
UNCLASSIFIED

AD'4 22Z3 3

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA, VIRGINIA

*UNCLASSIFIED



cFLEXURAL VIBRATIONS OF CYLINDRICALLY

AEOLOTROPIC CIRCULAR PLATES

by

I. A. Minkarah

and
LLJ
C= W. H. Hoppmann II

Department of the Army - Ordnance Corps
Contract No. DA-30-069-AMC-195(R)

Under the technical control of:

Ballistic Research Laboratories .** ,
Aberdeen Proving Ground ....

Aberdeen, Maryland ' -

TISIA A

Department of Mechanics

Rensselaer Polytechnic Institute

Troy, New York

October 1963



FLEXURAL VIBRATIONS OF CYLINDRICALLY

AEOLOTROPIC CIRCULAR PLATES

by

I. A. Minkarah
Research Engineer, Lebanon

and

W. H. Hoppmann II
Professor of Mechanics

Rensselaer Polytechnic Institute
Troy, New York

ABSTRACT

Equations for the determination of the frequencies of

flexural vibration and corresponding modal shapes for cylin-

drically aeolotropic circular plates are presented. A consid-

erable analysis has been made of the case of symmetric vibra-

tions and results are tabulated.

The theory is exemplified by an analysis of the vibration

of a circular plate with circular stiffeners for which the

effective elastic compliances had been determined in a previous

investigation. Nodal patterns and corresponding frequencies

were experimentally determined for the first five symmetric

modes and the first four asymmetric modes of a simply supported

stiffened plate. Comparison between the theoretical and ex-

perimental results for the first three symmetric modes is pro-

vi de d.



Finally, some discussion is given for the important

problem of approximating plates with attached stiffeners by

equivalent homogeneous uniformly thick aeolotropic plates.

INTRODUCTION

The literature contains many analyses of transverse elas-

tic vibrations of plates from the standpoint of small deflec-
1

tion, thin-plate theory . Past research deals with both iso-

tropic and orthotropic plates but mainly plates which are
2

rectangular in shape. At least one paper in the recent past

deals with the vibrations of circular and elliptical ortho-

tropic plates for which the principal axes of orthotropy are

parallel or perpendicular to a given diameter in the circular

plates and parallel or perpendicular to a principal diameter

in the elliptical plates.

In the present paper both a theoretical and experimental

study is made of the flexural vibration of circular plates

which are cylindrically aeolotropic. That is the principal

directions of aeolotropy at a point are in radial and trans-

verse directions. Such aeolotropy may occur in nature as in

1N. J. Huffington, Jr. and W. H. Hoppmann II, "On the Trans-
verse Vibrations of Rectangular Orthotropic Plates", J. App.
Mechanics, 25, No. 3, 389-395 (1958).

2W. H. Hoppmann II, "Flexural Vibrations of Orthogonally

Stiffened Circular and Elliptical Plates", Proc. of 3rd U.S.
Nat. Cong. of App. Mechanics, 181-187 (1958).
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some cuts of wood or may be manufactured at least approxi-

mately in the case of plates of reinforced materials or plates

with stiffeners attached.

DIFFERENTIAL EQUATION AND ITS SOLUTION

FOR THE FREE FLEXURAL VIBRATION OF

CYLINDRICALLY AEOLOTROPIC PLATES

The differential equation for the transverse statical

deflection of cylindrically aeolotropic plates is in the

literature3 '4,5* Its extension to the case of transverse

flexural vibration isas usual, obtained simply by adding the

inertia term. It may be written as follows:

4 2D 4 D 4 2D 3w 2DrQ ;3w
__ +~ rO 6 Q6wDr 27 'd 2 V +  r -- LL 2-

6r r 6r 6G r '&Q' r 6r r 6r69

Dg 62w 2 + 2w+D 9 6w + Xh62 w=

r 6r r 60 r 6r g t

3G. F. Carrier, "The Bending of the Cylindrically Aeolotropic
Plate", J. App. Mechanics, vol. 11, No. 3, 129 (1944).

4A. M. Sen Gupta, "Bending of a Cylindrically Aeolotropic Cir-
cular Plate with Eccentric Load", J. App. Mechanics, vol. 19,
No. 1, 9 (1952).

'S. G. Lekhnitski, "Anisotropic Plates", translated by E. Z.
Stowell, American Iron and Steel Institute, New York, June
1956. Contribution to the Metallurgy of Steel, No. 50, p.22.
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Equation (1) may be solved by the method of separation

of space and time variables. Let w = 0(r,@)ei(Ot and

cI -- then Eq. (1) becomes:

4 2D 4 D 4 2D 3 2Dr_
D 4 + rG +.(L + + r - o +)

r 6r 60 r 0 r 6r r

~ (D Q +D) 2(p + D,, (2)
6r r ;596r c

where w is the circular frequency.

Furthermore we may likewise separate the space variables

as follows:

V . Y(r)e iV

Equation (2) then becomes an ordinary differential equation

on Y(r) as follows:

d4 2V2 Dr d2  V 4D 2 r d3  2V 2 D d DO(Dr- ". 4+7 2 -'T+ ,3 - 7 ' -
dr r di' r r dr r di' r di'

2Vr2  DO d ( ]) Y(r) = 0 (3)

or

tD4 3 F 2 + D G al Y~) 0(4)
r r r r
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where

---Dr J, k 2 Dg F = 2V2 a + k2

Dr Dr

4 c 2 4k2 V2 (k2 +
a 2 all and G=Vk - 2v

CD gD r

The latter differential equation can be solved in series form.

Let

Y(r) = n ar n +m  (5)

where m is the undetermined index of the series.

Then Eq. (4) gives the following equation:

[m(m-1 )2 (m-2)-m (m-2)F+G ] 0orm+[(l+m)(m-1)m 2_(m+1) (m-1)F+G ] lrm+l+

+ [(2+m)(l+m)2 -m(2+m)F+G]a 2rm+2 +

+ [(3+m)(m+2)2 (m+l)-(m+l)(3+m)F+G]a3rm+3 +

+_[ (n+m)(n+m-i) 2 (n +m-2)-n+m)(n+m-2)+G] an r n+m- ,a 4an_4rn+m = 0

(6)

Therefore, if Y(r) is to be an integral of Eq. (4), the

coefficient of each power of r in Eq. (6) must be identically

zero. Setting the coefficient of rn+m  equal to zero, the

5



recurrence equation for the coefficients a is:
n

[(n+mXn+m-1)2(n+m-2)-F(n+m) (n+m-2)+GIa n-4an-4 = 0 n

(7)

which defines all the coefficients in terms of four of them,

say a0 , aI , a2 , and a3 as soon as the index m is

known.

If a0 7 0 , the coefficient of rm  equated to zero

gives the indicial equation:

m(m-l)2 (m-2) - m(m-2)F + G = 0 (8)

With a change of variable m = x + 1 , Eq. (8) can be

reduced to a biquadratic from which the four values for the

indices are:

I(1+F) J(,+iF)2 -

m 1 + U (9)
- 2

Once the elastic compliances of a certain material are

known, the four values of m can be computed from Eq. (9);

the recurrence equation for every root can then be obtained,

and the series solutions for that particular problem obtained.
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I
SOLUTIONS FOR THE CASE OF

SYMMETRICAL VIBRATIONS

For symmetrical vibrations the differential equation is

independent of 0 and all terms containing v vanish. The

parameters F and G become equal to k2  and 0 respec-

tively, and Eq. (4) reduces to:

[O4 + 2 D3 _'k O2 + k2D- a Y(r) = 0 (10)
r r r

Substituting k2  and 0 for F and G in Eq. (9),

the four values of the index become:

m I1 = 0

m2 = 2

m 3  1 +k

m4 = 1 - k

The recurrence equation (7) reduces to:

(n+m)(n+m-2)[(n+m-l)2 - k2 ]an = a4an-4 n > 4 (12)

and

a an -  n

n = (n+m)(n+m-2)[(n+m-l)2  2 n> (13)

The coefficient of rm +l , rm+2 , rm+ 3  require that

a1 , a2  and a3 be equal to zero. The equation correspond-

ing to m =0 is:
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'4a ao

an = 0 n>4
n(n-2)[(n-1)2 - k2]

and gives:

4

2.4(9-k2 )

a = a6 = a = 0
5 44

a4a4  4.a4ao
8 6-8(49-k 2.4.6.8(9k 2 )(49k 2 )

and

ClYl (r) = aj 1 + .(9r )  + (r) 8  +
2.4(9- ) 2.4.6.8(9-k2 )(49-k2 )

+ 
(ar)1

2

2.416.810.2(9- )(49- k)(121-k2)

+ (ar)4j] (14)
22] 2J(9-k2 )((49-k2 )...[(4j-1)2-k2 (

Following the same procedure with the remaining three

indices, one obtains:
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C22r ~ 2  1ar + (ar)8

4 .6(25-k ) '.6.8.1o(25-k 2)8- 2

+ Jt.68.io.(ar)~1 ..

+ 4.68-lo12.14t(25-k2 )(81-k 2 ) (169-k2 )'

+ 2i~~j1)(2k ) k 2 ) .. (4j+l )2 2) 3 (15)

if +k(czr)'C Y (r) a ar1+~ ++

+ 8. (ar)8
816(2+k) (3+k) (4.+k) (5+k) (7+k) (9i-k)

+ )12 +12

8* 16* 2 4(2+k)(3+k)(k+k)(5+k) (6+k)(7+k)(9+k)(11ik)(13+k)

+ (r41(16)
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I4
"Ir1-k k[+ (ar)

ao L 8(2-k)(3-k)(5-k)

(ar)8  +,.+ + +oo

8.16(2-k)(3-k)(4-k)(5-k)(7-k)(9-k)

+ (ar) ] (17)+23J.j!(2k)(3k) ... (2J-k)(4j+l-k)(4J-l-k)'

By using the ratio test. it can easily be shown that the

four solutions above converge for all values of k

The functions Yl(r) , Y2 (r) , Y3 (r) and Y4(r) are

solutions corresponding to the case for which k , the square

root of the ratio of two rigidities, is not an integer. For

the case k=l , the four solutions reduce to two.

The solution is then:

w(r,t) = [CIYI(r) + C2Y2 (r) + C3Y3 (r) + C4Y4(r)]eiWt (18)

where Y1 ' Y2 . Y3 ' and Y4 are the functions obtained

from Eqs. (14) through (17) and

(19)

2f 2 -E
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The four constants CI , 02 , 03 , and 04  can be

determined from the boundary conditions for an annulus. For

a solid plate Y4 is inadmissible because of its singularity

at r = 0. For this case we write C4 = 0. Also for sym-

metrical vibrations it can be shown that C2 = 0. The shear

in the plate at radius r must balance the inertia forces as

follows:

27r Yh 6Jw. dS (20)
g 6t

where Qr is the shear and the displacement and acceleration

are:

w(r,t) = (C1Y1 + C2Y2 + C3Y3 )eimt

d2 w _ 2

- - (CIY1 + C2 Y2 + C3 Y3 )eiWt

The shear is given by:

d3 w 1 2w+_ ew - dwet

drr dr, r di'

and so we have as a condition to be satisfied

.r = _[r d3w d2 w k dw (21)

Dr d 2 r - -



Substituting the values of the derivatives of the first four

terms of Y1 s Y2  and Y3 into Eq. (21), we obtain finally:

- C2 [2(1-k 2 )] = 0

and C2 = 0 , since k / 1 . Hence, the solution for a solid

plate becomes:

w(r~t) = [C1Y1 + C3 Y3 ]e
1Lt (22)

where the two constants, C1 and C3 , will have to be deter-

mined from the remaining boundary conditions.

1. Clamped Plate

The boundary conditions for a plate clamped at r = a

are:

w = 0 at r=a

-- _ 0 at r = a

dr

Inserting these conditions into Eq. (22), we obtain:

C IYl(aa) +C 3Y3 (aa) = 0

(23)
C1Yj(aa) + C3Y3(ca) = 0

where the prime-indicates the first derivative with respect

to r . Eliminating Cl and C3 from Eq. (23) above'leads

to the frequency equation:

12



Yl(aa)Y(aa) - Y3 (aa)YI(aa) = 0 (24)

The roots of Eq. (24) give the values of a , which when

inserted in Eq. (19) yield the values of the frequencies of

the clamped plate.

2. Simply Supported Plate

For the simply supported plate the boundary conditions

become:

w = 0 at r = a

Mr= 7 dw = 0 at r = a
dr r dr

Using the boundary conditions the frequency equation

becomes:

Yl(aa)[Y 3 (aa) + - Y (aa)] - Y3(aa)[Yl(aa) + - Y{(aa)] = 0a a

(25)

Again, the roots of the frequency equation (25) are to

be inserted into Eq. (19) to determine the frequencies of the

simply supported plate.

The first six terms of the infinite series were used in

the expansion of Eq. (25), and the first three frequencies

were calculated for several sets of assumed values of the

elastic constants. The results are shown in Table I.

13
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EXPERIMENTS ON CIRCULARLY STIFFENED

CIRCULAR PLATES

The apparatus for determining the frequencies of vibration

and the nodal patterns is shown in Figure 1. The plate under

study was driven at resonance by an electromagnet mounted be-

neath it on a solid test stand. A rectangular piece of lami-

nated iron was used in order to develop a driving force. It

was cemented to the plate through a flat circular washer in

order to create a symmetrical point of dynamic loading.

The frequencies and nodal patterns were determined by

means of a capacity type of pickup which can be moved across

the surface of the plate. A nodal line is detected by the

change in shape of a Lissajous figure on a cathode-ray oscillo-

scope to which the electrical output from the pickup is fed

through a preamplifier. On account of the pull-pull nature

of the magnet, the frequ~ency from the oscillator is one half

the frequency of the driving force. The output from the os-

cillator is connected to one set of plates of the cathode-ray

oscilloscope, and the magnetic drive is connected across the

other set of plates.

Since the frequency ratio is 2 to 1, a figure eight

Lissajous is shown on the screen of the scope. Crossing the

nodal line with the probe or pickup turns the figure eight

Lissajous into a horseshoe-shaped figure on one side of the

line, and inverts the figure on the opposite side. This fact

15



provides a precise means of constructing the nodal pattern.

The experimental frequencies and nodal patterns for the

plate under study are shown in Figure 2. The theoretical and

experimental frequencies for the first three symmetrical modes

of vibration are shown in Table II. The theoretical frequen-

cies were obtained from Table I for the elastic constants

determined from previous static tests.

Table II

Comparison of Experimentally Determined

and Calculated Frequencies for

Symmetrical Vibration

c.P.S. c.p.s. c.p.s.

Experimental 46o 1634t 3830

Theoretical 392 1990 4708

While the discrepancy between the theoretical and experi-

mental results is fairly large, it may be noted that the

theoretical frequencies were based on experimentally deter-

mined elastic compliances for the stiffened plate material

and therefore subject to some error. Also, the rotatory

moment of inertia is not included in the theoretical solution.

Its effect is to reduce the higher. frequencies as pointed out

16



A mchbete aremet it epeimntl eslt i t
in a paper by Thorkildsen and Hoppmann

be expected if the stiffeners are more closely spaced and

symmetrically disposed with respect to the center plane of the

plate, thus providing a better approximation to the condition

of homogeneity assumed in the theory.

DISCUSSION AN~D CONCLUSIONS

The reason for the discrepancy between theory and experi-

ment in the present study can reasonably be attributed to the

inappropriateness of the design of the experimental plate

which does not sufficiently well meet the requirement of homo-

geneity on which the theory is based. It is clear that homo-

geneity will be better approximated if a larger number of

appropriately proportioned stiffeners are used. Since the

radius of the stiffener decreases for stiffeners closer to the

center of the plate, the cross-sections must be likewise re-

duced. The cross-section of the stiffeners used in the pres-

ent investigation were reduced in accord with a rational plan

but it is considered that future research is necessary to

answer this question in a satisfactory manner.

6 R. L. Thorkildsen and W. H. Hoppmann II, "Effect of Rotatory
Inertia on the Frequencies of Vibration of Stiffened Plates
J. Appl. Mechanics, 298 (1959).
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It is also clear that if the stiffeners were formed

symmetrically with respect to the middle surface and rotatory

inertia taken into account the agreement between the theo-

retical and experimental results would definitely be improved.

18



I0 SdI

& . ) 0)-d o

'.4 Cl .0V4

0 ) 0 0-

04 )

418

004)

04

00

04-
W to

4-

-~4-b

I4a8

414

19x



0.

Cif)

E
4)

Go)

a
-44

C14

4-S.0
0 C) 4)0 E 0

z M 0
co.
c-4

9 w C 0

0

-4 4

io.0

00

4J4

020
Z (

I2


