this observation and the assumptions that the particle ST
velocity field about a growing crater is similar to that of a
translating spherical boundary, and that crater growth is
resisted by a similar stress distribution to that of infinite
solid exposed to hydrostatic pressure on a spherical internal
boundarv, a mathematical model of the penetration, P, into a
material of density,/”, and strength, S, formed by a projectile
of mass, m, and velocity, v, has been developed.

A sphere of radius, r, moving in a fluid at rest,_at infine-
ity, has an additional apparent mass equal tof’2/31rr3, due to
the kinetic energy supplied to the flow about the sphere.

An infinite solid loaded internally on a spherical surface
by a normal pressure, p, develops a tangential tensile stress
on the loaded surface. If p = 2S plastic flow occurs. If the
target is semi-infinite with a hemispherical cavity forming on
the surface the projected area of_the cavity being #7r2, the
force normal to the plate is pfrr? = 2#rr2S. The work done in
plastically forming a hemispherical crater would then be the
flow pressure p integrated over the crater surface 2 72 and
integrated again along r

W =fzs(21rr2)dr = 4/3 7r3s. (1)

Assuming impact has occurred the momentum of the system
is (nHw°2/3-ﬂT3)P and the mechanical resistance to penetra-
tion is the tension on the yielding crater surface 2 #r<S.
Since there are no external forces

IQ.

T [(m+P2/31rr3) P] + s2mrr® = O. (2)

Q.

The case being considered is that of P=1r and P = r

(m+ @2/3wr3)T + P2 rroi2+S2 frre = O. (3)

(Be2/3 red)edi + (£243)2 mPar = o. (4)
1/2

(g+2/3.1rr3)(r2+§) 2 _ K. (5)

The constant of integration, K, is evaluated by equating
the initial projectile kinetic eneray, E, to the sum of the
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kinetic energy and the work of deformation of projectile and
target when r = a. The parameter, a, is defined as the radius
of a sphere of target material.having the same mass as the =
projectile. Since equal though oppcsite forces are acting on
the projectile and target, the work of initial deformation

is assumed to be equal.

E=pv2= n 2 L 1/2@2/34a 12 + 2(a/3waSs) (6)

but by the definition of a, @2/3 -rra3 =g

so that at r = a

'r2 = 2/3(v2 - 4%) (7)

1/2
and K = 3/2 B(2/3 V2 - 5/3 3) (8)

The maximum value of r occurs when & = 0; therefore

since the final penetration is P = r max and combining equa-
tions (5) and (8) with + = O

1/2 1/3
9 I 2 .
e i1 5 ©

For a spherical projectile, and a target of the same density
the penetration in calibers

2 1/2 1/3
67 [(3575 - 2.5) - .s._z_J (10)

Some representative predictions of this model are
tabulated below.

S 452;' Velocity in KM/sec for
dynes/cm® KM/sec P/d=l.4 P/d=1.8 P/d=2.3
Low alloy steel 7xlO9 .3 3.0 6.0 12.0
Mild steel 3x10° .2 2.0 4.0 8.0
Aluminum 24ST 3x10° .33 3.3 6.6 13.2
Aluminum, soft 5x108 .13 1.3 2.6 5,2
Lead 108 .03 .3 .6 1.2
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If P is known the duration, T, of the cratering process
can be computed using equation z5) and the condition that
P =rwhent = 0.

M5/ 3.
(257 - Geersne) ¥ (11)
(3r2/3grc3) ¢

Separating variables:

-z [ \} (2

2a +r3

If the prOJectgle volume is small compared to the final crater
volume, i.e. P9>>a3, (12) approaches

T o p{; (z/P)%d(z/P) - P fe §-1/2215-143)!
w["‘j&;??‘“’ 5 N ‘
(13)
= .35413—,/? |

As an illustration equation (13) predicts that hypervelocity
cr.tering of lead will persist for about 120 microseconds
per cm., of final depth while the duration in a hard aluminum
alloy such as 24ST will be about 11 microseconds per cm,

This model is considered applicable where the initial
inertial pressure 1/2@ve is an order of magnitude greater
than the mechanical strength of the materials of both
projectile and target. There are additional limitations
in that the crater shape was initially specified rather
than derived and some phenomena which would be especially
significant for bkrittle targets have been neqglected.
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BLAST-WAVE THEORY OF CRATER FORMATION

ABSTRACT

An analytic formulation of the problem of crater formation is presented,
using the methods of blast-wave theory. The approximations on which this
approach is based are chiefly concerned with the self-similar, or progressing-
wave nature of the solution, with the type of state equation used, and with the
extent to which the conservation of energy and momentum can be fulfilled,
These approximations and the limitations which they impose are reviewed,
particularly as applied to the problem of shock propagation in solida. Neglect
of momentum conservation is shown to be a good approximation, but use of the
Mie-Griineisen equation of state is found to be largely incompatible with the
assumption of similarity. An approximate nonsimilar solution for impact-
generated shock propagation is derived, and displays excellent agreement with
observed shock-wave trajectories,

To derive a penetration law from any solution, some point in the trajectory
must be chosen as the crater radius. The strong influence of this choice on the
penctration law is discussed, and it is argued that the target strength should
play a role in its determination. A simple choice of the crater-formation
criterion, related to the intrinsic shear strength of the target, is utilized in
conjunction with the nonsimilar solution, to derive a penetration law which

corrclates a large amount of data,
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. .. INTRODUCTION

The fluid-mechanical approximation pioneered by Bjorkl is commonly

accepted as a proper description of the early phases of target deformation
due %o hypervelocity impact. In such a model, the motion of any small mass
element is assumed to be governed by the pressures acting on its faces,
while resistance to shear deformation is neglected. The differential equations
that govern such inviscid motion are the usual Euler equations expressing the
conservation of mass, momentum, and energy, together with the equation of
state of the comprcssible medium. These differential equations contain two
spatial variables, as well as the time, and the prohlem of solving them is ex-
tremely difficult, To date, the only solutions that have been reported are the
numerical results of Bjork. 1.2
The purpose of this paper is to present an approximate analytic solution
of the same set of equations, The solution is achieved by adapting the tech-
niques of blast-wave theory, which has produced such rich dividends in the

3,4,5 The spirit of the

study of various high-energy fluid-flow problems.
approach is to simplify the analysis wherever possible by making certain
approximations to the true physical situation. We seek generality and sim-
plicity in the results., Some exactness in speciiying details of the problem
must, of course, be sacrificed,

The blast-wave theory has been developed, over the years, as a means
of describing various high-energy gas flows, In order to apply such a theory
to the problem of cratering by high-speed projectiles, each of its approxima-

tions must be carefully examined in this new context.

The most important approximations can be grouped into three main
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categories; first, those concerned with the assumption of a self- similar

any -

form of solution, ‘second, those-associated with thé eqﬁa.:t'ibr:i"d‘f‘sf‘la'.‘:fé"gf"fh_g“
medium, and third, those dealing with the extent to which global energy-
and momentum-conservation conditione can be satisfied. After a brief re-
view of the basic fluid-mechanical equations in Section 1, these three
categories are discussed in dctail in Sections 2, 3, and 4. Following this,
Sections 5 and 6 present two different approximate solutions for the time-
history of the shock as it penetrates the target. Finally, Section 7 takes up
the question of crater-size prediction,

The assumption of similarity discussed in Section 2 supposes that
the flow pattern behind the shock that advances into the target is always
the same, if viewed on a scale given by the depth to which the shock has
penetrated at that instant. This approximation has the effect of suppressing
time as an independent variable, and constitutes a key mathematical sim-
plification. At the same time, it imposes certain restrictions, the most
important of which is that only certain forms of the state equation are per-
mitted, Section 3 discusscs the extent to which the Mie-Gruneisen equation
approximates the permitted form. It is found that only the extremely high-
pressure states of a Mie-Griineisen material fulfill the required form, and
in that range, the true cquation of state can be replaced by a perfect gas of
constant specific-heat ratio. In every impact, the shock ultimately degener-
ates to a stress wave, so that the high pressures required for the perfect-
gas approximation are only achieved during a small portion of the process.
Thus, a realistic description of shock propagation in solids requires a

solution which accounts for the nonsimilar nature of the problem,
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To conserve the total energy and momentum of the impacting particle,

the solution must allow for spatial variations in two dimensions, and con- ..

sequently a set of partial differential equations must be solved. Section 4
describes approximate solutions of these equations along the axis of sym-
metry, and compares these results with those obtained using only one spatial
variable, the distance from the impact point, Solutiocns with only one spatial
coordinate can conserve only the total energy of the system, and are found to
be practically identical with the more complicated two-dimensional solutions.
A corollary of this finding is that the energy of the projectile is the more im-
portant parameter, its momentum playing only a secondary role, In Section 4,
the physical reasons for this behavior are described, and its implications on
simulation of hypervelocity impact are discussed.

Sections 5 and 6 are devoted to a description of the trajectory traced
out by the shock as it propagates through the target. The classical Taylor
solution for self-similar motion of a shock through a perfect gas is reviewed
in Section 5, With this as a background, we then present in Section 6 an
approximate solution which allows for the nonsimilar nature of shock propaga-
tion in solids. In this solution, the shock speed tends naturally to the stress-
wave limit at large time. Comparisons with experimental observations in
transparent targets, and with Bjork's calculated shock trajectories, reveal
an excellent correlation over a wide range of conditions, This correlation
uses only the energy of the projectile, and the density and stress-wave velocity
of the target. The fact that data up to an impact speed of 30 Km/sec are all
correlated suggests that impact-generated shock propagation follows essentially

the same mechanism over the entire speed range.
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To predict crater size, the solution for shock position as a function
of time is not enough. Section 7 points out that an auxiliary criterion is -
needed, to identify the point at which the crater will form. The correlation
presented here indicates that the choice of this criterion is the most import-
ant factor in determining the ultimate penetration law. In Section 7, the
question of choosing a proper crater-formation criterion is not settled, but
several choices are discussed. One of these is shown to be capable of
correlating a large amount of data, through proper selection of a certain
constant.

The net effect of these studies has been to reveal the potentialities and
the limitations of blast wave theory, as applied to crater formation in semi-
infinite targets. Considerable progress has been made, notably in establish-
ing the relative unimportance of momentum conservation, and in identifying
the nonsimilar nature of the prokhlem, and its connection with the Mie-
Griineisen state equation. At the same time, a great deal of work remains
to be done in certain other areas, especially in regard to the formulation

of a suitable criterion for crater formation.
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1. BASIC EQUATIONS

Wl;e-x'l; .ﬁa;tiélné!;ériké; ;t.a:r’g:et s.\;rt:aﬁ.rcé ;t htghspeed, la;ge::uno:zrn_t::;w
of energy and momentum are quickly transferred to a very small portion of
the surface. Consequently, a strong shock wave is driven into the target,
generating extremely large pressures, typically measured in megabars.
Because these pressures are so large compared with the material strength,
one is led to the approximation that the impacted medium behaves like an
inviscid, compressible fluid. In fact, the justification for such an approxima-

tion is not provided by the magnitude of the pressure themselves, but must

come from a consideration of their gradients, Consider a small mass element

T+ A
oy
P —14 -—4p+ ;fo

A%

o
The net force acting in the x-direction is proportional to -s? - 5‘3,‘2 ; thus
the neglect of resistance to shear deformation requires 822 » EI- . To

® ¥

replace this comparison of gradients by a simple comparison of pressure with
strength, is to assume that rates of change in the two perpendicular directions
are of the same order, and that the proper orders of magnitude to use for ?
and @ are the i':;npact pressure and material strength at high strain rates.
There appears to be no reason for doubting either of these assumptions in

the early stages of the impact process. Thus the problem of determining the
response of the target material becomes eussentially that of solving the fluid-
mechanical equations (conservation of mass, momentum and energy) together

with the equation state of the medium
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e e eI T

Mas_s: . L - e 1)

% +p dn/; =0 ‘ -

Momentum: (2)
P+l p =0

Energy: (3)
gf + 1; 22%@ =0 er .%)—t_‘l' =0

Equation of State: (4)

e=F (’f//o)

Here, f denotes the density, /P the pressure, € the internal energy per
unit mass, A the entropy per unit mass, and ? the velocity vector. The

symbol Dét is the convective derivative

L _2 .z, (5)
f =5 ¥V

in which T is the time and ¥/ the gradient operator, It should be noted

that the assumption of an inviscid fluid has been made by setting the right-

hand side of Eq. (2) equal to zero. If shearing forces were to affect the motion,
they would appear in this equation. Consistent with this approximation, energy
changes arising from viscous dissipation and heat conduction are omitted from
the energy equation. In addition, energy changes due to radiation and chemical
change are neglected., Thus the conservation of energy simply states that for
each element of mass, changes of internal energy A& are balanced by changes
in the flow-work term ’Pd?ls . Alternatively, this condition may be expressed
by stating that the entropy of a given mass element does not change after it

has been processed by the shock.
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Finally, it should be noted that the use of an equation of state implies
the assumption of thermodynamic equilibrium.
It is assumed that the target motion is symmetric about an axis normal

to the original target surface. For such an axisymmetric flow, the scalar

forms of the equations of motion in spherical coordinates are

( %,y plane is the
target surface)

z
24 W _

% 2= ,.Cot‘e)-o (6)
78 x  uwu w2 7
ot "4kt r e T 7 Yt F =0 )
2ur A A U N/ - R 8
st"'“'ar"rae + r~+fr99 o (8)

22,0 w2k o RN - 9
o Yo T r o %(%*“ar*réf)’o 9

e = F{']D,/o) (10)

Here . and w denote the velocity components in the ¥- and &~ directions
respectively. Equations (6) to (10) constitute five relations for the quantities
/F N /0 » 4 ,wW and € , One can also work with the entropy, rather than the

internal ensrgy, in which case the last two equations are replaced by
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£ oA (1)
t ar *

m ————— e e e aaae A o e s

o
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b

A=p0pP (12)

The boundary conditions that apply at the shock wave, i.e, at r= E;(Qt),
state that the discontinuities in velocity, pressure, density, etc. across the
wave are given by the Rankine-Hugoniot relations. For a shock advancing

into a medium at rest these are

U= 2
-‘i - 7 'Pb, &
f'/?'/e'
/o%’fl(“:‘“l) (13)

/’)‘_/Po = Usl, (14)

e-eo =4 (he8)(3 - %) s

In the analysis of this paper, it is assumed that the shock wave is always
hemispherical in shape as it advances into the target. This assumption is
based on observations of shock shape in lucite6' 7 and in waxs’ 9 under hyper-

velocity impact conditions. Further verification comes from the nearly
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hemispherical shape of the craters formed at high impact speed.
.-+ At this point, then, the fluid<maechanical:problem pased is the solution
of Eqs. (6) to (10), which describe the motion of an inviscid, compressible

fluid, behind a hemispherical shock wave advancing into a semi-infinite

target.

The motion must be such that the boundary conditions (13) to (15) are satis-
fied at the shock, while along the surface V‘=f,'(9) {(whose location is unknown)
the pressure and material density must vanish.

The solution of such a boundary-value problem is an extremely difficult
task. To date only numerical solutions have been presented.l The object of
the present paper is to review the approximations of blast-wave theory and

then to apply them in an effort to derive an analytic solution.
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2, SIMILARITY ASSUMPTION AND ITS IMPLICATIONS

b oomemema L feol oo LD

Mathematically speaking, the most imp‘c:rfant approximéi;ion made in
the blast-wave theory is the assumption that the flow is self-similar, i.e.
the distributions of the various physical quantities (such as pressure, density,
etc.) at each instant are taken to be the same when viewed on a scale de-
fined by the shock radius at that instant. Thus each quantity, instead of
depending separately on the time and on the distance ¢#* from the impact
point, is assumed to be a function only of the combination 'ﬁ/ﬁs (t) . This
reduction of the number of independent variables constitutes a significant sim-
plification in the differential equations that must be solved. The essence of
the similarity assumption is to suppress time as an independent variable. This

is done by introducing the similarity coordinate

n= r (16)
R:U-')

and by redefining the velocity components, pressure, density, and internal

energy by the dimensionless functions

w(ne,t) = By ¢(n &)
w(r8t)

#r6,t) =R R, £l 6)
R, ©(x,0) plret) =AY (,6) an
e(rot)= K" §(1)

When these relations are substituted into Eqs. (6) to (9) and derivatives with

i

respect to / and 1 are replaced in terms of derivatives with respect to
YZ , one finds that all explicit time dependence can be suppressed from the

differential equations if one chooses

g, =At” (18)
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Thus, out of the whole set of solutions of the basic equations, the similarity
assumption restricts us to that subset for which the shock radius is propor-
tional to 2 power of the time. When this is done the basic equations become

() E 22y f,zih—

3w P LW =. (19)
1 56 + 2 +ﬂa:t9) 0

1
1
- =N 29 _ W 2 w*
Y ¢+(¢’“)3?+75§"T *

. (20)
Y °
= - o3 dw 1 (2
—= W+ (¢ -) 7% tY T st 1)
—o =N - o 2 _ £ o,
2 7+(¢>ﬂ)§l3-+;l’ w’-{@' ﬁfﬂ;’”f-o (22)

The parameter N which appears here is for the moment unspecified.
After elimination of. time as an explicit variable in the differential

equations, the next step is to see if the boundary conditions are compatible

with the similarity assumption. At the shock (~/(-=| , -'“'4_ £ I-X4 +T/z_>

equations (13), (14), (15) and (10) become

+(',9)[z- (1 0)]=/ (23)
£(1,8) = ¢(196) /——%1- (24)

[T

4(,6) = & i— +{(';9)J[I—\P("9)] (25)

& 90,0)= F [pble(,8), p b0, 9]  w
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The first three of these are independent of the time if the initial pressure l
in’the undisturbed mediuﬁ:i?P, “{a small compared with ﬁ, f‘f‘. ‘which is of } '
the order of the pressure being generated at the shock, This condition will
certainly be met whenever the fluid-mechanical model is appropriate. Thus
the question of whether a similarity solution is compatible with the boundary
conditions depends solely on whether the form of the internal energy function
F is such as to permit the time dependence to be eliminated from Eq. (26).

10

Sedov” " has pointed out that this can be done whenever the internal energy

e= P PP (27)

where Ij)gg) is any function of the density. For such a case, Eq. (2€¢) becomes

9(1,6) =/0.,F(1,9)tp[fo¢(l, Q)J (28)

is of the form

and all explicit time dependence is eliminated. Thus a self-similar solution
is possible whenever the medium obeys the equation of state (27), In this case,

the boundary values at the shock can be conveniently found by solving Eqs. (23)-

(25) for 4> , ¥ , and 7 in terms of +

- — / (29)
¢(I)9> = 'F(’; 6) = |- ~P(l,9)

[ 2
30,6) = £ [1- 4«(5,9)} ©o

When these relations are substituted in Eq. (28), the result is an expression

which can be solved for the density ratio at the shock
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The fact that the density ratio is constant in the fundamental prerequisite for

similarity, The other quantities at the shock are found from Eqgs. (29) and (30),
From the point of view of application to shock propagation in solids, the

most important implication of the similarity assumption is its restriction to

state equations of a special kind. In the next Section we indicate the extent to

which real materials are described by such a special family of state equations,
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3. THE EQUATION OF STATE e

N P . 1= *
were dmhgc 1t L irooLiikiiizm B2

For most solids, the .equation of state approriate in the range of pres-

sures generated during hypervelocity impact is the Mie-Grineisen relation

- 32)
e(pp) - e(p) = LB (
=
where the subscript ¢ denotes the cohesive contribution and where [~ is
the Grineisen constant, which depends weakly on S + The cohesive contribu-

tions can be found from measured shock wave data. Along the Hugoniot, Eq.

(32) takes the form

& lp) - e(p) = é“f:}.;f‘ ¢) (33)

Subtracting this from Eq. (32) then gives
e-e, (f) - _/P;ﬁ(él (34)
P
The Mie-Grineisen equation can be rearranged as
e- -t - Afp) (35)
Prp)
where
Ap) = 1‘.@_-3‘@:@@. - & o) (36)
20 P0P)
By comparison with Eq. (27), it can be seen that only the leading term of
Eq. (35) can be accommodated in a self-similar solution. Such a solution

will therefore be valid only when the pressure is sufficiently high that A¢)
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is amall in comparison @it‘;ﬁ the leadmg i:‘fe'r:i‘nf In fact, every impact will span

- a time interval-duting which this.approximafion fails. Fusthermeore, the" =~ -

pressures at which A(/D) is too large to be neglected are nevertheless suffi-
ciently high that the compressible-fluid approximation is still well justified.
Thus the similarity solution can describe only the early phases of the fluid-
dynamic process. A proper description at later times requires a nonsimilar
solution which accounts for the presence of the term A(/) . For the moment
we defer this somewhat more difficult problem, and examine what can be done
with the similarity solution itself, keeping in mind that it will apply only to the
earlier stages.

Some of the theoretical analyses of shock waves in solid met:lia12 use the
approximation that the state equation can be represented by that of a perfect

gas with constant specific-heat ratio )/ , namely

e= "f‘— 3 & e.) ?(P) = .__l__— (37)
(-)p (¥=1)p
For this case, Eq. (31) reveals that the density ratio at the shock has the

constant value

\P(I)Q)'-: '& - Y+

2
The use of a perfect gas may be viewed as an approximation to the leading
term of the Mie-Gruneisen equation, if the Gruneisen factor /.(/0) is re-
placed by the constant value Y-l . This approximation, with \{ chosen in
the range from 2 to 4, amounts to a high-pressure approximation to the Mie-

Gruneisen relation, and it makes available all the results of the extensive

180




......

“BLAST-WAVE THEORY OF CRATER FORMATION

literature deéling thh bfast waves in perféét gaéés. It should be borne in
mind, of course, that the similarity s6lutioh is ot lifited to the ﬁi‘e’dic‘tiona
made with a perfect gas model, The variation of /~ could be accournted for,
but is neglected as a matter of convenience, When the perfect-gas approxi-

mation is made, the energy equation becomes

L WA= 38
+u.§$+ 5£ ( +ur+r5€> o (38)

In terms of the similar functions, this is

s EER R EE R

In addition to this identification with the Mie-Griineisen equation, a
perfect-gas approximation may also be examined by seeing how accurately it
represents the isentropes of a given material. This is done in Reference 13
for the case of iron, where it is shown that the approximation of a constant {
is satisfactory for describing the high-pressure states of iron as long as the
function A(lo) does not become significant.

Section 5 below gives a description of shock propagation due to hyper-
velocity impact, based on the perfect-gas approximation throughout. In
Section 6, we present a solution which accounts for the influence of the non-
similar term A (ﬂ) in an approximate way. In addition, Section 6 in-
dicates work currently in progress, which properly accounts for the

nonsimilar effect.

181

B TR ST SR TR




‘BLAST-WAVE THEORY OF CRATER FORMATION

4. CONSERVATION OF ENERGY AND MOMENTUM
The total energy and momentum of the system must be conserved, as_
may be confirmed by forming the proper volume integral of the vector equa-
tions of motion, Eqgs. (1) to {3). The actual integrals, whose values must be

constant, may be derived as follows: Consider as the mass element a ring

of volume Fdr 46 . 2wy Sing. The total energy £ and momentum [ are

7 (6)
E -.=.er [e +'E(u."+uf")] fe2wr* sind drds
-]

(40)

"

wao é: ﬁ: rrsm ] J’t‘(a) [% +3 (¢t+u")] Yn* dnde

¥ (6)
P= frJ (wcese -u'sme)-,o- 2rr* sm@ Ardg

o o . e (41)
= 2vp B R} [ swe | ! )(4> cos8 -0 sin6) Y dn de
o @

Here we encounter a fundamental difficulty, If we are to have a self-similar
solution, the differential equations require £5=At'l, However, 2 single value
of N will not permit bath of the relations abhove to be independent of time.
Constancy of energy can be achieved only with A/ = 2/5, while momentum con-
servation requires A = 1/4, and in either case the parameter A4 is used to
match the quantity being conserved. Thus it appears at first glance that a
satisfactory solution cannot be achieved under the assumption of similarity.
Reference 13 describes one method for overcoming this difficuity. The essence
of the idea is that p/ is determined by a totally different consideration, and
a second free parameter is introduced in such a way that both conservation

conditions may be satisfied simultaneously,
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1t is clear, of course, that any solution which hopes to satisfy both
AN et .- - < LI = s N

< a5

- conservation conditions simul%;.neoﬁ.aly.fm’\l'ﬁft r'ﬁ_ifiée*'lff'dﬂﬁiotn fOf':ﬁ;lé;"’Bﬂ ejec-
tion from the expanding crater. Consequently, a solution which supposes
that the flow is one-half of a spherically symmetric disturbance (ignoring
variations in the @ - direction) cannot satisfy momentum conservation. On
the other hand, such solutions are considerably simpler than those which per-
mit variations in the @ direction. In the remainder of this Section, we first
describe the symmetric solution, and then take up the question of approximate
solutions in which provision is made for mass ejection. An important conclu-
sion emerges from the comparison of these two, namely, that the vastly
simpler spherically-symmetric solution is for practical purposes identical
with the more complicated solution which allows for mass ejection.

When the flow is spherically symmetric, W™ and all derivatives with

respect to (3 vanish, and the similarity equations become ordinary differen-
tial equations. Denoting the ordinary derivative with respectto ¥] by a

prime, these are

(60 +¢(¢'+ z%—’-)r-a (42)

- s (e + —j—l =0 (43)
—2 (s (#1-H v) =0 (44)

The parameter Y may be thought of as rclated to the Gruneisen constant, as
mentioned earlier, These equations may be solved explicitly for the deriva-

tives in the form
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~(¢-0) e wm vz)

+I
(4> V()[(«t-n) W/4»]
L laht ik ”
(¢ -n)*
N _2¥8) A
, £ @ -55] v e an

2 Yt
(¢-n) - 7
From Eqs.(37), (23)-(26), the boundary conditions at the shock can be found

as

Pl)= F0) =2 ¢()= b’*" (48)

Equations (45) to (48) (with /\/ = 2/5) were first presented by G. I. Ta.yloz-14

who worked out a few numerical and approximate analytical solutions for )/
ranging from 1.2 to 1. 67, the range appropriate for gases. Subsequently, an
analytic solution (also with A =2/5) was published independently by J. L.
Taylor15, Latter 16, and Sakurai”. Simultaneously with G. I. Taylor's work,
Sedovlo had also found this analytic solution.

The parameter A/ must be specified before solutions of these equations

can be found. It appears that physically acceptable solutions exist only when

/\/ = 2/5, a value which conserves the total energy, as noted above. When /\/
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is taken to b e different from 2/5, the solution exhibits infinite slopes,
Reference 13 presents results typical of those found in the range .25 < ¥ £ .4
when a solution of this sort is attempted, This n.one-xistence of symmetric
solutions apparently explaina the difficulty encountered by Davids et a.118 in
attempting to find a spherically symmetric solution for constant momentum.

In what follows, /\/ is chosen as 2/5, and the terms '"constant-energy"
and "spherically symmetric' are used interchangeably in referring to the
solution.

Solutions of these equations for Y in the range from 2 to 20 are presented
in Reference 13, Figures l and 2 show typical results, for the cases Y =3
and Y =16. These figures display the usual feature that the density drops
off rather sharply behind the shock, indicating that most of the mass processed
is concentrated near the shock, For Y 7, a cavity begins to form at small
values of Y( , as pointed out by Sedovlo, and the particle velocities show a
marked increase near the edge of the cavity.

The problem of obtaining solutions when & is included as an independ-
ent variable is considerably more difficult., The basic equations are partial
differential equations and, as pointed out in Reference 13, they are of mixed
character, containing both elliptic and hyperbolic regions. Furthermore,
they must meet a zero-pressure boundary condition along a line whose loca-
tion is unknown in advance. To make matters worse, the differential equations
contain a parameter /\/ whose value is unspecified. No attempt has been
made to solve these equations; instead, partial solutions are sought by restrict-
ing attention to conditions along the axis of symmetry. In this way we can learn

a great deal about the solution with relatively little effort. Along the axis of
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symmetry -

6=0, 0&M¢I ; ©=T O4M <@

the similarity equations take the form

(4 ¢ v (¢'+ L v 22) = (49)
AR
-2 2 e s (pen) (¢ =B pr) =0 (51)

where primes indicate ordinary derivatives with respect te \Q , and where the

quantity t-(-n) is given by
M) = 2 39 (vz’ o) (52)

(The factor 2 originates from'the contribution of the term «J et & .)

Except for the presence of ¥ in Eq, (49), these are identical with the Taylor
equations for a spherically symmetric disturbance, discussed above, The
function 't:(yl) represents the influence of off-axis conditions, as must be
expected whenever a partial differential equation is specialized to a single

line in the plane of its independent variables., The boundary conditions at the

shock are

$0)= f)= b5 v =2 e)=0 G

Equations (49) to (51) may be solved exp11c1ty for the derivatives in

thef“:l (B L 2 - P e
o' — (54)
($-0) [(40)* - ¥¥1p)
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These obviously have a singularity at the point where the denominator

vanishes., This quantity is the special case, for &« = 0, of the function
discussed in Reference 13, whose sign determines whether the partial differen-
tial equations (19), (21), (39), have elliptic or hyperbolic character. The point
on the axis of symmetry where the denominator changes sign corresponds to the
intersection of this line with the axis. In order that the solution may pass
smoothly through this point, the numecrators in Eqs. (54) to (56) must also
vanish there. Reference 13 points out that such a condition is achieved if the

function 4’ 1
- z et
He) = (¢-0) B2 - 22 2} - %
vanishes at the same point.
The function 2'{q) cannot be chosen arbitrarily, Thus the only para-
meter that can be used to guarantee a smooth crossing of the sonic point is
N . and this consideration forms the criterion for the choice of ~ . For
each ¥ , and a specification of (W) , # is chosen 80 as to provide a
continuous transition through the singularity. Thus N will in general be a

function of ¥ . It should be noted in passing that this problem never comes

up in the spherically-symmetric, constant-energy case. There the vanishing
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of the denominator always coincides with either the origin {(for Y £ 7), or

with the edge of the cavity (for ¥ S 7), a;{d the entire flow fielgi"-is elliptic

‘in that solution.

In order to actually obtain a smooth crossing of the singularity, Eqs.
{54) to (56) must be solved for various values of N (and given b/ ) until
such a crossing is found. Before such an integration can be done, Z’(‘VL)
must be specified. However, no rigorous determination of ’L"(wt\) and with
it h/(b’) » can be made without solving the full partial differential equations.
Approximations to N may be found by approximating 7 and then integrat-
ing Eqs. (54) to (56). Instead of approximating T itself, one may instead
relate ¥ to other physical quantities which may be approximated more easily.
In particular, by differentiating Eq. {21) with respect to @ , and then specializ-

ing for the axis of symmetry, one finds

2 2
_\ I-N \ / 1 &T [ Q‘F _
g Trp(dt + = +I= 4 W et (n,0) =0 (59

from which it is seen that approximations to the pressure distribution can be
used to generate corresponding approximations to € . This process can be
continued, of course, by taking higher-order derivatives, with respect to e ,
of any of the equations of motion. Each of the resulting expressions will con-
tain at least one unknown function, so the utility of the procedure is dictated

by one's ability to approximate the unknown function. For this purpose, Eq.
(57) is especially useful. At the shock, the pressure is uniform, while behind
the shock it begins to decrease. The rate of decrease is faster near 9:.‘:'%'_- ,
as the influence of the vacuum outside the developing crater makes itself felt,

Qualitatively, the pressure distribution would be expected to have the appearance
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oy W=

N decreasing

2 // —1 .
Y‘H /

! 4

2
The quantity :—sf‘ (-fll o) , Which is essentially the curvature of these lines
at 6 =0, will be zero at the shock and will beo me negative with increasing
magnitude as Y falls below one. Such considerations suggest the approxima-

tion

EX I @
2E (0 ==K (-0)" Flx,0) (58)
where | and @ are constants. Crudely, one may think of this approxima-
tion as fitting a cosine variation to the curves above, with a multiplicative
function of ¥ introduced in such a way as to guarantee zero curvature at the
shock,

The constants & and K must be chosen 80 as to yield values of ¢
which are at most of the same order as that of ¢ .

Figure 3 shows results which have been found for the case @ =1, and

I( =10. For a given value of ‘( , and selected values of /\/ , the equations

are integrated by a Runge-Kutta procedure, starting from the shock values
given in Eq. (53). A smooth crossing of the singularity is achieved with the
value M = .375, and the distributions of density, particle velocity, pressure
and the function 9 are shown in the figure. The results given here are typical

of those which occur for other values of { . In addition, some calculations

have been made with K =1, and the results are not far different from thaose
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Figure 3  CENTERLINE DISTRIBUTIONS OF DENSITY, PRESSURE, AND VELOCITY
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shown here.

In general, it is found that values of A/ corresponding to a smooth cross-
ing of thé—s(ngularity are quité‘crl.ose to the value 2/5 that applies for the sym-
metric, constant-energy solution. Furthermore, the quantity ° does not
attain an appreciable value until some distance away from \1: 1, where the
density has fallen to a low value, Thus we might expect that, near the shock at
least, these solutions will not differ greatly from the constant-energy solution.
This is indeed the case. Figure 4 compares the two types of solution for =3
and shows that, along the centerline at least, the motion of most of the maas in-
volved is well approximated by the solution for N = 2/5. One may expect this
trend to persist even for & > 0, suggesting that the Taylor solution will in gen-
eral be an excell ent approximation to the considerably-more-complicated-
asymmetric solution., The comparison shown in this figure is typical of the re-
sults found at other values of ¥

So far as blast-wave theory is concerned, then, the energy of the projectile
plays the dominant role, its momentum being of only sccondary importance. In
assessing the significance of this finding, it is well to bear in mind three different
flow models that might be considered. In addition to the two described above, it
is also possible, in principle, to find a solution in which provision is made for

mass ejection, but which has zero net momentum:
\) S’ .
P#* P=o0 ! symmetric
s \ model
— \l/ —— -~
Our conclusion about the rclative unimportance of momentum conservaiion

requires only that the first two of these models give nearly identical predic-

tions. The fact is that we find close similarity to the correct flow pattern
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even for the Taylor solution, in which the momentum varies as a function .
of time.
One plausible physical explanation is based on the experimental obser-

19

vation” ’ that targets struck by hypervelocity projectiles often acquire momenta
many times that of the projectile, implying that the material ejected from the
target must also carry several times the projectile momentum. Thus it
appears that the momentum of the projectile itself makes only a minor contri-
bution to the over-all conservation process,

A corrolary of this conclusion is that the conditions of hypervelocity im-
pact can be simulated by any experiment which duplicates the energy of the
incident particle, irrcapective of whether its momentum is correctly matched.
In particular, any intense source of short-pulse electromagnetic radiation,
such as the output of some currently available lasers, should be capable of pro-
viding such a simulation, Such an experimental technique appears to hold
promise, and the basis for it is discussed in some detail in the Appendix.

It is important to keep in mind that the predominant importance of energy,
as revealed by these solutions, does not necessarily imply that crater volume
will be scaled by the projectile energy. Actually, energy scaling is a feature
which applies only to the rate of propagation of the shock wave itself. A
description of the variation of crater size with various parameters of the im-
pact process requires that the solution for shock radius be converted into a
prediction of cratler size. Whether the final result of such a process {(which
presumably will call material strength into play) will still be scaled by the
energy of the process, is a question that is unresolved at this point.

As a final word of caution, it must be emphasized that our present data
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concerning the unimportance of momentum conservation are restricted to

the similarity, or strong-shock limit. It remains to be determined whré;her-ym— b
the same results will be found at lower pressures, where the nonsimilar
nature of the problem must be considered.
In the next two Sections, we restrict our attention to solutions in which
only the energy is conserved. Thus, the solutions are spherically symmetric.
These solutions are used to develop an expression for the rate of shock prop-

agation as a function of the kinetic energy of the impacting particle,
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§ 5. TAYLOR SOLUTION FOR SHOCK PROFAGATION i

-'_Ifhi; Section reviews the well-known solution for a.éﬁhericaﬂ.l blast
wave in a perfect gas, in order to provide a background for the quasi-
steady solution presented in the next section. By using the constant-energy
distributions of pressure, density, and particle velocity described in the
Section above, an explicit description of the shock propagation can now be
given if the total energy £ of the system is specified. The sum of the
internal and kinetic energy of the fluid set into motion is given by the intergral

over a hemisphere

Joﬁs(“i""}) arpridr = fes<“l‘£ +5,‘_-u‘> 2wpr*dr

-
(59)
=2rp B'R I,)
where
I ) = of’ (- 7f- + 3 4>") AL (60)

This integral has been evaluated for the values of ¥ mentioned above, by
substituting in Eq. (60) the analytical solution. The results are shown in
Figure 5.

If the total energy £ 1is now specified, a simple differential equation

for B (t) results

e
£=2rp8’ R W) (61)
The term [Ay ﬁ: is three times the target mass processed up to the
time ¢ . Thus, 3T, () may be thought of as a dimensionless coefficient

2.
giving the ratio of the mass-averaged value of e+-‘,—_u.‘ to the quantity Rs ,

197



BLAST-WAVE THEORY OF CRATER FORMATION

100
Q.
\... -
\ o
?L E=27 R R, R I(F)
\ 3= [ (o S5 ¢ vatdn |
N
LN
A
\
\;
N
\
,; \‘\ \

10°2 foeeorrene \

O TAYLOR (REF. I¥)
A PRESENT RESULTS

...........

10-3
1o io! T
7

Figure 5 THE FUNCTION I () FOR SPHERICALLY-SYMMETRIC BLAST WAVES

198

it Jﬁa el




BLAST-WAVE THEORY OF CRATER FORMATION

i.e, )
3
b .?/%Tf° 2_; <e ""1'2“"')”5 . . T
3T, () = - = = _ 808, (62)
e 2] ]
Since f.<‘: is proportional to the energy at the shock
)
R, = ;‘ (eriur) (63)
we obtain
Lov
T () = — (+54 )hva (64)

3(v1)* (ext “‘L>.w
Because most of the mass is concentrated near the shock, the mass-averaged
value of any quantity is very nearly its value at the shock. Thus the factor
4/3(1“)‘- is a good approximation to I=, , as shown in Figure 5. This
factor originates from Eq. (63), which states that, the larger the value of
¥ . the larger must be the shock speed if a given energy per unit mass is
to be achieved behind the shock. We may attach the same significance to I;(Y):
if a given energy is to be distributed in two materials for which the ‘(‘A— differ,
the shock speed will have to be greater in the material having the larger 3/ .
The solution of Eq. (61) is the classical Taylor solution for a strong

blast wave

Vs

- 25 et”
£.(0) (8T o -

Here the influence of f is shown more clearly, For a given € and ﬁ s

the shock radius will grow more rapidly for large values of { .
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To apply Eq. (65) to a given case, the total energy £ and the value
of the parameter ¥ must be specified. In all the aipfplié:a:ftions made below,
this energy is taken to be the kinetic energy of the impacting particle, The
value of b’ is associated with the magnitude of the Grineisen factor, [ ,
and hence it would be expected to lie in the range from, say, 2 to 3. Values
even larger than this might be considered, especially in the range where
the function A(f> is too large to be neglected, Reference 13 makes
application to problems in which b/ is chosen to be as large as 20, in an

effort to match the full Mie-Grineisen equation.
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6. QUASI-STEADY SOLUTION FOR SHOCK PROPAGATION

- e

The similarity solution described above will be valid only in the limit
of extremely high pressure, Where the density ratio across the shock is
constant. In an actual impact, however, suche-a condition is not met, espe-
cially during the later stages of the cratering process, when the shock
strength begins to decay toward that of a stress wave,

Thus a proper description of shock propagation in real materials calls
for an analysis in which the nonsimilar features of the problem are correctly
accounted for. Analyses of this sort have been done for gases, with varying
degrees of approximation. Notable among these is the perturbation method,
explored by Sa.kuraizo, among others. Applied to the present problem, the
perturbation analysis would seek the first-order departure from similarity,
for the case where A(p) is small, but not negligible, compared with #//)F{/)) .
A more powerful approach, valid over a wider range of pressure, has been
developed by Oshima?’l, who calls it the ""Quasi-Similarity'' solution. The
cssence of his method is to solve the problem for a range of values of the
shock Mach number M , dafined as é‘/c , where ¢ denotes the target
sound speed. For each value of A , the correct boundary values are used
at the shock, and certain terms are included in the differential equations to
approximate the nonsimilar effect, The analysis leads to a solution for the
shock Mach number as a function of time, starting from the blast-wave limit
{ M= @ ) and tending toward the acoustic limit { M = 1) at large time. At
each instant, the distributions of pressure, density, etc., are given, once
the shock Mach number is known, For air, Oshima's solution agrees well with

experimental observation and with machine solutions, both in regard to the
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shock propagation, and to the distributions behind the shock.

* . Oshima's method is béing applied to the propagat;_ipn ?_f ';_shock waves
in solid media, but the results are incomplete. As an interim solution, we
have worked out an analogous, but more approximate description of the
shock propagation, which we shall identify by the term "Quaai-Stea:dy. " We
assume that the distributions of pressure, density, etc., at any shock speed
are the same as the self-similar, perfect-gas distributions which would have
the same values at the shock. Thus, at the instant when the shock speed is
such as to create a density ratio at the shock of 1.5, the solution is assumed
to be the self-similar solution for {=/_I':—_L,I =5 ; when ﬂ/fo = 1.4, the solution
is assumed to be that for b’ = 6, etc, Thus the right values at the shock are
always used (as is the case in Oshima's work), but the distributions behind
the shock are not correct. However, the quasi-similar distributions for air
at moderate shock Mach numbers show a qualitative resemblance to the present
results’> for Y in the range from 2 to 20. Thus, because most of the mass
is concentrated near the shock, we may expect the quasi-steady solution to
be a useful approximation.

The starting point for the analysis is the energy-balance integral
2 « 2
£=2rp B R, I (Y) (66)

In a similarity solution, ‘( is taken to be a constant, related to the Griineisen
factor. We now propose to allow ¥ to vary, so as to match conditions at the
shock at each instant, This is very simple for a large number of materials,

whose Hugoniots are well approximated over a wide ra.ngel1 by

(67)
Us = € + SY,
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For such a material, ¥ is related to the shock speed by

R’ ’
) Plps+1 ) (25 - +1 : )
f‘/fn—‘ Eci_|

Use of this in Eq, (66) leads to 2 simple relation between shock speed and

¥

shock radius. Defining a length scale &, by

1.
R = E 3 (69)
° 2mpct
equation (66) can be rewritten in the dimensionless form
/ s
& | — (109
(&) = [s (80

Figure 6 shows this relation for $ =1.2, 1.5, and 2.0, It is important to

note that the shock speed approaches ( when &5 becomes large, because

as é,—vc y ¥Y=»mom , and L, —=»0 . Thus the quasi-steady solution tends

toward the acoustic, or stress-wave limit, at large time. Figure 7 shows a

comparison of Eq, (70) with the experiments of Fraiser and Karpov ., The

exact value of § for the target is probably somewhere in the range from

1.2 to 2, and theoretical predictions for both values are shown. The data,

which lie quite close to the stress-wave velocity, are well predicted by the

quasi~steady theory,

By using Eq, (70) to give ’és as a function of Es , a simple solution

for the shock trajectory can be found from the identity

<, =J; ) ‘((g) ()
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Figure 8 shows this relation for the three values of S . mentioned before.
Larger values of § are associated with faster shock propagation, a mani-
festation of the same phenomenon as that due to ¥ in the perfect-gas '
approximation. Also shown on this figure are the experimental data of
Eichelberger and Gehring6 and of Halperson and I-Ia.ll7 for a Lucite target,
as well as the shock histories calculated by Bjork for iron striking Tuffz,
and for iron striking iron1 . The agreement found here, over such a wide
range of impact conditions, indicates that the quasi-steady theory is a
useful apporximation, especially at times greater than R e Of course,
in the early stages of the impact process before the projectile has been
destroyed, the shock propagates at a constant speed. It is only after this
early phase that our approximation of an instantaneous point-release of
energy becomes valid, We may in general expect the measured trajectories
to begin with a constant-speed phase ()2_,‘0) t). followed by a transition to a
power-law behavior (}?s“ t“’) , with N between .40 and 1.0, depending
on the duration of the impact phase. This exponent increases toward 1.0
again at large time, as the (constant) stress-wave speed ic approached.

For Cé/ﬁo greater than about 1.0, the correlation of Fig. 8 is quite good,
although some scatter is still present. There is not enough data, at present,
to determine whether this remaining scatter represents an additional impact-
speed dependence, or whether it is simply an effect of S not properly
accounted for by the quasi-steady theory. The application of Oshima's
method, currently in progress, will shed considerable light on this question
by properly accounting for the influence of the state equation, but there is

obviously a great need for further measurements of shock-wave trajectories,
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especially: in metals, *
. - A S :

It'ha,s;,be“’en';‘t)'sier:red6 th
tion in Lucite is conéiderably-shértér than the time during which material
is ejected from an aluminum or lead target, under identical impact conditions,
and the difference is sometimes attributed to the dynamic strength of the
plastic at high strain rate. In this regard, it is interesting to note in Fig. 8
the close correlation between Bjork's calculations in iron ( 8 2= 1.6) and
the experimental observations in Lucite ( S 22 1.5), all at approximately
5 km/sec, This correlation indicates that in both substances the characteristic
time for shock propagation is Eo/c_ » which is actually smaller for metals
than for Lucite, due totheir larger values of /gc" . Assuming that impact-
generated shock waves propagate in essentially the same manner in all metals,
this correlation would suggest that the duration of material ejection may be
considerably longer than, say, the time requiredfor the shock to degenerate
down to some preassigned fraction of its initial strength. Again, measure-

ments of shock propagation within the target are needed to resolve the question.
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7. METHODS OF CRATER-SIZE PREDICTION - - - - -

“THe sticcess of the above analysis in predicting shodk propagation is
quite encouraging. However, from the viewpoint of spacecraft design, it
does not solve the problem at hand, namely, to predict crater size, To
accomplish such a task, additional analysis is needed. It is important to
understand that every theory of crater formation contains two ingredients:
first, a theory for predicting the shock-wave time history, and the flow of
material behind it, and second, a criterion for choosing some point in the
trajectory as the crater radius. Bjorkl, for example, chooses the instant
when a stationary region of zero pressure can be found, and identifies this
region by the appearance of a distribution of small velocities, which are ran-
domly oriented.# Other authors, for example Davids and Huanglz. have
used different criteria, and we shall present below some considerations of
still another.

Before doing so, however, we must emphasize the central importance
of the crater-formation criterion. The correlation shown in Figure 8 may
be taken as evidence that, so far as shock-wave propagation is concerned,
no essentially new phenomena occur over the impact-speed range up to

30 km/sec. Thus, any change in the penetration law, compared to its low-

speed behavior, must be accounted for largely by the criterion used in

3

"Such a criterion cannot be applied in conjunction with the present solution,
which never predicts a stationary region. Indeed, there is no mechanism,
except for the influence of external forces, or for very special shock-wave
interaction patterns, by which an inviscid fluid can be permanently brought
to rest. Any analytic solution would predict that the pressure and particle
velocity tend asymptotically toward zero at large time, of course, but their
distributions are always nonzero, continuous, and never display a random
orientation,
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defining the crater radius.

This paper makes no effort to settle the queation of how the crater-
formation criterion should be chosen. We wish only to draw attention to
the fact that its choice is a crucial element in determining the penetration
law,

On the other hand, we do share with some other authors the impres-
sion that the material strength must play a role in the crater-formation
criterion. The establishment of a crater of fixed size implies that material
has been brought to rest, and as noted above there is no mechanism for
accomplishing this feat within the framework of an inviscid theory. Thus
it appears that at large time, a transition must be made to a theory which
accounts for the strength of the target. Indeed, the entire hydrodynamic
analysis begins with the approximation that the motion of any mass element
is controlled by the pressures on its surfaces, while its resistance to shear
deformation can be neglected, Whenever the inviscid theory itself predicts
pressures comparable to or less than the shear strength of the target, the
fundamental approximations are clearly in error. Thus we ought to aseign,
as a boundary for application of the hydrodynamic theory, some level of
pressure comparable with the target strength,

Reference 13 not only adopts such a boundary for the fluid-dynamic
theory, but actually employs it as a crater-formation criterion. In that
work, the crater radius is assumed to be equal to the shock radius at the
instant when the pressure behind the shock has decayed to the intrinsic
strength G/, , G being the dynamic shear modulus. This criterion was

used in conjunction with the similarity solution, to deduce a penetralion law
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.

which displayed’ régsonable agreement with experiment. : : l

Now th,’a.t a m:ore r'ea.listi-c de séription of the sho;:k pro'pagati:on is -
available (from the quasi-steady theory outlined above), it is of interest to
investigate the penetration law derived from the same criterion. If we re-
quire that the pressure generated at the shock be equal to a strength level
designated for the moment as f , we find from Eqs. (14) and (67) that

the corresponding shock speed is given by

/és j+ Ji1+ 45 f/foct (72)

c 2

Figure 9 gives the corresponding value of the shock radius, which, by this
criterion, would be taken as the radius of the crater that will ultimately
develop. Thus, the crater radius also scales with 2, :
3 T\
T/é /p d v /3

R.= kR, = /e( PRy (73)

where / is the impact speed and J is shown in Figure 9. It is obvious
that a large amount of experimental data could be correlated by this formula,
by an empirical choice of thc strength level F . Infact, by choosing

r2x10°? p V4 - . . .
b= ___E_ﬁ..) » (where Ac* is in cgs units, and the Brinell hardness Y]
is measured in the customary units of kilograms force per square millimeter),
the penetration law recommended by Eichelberger and Gehring6 is recovered.
Figure 10 shows a typical correlation, for aluminum projectiles striking copper
targets. The parameter J¢ has been chosen by matching the data
at 3.97 km/sec.
It is interesting to note that K = 4.85, which, according to Figure 6 (with

S = 1.54) means that the shock was traveling at approximately 1.3 times
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the stress-wave speed when it passed the position corresponding to fc.
While these results are encouraging, they nevertheless contain an
empirical factor whose significance is not clearly defined at present. Thus,
extrapolations to higher impact speed cannot be made with confidence, Our
conclusion is that there is a need for an analytical crater-formation criterion
whose accuracy is comparable with that of the present quasi-steady (and of
the forthcoming quasi-similar) solution. We feel that the target strength will

play a role in this criterion, but that considerable work remains to be done.
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.- CONCLUDING REMARKS o et e

~00k Foal in'this research hid ek an andiytid abdriprion BTty per s
velocity impact. To this end, the approximations of blast-wave theory have
been reviewed to determine how well they apply to the problem of shock-
wave propagation in solid targets, Moat of the literature of blast-wave theory
deals with the symmetric problem of a point release of energy in a gas. To
adapt these analytical methods to the present problem, then, modifications
are required in two areas: first, two spatial coordinates must be considered,
and secondly, the equation of state appropriate to a solid must be used.

Solutions which allow for spatial variations in two directions have been
found to be very close to the corresponding one-dimensional solutions in all
important respects, Thus, the energy transferred by the impacting projectile
is the dominant parameter, its momentum playing a minor role. Predictions
of shock-wave trajectories hased on this concept display excellent agreement
with experiment.

The second area in which modifications of the classical blast -wave
theory are needed is more significant. The nature of the state equation of
solid materials, together with the fact that relatively weaker stages of shock
propagation are of interest in this problem, make the assumption of similarity
a weak one. Thus, shock propagation in solids is characteristically non-
similar, in contrast to the situation normally encountered in gases. To
account for this feature properly, analytical methods for treating nonsimilar
problems must be used. Fortunately, the required methods are available,
and are at present being adapted to this problem. As an interim solution, a

crude approximation can be constructed from the similarity solutions

themselves,
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This solution, referred to here by the tcrm '"Quasi-Steady," shows re-

markable a.greement with- -the limited shock-wave tra.Jectory data avai‘lable

at present, Data of this sort are the only kind that can serve as an un-
equivocal check on a hydrodynamical theory. Comparisons with final crater
dimensions involve other aspects of the theory, especially the criterion
used to define crater size, and are consequently not suitable as a check on
the shock-propagation theory,

Ultimately, the practical gcal of all research in this area is to establish
the penetration law, especially in the high-speed regime which is experiment-
ally inaccessible at the present time. From this point of view, the most im-
portant aspect of these studies has been to reveal the pivotal importance of
the crater-formation criterion on thepenetration law, The currently available
evidence suggests that impact-generated shock propagation is essentially the
same over the speed range from 4.6 to 30 km/sec. Thus, any difference in
penetration law is felt to originate from the crvater-formation criterion. The
present work makes no effort to establish what this criterion should be, though
it is felt that it should be related to the strength of the target. As an example
of such a criterion, a simple choice related to the pressure being generated
at the shock is shown to provide a basis for correlating a large amount of
data. These results are encouraging, but still contain an element of arbirari-
ness, and their extension to the higher impact-speed range requires the

development of a more satisfactory criterion,
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BLAST-WAVE THEORY OF CRATER FORMATION:

, APPENDIX
SIMULATION 6#*METEORSID IMPACT BY ENERGY RELEASE® -

- Erpee

A major conclusion reached above is that crater formation is controlled

chiefly by the energy of the impacting particle, its momentum playing only a

secondary role. Thus we may expect to simulate hypervelocity impact by any

experiment in which a strong shock wave is driven into a target by the deposition
of energy in any form.
It is of central importance, iu considering uny simuvialion of this type,

to be certain that the mode of energy deposition does in fact drive a strong

shock wave into the target. We shall return to this question below, but for

the moment we assume that this condition has been achieved, and present the

results that follow as a consequence.

The severity of a high-speed particle impact may be judged by the

strength of the shock wave driven into the target. Knowing the Hugoniot data

for the target and projectile, it is possible to solve for the shock strength as
a function of the impact speed. Fot the case of energy deposition by some
other means, we must now identify the parameters which determine the initial

shock strength. The quantity that does this is the power being absorbed by the
target, per unit area in the plane of the shock. To see why this is so, consider

a plane shock wave of unit area advancing at speed wg into a medium of

undisturbed density fo

“The fact that such a simulation is possible was first pointed out to the authors
by Dr. Franklin K. Moore.
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In unit time, this shock processes an amount of mass given by pyUs &L , per

unit area, and raises it to the energy (per unit mass)

“= 2 ()

Thus the rate of energy acquisition by the material behind the shock, per unit

time and area, is
= _ﬁ. -P‘ = L by,
power/area /Oous /e (I //n'> ra ’49

The strength of any shock wave may therefore be characterized by the amount
of power per unit area which it delivers to the medium through which it
travels. The Hugoniot curve for iron is interpreted in this light in Figure 11,
where it is seen that weak shock waves ( f'/,!ao 2= 1.3) impart about 1010
watts/cmZ while extremely strong shocks (ﬁ/f;::. 3) transfer to the medium
some 10'? watts/cmz. These orders of magnitude are typical of metals, It

is interesting to note that the experiments reported by Altshuler et al23

11

achieved shock waves of strength equivalent to 4 x 10 watts/cmz.

For a given projectile-target combination, there is a one-to-one corre-
spondence between impact speed and the power density at the impact point.

Their relation is shown in Figure 12 for iron-on-iron. The point to be noted
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is that any experimental technique capable of driving shock waves of ztrength

“w

greater than 1011 watts/r.:m2 can simulat.;ikmpact conditions which are at
present beyond the capability of conventional projection techniques. One
energy source that appears to be suitable for such an application is the laser. *
By focusing the beam from such a device, power densities of 1013 watts/cmz,

24 with existing equip-

delivered in less than a microsecond, can be delivered
ment. The fact that the maximurn output of these devices is currently being
improved at such a rapid rate indicates that, even in the presence of losses,

simulation by a laser beam is a promising experimental technique.

The calculations presented in Figure 12 start from the hypothesis that
the energy absorption takes place by means of a blast-wave mechanism.
Particularly in the case of electromagnetic energy deposition, this assumption
needs careful scrutiny. There would appear to be little doubt that this is the
correct mechanism when the rate of energy input is sufficiently high. It is
known that the mechanism of energy absorption in gases changes, at some
point, from one of linear heat conduction to the nonlinear shock-wave mechan-
ism. Exactly where such a transition will occur in the case of solid media
is not at present known, although it is presumably amenable to theoretical
analysis. The conclusions reached above are based on the assumption that a
shock wave will be the correct mechanism whenever the incident power density

11

exceeds 10 watts/cmz.

E73
The use of such a device was suggested by Mr. A. Hertzberg.
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LIST OF SYMBOLS

Velocity appearing in the relation (¢ = c 4351,
Internal energy per unit mass

Total energy

Dimensionless pressure, 'P//elé:

Dimensionless internal energy e/é;‘

Integral defined by Equation (60)

Exponent defining rate of shock propagation: Zs en t'l
Pressure

Total momenturn

Strength level at which inviscid solution is terminated
Shock Radius y
Length scale for shock propagation, (E/z-n'f.c">3

Spherical coordinatee

Entropy per unit mass

Dimensionless parameter in the relation g = C+ S,

Time after impact

Velocity components in the ¢+ and @-directions, respectively
Function appearing in Mie-Grilineisen state equation

Gruneisen factor

Specific-heat ratio in perfect-gas model

Similarity coordinate, v/ R, (t)

Dime‘nsionless velocity, '*/és » positive in the direction of

increasing 1
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Sa(P) Density function in state equation which allows similarity
solution
)b Dimensionless density, f/fo -
i | /0 Mass densify
[ a Shear Stress
|

M) = 2 aw/aa ("l., 0)

») Dimensionless velocity, M/’é’s , Ppositive in the direction of
increasing &

( \s ¢y  Evaluated at the shock

( )m Evaluated before, after, the shock
4

( )c Denotes cohesive contribution

(O Evaluated along the Hugoniot
/ ; c e

@) Ordinary derivative, 9(/1’1
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SPHERICAL SHOCK WAVES AND CAVITY EXPANSION IN METALS
by
¥. Davids, H. H. Calvit, and O. T. Johnson

A theory of crater formation by impact awalts better understanding of
the process of shock-wave propagation in solids, especially waves with
spherical symmetry. This paper studies theoretically and experimentally
the non-steady motion of metallie spheres initiated by explosive blast in
& spherical cavity. The method of progressing waves is applied to deter-
mine the radius vs. time diagram of the propagation of the wave into the
material and leads to values for cavity sizes. The assumptions are made
that the material in the vicinity of the cavity possesses & polytropic
equation of state, that entropy is constant for an élement of materisal,
and that the total energy.is constant in time. The original partial differ-
ential equations of the problem are then reducible to & succession of ordin-
ary differential equations. Using the Rankine-Hugoniot reletions as initial
conditions at the shock front, these equations have been integrated using a
numerical program developed for a number of metals and the construction of
r,t~-diagrans carried ocut with values for particle velocities and‘pressure
variation on the inner surface. The solutions of the differential equation
of progressing waves have been studied by constructing s solution diagram,
vhich is similar to a hodograph plane. An analysis was made of this plane
and the role played by the singularities of the differential equation. The
appropriste solution curve starts very close to a positive node of the equa-
tion, then approaches very close to a saddle-type singulerity in & corner of

the plane which has been found to represent a meaningful physical boundary
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condd t:lon, name.Ly that pressure a.nd velocity tend asymptoticn.lly to zggq

s Famw o

~wi1:h increasing t.ime in the proper manner.

Using an equation of state for Aluminum (cbtained from data from Los
Alemos publications) there is obtained the expansion of a cavity of 1.7 cm
redius in & thick Aluminum sphere, filled with 31.6 grams of Pentolite, to
its final measured value of 5.0 em. The initlael pressure, which is of the
order of 300 killobars, drops to less than 100 kb in less than 2 microsec-
onds. At this time the shock velocity drops to its acoustic or elastlc
value in the material. However, the cavity continues to expand to its
final stage in a time of 80 microsec. The simultancous drop of pressure,
velocity, and departure of the medium from the polytroplc equation of
state signals the termination of the sheck regime. This appears as & tri-
angular region on the r,t-diegram, bounded by the shock front, the inner
cavity, and the line t = 2 microsec. Beyond this time the meterial of the
zone continues to flow radially outwards essentially as an inecmpressible
fluid.

The assumption that metals behave simllar to gases &s a result of an
explosion or impact, is limited to this shock zone, which is shorter in
duration than may have been expected. From the known outward displace~
ments of the outer radius of the sphere =~ (.1 inch) the inerease in cavity
volume is accounted for geometrically.

A oslinfler Lime scale of events may be expected to take place in an im-
pact crater, that is, the shock wave regime should be terminated essential-

1y before the flow of material both radial and tangential, has started.
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o ,.?P ﬁBalli;g';b:i VR; 13‘fhg_l&b9rg§oxy, Aberdeen Provipg, gr,_“g, % %
ducting & parallel experimental progrem on thick eluminum spheres and have
furnished data needed for this analysis.

In each test, a 32 gram spherical 50/50 Pentolite explosive charge is
detonated in the center of a thick welled aluminum sphere with the explo-
sive in contact with the spherical cavity surface. The sphere cavity is
approximately 34 mm in diameter (each cavity was machined to assure snug
acceptance of the explosive charge). The spheres are machined from cest
aluminum blocks. Provisions for inserting the explosive charge are accom-
plished by machining a threaded well in the sphere that extends radially
from the sphere centrel cavity to the surface. The explosive is inserted
by attaching it to a threaded plug which can be screwed into the sphere
well until the explosive is seated in the cavity. The plug extends beyond
the sphere surface and is used as an attach point for rigid mounting of the
entire assembly.

Testing included spheres of two sizes. The initial tests were con-
ducted with spheres having a diameter of 178 mm; later tests were conduct-
ed with 254 mm diameter spheres.

Measurements of initial free surface velocity and maximum radiwl cxi-
pansion are accomplished by the use of two capacitance type displacement
gages. These gages merely indicate the change in capacitance resulting
from the veriation in separation distances of two condenser plates, the
gage constitutes one plate and the sphere surface the other.

Cathode ray oscilloscopes were used to record the displacement-time

histories of the sphere surface.
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The scope sweeps were tri__,ggered ‘py gnriron?.zation probe inserted into
the explosive detonator well; the sweefp' start also provided a time zero
point.

Measurements of the inncr cavity and outer surface diameters were
made before and after each test. Caliper measurements of the outer sur-

fece diameter are in reasonable agreement with the oscillograph reccrds.

1. INTRODUCTION - Description of the Problem

The Ballistic Research Laboratory (ERL), Aberdeen Proving Grounds, is
engaged in conducting an experimental program of internal explosions in
small cavities in metal spheres. This paper presents the results of both
the experimental and an analytical study of the problem, with particular
emphasis on the propagation of shock waves in the metal immediately after
detonation of the explosive.

Figs. 1 and 2 show a T inch sphere of aluminum such as has been used
to date in BRL experiments. The phenomena, and hence thelr analysis, which
result from detonation of the explosive in the inner cavity, are complex
because different effects predominate in different parts of the material.
Thus, there is an innermost zone or spherical shell where very large ra-
dial displacements have occurred under temperatures and pressures far be-
yond the range of conventional mechanical behavior. The material is in
some type of "fluid" state in this zone and shows relatively little ten-
dency for cracks to initiate there. Next, there is an intermediate zone
of the sphere where the material begins to exhibit more normal mechanical
behavior, as evidenced by the many small tension and shear cracks which have

formed there. A few of the stronger cracks which get started may penetrate
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Failures due to
Reflected Wave

718"

Zone A - No damage, other than that of
reflected wave

Zone B - Heavily damaged
Zone C - "Fluld" zone
Note — Dimensions dare approximate

FIG. 2 = ALUMINUM SPHERE - POST SHOT.
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into the adjacent regions and ulti.ma.tel;_r reach the boundaries. Finally,

B T

there is an outermost zone?;bmimted ;;;the effect of the external bound-
ary of the sphere. Here reflection effects such as scabbing cracks are
often observed.

The transition between successive zones are not exact, but in sone
specimens, rather surprisingly encugh, are fairly sharply delineated.

In this paper we shall make an analysis of the innermcst shock zone.
Its direct aim is to provide & description of the shock process in the
metal. More specifically a useful theory must furnish a time for the dura-
tion of the process, the size of the zone influenced by the shock front,
values for the displacements, and thermodynamic variables of pressure,
density, and temperature in‘ the material. A useful tool is the r,t-die-
gram which shows the path made by & set of concentric spherical shells.
This diagram is posslible because of the single space coordinate.

The problem of the shock expansion of spherical cavities is closely
related to that of crater formation by hypervelocity projectiles. The
features we have outlined above are present in the crater problem as well.
The crater problem carries with it, however, the further complication of
tangential flow, thus requiring ¢wo space coordinates. Except for the
presence of the plug shown in Figs. 1 and 2, the arrangement -for the
blasts have spherical symmetry, and we may reasonably assert that radisl
motion occurs, so that all the physical quantities of the problem depend
on only one space coordinate. There is however, a slight actual depart-
ure because of the plug or because of asymmetrical detonation, and which

are not important to the problem.
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2. “gpherical Shocks - Time Sequence of Effects —

Just as the study of the proﬁlém has been Eénvet;iéﬁflj div;ided'-t_x-;—) _1n- )
to spatiael zones, we can divide up the sequence of events in the spherical
blast process for detailed analysis as follows:

a) Initial Stage - Here the detonation wave of the exploding gas
makes contact with the solid and then generates a shock wave in the solid.
This stage might be considered as terminated when the density in the solid
has dropped to its free space value, at the inner cavity.

v) Expansion Stage - The compressed solid expends radially outward
and actually forms the cavity. This stage is dominated mostly by inertia
forces.

¢) Final gtage - Here the shock wave deeays, permanent deformation
of the cavity stops, and the material has undergone some permanent plastic
straln.

The first stage lasts up to about 2.5 microseconds. The second turns
out to be relatively long end can take up to about 100 microseconds or
even longer. It must, of course, be understood that these phases need not
be distinctly separated events in time, especially the terminating phase
of the expansion.

3. Basic Mathematical Equations of Shotk Waves

meplihe

Because of spherical symmetry our problem is reducible to a radial
and a time coordinate. Shock wave propagetion in a solid is ver& closely
related to that of a spherical wave in & gas. We may make the following
assumptions about the medium:

1. Thermodynonic equilibrium holds (see [2], p. 3), i.e. that changes
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of state are adisbatic. By this ve mean thet entropy is constant a.lonq &
"particle path’, i.e., & fired slement of the medtm. 4

2. The medium is & perfect fluld, i.e., any rigidity or shear effects
are neglected.

3. The effects of entropy changes are negligible, i.e., that the pres~
sure 1s a function of the density alone.

4. The total energy available for the motion is fixed.
If the medium were assumed to be polytropic with the adiabatic exponent 7,

we would have,
£(p,p) = pp~’ = const. = A (3.1)

The conservation laws in Eulerian form, with subseripts denoting partial

derivatives, become

Pt up, +pou + 2up/r = 0 (mass) (3.2)
u, 4 uu 4 pljp =0 (momentum) (3.3)
(o), + u(pe™?), = 0 (state) (3.4)

The third of these equations is not quite equivalent to ( ), since it
only expresses the fact that the entropy is constent along the path of an
element, and does not imply its constancy throughout. This is a differ-
ence from the case of plane waves; another difference from the equations
of one-~dimensional flow is the additional term 2up/r occcurring in (3.2)
which stands essentially for the spherical attenutation of the wave. This

term, of course, if very important to the problem.
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A camplete geometrical description of the disturbance is afforded by
the construction of an r,t-dlagram, as shown in Fig. 3. Here fﬁe so]tid
lines represent the motion of the points of & spherical surface, referred
to as a "particle". The most prominent feature in this diegram is a dis-
continuity, or shock front which propagates through the material at the
head of the disturbance. This curve, together with the cavity boundary,
defines a region (shaded in the figure) in which the soclution to the sys~-
tem of partial differential equations (3.2) to (3.4) epplies. Certain
boundary conditions, to be discussed later, must be satisfied. However,
the difficulty of the problem is that, unlike the conventional boundary
value problems, here the boundary curves are themselves unknown, and must
be found as part of the problem. In fact, the determination of these two
curves are the most important part of the problem.

4. The Method of Progressing Waves

The idea of this and similar mathematical methods is to reduce the
partial differential equations to ordinary ones, by assuming the specific
form for the shock front curve and imbedding it in a one-parameter family
of curves. These curves are called "progressing waves". For general de-
tails of the method, see [2] p. 419-433. The method was used by R. G.
Newton [4] to analyze blast shock problems, and a similar method is being
used by Rae and Kirchner [18] in studying meteroid impact phenomena.

OQur "progressing wave" solutions are defined to be of the form,
u=t2t U () (k.1a)

with ¢ =rt
o=t D (¢) (4.1b)
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€ 2 A
p/o =1t ¢ P (¢) ‘ (4.1¢)

vhere @, B, b, € are parameters, and U, D, P functions to be de-
termined. By introducing this variable ¢ we have defined geometrically
a family of surfaces ¢ = const. in the r,t-plane, vhich will play an im-
portant role in the anelysis. Although these are not the trajectories of
the particles of the medium, we shall see that the shock front belongs to
this family or surfaces.

We now substitute the expressions (L4.1) into the equations of motion
(3.2)-(3.4), enabling us to eliminete the explicit factor t by properly

choosing the exponents, thereby leaving a system of functions of one inde-

pendent variablc §. This is accomplished by letting
e=28 ; P=a-1 (%.2)

See [17] for details.

This leads to the set of ordinary differential equations:
ED' /D= - (8+¢ U + 30)/(U-0) (4.3)
Ut =[-U(U-0a) (U=-1)+ (5+ 2B+ 3U 7)P) /0 (k1)

ap/au = ¢ P'/t U' = P[N(U) + PQ(U)]/[R(U) + PS(U)] =
F(u,P)/c(u,P) (&.5)

where, after simplification
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NU) =203 =1 -20) + (3 -} U -2x

Qu) = [28 - (v -18)/(U-0Q) + 2y
R(U) = (U - 2)(1 - U)
5{(U) =8 + 28 + 3Uy

The latter is the basic differential equation for progressing waves. After
the appropriate solution has been found for P = P(U) ; the function § =
¢(U) is found by a quadrature of (4.4) and the density function D(¢),
from (4.3).

These progressing wave solutions, as we shall see, provide a suf-
ficiently general mathematical deseription of an expending cavity reason-
ably consistent with the given conditions of initiation of the process.
There remains the problcem of choosing the two porameters ¢ and 9.

A condition of constant entropy is not in general satisfied by a
spherical wave because of its attenuation. An alternate assumption is
that the motion is adiabatic, i.e., has constant total energy. Th.is is &
reasoneble one for thne cavity expansion process, because of its short dura-
tion, provided certain secondary effects are neglected. With ¢ = §, Te-
presenting the shock front at a time ¢, the total energy in the fluid

shell (potential + kinetic) at time t 1s given by

1 !
E(t) = f (;Ll) brr dr « f %‘-pua ke ar (4.6)
ro rO
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where 1, = 4 t% is the imner radius of the ‘shell (Fig. 1) and r, = §,t°

is the location of the shock front.
' ﬁsing the substitutions in (4.1) and assuﬁing t is consfént, e
obtain
- t :
am e’ TP 72 [T R L) o) (4.7)
£o

5ince the integral is indcpendent of t, we make the energy independent

of time by satisfying the relation
5+ 50 ~-2=0 or 5 =2 -5 (4.8)

5. Boundaery Conditions at Shock Front

We snhall narrow down the number of parameters by requiring tae com-
patibility of our solution with the basic Rankine-Hugoniot conditions
across & shock front. If the undisturbed and disturbed medium parameters
ere u, Py Py and v, Pyp By respectively and tine shock wave velo-

eity is C, +then taesc relations are (see [2], p. 123-U4), for a polytropic

mecium and when the undisturbed state is & medium at rest, with u, = 0, we

obtain
Y {(c - ul) -p,C =0 (5.1a)
pyuy (C-w)-(p -p) =0 (5.1v)
(iuea,—l—lll-)(c-u)-puw(zs:o) (5.1c)
PPz 71 b 1 1% T o ’
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_ With p = ,/ 17-157!7+1$, if p° is negligible, S

y = Q- R
B, = oy u C=p_C° (L -pd) (5.20)
pifoy = (r+ Dfr = 1) = 147 (5.2¢)

c = ,/ dp7dp = ,/ 1+ uE C

The last quantity is conveniently referred to as the "sound speed" in shoek
wave analysis. These relations apply Just as well to a spherical or curv-
ed surface 28 to a plane, since the effect of spherical divergence (the
2u/r term) on & finite or sudden jump is of higher order. This may also be
shown geometricaolly by considering an infinitesimal surface element of the

shock front. Since gl =t

&1,

along the shock front, c¢ = dr/dt = a ¢ 1

From (4.1) and the relations (4.3) the Rankine-Hugoniot equations be~

come
2% ¢ Dla - ) -p, g tP = O (5.38)
1 &+2P 512 o (o - U) - 2P gle DP = O (5.3b)
£8+38 Dgla(% o 7—{-5 P) &) (0-0)-t%*%P ¢ Dy = 0 (5.3c)
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We note that the time factor cancels in (5.3b) and (5.3c), so that they
are automatically satisfied, but to secure independence of time in (5.3a),

it is necessary to make

8=0 (5.34)

With this condition, and the relations (4.2), the assumed fomm for the

progressing wave solutions reduce to

r/6 U(8) b= (x/t)° D(s) B(e) (5.4)

=
1]

©
]

D(¢) pfe = (/)% B(§) with § =2t ™

This solution shows that on the shock front or free surface, where § is
constant, the physical quantities such as velocity, pressure, density, and
wave velocity are constant on the rays r/t = constant. fThis also dimen=
sionalizes the functions {5.4) correctly.

The complete set of exponents is now

a = 2/5 ¢ = -6/
(5.5)
B = -3/5 & = 0
Initial Conditions
Since ¢ = gl on the shock front, we have, Just behind it,
Ue) = ofL - 1) = /(7 + 1) (5.6a)
D5;) = po/h® (5.60)
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2 2 2 2 2 i

P(gl) =0 p" (1-p") =2 u 7+ 1) (5.6¢c) :
wita a = 2/5.

The right side of equations (5.6) give us, for a specified material,
a definite initial point in the P-U plane, through which a single solu-
tion curve 1s determined in general. Note that the constant gl, still
undetermined, is not needed for this. We will discuss in Section 9 how
this ccnstant may be determined.
6. Equation of State of Aluminum

In Fig. 4 1s shown a straight-line logarithmice fit of the relation-
ship between pressurc and relative density for 24ST aluminum in the range
between 100 and 40O kilobars, the date being teken from [3]. This fur-

nisnes the polytropic-type relation

7.60
p (—9-) = 52.7 200 kb¢pg 400 kb (6.1)

vhere p 1s in kilobars.

A few points are shown beyond the 400 kb range based on additional
data taken from [3]. iHere there is a slight but consistent departure from
the equation of stote (6.1). However under the conditions of our explosion
the range of pressures does not exceed L0O kb.

Below about 100 kb we have a transition to elastic-plastic or elastic
benavior. The nature of this transition is considerably uncertain. We may
also note that, unlike geses, the value of 7 1is very high, i.e., relative-

ly small density changes occur under very high pressures.
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The pqutrqpic-type:equatiog??f state 1s a:vgﬁxjsonvenient one to
use for metals provided %he pressh;e range is réstricted, such as in {6.1).
It has the advantage that the progréssing wave procedure in Sectlon % can
be carried through. ilowever, such an equation of state must always be
modified at low pressures since the density of a solid does not tend to

2zero with the pressure. Other equations of state have been used, e.g.

Sedov in [11], and Stanukovieh [15], have used the formula
=4 ((efo)) - 1] (6.2)

For aluminum, the values A = 187, 7 = 4.27, P, = 2.7 provide a good
fit to the data polnts of Fig. k.

Further discussion of equations of statc for solids is given by
Huang [14].
7. Tne P, U-Diagran

Using the conditlion of constant energy, the 2/B-pcwer law holds, and
the differential cquation (4.5) for progressing waves may be solved. This
was done numerically by means of a FORTRAN program described in [17]. A
family of integral curves in the diagram are shown in Fig. 5. All of them
issue from the singular point A cnclosed in a rectangle on the diagram,
and which is loecated by equating F(U,P) = G(U,P) = 0 in (4.5). For our
set of constants this point is U = 0.0916, B = 0.02884. 4 more de-
tailed analysis of the singular points is given in [17]. It can be seen
that all the curves caome out of this "unstable nodal point" alonz a com-
mon tangent. The point U =0, P =0 1is a stable nodal point, or "sink",

and the point Po = 0, U° = 0 is & saddle point. The solution curve for
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the physical problem starts close to the source, then runs over very close

to the saddle point. There is & unique curve (marked C in Fig. 5) which B
actually runs into the saddle. The accuracy of the computations is not
sufficient to distinguish whether our solution actuelly coincides with
C or not.

The "source" point itself represents e shock of infinite strength.
Here the pressure and density Just behind the shock front are infinite
(with a finite total impulse, however) and the perticle veloeity is equal
to the shock wave velocity. This type of condition arises in stress-wave
propagation problems as well, in the form of & d-function at the wave~
front. See (16]. It is a consequence of the assumed instantaneous {i.e.
step) loading of the material. With such & loading we must start the
propagation of either a zone of infinite pressure if the velecity is
finite, or our front must start out with an infinite velocity.

The end-point of the solution curve C at U=, P =0 provides

8 very reasonable physical condition of asymptotic character. For, if we

consider any poin%t A in the r,t-plane, Fig. 3, the "purticles" must cross

the family of curves
(03
r =14t (7.1)

(shown dotted) from left to right, since we have compression shoek. Thus
the particle curve (solid) has alower slope at A than that of the dotted

curve:

T or r
u:E U(§)<§€=O‘h€
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U,P-pla.né coming out of the un"stable nodal p:oint lie tc; the left of the -
vertical line U = O.4. However, for the curve C u - 0.4 r/t as
t - o0, 1.e. the particle curve is asymptotic to (7.1). The P = P(U)

curves which end in U= 0, P =0 give particle curves which cross all

the curves of (7.1).

8. The Radius-Time r,t-Diagram

Figs. 6 and 7 show an r,t-disgram plotted for an initial cavity re-
dius of 1.698 em. Pressurea in kilobsrs are also shown on Fig. 6. Thie
figure gives much more detail of the early phase of the expansion up %o
t = 2.5 microsec. from its start at t = 0.9 u sec. In this elapsed time
of 1.6 p sec the inner cavity has only grown to 1.86 cm, which is only
13% of its ultimate change. However, the pressure has already fallen cecn-
siderably. At the cavity surface it is down to 50 kb.

We also note that the shock velocity at point labelled P on the dis-
gram is equal to the known elastlc wave veloelty of the material. Beyond
this point the 2/5—power law for the shock front starts to deviate from
this velocity. Such a condition represents a discrepancy of the progress-
ing wave method from thlis point on which is inevitable because of the equa~
tion of state used.

Figs. 8, 9, and 10 show how the pressure, particle velocity and den-
sity decay with time at the inner cavity surface. We note that p = Py
occurs for t = 2.5 u sec. Of course, we may not conclude that p becomes
less than the free space density because the equation of state (6.1) no

longer applies.
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o ot e w6

frrm— e 9. Results e - -
" TABLE 1
Variation of physical quantities along
solution curve and cavity surface

D u P t D E gle)
sec x 1070 au/ce ergs x 10%2 em
8684 .09%302 .02856 us1.28'1) 3. 5182 0.0 1.698
.9539 .09312  .02854  438.45 3.4282 -.188 1.713
1.062 L0932k  .02852 424.25 3.3282 -.368 1.730
1.186 09337  .028L4  410.10 3.2282 -e520 1.748
1.329 ,00352  .02846  396.02 3.1282 -.648 1.761
1.495 .09369 .02843 381.99 3.0282 ~.755 1.786
1.688 .00389  ,02840 368,02 2.9282 - 84 1.807
1.939 09411  .02836 354,12 2.8282 -.918 1.828
2,181 09436 .02832  340.29 2.7282(3) -.979 1.851
2,496 L00u66 02827 326.52 2.6282 ~-1.029 1.974
2.872 .09500 ,02B21 312.83 2.5282 -1.069 1.900
3,323 .09539 .02815 299.2194  2.4282 «1,101 1.926
3.868 .09586 ,02807 2B5.69 2.%282 -1.127 1.954
h.5%% 09641 .02799 272.24 2.22618 -1.148 1.984
5.350 .09707 .02780 258.8¢9 2.1282 -1.164 2.016
6.36k 09787  .02777 2L45.63 2.0282 -1.176 2.050
7.636 L0088k  .02764 232.48 1.97282 -1.186 2.087
9.2352 .10003 .02749  219.43 1.8282 -1.193 2.127
11.33 .10152  .02731  206.51 1.7282 -1.198 2.171
14.0% L10341 L0270 193.71 1.6282 ~1.202 2.219
17.65 .10585  .02686 181.05 1.5282 =1.205 2.272
22,52 L1090k  .02659  168.55 1.42818 -1.207 2.332
29.28 (11331 .02628 156,21 1.3282 =1.209 2.501
38.91 11914 .02593% 144,08 1.2282 -1.210 2.481
53,07 .12728  .02555 132.17 1.1282 -1,211 2.577
Th.76 .13883 ,02513 120.56 1.0282 -1.211 2.696
109.5 155326 02462  109.38 .9282 -1.212 2.849
168.3 .17866  .02384 98.85 .8282 «1.212 2,058
273.2 .21002 .0224 89.36 .7282 -1.212 3,355
470.8 24867  .019T4 81.30 .6282 -1.212 3.795
865.8 .29068  .01550 T4.96 .5282 -1.212 L. 465
1717 .32972  .01012 70.40 .heBz -1.212 5.51k
3681 .35941  .00478 67.43 .3282 -1.212 6.968
740k 37363 .00098  65.87 .2282 -1.212 9.257
8357 .36027  .00001 65.67 .1282 -1.212 9.687

(1) See below
(2) Cavity radius

(3) Free-space deasity p = %
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From eq. (4.3), it can be seen that the ¢-function admits of an aybi-
trary multiplicative conctant. This constent is determined from the lknown
required density of the material behind the shock front given by the Ranke
ine-~Hugoniot conditions. This is given by (5.2¢). From the eguation of

state (6.1),

P = 3.5182
p = 384 kb

Then, from (5.6b) and (5.6c),
D = 5-5182 K} P = -02856.

For an initisl cavity radius of r = 1.698 cm,

1/2
t = r(DP/p) = 0.868 microseconds.

" This is the value which must be used a3 the starting time of the cavity

notion in order to put the shock front at the given radius. We finally

must have
< _6 .oh
g = gl = z’t = (1-698) (-%8 X 10 ) = 14-51.28.

10. Energy Considerations

In the theory of progressing waves, an assumption of constant energy
was nade (see eq. (4.7) in order to provide the condition (4.8) for deter-
mining © and with it, all the other exponents. The energy integral (4.7)
is extended between two points, one of whicn is located on the shock front

£ = const. = gl and a lower value ¢ = £ The integral path, such as BC
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"in Fig. 3, may be arbitrerily éhoé-'eri,' 80 long &8 it terminatés on theme

two uﬁ‘VeE.
The energy in the distux;bed part of the solid will,‘ h-ouev;z-x;,_ ;:hange
with time because its lower boundary, the cavity surface, is not one of
the family of j-curves. Thus the energy values in Table 1 represent an
integration of the expression in (4.7) taken along the cavity surface
curve. If we extend this integration far enough (say to 100 microsec) so
that point D practically coincides with point C, the values in the

table become asymptotically constant, and we have

: j‘f[ f M

A A 3

From Table 1 we see that the energy does tend to & constant and we have

Jjust shown that this limit is the value of the energy integral (%.7).
12
E = 1.212 x 107" ergp {10.1)

If we now suppose that all (or any known fractional part) of the
energy given up by the explosive is transmitted into the solid, then the
shoeck process could be terminated when the energy reaches the amount aveil-
able. It is noct possible to determine a precise point of time because of
the agymptotic way in which the energy increases. It is seen, however,
that E reaches 90% of its ultimate value in 3 microseconds, which is a

very short time compared with the expansion process.
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The poggfshock expansion prea_pggbly ms_g;__.p_a}:g_plg.:cq __pgder constant

PRTT LI

energy conditions for a “long" period of time, until it 1s dj_dsipat_e_@_by

viscosity of the flow, elastic waves, and other nide effecta.

For energy avallable in the explosive, Shear (6] gives the value

Bpoey = 1152k cal/g

which, for our explosive weight of 0.07 lb, gives

Erotal © 1.26 x 10%2 ergs

Our calculated asymptotic value (10.1) from the progressing wave integra-
tion comes to 96% of this. Thus we have here an independent comparison

to check the theory.

1l. Experimental Details
The specimens used in the experimental portion of this study are

thick walled aluminum spheres machined from blocks of 60tl<Th and 24ST.
The spheres are of two sizes witn nominal outside diameters of eighteen
(18) and twenty-rive (25) centimeters. Figure 1 illustrates the general
sphere configuration. Tue inner cavity is machined to &ssure snug accept-
ance of a thirty-two {32) gram charge of Pentolite explosive. The thread-
ed well is machined in the specimens in order to accept a threaded alumi-
num plug. The plug is fabricated with a hemispherical cup on the insert
end, in order to seat the explosive. The small dlameter hole érilled the
length of the plug axis provides & means for running the firing line and
ifonization probe tn tne cavity. The portion of the plug extending beyond

tne threaded section is used for the purpose of mounting the entire assembly.
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{ _plthqugh the fundamental information required from thig.atudy €onz, .. ;

sists of essentially determining the permanert deformation of the speci-
men the spheres are instrumented to determine initial free surface velo-
city, maximum radial expansion, end the shock velocity through the mater-
ial. Instrumentation for the measurement of the free surface velocity,
and maximum radial expansion consists of two condenser type micrometers.
The grounded free surface of the specimen constitutes one plate of the
condenser; the micrometer plate is spacéd a few tenths of a centimeter
from the free surface.

Quarte disc crystals affixed to aluminum rods of varying length are
used to meusure shock time of arrival. These rods are threeded into the
sphere with the crystal surface normel to the sphere radii. (Figure l).

The output from the condenser micrometers and the quartz crystals
are recorded on cathode ray oscilloscopes. The scope sweeps are trigger-
ed by & simple ionization probe inserted through the plug into the ex-
plosive detonator cavity. PFigure 1l illustrates the experimental arrange-
ment.

Prior to assembly and testing measurements of the sphere outside
surface and inner cavity dlameters are made. After assembly the cone
denser micrameters are calibrated remotely, then the explosive 1s initlate
ed. The scope traces are recorded with still cameras using polaroid films.

Table 2 contains a tabulaticn of the before and after physical
measurements of each specimen. The inner cavity and outer surface diae
meters are averages of several measurenents and do not reflect the asym-

metrical distortion detected in the post shot observations. However, the
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values determined t‘ron;i t%e rg_gorg_ed g.f.a rpre)s:_gn'l;.ed in Talle ’3 4o indicate
this non-uniform distértion. The values in Tabie 2 1nd1ca‘c; that the aver-
age increase in the specimen outside-diameter is 2% for the small spheres
and 1% for the larger one. For the inner cavity the post shot diameter
indicates an increase of about 75% for the small specimens except for one
with an increase better than 90%. The two large spheres display increas-
es of better than 100%. In Table 3 the values derived from the oseillo-
scope records are prosented. The average snock velocities through the
material agree rather well. The difference in free surface velocity be-
tween the 60617k ani the +3T aluminum is quite apparent. The values
determined for maximum radial expansion tend to indicate that there is

non-uniform deformation occurring.
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12, Summary and Conclusions
In this paper we have attempted to study the ceavity formation process

in the metal by determining how the 1mportaht physical variables of cavity
radius, velocity, pressure, and density vary with time and position near
the cavity. The most prominent general feature of the whole process is
the short time of the "shock" regime as compared with the total time of
the expansion. One general criterion of the end of the shock is when the
supersonic veloeity of the shock front drops to sonic, i.e., st the point
P of Fig. 6, where the slope attains the value for elastic disturbances

in the material. The progressing wave curve cannot be used beyond this
point since it would give a subsonic shock veloecity. This situation has
occurred after 0.5 ‘microsec.

We note that the nighest pressures and denoities in the metel are
located Just behind the shoek front, and trall off with decreasing radius
t0 minimum values at the cavity boundary. We note that the equation of
state (6.1) which has been used for the calculations has a lower limit of
P = 100 kb. This could elso be used ss a criterion for shock termination
(point D, Fig. 6). It is reached in 0.7 u sec. These conditioms thus de~
termine a roughly parallelogram shaped region ODPE in the r,t-plane for
the validity of the progressing wave region. MNote that the cavity has only
expanded 0.1 em during this period, which is 1/30 of the totel observed
increase in radius. We are thus Justified in referring to the shock pro-
cess a&s impulsive, i.e., the later stages of the process are insensitive
to many features of the shock part. Hence the progressing wave method of

integration remains valid for the analysis of the shock zone.
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[t

'The asjmptotic characteristics of the progredsing waves &ré thus Aot

of direct physical interest since they do not apply to the problem beyond
the region described above. The expansion zone, headed by a wave travel-
ling with the dilatationel wave velocity goes on for at least 100 . sec-
onds, during most of wnich the metal continues to move by fluid or plastic
flow.

The final cavity radius attained is of great interest to the general
problem as this value is directly observable on the specimens after blast.
In principle the prediction of this radius snould afford a test of any
theory, but the matter is not so direct as this, since several theories
are involved. It is now evident that the cavity formation process is come-
plicated. It sterts under one theory (in which the state of the metal is
fairly well established) but terminates in a different state of the mater=
ial, about which information is almost completely lacking. Several mechan-
isms have been suggested for terminating the cavity expansion:

(1) An energy-level criterion

(2) A temperature criterion

(3) A yleld-point eriterion

Criteria such as (2) or (%) are tempting because they tend to provide
fairly definite .nierks as to when the materisl “freezes", either when a
given temperature, or a given pressure is reached. However, knowledge of
materials is still too incoaplete to0 solve this problem. The total energy
of the moving material stops increasing after the expansion phase has be-

gun, so there is no change in energy. Furthermore, any quantitative use
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of energy balanges would reauire gareful accounting of ell the enerey. loss-
es as well. A discussion of some of these energy questions was gi\;en in
the previous section.

Summary

We summarize by noting that the following four phenomene are coinci-
dent in time:

1. The shock-wave becomes sonic.

2. The pressure at the cavity surface drops to less than 100 kb.

3. The total energy in the disturbed material reaches 90% of its
maximum and then levels off asymptotically.

4, The average gas pressure in the cavity (uniform model) equals
that in the metal.

All of these occur close to & microseconds after initiation of the
explosion. This delineates & fairly definite time point of changeover of
conditions. Up to this time (t = 2.5 microsec. for the conditions of
this report) we may ssy the effects of snock predcminate. The progresse
ing wave method furnisnes an accurate theory for this regime. After this
time & relatively long expeansion period occurs at constant energy until
ultimately termineted by degradation processes.

It is felt that more consistency among the measuremsnts would be
attained if rigid quality control on the specimens could be maintained.
However, since these measurements are being made in regions of relatively
low pressure, they are sensitive to ilnhomogeneity and anisotropy. Effort

will be directed toward further refinement of the experiment.
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ABSTRACT

A semi-empirical model is derived which will, it is hoped,
contribute to the understanding of the nature of waves and
fractures in solids caused by hypervelocity impact.

The distance within a solid at which the shock wave slows
down to an elastic wave is considered as the radius of a '"cavity"
to the surface of which a forcing function can be applied to
produce an elastic wave similar to that produced by the impact

.0of a high velocity projectile,

By the use of a high-speed computer, the characteristics
of the forcing function are found which will produce the same
effects as those caused by a projectile. This forcing function
can be described by a mathematical series, each term being of a
form for which the general wave equation can be solved. This
permits the computation of particle displacement, particle ve-
locity, and principal stresses within the target.
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NOMENCLATURE

Fetnitiler TR e
Momentum per unit area of forcing function

Ratio of forward momentum of foreing function to
momentum of the impacting projectile

Attenuation constant

Velocity of propagation of a compressional elastic
wave

Constants

Projectile momentum
Momentum of forcing function
Number of equations to be solved simultaneously
Pressure (a function of time)
Pressure at Ty when t = 0
Impact pressure
Radius vector
Crater depth
Projectile radius
Time
Particle displacement
Particle velocity
Time decay constant
See text
Coefficient of dilation}
Lame's constants
Shear modulus

Poisson's ratio
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P Deusity of target material
m Mean stress
g, Radial stress
gg Shear stress
Og Tangential stress
T See text
[0) Displacement potential funciion
Wy See text
V2 Laplacian operator
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INTRODUCTION

' 6ﬁéﬂ-é”saiid b6&§ is.imbééféd by ﬁ h&perveldéify ﬁgﬁ-

Jjectile, the kinetic energy of the projectile is divided among
several physical effects, such as permanent deformations; heat,
light, and vaporization; ejection of most of the projectile
and some of the target material; and shock waves, There is
much disagreement among investigators as to the model or
theory to use in describing these effects, A great deal of
experimental data and considerable theoretical work has been
published during the last few years, Many theories have been
deduced with utmost rigor from rather arbitrary assumptions,
Contradictory empirical relations have been formulated at
various laboratories to fit their specific data. This paper
dealing with the spherical pulse produced by hypervelocity
impact will probably be no exception, but it is believed that
the semi-empirical model described will contribute to the
understanding of the nature of these waves and the effects
produced by them,

A simplified description of the effect of hypervelocity
impact is generally divided into the following stages: (a) The
projectile is imbedded in the target material., (b) The
crater expands very rapidly similar to an explosion, (c) The
velocity of the crater surface decreases, thereby permitting a
shock to become detached from its surface, Material flows
along the wall of the crater and is ejected at a velocity up
to eight or ten times the impacting velocity of the projectile,
(d) Permanent deformation ceases, and the shock decays into a
spherical elastic dilatation wave which continues to dissipate
energy throughout the target. (e) As the wave reflects from
the back or other free surface of the target, as tensile waves,
secondary fractures and deformations occur if the tensile
stress exceeds the fracture stress of the target material,

This fracture stress is much greater than its static strength,

ASSUMPTIONS

In this study, as in all other impact studies, it is
necessary to make several assumptions concerning the phenomenon
of hypervelocity impact, A few of these assumptions are
rather arbitrary, others are based upon the work of previous
investigators, and some are dependent upon the extrapolating
of experimental data.

It is assumed that during the initial stage of impact the

projectile is imbedded in the target material to a depth equal
to the projectile radius, Gehring (1) gives the crater depth
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at this time as the length of the projectile multiplied by the
.ratio of the square roots of the densities of projectile and
target material. For a Lexan projectile impacting an aluminum
target (with which most of this study deals) this would give
the crater depth as 1,3 To instead of r, as assumed., The

effect of this assumption upon final results will be discussed
later, The pressure at this time is very great, and the
values used in this study are those given in the hypervelocity
survey report by Hermann and Jones (2),

The shock front starts out at about the impact velocity.
The strength of the shock rapidly attenuates, and its velocity
slows down to the elastic wave velocity in a very short time,
Davids (3) gives this time as one microsecond (ipsec) after
impact for a 3/16~in, steel pellet striking a steel plate at
20,000 ft/sec. Kineke (4) gives the time as about 3.5 usec
for a 0,18-g steel pellet striking a Lucite target at 4.6
km/sec, This is in agreement with the author's experimentis
at AEDC which indicate an average of about 3.0 usec for 0.3 x
0.3=in. Lexan cylinders (0,44 g) impacting Lucite targets at
velocities ranging from 14,000 to 21,800 ft/sec,

The shock separates from the crater surface while the
crater is still expanding, but generally slows down to the
elastic wave velocity at a distance within the target about
equal to the final crater depth. Theoretical studies by
Davids (3) and Bjork (5) of steel projectiles (0.475=-cm-diam
sphere and 10 x 10-cm cylinder) impacting steel targets agree
with this. Davids' study gives the crater depth as 1.2 cm
with the wave becoming elastic at 1.3 cm. Bjork gives the
crater depth as 19.5 cm, and a plot of distance~time relation
seems to indicate that the wave becomes elastic at about 24
cm, The streak camera record by Kineke (4) of a steel pellet
striking a Lucite target as well as the author's experiments
are also in agreement with this (see Fig, 1). It is assumed
in this study that the shock wave decays into an elastic wave
at a distance within the target equivalent to the final crater
depth (r;) and that the velocity of this wave is expressed by
the relation

3
C=I:?\+2p.j|‘
P

the velocity of irrotational waves of dilation,
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The material is considered to be homogeneous and iso-~
tropic, The waves are spherical, and their origin is on the
target surface at the point of impact. This is verified by
photographs of shock waves in Lucite produced by hypervelocity
impact as shown in Fig, 2, Values of the crater depth are
determined from Fig., 3, which gilves crater depth as a function
of velocity for various projectiles impacting copper and
aluminum targets. It is assumed that target thickness has no
effect on crater depth if the depth is less than one-half the
target thickness, as shown in Fig, 4.

STRESS RELATIONS

It has been shown (6) that spherical, longitudinal pulse
propagation in a homogeneous, isotropic medium can be speci-
fied by the wave equation,

2

o 2 42
g =C Vo
ot

where ¢ is a scalar displacement potential, The particle dis-
placement and velocity arc specified by the relations

u = %% and v = %%

If r denotes the radius vector from the point of projectile
impact, the principal stresses are given by the relations (7)

Op = A\ + 2u) %% + 22 (u/z)
op = 7\(%}3) + 200 + W) (w/r)

From the principal stress, the mazimum shear stress is found
to be

- Oy = %9 - Ju u
Og = —33— “W\5r " 7T

and the mean pressure acting at a point is

Op + 204 2 du ., 2u
O = —3 — < (7"'3“)&*?'
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0.3 x 0.3-in. Cylindrical Lexan Projectile
Impacting Aluminum Targets at Velocity
of 23,500 ft/sec
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Fig. 4 Effect of Target Thickness upon Crater Volume and Depth
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The identity relating Ops Ops and og 1is

SOLUTION OF THE WAVE EQUATION

The propagation of spherical waves in solid elastic media
has been the object of much study, especially among seismolo-
gists (8) (9) and acousticians (10). In general, the approach
has been to coansider an infinite homogeneous medium in which
there exists a hollow spherical cavity, within which there is
generated a uniform, time-varying pressure, p. The problem
has been to determine the resulting wave motion in the solid
medium, There has also existed the problem of justifying the
use of linear elasticity for these nonlinear phenomena., When
a charge is fired within a hollow cavity, or when a hyper-
velocity projectile impacts a solid, a wave 1is generaied in
which the stress is much greater than that of the material
strength., This wave diverges from the point of impact, or
site of the explosion, crushing and compressing the material.
This siress wave rapidly attenuates because of loss of energy.
At some distance within the solid the stress will equal the
strength of the material, and at greater distances the
material will be elastic, if viscosity and internal friction
are neglected. This criti'tal distance has been called the
"radius of the equivalent cavity.”" As previously stated, it
is assumed that this radius is equal to the crater depth
caused by the impact. This is not to say that an elastic
wave detaches itself from the crater, but rather that the
shock decays into an elastic wave at approximately this
location before the cavity is completely formed.

The boundary condition to be satisfied expresses the
equality of the radial component of stress in the medium at
the cavity surface to the pressure inside the cavity,

oz e @] - el

If the applied pressure is considered to be an impulse which
Jumps from zero to p, at t = 0 and then decays exponentially
with time, and is described by the relation
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the solution of the wave equation given by Blake (10) is
: cE "'“4‘11/2 L

/ . 2
Py e -0, T o =0
11 -e%T e ° |1+ ( g )

pr[&oz + (ao-a)z] (o}

-1 (% —©
cos | w.T - tan (——————)
(6] Wq

@

where

(a4 =..c_ 1-2V
o r1 T - v
and

c (1-2v)
®o = 77 l:I—v

1/2:|1/2
1

This solution satisfies both the wave equation and the bounda-
ry condition,

Allen and Goldsmith (11) have employved this solution to
give a description of a high-amplitude pulse in steel. In
this paper, it was admitted that the form of the forcing
function was assumed for mathematical convenience and that it
probably did not represent the actual situation.

A pressure pulse more closely simulating the actual
forcing function produced by hypervelocity impact may be
expressed by the relation

P =D (Kle-at + K.e~2ot | g

-3at
2 e +

L] . . L] L] K e-XIat)

3 n

Since each term of this expression is of the form p = ple"at,

a solution ot the wave equation may be found for cach term
(él’ ‘bz’ \1)3, . . . ¢n) .

The sum of these solutions is also a solution; therefore,

¢=¢1+¢2+¢3+--.¢¢n
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The area under the pressure-time curve is the momentum per
unit .area of this forcing function and is

. po K K K K
1 =2 "3 ny _
L pdt=p1(—a—+-2a+-33+...m)—cl

The total momentum in the forward direction may be expressed
as
2

Ms = Try C1

The momentum of this pulse is a function of the pro-
jectile momentum (Mp) as well as being dependent upon the

target material. As most of the projectile, as well as much
of the target material, is ejected as a "back-splash" at a
very high velocity, the total forward momentum that must be
absorbed by the target may be many times greater than the
initial forward momentum of the projectile (12), Measurements
of momentum transfer (13) have indicated that the ratio of
target momentum to projectile momentum for plastic projectiles
impacting aluminum targets is 1.9 for velocities of 25,600
ft/sec. In ihis study the ratio of the forward momentum of
the forcing function to the initial forward momentum of the
projectile will be denoted by Cs.

Previous investigators (14) employing a modified
Hopkinson-bar type of experiment have shown that the pressure
pulse does jump from zero to a maximum pressure, has a zero
slope at that point ([dp/dt]t,=o = 0), and then decays expo-

nentially, A forcing function producing a pulse of this
general shape is generated if the values of K;, Kz, Ka, . . .
. e Kn are determined by solving the following equations for

the conditions of zero time:

K 3K, +

d(p/Pl)/dt g + 3K, . .

1 + 2K

i

a®(p/p;)/at? = K, + 4K, + 9Ky + . . . . nK_ = O

d(N’l)(p/pl)/Gt(N'1)= K, + 28Dy, 4 3N-Dyg
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To soive,fthe number of equations. (N) must equgl‘the;number of
K-terms (n). The value of o is.given.by the relation :

pl Kz KS Ti.{n)'—‘: f . ' -‘ 7-_‘.
a='(-:'i'(K1+'2—+'3—+.nolT .

The shape of the forcing function and resulting pressure pulse
depends upon the number of terms of the series used. If only
the first term is considered, the results are as given by Allen
and Goldsmith, The response to a step function of pressure is
obtained by setting the decay constant equal to zero,

Table 1 gives the values of K,, Kz, Kz, . . « . . Kn for

values of n ranging from 1 to 15. It will be seen that the
values of these coefficients are the same as the binominal
coefficients and may be readily expanded for values of n
greater than 15, Values of the sum, K; + K5/2 + Ka/3 + . , .
. « K /n, are also given for various values of n, Figure 5
shows the shape of the forcing function for n having values of
1, 2, 5, 10, and 20, with C remaining constant,

CONDITIONS AT THE WAVE FRONT

It can be shown that the relations

v=

P
por-  Ad 0, = 5= = pov

apply at the wave front. These equations imply that the peak
particle velocity and peak stresses attenuate at a rate
inversely proportional to the radius vector, r. This applies
only during the elastic regime or when r > r,, For the region
r; >r > r, the attenuation is probably greater than this. At
r; the peak pressure may be expressed as

r
_ (o]
Py = €3 p, (q)

FRACTURES PRODUCED BY REFLECTED WAVES

The compression pulse diverging from the point of impact
is reflected from the rear face of the target as a tension
wave and may produce damage at, or near, the rear surface,

This damage may appear as a granular fracture at the surface
(Fig. 6a), as internal cracks and bulging of the rear surface
(Fig. 6b), or as a detachment of the target material (Fig. 6¢).
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Fig. 5 Various Forcing Functions Having Same Nomentum
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That such fractures are formed by the reflected waves is defi- ;
nitely demonstirated.by..the photographs of, the waye reflection i
and material fracture An theﬂLucite target. shown in. Fig. 2, i
Once a fracture has-been- produced, the tail of the pulse is :
reflected-as a tensile wave from the-new surface so that a

series of parallel cracks may be formed.

As each fracture is formed, momentum is trapped between

the free surfaces, This momentum may cause a bulge to form on
the rear of the target.

QUANTITATIVE RESULTS

If the values of C», and C; were known, a quantitative
analysis of the effect of hypervelocity impact could be made.
An attempt is made to determine these values by applying data
obtained by impacting aluminum targets with 0,3 x 0,3-in,
cylindrical Lexan projectiles,

The photographs in Fig. 7 show the deformation of the
rear surface of a 1,5-in, target as a result of being impacted
with a Lexan projectile at a velocity of 24,000 ft/sec, There
may be seen what appears to be a shock wave. As the pressure
in the range was only 1.4 mm Hg at the time of this shot,
together with the fact that the lighting used would not ke
expected to show even a strong shock, and that its velocity is
that of the target surface, it is believed that this is not a
shock, but is attributable to particles being knocked from the
target surface., Figure 8 is a plot of the material dis-
placement as a function of time. The first part of this time-
displacement curve is very similar to those shown by Allen
(15). In agreement with that study, it is believed that the
curve up to about 4 usec can be associated with elastic defor-
mation, The remaining part of this curve will be discussed
later in this paper. The velocity of the rear surface of the
target is found to be 1125 ft/sec. According to the Goranson
theory (16), the particle velocitv in the shock immediately
beneath the free surface is one-half the surface velocity, or
0.017 cm/usec. This value, together with the crater depth of
1.73 cm as determined from Fig. 2, gives a value of 61,5 kilo-
bars (kb) for p; by using the relation

_ bk
per

The value of the attenuation constant,
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0.3 x 0.3-in. Cylindrical Lexan Projectile lmpactmg

_1.5%in, AIummumTarge_tgLVelocaty of 24,000 1 f_t,l;ec

Fig. 7 Photographs Showing Deformation of Rear Surface
of Aluminum Target
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p,Tr
Cy = lrl
Po¥o

may now be determined., Obtaining the value of p_, from Refer-
ence 2, based upon the impact pressure of Nylon projectiles
and aluminum targets, the value of C; is found to be 0.5,

This value is dependent upon the value of r, assumed earlier,
Assuming that this value of C5; is a constant over the range

of conditions heing considered, it is now possible to draw the
curves shown in Fig. 9,

The shape of the radiating pressure pulse, determined by
a solution of the wave equation, depends upon many variables.
Figure 10 shows the effect of the target material upon the
pulse form, Figure 11 shows the pulse for different values of
the decay constant, a, ranging from 0.1 to 10, Figure 12
shows the pulse shapes for various values of n, r, and a.

Figure 13 is a photograph of a section of a 1,5-in,
aluminum target that has becen impacted by a 0.3~in, Lexan pro-
Jectile at approximately 20,000 ft/sec. Three definite
internal fractures near the rear of the target may be seen.
These are located at 0.06, 0,11, and 0.15 in, from the rear
surface., From Fig, 9, the value of the peak radial stress as
the pulse approaches the rear of the target is found to be
19,5 kb, By use of a high-speed digital computer, it was
found that a pulse of this magnitude would produce three
fractures at these observed locations if the forcing function
equation had five terms and the decay constant had a value of
3. It is also indicated that the tensile strength of the
target material (99,.,99% pure aluminum) is about 100,000 psi,
or 6,8 kb, This value is somewhat lower than the value of
140,000 psi for 24S-T4 aluminum alloy as determined by
Rinehardt (14).

For these conditions, and with these assumptions, the
ratio of the forward momentum of the forcing function to the
projectile momentum is computed to have a value of 0,97,

Using an IBM 1620 digital computer, various effects of
the shock wave upon the target material were determined.
Figure 14 shows particle displacement and velocity as the
pulse moves through the target, The numbers on each curve
indicate the time in microseconds. It is seen that as the
wave front reaches any point the material suddenly acquires a
velocity which decreases as the front passes, and oscillates
with decreasing amplitude and frequency, This is more clearly
indicated in Fig. 15, which shows the material displacement as
a function of time.
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[.5-in. Aluminum Target
impacted by 0.3-in. Lexan
Projectile at Velocity of
20, 000 ft/sec

Fig. 13 Multiple Fractures Near Rear Surface of Aluminum Target
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The values of the principal stresses, o, and Ug, are

&iven in Fig, 16. The: strong tangential tensile stresces
leveloped near the crater seem to indicate that radial
ractures might be expected in this area. These may be seen
.n Lucite targets. Fractures beneath the crater and parallel
:0 the projectile direction have been observed (17). These
iy be caused by tangential tensile stresses, These radial
'ractures occur while the crater is still expanding, and are
.ater subject to very high pressures, They may not occur at
.11, although the tensile stress is greater than that which
woduces fractures near the rear of the target, because it
1as been demonstrated that the resistance of a material to
:leavage fracture is increased by the application of hydro-
itatic pressure (18). Figure 17 shows the calculated values
if mean and shear stresses.

a

The compressive pulse is reflected from the rear target
wmrface as a tensile wave. The development of iensile stiress
:aused by the reflected shock produced by a2 1.5-in, aluminum
:arget being impacted by a 0.3-in, Lexan projectile at a
‘elocity of 20,000 ft/sec is shown in Fig. 18, The times
‘t’) given are the number of microseconds elapsed after the
.ompression pulse reached the rear surface, If the tensile
itress does not reach the critical fracture strength of the
mterial, this tensile wave begins to decrease in magnitude
fter about 1 usec. If, however, the stiress reaches the
racture strength, a crack parallel to the rear surface is
‘'ormed., The tail of the forward-moving compression pulse will
‘hen be reflected as a tensile wave from the new free surface
roduced by the material failure and may again reach the
racture strength of the material, Figure 19 shows the for-
ation of the three fractures observed in the aluminum target
aving a tensile strength of 100,000 psi,

Momentum, corresponding to a portion of the pulse twice
he length of the spall thickness, is trapped between the
racture and the target surface. This causes the rear of the
arget to bulge outward, If additional failures occur, mo-
.entum will be trapped between these fractures also, causing
dditional internal deformations. This deformation of the
arget surface is seen in Fig, 9 after the initial elastic
otion has occurred. It will also be noted that this bulge
aused by the trapped momentum is tormed at a very non-uniform
ate., In fact, the motion practically stops alfter about 46
sec, moves outward again to slow down after about 76 usec,
nd then again moves outward to come to its final position
fter approximately 100 usec, This type of erratic motion of
he rear surface may be seen in the data presented by Allen
20), although he attributes it to experimental scatter. The
omplete explanation is not known, It may be due to the
ormation of multiple fractures, but it is difficult to
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Fig. 19 Formation of Fractures Caused by Reflected Shocks
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reconcile the times involved. These impulses occur about 30
ngec apart, and the fractunggﬁggekfg;qu at intervals of less:
than one microsecond, In addition, “this erratic motion may be
caused by an oscillation of the material being superimposed
upon the bulge formation., If this is the explanation, the
frequency of vibration is about 30,000 cycles/sec; this does
not agree very closely with its computed natural frequency.

A second projectile was fired into a simular target, and the
deformation of the rear surface was almost identical with the
first.

The final material displacement agrees very closely with
the computed value if the portion of the target between the
fracture and the target surface is treated as a plate, clamped
at its edges, and subjected to an impulsive load equal to the
trapped momentum,

Pressure pulses in aluminum caused by impact velocities
of Lexan ranging from 18,000 to 28,000 ft/sec are shown in
Fig. 20. These are shown as the pulses approach the rear
surface of 1, 1.5, and 2-in, targets.

There has been some disagreement whether the spall
increases or decreases with an increase in plate thickness
with constant impact velocities (17) (19). Figure 21 shows
the spall thickness (distance of first fracture from rear
surface of target) as a function of target thickness and
material sirength for constant impact velocity. This indi-
cates that the spall thicRness may either increase or decrease
with an increase in plate thickness, depending upon the
fracture strength of the target, Figure 22 gives the computed
spall thickness as a function of projectile velocity. These
curves indicate that a decrease in spall thickness occurred
with an increase in velocity. This is opposite that found by
other investigators (17) in the case of aluminum projectiles
impacting steel targets,

A test of the validity of the model prescnted is whether
or not it will enable one to predict the target damage caused
by hypervelocity impact, Two test shots were made., One was
the impacting of an aluminum target with a cylindrical Lexan
projectile at a velocity of 25,000 ft/sec, and the second was
the impacting of an aluminum target with a spherical aluminum
projectile at 9,800 ft/sec,

The values of the decay constants were determined from
the relation

3.6 prr
a = o' o1l
p
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The shocks computed for these two shots are shown in Fig,
23, Also shown for comparison is the pulse obtained by
impacting an aluminum target with a Lexan projectile at
20,000 ft/sec. From these, the locations of fractures caused
by the reflected tensile waves were computed, A comparison
of the predicted fractures and the actual fracture locatiouns
is given in Fig. 24. For the condition of a Lexan projectile
impacting the target at a velocity of 25,000 ft/sec, five
fractures were predicted. When the target was sectioned,
pclished, and etched, six fractures could be seen, It may be
seen that the first fracture occurred almost exactly at the
location predicted. The distances between the next three were
slightly less than predicted, and the distance between the
4th and 5th was greater than the computed value,

If the results of impacting the target with a spherical
aluminum projectile could be computed, they would indicate
that the projectile shape and density were immaterial, but
that only the size and momentum of the target were relevant.
However, the results are not conclusive: Two fractures were
predicted and two were formed. The location of the first
fracture was approximately 15 percent farther from the target
surface than predicted; however, the location of the second
fracture agreed quite well with its predicted position.

DISCUSSION

Further experimental work is needed to determine over

what range of conditions the ratio of the forward momentum

of the forcing function to the momentum of the impacting pro-
Jectile may be considered constant, and upon what factors this
ratio depends. The so-called "attenuation constant" is proba-
bly not constant for the regime to which it is applied. It
might be more accurate to consider this constant as a power of
the radius vector than as a coefficient. More information is
needed concerning the particle velocity, especially the cause
of the erratic motion of the target's rear surface, For an
accurate model, the internal friction and elastic viscosity of
the material should be considered.

The values determined in this study apply only to alumi-
num targets. When an attempt was made to apply these to a
copper target, the computed results did not agree with ob-
served locations of fractures. The time decay constant for
copper is much less than it is for aluminum, It appears, as
would be expected, that the ratio of the shock momentum to the
projectile momentum, as well as the attenuation constant, will
have entirely different values for targets of other materials.
These should be investig.ted.
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Fractures

PROPERTIES OF SPHERICAL SHOCK WAVES
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Target: Aluminum
1.5-in. Thick
Velocity: 9, 900 ft/sec

"&m ey L .
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Fig. 24 Comparison of Actual and Predicted Fracture Locations
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Only the effects along the radius vector normal to the

?target surfaces were considered. As a pulse is reflected. at
-an angle .of incidence other than. zero, rotational and™

irrotational waves of dilatation are reflected. The inter~
action of these waves with the compression waves is very
complex, but should be analyzed.

In spite of the limitations and assumptions made in
this study, the model presented appears to have merit in
describing the nature of waves and fractures in solids
caused by hypervelocity impact.
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SHOCK FRONT VARIATION IN TIME

Introduction and Summary

We consider a semi-infinite volume of water bounded by a vertical wall,

A small material particle, say a metal sphere of 1 /4" diameter traveling at
speeds varying from 5,000 to 15, 000 feet per second, impacts the water nor-
mally through a pre-punched hole in the vertical wall. (The hole is covered,
prior to impact, with a thin membrane which offers no resistance to penetra-
tion by the particle.) An analytical procedure is desired for determining the
fluid particle velocity, density, and pressure behind the shock front and also
the time variation of the shock front itself.

The impact problem thus described is axially-symmetric and involves two
space variables: Z , measured along the line of particle penetration and .
the radial distance normszl to this line, {See Figure 1). At time t since impact
at 0 the spherical shock fr-nt, centered at 0, has radius R(t). This is in keep-
ing with experiments performed at the Lewis Laboratory of the NASA (See Ref.l)
where, using a high speed camera, it is shown that the shock fronts, as repre~
sented by shadow graphs viewed through the sides of a water-filled transparent
plastic tank, are spheres with centers at the point of particle impact into the
water. For the speeds considered here, the material particle stays intact and
as it pcnetrates into the water, a cavity forms behind it. A typical view of the
situation ten micro-seconds after impact is sketched in Figure 2.

The excellent data of Reference 1 give, among other things, the shock front
position R(t) and shock front velocity I.'((t) for equally spaced instants of time
since impact. In attempting to find a mathematical model for determining R(t),

one is tempted to regard the impact problem as an approximate point explosion
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since the particle is stopped a.ﬁ':er penetrating only a few inches. For a point
P N - . . ‘ . £ s . .

2/5

explosion, R would vary as t in keeping with ‘Taylur's point blast relations
gRef. 2); this, however, is not at all in agreement with the data. Again, on the
assumption that R ¢~ tN. one can of course determine an approximate N for
each set of data; but these exponents vary widely from 0.4 to well over 1,0,
Thus, the point explosion explanation offers no promise of a suitabiz model.

In the present paper, based on the ''near separation" of the partial differ-
ential equations defining the hydrodynamic behavior of the fluid behind the shock
front when similarity variables of the type employed in treating cylindricaland

planar blast phenomena are introduced, it ia shown that the shock front radius

satisfies the differential equation

(y 4B - _B_ . _A
dt AR R

whose solution is

, B> A> 0,

3/2 o
(2) th = R3/ + kf « X¥RI/Z 4 W3 Rr/Z2.0 +C.

Here k = A/B and C is a constant associated with conditions at the time of im=-
pact t = 0.
It is interesting to note that when the constant A is small relative to the

constant B, equation (2) becomes approximately

3) R=(}-é§-t)2/3.

since C is invariably small. Relation (3) defines shock front variation in a
planar explosion.
The relation (2) verifies all the data given in Reference 1, extremely

closely all the way down to ambiency conditions where the shock wave degrades
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into an acoustic wave. In fact, relation (1) may be used to determme ana,l -

Y - Lo
. . R : Lhy . P
. as —_— N L e = © b ir T BB ST iR

e 3 .

tically where this will occur, Puttmg a = sonic speed in water, one finds that"

i% =a when

{ = 2k (B_ JR N
@ AR a (41:)LTi ! B/4k

giving two values for R, one very close to impact using the - sign, the other at
the far limit of validity for (1) using the + sign.
The quantity B/4k defines the maximum shock front speed,
(5) Rypax = B/4k,
which occurs at

(6) R = 4k>, t=—%—5lk3(z—:+1nk) ¥ c}

Relations (4, 5, 6) also corroborate the experimental data of Reference 1.

L]
Thus, k is associated with the shock radius R* where R is a maximum,

(7) k=——1—,.‘ R
2

and B is then determined from
(8) B =4k Ry, -

The more basic characterization of A and B, or equivalently B and k, in
terms of the physical and dynamical char:.cterigtics of the impacting particle
and parameters associated with water is not available at this writing but will,
presumably, fall out naturally when the exact combination of similarity vari-
ables renders the defining partial differential equations separable. A "sepa-
rated" system, based on the heuristic derivation of (1), is available for the
determination of A and B, but the appropriate formulation of boundary condi-

tions is not clear. The presence of two parameters, A and B, will allow both
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momentum and energy, conseryation in a complete treatment of the problem. . ...

The significance of the present reault is very great in thagmggég

the exact dlfferentia.l equation for the ahock front makes it plaus:ble that exd.ct
separation of the two-dimensional axially symmetric differential equations will
be made. If so, it will be the first time a two-dimensional impact problem will
have been solved analytically, The application of these results to impact prob-
lems involving solid media where the disturbed region behind the shock is treated
on the basis of non-visconsa fluid dynamics then becomes promising from an an-

alytical standpoint.

Caloric Equation of State for Water

As caloric equation of state, we use the approximate expression,

@ p =B [ (—%&-)“-1}

given in Reference 3, Here n = 20/3, ?o = 0,93894 gm/cm3, B(S) is a slowly
varying function of the entropy S, Pressure and density of the undisturbed water

are denoted by py, g

Euler's Equations

The radial and axial components, V, and Vz , of the velocity of a water
particle behind the axially symmetric shock front satisfy the equations for the

conservation of momentum

AV, 3V, AvVy _ 1 dp
(10) + V, > tV, =5 ot - T T

A 2V 3V: . .1 _2p .
(11) 3 + V. 5 tVy -33 s .

conservation of mass

r

2 1. 9 =) =
(12) _.é.Bt_+ L S lprVn r rpvy) =0
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i and, ‘assuming that cha.ngcs In the state of €ach particle are’ adiabauc, the™

| S iee e awe e s omi e cims e i ee e g
S E3-1 i AR -4 LW I OI_TIAC MerSmns i i e phlemide o
i addit ia%xal equation _ T .

(13) -BS_ - ¢
Dt
Since eq. (9) may be inverted for S, eq. (13) is equivalent to

2 ? ]
A (o4 Ve 2+ v Jo) o/ { BT -1 ]-o.

Introduction of Similarity Variables

Consider the momentum equations (10) and (11). Without the term Vz gaﬁ-,

eq. (10) describes radially cylindri:al flow, while in eq. {11} omission of the

term V, Ve gives an equation applicable to planar flow. It is of interest,
r

therefore, iuc aee how equations (10) and (11) transform with the introduction
of first the cylindrical similarity variable T) = r/R and then the planar simi-
larity variable § = 2 /Z. These are the variables employed in the study of
cylindrical and planar blast waves originating with line and plane explosions,
respectively, Here R and Z are the cylindrical coordinates of a point of the
axially symmetric shock front,

Describiug the shock front by K=K (2,t)and introducing the transfor-

mations
a9 =g vee T v, Bl o sy,

- B-2
= ?o R™°F (V) ),
we find, after numerous computations and simplifications, that equations (10,

11, 12, 14) become:

(16) -(q¢,+¢)(33+ 2R+ R (B, Bk Py =0
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D

L 2o B

' aF 3R, ., 5-! ! _ 2FiqF' z-1 AR_
A7 - (bt b ) (FR4 vy SR+ R ¢r¢1"—.,;n—R SRs

v AR ARy, 5-1(¢ ' ) =_1 3R _-
(18) "WJ(‘?; +V, -2—{) +R (_-:T‘E +(P.y) ] - (" ¢1+¢2)R l_a?.i- 0
/ -1 oF ¥ / ly!
19 - {(R-1) @FryFemyrpty'y (2B vy 3R+ {FpR-1-omyn Lyl
‘Rl = o,
where primes indicate differentiation with respect to V) .,

These equations are linear in the quantities

3R AR &1 ®-l 2R
0 2B+ vy SR, R, R

and would allow separation of variables if V5 did not depend on Y? . Since the
shock front is spherical, -53-;1_5 will be constant, as the shock moves outward,
along a fixed direction from the point of impact since —_a? measures the slope

of the front at a given time, However, if one moves along such a fixed direction,

R will be proportional to R and g-R to R. As N> 1L Va would behave as some
function of R, go that the shock front would satisfy a differential equation of the
form

(213 R = G(R) - AR"!

where G{R) is to be determined and A is a constani.

1f instead of the transformation (15) we had introduced the transformation

(22)§:i—,vr=_q;d.§_),v :m,e: ?OY(E)’F”‘@oZ'l‘f(E),
1/2 1/2 z 1/2
Z Z Z
where the shock front is now described by Z = Z(r,t), equations similar to
(16,17,18,19) would be obtained which are linear in the quantities

9z 9z -1/2 -1/2 32z
(23) at+v1,_._ar , 2 . 2 5=

Reasoning as before one would arrive at an equation corresponding to (21) of
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the form

(240 R =BR"1/2

-H(R) ,
where H(R) is to be determjned and B is a constant.

Since G derives from V4 as ™) —> 1, it is natural to identify it with
BR’I/Z, consistent with the behavior of the velocity of a planar front; simi-
larly, as §—> 1, one would identify H with AR"!l, gince it originates with V.
and is consistent with the velocity of a cylindrically radial front. Following

this heuristic reasoning, we write the differential equation of the front in the

form

25y SR - _B . A
()dt \R R

The solution of eq. (25) is

(2) ézt. = .13%./3 + ls;_l_ + k2RY2 4 W3 @RrYVZ.Kx + C,

where k = A/B and C is a constant,

Since R » 0 providing ﬁ > k, the log term in eq. (2) will be real for
all R > k?; but since t —» - 00 a8 y R — k¥, the log term will be real for
all real t. The graph of R vs, t hag the general features showa in Figure 3,
As t = - 00, the curve approaches the line R = k2 asymyptotically from above,
crosses the R axis at R(0) > 0 and reaches a maximum slope at R = 4k2', where
it has a point of inflexion. To the right of this point, the curve is concave down-
ward. An interesting feature here is the positive value of R at t = 0. This,
however, is an unimportant anomaly of the mathematical model near the point
of impact and is less objectionable, for example, than the infinite shock front

speed at t = 0 in the Taylor model of a point explosion,
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Lastly, we note down the system of ordinary differential equations sepa-
rated out of equat{one {le, 17.. 18, 1 ;)) whén préportionz;lify is '&'e‘r:“n;and‘ed of the ™~
quantities (20) as Y)—> 1. We have,

(26)A(\qf'r+¢r)+¢r ¢'r+F'/"'V =0

(@7 A(M¢, +é,) + $. Py -B(NF +2F) [y =0

@ AMY' ¢ @) ¢ L (PP By (MPatdy) -0

(29) A{ (y? -1 (F" + 2F)-n) Fy iy} + @ { Fl(yP-1)-nFy -1y } = 0.

In principle, A and B would be determined from conservation of energy and
momentum; then equations (26, 27, 28, 29) would be solved simultaneously for
¢r . 951_. i}J and F, using the Rankine-Hugoniot relations at the shock to
determine initial conditions for the integration, The shape of the cavity will
then be obtained by finding a surface of revolution behind the shock on which

p=0, i.e. F =0,

Comparison With Experimental Results

In the experiments conducted at the Lewis Research Laboratory of the NASA
(Reference 1) impacts were made into a water~filled transparent plastic tank
with metal spheres, 7/32" in dian.eter, of aluminum, steel and tungsten-car-
bide: in addition, one impact involved a copper slug, six inches long, with hemi-
spherical endr of 7/32'" diameter, Measurements were obtained giving, among
other things, the shock front positiun versus time, from which shock front velo-
cities were obtained graphically.

To check the applicability of the shock front differential equation

1y <SR - _B _ A k= A/B

dt JR R '
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and its; solution

2) Bto = RYE . kR4 1 2RM2 433, mM209 + ©
2 3 2

with the experimental results, the first two data points for (R, R) of the Lewis

data for each run were used to determine A, B in (1); this result was then used
in (2) along with the t value for the first data point to determine C, Equation (2)
was then used to compute t corresponding to all the experimentally determined

R data, and comparisons were made with the experimentally chosen t-data, This
procedure was the natural one in view of the implicit wxan=»v in whick (2) in=
vo'ves R as a function of t,

We suminarize below the resulits for the six cases for which computations

were made. In the data, R is given in inches and t in microseconds, Values of

t computed from eq, (2) are denoted by tcomp, *
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.Case 1

1. Aluminum sphere of diameter 7/32 in,

2. Impact velocity = 7, 600 ft/sec. e TR
3. A=19,140 in, 2/sec , B = 93, 300 in.3/?/gec

k =0, 20515 in,}/2
R 0. 57 0.97 1.33 1. 67 2,33 4.15
t 5 10 15 20 30 60
tcomp 5.0 9.8 15,0 20,4 2.1 71.5

After 20 m-sec,, conditions rapidly approach ambiency; the recorded shock
front velocity at 30 msec, namely 5,210 ft/sec, is already close to the speed of
sound in water, 4,715 ft/sec,

Equations {5) and (6) indicate a maximum shock front velocity at R =, 168
in, of 9,500 ft/sec at t = 1,21 msec.

Case II

1. Aluminum spherz of diameter 7/32 in.
2. Impact velocity = 6, 690 ft/sec

3. A=38,226in.2/sec , B=110,010 in/%/sec

Kk =.34748 in,}/2

R . 642 . 949 l.24 1,50 1. 785 2,077
t 4,16 8.32 12,48 16, 64 20, 80 24.96
tcomp 4,16 8,22 12,237 16, 70 20. 85 25,77

Recorded shock front velocity at t = 24, 96 was 5, 330 ft/sec.
Egquations {5) and (6) indicate:
RMax = 6,600 ft/sec at R = . 482 i, , t = 2,1 msec

The recorded shock front velocity att = 4,16 was 6,480 ft/sec and decreased
steadily thereafter.
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Lase I

1. Aluminurm sphere of diameter 7132 in_ R A
2. Impact velocity = 6, 230 ft/sec e
3. A=51,378 in%/sec, B =119,940 in3/%/gec

K =.42835inl/2
R .77 1,11 1.44 1.76 2,38 4,2
t 5 10 15 20 30 60
teomp 5.0 9.93 14,93 20, 04 30, 62 66. 50

The recorded value of R at 30 msec was 5, 080 ft/sec.

From equations (5) and (6) we have:

Rpfax = 5,833 ft/sec when R =,734 in, and t = 4, 50 msec.

R recorded at t = 5 msec was 5,830 ft/sec.

Case IV

). Steel sphere of diameter 7/32 in,
2. Impact velocity = 6,130 ft/sec
3. A=27,2061n%/sec, B =89,638in>/%/sec

K =.30351 in!/2
R . 275 . 62 .97 1.31 1.99 3,87
t 5 10 15 20 30 60
tcomp 5.0 9.76 15,03 20. 69 33, 44 77.0

Recorded R at t = 30 msec was 5, 420 ft/sec,
From equations (5), (6) we have:
RMax = 6,150 ft/sec when R =.368 in., t= 6,26 msec.

At S msec, the recorded value of 1.2 was 6, 000 ft/sec.
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Case V

1. Copper slug, 6 in. long and 7/32" diam, ‘
2. Impact velocity not recorded, ‘

3. A =25 807in%/sec, B =91,708 in3/2/gec

k =.28141 inl/2

R . 705 1.05 .27 1,53 1.80 2,06
t 8.22 12,33 16.44 20, 55 24, 66 28,77
teomp 7.84 12,88 16,38 20, 31 25,63 30. 57

Ambiency conditions prevail shortly beyond 24 msec,
From equations (5), (6) we obtain:
i‘Max = 6,790 {t/sec when R = ,482 and t = 2, 83 msec,

At 5 msec, the recorded value of I.{ was 6, 550 ft/sec.

Case VI

1, Tungsten-carbide sphere of diameter 7/32",
2. Impact velocity = 4, 615 ft/sec

3, A =52,600 inzlsec , B=129,080 in3/2/aec

k = .40751 inl/2
R .74 L1z 1,47 1. 81 2.45 4.2
¢ 5 10 5 20 30 60
teom, 5,0 9.92 14.7 19.7 29,7 61.5

«anbizncy conditions prevail at t = 30 msec,
From equations (5), (6} we obtain:
Rpax = 6,600 ft/sec when R =, 665 in, and t = 4.05 msec.

At 5 msec the recorded value of R was 6, 580 ft/sec,
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