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_ SUMMARY

The labeling algorithm for the solution of maximal network
flow problems and its application to various problems of the
transportation type are discussed.
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NETWORX FLOW THEORY
L. R. Ford, Jr.

1. INTRODUCTION

. A network (or linear graph) is a collection of points or
nodes, some of which may be joined together by arcs. We shall
denote the points by P,, 1 = 0, 1, 2, ..., N, and denote the

arc joining P, to PJ 1n that order ty Aij' (Note that there

may also be an arc AJ.1 Joining PJ to Pi') We may also have
assoclated with the arc A1J a capacity cyq and a length (or
cost) £1J. We shall assume these to be positive integers.
We shall also distingulsh two points in the network, PO, the
origin, and PN, the terminal. One may think of this system as
a rail network, in which the origin represents & factory or a
warehouse at which goods enter the system, and the terminal
represents a consumer for these goods who removes them from
the>system. The c1J then represent upper bounds on the ship-
ping capacity from Pi to PJ and the 213 may represent variously
the distance from Fi to PJ or the time required to ship from
P1 to PJ or the unilt cost of shipping from Pi to FJ. (Ve shall
agree that 1f c:'_'j = O then £1J = 00 and that fij # 0.)

Evidently many different problems may be posed with this
framework. We shall discuss primarily the following three
problems, stated verhally below.

A. To find a maximal steady state flow of goods from

the origin to the terminal, independent of cost

considerations (i.e. of gij)‘
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BE. To find the cheapest route from origin to terminal
independent of capacity constraints (1.e. of ciJ)'
C. To find the maximal amount of good3 that can be
shipped from origin to terminal in a given time, T
(here interpreting 213 as the time required to ship

from P, to PJ).

i
We shall discuss A first as being by far the richest

in applications. It appears as a subproblem in a very large
number of transportation-—type problems, and from the theory
which we shall develop one may obtain a large number of com—

binatorial results as well.

2. FORMAL STATEMENT OF PROBLEM A

A steady state flow of goods from origin to terminal 1is
required to have the following properties:
(a) the amount flowing into P; must equal the amount
flowing out of P, for 1 < 0, N;
(v) the amount flowing along AiJ must be less than or

equal to Cij'

@

SubjJect to these restrictions, it 1s desired to maximlze Xps
the amount [lowing out of PO’ or equivalently, the amount
flowing into PN' This may be presented as a linear program—
ming problem as follows. Denote by xij > 0 the flow from

P1 to P Then

i
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rzxu-z:cjieo (1 =1, 2, ..., N=1)
J J

%:xOJ-%:xJOsz

t

|

k]
o

(1) < %"NJ-?XJN’

0 < xiJ < ciJ

maximize xF .

\

Thus Problem A could be solved by a direct application of

the simplex method to the above system.

3. SOLUTION OF PROBLEM A PY LABELING

We here outline an iterative technique which will solve
Problem A, starting with any flow whatsoever, and will also
solve the dual problem to be discussed later. The labeling
process attaches labels of the form (Pf,h) to certailn points
in the following manner.

(a) ILabel Py with the label (=, o0).

(b) Take any labeled point PJ not yet scanned.

Suppose labeled (P'E, h). To all points P, which

are unlabeled and such that Cyq ~ Xqyq > O attach

the latel (P+, min Bx, ch -»xjij). To all points
P, which are now unlabeled, and such that xiJ > 0,

i
attach the label (FF, min [h, xijl). (In case Py
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is a candidate for a label in several ways, use
any applicable label.]
If the terminal PN is ever labeled the process ceases immediately.
Otherwise the process continues until no new labels are obtalned,
and the terminal is left unlabeled.

In the former case we increase the flow as follows. e Ph
1s 1abeled (P}, h) we replace X by X + hand if Py is labeled
(P;, h) we replace X, by Xy —h. In either case we then turn
our attention to P, . In general, if P, 1s labeled (Pg, m)
replace X gy by X gk + h, and if labeled (F}, m) replace Xy by
ka — h, in either case turning attention then to Pj' Eventually
we arrive baék at the origin and the process ceases, having
increased Xp by h units. Then all labels are erased and the
iabeling process is begun again. We see easily that equations
(1) remain satisfied.

In the latter case we are done. We shall defer proof of

this momentarily until after we dilscuss cuts.

Definition: A cut in a network is any set of arcg whose

removal disconnects the origin from the terminal. The value
of a cut 1s tne sum of the capacitles of its arcs.

It 1s clear that, given a cut, any flow from origin to
terminal must pass through it. Thus Xg Shvalue of any cut.

We shall prove that we have solved Problem A by producing
a cut whose value 1s egqual to Xpe Note that we have finally

achieved a labeling which includes the origin and excludes the
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terminal. If we let I be the set of indices of labeled points
and J the set of indices of unlabeled points, then the arcs
A.iJ for 1tI, J€J evidently form a cut. For these arcs xiJ = c1J

and xJi = O, for otherwise PJ would be labeled. Summing equations

(1) over 1€I only yields

Xp = > Xy = > Cyy = value of the cut.
1€X 1el
JeJd jtJ
Hence X5 1s maximal; alsc the cut 1s one of minimal value.

Thils, iIn passing, 18 a constructive proof of the minimal

cut theorem for the case of integral (or rational) Cy 4

The Minimal Cut Theorem. In any network the maximal steady

state flow is equal to the minimal cut value.

4, A SET OF DUAL VARIABLES

Writing the last inequalitiesor(l) in the form
xij + y1J = ciJ’ we find the dual problem: To determine Ty

(point prices) and ’ij (arc prices) satisfying

7

-7, + xij > C

’lTi 'EJ

¥y 20
(2) <

TIN--TTO>1

L minimize Z °137’1J
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Letting Ty = O for 1eI, Ty = l for 1¢J and 11J = 1 for
1eI, J€J, Xij = 0 otherwise, ylelds a set of prices which
satisfy (2) and which produce a dual form equal to the primal
form (via the Minimal Cut Theorem). Hence these prices form

an optimal solution to the dual system, from the duality theorem.

5. CERTAIN PROBLEMS SOLVABLE BY NETWORK FLOW METHODS

There are certaln transportation—type problems which may
be viewed as maximal flow problems, and others 1n which such a
problem appears as an auxiliary or an associated problem.

(a) The Capacitated Hitchcock Problem. The problem

may pbe stated as follows. To find Xyq 2 0 such

that

minimize 3" aijxi_j .

Clearly, for a solution to exist, }::ai must equal
:E:bj. But even if this requirement is satisfiled
the ciJ may make a solution impossible.

The question of feaslibility may be settled,
however, by the flow algorithm. Set up the network
with points O, Ai’ FJ, and J where O 15 the origin

and J the teminal. The arcs in the network are
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OA, with capacity a,, BJU' with capacity bJ, and
KIEJ with capacilty ciJ‘ The maximal flow 1in this
network 1s }::ai 1f and only if the original problem
18 feasitble.

The Capaciltated Transshipment Problem. Here the

problem 1s 1n a capacitated network; certaln polnts,
0,, have availabilities of a; and other points,tf},
have requilrements bj‘ The feasiblility of this
problem may be settled by adding a new origin O
Jjolned to 01 by an arc of capacilty 8y, and a new
terminal J with 'J} jolned to J by an arc of capacity
bj‘ Again, if the maximal flow is 5 ay = E::bj,

then the system is feasible.

£, TWO EXAMPLES

(o)

Check the feasibility of this Capacitated Hitchcock

problem,.
r~ vy \
g 10 9 12
13 3 L 2 4
1C 1 3 2 4
=
19 s | 4| 3 | 2 1]
10 3 > 2 1
%
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(B) Check the feasibility of this Capacitated Trans—

shipment Problem,

where the avallabilitles are 3 units at P. and

1l
5 units at Pé; the requirements are 4 units at

P4 and 4 units at P8'

7. A SOLUTION FOR PROBLEM B

This may be set up as a linear programming problem hy
starting with one unit available at the origin, one unit
demanded at the terminal, and requiring the minimization of

distance traveled. The equations are

PZ (on - XJO) = 1
S

2 (XNJ = XJN) = =i

| (minimize S gijxij

The dual problem, with which we shall work is
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A
Xy + zij pd x'j

(3') ¢ x5 =0

maximlize xn

el

where the x4 are dual variables assoclated with the points of

the graph and, at least in the optimal solution, Xy may be

thought of as representing the shortest distance from PO to Pi.
A computing procedure ig the following. Asslgn initially

= O and x, = @ for 1 ¥ 0. Scan the network for a pair Py

X0
and P

1

3 with the property that Xy = X, > zji' For this pair

replace x4 by xJ + ﬁji' Continue this process. Eventually rnio
such pairs can be found, and Xy, is now minimal and represents
the minimal distance from PO to Ph’ Clearly, if no such pairs
can be found, the system (3) is satisfied. We shall now prove
optimality.

let PO’ Pil, esey P K PN he the shortest patihh, Along

this path, Xy - X < 14 ., Summing these relations
k+1 k — ko k+1

glves Xy 5 (length of shortest path). On the other hand, for

1

each PJ (3 # 0) there 1s some Py with Xy + f44 = X4, BiJ ¥ 0.

For 1f j # O, x, started at oo and has teen decreasing monotonely.

J
Irf xJ is stlll o0, we are done; if not, at the last decrease
there was such an 1 which must s5till be at the same value.
Tracing out this chain backwards from 1=’.\I the x4 are monotone
strictly decreasing; eventually the origin PO is reached. Here
xJ -Xy = 31J and summing these gilves X, = lenzth of this chain,

Hence this 1s the shortest path.
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8. AN EXAMPLE

Find the sl.ortest path through the following network.

9. PROBLEM C VIEWED AS PROBLEM A

Preblem C, the dynamic network flow provlem, may be viewed
as a static flow in the following larger network. Let S be
the network whose nodes are polnts PT; Py'corresponding to the
old P1 but one for each basic time unit, i.e., for all T with
0 LT T. We connect these points with directed capacitated

arcs as follows.

T T+l
Arc Pi P1+ is present with infinlte capacity for

0T T=1and all 1.

t.r+£

Arc PiPJ 1 is present with capacity cij for

0T <¢T -21, and all i, J.
b = o

S

One sees falrly readlly that a maxlimal steady state flow in S
is a maximal dynamic flow for T time perlods in the original

network.
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10. THE TANKER SCHEDULING PROELEM

This problem may he stated as follows. We have given
m pickup points P1 and n discharge points QJ, and a schedule
{tfj} where t?J is the time at which a tanker is required to
be at P; to pick up a load destined for QJ. (There may be
s8everal such times; these are distinguished by the index k.)
We have further given two arrays of positive numbers, aij and biJ’
where aiJ represents the loading-—traveling time from Pi to QJ
and b1J the unloading-traveling time from Q'j teo Pi. The problem
is to meet the schedule with a minimal number of tankers.

This problem has been solved as a transportation problem
by Dantzig and Fulkerson in [2]. Here 1t will be shown to be

essentially of type A above.
k

Let T be the maximal tiJ and set up a network with points
T+2
Pi, Q;'for 0L TLT., We join Qg'to Py 1 w1en an arc of

Infinite capacity, 0 < T T = 4y, and 7y to ¥1*%, oF to Q*t

with an arc of infinite capacity, O S,t'ﬁ T=1. The schedule
tk
may be interpreted as providing a requirement of one unit at Pi1J
tli{J+ai p "
and an availability of one unit at Qy for each tyy [such

that t¥J LT - aij - This can be accomplished by Joining each
tk

such Pi1J to a terminal, T, by an arc of capacity one, and each
tiJ+aij

such QJ to an origin, O, by an arc of capacity one.

Evidently the maximal rlow in this network represents the

maximal reassignment potential available in the system.
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Note that this problem 1s not, strictiy speaking, of
type C, since the avallabilities are not the same 1in each time
period. A new algorithm to handle type C directly, without

turning to the dyramic network, has recently been developed by

D. R. Pulkerson and the author.

BISLIOGRAPHY

-

1. Dantzig, G. B., and D. R. Fulkerson, On the Min Cut Max
Flow Theorem of Networks, The FAND Corporatlion, Kesearch
Memorandum TF=101T, Jan. 1, 1955 (to appear in Contributions
te Linear Inequalities and Related Toplcs, Annals ol Math,.

Stady 1o, 3°.

2. Dantzilg, G. ., and D. R. Fulkerson, "Minimizing the Number
of Tankers to Meet a Fixed Schedule," Naval Research
. Logistics Quarterly, Vol. 1, No. 3., Sept. 195k,

%, Ford, L. R., Jr., and D. R, Fulkerson, Maximal Flow Through
a Network The RAND Corporation, Paper‘P—IOS, Nov. 19, 1954
{to appear in the Canadian Journal of Math.

Y, Ford, L. K., Jr., and D. K. Fulkerson, A Simple Algorithm
for Findin Maximal Network Flows and an Applilcatlon to

lem, ' 0 3,
Séptember 20, 195D,

5. Pord, L. R., Jr.,and D. II. Fulkerson, A Primal-Dual Algorithm
for the Capacitated Hitchcock Problem, “he HAND Corporation,
Taper pP=32,, March 25, 1950,

6, Cale, David, A Theorem on Flows in Networiks, The RALD Corporation,
Paper P—TQB"Uanuarv 3, 1050 (to appear In the Pacific Journal

of Math.).




