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ABSTRACT

This report presents mathematic.l techniques for calculating dielectrics
which give rise to prescribed reflection coefficients in certain problems
of one-dimensional electromagnetic propagation. The techniques are, in
principle at least, exact. They are based on the use of an equation of
the Gel’fand-Levitan type for the one-dimensional Schrédinger equation.
Although no practical applications are given, it is hoped that this report
will encourage the use of newer techniques in synthesis ptoblems.
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PROPERTIES OF DIELECTRICS
FROM REFLECTION COEFFICIENTS IN ONE DIMENSION

I. INTRODUCTION

This report is based on a series of leciures by the senior author and has been only slightly
revised for this written presentation. Hence, the report is more informally organized and is
probably much longer than would be the case if a thorough revision had been made. Perhaps,
however, the great detail will enable a novice in the inverse problem to see through the math-
ematics more clearly.

The report is concerned with the mathematical problem of determining the character of a
dielectric scatterer from the reflection coefficient in one-dimensional electromagnetic scattering.
Closely connected with this problem is the "synthesis problem" in which one wishes to construct

wscatterers with prescribed retlection or transmission characteristics. 1t is not generally known
that powerful techniques are available. The objective of this report is to present these techniques
in a comprehensive fashion for the benefit of those who wish such information.

The technique which we use is to map the electromagnetic equations into the one-dimensional
Schrédinger equation. We then use the Gel'fand-Levitan algorithm to compute the potential and
the wave function from the scattering coefficient. The results for the electromagnetic problem
are then obtained from the mapping.

The usual procedure for finding dielectrics with prescribed scattering properties is to con-
sider a family of dielectrics for which the electromagnetic equations can be solved. The param-
eters of this family are then adjusted until tte scattering coefficients of the exactly soluble prob-
lem are as close as possible to the prescribed scattering coefficients. This procedure is always
approximate. The degree of success, moreover, depends upon one's cleverness in choosing the
family of dielectrics.

By contrast, the procedure for finding the dielectrics in the present report is exact, at least

in principle. 1f computing machines are available, one can approximate the dielectrics as closel
as one wishes even when one cannot solve the Gel'fand-l.evitan equation exactly.

This report contains no very practical solutions because the technique which we propose is
very new (it was developed within the past ten vears), and most of the work in the past has been
concer:ed with more mathematical aspects of the problem. It is hoped that this report will stim-
ulate research for electromagnetic applications. Indeed, its sole purpose is to stimulate, if

possible, research which leads to practical applications of the theory.



II. SCATTERING AND THE ONE-DIMENSIONAL SCHRODINGER EQUATION
The time-dependent one-dimensional Schrédinger equation is
2

~2 2wt = Pﬁ—+W4¢WM : (4)
0xX

Hl“"‘

We require that the solution ¥(x,t) be in Hilbert space and be quadratically integrable:

o0
§ lp(x,1) |2 dx <o . (2)
First, let us assume that the potential function V(x) is bounded everywhere and V(x) -0 as
|x] > . Later, we shall make V(x) = 0 for |x| >a. We proceed to sclve the Schrédinger equa-
tion in the usual manner by separation of variables.
Let the general solution be

0 -ipzt -iEit
wKﬂzg x(x|p) gpy e Fdp + ) x(x|Ey) g e (3)

-0 K
1

and choose ¥(x|p) and X (x| Ei) so that they satisfy the following equations, respectively.

2
[_Lz +V(X)] X(X|P)=P2 x(x|p)  for pt>o (4)

dx

dZ
[—-? + V(x)] X(xlEi) = E; x(x]Ei) for E; <0 . (5)

In general, the solutions of these second-order differential equations are not unique unless bound-
ary conditions are imposed.

The discrete values Ei are called "point eigenvalues," and the theory of Hilbert space re-
quires that they be chosen so that
(6)

o
Sw X>"(xlEi) X\xlEj) = Alélj

where A > 0.
W1th this "boundary condition," the x(x| E become unique except for a normalization con-

stant. When the point eigenvalues E are r‘hosen so that (6) is satisfied, the corresponding x(x|E
are calied "proper eigenfunctions." Next we need boundary conditions which will determine the
x(x|p) uniquely. Since we are interested in solving scattering problems, we wish to impose
boundary condi‘ions such that the resulting set of x(x|p) will give a "simple" description of scat-
tering problems.

In what follows, let us assume that V(x) is bounded everywhere and that Vix) = 0 for |x|> a.

Let us take the following boundary conditions:



Forp>0,

eipx k) L
X(x|p) = + 2B) o TPE gop x < -a

N2T N2m 7
X(X|P) = 1tip! ePX forx>a J

N2T

For p <0,
ipx =

x(x|p) = = 2P TIPX g x> a

N2m Wer (8)
x(x[p) = s(p) 21X for x < —a

Narw

Let us solve the specific initial value problem for which

gi=0 foralli ,

glp)=0 forallp<0

Then from (7) and (3) we obtain a particular solution:

v © giPX —ipzt - -ipzt
(x,t) = S‘ glp) e dp + S‘ b{p) glp) e dp forx<-a
p o N2m o N2m
(9)
re _ipx 32
¥_(x,t) = ) ©_ i(p) glp) P tap forx >a
p o 2

For any fixed p, the first integral in the expression for qbp(x,t) for x < —a and the integral in the
expression for x[rp(x,t) for x > a reduce to expressions representing waves moving in the positive
x-direction. The second integral in the expression for ¥ (x,t) for x < —a reduces to an expression
representing a wave moving in the negative x-direction. We may think of the integrals as super-
positions of such waves. With this interpretation in mind, the b{p) are called the reflection coef~
ficients for p > 0, and the t(p) are the transmission coefficients for p > 0. Hence, given the
boundary conditions (7) we now have defined y(x|p) uniquely for p > 0.

In a similar manner, we can solve the initial value prgblem for which

gi—O foralli ,

glp)=0 forp>0 ,

and we define x(x|p) uniguely for p <0 with the help of the boundary conditions (8). The r(p) and
s{p) are called the reflection and transmission coefficients, respectively, for p < 0.

Let us call )((x|p) defined for p > 0, x+(x|p) and x(x|p) defined for p <0, x_(x|p). By analytic
continuation we may define x+(x|p) for p < 0 and x_(xlp) for p > 0. It can then be shown that

x,x|-p) = xFxp)

1

x_x|-p) = x*xlp

but
x,(x|-p) # x_(x|p)



Also, by analytic continuation it can be shown that

b(—p) = b*(p)l
. forp>0 ,
t(—p) = t™ (p)
r(—p) = r*(p)l
. forp<o0 ,
s(—p) = s™(p)
and
s(p) = t(p) for all p

Two other rclations satisfied by the reflection and transmission coefficients are
2 . 2
Ib(p)|“ + |tp)|“ =1 forp>0

2 2
le(p)|“ + |s(p)]“=1 forp<oO
These seem to imply conscrvation of energy. Also,

’

lim b(p) =0
|p|-ee

lim  t(p) =1
p|>
in the upper half plane. This is always truc. When V(x) dies down very rapidly, it can be shown
in addition that b(p) has poles at the points p = iJ——IEi; that is, b(p) has poles corresponding to
every point eigenvalue Ei' This, however, is true only when V(x) dies down sufficiently rapidly.
Examples to illustrate this will be given later.
Once the X(X| Ei) and ,{(x|p) have been defined with the help of the boundary conditions (6),

(7) and (8), we find that thcy satisfy the completeness and orthonormality conditions., 1f chosen

differently, the x(x Ei) and x(x]p) would not satisfy these conditions.

The orthonormality conditions are

) 1
g x*¥(x|p) x{x|p") dx = 6(p — p")

o0
(KUIx|E ‘ = - . 10
S_m x| E;) x(XIEj) dx = A0, (10)
00
g x*(x|p) x(x|E;) dx = 0
—o0 J
The completeness relationship is
0 . xak(xlEi) X(xllEi) | 11
* t - —
S‘_w X (x| p) x(\c I-p) dp + Z A S(x—x") . (11)

1

The satisfaction of these conditions leads to a complete analogue with Fourier transform theory.
Suppose a function f(x) is in LZ. Then as a result of the completeness theorem we may ex-

pand f(x) as



AP g x(x|p) gp) dp + ), x(x|E) g; (12)

where

g(p)='§ x*(x|p) f(x) dx

Ag. = g x”‘(x]Ei) f(x) dx
-

Hdence we niay wiite

i(x) <== glp); g;
Also suppose that
1 1 1
' (x) == g (p}; g; ,
2 2 2
Fx) == g (p); g

Then

g T sl ()l = S

'1::: 2 .l EX3
g et ap + ) gl el (13)

i
But this is simply Parseval's theorem.

In the solution of seattering problems we are interested in the refleetion and transmission
coefficients. In particular, for p > 0, |b(p)|2 and for p <0, |r(p)|2 give us the relative prob-
ability that a particle of momentum p will be reflected. Similarly, for p >0, |‘c(p)|2 and for
p <0, ]s(p)|2 give us the relative probability that a particle of momentum p will be transmitted.

The relations
b2+ [up)|2=1

2 2
le(p) |+ [s(p)|“ =t
state that one event or the other will oeeur. To determine the reflection and transmission coef-
ficients, LEq.(4) must be solved. This can be done in the usual manner by matehing boundary
conditions where V(x) vanishes.

For an alternate integral equation technique, we write

ipx ; K _m ot
X(x|p) = =~ 3757 g P11 vy v [py axt (14)
N2T ~o0

This expression for x(x|p) satisfies the wave equation and all boundary conditions.



For example, take p > 0.

ipx -ipx

Then (14) gives

. 00 3
= ie ipx!
x(x|p) = —’—-“S e Vix') x{x'|p) tx' for x <—a
Ner 4o —o0 |p
: ] (15)
Yed e ePX . /_1'_1 Sw omipx! Vix') x(x!|p) dg! for x > a
N2n M -
The expressions (15) may be written in the form (7) if we choose
T i ipx'
bip) = - J% 5 S_w P vix) x(x'[p) dy’
forp>0 . (16)
tp) = 1 — @é S e PX vk x(x'|p) dx'
-0
By analytic continuation, b(p) and t(p) can be defined for p <0.
Similarly, take p < 0. Then (14) gives
( | ) eipx + i -ipx S\w ipx! V(x") x( || y dx! £ >
X{x|p) = —- e x') x{x'[p) dx or x> a
N2w Zp -0
. (17)
({)eipx[1 ”ir Xyl xix]|p) dx! o
x(x{p) = +Jt— e 7 x') x(x X or x <—a
New Zp 00 P

The expression (17) may be

written in tt e form (8)

if we choose

r{p) = E é S eipx' V{x') x{x'|p) dx

for p <0

] (18)
s{p) = 1 +~[§ 61 S e X yix) x(x'[§

By analytic continuation, r{p) and s(p) can be defined fo
As an example of the solution of the direct problem

tion, let us consider the delta function potential V(x) = 4

) dx!

~p>0.

of the one-dimensional Schrédinger equa-

B6(x), and let us take B > 0 so that there
are no point eigenvalues. Hence g, = 0 for all i. TFrom

b(p) = - [3 & 2Bx0lp)

tp) = 1 - JF 2 2Bxolp)
From (18),
r(p) = J? % 2Bx(0{p)
s(p) = 1 + Eé 2Bx (0| p)
From (14),
x(0]p) = P forp >0

NZT (p + iB)

(16),

for p >0

forp <0

»




Hence,

forp>0

_ iB
rp) = g
for p<0

. _bp
s(p) = p— 1B

By analytic continuation,

—iB iB

b(=p) = —"p = 5TIB - b* (p)

forp>0
Hep) = _p—le = ple = t*(p) |
r(—p) = —pilj = - p—+1113B = r¥*(p)

for p <0
s(—p) = _p_f B~ p+iB s*(p)}

Hence s(p) = t(p) for all p and r(p) = b(p) for all p, the latter being so only because of the sym-
metry of the delta function potential. Also,
B2 p2

+ 2:1 forp>0

[o(p) |2 + [up)|? =
p2 +B2 pz + B

2 z
2 2 -
(o) |2+ [sip) | = P + P
p +B p +B

1 forp<0

III. EXAMPLES OF ELECTROMAGNETIC PROBLEMS WHICH CAN BE MAPPED

INTO A ONE-DIMENSIONAL SCHRODINGER EQUATION

We shall next give three examples of one-dimensional electromagnetic theory. It will be
shown that with an appropriate mapping each example can be reduced to a one-cdimensional
Schrédinger equation.

A. Reflection and Transmission of Light of a Fixed Frequency

at Varying *ngles of Incidence by a Dielectric Slab

Consider a medium in which the diclectric constant ¢ = €(x) is a function of one variable x
only and is independent of time. In order to make the discussion concrete, we assume that
¢(x) = 1 for x <a and x >b. Many of the results will still hold if e{x) dies down sufficiently rap-
idly outside the range a <x <b.

Consider a ray of light impinging on this material, the angle of incidence being @. The plane
of incidence is the xy-plane; the z-axis projects out of the paper (Fig. 1). We are interested pri-
marily in the amount of energy reflected and transmitted by the material. It will be shown that,
tfor a ray polarized so that the electric field is parallel to the z-axis, the electromagnetic equation



|3-31-kada |

T

can be mapped into the Schrédinger equation and the b(p) and t(p) of this associated Schrédinger

Fig. 1. Roy picture showing reflection
and transmission of I|gnt by a dielectric

slob.,

yo—

equation will turn out to be essentially the same as the electromagnetic reflection and trans-
mission coefficients.

Using Gaussian units, Maxwell's equations in a source-free region are

v D=0
v B0
VXE:—}‘@ i
. = ¢ at
. 1ab
T XH = -5 (19)

where ¢ is the free-space velocity of light.  We also have the constitutive equations

D=elx) B (20)

Wo .ssume that p = oo where Ho is the permeability of free space and, to climinate time depend-

ence, write

B, t) = Ex) et

I(x,1) - H(x) e 2t 1)

The bar under x indicates dependence on both x and y, while x without a bar, such as in €(x),
indicates dependence on the one variable x alone. Substituting in (19) from (20) and (21), we

obtain

1<
N
28
I
e,
o

ipow
v x E(x) o Hix)
. —de(x)w .
v X Hx) 5 ——— E(x)
Proceeding in the usual manner,
, 20 ’
VXY XE(x) = VY - Ex) - VOE(X)
2
ip w noe(x)w
= —2- UxHx) = 25— Ex)



But

V- oelx) B(x) = E(x) > Ve(x) +e(x) ¥ - E(x)
Hence,
v - E(x) = _E(K)G(X)YE(X) ,
and
] (
VE(x) + fQC_};.)_(.‘J_ E(x) = _\_7[]_3.(3) © Ve(x)
c €(x)

et us write

E(x) - B\(x) + B (o)

wliere

E_(x) = [0,0, T, {s]]

is the component of the clectric field normal to the plane of incidence, and
Ep(ﬁ) = [E (%), Ey(i), 0]

is the component of the electric ficld parallel to the plane of incidence, Then EZ(;\_:) satisfies the

cquation
v2E, () + n°(x) KPE (x) - 0 (22)
where -
k=%,
n(x) = fu e(x)

The boundary conditions we wish to impose on Ey(g) are

cilﬁ'5 B cll—( *
EZ(§)*-'__ + for x<a
N 2T N2T
. (23)
e T ellé':‘ 2 N
I;Z(§) = for x > b
Nem
where k and k' are vectors given in terms of their components by
k= (kcosa, k sina,0)
(24)

k' = (~k cosa, ksina,0)

Then the first term in the expression for EZ(§) for x > a represcnts a wave moving in the direction
(cosa, sinw,0). We may consider this to be an incident wave. The second term represents a
wave moving in the direction (-cosa, sina,0), i.e., in the direction of specular reflection. 1t
represents a reflected wave. B is the reflection coefficient, and lBIZ gives the relative pro-

portion of energy reflected at the {requency w. Similarly, the expression for Ez(g) for x> Db



represents a wave moving in the direction (cosa, sina,0). [t represents a wave transmitted
through the material. T is the transmission eoeffieient, and IT[2 gives ihe relative proportion
of energy transmitted at the frequency w.

We shall now show that with the beundary eonditions (23) on Ez(é) we can reduee equation

(22} to the Schrédinger equation by an easy mapping and identify B and T with b(p) and t(p),
respectively.

Let us consider a fixed frequeney w > 0. To separate spatial variables we write
B (x) = u(x) eS¢V (25)
We also define
p=kcosa

(26)
Vix) = =k%(n? = 1) = —KkZ[e(x) by~ 1]

Since w is fixed, p is a function of the angle «. Usually, we will be dealing with ¢(x) > 1, and
hence V(x) £ 0.
Substituting in Eq.(22), we obtain

2
[_”(LZ‘ + V(x)] ulx) = plulx) )
dx

where pl >0, but this is just the time-independent Schrédinger equation.

Suppose the boundary conditions we impose on u(x) are

ipx -ipx
u(x) = ¢ + bip) e for x <a s
N2r N2T
ipx
u(x) = Hple ™ forx>b . (28)
N2n

Then from (25) and (26) we obtzin

ei(keos ax+tk sinu y) . b(p) c1(-kcos ax+k sina y)

EZ('\_(_) = =
NZT NZT
ik-x k' x
=2y Rlpls for x <a |
27 N2w
i(k cos ax+k sina y)
E (x) = Up) ¢
N2m
ik x
- Hplem = for x>b
N2rw

If we identify B with b(p) and T with t(p), these are just the boundary conditions we wish to im-
pose on Ez(gg). Hence, we can solve this particular electromagnetic problem by using the mapping
(26) to find the associated Schrédinger equation and identifying its reflection and transmission

coefficients with the reflection and transmission coefficients of the electromagnetic problem.

10



We might note again that in quantum mechanics p reprcsents momentum and —e <p <. How-
ever, p in Eq.(27) as defined by the mapping (26) is a function of the optical angle of incidence
a, and this imposes restrictions on the range of p. The technigue is valid for complex a and

might therefore be used to handle more complicated wave fronts.

'

B. A Transmission Line Problem

The second example we shall give is a transmission line problem. 1t will differ from the
above example which dealt with a fixed frequency and varying angles of incidence in that now we
shall consider a fixed angle for varying frequencies.

Consider a transmission line with distributed impedances I.(z) and capacitances C(z). Thke

transmission line equations are

av(z,t) _ allz,t)
pz - P Ty
, (29)
olz,t) _ _~ aViz,t)
S P T

where V(z,t) and 1(z,t) are the potential and the current, respectively. or the special case

L=1L s
o
C = Co s
we obtain at once
82V(z,t)_ E)ZV(z,t)
.2 LoCo 2
0z ot

This has a solution of the form
V(z,t) = I'(z - vt) + g(z + vt) s

where

Apparcntly, we have again a wavc propagation problem in which reflection and transmission coef-
ficients are of importance. We propose to show that this problem also can be rcduced to the
Schrédinger equation.

Let us write

Viz,t) = V(z) e @t |

Uz, t) = I(z) c-iwt

As above, we take L to be a constant, i.e., L = I‘o' However, for a <z <b we take C to be a

function of z. For z <a and z > b wc take C to be a constant C = CO. Then

viz) _ . v
5o - leOL(Z) I

al{z) _ .
97 - iwC(z) V(z) s

11



and hence,

2
8 Ve 4 2L Clz) Viz) =0 . (30)
0
9z
We definc k2 = wZLOCo and impose the following boundary conditions on the solution
ikz . ~ikz
V(z) = £ + Bk) e forz<a ,
N2 N2T
oy o 1KZ
Vi(z) = BALY R forz>b . (31)
NZm

We shall show that if we can solve a certain Schrédinger equation then we can solve (30) subject

to the boundury conditions (31). For convenience, let us rewrite (30) in the form

2 2
AV ey vy =0, (32)
oz
where
_ C(z)
€(z) = Co
Next let
niz) = /4 (33)

and introduce a new independent variable x related to z by

dz _ -2
Q= -0 (2
or
712(2) g—% . (34)

We also introduce a changc of dependent variable,

u=nV . (35)
Then
dv _ 1 du _u dny
dz ~ n dz ¢ dz
T 1 (‘“,v 2 dn du 1 d_"vl_ _*__2__151_ (d_n)Z
7 T2 dz dz ¢ 2 3 'd
dz/ dz nz dz dz n dz M z
Also,
du_ 2 du
dz =" dx ¢
d®u _ 4d%u,, 3dudy
2 1 2 T4 & ax
dz dx

12



dz Clx
2 2
d 4 d 3 Idnk 2
—727 =31) —2 +2n (ﬁ)
dz dx
Substituting in (32), we obtain
1[4y, 3dudn]_ 2 2dy, . 2du
| Sz S el el P Nl
X n
u 4d2n 3 ,dn,2 2u 2 dyp,2 2 4 u
- [n 3+ 20 () ] o T g rkST 2= 0
b dx ]
From this we have
2 2
d__g_%g_g + k2u=0
dx” 1 dx
We write this as
2
2
[—d—2 . q(x)] ux) = K, (36)
dx
where
1 (l2
q(x) = = ——’21 ) (37)
M dax

Equation (36) is the Sehrdédinger equation corresponding to Eq. {30} or (32). Note that q(x) is in-
dependent of frequency. Tncidentally, the mapping is possible only if €{z} is continuous.

We shall now turn our attention to an investigation of the mapping and the shape that q(x) will
have for a realistically chosen €(z).

A first observation is that x is a monotonic function of z. Also, since the first-order dif-
ferential equation relating x to z allows for one constant of intcgration, we may put x = A when
z = a; then z = b will correspond to some value of x — say, x = B. The mapping is not unique
since A can be chosen arbitrarily, but a change in A merely implies a shift in x.

Consider a particular e(z) such that e(z) is some function of z fora<z<b, and ¢{z) = 1 for
2 <aand z>b. Then we want to determine first how x depends on z for z <a and z >b. Since

x is a monotonie function of z,
z < a corresponds to x < A,
z > b corresponds to x > B.
From (34), we have at once that
x—A=z-a forz<a,ie., x<A ,
x—B=z—-b forz>b,ie, x>B

Suppose Fig.2(a) represents a typical e(z). It is essential that €(z) bc continuous for the mapping
determined by (33), (34) and (35) to be possible. However, it is not necessary that the derivatives

of ¢(z) be continuous. Given an €(z) as shown in Fig. 2(a), n{x) would have a shape as shown in
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3-37-8031 (a-d)

«(2) 7ix)
1 1 1 1
a b z Iy B x
21 2y
| ax P

|
=\ =P

Fig. 2. €(z) as a function of z and, carrespanding ta this e(z),
the general shapes taken by n(x), dn(x)/dx and dzr](x)/dx2 as
functians af x.

Fig. 2(b). Furthermcre, dn/dx and dzn‘/dx2 would have shapes as shown in Figs. 2(c) and (d),
respectively. Note that Figs. 2(b), (c; and (d) are not the exact representations of n(x), dn/dx,
and dzn/dx2 for e(z) as shown in TFig. 2(a). but merely are intended to show the general shape of
these functions for the given e(z).

q(x) = (1/n(x)) (dzn/dxz) will have a shape very similar to that of dzn/dxz, the important
thing being that it will have two maxima and one minimum. Hence, if we wish to solve our trans-
mission line problem through its associated Schrodinger equation for a realistic €(z) as shown in
Fig. 2(a}, we must solve the Schrédinger equation for a q{x) such as shown in Fig.3. We might
note that, if the bumps in Fig. 3 were replaced by delta function like discontinuities such a ¢(x)
would still correspond to a realistic €{z). Since q(x} = 0 for x <A and x > B, we again have a
scattering problemi and shall look for solutions of the Schrédinger equation which describe scat-
tering. We shall show that if we can solve this scattering problem, we will also have solved the
transmission line problem and will be able to relate the coefficients B(k) and T(k} to the trans-
mission and reflection coefficients of the Schrédinger equation. Let us take as solutions of the

Schrédinser equation

ikx -ilix
u(x) = e, blkle © prx<a
N2r N2m
(38)
ikx
u(x) = Glses for x > B
Nern

But when x < A we have z <a; 5 = 1 and therefore V(z) = u(x}). Also. x — A =2z —a. Hence

14



e1kz e-1k(a—A) . bk) e-ikz eik(a-A)

Viz) =
N2 N2r
_ ikla-) [ bug e eZ.ik(a—A)]
NZn NZr
_ ik [ | Bl e"”‘Z]
lvzz =~ vz
where
B(k) = bk) eZiK@a-A)

Similarly, when x > B we have z > b; n = 1 and therefore V{z) = u({x). Also, nowx—B =2z —D.

llence,

k) @ % o -ik(b-B)

V(z) = —
N2T

_t) e -ik(a-A) -ik(b-B)Hil(a-A)
JZr

T(k) &% _-ik(a-A)
NZn

where

T = 1) elk@bB-A)

Fig. 3. q(x) as a function of x.

The factor e—ik(a_A) merely charges the incident wave. Hence, we can obtain a solution of our
transmiss nn line equation (32) subject to the boundary conditions {31) with the help of the map-
ping given by (33), (34) and (35). We solve the Schrédinger equation (36) subject to the boundary
conditions {38) and obtain the B(k) and T(k) of the transmission line problem from the reflection
coefficients b(k) and the transmission coefficients.t(k) of ‘he solution of the Schrédinger equation

by using the relationships

B(k) = bik) e2H@-A)
{(39)

T(k) = t(k) eik(a-b%-B—A)

In practice, reducing the transmission line equation to the Schrédinger equation involves the fo’-

lowing steps. Given e{z), we use (33) and (34) to find x as a function of z. The choice of the

15 |



|3-37-8033(rl)l

elz) n

a
=]
a
L e

al

»
a
=

\
/

N

Fig. 4. e(z) as a function af z, ond the corresponding generol shapes
of n(x), dn{x)/dx and d2n(x)/dx2 as functians of x.

|3'37-3034|

A alx}

Fig. 5. g(x) as o function of x.
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constant of integration A is arbitrary but is usually determined by symmetry considerations,
We now have € and n as functions of x and can use (37) to compute q(x).

Next, we shall generalize the above problem slightly. Suppose we again take the transmis-
sion line equation (32) and let e€(z) = 1 for z < a; €(z) = some function of z for a <z <b; but
€(z) = ¢, = constant #1 for z > b.

We shall require that V(z) satisfy the following boundary conditions:

ikz ikz
V(z) = -2 =L for z< a
NZr N2n
(40)
ich—Zz
V{z) = Tk)e ~ ~ for z>b
NZr

The mapping is independent of the boundary conditions, and we shall use the same mapping as
above. Again, we choose z = a to correspond to x = A, and since x is a monotonic function of

z we have z < a corresponds to x < A, Also, since for z < a we choose €(z) = 1, we have as be-
forex—A=z-—aforz<aandx<A. z=b will correspond to some value of x — say, x = B — /
1/4

and z > b will correspond to x > B. However, for z > b we now have ¢(z) = €, and hence 3 = €5

Therefore,

dx

dz " N2
and

x—B-= /cz (z — b)
Again let us assume a simple realistic shape for €(z) such as shown in Fig. 4(a). The approxi-

mate shapes for 5, dy/dx and dZn/de are shown in Figs. 4(b), (c) and (d). q{x) will of course
again have a shape similar to that of dzn/dxz. Therefore, in this case we shall be dealing with

a q{x) having a shape like that shown in Fig. 5.
We solve the Schrédinger equation for this q(x) subject to the boundary conditions (38). Ior

x < Awechave z <a; n=1; V(z) = ulx); and x — A = z — a as before. The boundary conditions on

V(z) for z < a are also the same as above. lence, again we obtain

B(k) = b(k) o k(@A)

For x> Bwe have z > b; n = 671/4; Viz) = u(x)/czi/‘l; and x — B = \/6—2 (z —b). lence,

ik,[e,2 ils(B-, fe )
@

t{k) o
v
621/4\/27r
ik fe,z .
_tle Vo -ik(a-A) elk(a-,\/e_zbi-B-A)
e )/ NzT

In this casc, the transmission coefficient t(k) of the associated Schrédinger equation and the T(k)

of the transmission line equation are related in the following manner:

17



t(k) eii{(a—J?zb+B-A)

T(k) = 74

1
2
and again we are able fo solve the transmission line problem by mapping it into the Schrédinger

equation.

C. Reflection and Transmission, for Varying Frequencies,
of a Plane Wave Normally Incident on a Dielectric Slab

Finally, we shall show that Eq. (32), the transmission line equation, also occurs in a simple
In this case, k and € are defined differently, of course.

%@ /% e
: -

Fig. 6. Plane wave incident narmally an a slab
of dielectric canstant, €(z).

electromagnetic problem.

Consider normal incidence of a plane wave traveling in the z-direction on a slab of material
whose dielectric constant € = €(z) varies in the z-direction (Fig.6). It was shown previously
that, assuming a time dependence e-u"t and using Maxwell's equations and the constitutive equa-

tions, we find that the electric field E(x) must satisfy the equation

2
Boe(z) w
s— E(x) = -Y [____r__(x)E(ZYE(Z)] (41)

v E() +
- c

(z) varies in the direction of propagation and since E(x) must

Since we are now assuming that €
be normal to this direction, we see at once that the right-hand side of (41) vanishes.

Let us assume further that

E(x) = [E,(2),0,0]

Then we have at once

Z)ZZ

0°E (z) p o’
o =y I B < 0

Similarly, if we had assumed that

E(x) = [OJEy(Z),Ol ,

we would have obtained the same equation for Ey(z), namely,

.2 2
3 Ey(z) Kot

—m=iar Sl
0z c

e(z) Ey(z) =0

18



We can write cither of these in the form of the transmission line equation (32):

+K%82) E(2) =0 (42)

0°E, (2)
822

where now v = X or y,

and €5 is the diclcetric constant of frece space.

IV. THE INVERSE PROBLEM FOR THE SCHRODINGER EQUATION —
THE GEL'FAND-LEVITAN ALGORITHM AND ITS PROOF

The direct problem of solving the two time-independent equations arising from the Schrddinger
equation has been treatcd earlier in this repout.

To rccapitulate briefly in this case specifying

(a) Vix),
(b) A, the normalization of x(x| E):

=2 2
A.:( Ix(x|E)|" dx

1 Vow

(c) The boundary conditions on x(xlp):

eipx bip) e-ipx \
lim x(xh)) = + 2P
X =0 N2m NFX:
forp>0
ipx
lim x(x‘p) = .M__.
X0 NZw ‘
ipx . -ipx
lim y(x|p) = — + HBLE
X-re0 N2r New
for p<0
ipx
lim x(x‘p) :'S_(M___
X N2 ‘

wc solve the two cquations

2

2
2 2
[——9— +V(x)] x(x|p) = p“x(x|py forp- >0
dx

2
I—’g? * V(X)] x(x|E) = Ex(x|E) for E, <0
1 1 1 i
dx
and determine E., b(p), t(p), r(p). s(p), x(x|p) and x(x|E;). It was also shown that the x(x|p) and
x (x| Ei) thus determined satisfy the completeness and orthonormality conditions, and hence, that

any function f(x) can be expanded in the following manner:
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£(x) g x(x|p) g(p) dp + ), xx|E) g .

1

where

glp) = 5 x¥ix|p) flx) dx

o
A.g. = 5 x*(xIEi) f(x) dx
-0
We shall next discuss the inverse problem, namely, the problem of determining V(x) from a
knowledge of Ai' Ei’ b(p) and the boundary conditions on x(x|p). This problem was first treated
by Gel'fand and Levitan. However, they dealt with the radial equation for £ = 0, and we shall be
dealing with the one-dimensional equation for the range -» <x <=,

We shall first give the Gel'fand-Levitan algorithm and then proceed to the proof. The proof
will be given in two parts.

Gel'fand-Levitan Algorithm
If, given b(p), Ei’ and Ai' we define

[F

1 -i 5
R(x) = 5= bip) e PXdp + ), E (43)

1

1

and assume that the Gel'fand-Levitan equation for x 2 y,

X
K(x,y) = —R{x +y¥) —g K(x,z) R(z +y)dz , (44)

has a unique solution for K{x,y), then the potential V(x) is given by

Vix) = 2 & K, x)] (45)
and for p> 0,
X pp)e X1 S’x ipy -ipy
x(x|p) = =— + +— \  Kix,y) (e +b(p) e” V) dy
| N2m N2r N2r Vo

(46)

J-Eix + va K(x,y) eN/:Eiy

x(xIEi) = e dy

In principle, the inverse problem which requires the solution of a linear integral equation —
the Gel'fand-Levitan equation — is no more difficult than the direct problem which requires the
solution of a linear differential equation. We note that for fixed x the Gel'fand-Levitan equation
is a Fredholm equation and hence is of a well understood standard form.

/-E.x .
Also, as x——» we have R(x) - 0. Each of the terms of {he sum % e ) /A1 certainly tends
i
to zero as x— —w=, and with the help of the Riemann-Lebesque lemma it can be shown that the
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integral in the expression for R(x) vanishes as x - —»1 The given b(p) will of course satisfy the

relations b(—p) = b*(p), lim b(p) = O in the upper half plane. We might point out that as a

-0
consequence of the first of these two relations R(x) is real and this in turn implies that K(x,y)
is real.

i and Ai are specified before the Gel'fand-Levitan
algorithm can be applied. However, for very short range potentials b(p) and Ei are sufficient
and Ai need not be given.

In general, it is necessary that b(p), E,

Let us specify two functions l!)(xlp) and zp(x| Ei) which are solutions of the equations

2
[—fi + V(x)] ¥(x|p) = pu(x|p)  for pZ >10

X
(47)

2
d T ,
[—:i;z + V(x)] Y(x|E;) = EilP(X|Ei) for E; <0

The zp(xlEi) are to be identical with the x(x| Ei) and hence are determined by imposing the

same boundary condition on them as was imposed on the x(xl Ei)‘ namely,

g_w w*(xlEi) zP(xlEj) dx = Aiéij

However, the boundary condition

ipx
P

lim ¥(x|p) = for all p (48)

X+ -0 rAd
which we impose on the zp(x|p) is different from the condition imposed on x(xlp). One reason for
the choice of this boundary condition is convenience. Also, with this condition the zp(xlp) are
analytic functions for all p. The two independent solutions ¥(x|p) and ¥(x|-p) may now be super-
imposed and we write
X(xlp) = l!)(x|p) + b(p) ll)(x|—p) for p > Ol .
x(x|p) = ¥(x|p) +r(p) Y(x|-p) forp <0

Next we proceed to Part I of the proof of the Gel'fand-Levitan algorithm. In this part of the proof
we shall show that

ipx X :
Wix|p) = S— + — S K(x,y) e'PY dy
2w NZ2m Ve

(50)
5. -Eiy
+ g K(x,y) e dy

Y(x|E) =e

satisfy thc equations (47) when (45) is satisfied. It is immediately apparent that zp(xlp) as given

by (50) satisfies the boundary condition(48).

 The Riemonn-Lebesque theorem (Lighthill, Introduction to Fourier Analysis ond Generalized Functions, p.46)
stotes thot: |f b(p) is on ordinary function obsalutely integroble from=c0 to e, then its Fourier transform = 0 os
«| = . However, b(p) in this cose consists of a given set of values ond is therefore certoinly obsolutely in-

tegroble over {~o0,00).
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Next we calculate (dz/dxz) ¥ix|p) + pzzp(x]p).

d . ipx p X ;
a dorlp) = 1By KUK WXy 2§ gy o ay
N2n 2m N2t Yoo
ipx . A ipx
A wix|p) = —p? S ¢ BEILX) X e D gy y)
dx N2n N2ZT N2n
K (x,x) . X .
o SRR ipE | g K, (x,y) e dy
N2n . N2m Yo ¥

where
I ,:( ) dx ) Iy._x
\‘ X,X) = 54— [I{(x,y ] >
K (x x) = Hm [I\(X y)]l
Y ’ dy ’ y‘-x

(51)

Integrating by parts and making use of the fact that as x -~ —«, R(x) = 0, and therefore also

K(x,y) = 0, we have

2 ipx X .
2 _p e 1 2 ipy
p“¥ix|p) = P+ g K{x,y) p e™’ dy
N2T N2t Yew
2P ki, x) px . 4 (X i
- P - XX . +—§ K_(x,y) ip e'?Y dy
NZT NFX: NZr Yoo Y
z eipx ipK(x, x) _ipx Ky(x’ x) ipx 1 i ipy
=P - AL Sl S AR S S‘ K __(x,y)e dy
27 NZT N2 NZr Yoo VY

Hence,

2 ipx
%LP—) +p2p(x|p) = E= {5 [Kx,x)] + K (x,%) + K (x,%)}
dx 7 o y

1 (" ! ipy
o= S‘_w [K %, 3) = K (x,3)] e dy
ipx S X .
- Zj__ 2 [Kex,x)] + \/;_S [Kyel%) = Ko, y1 P ay . (52)
2m ‘ 7 Ye-x
Since
K (6,%) + K (x,%) = d—i K(x,x)] (53)

we proceed to find an expression for Kxx(x,y) — Kyy(x’y)’ We have

X

K(x,y) = —R(x +y) — g K(x,z) R(z +y) dz
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Henee,

X
K (x,y) = ~Rix +y) - K{x,x) R{x +y) - g K (x,z) R(z +y)dz

H

K (%3 = =R +y) - K(x,%) R'(x +y) - a‘i—{ [K(x,x)] R(x +y)

X
~K (%, %) Rix +y) - g . K x,2) R(z +y)dz

X
K (xy) = —R'(x +y) - g K(x,z) Rl(z +y) dz

X
= —R'x +y)-K(x,x) Rix +y) + 3 I\’Z(x,z) R(z +y)dz

X
Kyy(x,y) = -R™x +y) —K(x,x) R{(x +y) + g Kz(x,z) Rz +y) dz

X
= —R"x +y) — K(x,x) R'(x +y) + Ky(.\',x) Rix +y) — g KZZ(x,z) R(z +y) dz

Then
- . d B .
K, (% ¥) = I\yy(.\',y) = _{-d; [K(x,x)] + K (x,x) + I\y(x,x)} R(x +7y)
X
——g-m [Kxx(x,z) - Kzz(x,z)] R(z +y) dz ,
or using (53),

Kygl®y) =K (x,y) = =2 KO0 REx +y)

X
—g [Kxx(x,z) - Kzz(x,z)] R(z +y) dz . (54)

This is an integral equation for I\'XX(x,y) - Kvy(x,y). Let us try to find a solution in the form

d

Kxx(x’y) - Kyy(x,y) = Lix,y) 2 aOx [K(x,x)] . (55)
Substituting (55) in (54), we obtain
X
L(x,y) : =R{x +y) — S‘ L(x,z) R{z +y)dz . {56)

Hence, L(x,y) satisfies the same equation as K(x,y). H we assume that this equation has a unique

solution, then I({x,y) = K(x,y) and

d
Ky, y) =K () = 2K(x,y) g Kox] (57)
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Using (57) in expression (52), we obtain

2 ipx
d P
ﬁi:;{; Bl 4 py(x|p) Zj__ ax [Kx,%)]

1 S‘X ipy
+ 2K(x, ) K d
T e y [ (x,x)] e y
- n2dfilx;x]] [ =h ‘S‘X K(x,y) eipy dy
dx Nz Nz Y

=2 5 [K(x,%)] dix|p)
Hence, if
V(X) =2 5= [K(x x)]

then zp(x|p) satisfies Eq.(47). The proof for zp(x|Ei) is identical. This completes Part I of the
proof.
In Part I of the proof of the Gel'fand-Levitan algorithm we have shown that the l!’(x|p) and
(x| E. ) as given by (50) satisfy the equations (47). Also, w(\c|p) obviously obeys the boundary

cond1t1on (48). In Part I of the proof we shall prove the following completeness relationship:

‘S‘ pix|p) $*(x'|p) dp + ‘S‘ (x| p) b(=p) ¥*(x'[=p) dp
Vx| E) vx'| E))

A.
i

=6(x —x') . (58)

i
We shall then use this completeness relationship to show that the ¥(x|p) arc linearly independent,
that the ¥(x|E, ) are quadratically integrable, have the normalization A and are therefore the
point e1genvalues of the Schrédinger equation (47), and finally, that the b(p) as used in (43) are
indeed the reflection coefficients of the Schrddinger equation.

Let us first prove (58). For x>y we have

K(x,y)

1]

X
—~Rix + y)—‘S‘ K(x,z) R(z +y) dz

o w . x [-E,(z+y)
—-R(x +y)- ?1; ‘S‘ dz ‘S‘ K(x, z) b(p) e_lp(z+y) dp ——‘S‘ Z, Kig ) eA dz
-0 -0 -0 i

i

i

—-R(x +y)-

0 —ipx K
g [zp(xl—p)— = ]b(p) e 1PY dp

21 Y=w | 21
—Ex y
[w<x|Ei)—e ] JE
) A]
i

1
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Therefore,

1 _‘- | ¥ ;
K(x,y) = ——~——§ P(x|-p) b PY 4p — ) e 5
— ) x|—p) bip) e ) = | (59)
Also,

o0 \y .
K{x,y) = —g ¥(x]—p) b(p) [w(y|—p) =_ 0 S K(y,z) e ‘P#% dz] d
. = J., KV p

w(x]E

Y -Eiz
_ Z byl E) _5 0 AP .
i $(x|E) wly| E,)
= —S\m #(x]=p) b(p) ¥ly|—p) dp — Z ____1K__ ;
i i
-E.z
'Y [ 1 a0 . ;
+S K(y, 2) —-—-g P{x|=p) bip) e~ 1pz dp + AL UM
- L'\/‘ﬂ —00 L 1

But, according to (59), the expression in brackets in the last integral is just —K{(x, z). Hence,

rearranging terms we now have

5 Wx|E) w(yIE
5 ¥(x|-p) b(p) ¥ly|-p) dp + Z ———— = —Kix,y)

= l

Y
—g Ky, z) K(x,z) dz . (60)

This is true for x > y. However, the left-hand side of (60) is symmetric in x and y so that for

x <y we have

) yIE zp(xU:
Sw Yy [=p) bp) ¥l |-p) dp + Z —— " = —K(y.x)

1

X
—S‘ Kix,z} K(y,z) dz

Introducing the Heaviside step function,
1 whenx >0
n{x) =
0 whenx<0 , (61)
and replacing p by —p in the integral on the left-hand side, we {inally have

o Dyl E)
g ¥(x|p) b(—p) $*(y|-p) dp + Z '—_ = —nix —y) K{x,y) = nly — x) K{y, x

= l

y X
_n(x_y)S‘ Kly, z) K{x,2) dz — n{y — x) S‘ K(x,z) Kly,z) dz . (62)



Next, using {50), we write

Sm s p) ¥*(y]p) d Sw [eipx L (" ke ""”d]
x|p) ¥"(y|p) dp + x,z) et~
- -0 Laf27 N2r V- |

1

o ~iPY Y »
X [(' + ! g Kiy,v) e v dv] dp
NFX N2m Yo

0 0
1 ip(x- 1 (Y o (sm
= = g e1[)(x y) dp + 5+ g Kly,v) dv g oip(x-v) dp

- -0 —-00

1 (X V00 . ( )
L Cre ip(z-y
+ 57 3 . K(x,z) dz S e dp

- -0

X % WO .
1 . : . 7=
* 5 5 . Kix, z) dz \ Ky, v) dv S pRiE v) dp

- < -t -0

But
5 eip(,\:-y) dp = 278(x — ¥)
-0
Also,
Y 0 ; ey Y
%{ g Kly,v) dv g elp(x v) dp = g K(y,v) 6(x - v) dv
-0 -0 -
K(y,x) whenx <y
0 when x > y
=nly —x) Ky, x}
X 100 — X
ZL g K(x,z) dz 5 elp(L y) dp S\ K(x,z) 6(z —y) dz
u -0 - —00
K(x,y}) wheny <x
0 wheny > x
= x —y) K{x,y)
X y 0 . e y
—2—1— K(x,z) dz g K(y.v) dv g elpu‘ v) dp = 5 K(x,z) dz g K(y,v) dvé(v — z)
il -0 -00 -00 -0 -00

Yy
= S K(x,z) K(y,z)dz whenx >y
o0

X
= g K(x,z) K(y,z) dz wheny > x
o0

y X
=n(x —y) S\ Kix, z) K{y,z) dz +nl{y — X) g K(x, z) Kly, z) dz

-0
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Hence,

g«, B(x|p) ¥™(y|p) dp = 8(x —y) +nly — x) K(y,x) +n({x —y) K(x,y)

Y X
+n(x—y) S K(x,z) K(y, z) dz + n{y = x) g K(y,z) K(x,z) dz . (63)

Adding (62) and (63), we obtain

100

S Pixlp) ¥ (y|p) dp + S #(x|p) b(—p) ¥*(y|-p) dp

— =00

Ux|E) ¥y Ep
+ —_— = O(x—y)
A,
. i
i
This completes the proof of the completeness relationship (58).
A direct consequence of (58) is that any quadratically integrable function f(x) can be expanded

in the following manner:

f(x) = 5 pix|pyalp) dp + ) w(x|E)a; (64)
= i
where
a(p) = g fly) ¥*(y|p) dy + g i(y) b(—p) ¥*(y|-p) dy (65)
i(y) ¥y E)
a, = S: —K dy . (66)

Let us treat two special cases:
(a) f(x) = ¥(x[p) .
(b) £0x) = Blx| L))
¥(x|p) is not quadratically integrable, but it is still symbolically possible to treat case (a).
(a) When f(x) = w(xlp), we see at once that in this case we must have
a(p) = 8(p—-p"

a, =0
i

The first of these gives

gm Blylp" ¥*(y|p) dy + Sm B(y|p') bl—p) $*(y|-p) dy = 6(p—p') . (67)

=00

The second gives

o ly|p") ¥y | E;)
==

-0 i

dy =0 . (68)

Hence, the yb(xlp) and w(xlEi) are orthogonal.



(b} When f(x) = lP(XlEi), we see at once that in this case we must have
a(p) = 0,

a. =6,
i ij

Trom the second of these we obtain

>

gw Yy E) v(y|E)
A AL

=6
—c0 ‘l\i Y 1)

or

S " ‘rh()! Ej) ;."(‘\," Ei) dy Aiéij . (69)

Hence, the (x| Ei) are quadratically integrable and have the proper normalization.

We shall now prove that the b(p) as used in the Gel'fand-Levitan algorithm are indeed the
reflection coefficients.

l.et us consider the outgoing wave, i.c., \(xlp) for p > 0, and assume that the reflection coef-
ficient is l/;(p) and not b(p). With the help of the completeness relationships for Y(x|p) and wxlp),
we shall show that f)(p) = b(p).

Since x(x|p) and #(x|p) are solutions of the same Schrodinger equation for different boundary
conditions, we may write x(x|p) as a linecar combination of the two independent solutions d(x|p)

and 1})(x|-—p). We write
x(x|p) = 0(x|p) +bip) #(x]-p) forp>0 (70)

We have chosen L"(.\:!p) so that it satisfies the boundary condition (48), and as a result of this x(.\'|p)

as given by (70) will satisfy the correct boundary condition

ipx T -ipx
lim ,\'(.\'lp) = O’__ + bip) ¢ for p >0
Xmaoo N2w Vr

A
Itowever, the \'(.\:|p) sutisfying this boundary condition is unique, and hence b(p) is the reflection
coefficient as defined previously.

Similarly, uniqueness of a solution for a given boundary condition gives us

,\'(x|p) = It\(p) z[;(xlp) for p <0 . (71)

,t\(p) is the transmission coefficient, and Ill\)(p)fz + I,t‘(p)|Z = { for all p.
Agamn we choose the proper eigenfunctions \(.\'|Ei) and ¢(x| li.l) to be identical and to have the
same normalization Ai' We might point out that since K(x,y) i» real, z,’r(xl Ei) and x(.\'| I'-)i) are real.
We now have the completeness relationship (11) for the x(,\'lp) and x(.\'| Ei)' namely,

(x| E) x| E)
: Lok —xY)

o0
g x(x|p) x*(x'[p) dp + E :
-0 ; i

and the completeness relationship (58) for the ¥(x|p) and w(x| Ei) = x(x[Ei), namely,

o W(x|E) x| E)

¥(x|p) bl=p) ¥*(x'|-p)dp + ) ———x— = 0x-x!)
0 1

g Pix|p) ¥*(x']p) dp + g

i
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Let us consider (11) and substitute x{x|p) from (70) for the range 0 to =, x(x|p) from (71) for the

range —» to 0 and X(X|Ei) = P(x| E;). Then we obtain

00

So (x|p) ¥* (x'|p) dp + S ¥(x|p) B* (p) ¥* (x'|-p) dp
0

+ go B(p) b(x|-p) #*(x'|p) dp + S Ibp) | wix|—p) ¥*(x'|—p) dp
0

0 A L d(x|E) oix'|Ey)
+ § 1) |2 vl p) ¥ (<t |p) dp + ) ——— — L = (x-x" . (72)
-0 i

We note-at once that

N2 0 A2 %
Ib(p)| < ¥(x|=p) o™ (x'|=p) dp = S [b(p)|© wix|p) ¢*(x'|p) dp
0 0
. Bl s i [2 - e . .
Also, since [b(p)|© + [t(p)] {, we can add the fourth and fifth integrals of (72) and obtain as

their sum

0
S x| p) ¢ (x| p) dp
o0

This integral in turn, when added to the first integral of (72), gives for their sum

200
S Pix|p) ¥ (x'|p) dp

~ n
Finally, we note that since b(—p) = b"‘(p),

0o

S ¥ix|p) ’l;*(p) JE(x=p) dp + 5 ,l\)(p) dix|—p) VH(x"|p) dp
0 0

-0

o A 0 L
- S L'(xlp) b(--p) l.‘-*(x'|—-p) dp + S b(—p) dl(xlp) P (x'[=p) dp
0

= S Wx!p) g(—p) P (x'|—p) dp

With these simplifications, (72) now becomes

wix|p) Dl—p) ¥* (x']-p) dp

3 $x|p) v (x[p) dp + g
vix|E) ¥t B

A.
i

(13)

= 6(x — x'")

+
=

It now appears that, as a consequence of (73), we can expand any quadratically integrable function

f(x) in the following manner:

f(x) = g vix|p) a(p) dp + ), d(x|Ep)a;

- i
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where
00

= | wperlmay +

f(y) bl=p) ¥*(y|-p) dy ,

e Iy) Yy | E)
ake= ‘5 e ——— dy
i i Ai
However, it follows immediately that

ap) = afp)

where a(p) is given by (65). Hence, for any quadratically integrable function f{x) we must have
for all p

[b(~p) — bi—p)] S £(x) #(x|p) dx = 0

A
This can be true only if b(p) = b{p) for all p.

V. SOME EXAMPLES OF THE SOLUTION OF INVERSE
SCATTERING PROBLEMS

We shall now give some examples of the extreme potency of the Gel'fand-Levitan algorithm
and show how it can be used to reconstruct the entire scattering problem from the scattering

coefficients.

A. The Delta Function Potential

First let us consider the case for which there are no bound states and

-2iep
b(p) = -1 > . 1_4 (74)
P+
This reflection coefficient is of the proper form, since it satisfies the relations
b(=p) = b™(p)
lim  Db{p) =0 in the upper half plane
p| e
In this case, we now have
. 0 -ip(2a +x)
iA e
ST 4r T 3iA 7
R{x) in A dp . (75)
-00 p + ._2_

Evaluating the integral in the usual fashion by contour integration, i.e., closing the contour in

the upper half plane when x <-2q, we obtain
R{x) =0 for x<-2«

Similarly, closing the contour in the lower half plane when x > —2a, we obtain

A —%(x+2a)
E‘e when x > —2¢

Rix) = —
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Hence,

A
-S{x+2a)
Rix) = ——% n{x + 2a) e 2 5 (76)

The Gel'fand-Levitan equation for x > y is then, for the given example,

A —%(x+y+2a)
Kix,y) = 3 Mx +y +2a)e
A (X --‘%(z+y+2a¢)
+ —Z-S Kix,z) n{z +y +2a) e dz . (77)
-
Wec note than when
x <o s

x ty<-2«a s

z +y<-—-2a )
and

K{x,y)=0

and hence also

Vix) =0
Equation (77) suggests that we write

K(x,y) = n(x +y + 2a) g{x,y) . (78)
Substituting this expression for K(x,y), we obtain
A -%(x+y+2a/)
nx +y +2a) g(x,y) = 3> nx +y +2a)e
A (X - -‘%(y+z r2a)
+—2- X +z+2a)nly +z+2a)glx,z)e dz

-00
Consider the product of two step funetions. Evidently,

n{x —a) whena>Db

n{x —a) n{x —b)

n{x —b) whenb>a

na —b) n{x —a) +n{b —a) n(x —b)

Hence,

1

nix tz +2a) 5y +z +2a)=nly —x)n(x +z +2a)+ nx —y)nly +z +2a)

nly +z + 2a) ,

since x > y.
Using this expression for the product of the step functions, we now have
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-%(x+y+2a)

n(x +y +2a) glx,y) % n(x +y +2a)e

A (¥
+7§ Ny +2z +2a) gx,z) e
o0

-2 (ytzi2a)

A -%(x+y+2a)
=S ax tyt2a)e

A X -%(y bzt2a)
+En(x ty +2a) S‘ gix,z) ¢ dz
-(yt+2a)
We have already shown that, for x +y +2a <0, K(x,y) = 0. Hence we now treat the case

x +y + 2 >0sothat n(x +y +2«) = 1. Then

A -%(x+y+2a) A (X -%(y+z+2a)
glx,y)= 5 e 5 S‘ gix,z) e dz
-(yt2a)
-%(y+2a)
- e fy) (79)
where
-ox X
fix,y) = % e 2 4 % e A § oAz f(x,z)dz , (80)
-(y+t2a)
and
__Tdf((-‘):l) = & AV iy y —2a) (81)
We can satisfy (81) by letting
A
f(x, v} e? vx)
and substituting in (80} we obtain
éy NELN X 4,
e’ vix) = %e IS % o he v{x} e % dz
-(yt+2a)
A A, .
A 2% -Aa -z Zlyweal
=3e -e v(x} |e - € )
which gives
vix} = ‘% eAa
Hence,
A %(yﬂa)
f(X,y) = _2 e )
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and

A

g(X:Y) = 7 X
Then

. _ A

Kix,y) =n{x +y + 2a) > (82)
and

. d [
Vix) = 2 ax [K(x,x)]
= AS(x +a) . (83)

Having determined K(x,y), we can now also find the eigenfunctions w(xlp):

Lipx X .
llJ(x|p) =L + A S‘ ny +x + 2a) ety dy
NFX: 2N2r Voo
ipx X o
=£ + 4 n(x + ) 3 e'P? dy
27 2N2n -(x+2a)
ipx . . or -ipx
= £ - [1—%1](x+a~)]+-§\-ln(x+a')empag— . (84)
NFI P b N2r
"rom this we see at onee that d:(x|p) satisfies (48), namely,
e'1p.\:
lim ¢(x|p) = for dll p
X—-w 2m
Also,
. ipx . . ipx
dgb(xh))f Lpel [l——‘l—\—111(\:+a)]——é56(\:+cy)el
dx 2 : 2p Y =
N2w P ! NZT
. o -ipx i o mipX
+ 2&1 o(x + a) e dipa @ + nx +a)e SR C/—-
p N2 NEX
ip P N Al O(x + o) (C-Zipa e—ipx _ eip.\')

N2m R N2rn

+ A nix +a) (eq)x N e-21pa e—pr)

LN X
. ipx : N ! .
_ipe . A np(x + a) (elpx ,,. e—21pa e-lpx) )
NZr ¢ NZT
aCuxlp) o !PX A b(x +a) (P, o2ipa -ip)
dx® Nzm % NZm

+ 1_[?2_A n{x + a) (eipx _ e-ZLpa e—lpx)

New
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2 ip xXEET . -
d o =t g
lP(’; p) _ _pz e I 1_pzé {x + ) (elpx——e 2ipa oTiPX) A o ipa
dx NFXS NFX NEX:
Hence,
a%(x|p) 2 |eP* Ai
- SRR 4 vix) Yix[p) = pT o= - g nix + )]
dx - \N2n p
. Lo -ipx o
Jr%n()‘:Jra)ehpoze __A o"ipe
p NZr NZw
ipx . . Y -ipx
+Ab{x + a) l_e___ t- % n{x + )} + T,_A—; nx ra)e dige £ = pzzp(x|p)
l\/21r P I NZm
zp(x|p) satisfies the Schrédinger equation:
- a4 2
[—'—z +AS(x + a)] ¥(x|p) = p 1P(?<|p) ) (85)
dx
subject to the boundary condition
eipx
lim (xip) = forall p ,
X—>=0 2w
and hence for p > 0,
x(x|p) = ¥(x|p) +b(p) ¥(x|~p) (86)

is the unique solition which satisfies the same Schrédinger equation subject to the different bound-

ary condition

ipx -ipx
lim y(x|p) = S + 2pLE
X N2 N2

Substituting in (86) from (74) and (84), we have

x{x|p) = ¥(x|p) +b(p) ¥(x|-p)

ipx . . 5% -ipx

== [1——A—1 (x+a)]+—A—1n(Xfoz)e21pae——-—

T 2p Ner
Al e it omipx A Aln(x + a) e'P¥
- == R R R B v
(p+ ) Nem P aplp +i 5) V27

eipx [1 __Ain(x +a) Azn(x + oz)]

NZ7 2p ap(p +15)
. Al o
e IPX ) A ap Pt gpaxtall iap
+— i—n(x+oz)—-—2— A e
Nzr | P (p+5)

Letting x -~ «, we can now also find the transmission coefficient t{p):



Al

] ipx 2 -ipx [, . i bt :
lim yx(x|p) = N 21%1 = A o ] e _Zi\i 2p ‘| ,-2iap ’
X—> o0 N2 4p(p + T) ;\[271- P (1 ¥ N )
or
ipx
lim x(x|p) = t(p) !
x> Zn
where
tp) =t~ Al —AZ.____
p 2p 2p(ep +1i4) 7
or
_ 2p
P = ot (87)

Also, as has been shown to he generally true,

—2p 2p g
35 +1A " 2p-1a b W)

il

t{—p)

’

and

2 2

4p +A 4p +A

"

o) % + [tp) 12

We can also find r(p), the reflection coefficient, from the other side by proeceeding in the following
manner.
FFor p <o,

ipx

linv x(x|p) = s(p) E

X+ =00 27
It was shown earlier in this report that
s(p) = t{p) forall p

Hence, we write for p <0:

x(x|p) = s(p) $(x|p)

ipx . : : -ipx

2p e Al Al -2ipa e

= = (1 - x +a)] + nix +a)e S
H-1A | T 2 NPT

In order to find r(p), we now let x - += and find

ipx
: Ai -lea e
llmx(xp)=——p—.—[3———( )+ ]
X~ o0 | 2p—1A 2 Zp NFX
_ eP¥ . AL 2ipa e TIPX
N NZT
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Hence,

IR Te e (2ip
e

We might note that only for @ = 0 do we have r(p) = b{p) for all p.

Before proceeding to further examples, we emphasize again the extreme potency of the
Gel'fand-Levitan algorithm. In the previous example, we have reconstructed the entire scattering
problem from a knowledge of the reflection coefficient on one side. We have found the potential
function producing this reflection coefficient, the corresponding eigenfunctions of the Schridinger

equation, the transmission coefficient, and the reflection coefficient on the other side.

B. Reflectionless Potential

In this example, we shall use the Gel'fand-levilan algorithm to construct a reflectionless
potential.
We put b{p) = 0, and let us also assume that there is but one bound state, Ei' having a nor-

malization Al' Then

J B

e
R{x) = - A-l s (88)
\f—Ei(.\:+y) x J—El(z+)')
Kix,y) = = S—Ff— - Kix,z) —F— dz
Al - Al
/-E Y T
N i -E . x X -E,z
. Sy P +3 K(x, z) e 1ldz . (89)
t\l - l
IEquation (89) suggests that we write
-I:_:ly
Kix,y) = = —— fx) (90)
1 .
where
/-I-‘ b3 X 2] [—E Z
- i
f(x) = ¢ T % g e dz
-00
T ox 2 /—le
eJ 17 fixye } {(91)
ZA1 -y
or
2A, [-E
f(x) = il ¢ , (92)
- /-Eix —Eix
2A [—Ei e +e
and
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-2 ’_El eJ-—I%y

K(x,y) -
\'—Eix = -El.\l
c +2A /—El e
o /—E (y-x )
o 1t .
== /—Lie © sech [—»I:.i (x—,\;o)
where
X = —

) /—1—1le ARy

Hence, we obtain a reflectionless potential V(x) given by

ix) = 2 L [Kx,x)] = 28, sech [E. (x — x
Vi) = 2 g0 [K(x,x)) = 2B sech” [T (x x,)
Also,

ipx
N2n (\f:f] +ip) V2=
r . 3
ipx =1, sech =K, (x —x ) NTE)
PRI . Jo By sech =B, (x —x ) e
] (\’/'—L'J1 + ip)
Since b(p) - 0,
: = 3 -El(x-xo)
Ijom /—FE, sech -FE, (x —=x)e¢
1 e N t 1 0
x(x!p) — [ - ———— -
NET \/‘"'31 Fip
In order to determine t(p), we consider
‘ RIS 2 [-E,
lim y(xlp) — P - —— —
SR New [— I i
ttence,
p+ i\/— I“l
tp) —
p - '1\/—151
We may now write for p <0,
—Ei(x-xo)
x(xlp) ) oIpx p—1 —Ei) . /—Ei sech —1;1 (x—xo) ¢
N2T (p +1 _Ei)

I—-Ei +ip
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Then

eipx
lim y(x|p) =
X+ N2T

and hence r(p), the reflection coefficient on the other side, is also zero. That this must be so

is apparent at once from the relations

o) 2 + [tip) |2

2
|

1 for p >0

Ie(p)]2 + [stm)|2 =1  forp<oO
s(p) = t(p) forall p

IFinally, we might mention that in this case

x(x|E) = 9(x[E) = e

-E,x X -, (2y-x )
N \/_E1 S e ! %" sech —Ey (x—xo) dy

i (Do
L.l(_). :».o)

CJ:E;X - /—E1 secl)\/:TS—:(x—xo) &)
2 /—Ei

e

sech -—E1 (x—,\:o) . ’ (100)

Again the entire scattering problem has been reconstructed with the help of the Gel'fand-Levitan

algorithm,

VI. REFLECTION COEI'TICIENTS FOR POTENTIALS
WHICH VANISH IDENTICALLY FOR x < -«

Unfortunately, the potentials we have been obtaining so far are not of practical interest, since
they do extend to infinity and are therefore impossible to construct in actuality.

\We shall next give conditions on the reflection coefficient b(p) which will result in potentials
which will be identically zero on one side at ieast.

We first prove the following theorem:
Theo-em

I R(x)=0 for x < -—2a s
Then V(x) = 0 for x <-—a

We hope Lo be able to choose b(p) and the point eigenvalues Ei so that R(x) = 0 when x <--2a and

thus obtain a corresponding potential V(x) which is identically zero for x < —a. To prove the

thcorem, we use the Gel'fand-Levitan equation for x >y:

X
K(x,y) = —R({x +y) — S K(x,z) Rly + z) dz
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If

X <—a B

then
VSIS0
and
xty<-2«a s
hence,
R(x +y) =0
Also,

and hence
y tz <2« s
and
R(z +y) =0

Therefore,
K(x,v) = 0 when x < —-a s
and

Vix) = 2 5()15 [K(x,x)] =0 whenx<-a

This completes the proof of the theorem.

Let us now consider b(p) in the eomplex plane. Suppose b(p) has poles at p = i‘rj where 7 > 0.
We shall show that, if Ej = _sz and Aj is ehosen properly, we will be able to make R(x) = 0 for
x < —2a; hence, b(p) will be the reflection eoeffieient for a potential V(x) which is identically zero

for x < —a.

Assume that b(p) has the form

olp' = gl C-Zicwp s (101)

where

gl—p) = g*(p) on the real axis
(102)
g(p) = O(})—I\H) where K > 1

and g(p) has poles of residue rj at the points

p j.rJ =1 /—Ej >0 . (103)

Then

Fy

R{x) - 2—1; S glp) o P g B - (104)
—-00 . J

]
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When x < =2a,

I 2. -ip(x+2a) ol Zoz'rj+T.x
57 g(p) e dp = i Z vy e
J

n
Py

=
=
o

.
o

o

ttence, if we choosc A, so that

1 ZaTj
A c —11'j e s (105)
J
then R(x) = 0 for x < —=2a, and hence V(x) = 0 for x < —q.

As an example, consider the case where

. -Ziap
iB e
b) =7 g
B~
('106)
BB
‘1 4
In this case,
' . . : -ip{x+2e)
A &n -ipx _ i © e p(x
77 ) b(p) e dp - e S\ 5 dp
-0 -00 p— 5
B,
- % eB(y 02 for x <—-2a
ttence,
B s
Ri{x} - }—3 CBGV c'Z [ 9—\— for x < -2« . (107)
2 Ay
I we choose
1 BB eB(r (108)
;\1 ’

then
R(x) =0 for x < -2«

When x > —2a, we close the contour used to evaluate the integral in the expression for R(x) in
the lower half plane. This contour contains no poles of the integrand, and hence in this case the
value of the integral is zero. Then

B

5 X B )

E(X‘.‘ZO’

R(x) = CA = % c for x > —2a . (109)
1
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We now have

5 B (x4za) ' :
R(x) = = n{x | 2a) e : (110)
and for x > y,
B %(x+y+&a)
Kix,y) = -5 nx +y +2a)e
B (% By+zsza)
-3 g Kix,z)n(y +2z +2a) ¢ dz s (111)
when
Xx<—q B
Xty <=-2a
zry<~2a
and
Kix,y) =0
and hence,
Vix) = 0
Equation (111) suggests that we write
K{x,y) = ni{x +y + 2a) g{x,y) R (112)

and, proceeding as in a previous example given in this report, we obtain

B

gyl ==-5 (113)
- B
K{x,y) = = > nix ty+2a) (114)

Vix) = —Bo(x + o) . (115)
As we expected, this potential is identically zero for x < —a. Suppose now that

i 1
h(p) = B — (116)

p- =
&

and that theve are no point cigenvalues. We will now not be able to make R(x) = 0 for x < —2a.
Let us see what the corresponding potential will be in this casc.

We have

or

(117)
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Hence, for x >y,

B EZ(X+y) B (X %(yﬂ,)
K(x,y) = > n{—-x—y)e ta75 K(x,z) n(-y—2z) e dz . (118)
-0
The solution of this equation may be shown to be
B
" By(=x) BT 4 Bxey)
K(x,y) = B + 5 ) nlx +y) + Bp(x) n-x—y) e . (119)
2~
Then
Bx
R _ By{= B 3 : :
K{x, x) = 72( \{)Bex 1 > n(x) ) . (120)
—e
and

i i 72 . Bx Bx
Vix) = 2 %\ [K(x,%)] = 4—13—'%32— + Bo(x) (-2-:%—>
(2 —eX 2-e%

2 Bx

_4 —X - .

2Bl eE (%)x"z —Bb(x) . (121)
(2—-¢77)

ltence, in this case the potential has an cxponential tail for x < 0.

Finally, let us consider as an example the case for which

_C-Ziap
SR CERNTES _ (122)
E =1
In this case,
o 1 0 e—ip(x+2a) ox
Rix) = =57 g_m TR R Y 3 (123)

When x < —2a, the exponent in the integral is positive, and we close the contour in the upper half

‘plane. Ivaluating the integral thus, we obtain for x < - 2a:
P -ip(x+2a) ex+20~ « CZa'
——g —cl—f———.dp*—i——-.—:—-e'—-——
27 (p +1) (p—1) 2i 2
If we choose
T i
v 92_ ) (124)
1

then R{x) = 0 for x < —2a, and from the theorem we expect V(x) = 0for x <—oa. Whenx - —2a,
the exponent in the integral is negative, and we close the contour in the lower half plane. Thus

we obtain for x > —2a:

1 Swo e-ip(x+2a) 4 - 27 e-x-Zoz X e-Za
"z ), prup-D P 2r =2
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Hence,

. o S
R(x) = —e > G ST sinh(x + 2a) for x <-—-2« 5
or
R(x) = n{x + 2} sinh(x + 2a) 3 (125)
For x>y, ¥
K(x,y) = —n(x +y + 2a) sinh(x +y + 2a)
W .
—3 K(x,z) nly + 2z + 2a) sirth(y +z ~ 2a) dz . (126)
-0
We note that when
X <=
Xty <—2a s
z +y<-2a ,
hence
Kix,y)=0
and

Vix)= 0 when x < —¢

as we expected. Let us now try to solve the integral equation (126) and find V(x) for x > —a. I

we write
K(x,y) = n(x +y +2a) glx,y) (127)
then

n(x +y +2a) g(x,y) = —n(x +y + 2a) sinh(x +y +2w)

X
—S‘ g(x,zyn(x + 2 +2a)yly + 2z +2a) sinh(y + 2z + 2) dz
ox)

= —n(x +y +2c) sinh(x +y + 2a)

X
——g glx, 2y nly +z +2a) sinh(y + # + 2«) dz

it

—n(x +y + 2«) sinh(x +y + 2a)

X
—n(x +y +2a) g gix,z) sinh(y + z + 2a) dz
-(yt2a)

Itence,

X
g(x,y) = —sinh (x +y +2a) - ( g(x,z) sinh(y + 2z + 2¢) dz . (128)
Y-(yt+2a)
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Also,

X
dglx,y) . —cosh(x +y + 2a)— g
W S Yeyza)
2 X
d—%’—y—) = —sinh(x +y + 20:)—3
dy ~(y+2¢)

or
dglx, y)
SELY - g(x,y) - glx, —y — 2a)
dy
This is satisfied by
g(x,y) = vy(x) uly) +v,(x)

where u(y) satisfied

d®uly)

dy

= uly) —ul—y — 2a)

From (131)
uly) = sinh V2 (y + @)

and

3

g(x,z) cosh(x +y +2a) dz 3

g{x,z) sinh(x +y +2a) dz — g(x, -y — 2a)

(129)

(130)

(131)

(132)

glx,y) = v,(x) sinh NZ(y +a) + v, (x)

Substituting this expression for g(x,y) in the integral equation (128), we obtain

vi(x) sinhwNZ {y + a) + vz(x) = —sinh(x +y + 2a)

S‘X
-(y+2a)

[v1(x) Sinh\/?(z + ) + vZ(.\:)] [sinh(y + 2z + 2a)] dz

= —sinh(x +y + 2«a) — vz(x) {cosh(y + 2 + Za)]f(y+20‘)

—v,(x)
g l 2(1

—2(1—~/E)

- 5

+~2)

éinll[(i —N2)z+y +(2 ~N2) )

inh((1 +N2) 2z +y + (2 +V2) a]

X

—(yFZ(Y)

= —sinh(x +y + 2a) - vz(x)[cosh (y +x +2a)—1]

—v,(x)
1 |2(1

+
2(1 +~2)

1
2(1 —N2)

. 1
2(1 —~N2)

+~2)

1
s

inh(x +y +2a + N2 (x + a)]

! sinhWZ (y + @)

sinh[x +y + 2a =N2 (x + a)]

sinh~Z
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0 = —sinh(x +y + 2a) — v,(x) cosh(x +y + 2a)

1
—v (X) {| ————— sinh[(x +y + 2a) + 2
AN T2 e W gy 2Rl e
1
————— sinh{x +y + 2 = N2 (X + 5
ST [x +y + 20 —N2 (x + a)]

or

0= __GX+y+2(y " e-(x,g,yﬂa) 2

VZ(X) [ex+y+2a i e—(x+y+2a)]
_vi(x) 1 [ex+y+2a+’\/i(x+a) = e-(x+y+2a)-\/—i(x+a)]
2(1 + ~N2)
= 1 [ex+y+2a-'\/_i(x+a) = e-(x+y+2a)+\/—2—(x+af)]
2(1 —~N72)
NZ(xta) N2 {x 8
) ) v,(x) e v,(x) e
2 e:~A~y+20 =4 _VZ(X) g4 el
2(1 +N2) 2(1 —2)
& N2(xta) N2 (x+a)
+ e-(X+y+2a) [1 —_ V—\(.\') a v'l(:\) 5 ~ — vi(x) ¥ — ]
4 2(1 + ~N2) 2(1 — N2)

Hence, vl(x) and vz(x) must satisfy

V,l(X) [e\/_z—(era) e-\/_Z—(eroz)] =

1 +v (x)+ —
2 s 1 42 1 -2
(134)
vl(x) e\/_2—(>~:+a) -\/_i(x+a)
1—v,(%) - — [ s ]:0
1 -~N2Z 1 +~2
Therefore,
v, (x) 3 - '
. 12 N2l ra et ] 4 o~ Vaixta) |
1 +82 1 -A2 1 +42 112
-2 +v1(x),\/—2-[e'\f?(x+a) " e-\/—i(x+a)] =
or
y oy = g - d ] (135)
L N2 [e\ﬁ(xwy?, n e-'\/_Z(xvm)] NZ eoshN2{x + «)
Also,
1+ v, (x) + [e\/—i(x+a) - e—\/—i(x+a)] -~N2 [e\fi(xm) it e-\/—i(x+a)] SH=
2 N2(x+a) , -NZ{xta)
NZ e +e

and
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e'\lFZ(x+a') T e-'\/z(x+a)]

VZ(X) = .__1. [
N2 [eﬁ(xﬂx) +e-«/3(x+a)]
__ 1 sinhN2(x +a) b= (136)
NZ coshNZ(x + )
Hence,
T S sinhVZ (x + @) + sinhN2(y + @) (137)
N2 coshNZ (x + a)
and
R B n{x +y t+2a) [sinh\/i(x +a)+sinh~f2(y+a)] | (138)
N2 coshN2Z(x + a)
K(x,x) = —N27(x + a) tanh"2Z(x + @) , (139)
and
Vi) = 2 g [Klx,x)]
= —4n(x + @) sechz'\ﬁ(x +a) . (140)

Hence, again we have obtained a potential which is identically zero for x < -«.
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