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V.ayne University, f-4arch 27-23, 1951 

Arnold 3. Mengel 

An analogue computer of the REAC type, although 

designed primarily for simulation, is a valuable tool in 

apnlied research.  Jeveral modifications have increased 

the flexibility and usefulness of the AAKL REAC. 

The REAC proved its worth in the study of the 

application of the calculus of variations to the optimiza- 

tion of aircraft flight paths.  Prior to the installation 

of the REAC several reports on the theoretical aspects of 

the problem were written, but reached no conclusions because 

of the complexity of the equations,  REAC solutions were of 

a surprising nature that not only led to unexoectedly 

practical answers, but also suggested revisions of the 

theory,, 
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WAS U^o^ A  y- 
The  calculus  of  variations  hao   been^SsBjaäd.&d  at—rt^rtH) to    dteJ&rp 

answ^P-TSUCh  cuestions  as ——     -—„._., ^^■.    || 

^—(1 )      .hnt   path   should  a  missile   ,vith  a   fixed  period  of  thrust 
fly   to   maximize  its   ranpo   at   a   specified  final   velocity 
and  altitude? 
■.what   path  snould   an  aircraft   fly  after  take-off to 
minimize   its  time   of  flight   to   level-flight,   combat 
velocity at  a  specified  altitude^ 

The  resulting equations  are  computationally difficult  to 
handle   because of  their   complexity  and   quasi-stable   nature.     More- 
over,   the  nev/   variables   introduced   by  the  calculus   of  variations 
have   no  apparent   ohysical  meaning,   which   makes the   analysis   of  their 
influence  difficult. , 

This paper outlines  the  experiences^\*6  have,  had' ate  RAJiiJEr 
solving üülcul'U'S uf variätlörjö^pTob'lems  on the  KEAC.     /;  modified 
form of the   equations   (presented   as   an  appendix  to  this   paper)   was 
developed  which   not   only was   more   satisfactory   comnutationally,   but 
also  showed  that   the   calculus  of variations   equations  described  the 
motion  of  a  body   similar to   the one  under  study.     The   nature  of  the 
KEAC   solutions  suggested  that  the   steady-state,   or mid-path,   trajec- 
tory  and   the  transient   trajectories   from the   steady-state  path  to   the 
end-points   could   be  computed   separately.     The  results  using  this  method 
agreed  well with   the  ■"exactMsolutionf   and   gave   a   trem .r; I \;s   savings 
in  computing  time# siji^_:nuch   of  the   trinl-and-error  process   of 
meeti-ng  end-conditiorS^Wftw^^e  usua]   process  was   eliminated  and the 
stability problem was   e^teumvent    !       1' 11 nmrr^j   certain  trajectories 

'"Quotation marks  have  been  placed  around   the  word  exact ,'^tre<:ause 
certain approximations  were   necessary  in the  computation. 
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lent   themselves  to   a  simple   servo-mecrict.' tro   type   an; ly^ic   that 

;".V'-    results  within  0,-c   pel1   cer.t    uf tl       :^\-act"   optiinuri   i.n  one 

:n:.-'utt   of  .ki,AC   t iTie  coMnorei  to   the   eif-ht   ; curs   repuire'i   for   ti 

"exact"   solution,     iiowevor,   certain   ruisHile   equations   were   sc 

coniDlicated   that  the  optimum  oaths   ha tc   b''   fouri   by   pro2:ramming 

the  flifht  paths  anri  systematically  re^rchinp   for  t maximum.". 

Corinlder  a   body  of 

weifht   w   flying   Ln   two-dim- 

ensional   space '/.ith a  velocity 

v   in  a  direction  making  an 

am.'le  9 with  the   x-axis  as 

snown in "ipure 1 .  The tot; 

forces^' acting on the body 

are resolved into four com- 

r orients, the weifht vectcr V.', 

a force due to the change of 

weight - — V, a force vector 

M acting along the axis of the 

body, and a force N normal ro 

its axis, with l? = if + ll. 

Th > angl e o: ttack * is the 

Figure 1.  Forces on the Body angle between the velocity 

vector V and the axis of the 

body.  The magnitudes of M and N are assumed t, be functions of 

the altitude y, velocity v, and angle of attack oc ,  Defining 
If as the position vector of t 

R = \/x2 + p 
body: 

the dynamic equations are 

^Neglecting tKe corToITs and cent- ri fl 
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with Initial conditions . 
x»x,, y*yj, v • v, , 0 » 9, , w = w,, and t " t^ 

The problem is to determine the nath with terminal conditions 

x - x2, y - y2, v - v^, ^ - 0^, w » W2, at t - tg 
such that one of the terminal variables is a minimum or maximum. 

The problem may be modified by not srecifying certain terminal 
values, but if v2 or 6^ are not prescribed (or optimized) the 
problem becomes singular.  The problem may be modified further 

by specifying constraints, 

DISCUSSION 

The problem posed in the previous section is not treated 

in the standard texts on the calculus of variations1, and the first 

treatment of the problem at HAND was by E, M. Liebhold ,  Later, 

Dr. Magnus Hestenes, as a consultant, developed a more complete 
and elegant presentation 2,3,.  The work of this paper was done 

with the cooperation of Dr. Hestenes, Kenneth Martin, and Roger Snow« 

Application of the calculus of variations to the above 
problem yields a set of Euler-Lagrange differential equations (and 

variables) to be solved simultaneously with the dynamic equations 
of the system under study.  The initial conditions of the Euler 
variables may be varied to cause the trajectory to pass through f^ny 

possible set of end-conditions.  Certain conditions must be satis- 
fied to assure the solution is an optimum*. 

l*? 
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Unfortunately the  Euler eouations   are  usually  considerably 
more   complicated than   the dynamic  equations.     Furthermore,   the 
adjustment  of the   initial values  of the  Euler variables to meet 
specified end-conditions  is  a  tedious trial-and-error process  made 
more  difficult  by  the   absence of any physical  significance  for these 
variables.     To  make matters worse,  the  equations   turn out to  have 
a  quasi-stable  nature  very similar to that  of a 
walker.     This  combination of woes  led to the  development   of the 
equations appearing in  the appendix. 

blow-by-blow 
the calculus of 
blew  at   some  future 

The remainder of this  paper will be  a 
description of our trials and  tribulations with 
variations«     We  hope to   continue  work on the   pre 
time. 

Problem 1 

Our first experience with a calculus cf variations problem 

came when our acquaintanceship with the REAC was just starting and 
nearly resulted in a parting of the ways. 

The purpose of this problem was to test how sensitive a 

maximum was to approximations mad« JJQ the Euler equations« The 
body studied had constant weight, no lift» constant thrust, and 
drag proportional to the square of the velocity, 
dynamic and Euler equations were quite simple. 

Our faces were crimson when the soluti 

The resulting 

ons of the aonrox- 
imate Euler Equations gave maximums several percent greater than 

those given by the exact equations.  No manner o 
swearing, checking, and even cheating a bit on s 

the REAC from its opinion that the approximate s 
better. 

f kicking, balancing, 

ettings could deviate 

olution was the 
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Finally in desperation I derived the Euler equations and 

was overjoyed to find the problem had been submitted with a wrong 

sign in one of the Euler equations.  Thus the K£AC rot only was 

vindicated, but at the same time was made a hero. 

The corrected equations dernonstraten, a. honed, that 

the optimums are flat enough that approximate trajectories give 

results for all practical ournoses rood as the ootimum trajectories. 

Problem 2 

This problem was a sequal to the above - an attempt to 

get a "feel" for trajectory optimization and to find the influence 

of the initial values of the Euler variables.  A plot v/as made of 

final velocity v^ as a function of final range x.g for the body of 

Problem 1 at specified final values of altitude y^, and time t^, with 

zero final vertical velocity (92 = 0 or 180°). 

It was hoped that a linearized set of eouations would 

help in establishing the relationships between the initial values 

of the Euler variables to give the proper end-conditions, but since 

the partials changed rapidly and the inaccuracies introduced by 

taking differences  were large, a plot of two of the variables 

versus the arctan of the third proved more helpful and at the same 

time gave some insight as to their influence on the system.  The 

form of the plot of i.^  versus x^ is x/^ 

illustrated in Figure 2.  Point A is 

the terminal pair for maximum x^ with 

x^ not specified, while Point B is 

the terminal pair for maximum x^ with 

x2 not specified.  Actually, only the 

arc length designated AB is of any 

practical interest.  It is apparent 

.that since the lower oortion of the 

»*• X.. 

v-- \*.\ 

Figure 2.  Values of 
x> versus x^ for 

specified y2, &2l   and t£. 
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curve gives minimum values of x^ while the upper portion gives 

the maximum values, all other nossible terminal conditions lie within 

the closed curve.  For example, the system can not have a terminal 

condition such as specified by Point P. 

Problem 3 

To  maximize  the  range  of a  missile  it   is   necessary  to 
study   the  powei—on  and   nower-off   (or glide)   stages   separately. 
This  problem was  the  power-on  trajectory  optimization.     /.  set  of 
values  similar  to  the  arc  A3 of Figure  2 was  desired  for several 
values  of 9^   and  yk   and  was  to   bo used   as  the   initial   values   of 
the   pov/er-off trajectories. 

The   Euler  enuations   for  the   power-on  trajectory were  too 
complicated  to  fit  on our REAC  and   a  trial-and-error process was 
required  to   give  pseudo-optimum paths.     Since  the   peaks  appeared 
very  flat  and   no   better  hand-controllpd   paths  could   be   found,   use 
of the   resulting   trajectories   seemed   justified. 

b. 
The flight path was first programmed by letting 

0 = a + yt,     The value of a was varied, b and 9] adjusted to meet 

the end-conditions and the sets found that gave maximums.  The 

angle of attack giving the programmed 9 was computed and used in 

evaluating thrust and drag,  A second method of nrogramming with 

9 = 0 for 0 < t < r 

9 = a + rjlt - T) for T < t < t^ 

gave nearly identical maximums with what appeared at the time as 

more realistic trajectories. 
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Problem 4 

During the power-off portion of the trajectory the 

velocity remained well above the spepd of sound, the coefficients 

of lift and drag were reasonably well behaved and, as a consequence, 

it was possible to compute the dynamic plus Euler equations on the 

KEAC.  Since it •..•ab desired to maximize range with no regard to 

time, letting range be the independent variable sni eliminating 

time greatly simplified the computation. 

The trajectories were very sensitive to changes in the 

initial conditions of the two Euler variables and many trial nans 

had to be made to locatt the region of interest,  A typical set 

of trajectories with the initial value of one of the Euler variables 

fixed and the other varied is shown in Figure 3.  A change of the■initial 
value by about 5 per cent would swing the trajectory from oath 

A to 3,  This great sensitivity and the quasi-stable condition is 

understandable when one considers the many end-conditions that must 

be possible no matter how undesirable they may be (i.e., vertical 

flight, reversed headings, etc.) 

^ 

Figure  3.     Typical  P' '    i ra 1 e c t ri r L e s 
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It '..'as aonarent that the path 

between ." and B.  Paths C and    :> r. ,.,.5 • 
giving .naximun rsny.e  wac 

) were next found and differed by 

the order of about one oer cent in the ir.itial value of the Juler 

variable.  The optimum path was between t: em; so using initial 

values betv/een theirs vie   found the paths E and F,   having the order 

of u.1 per cent difference in their initial conditims.  This 

discussion is based upon the assumption that the initial value 

held constant was :.t the proper value for the optimum path. 

Actually, the initial value of the second Luler variable would have 

to be "jockeyed" along with the other to keep the solutions from 

"blov.'ing up".  By the time path E and F were reached, the a rift in 

the d.c, amplifiers prevented a continuation of the ^bove procedure 

since the changes in the initial conditions became of the same 

order of marnitude as the drift,  .: simple change of scale-factor 

was impossible since the variables range! from +1CG to -100 volts 

despite their sensitivity to initial conditions. 

An initial value bounded by those of naths E and F was 

selected, the problem stopped at the node P and readings made of 

the variables.  These values, with perturbations on the Euler 

variables, were used ss new initial conditions.  This nrocoss was 

continued until the final velocity dropped to v^ and required a 

full day of computing.  Since this process had to be reoeated for 

several sets of v,, 9,, and yj , the prospects looked grim. 

However, inspection of the first two days' results le ; 

to a much simpler computation.  First it was noticed that the 

paths oscillated about th« altitude for which lift equalled weight 

at the r.ngle of attack a maxiraizinp; lift over drag.  Moreover, the 

optimum paths approach«J this critical altitude in much th« same 

wa> an underdampei servo-mechanism responds to a step function, 

.Mei.ce, :!e  tried orogrararning (X  as 

Ä - CX (1 - K sin 6) c 
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where  0(    was   a   function  of  velocity  and   K  was  varied  until   a c J 

maximura  range was  obtained.     The unstable  appearing end-condit i">ns 

could   be   obtained   by  changing  the  sign   in   front   of K;   by   varying 

K  and   the  time   of  reversal   of sign  any  end-conditions   could   be 

realized   by  paths   similar  to   A  through  F of  Figure  3.     The   values 

of range  obtained   by  this  approximate  method  were within  0,2   per 

cent   of   those  found   by  the   "exact"   solution,   and  required  about   one 

minute  of  REAC  time   compared  to  the  eight  hours   required   for   the 

"exact"   solution. 

Problem 5 

The Euler and dynamic equations for an aircraft flying 
below the speed of sound are simple enough to handle on our REAC. 

In this problem we attempted to minimize time of flight from 
take-off to level flight, combat velocity at a specified altitude. 

The first attempt at solution showed that the equations 

were even less stable than those of Problem L,,     In fact, the paths 
dove into the ground no matter how the Euler variables were 

adjusted. 

At this time the work of the appendix was started and it 

became apparent that the constraint y > 0 must be added, since 

an initial diving path to pick-up velocity was optimum. Obtaining 

a solution even with the computationally improved equations of the 

exact form in the appendix was still more difficult than for those 

of Problem 4 and again we were forced to develop an approximate 
method . 

Previous work indicated that if the initial and final 

values were sufficiently separated, the mid-paths of all trajectories 
were nearly the same except near the transitions to the boundary 
values.  Hence, as shown in the appendix, a quasi-steady state 

• 
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solution  v/as   found   giving  the  optimum  midpath   for all   cases.     The 
complete  set  of  equations  was   used   only   for  the  transition  from 
the   raid-path   to  the   end-points.     Also  equations  were   found   giving 
either  the   ontiraum  velocity  or rate  of   climb  at  which   to   fly  as 
functions  of altitude,   and  the   computation   of the   steady-state 
trajectory   became   simple   enough   for  hand   solution. 

The  dynamic  equations   for the hypothetical  aircraft 
studied   .-.'ere 

x =  v  cos  0 ft/sec 

y  = 'v  sin  9   ft/sec 

v »   [lo - 1.36*10-5 v*  - 3.l3*icr3(va:H}T - 32.2  sin 9 ft/sec2 

9 3.13*10-3 crv«. - ß2'^  cos  9 radians/sec. 
v 

where cr - relative air density « e a^. 

Figure A shows the form of the quasi-steady state 

solution plus one initial set of conditions and several final 

conditions.  If the final velocity is approximately ten per cent 

or more than the climbing velocity, a final dive (as in Path A) is 

found to give cui'te a saving in time over a oath leveling off at 

the desired altitude and flying level until the specified velocity 

is reached,  A final steep climb before leveling-off is nroper when 

a velocity less than the critical climbing velocity is desirei.  The 

initial portion of the trajectory was found by flying level until 

an-OL was called for making 9 > 0 at which time the constraint 9 > G 

was removed, as shown in Figure 5.  A more satisfactory method would 

involve coming off the steady-state path with the comnlet^ equations 

as in the final portion of the trajectories but with time running 

backwards ? 

Figure 6 and the equivalent nono.qram of Figure 7 rive not 

only the minimum time of flight for specified values of v^, y^, 

and 9^,   but also the maximum value of y^  with vk,   t^,   and 9^ specified 

and the maximum value of v^ with t^, yd,   and 9t specified. 

:  . 'V-    V:  .-^   ^'^V>^ 
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The optimum velocity ani rate of climb for the hypothet- 

ical aircraft to fly ab functions of altitude are given in Figures 

8 and 9 respectively.' 

Comparisons of other flight programs with the optimum are 

illustrated by Figures 10 and 11.  The aircraft climbed at a velocity 

Av greater than the optimum in the first case and at a constant 

velocity in the second case.  In both cases when the climbinG 

velocity was less than the specified final value, the aircraft 

leveled off at the snecified altitude and flew level until the 

desired velocity was reached.  For those few cases where th^ climbing 

velocity was greater than the final value, the aircraft pulled into 

a climb before leveling-off. 

It is difficult to justify matheraatically the u.^e of the 

quasi-steady state path for the major portion of the flight path 

and the use of the exact Ejler ecuations only for the transition 

from the steady state oafh to anr fr m the end points.  However, 

the fact that the exact soluti^nc follow the steady state path 

smoothly for a while arid then oscillate about the steady state 

path when they "blow-up" is some Justification.  If then all 

optimum paths have- very nearly identical midpaths, it becomes 

clear why the quasi-stable nature of th^ equations is necessary to 

make it possible to meet all end-rointso 
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APPENDIX 

w BASIC EQUATIONS (assuming ^ ^ C) 

Defining^ 
H = X»7 * fvV* 

where A and a  are variable multipliers, the Euler-Lägrange equations 

ootimizing the trajectory described by Figure 1 and Equations 1 are 

- VRH 1 

K ' " VVK y [2] 

'a C 

where 

V R gradient of ?! in R snace 

gradient of H in V space 

(the symbol ,\Z, may be viewed as a partial gradient, i.e., the 
gradient when all variables but R are heir! fixe:P 

the dynamic equations of motion are 

Notice that 

R VA 
(1 

VHH 
(la) 

Letting the argument of ^ be $, define 

p » $ - e - a 
7? _ (3) 

G ■ M cos p + N sin P m ~'F 

or G is the projection of F on the vector u.  Then, 

*The advantages of the vectorial derivation were pointed out by 
Roger Snow. Tr.is appendix asaumes the reader is familiar with 
the theory of the calculus of variations given in kl-'-IOQ* 
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H = 7\-V + £ w MG ♦ fag 

A . - ^ HVUG w  R 

H- -^VVG -1 
H -Hp^ = 0 

>  (4) 

Treating p as an independent variable 

Gv = Mv cos p + Nv sin p 

G  • M cos P + N  sin P y     y      r     y      r 

Ga = Ma cos p + NÄ sin p j 

Gp = - M sin p + N cos p 

Since p » (J) - 9 - a 

. Ge = " GP 

da " Ga " GP 

>    (5) 

and 
Ha "^(Ga - ap)f-G 

yields 

Ga = GP 
As a consequence, the last two equations of set 5 yield 

Ma cos p + N(:x sin p = - M sin p + N cos p 

or N - Ma 
p - arctan N^ ; M (6) 
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Reducing   the   vector  equations   1   and  i!*  to   polcr   form  gives 

X   =   V   cos   0 

y  • .v   sin 9 

= ^(M v  = "IM cos (V   - N  sin a )   - g s w 0 in  9 

vö   = £{K  sin oi   +   N   cos a )   -  g   cos  9 v/ 

M = §[-Gv   cos   (ot + p)   *  -^ sin   (a+p)]^- />|     sin 0   - Ax  cos  0) 

G 
pi   = f [Gv   sin   (a+p)   + -^  cos   (0i+p)JM -  A cos  ty  * A     sin (j) 

(7) 

^x  - ü 

\     =   - ^ G    M nV W       V ' y 
N  - H 

arctan a 
N     + ot 

y 
in which  GQ has  been  replaced  by  the   equivalent  - Gc 

It   can   be   seen 

that  the Euler equations 

describe  a  system acted 

upon   by the   forces   shown 

in  Figure   12.     Thus  these 

equations   can  be   considered 

as  describing  the  dynamics 

of  an   "Eulei—craft"   having 

an  axial drag  force   (JiG   , 

a  normal  lift   force |u  * , 

and   two  pseudo-gravity 

forces h     (variable)   and 

A     (constant).     The  axis 

of the   "Euler-craft"   lies 

along  the   V vector and   its Figure   12»     Forces   on  the 
"velocity"   vector ^ is "Euler-craft" 

(cx + p)   radians  above   that   of  its  axis. 
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APPRüXIMAT: I ., J .".  1  X o NS 

In  general  the   forces  on  an  aircraft  are   given   by 

>   (Ö) 

f M « T(y,v)   -  f, (y,v)a- v 

§ N  =  f^ly.v) crv^a 

where 

o- •=: e a^ is the relative air density and f, and f2 are 

nearly constant for velocities below the speed of sound. As a 

consequence 
N  - Ma f^crv^a 

p =  arctan  ^ ;  M  =  arctan  T  _  f] crv<,   +   f^crv^   " arctan a~a 

since     T  -  fj Cv^  «  f^ crv^     and   ex is   small. 

If v/e  neglect  the   influence  of the   axial    forces   on  the 

equations   for  9  and   0,   and   let  p =a<X ,   sin a   = d,   sin  2«. =   2C(, 

cos 0<   -  1 ,   and   cos  2CX =   1 ,   equations   7  become 

x = v  cos 0 

y  -   v   sin  9 

v   = ^(M  -  fl«)   -  g  sin  « 

e = £ ii _ s cos 9 
W   V V 

-^ = w[~{Mv  + aNv)   +   (Ma + ^N«./-*]   - Ay sin (J) - /x cos C 

Ö  = f^'a + a\]   - by c°s $  +   ^x 
sin  ^ 

^ 
\   (9) 

/i     =  0 
>" y^ 

- ^TM   + «K 1 
wL y yJ 
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Since v = (9 + 2a),  a.N  = N, vK - ^N(f, 
and Ma = 0, the Euler equation? can bo modified to 

constant ) , 

2Ö( = il cos Ö "*■  cos (9 +   2a)   * —-£■  sir.   (9 * 20) 

f-i w 'v 
A 

■in (9 * 2a) - -rr c os (9 + 20l)  I (10 

WL y   yJ 

If the final ranfe is rot specified. h     - 0,  4 = 

is a convenient change of variable, and the Euler equations become 

^k = g C°S 9 -  £,005 (9 * 200 

/ in) 

Notice  that   once  v, ,   9,,   and  <*,   are   set,   the  setting  of £,,    ieter- 

mines «i,   thus   clarifying  the   influence  of the   Euler  variables. 

QUASI-STEADY  ■jVr.Tr   CONDITIONS 

During the  quasi-steady  stat.-;   condition,   v, •©, a, a,   irA 

^will   be   small  and we  can  use  the  anoroxj.mations 

g   cos 9 ar £ N 
w 

g  sin 9 ^ ■"  (f-i  - *.„ ; 

)      (12) 
£, ^ ^ 

v 

^TM     - <XN   1 %: .Sr^  sin   (9   +  2a,   t- ^ v 1 
w L y yJ       v (v w    vj 

g sin   (9  +   „a]   ^   [g  cos  9)2* +  g  sin   9«  ^[M  *  Naj 
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Pcge   t$ 

-;.:   :;.,t, -c   :•!. :;  (-f Ijy   ~ ~^)K'"   +  a:0   =   (:':   ■  ^ ' 
or 

v( 
li -i_ ^-)  G   =  F-V  •»   Hate  of   change   of  er.er^y        (13) 

This  equation  solved   for ex. slnultaneoualy v.'ith t.1.*    dynamic   equations 

yields  the  optimum  quasi-steady  state   trajectory. 

Putting equation 13 in the form of set S and assuming 

that the derivatives of the f functions with respect to y and v 

have  only   a   second-order  effect,   we   find 

~-(T    *  afjCrv2   -  af4.cr(va)^- T  +   f, crv^   -  f^o-{ya)'i ■* vTv  - Z^yCrv* 

or 

£(1   +a^)   cos 9 
(U 

/.fter take-off  the  plane   should   fly   level   (with  P > 0   constraint) 

until 9 becomes  nositive   (at  which   time  fe1 > .0   constraint   is   removed). 

While  this   equation   is   suitable  for   REAC   computation,   in 

practice  either  the  ontimum velocity  or  optimum  rate  of   climb  as 

function« of altitude would   be  more  useful   to  a   pilot.     Moreover, 

the(rate  of  climb)versus  altitude   :urvo   can   bo   integrated  with 

respect  to   altitude  to   find  the   tine  of   flight   :Ion?  the   quasi- 

steady  state   path.     The   variable Ot  can  be   eliminated   by   aoproximating 

it   by that   value   it  should   have   to  keep  9  =  0.     To   find   the   optimum 

velocity  or  rate  of climb v.'e  must   solve   the   simultaneous, equations 

g2(1   ♦a^)   cos^   9«   fkcrv*\rL T     -  vT     -  T   +   (3   ^^)f, cTv^l 
Lg      / ^    ^ I     (1 

sin e . I_JLS^ 
(15) 
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As   a   second   approach,  E,   ^nd  £, rr.ay   be   eliminated   by 

reducing   the   two  first  order rii ffcruntial   equations   of  yet   11   to 

one   second   order  equation  of   the   form 

a +  F, ^y,v,b)» *   ^(y.v.o)«  =  F^ly.v.e). (lo) 

During-  the  cuasi-steady  slate   portion  of the   flight   path  tiiis 

enuation  reduces  to 

As   a  thi rti   annr0a ch ,   •./e 

+   200 

(17) 

c a n  u s e 

ft      COS       W «r lc 

to   solve   implicitly6   for  ^, 

L y yJ      SL ^ w   vj w 

to solve implicitly for QC, 

§(M - ah) - p sin 9=0 

to solve implicitly for 9, and 

£ K - F cos 9 = 0 

to solve for implicitly for v.  This method works particularly well 

on the REAC for it is possible to wire the oroblem such that one 

can switch from the steady-state solution to the transient solution 

during a run.  It also is convenient to allow reversal of time to 

find initial as well as final transient oaths. 
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