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ABSTRACT

\ / -
[ adt

‘ Thig reportts %survey,\of the more common types of structural
dynamics problems in association with ballistic missiles. Special
attentionis givento the effects of subsystem interaction on dynamic
response of the missile and vice versa. A few technically impor-
tant examples are treated in some detail, The purpose of these
examples is twofold; first, they illustrate various techniques used
in dynamics analyses and second, they record some of the details
of mathematical models which are frequently used to solve missile

Some of the sections cithis-report

ut are repeated here to provide the

dynamics response problems

are found in the referencg 7
reader with a fairly complete pikture of the more common types of

- missile structural dynamics prohlems.
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1. INTRODUCTION

The need for a current survey and reference document on tho
more common migsile structural dynamic problems and their analyses
resulted in the writing of this report. Many of the sections of the
report appear in previous works, as referenced, however they have
been revised and repeated here to provide an overall picture of the
necessity and complexity in studying missile dynamic response

problems.

The assumption of a rigid structure is necessary in the prelim-
inary design phase of a missile in order to allow the computation of
loads on which further design work can be based. However, once a

preliminary structural design has been made it is possible to compute

the dynamic characteristics of the missile. Utilizing these dynamic

x*
characteristics, dynamic loads, a revision to the initial load estimates,

can be determined.

In this report the problem of determining dynamic loads will be

discussed. Special attention will be given to the effects of subsystem

interaction on dynamic.loads and vice versa. A few technically impor-

. . . )
tant examples will be treated in some detail.

For purposes of the discussion which follows, a complete missile
system is envisioned as being composed of the following subsystems:
(A) airframé {structure) including propellants, {B) propulsion system,
(C) control system, (D) payload {re-entry vehicle, satellite, etc.),

(E) launch facilities. Each of these subsystems has its own peculiar

dynamic characteristics which, from the dynamic loads point of view,

*Throughout this report the term "dynamic load" is used to designate
those stresses, bending moments, shear forces, etc., which are
generated by a time-dependent environment. The stresses, etc., are,
of course, functions of time.




aro not exceptionally intervesting. Zowever, once these subsystems
are interconnected, the picture muaw shange cohxple:ely. For example,
a propulsion system generates a thxz=st which builds {rom zeroto a
more or less steady value and thern Izter decays to 2ero. The time-
dependent character of the thrust p=a3uces no startling behavior when
acting on a rigid airframe; the situziion can be dramatically different
when the dynamic behavior of the aizirame is considered. These types
of dynamic interactions and their esZact on dynamic loads are the cen-
tral theme of what follows. Some cf the dynamical environments which
are considered to effect the missile response are illustrated in Figure 1.
The effects of dynamical environme=zs shown in Figure 1 which are not
considered in this report such as ucszeady aerodynamics {bufteting) and

microseisms are given in References 1 to 3.
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2. IN-FLIGHT DYNAMIG 1LOADS

In this section equations for the lateral motion of a liquid pro-
pellant missile will be developed, These vquations, which include aero-
dynamic forces, control gystem dynamics, alrframe dynamics, and
propellant dynamics, can be used to computu dynamic loads for a vari-
ety of inputs. In addition, they can also be used to study control system

stability. These equations are cvolved in References 4 through 12

2.1 Airframe Dynamics — lLateral Bending

Experimental studies have established the fact that a missile air-
frame can be idealized as a nonuniform (in stiffness and mass distribu-
tion) beam for purposes of studying its lateral bending dynamics.
Sometimes it may be neccssary to represent an airframe as a collec-
tion of beams rather than as a’ singlve beam. However, such a represen-
tation poses no theoretical difficulties, although computational problems

may develop.

It has been established, both theoretically and exper{mentally,
that simple (Bernoulli-Euler) beam theory does not accurately represent
bending dynamics of airframes of the dimensions encountered in ballistic
missiles. An adequate bending theory must account for the effects of
shear deférmation and, usually, the rotational inertia of beam elements.

Such a theory, known as the Timoshenko beam theofy, is available.

The Timoshenko equations are derived by writing the equilibrium
and kinematic equations for a differential element of the beam as shown
in Figure 2. The beam has a number of spring-mass systems attached
at distances lj from the mass center. The reasons for including these
systems will become clear later. Equilibrium of the lateral forces act-

ing on the element requires that {(see References 5, 11 and 12)
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Figure 2. Element of a Timoshenko Beam

v,
ax j

~MZ

pAl = A(x - )j)(xj;j +m, ax¢j) (1)

1

Writing equilibrium of moments and dropping second-order terms

gives
N

o= M du
PI = -+ V+P L. _[l/_\.(x-zj)axmj;j (2)

xX
J:

where A(x - lj) is the Dirac delta function defined by

A(x-lj)= 0 when x ¢ lj
Lyte
( | ]quA(x-lj) dx = 1 Rs «—=0  (3)
-5-




and where

u = total deflection of beam, dite to both bending and shear

§ = slope of beam due to bending alone

g. = displaceinent of jth attached spring-muss system relative
3 to deflected position of bcam

pA = the mass per unit length
V = the shear force on a cross section

pl = the mass moment of inertia per unit length of the beam
Cross sections

M = the bending moment on a cross section

P = the axial load in the beam at any section

tip N
= -axj pAdx - a_ Z m.j .
X j=1
a, = absolute acceleration of beam system in negative
x-direction

N1 = number of slosh masses between x and tip.

Only the rotary inertia forces caused by the bending slope appear
in Equation 2. The shear forces produce distortion only and not rota-
tion of the beam elements. The moment curvature relationship for a

Timoshenko beam is the same as for a simple beam, camely

O

Elsgc® M (4)
where El is the flexural rigidity of the beam. Because of the inclusion
of shear deformation, another equation, describing the relationship of

shearing forces to shearing deformations, is required. This relation is

. fdu . du .
KA(:(B-;‘-w ¢) svipl (5)

-0




where KAG is the shear rigidity of the beam, and du/bx - is the
shearing slope,. Incorporating Equations 4 and 5 into the equilibrium
Equations 1 and 2 yields the following Timoshenko beam equations (sec

References 5, L, and 12):

N
v 0 du _ . pdu -
pAY = 5;[KAG(_. 4,) P.g.)_‘.] + _Zl Alx = LKL+ m;a b))

L ox j=
.. a3 o du N ;
ply = a_xLEI‘zTE + KAG|g-- 4] -2 J_gl Alx = 1) m, (6)

A simplified form of these equations can be found in many stand-
ard texts on the vibrations of continuous systems (see, for example,
Reference 13). The provisions for attached springs and masses and
the inclusion of the axial compression force P = P{x) are not usually
given explicitly in the?e texts. Inclusion of the axial compression force
in the equations is sometimes iAmportant in missile applications because
the axial 4acce1eration of the missile in flight can affect the bending

dynamics.

At this point it is useful to review briefly what is meant by nor-
mal modes and describe some of their properties. If an external force
acting on the missile varies sinusoidally at a single frequency, and this
frequency is slowly varied, we would observe a series of resonances at
a number of discrete frequencies. At these frequencies, the amplitude
of vibration becomes quite large, and each point of the missile reaches
its maximum displacement at the same time, describing a definite pat-
tern in space. This pattern or mode shape is commonly called an eigen-
function or normal mode (given by ¢n(x), lbn(x) here), and the frequenf:y .
at which it occurs is called an eigenvalue. A very important property
of these modes is Phat the motion of the rnissile in any one mode is inde-

pendent of the motion taking placelin any of the others, except through




j (pA¢m¢n + pI\Pmllln) dx +
|

coupling from oxternal forces (see later), This is due to the ortho-
gonality property of the normal modes, and because of this independence
it is usually expedient to describe the missile motion in terms of thean

modes,

The mathematical expressions which describe ihc orthogonality
of the normal modes czn be obtained directly from the diffcr.cntial
equations of motion. The derivation of these orthogonality conditions is
straightforward and follows the standard procedure given in many texts.
The orthogonality conditions for Equation 6 are; (sce Refercnce 11)

N Mn ,m = n
Y, ™ 5m g ¢ L) {

J O ,m¢#n

d’.lm d\pn [d¢ d¢n
IEI dx dx dx "J[K'AG\d:n» _‘Pm) (dx - an) dx

1
d¢_ do N
[ p_¥m *n
J[ dx dx d’”j; K& imbin

N Mnmnz,m—n
+a ) m.p. L. +y. L. ) ={ N

xj=l jrjm7jn " Tjn®jm 0, m#n

" where

¢n is the eigenfunction for deflection, and

¢, 1s the eigenfunction for bending slope

and ¢jm 5 ¢m(x),x=lj' that is, ¢m(x) evaluated at x :!j' and gjm is the
displacement of the “jth mass in the mth mode, and the subscripts m and
n refer to two different modes. The constant Mn is the generalized mass
of the nth mode, w is its circular frequency, and a is the axial accel-

eration of the missile. If we denote the amplitude of the nth mode at any

instant of time by qn(t). these amplitudes can be used as generalized

coordinates,




Satting up the kinetic and potential encrgles in termy of these q"(t),
and using orthogonality conditions 7, the equations of motion for the qn(t)

can be reduced to the following form: (sec Reference 12 for more detail)

nnmn n n

: e b '
Mni']n(t)+ Man“m q tMuw an(t) = Qn(t) - 6[0 [z(p/\c) «‘p" - (pIe)\Pn](lz
- K [§+x(§+su2)]
2n 1 n
- mci(ax) & tb{;(— le)

8 (1) +Q (1) ' (8)

where Qn(t) is the ‘generalized force acting on the nth mode. This force
can be found in the usual way by giving the nth mode a virtual displace-
ment Aqn and finding the work done by all the external forces acting on
the migsile. The presence of only one mode amplitude qr" in Equation 8
demonstrates the usefulness of the bending modes being independent of

each other. Kl and KZn are defined later.

To return to the problem at hand, Equation(ﬁ) can be solved, sub-
ject to appropriate boundary conditions, to yield a set of bending modes
4>n(x), q;n(x). * For the missile in-flight, the ends of the missile are free,
and the engine can be treated as an integral part of the beam, clamped
with zero control angle §; disconnected from the missile altogether; or
attached to the missile by some intermediate constraint. The resulting
equations, showing the interaction between the bending and the control
system, differ slightly depending on what representation of engine attach-
ment is made for the computation of the bending modes. The equations
that follow assume the modes to have been computed with the engine

clamped at § = 0,

%X
Some practical procedures for computing the bending modes are
discussed in References 8 and 16.




’I'ypi.cal frec-free missile bending modes and frequencies for
various flight times are shown in Figure 3, It is noted that the first
 free-free mode frequency varies by leas than 10 percent in the flight

time interval from launcl. to 100 sccounrds

The influence of shear deformations, rotatory wnertia, and axial
-acceleration un the missile bending frequencies is shown in Figure 4.
In the first mode the inclusion of shear deflection, noted as KAG = n
“and the exclusion of rotatory inertia noted as pl = 0 increases the (re-
quency by 0.5 percent over the freguzncy if borh effects are 1nciuded
Note tha: the exclusion ol shear detocrmation changes the ficst mode
frequency by 2.1 percent. If axial acceleration is omitted in the bend-
ing mode analyses, the first mode frequency is increased by 27 percent
and one percent for constrained tprelaunch) and free flight conditions

respectively.

L
2.2 Propellant Dynamics—Sloshing

The description of the missile dynamics for missiles with liquid
propellants is complicated by the interaction between the airframe and
the propellants. As the missile bends aand rotates, the liquid propel-
lants move back and forth in their tanks as shown in Figure 5, creating

very appreciable forces on the missile.

It can be showr that only the fundamental (lowest frequency) mode
of propellant motion contributes signmificantly to these forces. The funda-
mental mode of motion, depicted in Figure 5 is called the "sloshing"
mode. The resonant frequencies of these sloshing modes are usually
quite low (approximately 0.5 cps) and they interact severely with the
autopilot. Furthermore, since the sloshing frequencies are consider-
ably below the first free-free "bending” frequency of the missile struc-
ture, the external airframe rotates back and forth, essentially as a

rigid body in some of the "sloshing" modes, in a direction opposite from
the fluid sloshing in order to preserve angular momentum. This means

that the interaction between slushing and aerodynamics is also rather

-10-
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Figure 5. Fluid Sloshing

strong since the entire missile picks up an angle of attack during the

sloshing moﬁon. The interaction between aerodynamic forces and those
missile modes that consist mainly of structural bending is not nearly as
strong; only a local angle of attack is generated, and the resulting aero-

dynamic forces are usually negligible.

One possible scheme for eliminating the sloshing problem would be
to divide the propellant tanks into small compartments, thereby increas-
ing the slosh frequencies and reducing the sloshing forces. Unfortunately,
because of weight considerations, such a procedure is generally highly
impractical. However, small ring baffles are usually placed at various
levels in the tanks. These baffles do not change the sloshing frequencies
but do provide natural damping by creating turbulence in the regions of

high liquid velocity,

-13-




The separate airframe aund propeliant dynamics may be combined
to yield what are known as bending-sloshing modes. To obtain thesc
combined modey, the fluid is treated as concentrated along the miasile
center line, and the sloshing modes in each tank are réprcsuntcd by
attached springs and masses. The spring-mass systems arc¢ selected
to give the correct slosh frequencics and horizontalvforce, and >thcir at-
tachment points are selected to give the séme moments about the tank
center of gravity as is produced by the fluid. The rotatory inertia
assigned to the fluid, pl in Equation 6, is adjusted so that the overall
inertia of the fluid in each tank is the same as that found by solving the
fluid dynamics problem of a tank capped at the quiescent liquid surface.
Equation 6, when coupled with appropriate equations defining K,, will V
yield combined bending-sloshing natural frequencies and mode shapes.
Those readers who wish to pursue the propellant dynamics problem
further will find a discussion of the sloshing problem inReferences 7

and 14,

2.3 Control System

The control system or autopilot is a very important part of a mis-
sile system. The thrusting missile is unstable in flight and would soon
tumble hopelessly without a properly designed autopilot. The presence
of structural bending vibrations makes this stability problem much more
complicated. We can easily demonstrate this for ourselves by first
taking a relatively rigid yardstick in the hand and balancing it upright by
applying only vertical and lateral forces at its base. The yardstick is
balanced with ease. If this yardstick is cow replaced by a long flexible

reed or wire, the task of balancing becomes very difficult.

The essential function of the autopilot is to sense the missile
attitude and angular velocity and provice engine angular deflections, and

hence a lateral component of the thrust, in accordance with these sensed

-14-




quantitics so as to maintaln the missile at a desired attitude, The
problems of control system design are treated extensively elsewhere,
so that in this report the autopilot will appear to a large extent as an
unobtrusive black box. In order to provide the recader with something
more concrete, however, a simplified hydraulic servo will be presented

in block diagram form,

2.4 Propulsion System

The propulsion system characteristics will enter the equations of
this section only in a fairly superficial way. The propulsion system is
taken to consist of nozzles having mass and moment of inertia which
rotate about gimbal points and thereby change the direction of a steady

thrust vector.

-15-




3, SIMPLIFIED EQUATIONS OF MOTION

The équations of motion that follow (as in reference 5) assume
that all slowly varying quantities such as missile masy, axial accel-
eration, liquid levels, mode shapes and frequencies, etc., can be
treated as fixed, It must therefore be emphasized that the resulting
equations are valid only for a few seconds at any selected point alorg
the trajectory; however, this 1s sufficient to study "high" frequency

in-flight dynamics,

3,1 Missile Deflecticns

In order to describe the motion of the missile in-flight, it is
necessary to know the motion c¢f each section of the missile as a
function of time. Once the engire start transient has damped out
(this problem is considered in the next section), variations in axial
forces at frequencies high enough to excite longitudinal vibrations
(with the exception of engine noise, which is an entirely different
type of problem) are very small so that all longitudinal deflections
are neglected here. The position of each section of the missile can
be described by two functions, u(x,t}, the lateral deflection of each
point along the missile; and y(x,t), the angle through which each

section rotates relative to the moving axes, See Figure 6.

These functions can be written as

[0.0]
sl ) = C(t) £xC i+ 3 4,00 a0 (9)

(o0}
blx,t} = C (t) + n}; b (x) q (1) (10)

where x is measured from the missile center of gravity,

-16-
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The functions ¢n(x) and \pn(x) are the sloshing-bending modes
described earlier, and qn(t) are the genoralized coordinates of these
modes and represent the amplitude that must be assigned to each
mode at any instant, The time functions Co(t) and Cl(t) represent a

rigid-body translation and rotation, respectively, of the missile,

These quantities can be defined so that the total angular and
lateral momentum with respect to the moving axes is independent of
the engine deflection §. To do this, Co and C1 are adjusted so that
any momentum created by engine motion is cancelled by rigid-body
motions of the missile as a whole. Applying this condition, C0 and

C1 are given by

m_ Z
- e a
co_ v an 65 = -Koé
! N, A
c, = t(1e+me lez)a—Kla | (11)
( ' Where I is the mass moment of inertia of the entire missile (including

engines) about the missile center-of-gravity, Ie is the mass moment
of inertia of the swiveling engines about their gimbal points, and the

other parameters are shown in Figure 6.

-
-

With these definitions of Co and Cl, the total angular momentum
depends only on q, and 8. The contribution of a, is found by first
writing the equation of moment equilibrium between the inertia forces
and moments and the moment due to the engine force for the missile

deflected into an extreme position in the nth mode:

N
f (xp Acpn + pILpn) dx + & xjmj (¢jn + gjn)
] j= .
Pa (-le)
-(TS+TC) —g - 0 (12)
n
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where Ts'and Tc are engine thrusts, described in more detail later,
After multiplying through this equation by qn, inapection of the first
two terms shows them to be the moment of momentum about the missile
center of gravity due to a coordinate velocity c'ln. This equation can

then be used to determine the foliowing simple expression for this

momentum in the positive 6 direction:

2. (%) . a
- n e . 2 .
Hn - (Ts t Tc) © 2 I KZn 9 (13)
n

The contribution to the angular momentum due to 6 is merely
d )
at (Ic 6

3.2 Rigid-Body Equations

The external forces that must be considered in writing the rigid-

body equations are shown in Figure 7,

Since there may be more than one engine, and not all the engines
may swivel in each plane, the total thrust is broken into two components;
Tc is the total thrust of the swiveling engines, and ’I‘B is the total
thrust of the engines stationary with respect to the tangent to the missile

axis at the attach point,

The equation governing rotation {pitching) about the missile center
of gravity is obtained by taking moments about the center of gravity with
the result (see reference 12)

m .. on
nz_: K, a +18= -qu

xw(x)dx+[T (a-u')-Tu']z
=1 1 C e s e

e

-(TC + Ts)ue (t4)
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Figure 7. Forces Acting on Missile
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Here
. § |
ap= p -0t Zanqn+vo tR8-Kyy ~ {15)

is the total angle of attack producing aerodynamic forces, The velocity
Vw is the component of atmospheric wind velocity perpendicular to the
x-axis., The angle of attack due to the sloshing is represented by

anqn(t) where a, is the angle through which the missile a.irfra.me rotates
per unit of nth "slosh mode" (a bending-sloshing mode which consists
mainly of slosh.ing) amplitude, The summation in Equation {{4) is

taken only over N such "slosh modes.”" [t is implicitly assumed in
Equation (14) that the aerodynamic force depends linearly on the angle

of attack, and that w(x) is the running load per unit angle of attack., The
dependence of the aerodynamic forces on higher powers of q, and on
other quantities, such as the angular velocity of the missile, are neglected
here for simplicity, These additional forces are usually small, and for

many studies it is legitimate to neglect them.

The angle u (the prime indicates differentiation with respect to
x) is the slope of the missile axis at the engine gimbal point. It is

obtained by differentiating Equation (9) and evaluating at x = -4,:
& \
ue"” = 1{16 + ngl an' (-le’,qn (16)

The equation governing rigid-body translation is readily obtained by

summing forces in the y direction (Figure 7) with the result

My = -ar Lw(x) dx + Mg o + (Tc + Ts)ue' - ch. (17)

where M is the total mass of the missile and g is the acceleration

caused by gravity.




3.3 Misaaile Bending Equations

The bending equations (including sloahing) are most easily derived

by first giving each mode a virtual displacement Aqn and observing

"the work done by the forces acting on the missile. If this work is

divided by the virtual displacement Aqn. we obtain the generalized force

Qn to be used in

4 +2bwg +el . +-di (18)
-9 n“n%n n 9n mn Mn

where Mn is the nth generalized mass defined by Equation 7 and ﬁn is
defined in Equation 8, The generalized force, Qn' is

Q = -ap L wix) ¢_(x) dx

‘[Tc (5 - ue-) - Tsue'] o (-16) (19)

In Equation (18),wn is the circular frequency of the nth mode and bn is
the damping ratio. Damping ratio bn is either determined experiment-
ally by shaking an assembled missile, or assumed conservatively small
(0.5 to { percent of critical). It should be mentioned that the damping
of a structure can seldom be represented in this way. In order that
this representation be strictly correct, all damping forces would have
to be of the viscous type (that is, proportional to velocity) and would
have to be distributed along the length of the missile in the same way in
which the mass and rotatory inertia are distributed, or in the same way
in which an appropriate combination of the elastic forces are distributed.
If the damping forces are distributed in any other way, application of

Lagrange's equations would result in the equations of motion for the

-22-




bending modes having velocity coupling through the viscous damping
forces, That s, each equation corresponding to Equation (18) would
have additional terms of the form cmqm, wherem=1,2,... , For
reasonably small values of damping, however, (corresponding to a
few percent of critical damping in any mode), these cbupling terms
have a negligibly small effect on the motion (reference 15) and can be
omitted as was done in Equation (18). Similarly, if the damping is of
the hysteresis type rather than viscous, it can still be represented by

an equivalent viscous damping ratio bn for sufficiently small damping.

3.4 Control System and Engine-Swiveling Equations

The control system will be assumed to sense two quantities from
gyros mounted on the missile airframe. These quantities are the
attitude of the missile at the gyro station, given by eFB =9+ ug‘, and

the angular velocity at that station, given by éFB' where

(o]
ul s K6+ nZ: 8 (1g) q_(t) (20)

1

If the missile begins to go off course by building up an attitude 6, or

if the gyros think the missile is going off course because the missile
bends, giving rise to a u ', the control system calls for a corrective
engine angle, that is, a lateral thrust component. The engine command
angle 6c is formed as a linear combination of the difference between

a desired attitude Sc and the sensed attitude B'FB and the sensed rate
0 This is expressed by

5, = Ke(ec - eFB) ~Kgbrg (21)

FB*
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where Ky and Kp are gain constants, This engine command signal ia
modified by compensation n:tworks which shape the phase and amplitude
of the signal to give satisfactory stability. The resulting signal 6c is

used to open an hydraulic valve, as shown in Figure 8,

ENGINE _ .
' 8ELL ]

-

_—

/e

~ ACTUATOR POSITION FEEDBACK

EFFECTIVE VOLUME UNDER
COMPRESSION = V,

2- WAY FLOW CONTROL BULK MODULUS OF ELASTICITY OF
VALVE (FLUID SUPPLY AND HYDRAULIC FLUID = b .
RETURN NOT SHOWN)

Figure 8, Schematic of Autopilot Actuator

The fluid controlled by this valve flows into an hydraulic actuator
which is connected directly to the engine bell, The position of the actuator
rod Sa is sensed and subtracted from the compensated engine command
angle Bc so that it is actually the error signal Sc - Ga which determines
the rate of flow in the valve. If the engine angle, as measured by the posi-
tion of the actuator rod, is the same as the command angle Sc, no further

fluid flows and the actuator does not move.
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Going one step farther, if the compressibility of the hydraulic

fluid is taken into account, there is an apparent compressibility flow
which must be subtracted from the flow initiated by the error signal
6(; - 6a' This entire process is represented conveniently in block

diagram form in Figure 9. The variable s, used in this diagram, is

the usual Laplace operator,

From Figure 9 it is clear that the control flow in the valve is pro-
portional to Kv except for a small delay or valve action time 7. From
this flow rate the compressib:lity flow Qc is subtracted and the result-
ant flow is divided by Ar (defined by Figure 8) and integrated (multiplied
by 1/s) to give the actuator position 6a' as shown, The difference
between the engine position § and the actuator position 6a is multiplied
by the equivalent torsional spring constant Ka of the actuator to give
the torque acting on the engine bell. Following around the hydraulic
loop, this torque divided by Ar gives the pressure in the hydraulic
cylinder. This pressure, multiplied by the effective volume Vo under
compression and divided by the bulk modulus of elasticity b of the
fluid, gives the change in volume of the fluid caused by the pressure.
The rate of change (multiply by s} of volume is the compressibility flow

Qc' The torque acting on the engine bell causes it to move according to
15 +B s+ K5 =K (5 -3), (22)
e e e a\a

where Ke is the torsional spring constant between the engine bell and
the missile airframe {(caused by bellows, pendulum action resulting
from axial accelera'tion, etc. ) and Be represents any viscous damping
present. Equation (22) is given in block diagram form in Figure 9.
This equation is the only equation in this development of the integrated
dynamic equations which is basically incomplete, Many terms have
been omitted from the other equations, but they were omitted because
they were small. In the case of Equation (22), however, all the inter-

actions between engine swiveling, bending, and rigid-body dyanmics
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have been neglected for the sake of expediency: Thoese interactions are -
important in relation to other effects included in the analysis, but most
of them arise in a manner so subtle that Lagrange's equations must be
resorted to to demonstrate their existence. Such a procedure is

lengthy but straightforward, and the enterprising reader can derive the

more complete engine-swiveling equation given by (see reference 12)

[:I -Km;-K([ +m£-z_)]'6'+m-z-a (6-u')
e o e i\e ee e x e

- LR - @ .. b
* (Ie * mezez) 6 mezay ' nz=:l 9n L (pA¢nZ ) plq‘n)dz

= Ka(ﬁa - 5) - B - Ko (23)
where b is the distance from the engine gimbal to the nozzle exit plane,
a and a_ are the rigid-body accelerations in the x and y directions,
and K6 is the spring constant between the engine bell caused by a
direct spring action, such as from a bellows. In spite of its being in-
complete, the use of Equation (22) in conjunction with the other equa-
tions developed here would generally give adequate engineering inform-

ation concerning in-flight dynamics.

3.5 Block Diagrams

Following the procedure used for the control equations, we can
convert the bending and rigid-body equations into Laplace notation and
draw a block diagram which represents these equations completely.
Such a diagram is given in Figure 10. Only one block representing a
typical bending-sloshing mode is shown in this diagram; however, it is
understood that there are as many such blocks as there are modes
being used. In most cases inclusion of the "slosh modes" (one for each

tank) and two or three bending modes is sufficient. The summation '
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signs given on the paths leading out of the bending-sloshing block
indicate that a sununation is to be made over the modes of the quanti-
tivs in guestion.

A ztudy of Figure 10 14 enlightening in that the flow of cause and
effect cf each subsystem on the other can be seen without having to
interpret several equations siraultaneously. In addition, several
significant quantities such as the engine lateral force caused by bend-
ing and the total angle of attack ar !_see Equation (15)1 and their effect
on the system become apparent. The complexity of Figure 10 detracts
somewhat from its usefulness if we do not care to follow all the details;
therefore, a functional diagram showing only the directions of the inter-

actions is given in Figure 11,

3.6 Use of Equations

The in-flight dynamics equations developed herein have many uses.
From the standpoint of the control system engineer, their most impor-
tant use is to allow him to study the stability of the missile in-flight
and to indicate the form of autopilot compensation required to obtain
stability. The structural dynamicist sees them as a tool to determine
the dynamic loads on critical sections of the missile. These loads
arise from autopilot limit cycles, discrete and random gusts, staging
transients, and other rapid maneuvers where the action time is of the

order of the period of one of the bending modes. .
Y%

For the control engineer these equations are complete as they are
(with the exception of the simplifications), but the structural dyna-
micist must modify them slightly to insure satisfactory convergence of
modal solutions, thatis, ab series expansion in terms of normal modes.
This happens because the control engineer is interested only in dis-
placements, whereas the structural dynamicist is interested in bending
moments and shear forces as well. The convergence of series expan-

sions of bending moments and shear forces is very poor for a beam
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with a concentrated load (the engine force), and even in the abaenco of
any dynamic effects at all, many modes would be necded to chtain
satisfactory accuracy, On the other hand, series expansions of dis-

placement and slope converge quite rapidly,

The difficulties associated with computing bending moments and
shear force can be minimized by employing the so-called "mode
acceleration” technique (reference 16). The essential feature of this
method is that it separates the pseudostatic loads {loads found by rigid-
body techniques) from the loads arising from the dynamic response of
the missile. Thus, the poor convergence caused by discontinuities in
the loading, such as a concentrated force, are taken into the pseudostatic
load, and the additional load caused by dynamic bending usually con-
verges much faster. For example, the bending moment at any station,

along a missile, can be written as

w® q_(t)
M(X, t) = Ms(xt t) = mn(x) 2 (24)
n=1 w
n

where Ms(x, t) is the pseudostatic load neglecting dynamic bending, and
mn(x) is the nth eigenfunction representing the bending moment at any
station. The same mornent expressed without the use of the mode

acceleration procedure is given by

@
M(x,t) = ) m (x)q (t) (25)
n=1
which converges more slowly because of the absence of wnz in the
denominator. Egquation (24) assumes small damping and can easily be

derived from Equation {(25) by using

o

- 2 . _n
4G ten 9 T m_n ) (26)
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Soulving for frorn Equation (26) and substituting into Equation (25),
4 G q q

we ohtain
o m (x)Q () o q_(t)
Mix,t) = ), —5—— - J m_(x) — (27)
n=1{ w M n=1 w
n n n
But

ozo: mn(x) Qn(t)

n=1 Mn“'nz
is simply the moment that results if the system of forces, including
rigid-body inertia forces, giving rise to Qn(t) is applied "statically®
since it comes from the solution of Equation (26) for 'cin = 0. Thus

Equation (27) is identical with Equation (24). A term

© 2b q
L myb)
n w
n=1{ n

would appear on the right-hand side of Equation (24) if damping were
present in Equation (26), but the damping ratios bn are usually quite

small, and these terms can be neglected.




4, .ILLUSTRATIVE EXAMPLES

4.1 Limit Cycle Response

The interaction between control system dynamics and airframe
bending dynamics can force the control system into a nonlinear mode
of operation which results 1n a limit cycle, In such a situation the
control system causes the engines to gimbal continuously, searching
for the correct trim condition, that is, the control system "hunts" for

the correct engine swivel angle §. The data in Figure 12 illustrate

.the effects that a control system limit cycle can have on dynamic loads,

The data were taken from an actual case (time of flight corresponds to
maximum dynamic pressure) in which the damping in the control sys-
tem hydraulics became negative for large engine angular velocities 5.
The negativeq'damping caused a limit cycle whose frequency was near
the first bending frequency of the missile. The cdntrol systerﬁ had to

be redesigned to eliminate the limit cycle.

X Mic

L My
0 » 1. 00 % = axial missile station measured
0.1 1. 06 from the missile tip.
0.2 1.12 M; - = total bending moment, control
0.3 1. 20 system limit cycle.
0.4 1. 27 MD = total design bending moment,
0.5 1. 30 no limit cycle.
0.6 1. 32
0.7 1. 28
0.8 1. 04
0.9 1.0t

1.0 1. 00

Figure 12. Dynamic Loads Generated by a Control System Limit Cycle
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4,2 Responge Due to Gust

It is recognized that missile inflight response analyses are
complex, This is due to the interactions of the control syistém. aero-
dynamics, airframe bending dynamics, and the engine swiveling dy-
namics as illustrated in Figure 11, However, such analyses are
tractable on electronic computers, Typical results for the inflight
response of a ballistic missile during its flight through a triangular
shaped (A) gust are shown in Figures 13 and 14. This analysis was
performed on an analog computer. In Figures 13 and 14 the following

nomenclature is adopted;

q_ = pgeneralized bending acceleration in the nth mede
n where n = 1,2, 3.

an = angle of attack representing the gust, used as an

input or driving function.

ap = total angle of attack.

6N = nozzle vector angle.

MR = psuedostatic bending moment at station x,

MF = dynamic bending moment at station x.

MT = total bending moment at station x.

A "mode acceleration" technique {as discussed previously) is

used in the analysis and consequently one 1s interested in the generalized

bending accelerations ('q'n), recalling that,

MT(x,t) = MR(x, t) - z mn(x) 5
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From Figure 13 it 13 clear that the major contribution to MF Loltes
from the first mode, In Figure t4 MF 13 less than 5 percent of MR
This

at any time, consequently M i3 approximately equal to M

R T
result 19 typical for such problems if instabilities are not present even
if other shapes of gust velocities are considered such as random or

"{-.-cos" gustsy,
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5., PRELAUNCH-POSTLAUNCH DYNAMIC LOADS

In Section 2 the equations necessary for the computation of in-flight
dynamic loads were developed. The important elements of the in-flight
loads problem are the control system, the airframe'bending dynam:lcs,
and the in-flight aerodynamics. In this section, three types of prob-
lems are considered. The first is concerned with the interactions be-
tween airframe bending dynamics and ground wind aerodynamic forces.
The second type of problem has to do with the interactions between the
axial or (longitudinal) airframe dynamics and the propulsion system.
The third type of problem is concerned with the response of a con-

strained missile due to ground shock.

These problems fall into a general class known as prelaunch,
postlaunch.problems, depending on whether the dynamic loads occur

before or as a result of releasing the missile.

5.1 Wind-Induced Oscillations

5.1.1 Theoretical Considerations. A missile in the prelaunch condi-

tion, that is, erected on a launch pad (Figure 15), may be exposed to
ground winds which give rise to flow around the missile of large
Reynolds number R:°= (R~ 106 based on the missile diameter). In such
a flow the boundary layer on the missile is turbulent and, as a con-
sequence, random pressure fluctuations act on the missile. These
random pressure fluctuations create random lift and drag forces which
in turn can induce large, oscillating displacements and bending mo-

ments in the missile.

> : ’
The Reynolds number R is defined to be R = Ud/y, where U is
the undisturbed velocity of flow, d is the missile diameter, and
v is the kinematic viscosity of the flowing liquid.
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Figure 15. Missile Exposed to Ground Winds
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In an adr flow perpondicular to a circular cytinder, such as a
misgsile, a great variety of changes occur with an increasing Reynolds
number. Details of these changes can be found in Reference 17.and
other texts in fluid mechanics., Briefly, if R is in the range of 40 to
150, the "shedding" of vortices is regular. The eddying motion in the
wake is periodic both in space and time, and the flow can be approxi-
mated by the well-known Karman vortex street. The range of R
between 150 and 300 is a transition range, in which the vortex shedding
is no longer regular. For R =300, the vortex shedding is "irregular."
A predominant frequency can be determined, but the amplitude is ran-
dom. Finally, at R of order 105, the separation point of the boundary
layer moves rearward on the cylinder and the drag coefficient de-
creases appreciably. The flow in the wake at these large Reynolds
numbers becomes so turbulent that the vortex street pattern is no
longer recognizable. Experimental results for flow around cylinders

when R is larger than 105 are presented in Reference 18.

Consider the lateral motion of the missile in Figure 15. The

applied lift force per unit length along the missile can be written as

L{x, t) = qlx)d(x)C; (t) (28)

where g(x) is the dynamic pressure, d(x) is the diameter, and

CL(t) is the lift coefficient which varies randomly with time. Actually,
CL is a function of Reynolds number as well as of time. Therefore

CL’ at each missile station, depends on the diameter of the missile at
that station. The dependence of CL on R and t is such that it is not
possible, in general, to express CL as a product or sum of a function
of R and a function of t. However, the experimental data of Reference
18 indicates that CL is not a strong function of R, at least for

limited ranges of R in excess of 5 x 105. Therefore, it is reasonable

" to assume that a value of CL' associated with a Reynolds number

based on a representative missile diameter, should be adequate for
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Equation 28. Thig conclusion, being founded on the data of Reference
18, is only valid for two-dimensional flow, The three-dimensional
flow characteristics around the tip of a missile have a substantial
effect on the total lift and drag forces. (See References 19 and 20.)
However, in the absence of detailed wind tunnel input forces on
particular missiles, the procedure developed herein is the best avail-
able. On the basis of limited experimental data, it can be anticipated

that the results obtained will be conservative.

The lift force of Equation 28 is a random function of time since
CL(t) is random in time. Problems involving random time varia-
tions are usually more conveniently treated in the frequency domain
than in the time domain. The frequency representation of a random
function is known as its power spectral density. Figure 16 is a typical
power spectral density of lift force on a uniform cylinder. The fre-
quency parameter, S = wd/27U, used in Figure 16 is known as the

Strouhal number; the curve is normalized such that

@ : @ /wd 2y
.( F(S)dS = 1 or J F-——) dw = =
Jo 0 \ZwU d

By definition, if P(w) is the power spectral density of the

lift coefficient CL(t), the mean square value of CL is given by

@ —_
2
Pw)dw = C (29)
Jo (] W L

By comparing the latter two equations, the normalizing factor

K = P{w)/F(S) is evident and

ac, ?

P @) = 55— Fis) (30)
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and Drag Force at Reynolds Number 1,39x10
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Similarly, the power spectral density of the l-h‘ilg force is given by
dCD :
Pplw) = —=zg—FI(S) (31)

where CD is the mean square value of the drag cocefficient. The
expressions for the motions of a missile resulting from random lift
and drag forces are developed as follows. The displacement re-

sponse of the missile, which is assumed to be a linear structure,

-can be expressed in terims of its principal modes as

w®
w0 = ) g (xq (1) . (32)
n=1
The generalized coordinates qn(t) are determined from

. . Q_(t)
9% + anwnqn + “n 9 ~ Mn (33)

where the generalized force is
Qn(t) = fﬁf(x, t)npn(x)dx

and Mn is the generalized mass of the nth mode. By assuming that
the forcing function can be decomposed to

f(x, t} = F(x)T(t) ,

the generalized force becomes

1t

0.t = i) [ Flg, o ex
{

T(t)Wn (34)
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where

W= J‘z Fix)p_(x)dx and F(x) = q(x)d(x)

n

For such a forcing function it is possible to find an ex-
tremely simple expression for the root mean square (rms) of the
time response of the missile by assuming that the damping ratios
bn are small. The function T(t) is assumed to be random and

expressible in terms of a power spectral density P(w).

To obtain the response, {irst notice that if T(t) equals

a cosw, the steady-state solution of the equation of motion is

aW_ cos (wt +8 )
n n

9 - T o2 72 (35)
Mo Z\ ll - {_u_ +(2p X
non \ W nw,
L | )
The corresponding displacement is
W ¢ (x)cos (wt +6_)
n Z/’ w 2 w 2
Mw |1 -{—]|+{2b —
n n w nw
U_ n n
The mean square response (which will be needed as explained later)
is defined to be
> © t+2v/w
u-(x) = F_l’ u“{x, T)dr (37)
t
t+2mfw . '
uz(‘) ) mz — anmgbn(pm cos (wr+ On)cos (wr+ Qm)cl -
=T 2w / _ 2 2, 172 /2
e L MM % N ) o m)
(38)
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This equation can be integrated by term to yield

—— 2

7= : W W 99 cos(d -0 )
u (x) = -—Z—-

72 m) 173 (39)

,\.
K 2 2 '
_ﬁ__-z-« ManU “m v{w, n).

n (w, m

Equation 39 is the mean square response to a force distribu-
tion fixed in space and varying sinusoidally with time at frequency w..
If T(t) is considered as a concentrated force acting on a unit dashpot;
the average power dissipated is az/Z, that is
ot S22

| T?r)ar = 2

E - a_
20 2

ﬂl-—

Similarly, if T(t) is a random force acting on a unit dashpot, a
power spectral density P(w) can be defined for this force (with
certain restrictions) such that the average power dissipated by fre-
quency components in the range w, w + dw is P(w) dw. Thus, if a
random force of the form given by f(x, t) acts on the missile, its
response can be obtained by using Equation 39 and superimpé’sifxg
the responses from each frequency component of the random force,

that is, replace a2/2 by P{w)dw and integrate over all frequencies:

(m_\_‘. o W W ¢ ¢ cos(8 -6 )P 4
Z, 2y T Zn 72

JO /. /. MM w % %l )
n m m

n Hw, m

(40)”

=°=’I’he manipulations which led to Equation 40 have been essentially
intuitive and without mathematical justification. However, a mathe-
matically rigorous treatment of the same problem yields exactly
Equation 40. ‘
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It i3 the nature of random processes that only a statigtical
description is meaningful, It is quite often impossible to con-
struct the statistics needed for a complete description; however,
the mean square value, which is the second statistical moment, is
usually obtainable. If the statistics ol a randem process are
gaussian, the mean square value provides a complete description.
It is for these reasons that the particular manipulaticns leading to

Equation 40 were undertaken.

In evaluating the integral in Equation 40, a simplification
can be made if the damping ratios bn are small and if P(w) is a
smooth function as compared to the resonant peaks of the structure.
In such a case, the largest contributions to the integrand are those
terms for which n = m because near each resonance w- W the
radicals in the denominator become very small. By neglecting the

terms for which n # m,

2. 2
S - w % 2Pl )
u = 4 ) —
*) lo /. TERYE I
n M2w4/1-(“— + [2b i)
n n w nw
s .
or
e w 2.2
2 N\ Wn ¢n ® P{w)
u(x) = = a <— dw
+ M Zw 400 w P w
n n n 1 - —-—) ‘ +{2b -——)
w nw
i \

If P{w) is a constant, no further assumptions need be made
because each term in the foregoing equation is easily integrated.
Remembering that the integrand is a function with very steep peaks
at each w ., We can make another simplifying assumption. Since
the integrand has these steep peaks near w = W the main contri-
bution to the integral comes when Pw) = P(wn); thus a good approxi-

mation results if P{w) is taken as P(un) = canstant for each term.
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Then

CTUW %9 S(x) T
o ) S w

— M Tw
n n n

A similar expression is derived in Referen_e 21. Substituting for

P(wn) from fquation 30 yields

— ch‘2 \ wn2¢n2(x) |
) = F(S (43)
8u / .b M Zw 3 n )
n n n n

It follows from Equation 4 that the mean square bending

moment zlong the missile in the lift plane is

~ 2 ZI- dq’nJZ
dC - W_" El(x)
M) = i, BT R(s) (44)

- /
8u /_ b M “w
i n n n

The mean square response in the drag plane can be obtained from this
expression if CL is replaced by CDZ .
The other wind force acting per unit length along the missile

is the steady-state drag force defined as

Fpgi) = Cpgalx)d(x) (45)
where CDS = steady-state drag coefficient
g{x) = dynamic air pressure at station x
For purposes of analysis, the responses in the drag and
lift plazes are added vectorally. For example, the peak displace-
ment of the missile at station x is defined as
3
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1n/2

I 2 2
umax(x) = ‘(UDS + JuOD) + (SuOL) J (46)
where Ung = steady-gtate drag displacement
u = root mean square value of the oécill;ttf{ry drag
oD X
displacement
ugp, = ¥Ooot mean square of the oscillatory lift displace-

ment

It is assumed that the oscillatory lift and drag displace-
ments have "normal" distributions, The root mean square values
of these responses are equivalent to the standard deviations (sigma)

gince the "means" are zero.

The use of 3¢ (3 times rcot mean square) values in Equa-
tion 46 implies that 99.73 percent of the time the peak oscillating
lift and drag displacements will be less than the 36’ value. Equa-
tion 46 also implies that the oscillatory components of the lift and
drag displacement reach their maximum at the same time, which iQ

certainly conservative.

5.1.2 An Example. An indication of the magnitude of bending
moments which may be induced by 2 strong ground wind acting on

a large ballistic missile may be obtained from Figure 17, In this
case a typical intercontinental ballistic missile is assumed to be
erected on a surface launcher in the vertical position and exposed

to a uniform steady 60-mph wind. The steady-state drag coefficient
is assumed to be 0.55, and the predominant component of oscillatory
response in both the drag and lift planes is at the first bending mode
frequency of the missile. The bending moments at several points

along the missile are shown in Figure 17.

As can be seen from these figures, a strong ground wind can
easily impose loadings on a missile which could be catastrophic if
not taken into account in the structural design of the airframe or if

the missile is not otherwise protected. These figures also indicate
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Bending Moments, in. 1b, x 10-5

Distance from Missile DBase, in. MDS 3MOD BMOL MR.
0 15.07 19.54 63,50 72.32

150 9.82 14,10 44,80 51.59

350 4. 84 7.33  23.80 26.75

650 0.80 0.78 2.52 2.97

Figure 17. Bending Moments in a Typical Missile Exposed
to a Uniform 60-mph Wind

the fallacy of using just the steady-stage drag response as a design
criteria, since the maximum oscillatory components greatly exceed

the steady-state response.
5.2 Launching in a Wind

5.2.1 Solution of the Problem. In the prelaunch condition, the

missile is bent over by a steady wind and is also oscillating in its
various constrained modes because of the vortex shedding prew}iously
discussed. The transients that occur in the postlaunch or free-free
condition depend very strongly on the deflected shape and velocity of
the missile just before release. It would be desirable to find the
initial condition that gives the highest postlaunch loads, but with the
missile oscillating in several modes with random phase, it is im-
possible to say a priori what condition would give the largest loads.
It seems evident, however, that for any given constrained mode the
resulting free-free loads will be largest if the missile is released
when it is bent over to its maximum value. Loads indicative of the
most severe postlaunch loads likely to occur can be obtained if the
postlaunch transients are computed using as initial conditions the
missile bent into each of its constrained modes which have appreci-
able amplitude because of wind-induced oscillations. This means a
separate computation for each prelaunch (constrained) mode and a

computation for the initial static deflection caused by steady drag.
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As an example of the procedure involved in computing the
postlaunch transients, consider a case in which the miss"xle is bent
into a deflection curve given by yo(x) as shown in Figure 18, The
function yo(x) could represent any of the displicements discussed
earlier, but for this example it will be 1ssumed tu be due «nly to a
steady wind. The procedure to bLe fclluwed here 1y to represent the
missile in the postlaunch conditiun in terms ¢f its free-free modes
¢n(x), F.n(x) with generalized ccordinates q (t). Assuming that the
free-free modes (;an, .[,n) have been obtained from Equation 6, the
problem is to determine the gereralized coordinates appearing in
Equaticns 9 and 10, that is, sclve Equaticn 18 subject to the ap-
propriate initial conditions. For the sake cf convenience, the

pertinent equations are collected here:

(o o]
ulx, t) = Cylt) +xC () +) ¢ (x)q () (9)
n=1
*
ple t) = Ci(t) + ) g (x)g,(t) (10)
n=1
ol _
Elgx = M (4)
T
KAG 2~ ¥, v (5)
. . 2 Qn
q, t anmnqn tw "q = ¥ (18)
n

The term involving - P has been drubped from Equation 5. The
axial load P does not affect the bending dynamics for the problem
being considered. The generalized forces Qn and ﬁn are given

by Figure 18. Here
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MISSILE

LAUNCHER
//////F—FLEX|BILITY
7,

\of

Figure 18. Coordinate Sysbtem of Constrained Missile
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Qn = ll w(x)qbn(x)dx and 5;1 = 0 (47)

-

and are independent of time since w(x) is assumed to arise from a

steady wind. The solution of Equation 18 is

/ Qn | e_--bnwnt Il bn " Qn
qn(t) = .’an - 5 lcos w t - — sinw ti+ > (48)
\ M w . n Mw
) n'n / . nn
where qn(O) equals a_, én(O) equals zero, and bn is assumed to
be small, that is, the damped and undamped natural frequencies are
essentially equal, It only remains to determine the constants a .
To this end, the initial bending moment Mo(x) and shear force
Vo(x) caused by the steady wind are computed from (see Figure 18)
- M, =L wig)e - x)d¢ (49)
!2
v, =J w(g)de (50)
x
Equations 9, 10, 4, and 5 may be combined to yield the following
expansions for M0 and VO:
@
- Mo(x) = EI Z annpn'(x) (51)
n=1
@
= 1
Volx) = KAG ) a (9.'-4) (52)

n=1

where prime denotes differentiation with respect to x. The con-
stants in these expansions may now be determined with the aid of

Equation 7, that is
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’ ' ' Mw,” m=n #
- ' -
' jo) 4 ¢nv "Um'dx + !2 KAG (¢m' - 'bm)‘?n - lpn)dx —io (53)
U . mi#n
Equation 51 is now multiplied by d"m' and Equation 52 is multiplied
by ¢m' gl the results are added and integrated over the length of
the missile to yield
o
' (. - roy '
f [Mo’“m + Voo ‘[,m)} dx [1 EN ) a b ' dx
1 . n=1
[ .,
| L. " _
+J1 KAG(¢m q,m)Llan(q)n .;,n)dx
n=
(54)
A compariscn of Equaticns 54 and 53 yields immediately
= 1 . ' ' |
2y T 2 !M0¢n + VOw’n - ll"n)l dx (35)
ann R

with the an's determined, it is now possible to compute the bending

moments and shear forces generated as a result of launching a

Taatle =i
TIIE Sl 1.4 WiTC.

5.2.2 An Example. Because the moment at the base x = - 11 is the
maximum moment in the constrained condition, while the moment at
this station is zero for all of the free-free modes, the convergence

of the initiz:l ;v ent «-p -cs-ed 1n terms of free~-free modes is under-
standably poor. However, such an expansion has been made using the
bending modes of an actual missile, and coﬁvergence to a reasonable
engineering accuracy was obtained using six bending modes. Figure 19

shows a plat of

E
The terms corresponding to the sloshing coordinates and P have been
dropped from Equation 7, Experience has shown that sloshing and P
are not important in the problem being considered.
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;N d'[ln(x)

) Elx)a, —g—

n=1
for values of N from ona: to 3ix, The initial moment Mo(x) is also
shown, and it can be see that convergence (e yood for sections awa,
from the bass. Near the base, the maximum loads occur bhefore
launching so that the poor convergence here is not important. An
indication of the convergence during the postlaunch transient is given
by Figure 20, which shows the maximum value of M(x, t) incurred

during the transient at several stations of the missile.

Again, N is varied from cne to six in this figure, and it can
be seen that the additional moment due to the sixth mode is not too
large. These computations were made with rno postlaunch damping
(that is, bn = 0). When the damping was included, the convergence .
was better, particularly near the center of the missile where the lower
free-free modes contribute strongly to the moment. At these stations,
moments caused by the h:igrer i.des were damped out by the time the
moments caused by the lower mcdes became in phase. A comparison
of the peak postlaunch moments with and without damping is shown in

Figure 19. The amount of damping used in the analysis was

b = 0.02
n

Figure 19 also indicates the importance of the postlaunch
transient. Notice that in the prelaunch condition the bending
moments near the tip of the missile are quite small, whereas during
the postlaunch transient the bending moments become quite appreci-
able Eecause of the unloading wave induced by the sudden release.
The characteristi dip in the moment curve at station 0.44 of Figure 19
is caused by a sudden reduction in the flexural rigidity of the missile
at this station. These postlaunch moments designed the forward sec-
tion of the missile of this example. Details cf this analysis can be

found in Reference 22.
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5.3 Effects of Thrust Build-up

In this section the problem of determining the dynamic loads
generated by an engine start transient is considered. This problem
differs from those discussed in previous sections in that the '
longitudinal rather than the bending dynimics of the airframe is in-

volved.

5.3.1 Theoretical Considerations. Consider a missile erected on

and attached to a launch stand (see Figure 21). At time t =0 the
engines are started, generating a time dependent thrust F(t), The

problem is to determine the resposnse of the airframe to F(t).

Experimental data have confirmed that the longitudinal dy-
namics of a missile airframe are adequately represented by simple,
one-dimensional, beam theory. Therefore, the longitudirnal response

of the missile is determined from

) 2fut v | 2lubx ® (56)

2

2
a {x >
ax at

subject to the boundary conditions. Here

au(ao;{ t) _ 0, au;i, t) A&)E [F(t) + Kguls, t)] (57)
where
aZ(x) - EA(x)
m(x
E = modulus of elasticity
A(x) = cross-sectional area of the load carrying
portion of the airframe
m(x) = mass per unit length of the airframe
u{x, t) = axial displacement cf the airframe
x = axial coordinate measured from the missile tip
K0 = spring constant of the launcher
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A direct integration of Equation 56 is usually quite difficult,
especially when the effects of liquid propellants are included.
Therefore, rather than attempt a direct solution of Equation 56,
it is far more convenient to replace the continuous airframe by
a lumped s.rin,-mass analog. A typical decomposition of an air-

frame into a spring-mass system is shown in Figure 21,

The general procedure used to arrive at such an analog is
to divide the airframe into a number of sections, replacing the
distributed mass of each section by a single mass placed at the
center of gravity of each section; the masses are joined by springs
whose stiffnesses are equal to the stiffriess of the airframe struc-
ture between the masses. The inclusion of propellant effects re-
quires special treatment. TLe hydrostatic pressure created by
the effective weight of accelerating propellants causes the propel-
lant tan.ks to bulge, which in turn shifts the center of gravity of the
propéllant mass. A computation of these events leads to expressions
for effective spring constants of the form given by K5, K6’ and K7
of Figure 21. The expressions for these constants are derived in
Section 1 of the Appendix.

The equations of motion of the spring-mass analog can be

written by inspection. Some of these equations are

Mnxn + Kn(xn - xn—l) + Cn(xn - xn_l) = 0

Mn-lxn—l + K.{(xn__1 - xp) + K5(xn-l - x4) + Kn(xn—l - xn)

+ Cn(xn-l - xn) =0

Mpxp + Ké(xp - x4) + K7(xp - xn_l) = 0
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’ M4x4+fK4(x4 - J-c3)+!\'a(x4 - x5) + Kolx, -xp)
+K5(x4-xn_l) = 0

M X, + Kl(x2 - xl) + CI(XZ - xl) + Kz(x2 - x4) + K3(x‘2 - x

_ ' w
+K0x2 = 0 ] foR-a )

MZXZ + Kl(xl - xl) + Cl(>~:2 - xl) + KZ(XZ - x4)

~ w
+ K}(x2 - x3) +W =0 xZ>RB- (58)
where
n
w =Z mig
i=1

The limits on the last two equaticns of 58 account for the
possibility of the missile separating from the launcher. The
solution of these equations provides axial loads Fn' for example,

Fn = Kn(xn - xn_l) + Cn(xn - xn_l)
and accelerations *n for different sections of the missile. Since
the coordinates originate from the equilibrium position, the absolute
acceleration of any mass will be 5-':n + g, where g is the accelera-
tion caused by gravity. Similarly, the total axial load at station n
equals Kn(xn - xn_l) -mg + Cn(xn - xn_l). This choice of co-
ordinates is made in order to eliminate the necessity of computing
intial displacements and setting them as initial conditions on a
computer. The initial displacements for the equations here are all

zero, whereas if all spring deflections were measured from their
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free length, the deflection of each spring under the weight of the
masses above it would hiave to be used to determine initial condi-
tions. In a more complicated model with springs spanning across
several masses, solution of the static problem is more tedious so
that the use of coordinates meisured from equilibrium is even

more strongly indicated.

In many engine thrust transient response problems the effect
of damping in the missile is very important. Hence, an estimate
of the modal damping (pnssibly an experimental value) for the
structure is necessary to determine the values of dashpots Cn’
which are located betweer masses as shown in Figure 21. If the
modal damping bn in the missile 1s sm2ll, it can be shown

{Reference 15) that a gncd approximatier. for bn is given by

r 2
P - .
b =\ C Pty ¢n(xj+l)] (59)
n j prMn
j=! '
where
b = percent of critical viscous damping
n £
in nth mcde
Cj = dashpot constant at station j
P = total number of dashpots
¢ (x.)-9 (x.H) relative displacement in dashpot j,
nd nov for the nth meode
w, = circular frequency of nth mode
Mn = generalized missile mass for the nth
mode
N
2
Z m; P, (xx)
=l
N = total number of masses
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Equation 59 provides the nocessary values of the dashpot constants
to maintain the d.:sired modal damping. A set of P aimultaneous

equations are formed with P dashpot constants, Cj as unknowns.

Equation 58 can be written in matrix form as follows:

[ & + [8]:4) + [cled = o N
where
[a] = mass matrix
[B] = damping matrix
{C] = stiffness matrix
v » = a column matrix

For purposes of computing longitudinal modes and natural fre-
quencies, the damping is assumed to be negligible, and the
time dependence of the displacements is sinusoidal with fre-

quency w. Equation 60 then takes the form

([c] - w?[aAh&> = o (61)

Equation 61 is the classical form for an eigenvalue problem in
matrix notation. The solution of 61, yields the natural frequencies
W and mode shapes tpn(x), With the rmnode shapes available, the

response of the spring-mass analog can be written as

N
ux, ) = ) g (x)q(t) (62)

n=1
with the generalized coordinates qn(t) given by

. 2 F(t)¢n(xs)
qn(t) + anunqn(t) tw, qn(t) = T— (63)
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-Efquations 62 and 63 are valid, independant of whether the missile is

resting on or has left the launcher, the only difference being that the

mode shapes $, are different in each cage,

Equations 62 and 63 may not represent the most convenient
form of the solution. In fact, it is often much faster to solve
Egquation 58 directly on an analog computer rather than attempt a

modal solution.

5.3.2 An Example. Figure 22 shows the effects of damping and
release time on missile axial loads caused by launch and engine
thrust transients. The axial loads occur in a large ballistic mis-
sile just after launch when the release time is specified at a per~
cent of the full engine thrust. A typical engine thrust build-up
curve is shown in Figure 23 with release times of the missile
which correspond to the cases of Figure 22. To compare cases

B and D, ihe differences in the loads are caused by the transients
of the engine thrust which are generatéd in part by the rate of
build-up. In case D these transients are nearly damped out, and
hence for this case the results may be obtained by simply applying
a step load to the end of 3 free-free missile of magnitude T - W,
where T is the 100 percent thrust value and W is the total weight
of the missile. To compare cases A and B, the differences in the
axial loads is mainly caused by the differences in the rigid-body
accelerations. The effect of damping is clearly indicated in cases
B and C. Although the axial loads of Figure 22 indicate that it is
advantageous to release the missile at the lowest thrust level, the
combination of axial and laterul loads may indicate the necessity
for a different time of release. An over-all loads picture must

te examined befure a release time can be specified. The lateral
loads will dominate the axial loads in certain sections of the mis-
sile and vice versa. Therefore, if the lateral loads are predominant,
which is usually the case at sections near the tip of the missile, it
may be neceséary to launch at a time when some of the contributors
to lateral loads are damped out, that is, effects of engine thrust

differential, which have not been treated here,
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- Maximum Compre ssive®

Case Misgile Station Axial Load

A ” 125 tip 1.0P
Release at 77% of full thrust 250 4,5
bn = 19 400 ' : 12.2
N2 3 4 800 38. 8
B: 125 2.1
Release at 100% of thrust 250 11.1
b =1% 400 27.5
n 800 64.5
C: 125 3.8
Release at 100% 250 18.0
b =0 : 400 45.0
n 800 73.5
D: 125 1.9
1lvlease after a 1-second hold 250 9.7
bn = 1% 400 24.0
800 59.0

81.0ads are normalized to {b} and occur after release (postlaunch).

Figure 22, Effect of Damping and Release Time on Missile Axial
Loads due to Launch and Engine Thrust Transients

A

100

77

0 — RELEASE TIME

THRUST~ PERCENT

!

o
o

TIME — SEC.

Figure 23. Engine Thrust Build-up Curve
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5.4 Misslle Response due to Ground Shock

Many dynamic problems ars encountered before the missile
is airborne, for example, in transport and ground handling, how-
ever, this section will be limited to the discussion of missila

dynamic response due to ground shock.

There are many complex problems encountered in determin-
ing the responses of missiles due to ground shock and in determin-
ing the characteristics of shock isolation systems which attenuate
these responses. Some investigators have examined these problems
by representing a continuous structure by a single degree of free-
dom systém. ~This system, however, may be inadequate or the
responses such as displacements, moments and shears may be
misleading. Therefore, the more difficult problems associated
with a continuous structure should be investigated. A method of
analysis for these prob’. .. using a "shock spectra” technique
is given in Referuonena s 0w e -

In this section two aspects vi thco2 problemas are considered.
They are: .

a) The specification of the shock environment

b) The dynamic response of the missile to the
environment. ‘

The ground shock environment may be specified in various
ways, vsuch as by soil pressure, displacement, permanent set,
velocity or acceleration. All of these may be of use in particular
applications. For the purpose of this section attention is given to

the displacement shock spectra (Reference 25).
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Although thare are certain practical difficulties, it is-
theoretically possible to determine the response of a structure
to shock if the acceleration time input and the dynamic charac-
teristics of the structure in terms of the principal modes fre-
quencies, and damping are known. It is also possible to estimate
upper bounds of response by means of the shock spectra and the
dynamic characteristics of the structure. This latter procedure
will be discussed in the determination of maximum stresses and
displ‘acems:n-:s. 1 is peinred out to :ie reader that this method
of determining the upper b ..:d response of 2 structure due to
transient excitation is a:so . very useful tool for problems other
than ground shock. It has important applications ir. the specifica-
tion of the type and intensities of shocks a structure must resist,’
and in the estimation of tiie strength of a s'tructure in resistance
to a variety of shocks. Such problerns arise in the packaging of
electronic equipments for transportation, in the resistance of a
structure to eazrthquake, in the l;andif_g of an aircraft, in the

starting shock of a rocket, and in a large variety of impact loads.

To discuss the response of missiles to ground shock, the
missile is considered in a vertical position attached to a launch
stand which is protected from air blast but is subjected to ground
shock. (See Figure 24.) The ground shock in terms of the soil
acceleration as a function of time consists of two major compo-
nents: a vertical component and a component directed radially

from ground zero where the blast initiates.

The dynamic characteristics of the structure are con-
veniently expressed in terms of the principal modes and fre-
suencizs, and strucrural damping. For the missile-stand
combination the transverse modes are very similar to those of
an elastically supported cantilever beam. The displacement of
any poiﬁt of the structure can then be taken as the superposition

of the mode contributions.
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The displacement of the missile relative to the ground, as

shown in Figure 24 is given by,

where

u =

£
[}

h:3
It

ufx, t) = Z p_(x)q_(t)

.isplace:.en. of the structure at point x
relativ. to the ground

generalized coordinate of the nth mode

value of the nth mode at position x

For an acceleration input, the equation of motion for the nth mode

is,

=her=,
th ©

w =
n

P

a(t)

r

J
- a(t)jl p¢ndx

2
L pp, dx

- . 2
9, + Zgnwngn * “h 90 °

ratio of damping to critical viscous damping

in the nth mode

circular frequency of the nth mode

mass distribution per unit length

acceleration of the ground

force, af(t) pcpndk. divided by the generalized mass,
1 ‘ f
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The right hand side of this equation represents the generalized

2
Pe, dx.

.For convenience let Y, = f p¢ndx f p¢n2dx. This term has been

called the kinematic or distribution factor {Reference 24).

(64)
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The solution to the foregoing equation of motion for small damping
and for initial conditions of a, Q. and c';n equal to zero at t= 0,

is,

Y, t -4 w (t-7) '
qn(t)z - ai- jO a(+)e non sin wr’x('t - T)dr

which when substituted into Equation 64 determines the response

of the structure.

There are several practical difficulties in determining the
response of the structure in the foregoing manner. Some of
these difficulties come from the evaluation of the integral with
practical acceleration records a(t); others arise from the
characteristics of the acceleration records such as statistical
scatter, damping, and determination of low-frequency components.
These difficulties may be present in problems other than ground

shock.

It is sometimes convenient to think of the relationship of
the generalized coordinates to quantities that can be measured
directly without a knowledge of the ground accelerations. In
effect, the structural system for which dynamic responses are
to be determined is replaced by a series of single-degree-of-
freedom systems. For example, the analog for the motion of
each mode of the missile on the stand can be represented by a
cantilever beam tuned to the principal frequency for the mode
of the missile. Hence, assuming an idealized single-degree-of-
freedom system such as a cantilever with an end mass, the

equation of motion for the mass is,

G+ 2w +0?Q = - alt)
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This equation has the same form as Equation (65), so that if the motion
of the mass of the single-degree-of-freedom system is known (by
measurement or other means), the generalized coordinate for the nth

mode of the structure is given by

and the structural response is

p—

¢ Y w0, =

n

Now the motion, Q{t), of the mass is often difficult to measure
as a complete displacement-time history. Fortunately, it is possible
to make scme predictions about the maximum value of the response of
the structure from a knowledge of only the peak values of the response
of the single-degree-of-freedom systeﬁ. which are relatively easy to
calculate if the pulse input is known or to measure by means of reed

shock gages such as in the case of ground shock input. (See Reference 24,)

A shock gage may consist of a set of single-degree-of-freedom
systems, as shown in Figure 25. The frequency spectrum of the peak
displacements of the masses relative to the base which is being ac-

celerated is called the displacement shock spectrum and is given by

t>ol w

t
Dlw) = Q ., = max | 1 Jo a( -r)e-gu(t- ™) sinw (t -7)dT

Schematically, D and Q for a frequercy w are shown in Figure 25 with
the associated ground displacement curve. A typical horizontal dis-

placement shock spectrum is shown in Figure 26.
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The greatust value of the response in Equation (66) would occur if
all the peaks of the components occurred simultaneously and in the same

phase, Since the peak value of Q{t}) is D, then
u(x)fZ YnD(un)tpn(x)

Having an expression for the displacement, other quantities of interest,
such as bending moment, can be obtained. The expression for bending
moment is,

'

. M(x):Z:_ v, Dlw )m (x) i
|

where mnv(x) is the bending moment at position x in the nth mode.
These estimates of response are vpper bounds; however, it has been
shown by several investigators (References 23, 25, 26 and 27) that for
shock inputs such as earthquake or ground shock, the estimate is not
more than 15 percent conservative. The conservativeness of the re-
sponse when using single pulse shock inputs is discussed in detail in

Reference 25.

Such a "shock-spectra” technique of analysis is also a very
valuable tool in determining the response of a missile during engine
thrust build-up if the boundary conditions do not change. For example,
if a missile is constrained in a launcher or if it is free-free as in the
case of a space vehicle at the time of engine ignition after a coast
period, an upper bound of response may be obtained by using a modal
analysis if the input force (engine thrust) is represented by its "shock

spectrum"”.
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APPENDIX

MODELS FOR THE LONGITUDINAL VIBRATIONS OF LIQUID
PROPELLANT MISSILES

A. Equations for a Simple Cylindrical Tank

A lumped parameter model is constructed to approximate the first.
mode of vibration of a liquid-filled elastic tank which is considered to be
a tandem part of a missile as in Figuré 21, The propellant tank is shown
in Figure 27. The force F in the figure is the force in the tank walls due
to the action of masses above the tank under consideration. Po is the
ullage preasure in the tank. Other quantities are evident from the figure.

The axial stress, a’x, and radlal stress, a‘y, in the tank wall_ are;

P R
x 2uwRt 2t (A. 1)

M, tFLUID MASS
. ".2.

[

’

T
TOYAL PRESSURE FORCE ON MIGID BANE OF TANK GIVES
FLUIC ACCELERATION o

ojw

Figure 27. Propellant Tank
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P R

¢ =2 4poh - WR (A, 2)
y t t
Applyir{g Hooke's law, the corresponding strains are;
_ 1
“GTE 00 v
sR [ N, __F
-y [(2 \j P0 2.,R2 - vpath - x)} (A 3)
e = 1 (¢ -~ vo )
y - E (9 o,
;%rfl Ll tpafn-x)+ “FZ]_ (A. 4)
L\ } e 2gR ] :

where;
E = Youvng's modulus

v = Poisson's ratio

For tanks with a very high radius to thickness ratio, R/t, the bending
deflections caused by constraints at the base of the tank can be neglected.
With this assumption, the tank walls expand out into the shape of a simple

truncated cone. The displacements u and w are given by kinematics as;

{ 2) J :
- L Jp - - hx - 3. A. S
Et [(z ) o™ Y "P“k“ 2 (A. 5)

~3

(1)
’




W= -R(y

2
R [( -l’-) Po+pa(h-x)+-v—F2

(A. 6)
Et 2 2R ]

In solving a longitudinal transient problem, the stresses due to
the static ullage pressure, Po' can be added separately to the dynamic
gstresses. Dropping these static terms, the displacement of the section

of the tank at the free fluid surface relative to the base is,

2
_ R | Fh h
u(h)—-ft[‘—‘—zﬂRZ + vpa —-2] (A. 7)

The total mass of the propellant and a lumped spring constant for the

tank are respectively,

2
Mp = 7R hp (A. 8)
_AE _ 2tRtE
K= === (A. 9)

The displacement of Equation (A. 7) can be written as,

F VMP
u(},):.ﬁ.-——-K u{__}xl-xo (A. 10)

waere;

coordinate of the tank position at free surface of
the liquid measured from static equilibrium.

id
—
"

coordinate of the tank base, measured from static
equilibrium

»”
[}
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Assume now that the fluld can be treated as a rigid body, and
that its displacement {5 the vertical displacement of the center of gravity
of the fluid which occurs when the tank walls expand from w = 0 to

w = w(x)as glven by Equation (A, 6). Neglecting second order volumes,

this distance {see Figure 28) is,

®
[
]
]

1 Jhlz :
— 2wRw(x) dx
P °e 7R o

M
vF
= . a - —iz- Q&.ll)
where, x_ = coordinate of fluid cg, measured from static equilibrium

Eliminating F from Equations (A. 10) and (A. 11) and noting that

a = xp, one obtains;

vM
— . _ P et .
x -xo— 75(2 xp +v [b‘l X°)+ K xp] h&.lZ)

This equation can be rewritten using,

A(xl-x°)= b -xp)- (xP-xo)

as,
M %+ (2(3- —Zz)vx) by - %) (;_fl:ivz-) by - %) =0 (A. 13)
Notice that Equation {A. 13) corresponds to Figure 29 if one takes,
X, = (3—;—:2) K
K, = (_A_?-_;) " (A. 14)
3.2y .

-77-




C.G.
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s g

Figure 28, Displacement of Fluid Figure 29.
due to Tank Wall -
Expansion

'F+u,i€,

Longitudinal Model
of Propellant Tank

The spring K3 has been included, because neither Equation (A. 10) nor
(A. 11) gives the same deflections as found in the figure if K, = 0. To

( find K3, set ':ép = 0 and make the figure match the equation, -
- __VF :
%K | (A. 15)

Using Equation {A. 14) the force in spring KZ is,

2y. '
-vE [ 2- 2y - 2
F, =% (—-—7)K= vy, ") F . 16)
2 K 3-2v 3 -2y

Also, the deflection of spring K, using Equation (A. 10 with® =0, is
: ) b
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Equilibrium of the lower bar in Figure 29 under these forcea requiros
that, '
2
2v- 2y F+K
(3 - sz) 3

wing
;

= F (A, 17)

Solving for K, gives,

3

In Figure 21, therefore, by using Equations (A, 14) and (A. 18)

_[3 -2y
(1) «
3 - 2v

Z-Zv)
K, =[———>] K
6 (3-zb

K7 =(—~2—!—-—-2) K
3 - 2v

B. Model for a Cylindrical Tank With a Flexible Lower Bulkhead

If, instead of having a rigid base, as implied for the tank in
Section A, the tank lower bulkhead has an equivalent spring constant
KBH’ the model in Figure 29 must be modified as shown in Figure 30.
It is evident that the static deflection of the liquid mass relative to the
reference plane X, is merely that due to the flexible tank plus that due
to the flexible lower bulkhead, so that the spring from the mass to the
reference plane is simply these two effective springs in series, as

shown. When a force F is applied to the tank skin from above, the
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the-flections of Xy and x_ with respect to the reference plane are the same
ay if the bulkhead were rigid because no further load {4 carried by the

bulkhead (i.e. it carries only the fluid).

Thus,

=

HNBIER

as before, the new spring constants, —Kl and RZ are now determined so

that these deflections indeed result,

one can write,

from which

= (F

F-K(—
(x-x)= EALAN 2
p o K K

2

K3=K-vK2

P
3%
[ 2—2u]
Mp 3-202 —_—
2
x01 KeH
£ kKew 'E ,
2 2 F+Mp Xp
MpXp
Figure 30. Longitudinal Model of Propellant Tank With

Flexible Lower Bulkhead

7o

4%

(A. 19)

From Figure 30 and Equation (A. 19)

20)




From Figure 30, R-Z {s computed to be,

2 -2y
_(3-2.v KKBH

K, =
2 - 2y
. (;Z- Zvv) K+KBH

Also from Figure 30 and Equation (A. 19),

=¥ . ZF
=t By
K +K
1
so that, —
. K?.
K =15 B (A. 21)

C. Model for a Semi-Monocoque Cylinder

If the cylinder is constructed from a skin-stringer design as shown
in Figure 31 it iz assumed that the stringers have negligible radial
displacement but that the skin will displace both radially and longitudinally.
The i.ziil force v :th is either through the skin or the stringers, therefore
the stringers act in parallel with the skin. The model for the skin is
similar to the case in Section A,, but now,

(AE)

Km_ h

skin
and the stringer spring constant is,

(AE)
K = —-atringer
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2:2v Tk, o
=1 MS
[ 3-zv2]

Figure 31. Section of Skin-Stringer Cylinder
and Longitudinal Model

D. Model for a Semi-Monocoque Cylinder With Partially Buckled Skin

A longitudinai model of a skin;stringer propellant tank with a
partially buckled skin is necessary for some of the ballistic missiles.
~As in the previous section it is assumed that the axial load is trans-
mitted by the stringers, Ks’ and by the effective (unbuckled) skin, KM.B’

where the latter is,

MB ~ h effective

K - [(AE)skin]
The spring-mass model to represent this case is shown in Figure 32,
* *
The constants Kl andK3 are such that,
S - (A, 22)

X, - X = -
1 o KMB-I-KS
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—
f

and the propellant mass, M _, defiects if a portion of the load F, say

FMB' that iz carried by KMB is transmitted by the unbuckled skin,

KM’ f.e.,
F
< -x = Y mMB
p o KM
{see Equation A. 15) but,
~mB = F ' where K, = (AE)Skin
KMB KMB + Ks M h .
there.fore,
vF K
X -x = - MB (A. 23)

p o KM (KMB + Ks)
Equations (A. 22) and (A. 23) are the constraints to be satisfied.

Assuming, as before, that SZP = 0 then from Figure 32 and
Equation (A, 22),
K *(—'—‘Z - ZZ) K
F - LB-2v, Mk +K =K, +K
x, - x ). 2 -2 3 s MB s
1 - %9 K+ 3 Ky,
3 -2y

therefore,

(Z-—Zv *
K -K*+3-2v2) Km¥ (A. 24)

MB 3 (Z-Zv) *
3——‘—_2va K +K

M 1
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1F+ My Xy

Figure 32. Longitudinal Model of Semi-Mdnncoque
Cylinder with Partially Buckled Skin

From Figure 32 and Equation (A, 23),"

2 - 2v .
_F =(3-QZ)KM _ Km Bup * K)
( (xp—xo) (1 _ 3F+Ks) _'KMB
- KMB s

therefore,

#* .
] K, =(—¥,"-) Ky (A 25)
3-2v

Substituting Equation (A. 25) into Equation (A. 24} gives,

2 - 2v
vK K
* (3 - sz) M MB (A. 26)

K =
1 Kyv - YBus

The foregoing derived spring constants for Figure 32 are shown in

~Figure 33.
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Figure 33, Simplified Model of Figure 32
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