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N 
SUMMARY 

The labeling algorithm for the solution of maximal network 

flow problems and Its application to various problems of the 

transportation type are discussed. 

1^ 
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NETWORK PLOW TOEORY 

L. R. Ford, Jr. 

1.  INTRODUCTION 

e A network (or linear graph) is a collection of points or 

nodes, some of which may be Joined together by arcs.  We shall 

denote the points by F,^ 1 - 0, 1, 2, ..., N, and denote the 

arc joining ?i   to Pj in that order by A^.  (Note that there 

may also be an arc A., joining P  to P..) We may also have 

associated with the arc A^ a capacity c1J and a length (or 

cost) t^y    We shall assume these to be positive integers. 

We shall also distinguish two points in the network, P0, the 

origin, and PN, the terminal.  One may think of this system as 

a rail network, in which the origin represents a factory or a 

warehouse at which goods enter the system, and the terminal 

represents a consumer for these goods who removes them from 

the system.  The c^, then represent upper bounds on the ship- 

ping capacity from P, to P^ and the ^ may represent variously 

the distance from E^ to P or the time required to ship from 

Pj to Pj or the unit cost of shipping from P1 to P..  (We shall 

agree that if c^ - 0 then i1    - oo and that q f ^ 0.) 

Evidently many different problem« may be posed with this 

framework.  We shall discuss primarily the following three 

problems, stated verbally below, 

A.  To find a maximal steady state flow of goods from 

the origin to the terminal. Independent of cost 

considerations (i.e. of i**). 
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B. To find the cheapest route from origin to terminal 

Independent of capacity constraints (i.e. of c. .). 

C. To find the maximal amount of goodj that can be 

Shipped from origin to terminal in a given time, T 

(here interpreting £., as the time required to ship 

from P1 to P.). 

We shall discuss A first as being by far the richest 

in applications.  It appears as a subproblem in a very large 

number of transportation—type problems, and from the theory 

which we shall develop one may obtain a large number of com- 

binatorial results as well. 

?.  FORMAL STATEMENT OF PROBLEM A 

A steady state flow of goods from origin to terminal Is 

required to have the following properties: 

(a) the amount flowing into P^^  must equal the amount 

flowing out of ?i  for 1 <4  0, N; 

(b) the amount flowing along A. . must be less than or 

equal to c... 

Subject to these restrictions. It is desired to maximize xp, 

the amount flowing out of PQ, or equivalently, the amount 

flowing into PN.  This may be presented as a linear program- 

ming problem as follows.  Denote by x,, > 0 the flow from 

P1 to P..  Then 
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I IZxlj -2Zxji -  0        (1 - 1, 2, ...i N-l) 

H xoj ~ 12 xjo * XP 
J     J 

o < ^j < ^j 

maximize x^ . 

Thus Problem A could be solved by a direct application of 

the simplex method to the above system. 

3.      SOLUTION OF PROBLEM A BY LABELING 

We here outline an Iterative technique which will solve 

Problem A, starting with any flow whatsoever, and will also 

solve the dual problem to be discussed later.  The labeling 
+ 

process attaches labels of the form (P^ h) to certain points 

In the following manner. 

(a) Label PQ with the label (-, oo). 

(b) Take any labeled point P. not yet scanned. 

Suppose labeled (?>,, h).  To all points P^ which 

are \inlabeled and such that c.. —■ *.. > 0 attach 

the label (P., rain [h, c.^ — x ."] ).  To all points 

P. which are now unlabeled, and such that x. . > 0, 

attach the label (PT, mln [h, x. H). [in  case P. 
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is a candidate for a label In several ways, use 

any applicable labelJ 

If the terminal PM is ever labeled the process ceases Immediately. 

Otherwise the process continues until no new labels are obtained, 

and the tertrinal is left unlabeled. 

In the former case we increase the flow as follows.  If PN 

is labeled (pj, h) we replace x^ by x^, + h, and if PN is labeled 

(p- h) we replace xNk by xNk - h.  In either case we then turn 

our attention to Pk.  In general, if Pk is labeled (Pj, m) 

replace xJk by xjk + h, and if labeled (P~, m) replace xkJ by 

x  - h, in either case turning attention then to ?y     Eventxaally 

we arrive back at the origin and the process ceases, having 

increased xF by h units.  Then all labels are erased and the 

labeling process is begun again.  We see easily that equations 

(1) remain satisfied. 

In the latter case we are done.  We shall defer proof of 

this momentarily until after we discuss cuts. 

Definition;  A cut in a network is any set of arcs whose 

removal disconnects the origin from the terminal.  The value 

of a cut is the sum of the capacities of its arcs. 

It is clear that, given a cut, any flow from origin to 

terminal must pass through it.  Thus xF < value of any cut. 

We shall prove that we have solved Problem A by producing 

a cut whose value is equal to xp.  Note that we have finally 

achieved a labeling which Includes the origin and excludes the 
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terminal.  If we let I be the set of Indices of labeled points 

and J the set of indices of unlabeled points, then the arcs 

A.. for ICI, J6J evidently form a cut.  For these arcs x.. » c-, 

and x.. • 0, for otherwise P. would be labeled.  Summing equations 

(l) over 161 only yields 

Xp = H xij 
i£I 

= ^2 ci^ " value of the cut 
lei 

Hence x., is maximal; also the cut is one of minimal value. 

This, in passing, is a constructive proof of the minimal 

cut theorem for the case of Integral (or rational) c. .. 

The Minimal Cut Theorem.  In any network the maxiroal steady 

state flow is equal to the minimal cut value. 

4.  A SET OF DUAL VARIABLES 

Writing the last inequalities of(l) in the form 

x, .. + y** ■ C11* we f,ir'^ t,ne d/ual problem: To determine r. 

(point prices) and y., (arc prices) satisfying 

(2) 

. J + ^ > 0 

*1J^0 

^ - ^o > i 

minimize ^^ c<-iy< ? 
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Lcttlng Tr1 - 0 for ifcl, ir^ » 1 for ItJ and ^ ^ 1 for 

lil, jCJ, ^ . ■ 0 otherwise, yields a set of prices which 

satisfy (2) and which produce a dual form equal to the primal 

form (via the Minimal Cut theorem).  Hence these prices form 

an optimal solution to the dual system, from the duality theorem. 

5.  CERTAIN PR0BL5MS SOLVABLE DY NEI'WORK FLOW METHODS 

There are certain transportation—type problems which may 

be viewed as maximal flow problems, and others in which such a 

problem appears as an auxiliary or an associated problem, 

(a) The Capacitated Mltchcock Problem.  The problem 

may be stated as follows.  To find x11 > 0 such 

that 

J 1 

0 < ^j < «u 

minimize 3^ a. .x. . . 
'*- 1J 1J 

Clearly, for a solution to exist, 22 a-» n^st equal 

23 b..  But even if this requirement is satisfied 

the Os*  nnay make a solution impossible. 

The question of feasibility may be settled, 

however, by the flow algorithm.  Set up the network 

with points 0, A., B., and ^T where 0 is the origin 

and vj" the terminal.  The arcs in th« network are 
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OA. with capacity a., B.j with capacity b.f and 

A1E. with capacity c...  The maximal flow In this 

network Is ^jT] a^ if and only if the original problem 

la feasible. 

(ß)  The Capacitated Transshipment Problem.  Here the 

problem is in a capacitated network; certain points, 

C., have availabilities of a. and other points, tT., 

have requirements b..  The feasibility of this 

problem may be settled by adding a new origin 0 

Joined to 0. by an arc of capacity a,, and a new 

terminal tj" with tn Joined to of by an arc of capacity 

b ..  Again, if the maximal flow is Y2 ai " 2Z bi' 

then the system Is feasible. 

6.  TWO EXAMPLES 

(a)  Check the feasibility of this Capacitated Hitchcock 

problem. 

ai < 

I 

13 

10 

7 

10 

— c1 " 
10   9 12 

3 4 2 ii 

1 3 2 ii 

c h 3 g 

3 3 o 1 

"ij 
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(ß)     Check  the  feasllllity of  this  Capacitated Trans- 

shipment   Problem, 

where the availabilities are J5 units at F, and. 

3 units at P.-; the requirements are k units at 

Pj^ and  4  units at Pg. 

7.      A   SOLUTIQK'   FOR   PROPI^M   B 

T}ils may be set up as a  linear programming problem by 

starting with  one  unit  available at  the origin,  one  unit 

demanded at   the  terminal,  and  requiring  the minimization  of 

distance  traveled.     The  equations are 

(3) 

J2   UQJ   ~ XJ0' 

J2 (xij - x
n) 

i 

0 

^  (XNJ  -X1^   --1 

minimize V^ £4 >x. . . ^        ^— ij ij 

The dual problem, with which lire shall work 1« 
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(3') 

x. + /.. ^ x U 

^ x 0 0 

tnaximlze x n 

the minimal distance from P0 to P, 

where the x1 are dual variables associated with the points of 

the graph and, at least in the optimal solution, x. may be 

thought of as representing the shortest distance from P0 to P.. 

A computing procedure is the following.  Assign Initially 

x0 » 0 and x. ■ oo for 1/0.  Scan the network for a pair F1 

and P1 with the property that x. — x1 > I-..  For this pair 

replace x. by x. + .i...     Continue this process.  Eventually no 

such pairs can be found, and xr Is now minimal and represents 

Clearly, if no such pairs 

can be found, the system (5) is satisfied. We shall now prove 

optlmallty. 

Let Pn, P. , ..., P. , PM be the shortest path.  Along u  M       ^  " 
this path, x.   — x.  < i. .   . Svunmlng these relations 

^■k+l   ^-k ~ 1k k-H 

gives xM < (length of shortest path).  On the other hand, for 

each P. (j / 0) there is some P. with x^  + Z^*  » x^ i. . / 0. 

For if J / 0, x. started at oo and has been decreasing monotonely. 

If x. is still oo , we are done; If not, at the last decrease 

there was such an 1 which raust still be at the same value. 

Tracing out this chain backwards from P,., the x. are monotone 

etrictly decreasing; eventually the origin PQ is reached. Here 

XJ - Xi 
£. .  and summing these gives xM ■» length of this chain. 

Hence this is the sl-iortest path. 
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A>J EXAMPLE 

Find the si.ortest path through the following network. 

9.  PROBLEM C VIEWED AS PROhLEM A 

Problem C, the dynamic network flow problem, may be viewed 

as a static flow In the following larger network.  Let S  be 

the network whose nodes are points PT, PT corresponding to the 

old ?^  but one for each basio time unit, i.e., for all T  with 

0 <T < T.     We connect these points with directed capacitated 

arcs as follows. 

T     T+l Arc  P1 F^    ' Is present  with   infinite  capacity  for 

Ö < T < T-l and all   1. 

r r+ii1 Arc  P^PJ is  present  with  capacity  c^ .  for 

0 < r 1 T - ^if and a11  i»  3' 

One sees fairly readily that a tnaxlmal steady state flow in S 

is a maximal dynamic flow for T time periods In the original 

network. 
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10.  THE TANKER SCHSDULIFG PROBLEM 

This problem may be stated as follows.  We have given 

m pickup points P^  and n discharge points Q , and a schedule 

Vl.ji  where tij is the time at which a tanker Is required to 

be at P1 to pick up a load destined for Q   (There may be 

several such times; these are distinguished by the index k.) 

We have further given two arrays of positive numbers, a.  and b 

where a^^^ represents the loading-traveling tine from P. to Q 

and b1J the unloading-traveling time from Q to P^  The problem- 

is to meet the schedule with a minimal number of tankers. 

This problem has been solved aa a transportation problem 

by Dantzig and Fulkerson in [2] . Here it will oe shown to be 

essentially of type A above. 

Let T be the maximal t^ and set up a network with points 

Pj, Qj for 0 < r < T.  We Join QJ to P1 
1J with an arc of 

Infinite capacity, 0 < T < T - i   and P?" to PT+1, oTto QT+1 
AJ 1 1 J J 

with an arc of infinite capacity, 0 < T < T-l.  The schedule 

may be Interpreted as providing a requirement of one unit at P 
k fc +a 

and an availability of one unit at Q^  1J for each tj. [such 

k -1 
that t^j  < T - a^J . This can be accomplished by Joining each 

tk 
1 f 

such ?1  ^   to a.  terminal, T,  by an arc of capacity one, and each 
tlJ+a11 

such Qj    J to an origin, 0, by an arc of capacity one. 

Evidently the maximal flow in this network represents the 

maximal reassignment potential available in the system. 

k 
1J 
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Note  that  this problem Is not,   strictly speaking,  of 

type  C,   since  the availabilities are not  the same  In  each  time 

period.     A new algorithm to handle  type  C directly,  without 

turning  to the  dynamic network,  has recently been  developed by 

D.   R. Pulkerson  and the author. 

BIBLIOGRAPHY 

1. 

2. 

3. 

5. 

6. 

Dantzig, G. B., and D. R. Pulkerson, On the Min Cut Max 
Flow Theorem of Networks, The HAND Corporation., Research 
Memorandum I'l-Ulllb', Jan. 1, 1955 (to appear In Contributions 
to Linear Inequalities and Related Topl-is, Annals or Math. 
Study No. 3b. 

Dantzls, G. B., and D, R. Pulkerson, "Minimizing the number 
of Tankers to Meet a Fixed Schedule," Naval Research 

.Logistics Quarterly, Vol. 1, No. J>.,  Sept. 195^. 

Ford, L. R., Jr., and D. R. Pulkerson, Maximal Flow Through 
a Network, The RAND Corporation, Paper V-JQt,  ^ov. iy, 195^ 
(to appear in the Canadian Journal of Math.). 

Ford, L. K., Jr., and D. R. Pulkerson, A Simple Algorithm 
for Finding Maximal Network Flows and an Application to 
the ÜUchcock Prohlen, 'The  "MT)  ^orpomtlon. Paper P-?43, 
September 25]   l^::.— 

T,ord, L. R., Jr., and D. R. Pulkerson, A Primal--bual Algorithm 
for the Capacitated Hitchcock Problem, The RAUP Corporation, 
Paper ?'-8'J7, .^rch g^ i^bb.  

Gale, David, A Theorem on Plows in Networks, The RAND Corporation, 
Paper P—79&, Januar-/ 5, 1956 I to appear m the Pacific Journal 
of Math.). 


