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ABSTRACT

Equations for the determination of the frequencies of
flexural vibration and corresponding modal shapes for cylin-
drically aeolotropic circular plates are presented. A consid-
erable analysls has been made of the case of symmetric vibra-

tions and results are tabulated.

The theory is exemplified by an analysis of the vibration
of a circular plate with circular stiffeners for which the
effective elastic compliances had been determined in a previous
investigation. Nodal patterns and corresponding frequenciles
were experimentally determined for the first five symmetric
modes and the first four asymmetric modes of a simply supported
stiffened plate. Comparison between the theoretical and ex-
perimental results for the first three symmetric modes is pro-

vided.




Finally, some discussion 1s‘given for the lmportant
problem of approximating plates wlth attached stiffeners by

equivalent homogeneous uniformly thick aeolotroplc plates.

INTRODUCTION

The literature contains many analyses of transverse elas-
tic vibrations of plates from the standpoint of small‘deflec-
tion, thin-plate theoryl. Past research deals with both iso-
tropic and orthotropic plates but malnly plates which are
rectangular in shape. At least one paper2 in the recent past
deals with the vibrations of circular and elliptical ortho-
troplc plates for which the principal axes of orthotropy are
parallel or perpendlcular to a glven dlameter in the clrcular
plates and parallel or perpendicular to a principal diameter

in the elliptical plates.

In the present paper both a theoretical and experimental
study 1s made of the flexural vibration of circular plates
which are cylindrically aeolotropic. That is the princilpal
directions of aeolotropy at a point are in radial and trans-

verse directions. Such aeolotropy may occur in nature as in

N, g, Huffington, Jr. and W. H. Hoppmann II, "On the Trans-

verse Vibrations of Rectangular Orthotropic Plates", J. App.
Mechanies, 25, No. 3, 389-395 (1958).

W. H. Hoppmann II, "Flexural Vibrations of Orthogonally
Stiffened Circular and Elliptical Plates", Proc. of 3rd U.S.
Nat. Cong. of App. Mechanics, 181-187 (1958).
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some cuts of wood or may be manufactured at least approxi-
mately in the case of plates of reinforced materials or plates

wlth stiffeners attached.

DIFFERENTIAL EQUATION AND ITS SOLUTION
FOR THE FREE FLEXURAL VIBRATION OF
CYLINDRICALLY AEOLOTROPIC PLATES

The differential equation for the transverse statical
deflection of cylindrically aeolotroplic plates is in the
3,4,5

literature Its extension to the case of transverse

flexural vibration 1s,as usual, obtained simply by adding the

irertia term. It may be written as follows:

D qu + 2Dr0 84w + DO 84w + 2Dr a3w _ 2Dr0 B3w _
r 6r4 f? arzéS? ;E aé“ r 653 r3 brad?
D 2 2 D 2 .
Q 0w 2 AW O dw , Yh dw :
- + < (D, + D_n) + - ¥ 11 =0 (1)
;?‘5;2 ;ﬁ' ° ro 555 ‘;3 or g 325

3. 7. Carrier, "The Bending of the Cylindrically Aeolotropic
Plate", J. App. Mechaniecs, vol. 11, No. 3, 129 (1944).

uA. M. Sen Gupta, "Bending of a Cylindrically Aeolotropic Cir-
cular Plate with Eccentric Load", J. App. Mechanics, vol. 19,
No. 1, 9 (1952)'

| =y

“S. G. Lekhnitski, "Anisotropic Plates", translated by E. Z.
Stowell, American Iron and Steel Institute, New York, June
1956. Contribution to the Metallurgy of Steel, No. 50, p.22.
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Equation (1) may be solved by the method of separation
of space and time variables. Let w = <1>(r,0)eimt and

2
¢, = 5% then Eq. (1) becomes:

3% 2D 3%y Dy aks 2D, 33, 2D 33,
DT+ IR t— -3 5 -
dr r Ar-o0 o0 r or r orade
D. .2 2. D 2
29,2 (p,+D )P 808 _ & 4.0 (2)
Bt R S 325

where ® 1s the cilrcular frequency.

Furthermore we may likewlse separate the space variables

as follows:

Y(r)eivo

©
i
<
Ir~~)8

Equation (2) then becomes an ordinary differential equation

on Y(r) as follows:

2

" & ¥, g2 VD 2D g3 2¥Dg g Do 2
T g’ r°  da° p r dro B ar 1P ar
2 D 2
2V @ d w
- (D, + Do) + —_ - (=) 1Y) = o0 (3)
I Y i
or
ez ER B8 e -0 (4)
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D D
o":.LO. ’ k2=_.0. R F=2V20' +k2 R
D D 1
r r
2 2
of = S €Y ang o= vhE - 2208 ¢ o)
¢ Dr gDr

The latter differentilal equatlion can be solved in series form.

Let

Y(r) = }E anrn+m (5)

where m 1s the undetermined index of the series.

Then Eq. (4) glves the following equation:

[m(m-1)2 (m-2)-m(m-2)P+a]agr™+[ (1+m) (n-1)n°- (m+1) (n-1)F+ala, r™ 1+

+ [(2+m)(1+m)2-m(2+m)F+G]a2rm+2+

+ [(3+m)(m+2)2(m+1)-(m+1)(3+m)F+G]a3rm+3 +

+ Z [ (n+m)(n+m-1)2(n +m-2)-F(n+m)(n+m-2)+G] anrn"'m-auan_ urn+m =0
=,

(6)
Therefore, 1f Y(r) i1s to be an integral of Eq. (4), the
coefficient of each power of r 1in Eq. (6) must be identically

n+m

zero. Setting the coefficlent of r equal to zero, the
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recurrence equation for the coefficients an is:

[(n+an+m-1)2(n+m-2)—F(n+m)(n+m-2)+G]an—auan_4 =0 n>k4
(7)

which deflnes all the coefficients 1n terms of four of them,

say a5 s 87 5 a5 and a3 as soon as the index m 1is

known.

If ag # 0 , the coefficient of r® equated to zero
gives the indiclal equation:

m(m-l)g(m-e) -m(m-2)F + G = O (8)

With a change of variable m = x + 1 , Eq. (8) can bve
reduced to a biquadratic from which the four wvalues for the

indices are:

\/(1+F‘) +J (14F) - 4(F+a)
m = 1 +

2

(9)

Once the elastic compliances of a certaln materlal are
known, the four values of m can be computed from Eq. (9);
the recurrence equation for every root can then be obtained,

and the serles solutions for that particular problem obtained.
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SOLUTIONS FOR THE CASE OF
SYMMETRICAL VIBRATIONS

For symmetrlical vibrations the differentlial equation is
independent of © and all terms containing VvV vanish. The
parameters F and G become equal to k2 and O respec-
tively, and Eq. (4) reduces to:

2

2
[D4 + 2 D3 =5 D° + 53 D - a”]Y(r) = 0 (10)
r r r

Substituting X° and O for F and G din Eq. (9),

the four values of the index become:

m, = 0
m = 2
. (11)
m3 = 1+ k
m)_l_ = l - k
The recurrence equation (7) reduces to:
2 2 4
(ntm) (n+m-2)[ (n+m-1) - k ]an = a'a ) n>k (12)
and
Quan_u 4 ( )
a = n > 13
n (n+m)(n+m-2)[(n+m-1)2 - kgi -
The coefflclent of rm+1 s rm+2 ’ rm+3 require that

a; » a, and a3 be equal to zero. The equation correspond-

ing to m =0 1is:
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a'a, .
a_ = n>>
n n(n-2)[(n-1)° - k°] -
and glves:
auao

a =

b2 (o)

a5 = a5 = a, = 0

Quau GLI"Qu-aO

a = =

8 7 5.8(49-k) 2. 4.6-8(9-K2) (49-k° )
and

Y 8

¢,¥,(r) ==ao[1 + —{or) + (ar) +

2.4(9-K°)  2-4:6-8(9-k°) (49-k°)

N (O.I‘ ) 12
2.4.6+8:10-12(9-k° ) (49-%°) (121-k°)

. (sztr')“J ]
223e231(9-k°) (49-%°). .. [ (4j-1)°-K°] -

(1%)

Following the same procedure with the remaining three

indlces, one obtains:




b 8
C ¥, (r) = a'r2[1 + (ar) + (ar) +
22 0 4-6(25-k°)  L4.6.8.10(25-k) (81-k°)

gar)IE

i 4.6'8'10'12'1”’(25"1{2)(81-1(2)(169-k2) toeeeen +
)
(ar)
" 22de (25+1) 1 (25-K°) (81-K°). .. [ (43+1)°-k°] ] (15)

_ ou Ltk (qz)u
C3Y3(r) agr [1 + 8(2+k) (3+k) (5+k) ’

+ (or)° +
8.16(2+k) (3+k) (4+k) (5+k) (7T+k) (9+k)

(gr)12

iy 16+ 24(2+k )(3+Kk) (4+k)(5+k) (6+k)(T+k)(9+k )(11+k)(13+k) Foee

(ar)*d
+233-31(2+k)(3+k)...(23+k)(4j+1+k)(43-1+k)] (26)

+




= l k (ar)u
4Y)+(1") aq [1 + 8(2-k)(3-k) (5-k) ¥

(ar)° + oeieee +
"B 16(2-k) (3-k) (4-k) (5-k) (7-k) (9-k)
(ar)*] ] (17)

233 +J1(2-k)(3-k)...(23-k) (4J+1-k)(4J-1-k)

By using the ratio test, 1t can easlily be shown that the

four solutions above converge for all values of k .

The functions Yl(r) s Y2(r) s Y3(r) and Yu(r) are
solutions corresponding to the case for which k , the square
root of the ratlo of two rigidities, 1s not an integer. For

the case k=1 , the four solutlons reduce to two.

The solution 1s then:

w(r,t) = [0Y(r) + Co¥y(r) + Co¥a(r) + €Yy (r)1e®t  (18)

where Yl R Y ’ Y3 s and Y4 are the functlions obtalned
from Egs. (14) through (17) and

g
® = a° —=
Yh
(19)
' e . o _ [ &
2w 2r vh

10
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The four constants C1 s 02 ’ 03 , and 04 can be
determined from the boundary conditions for an annulus. For
a solid plate Y4 is 1nadmissible because of 1ts singularity
at r = O, For thils case we write 04 = 0., Also for sym-
metrical vibrations it can be shown that 02 = 0. The shear

in the plate at radlus r must balance the inertia forces as

follows:
omr Q= f Yo 3w 4 (20)
T -~

where Qr 1s the shear and the displacement and acceleration

are:

w(r,t) = (Cp¥; + C,¥, + c3y3)ei"°'C
2

a~w 2 ot
:i? = =W (ClY]. + 02Y2 + C3Y3)e

The shear is given by:

] eiu)t

r Q. Sw Cw k% dw
= - [r + - = =1 (21)
Dr E;E E;E r dr

11
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Substituting the values of the derivatives of the first four
terms of Y, , ¥, and Y3 into Eq. (21), we obtain finally:

- c[2(1=6%)] = o

and C, = 0 , since k # 1 . Hence, the solutlon for a solid

plate becomes:

= lot
w(r,t) = [clY1 + C3Y3]e (22)
where the two constants, C1 and C3 s Will have to be deter-
mined from the remalning boundary conditions.

1. Clamped Plate

The boundary conditions for a plate clamped at r = a

are:

w = 0 at r = a
. 9 at r = a
dr

Inserting these conditions into Eq. (22), we obtain:

0

C,Y, (aa) +'C3Y3(ad)
(23)

l
(@]

ClYi(aa) + C3Yé(aa)

where the prime indicates the first derivative with respect

to r . Eliminating C1 and C3 from Eq. (23) above leads

to the frequency equation:

12




Yl(aa)Yé(aa) - ¥3(aa)¥y(aa) = 0 (24)

The roots of Eq. (24) give the values of o , which when

inserted in Eq. (19) yleld the values of the frequencies of
the clamped plate.

2. Simply Supported Plate

For the simply supported plate the boundary conditions

become:

w = 0 at r = a
) v

Mr = g;g + o dw _ 0 at r = a
dr r dr

Using the boundary conditions the frequency equation

becomes:

v v
¥, (ca)[¥5(aa) + _;‘2 ¥j(ca)] - Y5(aa)[¥i(aa) + }19 Yi(aa)] = 0

(25)
Again, the roots of the frequency equation (25) are to

be inserted into Eq. (19) to determine the frequencies of the

simply supported plate.

The first six terms of the infinlte series were used in
the expansion of Eq. (25), and the first three frequencies
were calculated for several sets of assumed values of the

elastic constants. The results are shown in Table I.

13
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EXPERIMENTS ON CIRCULARLY STIFFENED
CIRCULAR PLATES

The apparatus for determining the frequencies of vibratlon
and the nodal patterns 1s shown 1in Figure 1. The plate under
study was driven at resonance by an electromagnet mounted be-
neath 1t on a solid test stand. A rectangular plece of lami-
nated iron was used in order to develop a driving force. It
was cemented to the plate through a flat clrcular washer 1n

order to create a symmetrical point of dynamic loading.

The frequencies and ncdal patterns were determined by
means of a capaclty type of plckup which can be moved across
the surface of the plate. A nodal line‘is detected by the
change in shape of a Lissajous figure on a cathode-ray osclllo-
scope to which the electrical output from the pickup 1s fed
through a preamplifiier. On account of the pull-pull nature
of the magnet, the frequency from the oscillator is one half
the frequency of the driving force. The output from the os-
cillator 1s cornected to one set of plates of the cathode-ray
oscllloscope, and the magnetic drive 1s connected across the

other set of plates.

Since the frequency ratlo 1s 2 to 1, a figure eight
Lissajous 1s shown on the screen of the scope. Crossing the
nodal line with the probe or plckup turns the figure eight
LissajJous into a horseshoe-shaped figure on one side of the

line, and inverts the figure on the opposite side. This fact

15
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provides a precise means of constructing the nodal pattern.

The experimental frequencles and nodal patterns for the
plate under study are shown in Figure 2. The theoretical and
experimental frequenciles for the first three symmetrical modes
of vibration are shown in Table II. The theoretical frequen-
cles were obtalned from Table I for the elastlc constants

determined from previous statlc tests.

Table II

Comparison of Experimentally Determined
and Calculated Frequencies for
Symmetrical Vibration

fl f2 f3
c.p.S. c.p.s. c.p.s.
Experimental 460 1634 3830
Theoretilcal 392 1990 4708

While the discrepancy between the theoretical and experil-
mental results 1s falrly large, it may be noted that the
theoretical frequencies were based on experimentally deter-
mined elastic compliances for the stiffened plate materlal
and therefore subjJect to some error. Also, the rotatory
moment of inertla 1s not 1included 1n the theoretical solution.

Its effect 1s to reduce the higher. frequencles as pointed out

16
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in a paper by Thorkildsen and Hoppmann6.

A much better agreement with experlmental results is to
be expected 1f the stiffeners are more closely spaced and
symmetrically disposed wilth respect to the center plane of the
plate, thus providing a better approximation to the condition

of homogenelty assumed 1n the theory.

DISCUSSION AND CONCLUSIONS

The reason for the dilscrepancy between theory and experi-
ment in the present study can reasonably be attributed to the
inappropriateness of the design of the experimental plate
which does not sufficiently well meet the requirement of homo-
geneity or. which the theory 1s based. It 1s clear that homo-
genelty will be better approximated if a larger number of
appropriately proportioned stiffeners are used. Since the
radius of the stiffener decreases for stiffeners closer to the
center of the plate, the cross-sections must be likewlse re-
duced. The cross-sectlon of the stiffeners used in the pres-
ent investigation were reduced in accord with a rational plan
but it 1s considered that future research 1s necessary to

answer this question in a satisfactory manner.

6R. L. Thorkildsen and W. H. Hoppmann II, "Effect of Rotatory

Inertia on the Frequencies of Vibration of Stiffened Plates',
J. Appl. Mechanics, 298 (1959).

17
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It is also clear that if the stiffeners were formed
symmetrically with respect to the middle surface and rotatory
inertia taken 1nto account the agreement between the theo-

retical and experimental results would definitely be improved.

18
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