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An analogue computer of the HEAC type, &lthough

designed o»rimarily for simulation, is & valuable tool in
apnlied research. Jeverul modifications have increaced

the f{lexibility and usefulness of the {ALD HLAC,

The &RE.C proved its worth in the study of the
application of the calculus of variations to the optimiza-
tion of aircraft {light paths. Prior to the instullation
of the REAC several reports on the theoretical asrects of
the onroblem were written, but rezched no conclusions becuause
of the complexity of the equations, REAC solutions were of
a surnrising nature ‘that rot only led to unexnectedly
rractical answers, but also suggested revisions of the

theory.
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The calculus of variztions n&e—beenxaagized_as=a&nﬂ to delerimime

Mt o e,
S At b

aniﬁfrfﬁﬁfﬁ_ﬁuestions as
(1) . hat path should a miss;le #ith a fixed period of thrust
fly to maximize its range at a srecified final velocity

and altitudez

) o

(<) «hat path sfould an aircraft fly uafter take-off to
minimize its time of flight to level-flight, combhat

D

<:T¥;;Aresulting ecuations are computationally difficult to
handle because of their complexity and quasi-stable nature., lore-

velocity at a spnecified altitude

over, the new variables introducecd by the calculus of variations
have no anparent ohysical meaning, which makes the analysis of their
influence difficult.

& bral/h e(.a(- AN \?
This paper outlines the experiences,we—iraye—trad—at-itilb

Tsolving Talteutus-of-varitations problems on the HEAC. .. rmodified
form of the equations (presented as an arrendix to this paper) was

developed which not only wags more satisfactory comnutationally, but
also showed that the calculus of variations enuctions described the
motion of & vody similar to the one under study. The nature of the
REAC solutions suggestea tlat the steady-state, or mic-path, trajec-
tory and the transient trajectories from the steady-state rvath to the
end-points could be corinuted separately. The results using this method
agreed well with the "ﬁxact”Qéolutiont and gave a trea:miious savings

in computing tine, auch of the trisl-and-error process of

meeting end-conditio e usuazl process wes eliminated and the

stability problem was cingumvernted, certain trajectories

*Quotation marks have becen placed around the word exact, because
certain approximations were necessary in the computation,
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Consider a vody of St
/
welght flying ‘n Swo-dim-

c
v in z direction maki
arcle 8 with the x-axis «s3
shiewn in Figure 1, The total =
forces* acting on the body

are resolved inte four ccm-

R e
ronants, the weight vecter W,
a3 force due to the chonge orf

a {rorece vector

!
o mlEss

the axis of the

an~le bhetween the velocity Figure 1. Forces cn the Body

—
vector V and the axis of the
. T T ‘ .
tody., The moernitudes of M and I are assumad to be functions of

tne a2ltitude y, velocity v, und zngle of attuecx o o 2elining
i 2s the position vecter ¢f the hody, =ith

R = \/xz + yd

the dynamiz equitians are

3
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with initial conditions .
X ™ X, ¥* Yy, V=V, =98,wWw=w,andt =1,

The problem is to determine the nath with terminal conditions
X = Xo, ¥ = ¥2, V=V,, & =9, wW=W, at L = t,
such that one of the terminal variables 1s a minimum or maximum.
The problem may be modified by not srecifying certain terminal
values, but if v, or 8, are not nrescribed (or optimized) the
problem becomes singular. The problem may be modified further

by specifying constraints.

DISCUSSION

The problem posed in the previous section is not treated
in the standard texts on the calculus of variations!, and the first
treatment of the problem at RAND was by E. M. Liebhold . Later,

Dr. Magnus Hestenes, as a consultant, developed a more complete
and elegant presentation 2,3,. The work of this paper was done
‘ﬁ}th the cooperation of Dr. Hestenes, Kenneth Martin, and Roger Snow.

Application of the calculus of variations to the above
problem yields a set of Euler-Lagrange differential equations (and
variables) to be solved simultaneously with the dynamic equations
of the system under study. The initial conditions of the Zuler
variables may be varied to cause the trajectory to pass through any
possible set of end-conditions. Certain conditions must be satis-
fied to assure the solution is an optimumz. '

art
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Unfortunately the Luler eqcuations are'usually considerably

more complicated than the dynamic esuations. Fﬁrthermore, the
adjustment of the initial values of the Euler vbriables to meet
specified end-conditions is a tedious trial-and-error process made
more difficult by the absence of any physical significance for these
variables. To make matters worse, the equation$ turn out to have
a quasi-stable nature very similar to that of a| neophyte tight-rope
walker. This combination of woes led to the development of the
equations appearing in the appendix, '

The remainder of this paper will be a blow-by-blow
description of our trials and tribulations with the calculus of
variations. We hope to continue work on the problem at some future
time. |

|
Problem 1 |

Our first experience with a calculus &f variations problem

came when our acquaintanceship with the REAC wa# just starting and
nearly resulted in a parting of the ways. \

The purpose of this problem was to teJt how sensitive a
maximum was to approximatlons made ;q“the Euler'equatzons. The
body_studied had’constamt weight, no Mifty conatant thiust, ‘and
drag proponiona]. to the square of the velecity. The resulting
dynamic and Euler equations were quite simple. |

Our faces were crimson when the solutans of the avpprox-
imate Euler Equations gave maximums several oercgnt greater than
those given by the exact equations. No manner of kicking, balancing,
swearing, checking, and even cheating a bit on settings could deviate
the REAC from its opinion that the approximate splution was the
better.

|
|
|
|
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Finally in desperation I derived the Euler ecuations and
was overjoyed to find the problem had b:een submitted with a wrong
sign in one of the kuler equations. Thus the iiC not only was
vindicated, but at the same time was made a hero.

The corrected ecuations demonstrateq, . loned, that
the optimums are flat enough that arproximate trajectories give
results for all practical purnoses as good as the ontimum trajectories.

Problem <

This problem was a sequal to the zbhcve - an attempt to
get a "feel" for trajectory optimication and to find the influence
of the initial values of the Euler variables., A nlot was mzde of
firal velocity v, as a functior of final range x_ for the body of
Problem 1 at specified final values of altitude y_. and time t_ with

zero final vertical velocity (6, = U or 180°),

It was hoped that a linearized set of enuations would
help in establishing the relationships between the initial values
of the Euler variables to give the proper end-conditinns, but since
the partials changed rapidly and the inaccuracies introduced by
taking differences were large, a plot of two of the variables
versus the arctan of the third proved more helpful and at the same
time gave some insight as to their influence on t@e systen. The
form of the plot of %, versus x, is 7

&
illustrated in Figure 2. Point A is  Ae

the terminzl pair for maximum X, with B
x, not specified, while Point B is  p

the terminal pair for maximum x, with X
X, not specified., Actually, only the H';:ﬁg;:

arc length designaeted AB is of any dag ;- v, = 2]
practical interest. It is apnarent ' '

that since the lower nortion of the Figure 2. Values of

X, versus x, for
speci?ied Y2, ©2, and t,.
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curve gives minimum values of »_, while the upper vportion gives

the maximum values, all other possible terminal conditions lie within
the closed curve, For example, the system can not have a terminal
condition such as specified by Point P,

Problem 3

To maximize the range of a missile it is necessary to
study the power-on and nower-off (or glide) stages separately.
This problem was the power-on trajectory optimization. / set of
values similar to the arc AB of Fisure 2 was desired for severzl
values of 8, and y_, and was toc be used as the initial values of

the power-off trajectories,

The Euler eauations for the power-on trajectory were too
complicated to fit on our KEAC and a trial-and-error rrocess was
required to give pseudo-optimum paths. 3Since the peaks appeared
very flat and no better hand-contrnlled paths could be found, use
of the resulting trajectories seemed justified.

The flight path was first oprogrammed by letting

6 = a + %b. The value of a was varied, b and ©; adjusted to meet

the end-conditions and the sets found that gave maximums. The

angle of attack giving the rrogrammed 8 was computed and used in
evaluating thrust and drag. A4 second method of nrogramming with

6=0foro<t<T
8 =2 + g(t -T) for Y <t <t

gadve nearly identical maximums with what anpeared at the time s

more realistic trajectories.
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Problem 4

During the vower-off nortion of the trajectory the
velocity remained well ahove the speged of sound, the coefficients
of 1ift and drzg were reasonably well behaved and, as a consequence,
it was rnscible to compute the dynamic pnlus Zuler equations on the
REAC. Since it vas desired to maimize range with no regard to
time, letting range be the independent vari=ble znd eliminating

time greatly simnlified the computation.

The trajectories were very sensitive to changes in the
initial conditions of the two Euler variables and mazny trial runs
had to be made to locate the region of interest., . typical set
of trajectories with the initiul value of one of the Luler variables
fixed and the other varied is chown in Ficure 3., A crange of the initial
value by abocut 5 per cent would swing the trajectory from nath
A to Be This great sencsitivity and the quasi-stable condition is
understcondzvle when one considers the many end-conditions that must
be possible no matter how undesirable they may be (i.e., vertical
flight, reversced heazdinrs, etc.)

A

oo

Figure 2. Typical Povar-ni

Trajectories
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It wus annerent thut the puth sivineg naximum rance wac
between ' and B. Paths C and ) were next found and differed by
the order of about one ver cent in the i:iticl value of the Zuler
verisble. The optimum path was between tiem; so using initiasl
values between theirs we found the patts & and ¢, huving the order
of U.1 rer cent difference in their initial conditins., This
discussion is basedi upon the assimption that the initial value
rheld constint was =t the proper value for the optimum path.
Actuzlly, the initial value of the second Luler varicsble wcould have
to be "jockeyed" along with the other -o keep the solutions from
"blowing up, By the time path E and F were reached, the arift in
the d.c. amplifiers prevented z continuation of the zbove procedure
since the changes in the initial conditions became of thea same
order of marnitude as the drift. ! simple change of scale-factor
was impossible since the variables range! from +100 to =100 volts

desvite their sensitivity to initicl conditions.

An initial value bounded by those of pnaths L znd F was
selected, the problem storped at the node P and readings made of
the variables. These values, with perturbztions on the culer
variables, were used =s new initizl conditions. Tnis orocess was
continued until the final velocity dropned to v, and recuirei a
full day of computing. OSince this process had to be reoected for

several sets of vy, ©,, and y;, the prosnects looked «rim.

nowever, inspection c¢f the Jirst two days' results le:

to a nuch cimpler computati-n. First it was noticed thot the

paths oscillated about the zltitude for whieh 1lift equalled weight
at the ongzle of cttack o, maximizine 1ift cver drar. Morcover, the
optimum p.ths zppro~nche ! this critical alvtitude ir muchk the sunme
way an underdanre | vervo-mechanism reszvonds o a steo function.

Herice, we tried orogramming 0 as

X = 05\1 - K sin o)
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where X, was 2 fanctinn of velocity and K was varied until a
maximum range was obtained., The unstable avpearing end-conditions
could be obtained by changing the sign in front of K; by varying

K and the time of reversal of sign any end-conditions could be
realized by paths similar to i through F of Figure 3. The values
of range obtained by this aporoximate method were within 0.2 per
cent of those found by the "exact" solution, and required cbout one
minute of REAC time compared to the eight hours required for the

"exact" solution.

Problem 5

The Huler and dynamic eguations for an aircraft flying
below the speed of sound are simnle enough to handle on our HEAC,
In this problem we attempted to minimize time of flight from
take-off to level flight, combat velocity at a svecified altitude,

The first attempt at sol.ition showed that the equations
were even less stable than those of Problem L, In fact, the paths
dove into the ground no matter how the ruler yvariables were
adjusted.

At this time the work of the anpendix was started and it
became apparent that the constraint y > O must be added, since
an initial diving path to pick-up velocity was optimum, Obtaining
a solution even with the computationally improved equations of the
exact form in the appendix was still more difficult than for those
of Problem 4 and cgcin we were forced to develop an aoproximate
method . .

Previous work indicated that if the initial and final

values were csufficiently separated, the mid-vpaths of all trajectories

were nearly the same except near the transitions to the boundary
values, lience, as shown in the appendix, a quasi-steady state

s
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solution was found giving the optimum midpath for all cases. The
complete set of ecquations was used only for the transition from
the mid-path to the end-points. Also equations were found giving
either the ontimum velocity or rate of climb at which to fly as
functions of altitude, and the computation »f the steady-state
trajectory became simple enough for hand solution.

The dynamic ecuations for the hyrothatical aircraft
studied were

X = v cos © ft/sec
‘ y ='v sin © ft/sec
Vo= [16 - 1.36x1075 v2 - 3.13x1073(va)4]Jo" - 32.2 sin @ ft/sec?
6 = 3.13x10"30va - 12.2vcos o radians/sec.
where 0 = relative air density = e 2y,

Figure 4 shows the form of the quasi-steady state
solution vlus one initial set of c¢onditions and several final
conditicns. If the final velocity is approximately ten per cent
or more than the climbing velocity, a final dive (as in Path A) is
found to give cuite a saving in time over a vwath leveling off at
the desired altitude and flying level until the svecified velocity
is resched. £ final steep climb before leveling-off is nroper when
a velocity less then the critical climbing velncity is desirel, The
initial portion of the trajectory was found by flying level until

an.ot was called for making 6 > 0 at which time the constraint © 20
was removed, as shown in Firure 5, .\ more satisfactory method would
involve coming off the steady-state nath with the comrlete equatidns
as in the final nortion of the trajectories but with time running

backwards ?

Figure 6 and the ecuivalent nonmorram of Figure 7 rive not
only the minimum time of flight for specified values of v, y.,
and ©,, but z2lso the meximum value of y_, with v,, t_., and 6, spocified
and the maximum value of v_ with t,, v,, and 8_ sncnifiec,




‘ P=199
1-14-%1
Pooe 11

The ontimum velocity ani rate of climb for the hyvothet-
ical &dircraft to fly as functions of altitude are siven in Figures

8 and ¢ respectively.

Comparisons of other flight progroms with the optimum are
illustrated by Figures 10 and 11. The circraft climbed at & velocity
v greater than the optimum in the first case and 2t a constant
velocity in the second cacse. In both cases when the climbing
velocity was less than the specified final value, the aircraft
leveled off at the svecified cltitude and flew level until the
desired velocity was reached. For those few cases where the climbing
velocity was greater than the final value, the aircraft pulled into

a climb before leveling-off.

It is difficult to Jjustify muthenaticolly the use of the
cquasi-stezdy state path for the major nportion »f the rlight vath
and the use of the exzct L:iler ecuations only for <he transition
from the steady state ©ath to and U = :h2 ond noints. liowever,
the fact that the exact solutionc foliow the steady state puth
smoothly for a uhile znd then oscillate zbout the stewdy state
path when they "blow-un" is some Jjustificztion., If then cll
optimum paths have very nearly identical midpathe, it becmes
clezr why tne cuasi-stable nature of the equatione ic necessury to

cet

moke it possivle to nm =1l end-roints,
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BASIC E.UATIONS (assuming ;“j- ~ C)

Defining*
—— = —
H =AV + v

- —
where A and H are varizble multipliers, the Euler-lLarrange equations

ovtimizing the trajectory described by Figure 1 and Zguations 1 are

-Q%H

-VVH (2)

C

Gd
]

where
V. = gradient of H in R snace
R
§7V = gradient of H in'v'space
(the symbole{nmy be viewed as a partial gradient, i.e., the

_-) .
gradient when all variables but R are held fixel!, Notice that
the dynamic equations of motion are

ey (1a)
vV = Vﬁﬁ
' —
Letting the argument of W be §, define

0=0-6-a

vy (3)
G=Mcosp+ N sinp= -ﬁ—-‘F”

or G is the projection of T on the vector}f. Then,

*The advantages of the vectorial derivation were pointed ocut by
Roger Snow. T:1s urnendix assumes thre rewder is fuamili-r with
the theory of the calculus of varictiens fiven in Kii=100e

Lo




H=7\’-?+§HG+FX'§\
E - ‘
= wH RG (
- L)
Fa %pVG-/\ ?

Treating p as an indenendent variable

o
I

MV cos P + Nv sin P

G, =0

(%]
]

My cos p + Ny sin p (5)

(2]
n

« Ma_cos P + NQ sin p

= - M sin e+ N cos P

N

(]
-
[

Since p = Q - & - &

= - 3
Go P
8G _ -
da = Ca ~ Gp
and
Hy = M(Gy = GplB=0
yields
Gy = GP
s a consequence, the last two equations of set 5 yield
M, cos P + Ny sinp = - M sinp + N cos @
or ;
N - Mgy

F = arctan N M (6)
a

P=199
1=-15-51
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Reducing the vector equations 1 and L to poler form gives

. h
X = v cos O
y =.v sin 8
v = §(M cosx - N sin®) - g sin ©
Ve = é(m sin® + N cos® ) - ¢ cos O
. Gy, |
M= %[—Gv cos (X+p) + — sin \0+P)]r&— Ay sin ¢ - Ax cos @
: G (7)
}40 = %[GV sin (®+p) + 1? cos (“*PX]F - Ay cos § + Ax sin @
= 0
x
- l
= -5 |
Ay w Gy M
N - Vg,
P = arctan m )
in which Ge hes bcen rep}cced by the eouivalent - Gog o
It can be seen }‘
that the LEuler equations
describe a system acted e
upon by the forces shown I A
v Ly —

in Firfure 12. Thus these

eguations can be corsidered

|
"~

. . Aps——
as describing the dynumics »

of an "Euler-crarft" having

an axial drag force MG,

}fl | -

a normal lift force;A;%,

and two pseudo-gravity

forces A (variable) and

My (constznt). The axis

of the "Euler-craft" lies

along the-v’vector and 1its Figure 12, Forcee on the
"velocity" vector W is A3

(X+p) radians ebove that otf its axis,




APPROXIVATL ECUATIONS

In peneral the forces on an aircruft are given by

éM = T(y,v) - £ (y,vio v«

=fq

N = f,(y,viovea

where

o ~e %Y is the relative air density and £y end £, are

—~

nearly constant for velocities helow the z»eed of sounds As a

consequence

N - Mg f,oven
>~ -

= arctan r ~ arctan ax®

p = arctan T - fove + £ CTv<

Vo *
since T - £;0ve << f,ov< and & is small.

If we neglect the influence of the axial forces on the
equaticns for 6 and 0, and let p =X | sin & =3, sin 2& = Q,
cos X - 1, and cos 20 = 1, equations 7 become

' )

X =V cos B
y = v sin ©
Vo= &M - la) - gosin @
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(6 + <A, oh, = N, vi_ = LN(f, = constart),

arnd My, = O, the buler ecquations can be nodified to

Since ¢

* r )\ )\v

LA = % cos © --fﬁ¥ cos (B + Za) + F[ sin (8 + 2a)
ﬁ.:—g'—ilo \\_/\X 3 \

r = m cin (6 + z2a) m cos (o + 2a) (10)
A
- = - El o+ ap

e )

. : o _ A
If the final range is rot specified, Ay =0, &= —FF
is a convenient change of varichble, und the EZuler egquations become

2x = £ Cos 8 Ecos (& + 2a'

v
. = g (1)
Notice thst nnce v,;, 8;, and A are set, the setting of &, iecter-

mines &, , thuz clarifying the influence of the Zuler variables,

QUASI-STEADY ST.LTE CUNDITIUNS

During the quasi-steady stat: c~oandition, v, 8, &, &, cnd
Ewill be small and we can u<e “he anproxjimations
L E . .
g cos B = & N
g sin & = ﬁ - STk
yoo12)
£x 5
v
E-[M - an ] = S[E sin (6 + 2a' + £ v
wity y viv Ny

Since




e

P=-199
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P;gﬁ QF

. : v 2 3\« . -~ ;
the lust ecuctinn bkecimes (7; :3; - :;V>\ﬁ + XL} = (M - al)
or i
] - —
v (%; :§7 - —f%) G = F'V = Rate of change of ernergy {(13)
=~ o <

This ecuation solved for & simultaneously witn tie dvnamic ecuations

vields the optimum quasi-steady ctate trejectory.
Purtting eruation 13 in the form of cet 2 and a2assunming
that the derivatives of the £ functions with resne~t to y and v

have only z cecond-order effect, we firnd
F ., .
-%—(Ty + af,ove - ai‘do‘(va)a)- T+ fove - f,0(vale = vl = 20,0 v<

or

r4 P4
N T, - T, =T+ (3 a0 ve i)
= = 14
e +&%;) cos ©

/Lfrer take-nff the oplane should fly level (with € > O constraint)
until © becomes nositive (at wnich time & > 0 constraint is removed).

~

while this equation is suitable for REAC comnutation, in
practice either the optimun veiocity or ontimum rate of climb as
functions of altityde wouald be more ucef.l to a nilot. Lioreover,
the(}ate of climﬁjversus altitude curve cun be integrated with
respect to altitude t¢c firnd tre tire of “light tlong the guasi-
steady state path. The verinzble A can be eliminated by zoproximating
it by that velue it should have to keep § = 0. Tn fird the optimum

velocity or rate of climb we must seolve the sizultaneous equations

2 , . [ve ©
ge(1 +a¥r—) cos< B = fzc'v‘[yg- Ty - vT, - T+ {3 *a%:,‘)flo’vd

(15)

. P
. T - £,0 v= T - £, 0v<
e‘;-;___——.l_._.—— —( 1 )].
sin 3 SOV [1 v




a8 o second coprouch, & and & nuy be eliminated by
raducing the two first order “differcntiul equations of set 11 to

one second order eauation of the {orm

o+ Friy,v,o)0 + F (y,v,s % = Fy(y,v,b), (10)
During the cucsi-steady state nortion of the flipht puth tnis

enustion reduces to

o - Faly,v,s)

L9 IR
Fz\y,V,b/ (1/’

LS a third annroach, we ¢

anouse
24 c,l \
u_E%;_E - Ecos (& + 2a) = ¢
to solve implicitly® for &,
BN, v 0N+ EfEsin (8 ¢ L0) + ST =0
R A LR TV

to solve implicitly for o,

%(V -ak) - ¢ sin &

[
C

te solve imnlicitly for 6, und
% N - g cos & =20

to solve for imnlicitly fcr v, This method works particularly well
on the KEAC for it is rossible to wire the vroblem such that one
can switch from the stecdy-state solution to the transient solution
durinzy a run, It zlso 1s convenient to allow reversal of time to

find initizl as well as final transient paths.s
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