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ABSTRACT
/

T¶TI.F-orrt'--s asurveyAof the more common types of structural

dynamics problems in association with ballistic missiles. Special

attention is given to the effects of subsystem interaction on dynamic

response of the missile and vice versa. A few technically impor-

tant examples are treated in some detail. The purpose of these

examples is twofold; first, they illustrate various techniques used

in dynamics analyses and second, they record some of the details

of mathematical models which are frequently used to solve missile

dynamics response problems Some of the sections oL - -q ,paert

are found in the reference, ut are repeated here to provide the

reader with a fairly complete pi ture of the more common types of

missile structural dynamics pro lems.
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1, INTRODUCTION

The need for a current survey and reference document on the

more common missile structural dynamic problems and their analyses

resulted in the writing of this report. Many of the sections of the

report appear in previous works, as referenced, however they have

been revised and repeated here to provide an overall picture of the

necessity and complexity in studying missile dynamic response

problems.

The assumption of a rigid structure is necessary in the prelim-

inary design phase of a missile in order to allow the computation of

loads on which further design work can be based. However, once a

preliminary structural design has been made it is possible to compute

the dynamic characteristics of the missile. Utilizing these dynamic

characteristics, dynamic loads, a revision to the initial load estimates,

can be determined.

In this report the problem of determining dynamic loads will be

discussed. Special attention will be given to the effects of subsystem

interaction on dynamic loads and vice versa. A few technically impor-

tant examples will be treated in some detail.

For purposes of the discussion which follows, a complete missile

system is envisioned as being composed of the following subsystems.

(A) airframe (structure) including propellants, (B) propulsion system,

(C) control system, (D) payload (re-entry vehicle, satellite, etc. ),

(E) launch facilities. Each of these subsystems has its own peculiar

dynamic characteristics which, from the dynamic loads point of view,

Throughout this report the term "dynamic load" is used to designate
those stresses, bending moments, shear forces, etc., which are
generated by a time-dependent environment. The stresses, etc., are,
of course, functions of time.

( _
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are iiot exceptionally interestilng. "-,&'zwever, once t',ese subsystems

are interconnected, the picture ra.- zhange comptettoly. For example,
a propulsion system generates a taz-'zst which builds irom zero to a
more or less steady value and then- Ii-•:er decays tc> ro. The time-
dependent character of the thrust •-•.uces no startling behavior when
acting on a rigid airframe; the sit-tL•.on can be drimatically different

when the dynamic behavior of the az,"z-ame is consid¢ered. These types
of dynamic interactions and their eff-ect on dynamic lokads are the cen-
tral theme of what follows. Some cE :-he dynamical environments which
are considered to effect the missile zesponse are illustrated in Figure 1.
The effects of dynamical environr.e.s shown in Figure 1 which are not
considered in this report such as u.,:_-:eady aerodynan-iics (buffetirng) and
microseisms are given in ReferenceS I to 3.
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2. IN-LIAGILIT DYNAMIC lOADS

In this section equations for the lateral motion of a liquid pro-

pellant missile will bc dh.,ul uperd. These uquations, which include at'1u-

dynamic forces, control uystLez dynamics, airframe dynamics, and

propellant dynamics, cart be used to computo dynamic loads for a vari-

ety of inputs. In addition, they can also be tl8(2d to study control system

stability. These equations are evolved in References 4 through 12.

2. 1 Airframe Dynamics -- Lateral Bending

Experimental studies have established the fact that a missile air-

frame can be idealized as a nonuniform (in stiffness and mass distribu-

tion) beam for purposes of studying its lateral bending dynamics.

Sometimes it may be necessary to represent an airframe as a collec-

tion of beams rather than as a single beam. However, such a represen-

tation poses no theoretical difficulties, although computational problems

may develop.

It has been established, both theoretically and experimentally,

that simple (Bernoulli-Euler) beam theory does not accurately represent

bending dynamics of airframes of the dimensions encountered in ballistic

missiles. An adequate bending theory must account for the effects of

shear deformation and, usually, the rotational inertia of beam elements.

Such a theory, known as the Timoshenko beam theory, is available.

The Timoshenko equations are derived by writing the equilibrium

and kinematic equations for a differential element of the beam as shown

in Figure 2. The beam has a number of spring-mass systems attached

at distances I. from the mass center. The reasons for including these

systems will become clear later. Equilibrium of the lateral forces act-

ing on the element requires that (see References 5, 11 and 12)
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Figure 2. Element of a Timoshenko Beam
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Writing equilibrium of moments and dropping second-order terms

gives

piý + V+ P1)u- E Ait(- - Ijamj (Z)
ax ax ~~j= I J i

where I i) is the Dirac delta function defined by

Ao whenx I

(x- ) x 1 as c -0 (3)
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and whit:ec

U z total de.flection of beam, dlt, to both bending ana shear

= slope of beam due to bending alone

:;dit luu',-m t of jth aittached tpriug-miss LystcnI rulative
j to dcfle.ted position of beam

PA = the mass per unit length

V = the shear force on a cross section

pI = the mass moment of inertia per unit length of the beam

cross sections

M = the bending moment on a cross section

P = the axial load in the beam at any section

tip N I
-axJ pAdx - ax m.x Xj= 1  J

a = absolute acceleration of beam system in negative
X x-direction

N1 = number of slosh masses between x and tip.

Only the rotary inertia forces caused by the bending slope appear

in Equation 2. The shear forces produce distortion only and not rota-

tion of the beam elements. The moment curvature relationship for a

Timoshenko beam is the same as for a simple beam, -.aniely

El- -M (4)ax

where El is the flexural rigidity of the beamn. Because of the inclusion

of shear deformation, another equation, describing the relationship of

shearing forces to shearing deformations, is required. This relation is

KAG -- V + P 8u (5)



wheru KAG is the shear rigidity of the beam, and Ou/lbx - is the

shearing slope, Incorporating Equations 4 and 5 into the equilibrium

Equations I and 2 yields the following Timoshenko beam equations (see

References 5, II, and 12):

pAU -[KAG(1- - - += AIx- I.)(Kt,. •+ mj ax4j)

pI• _x[' Lx. + KAG(-F) - axN A(x - )mj~. (6)

A simplified form of these equations can be found in many stand-

ard texts on the vibrations of continuous systems (see, for example,

Reference 13). The provisions for attached springs and masses and

the inclusion of the axial compression force P = P(x) are not usually

given explicitly in these texts. Inclusion of the axial compression force

in the equations is sometimes important in missile applications because

the axial acceleration of the missile in flight can affect the bending

dynamics.

At this point it is useful to review briefly what is meant by nor-

mal modes and describe some of their properties. If an external force

acting on the missile varies sinusoidally at a single frequency, and this

frequency is slowly varied, we would observe a series of resonances at

a number of discrete frequencies. At these frequencies, the amplitude

of vibration becomes quite large, and each point of the missile reaches

its maximum displacement at the same time, describing a definite pat-

tern in space. This pattern or mode shape is commonly called an eigen-

function or normal mode (given by ýn(x), 4jn(X) here), and the frequency

at which it occurs is called an eigenvalue. A very important property

of these modes is that the motion of the missile in any one mode is inde-

pendent of the motion taking place in any of the others, except through

-7-



coupling from extereal forc es lat(rs. This Is due to the ortho-

gonality property of the normal modes, and because of this independence

it is usually expedient to describeo the missile motion in terms of the a,

mo(lea.

The mathematical expre ssions which describe the ortlhogonality

of the normal modes can be obtained directly from the differential

equations of motion. The derivation of these orthogonality conditions is

straightforward and follows the standard procedure given in many texts.

The orthogonality conditions for Equation 6 are; (see Reference II)

N (M nm = n(PA on + plm n) dxi f T .(ý. ++ )(4 + n.

mn j=l j im im jnI jnj~l%0 ,m {ln

f i-n ndx 1-fKAG(dd-- -*m) (d--I%) dx
dI d

fd~r dx N x trn d

fPd, dnx dx + £ K.j. m,.Sj jl jn

N (Mnin0, m = n

where

On is the eigenfunction for deflection, and

+n is the eigenfunction for bending slope

and 1...(X)xj that is, 0r(x) evaluated at x =.,I and :jm is the

displacement of the jth mass in the mth mode, and the subscripts m and

n refer to two different modes. The constant M is the generalized massn
of the nth mode, w n is its circular frequency, and a is the axial accel-n x
eration of the missile. If we denote the amplitude of the nth mode at any

instant of time by qn(t). these amplitudes can be used as generalized

coordinates.

-8-



Sentting ui the kinetic and potential ncirgies in termii of thlisse qn(t),

miid ii i ng orthogonality cotniditinn 7, thei erjnations of ln otiolonfor the qn(t)

can be reduced to the following form: (,iee Refnrence 12 for more detail)

2 K2  jJ

Mn i(t)+ Mn 2b wn('I MWq Q()- zp, P

- K Zn(U fKl(ý 6n"

- me i(ax " e

4 n(t) + 0n(t) (8)

where Q n(t) is the generalized force acting on the nth mode. This force

can be found in the usual way by giving the nth mode a virtual displace-

ment Aqn and finding the work done by all the external forces acting on

the missile. The presence of only one mode amplitude q in Equation 8

demonstrates the usefulness of the bending modes being independent of

each other. K1 and KZn are defined later.

To return to the problem at hand, Equation(6) can be solved, sub-

ject to appropriate boundary conditions, to yield a set of bending modes

tn(x), 4,n(x). For the missile in-flight, the ends of the missile are free,

and the engine can be treated as an integral part of the beam, clamped
with zero control angle 6; disconnected from the missile altogether; or

attached to the missile by some intermediate constraint. The resulting

equations, showing the interaction between the bending and the control

system, differ slightly depending on what representation of engine attach-

ment is made for the computation of the bending modes. The equations

that follow assume the modes to have been computed with the engine

clamped at 6 = 0.

Some practical procedures for computing the betnding modes are
discussed in References 8 and 16.

"-9-



Typical free-free missile bending modes and frequencies for

various flight times are shown in Figure 3. It is noted that the first

free-free mode frequency varies by less than 10 percent in the flight

time interval from laurnch, to 100 scc'.-nds

The influence of shear delormat~ions, rotatory inertia, and axial

.acceleration on the rnm6sile building frequencies is shown in Figure 4.

In the first mode the inclusion of shear deflection, noted as KAG = n

and the exclusion of rotatory inertia noted as pI = 0 increases the fre-

quency by 0.5 percent over the freq'ienry" if both effects are inciuded

Note Lha: the ex,.:usiof, of shtear deiocrnation changes the first mode

;requency by 12.1 percent. If axial acceleration is omitted in the bend-

ing mode analyses; the first mode frequency is increased by 27 percent

and one percent for constrained (prelaurnch) and free flight conditions

respectively.

2. 2 Propellant Dynamics - Sloshing

The description of the missile d)namics for missiles with liquid

propellants is complicated by the interaction between the airframe and

the propellants. As the missile bends and rotates, the liquid propel-

lants move back and forth in their tanrks as shown in Figure 5, creating

very appreciable forces on the missile.

It can be showrn that only the fundamental (lowest frequency) mode

of propellant motion contributes sign.ficantly to these forces. The funda-

mental mode of motion, depicted ill Figure 5 is called the "sloshing"

mode. The resonant frequencies of these sloshing modes are usually

quite low (approximately 0.5 cps) and they interact severely with the

autopilot. Furthermore, since the sloshing frequencies are consider-

ably below the first free-free "bending' frequency of the missile struc-

ture, the external airframe rotates back and forth, essentially as a

rigid body in some of the "sloshing" modes, in a direction opposite from

the fluid sloshing in order to preserve angular momentum. This means

that the interaction between sloshing and aerodynamics is also rather

( -I10-
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LIOUID FREE SURFACE

CUIESCENT SURFACE L '-MISSILE AXIS

- - F FIRST MODE SLOSH

'Iu

S~ETC.

Z2 A

REFERENCE PLANE

Figure 5. Fluid Sloshing

strong since the entire missile picks up an angle of attack during the

sloshing motion. The interaction between aerodynamic forces and those

missile modes that consist mainly of structural bending is not nearly as

strong; only a local angle of attack is generated, and the resulting aero-

dynamic forces are usually negligible.

One possible scheme for eliminating the sloshing problem would be

to divide the propellant tanks into small compartments, thereby increas-

ing the slosh frequencies and reducing the sloshing forces. Unfortunately,

because of weight considerations, such a procedure is generally highly

impractical. However, small ring baffles are usually placed at various

levels in the tanks. These baffles do not change the sloshing frequencies

but do provide natural damping by creating turbulence in the regions of

high liquid velocity.

-13-



The separate airframe and prupellant dynamics may be combined

to yield what arc known as bendhig-sloshing modes. To obtain these

combined modes, the fluid is treated as concentrated along the missile

center line, and the sloshing muodes in each tank are represented by

attached springs and masses. The spring-mass systems are selected

to give the correct slosh frequencies ar.d horizontal force, and their at-

tachment points are selected to give the same moments about the tank

center of gravity as is produced by the fluid. The rotatory inertia

assigned to the fluid, pf in Equation 6, is adjusted so that the overall

inertia of the fluid in each tank is the same as that found by solving the

fluid dynamics problem of a tank capped at the quiescent liquid surface.

Equation 6, when coupled with appropriate equations defining Ki, will

yield combined bending-sloshing natural frequencies and mode shapes.

Those readers who wish to pursue the propellant dynamics problem

further will find a discussion of the sloshing problem inReferences 7

and 14.

2. 3 Control System

The control system or autopilot is a very important part of a mis-

sile system. The thrusting missile is unstable in flight and would soon

tumble hopelessly without a properly designed autopilot. The presence

of structural bending vibrations makes this stability problem much more

complicated. We can easily demonstrate this for ourselves by first

taking a relatively rigid yardstick in the hand and balancing it upright by

applying only vertical and lateral forces at its base. The yardstick is

balanced with ease. If this yardstick is now replaced by a long flexible

reed or wire, the task of balancing becomes very difficult.

The essential function of the autopilot is to sense the missile

attitude and angular velocity and provide engine angular deflections, and

hence a lateral companent of the thrust, in accordance with these sensed

-14-



quantities so as to maintain the missile at a desired attitude, The

problems of control system design are treated extensively elsewhere,

so that in this report the autopilot will appear to a large extent as an

unobtrusive black box. In order to provide the reader with something

more concrete, however, a simplified hydraulic servo will be presented

in block diagram form.

2. 4 Propulsion System

The propulsion system characteristics will enter the equations of

this section only in a fairly superficial way. The propulsion system is

taken to consist of nozzles having mass and moment of inertia which

rotate about gimbal points and thereby change the direction of a steady

thrust vector.

-15-



3. SIMPLIFIED EQUATIONS OF MOTION

The equations of motion that follow (as in reference 5) assume

that all slowly varying qijantrities Huch as missile mas.s, axial accel-

eration, liquid levels, mode shapes and frequencies, etL., can be

treated as fixed. It must therefore be emphasized that the restisting

equations are valid only for a few seconds at any selected point aloeg

the trajectory; however, this is sufficient to studý 'high" frequency

in-flight dynamics,

3. 1 Missile Deflecticns

In order to describe the motion of the missile in-flight, it is
necessary to know the motion of each section of the missile as a

function of time. Once the engine start transient has damped out

(this problem is considered in the next section), variations in axial

forces at frequencies high enough to excite longitudinal vibrations

(with the exception of engine noise, which is an entirely different

type of problem) are very small so that all longitudinal deflections

are neglected here. The position of each section of the missile can
be described by two functions, u(x,t), the lateral deflection of each

point along the missile; and ý(x, t), the angle through which each

section rotates relative to the moving axes. See Figure 6.

These functions can be written as

on

u(x,t) = Co(t) f xCi(t) + n (x) qnM (9)

qj(×,-t) = 16(t)'+ E .ýn(x) qn(t) (10)

where x is measured from, the• iissih., center of gravity,
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Figure 6. Geometry and Coordinate System
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The functions n (x) and n (x) are the 8loshing-bending'modes
described earlier, and qn(t) are the gent ralized coordinates of these

modes and represent the amplitude that must be assigned to each

mode at any instant. The time functions C 0 (t) and CI(t) represent a

rigid-body translation and rotation, respectively, of the missile.

These quantities can be defined so that the total angular and

lateral momentum with respect to the moving axes is independent of

the engine deflection 6. To do this, C and C 1 are adjusted so that

any momentum created by engine motion is cancelled by rigid-body

motions of the missile as a whole. Applying this condition, C and0

C 1 are given by

me

C 0 • 6 K 0K°

C T_ + rn 1eVI6 AKi (it

Where I cis the mass moment of inert:ia of the entire missile (including

engines) about the missile center-of-gravity, I is the mass momente

of inertia of the swiveling engines about their gimbal points, and the

other parameters are shown in Figure 6.

With these definitions of C o and C 1 , the total angular momentum

depends only on q and 0. The contribution of q is found by first

writing the equation of moment equilibrium between the inertia forces

and moments and the moment due to the engine force for the missile

deflected into an extreme positiQn in the nth mode:

f(p AO + Pl,ýi) dx + N .Mfe X nZ (O 'jn + jn)

-(T + Tc) n (-) 0o (12)

n

-18-



where T and T are engine thrusts, described in more detail late r.
s C

After multiplying through this equation by 4n, inspection of the first
no

two terms shows them to be the moment of momentum about the missile

center of gravity due to a coordinate velocity 4 This equation t.an

then be used to determine the lollowing simple expression for this

momentum in the positive 8 direction:

Hn = qT q T(c ) --- K2n 4n (13)

n

The contribution to the angular momentum due to 8 is merely

d ( Ic

3. 2 Rigid-Body Equations

The external forces that must be considered in writing the rigid-

body equations are shown in Figure 7.

Since there may be more than one engine, and not all the engines

may swivel in each plane, the total thrust is broken into two components;

T is the total thrust of the swiveling engines, and T is the total
C S

thrust of the engines stationary with respect to the tangent to the missile

axis at the attach point.

The equation governing rotation (pitching) about the missile center

of gravity is obtained by taking moments about the center of gravity with

the result (see reference 12)

SK 2 *q + 1 '0 = ,f xw(x) dx + [T(6 - Ue) - TUe] u e
n= T

+ T)u (14)
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Here

N V
q ++ Z • q + - + K1 8- K ( )

Tn~ln 0 0V 0

is the total angle of attack producing aerodynamic forces. The velocity

V is the component of atmospheric wind velocity perpendicular to thew

x-axis. The angle of attack due to the sloshing is represented by

anqn(t) where an is the angle through which the missile airframe rotates

per unit of nth "slo-h mode" (a bending-sloshing mode which consists

mainly of sloshing) amplitude. The summation in Equation (14) is

taken only over N such "slosh modes." It is implicitly assumed in

Equation (14) that the aerodynamic force depends linearly on the angle

of attack, and that w(x) is the running load per unit angle of attack. The

dependence of the aerodynamic forces on higher powers of a, and on

other quantities, such as the angular velocity of the missile, are neglected

here for simplicity. These additional forces are usually small, and for

many studies it is legitimate t-o neglect them.

The angle ue' (the prime indicates differentiation with respect to

x) is the slope of the missile axis at the engine gimbal point. It is

obtained by differentiating Equation (9) and evaluating at x = -2e:

ax)

Uel(t) = K 6 + F -p -r I eq (16)
n=1n e n

The equation governing rigid-body translation is readily obtained by

summing forces in the y direction (Figure 7) with the result

Mi = -aT fw(x) dx + Mg 0 + (T c + T.) u e I Tc 6 (17)

where M is the total mass of the missile and g is the acceleration

caused by gravity.
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3. 3 MisBsile Bending Equations

The bending equations (including sloshing) are most easily derived

by first giving each mode a virtual displacement Aqn and observing

the work done by the forces acting on the missile. If this work is

divided by the virtual displacement Aqn, we obtain the generalized force

Q to be used in
n

n n n n M
n n

where M is the nth generalized mass defined by Equation 7 andn isn a

defined in Equation 8. The generalized force, Qno is

= -aT w(x) on(X) dx

-T (6 - u.)1 - Tue' O (-'e)

In Equation (i8),w-n is the circular frequency of the nth mode and bn is

the damping ratio. Damping ratio b is either determined experiment-

ally by shaking an assembled missile, or assumed conservatively small

(0. 5 to I percent of critical). It should be mentioned that the damping

of a structure can seldom be represented in this way. In order that

this representation be strictly correct, all damping forces would have

to be of the viscous type (that is, proportional to velocity) and would

have to be distributed along the length of the missile in the same way in

which the mass and rotatory inertia are distributed, or in the same way

in which an appropriate combination of the elastic forces are distributed.

If the damping forces are distributed in any other way, application of

Lagrange's equations would result in the equations of motion for the
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bending modes having velocity coupling through the viscous clamping

forces. That is, each equation corresponding to Equation (18) would

have additional terms of the form Cq 4, where mr= 1,2..... For

reasonably small values of damping, however, (corresponding to a

few percent of critical damping in any mode), these coupling terms

have a negligibly small effect on the motion (reference 15) and can be

omitted as was done in Equation (18). Similarly, if the damping is of

the hysteresis type rather than viscous, it can still be represented by

an equivalent viscous damping ratio b for sufficiently small damping.
n

3. 4 Control System and Engine-Swiveling Equations

The control system will be assumed to sense two quantities from

gyros mounted on the missile airframe. These quantities are the

attitude of the missile at the gyro station, given by 8 FB = 0 + UgI, and

the angular velocity at that station, given by 0 FB' where

00

u = K16 + Z (20)
n=1

If the missile begins to go off course by building up an attitude 8, or

if the gyros think the missile is going off course because the missile

bends, giving rise to a u ', the control system calls for a corrective

engine angle, that is, a lateral thrust component. The engine command

angle 6 is formed as a linear combination of the difference betweenc

a desired attitude 8c and the sensed attitude 8 FB and the sensed rate

8 FB" This is expressed by

8c K0(8-8FB)- K RbFB (21)
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where K. and KR are gain constants. This engine command signal is

modified by compensation n:tworks which shape the phase and amplitude

of the signal to give satisfactory stability. The resulting signal 6 is
C

used to open an hydraulic valve, as shown in Figure 8.

t ~ENGINE
r --- BELL.. •

ACTUATOR POSITION FEEDBACK

EFFECTIVE VOLUME UNDER
COMPRESSION -" Vo

2-WAY FLOW CONTROL BULK MODULUS OF ELASTICITY OF
VALVE (FLUID SUPPLY AND HYDRAULIC FLUID = b
RETURN NOT SHOWN)

Figure 8. Schematic of Autopilot Actuator

The fluid controlled by this valve flows into an hydraulic actuator

which is connected directly to the engine bell. The position of the actuator

rod 6 is sensed and subtracted from the compensated engine commanda

angle 6c so that it is actually the error signal 5c - 6 a which determines

the rate of flow in the valve. If the engine angle, as measured by the posi-

tion of the actuator rod, is the same as the command angle 6cs no further

fluid flows and the actuator does not move.
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Going one step farther, if the compressibility of the hydraulic
fluid is taken into account, there is an apparent compressibility flow

which must be subtracted from the flow initiated by the error signal

6c - 6a. This entire process is represented conveniently in block
diagram form in Figure 9, The variable s, used in this diagram, is

the usual Laplace operator,

From Figure 9 it is clear that the control flow in the valve is pro-
portional to K except for a small delay or valve action time Tr. FromV

this flow rate the compressibility flow Q is subtracted and the result-
ant flow is divided by Ar (defined by Figure 8) and integrated (multiplied

by i/s) to give the actuator position 6 , as shown, The differencea
between the engine position 6 and the actuator position 6a is multiplied
by the equivalent torsional spring constant K of the actuator to give

a
the torque acting on the engine bell. Following around the hydraulic

loop, this torque divided by Ar gives the pressure in the hydraulic
cylinder. This pressure, multiplied by the effective volume V under

0

compression and divided by the bulk modulus of elasticity b of the
fluid, gives the change in volume of the fluid caused by the pressure.

( The rate of change (multiply by s) of volume is the compressibility flow

Q c. The torque acting on the engine bell causes it to move according to

CI

I e '6 + B 6 + K 6 = K (6a- 6 (2)e e e a aj

where K is the torsional spring constant between the engine bell ande

the missile airframe (caused by bellows, pendulum action resulting
from axial acceleration, etc. ) and B represents any viscous dampinge
present. Equation (22) is given in block diagram form in Figure 9.

This equation is the only equation in this development of the integrated
dynamic equations which is basically incomplete. Many terms have

been omitted from the other equations, but they were omitted because

they were small. In the case of Equation (22), however, all the inter-
actions between engine swiveling, bending, and rigid-body dyanmics
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have been neglected for the sake of expediency; These interactions are

important in relation to other effects included in the analysis, but most

of them arise in a manner so subtle that Lagrange's equations must be

resorted to to demonstrate their existence. Such a procedure is

lengthy but straightforward, and the enterprising reader can derive the

more complete engine-swiveling equation given by (see reference 12)

[]'e- Kmz - KI([e + m )] "+ mexax(6- ue

o fo)b
+ (I + mee) "e t meza y Z n= n (pAOnZ- p1i4n)dz

=Ka(6a - 6) - Be- K66 (23)

where b is the distance from the engine gimbal to the nozzle exit plane,

a and a are the rigid-body accelerations in the x and y directions,x y
and K6 is the spring constant between the engine bell caused by a

direct spring action, such as from a bellows. In spite of its being in-

complete, the use of Equation (2Z) in conjunction with the other equa-

tions developed here would generally give adequate engineering inform-

ation concerning in-flight dynamics.

3. 5 Block Diagrams

Following the procedure used for the control equations, we can

convert the bending and rigid-body equations into Laplace notation and

draw a block diagram which represents these equations completely.

Such a diagram is given in Figure 10. Only one block representing a

typical bending-sloshing mode is shown in this diagram; however, it is

understood that there are as many such blocks as there are modes

being used. In most cases inclusion of the "slosh modes" (one for each

tank) and two or three bending modes is sufficient. The summation

-27-



CbJ

CMD

44.

39 .0

'44

u

cr 0 0
W--4

++

93



slgu • g;)en on the paths) loading out of the bending-sloshing block

indicate that a summation is to be made over the modes of the quanti-

ties in question.

A 2.tudy of Figure 10 is enlightening in that the flow of cause and

effect of each subsystem on the other can be seen without having to

interpret several equations smirultaneously. In addition, several

significant quantities such as the engine lateral force caused by bend-

ing and the total angle of attack aT Isee Equation (15)) and their effect

on the system become apparent.. The complexity of Figure 10 detracts

somewhat from its usefulness if we do not care to follow all the details;

therefore, a functional diagram showing only the directions of the inter-

actions is given in Figure 11.

3. 6 Use of Equations

The in-flight dynamics equations developed herein have many uses.

From the standpoint of the control system engineer, their most impor-

tant use is to allow him to study the stability of the missile in-flight

and to indicate the form of autopilot compensation required to obtain

stability. The structural dynamicist sees them as a tool to determine

the dynamic loads on critical sections of the missile. These loads

arise from autopilot limit cycles, discrete and random gusts, staging

transients, and other rapid maneuvers where the action time is of the

order of the period of one of the bending modes.

For the control engineer these equations are complete as they are

(with the exception of the simplifications), but the structural dyna-

micist must modify them slightly to insure satisfactory convergence of

modal solutions, that is, a series expansion in terms of normal modes.

This happens because the control engineer is interested only in dis-

placements, whereas the structural dynamicist is interested in bending

moments and shear forces as well. The convergence of series expan-

sions of bending moments and shear forces is very poor for a beam
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with a concentrated load (the engine force), and even in the ab.senca of

any dynamic effects at all, many modes would be needed to obtain

satisfactory accuracy, On the other hand, series expansions of dis-

placement and slope converge quite rapidly.

The difficulties associated with computing bending moments and

shear force can be minimized by employing the so-called "mode

acceleration" technique (reference 16). The essential feature of this

method is that it separates the pseudostatic loads (loads found by rigid-

body techniques) from the loads arising from the dynamic response of

the missile. Thus, the poor convergence caused by discontinuities in

the loading, such as a concentrated force, are taken into the pseudostatic

load, and the additional load caused by dynamic bending usually con-

verges much faster. For example, the bending moment at any station,

along a missile, can be written as

M(x,t) = M (x,t) - 00 m Wx) (24)s T_ xn 2n=l Wa
n

where M s(x, t) is the pseudostatic load neglecting dynamic bending, and

m (x) is the nth eigenfunction representing the bending moment at any

station. The same moment expressed without the use of the mode

acceleration procedure is given by

co

M(x,t) mn(x)qn(t) (25)
n=l

2

which converges more slowly because of the absence of un in the

denominator. Equation (24) assumes small damping and can easily be

derived from Equation (25) by using

+ W n (26)11 +tn aI V-"
n
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Sol'vfng for qn from Equation (26) and substituting into Equation (25),

we oGtain

00•_ mn(X) Qnt cc) q'n(t)

M(x,t 2 n n rn (X). n (27)
n:- I M n1 W

n n n

But

c0 m n(x) Qn(t)2: ?
n--I M Wn n

is simply the moment that results if the system of forces, including

rigid-body inertia forces, giving rise to Qn(t) is applied "statically"

since it comes from the solution of Equation (26) for n = 0. Thus

Equation (27) is identical with Equation (24). A term

00 Zb n*
E mrn(x) -W

n=1i n

would appear on the right-hand side of Equation (24) if damping were

present in Equation (26), but the damping ratios b are usually quiten
small, and these terms can be neglected.
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4. -ILLUSTRATIVE EXAMPLES

4. 1 Limit Cycle Response

The interaction between control system dynamics and airframe

bending dynamics can force the control system into a nonlinear mode

of operation which results in a limit cycle. In such a situation the

control system causes the engines to gimbal continuotsly, searching

for the correct trim condition, that is, the control system "hunts" for

the correct engine swivel angle 6. The data in Figure 12 illustrate

the effects that a control system limit cycle can have on dynamic loads,

The data were taken from an actual case (time of flight corresponds to

maximum dynamic pressure) in which the damping in the control sys-

tem hydraulics became negative for large engine angular velocities 6.

The negative damping caused a limit cycle whose frequency was near

the first bending frequency of the missile. The control system had to

be redesigned to eliminate the limit cycle.

X MLC
L MMD

0 1.00 = axial missile station measured

0. 1 1. 06 f from the missile tip.
0.2 1.12 M -toMLC total bending moment, control
0. 3 1. 20 system limit cycle.

0.4 1.27 MD = total design bending moment,

0. 5 1. 30 no limit cycle.

0.6 1.32

0.7 1.28

0.8 1.04

0.9 i.Ot

1.0 1.00

Figure 12. Dynamic Loads Generated by a Control System Limit Cycle
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4. 2 Response Dut* to GUst

It is recognized that missile inflight response analyses are

complex. This is due to the inturactions of the control system, aero-

dynamics, airframe bending dynamics, and the engine swiveling dy.

namics as illustrated in Figure II. However, such analyses are

tractable on electronic computers, Typical results for the inflight

response of a ballistic missile during its flight through a triangular

shaped (A) gust are shown in Figures 13 and 14. This analysis was

performed on an analog computer, In Figures 13 and 14 the following

nomenclature is adopted;

4n -- generalized bending acceleration in the nth mo~de
where n - 1,2, 3.

aD = angle of attack representing the gust, used as an
input or driving function.

aT = total angle of attack.

6 N = nozzle vector angle.

MR -= psuedostatic bending moment at station x.

MF = dynamic bending moment at station x.

MT = total bending momen.t at station x.

A "mode acceleration" technique (as discussed previously) is

used in the analysis and consequently one is interested in 1the generalized

bending accelerations (qn), recalling that,

3 'in(t)
MT(x, t) M MR(X, t) - L mn(x)

n

MF X, t)
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Fiuni Figu't. 1 3 it Is cleat" that the major contributiton to M1, (•.jlet

from the first mode. In Figure 14 MF is less than 5 percent of M .

at any time, consequcntly M1I is apprutimately equal to M This

result is typical for such prolJuems if irstabilities are nol prmesent even

if other shapes of gust velocities arte considered such as random (,r

"I -cos" gusts.
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5. PRELAUNCH-POSTLAUNCH DYNAMIC LOADS

In Section Z the equations necessary for the computation of in-flight

dynamic loads were developed. The important elements of the in-flight

loads problem are the control system, the airframe bending dynamics,

and the in-flight aerodynamics. In this section, three types of prob-

lems are considered. The first is concerned with the interactions be-

tween airframe bending dynaxinics and ground wind aerodynamic forces.

The second type of problem has to do with the interactions between the

axial or (longitudinal) airframe dynamics and the propulsion system.

The third type of problem is concerned with the response of a con-

strained missile due to ground shock.

These problems fall into a general class known as prelaunch,

postlaunch.problems, depending on whether the dynamic loads occur

before or as a result of releasing the missile.

5. 1 Wind-Induced Oscillations

5. 1. 1 Theoretical Considerations. A missile in the prelaunch condi-

tion, that is, erected on a launch pad (Figure 15), may be exposed to

ground winds which give rise to flow around the missile of large

Reynolds number R* (R- 106 based on the missile diameter). In such

a flow the boundary layer on the missile is turbulent and, as a con-

sequence, random pressure fluctuations act on the missile. These

random pressure fluctuations create random lift and drag forces which

in turn can induce large, oscillating displacements and bending mo-

ments in the missile.

The Reynolds number R is defined to be R = Ud/u, where U is
the undisturbed velocity of flow, d is the missile diameter, and
u is the kinematic viscosity of the flowing liquid.
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Figure 15. Missile Exposed to Ground Winds
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In an air flow perpondicular to a circular cyiinder, such as a

missile, a great variety of changes occur with an increasing Reynolds

number. Details of these changes can be found in Reference 17.and

other texts in fluid mechanics, Briefly, if R is in the range of 40 to

150, the "shedding" of vortices is regular. The eddying motion in the

wake is periodic both in space and time, and the flow can be approxi-

mated by the well-known Karman vortex street. The range of R

between 150 and 300 is a transition range, in which the vortex shedding

is no longer regular. For R;-300, the vortex shedding is "irregular."

A predominant frequency can be determined, but the amplitude is ran-

dom. Finally, at R of order 105, the separation point of the boundary

layer moves rearward on the cylinder and the drag coefficient de-

creases appreciably. The flow in the wake at these large Reynolds

numbers becomes so turbulent that the vortex street pattern is no

longer recognizable. Experimental results for flow around cylinders

when R is larger than 105 are presented in Reference 18.

Consider the lateral motion of the missile in Figure 15. The

applied lift force per unit length along the missile can be written as

L(x, t) = q(x)d(x)CL(t) (28)

where q(x) is the dynamic pressure, d(x) is the diameter, and

CL(t) is the lift coefficient which varies randomly with time. Actually,

CL is a function of Reynolds number as well as of time. Therefore

CL' at each missile station, depends on the diameter of the missile at

that station. The dependence of CL on R and t is such that it is not

possible, in general, to express CL as a product or sum of a function

of R and a function of t. However, the experimental data of Reference

18 indicates that CL is not a strong function of R, at least for

limited ranges of R in excess of 5 x 105. Therefore, it is reasonable

to assume that a value of CLV associated with a Reynolds number

based on a representative missile diameter, should be adequate for
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Equation 28. This conclusion, being founded on the data of Reference

18, is only valid for two-dimensional flow. The three-dimensional

flow characteristics around the tip of a missile have a substantial

effect on the total lift and drag forces. (See References 19 and 20.)

However, in the absence of detailed wind tunnel input forces on

particular missiles, the procedure developed herein is the best avail-

able. On the basis of limited experimental data, it can be anticipated

that the results obtained will be conservative.

The lift force of Equation Z8 is a random function of time since

CL(t) is random in time. Problems involving random time varia-

tions are usually more conveniently treated in the frequency domain

than in the time domain. The frequency representation of a random

function is known as its power spectral density. Figure 16 is a typical

power spectral density of lift force on a uniform cylinder. The fre-

quency parameter, S = wd/ZrU, used in Figure 16 is known as the

Strouhal number; the curve is normalized such that

F(S)dS = 1 or F d,. =Zi0U"d

By definition, if P(w) is the power spectral density of the

lift coefficient CL(t), the mean square value of CL is given by

P(w) dw = C (29)

By comparing the latter two equations, the normalizing factor

K P(w)/F(S) is evident and

dC7
PL(w) u- F(s) (30)

-41-



NORMALIZED POWER SPECTRUM OF LIFT
AND DRAO FORCES, F(S)

0

0__

0 z_____

Wit(oCI

0 __

Figure 16. Normalized Power Spectrum for the Lift Forcp
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Similarly, the power spectral density of thu drag force is given by

dC
P D() = -TuU F(S) (31)

where CD is the mean square value of the drag coefficient. The

expressions for the motions of a missile resulting from random lift

and drag forces are developed as follows. The displacement re-

sponse of the missile, which is assumed to be a linear structure,

can be expressed in terms of its principal modes as

u(x, t) = n(x) qn(t) (32)

n=l

The generalized coordinates qn(t) are determined from

2 Qn(t)
4in + 2b n Wn q n + 'n qn -M _(33)

( n

where the generalized force is

Q M = f/f(x' t) On (x)

and M is the generalized mass of the nth mode. By assuming that
n

the forcing function can be decomposed to

f(x, t) = F(x) T(t)

the generalized force becomes

Qn(t) = T(t) F F(x)on(x)dx
nn

= T(t)Wn (34)
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where

Jn F(x)n(x)dx and F(x) q(x)dlx)

For such a forcing function it is possible to find an ex-

tremely simple expression for the root mean square (rms) of the

time response of the missile by assuming that the damping ratios

b are small. The function T(t) is assumed to be random andn

expressible in terms of a power spectral density P(w).

To obtain the response, first notice that if T(t) equals

a cose., the steady-state solution of the equation of motion is

aW cos (wt +n)

n n

The corresponding displacement is

u(x..t) = a(t + n) (36)

The mean square response (which will be needed as explained later)

is defined to be

2 u2(X, T)dT (37)

2 wa2 f t WnWmonom Cos (T+ O n)COS (W T+ m)
u (X) 7 7) 2 1 d7

n m n m n m .7 ,

(38)
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This equation can be integrated by term to yield

22 a W " m cos (O
U 2 W 2( n n ) m n•(w m) l• (39)

2X .- L 2 2 Y
-n- M n M m (n Wm

Equation 39 is the mean square response to a force distribu-

tion fixed in space and varying sinusoidally with time at frequency w.

If T(t) is considered as a concentrated force acting on a unit dashpot,

the average power dissipated is a 2/2, that is

E- T
2 (.r)dT = a2

-0 2

Similarly, if T(t) is a random force acting on a unit dashpot, a

power spectral density P(w.) can be defined for this force (with

certain restrictions) such that the average power dissipated by fre-

quency components in the range w, w + de is P(w) dw. Thus, if a

random force of the form given by f(x, t) acts on the missile, its

response can be obtained by using Equation 39 and superimposing

the responses from each frequency component of the random force,

that is, replace a /Z by P(w)dw and integrate over all frequencies:

W•__ • Wn n cos (0 9- PP)
u " '(I 2 2- 1/2

-J0 / . .' . M M W W .(cW, n) rn()w
n m n m n m

(40)*

The manipulations which led to Equation 40 have been essentially
intuitive and without mathematical justification. However, a mathe-
matically rigorous treatment of the same problem yields exactly
Equation 40.
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It is the nature of random processes thatt only a statistical

description is meaningful. It is quite often impossible to con-

struct the statistics needed for a complete description; however,

the mean square value, which is the second statistical moment, is

usually obtainable. If the statistics of a random process are

gaussian, the mean square value provides a complete description.

It is for these reasons that the particular manipulations leading to

Equation 40 were undertaken.

In evaluating the integral in Equation 40, a simplification
can be made if the damping ratios bn are small and if P(wi) is a

smooth function as compared to the resonant peaks of the structure.

In such a case, the largest contributions to the integrand are those

terms for which n = m because near each resonance w,- w then

radicals in the denominator become very small. By neglecting the

terms for which n nm,

22

'.00p W P(W)
:cl n On

u(x) dw 2b)

SnZ n 1 n + w n)"/

or

2(x) 4 "'!Z "41

n" Mn n 1- u + 2b );-

If P(w) is a constant, no further assumptions need be made

because each term in the foregoing equation is easily integrated.

Remembering that the integrand is a function with very steep peaks

at each w.1 we can make another simplifying assumption. Since

the integrand has these steep peaks near w = wn' the main contri-

bution to the integral comes when P(w) P(wn); thus a good approxi-

mation results if P(w) is taken as P(n n constant for each term.

- 6
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Then

-'Wn2n2() Trw

u(x) W 2 2 4" 4b P(W n (42)
Mw n

n n n

A similar expression is derived in Referen.e Z1. Substituting for

P(Wn) from Equation 30 yields

2 dGL2 ' n2 On2n2 (
x 8U /.... b M 2 3 F(Sn)

n n n n

It follows from Equation 4 that the mean square bending

moment along the missile in the lift plane is

2 2[
7d77 ---2 W 2 I(x)d
M (X) -FLnT F(S) (44)8U / b M ZW3

--n n n n

The mean square response in the dr~agplane can be obtained from this

expression if is replaced by CD

The other wind force acting per unit length along the missile

is the steady- state drag force defined as

FDS(X) = CDsq(x)d(x) (45)

where CDS = steady-state drag coefficient

q(x) = dynamic air pressure at station x

For purposes of analysis, the responses in the drag and

lift pla.mes are added vectorally. For example, the peak displace-

ment of the missile at station x is defined as
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umax(X) =(LIDS +3UoD) + (3u OL) (46)

where uDS = steady-state drag displacement

uOD = root mean square value c,f the oscillatory drag
displacement

UOL = root mean square of the oscillatory lift displace-
ment

It is assumed that the oscillatory lift and drag displace-

ments have "normal" distributions, The root mean square values

of these responses are equivalent to the standard deviations (sigma)

since the "means" are zero.

The use of 3 0. (3 times root mean square) values in Equa-

tion 46 implies that 99.73 percent of the time the peak oscillating

lift and drag displacements will be less than the 3(- value. Equa-

tion 46 also implies that the oscillatory components of the lift and

drag displacement reach their maximum at the same time, which is

certainly conservative.

5. 1. Z An Example. An indication of the magnitude of bending

moments which may be induced by a strong ground wind acting on

a large ballistic missile may be obtained from Figure 17. In this

case a typical intercontinental ballistic missile is assumed to be

erected on a surface launcher in the vertical position and exposed

to a uniform steady 60-mph wind. The steady-state drag coefficient

is assumed to be 0. 55, and the predominant component of oscillatory

response in both the drag and lift planes is at the first bending mode

frequency of the mfssile. The bending moments at several points

along the missile are shown in Figure 17.

As can be seen from these figures, a strong ground wind can

easily impose loadings on a missile which could be catastrophic if

not taken into account in the structural design of the airframe or Lf

the missile is not otherwise protected. These figures also indicate
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Bending Momoritn., in. lb. x 10-

Distance from Missile Base, in. MDS 3 MOD 3 MOL MR

0 15.07 19.54 63.50 72.32

150 9.82 14.10 44.80 51.59

350 4.84 7.33 23.80 26.75

650 0.80 0.78 2.52 2.97

Figure 17. Bending Moments in a Typical Missile Exposed
to a Uniform 60-mph Wind

the fallacy of using just the steady-stage drag response as a design

criteria, since the maximum oscillatory components greatly exceed

the steady-state response.

5.2 Launching in a Wind

5.2. 1 Solution of the Problem. In the prelaunch condition, the

missile is bent over by a steady wind and is also oscillating in its

various constrained modes because of the vortex shedding previously

discussed. The transients that occur in the postlaunch or free-free

condition depend very strongly on the deflected shape and velocity of

the missile just before release. It would be desirable to find the

initial condition that gives the highest postlaunch loads, but with the

missile oscillating in several modes with random phase, it is im-

possible to say a priori what condition would give the largest loads.

It seems evident, however, that for any given constrained mode the

resulting free-free loads will be largest if the missile is released

when it is bent over to its maximum value. Loads indicative of the

most severe postlaunch loads likely to occur can be obtained if the

postlaunch transients are computed using as initial conditions the

missile bent into each of its constrained modes which have appreci-

able amplitude because of wind-induced oscillations. This means a

separate computation for each prelaunch (constrained) mode and a

computation for the initial static deflection caused by steady drag.
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As an example of the procedure involved iii computing the

postlaunch transients, consider it case in which the missile is bent

into a deflection curve given by y0 (x) as shown in Figure 18. The

function y0 (x) could represent any of the displatcernefzts discussed

earlier, but for this example it will be -issumed to be due ofi/ to a

steady wind. The procedure to be frlwed here is to represent the

missile in the postlaunch condition in terms of its free-free modes

O(X), ',n(x) with generalized ccordinates qn (t). Assuming that the

free-free modes (0n, 'Jn) have been obtained from Equation 6, the

proble-n is to determine the generalized coordinates appearing in

Equations 9 and 10, that is, sclve Equation 18 subject to the ap-

propriate initial conditions. For the sake of convenience, the

pertinent equations are collected here:

00

u(x, t) = C 0 (t) + XC(t) + n(x)qn(t) (9)

,, (x, t) = CI(t) + L_ n(x)qn(t) (10)

n=1

EI ka=- M (4)

ax

KAG -t V (5)

+2 +bn + W q n (18)

n n n 11 nn n

The term involving- P has been dropped from Equation 5. The

axial load P does not affect the bending dynamics for the problem

being considered. The gener-ilized forces On and Qn are given

by Figure 18. Here
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Figure 18. Coordinate System of Constrained Missile



Qn w(X)On(x)dx and 0 (47)

and are independent of time since w(x) is assumed to arise from a

steady wind. The solution of Equation 18 is

qn(t) a O4) + nMn11 n .. Mn n n

where q (0) equals an, n (0) equals zero, and b is assumed ton.n n

be small, that is, the damped and undamped natural frequencies are

essentially equal. It only remains to determine the constants an

To this end, the initial bending moment M 0 (x) and shear force

V0 (x) caused by the steady wind are computed from (see Figure 18)1 2
M w(g)(g - x)dE (49)

V0  -w(g)dý (50)

Equations 9, 10, 4, and 5 may be combined to yield the following

expansions for M0 and VO:

CO

Mo(X) = El , an% '(X) (51)

n= 1

co

V0 (x) = KAG T an(On' - LP n) (52)

n=1

where prime denotes differentiation with respect to x. The con-

stants in these expansions may now be determined with the aid of

Equation 7, that is
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', 'dx + I, KAG (Om' m)(rn n{nn m n
m m m n

Equation 51 is now multiplied by %bm and Equation 52 is multiplied

by Om' -,4m; the results are added and integrated over the length of

the missile to yield

co

M.O!m' + VO(OmI - ,im) dx ElIP m' a np' dx
n= 1

+ 1 KAG(L' - n) anl' - 4)ndX
n=1

(54)

A c•,.-pariszrn cf Eq.:aticns 54 and 53 yields immediately

a = IMO'P + V0(On' -,4,) dx (55)
n M jI L

n n

with the a 's determined, it is now possible to compute the bendingn

moments and shear forces generated as a result of launching a

-- 3s aile h,7. a V:ni.

5.2. 2 An Example. Because the moment at the base x = - 1 is the

maximum moment in the constrained condition, while the moment at

this station is zero for all of the free-free modes, the convergence

of the initil :. n p.-tei in t,.:-ms of free-free modes is under-

standably poor. However, such an expansion has been made using the

bending modes of an actual missile, and convergence to a reasonable

engineering accuracy was obtained using six bending modes. Figure 19

sh..ws a p12t of

The terms corresponding to the sloshing coordinates and P have been
dropped from Equation 7. Experience has shown that sloshing and P
are not important in the problem being considered.
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"N djn (x)

2 EI(x) a
n=I

for values of N from onj to 3ix, Tht: initial moment M 0 (x) is also

shown, and it can be .teta that convergence !._f good for sections awa,

from the base. Near the base, the maximum loads occur before

launching so that the poor convergence here is not important. An

indication of the convergence during the postlaunch transient is given

by Figure 20, which shows the maximum value of M(x, t) incurred

during the transient at several stations of the missile.

Again, N is varied from cne to six in this figure, and it can

be seen that the additional moment due to the sixth mode is not too

large. These computations were made with no postlaunch damping

(that is, b = 0). When the damping was included, the convergence
n

was better, particularly near the center of the missile where the lower

free-free modes contribute strongly to the moment. At these stations,

moments caused by the h-gŽ-er :r:-des were damped out by the time the

moments caused by the lower mcdes became in phase. A comparison

of the peak postlaunch moments with and without damping is shown in

Figure 19. The amount of damping used in the analysis was

b = 0.02n

Figure 19 also indicates the importance of the postlaunch

transient. Notice that in the prelaunch condition the bending

moments near the tip of the missile are quite small, whereas during

the postlaunch transient the bending moments become quite appreci-

able because of the unloading wave induced by the sudden release.

The characterist! dip in the moment curve at station 0.44 of Figure 19

is caused by a sudden reduction in the flexural rigidity of the missile

at this station. These postlaunch moments designed the forward sec-

tion of the missile of this example. Details of this analysis can be

found in Reference 22.

-55-



____ w_ _ __ _ _ __ _

00

a 0U

0 0 2

owo

cuu

o3 04.

00

0
u

00

2.O1 X IN3WOn~ sNiaN39

-56-



5.3 Effects of Thrust Build-up

In this section thu problem of determining the dynamic loads

generated by an engine start transient is considered. This problem

differs from those discussed in previous sections in that the

longitudinal rather than the bending dynimics of the airframe is in-

volved.

5.3.1 Theoretical Cor.sider.itios. Consider a missile erected on

and attached to a launch stand (see Figure .21). At time t = 0 the

engines are started, generating a time dependent thrust F(t). The

problem is to determine the response of the airframe to F(t).

Experimental data have confirmed that the longitudinal dy-

namics of a missile airframe are adequately represented by simple,

one-dimensional, beam theory. Therefore, the longitudinal response

of the missile is determined from

a 2 (x) E)u(x,t) au(x, t) (56)8 x 8t

subject to the boundary conditions. Here

au(o, t) -0 au(S, t) - 1 (57)
ax ax A( 7Ft

where
2 (x) EA(x)

E = modulus of elasticity

A(x) = cross-sectional area of the load carrying
portion of the airframe

M(x) = mass per unit length of the airframe

u(x, t) = axial displacement of the airframe

x = axial coordinate measured from the missile tip

K 0  = spring constant of the launcher
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A direct intogration of Equation 56 is usually quite difficult,

especially when the effects of liquid propellants are included.

Therefore, rather than attempt a direct solution of Equation 56 ,

it is far more convenient to replace the continuous airfrime by

a lumr,,d j:rinb-mass analog. A typical decomposition of an air-

frame into a spring-mass system is shown in Figure 21.

The general procedure used to arrive at such an analog is

to divide the airframe into a number of sections, replacing the

distributed mass of each section by a single mass placed at the

center of gravity of each section; the masses are joined by springs

whose stiffnesses are equial to the stiffness of the airframe struc-

ture between the masses. The inclusion of propellant effects re-

quires special treatment. The hydrostatic pressure created by

the effective weight of accelerating propellants causes the propel-

lant tanks to bulge, which in turn shifts the center of gravity of the

prop~llant mass. A computation of these events leads to expressions

for effective spring constants of the form given by K 5 , K 6 , and K 7

of Figure 21. The expressions for these constants are derived in

Section I of the Appendix.

The equations of motion of the spring-mass analog can be

written by inspection. Some of these equations are

nn n Kn(xn n- Cn(n kn-i 0

Mn-I 'Rn-I + K7(Xn_1 - Xp) + Kp(Xn- x4 + n-n 4 n n-I Xn)

+ Cnn- (; xn) = 0

Mp p + K 6 (xp - x4 ) + K(X7 -x X) = 0
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MM4 4 + K 4 (x 4 - x3 ) + K2 (x 4 - x ) + K 6 (x 4 - x)

+ K5 (x4 - x_) 0

M2 + Kl(xZ - x1 ) + Ci( 2 -Ci) + K,(- x4 ) + K3 (x 2 - x3 )

+K x 0 x 2 -
0 2 2

M 2 2 + Kl(x2- xI) + cl(ý2 - ki) + K2 (xZ - x4 )

+ K 3 (x - x3 ) +.W 0 x W-.(

where

n

W mig

The limits on the last two equations of 58 account for the

possibility of the missile separating from the launcher. The

solution of these equations provides axial loads Fn, for example,

F n K n(Xn " rn-I ) + Cn(kn - kn- )

and accelerations x for different sections of the missile. Since
n

the coordinates originate from the equilibrium position, the absolute

acceleration of any mass will be :-n + g, where g is the accelera-

tion caused by gravity. Similarly, the total axial load at station n
equals Kn(xn - xn- 1 ) - mng + Cn(kn - n) This choice of co-

ordinates is made in order to eliminate the necessity of computing

intial displacements and setting them as initial conditions on a

computer. The initial displacements for the equations here are all

zero, whereas if all spring deflections were measured from their
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free length, the deflection of each spring under the weight of the

masses above it would have to be used to determine initial condi-

tions. In a more complicated model with springs spanning across

several masses, solution 6,f the static problem is more tedious so

that the use of coordinates measured from equilb.hriurn is even

more strongly indicated.

In many engine thrust transient response problems the effect

of damping in the missile is very important. Hence, an estimate

of the modal damping (possibly an experimental value) for the

structure is necessary to determine the values of dashpots Cn,

which are located between masses as shown in Figure 21. If the

modal damping b in the missile is small, it can be shown
n

(Reference 15) that a gocd approximation for b is given byn

P ý'x- on (X.+)12
b n c. 2. n M n (59)

b=ZC.n n

j=1

where

b b = percent of critical viscous damping
in nth mcde

C. = dashpot constant at station jJ

P = total number of dashpots

on(X) 0- n.(x .+1 ) = relative displacement in dashpot j,

for the nth mode

W = circular frequenqcy of nth mode
n

M = generalized missile mass for t.e nth
n mode N 2m()

N = total number of masses



Equation 59 provides the necessary values of the dashpot constants

co maintain the d&.sired modal damping. A set of P simultaneous

equations are formed with P dashpot constants, C. as unknowns.

Equation 58 can be written in matrix form as follows:

[A.-ý+ [f'+ [Ck-x} = 0 (60)

where

EAI = mass matrix

[B] = damping matrix

[C] = stiffness matrix

a column matrix

For purposes of computing longitudinal modes and natural fre-

quencies, the damping is assumed to be negligible, and the

time dependence of the displacements is sinusoidal with fre-

quency ca. Equation 60 then takes the form

([C] - W2[A])(xc) = 0 (61)

Equation 61 is the classical form for an eigenvalue problem in

matrix notation. The solution of 61, yields the natural frequencies

Wn and mode shapes 0n(x). With the mode shapes available, the

response of the spring-mass analog can be written as

N

u(x, t) _. %•(x)qn(t) (62)

n=l

with the generalized coordinates qn(t) given by

2 F(t)o n(Xs)
qn(t) + Zbawnqn(t) + Wn2 qn(t) = M (63)

n

p
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-Equations 62 and 63 are valid, independent of whether the missile is

resting on or has left the launcher, the only difference being that the

mode shapes 0n are different in each case.

Equations 62 and 63 may not represent the most convenient

form of the solution. In fact, it is often much faster to solve

Equation 58 directly on an analog computer rather than attempt a

modal solution.

5.3.2 An Example. Figure 2Z shows the effects of damping and

release time on missile axial loads caused by launch and engine

thrust transients. The axial loads occur in a large ballistic mis-

sile just after launch when the release time is specified at a per.

cent of the full engine thrust. A typical engine thrust build-up

curve is shown in Figure 23 with release times of the missile

which correspond to the cases of Figure 22. To compare cases

B and D, Lhe differences in the loads are caused by the transients

of the engine thrust which are generated in part by the rate of

build-up. In case D these transients are nearly damped out, and

hence for this case the results may be obtained by simply applying

S- a step load to the end of a free-free missile of magnitude T - W,

where T is the 100 percent thrust value and W is the total weight

of the missile. To compare cases A and B, the differences in the

axial loads is mainly caused by the differences in the rigid-body

accelerations. The effect of damping is clearly indicated in cases

B and C. Although the axial loads of Figure 22 indicate that it is

advantageous to release the missile at the lowest thrust level, the

combination of axial and later'il loads may indicate the necessity

for a different time of release. An over-all loads picture must

be exan-irned before a release "ime can be specified. The lateral

loads will dominate the axial loads in certain sections of the mis-

sile and vice versa. Therefore, if the lateral loads are predominant,

which is usually the case at sections near the tip of the missile, it

may be necessary to launch at a time when some of the contributors

to lateral loads are damped out, that is, effects of engine thrust

differential, which have not been treated here.
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Maximum Compressiv¢:a

Case Missile Station Axial Load

A: 125 tip 1.0b

Release at 77% of full thrust Z50 4.5
b = 1% 400 12.2

n 800 38.8n I I, Z, 3, 4

B: 125 2.1
Release at 100% of thrust 250 11.1
b =1% 400 27.5

800 64.5

C: 125 3.8
Release at 100% 250 18.0
b = 0 400 45.0

n 800 73.5

D: 125 1.9
r Iulease after a I-second hold 250 9.7
b 1% 400 24.0

800 59.0

a Loads are normalized to (b) and occur after release (postlaunch).

Figure 22. Effect of Damping and Release Time on Missile Axial
Loads due to Launch and Engine Thrust Transients
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Figure 23. Engine Thrust Build-up Curve

-64-



5.4 Missile Response due to Ground Shock

Many dynamic problems are encountered before the missile

is airborne, for example, in transport and ground handling, how-

ever, this section will be limited to the discussion of missile

dynamic response due to ground shock.

There are many complex problems encountered in determin-

ing the responses of missiles due to ground shock and in determin-

ing the characteristics of shock isolation systems which attenuate

these responses. Some investigators have examined these problems

by representing a continuous structure by a single degree of free-

dom system. This system, however, may be inadequate or the

responses such as displacements, moments and shears may be

misleading. Therefore, the more difficult problems associated

with a continuous structure should oe investigated. A method of

analysis for these pr'c.b' - using a "shock spectra" technique

is given 'i Refe'-nr- , :. t,..I -.

In this section two aspects o.; thua p'oblems are considered.

They are:

a) The specification of the shock environment

b) The dynamic response of the missile to the
environment.

The ground shock environment may be specified in various

ways, such as by soil pressure, displacement, permanent set,

velocity or acceleration. All of these may be of use in particular

applications. For the purpose of this section attention is given to

the displacement shock spectra (Reference 25).
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Although there are certain practical difficulties, it is

theoretically possible to determine the response of a structure

to shock if the acceleration time input and the dynamic charac-

teristics of the structure in terms of the principal modes fre-

quencies, and damping are known. It is also possible to estimate

upper bounds of response by means of the shock spectra and the

dynamic characteristics of the structure. This latter procedure

will be discussed in the determination of maximum stresses and

displaceme.nrs. i. is p-,_'r .nd out to -_e reader that this method

of determining the upper b .xd response of a structure due to

transient excitation is atso i very useful tool for problems other

than ground shock. It has important applications in. the specifica-

tion of the type and intensities of shocks a structure must resist,

and in the estimation of thie strength of a structure in resistance

to a variety of shocks. Such problems arise in the packaging of

electronic equipments for transportation, in the resistance of a

structure to earthquake, in tyhe L-Ld'Ing of an aircraft, in the

starting shock of a rocket, and in a large variety of impact loads.

To discuss the response of missiles to ground shock, the

missile is considered in a vertical position attached to a launch

stand which is protected from air blast but is subjected to ground

shock. (See Figure 24.) The ground shock in terms of the soil

acceleration as a function of time consists of two major compo-

r-.ents: a vertical component and a component directed radially

from ground zero where the blast initiates.

The dynamic characteristics of the structure are con-

veniently expressed in terms of the principal modes and fre-

ruen±ci-, and struc•.ural damping. For the missile-stand

combination the transverse modes are very similar to those .of

an elastically supported cantilever beam. The displacement of

any point of the structure can then be taken as the superposition

of the mode contributions.
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The displacement of the missile relative to the ground, as

shown in Figure 24 is given by,

u(x, t) n #n(x)qn(t) (64)

where

u .. iAsla:eL.en, of the structure at point x

relativ. to the ground

qn generalized coordinate of the nth mode

O= value of the nth mode at position x

th
For an acceleration input, the equation of motion for the n mode

is,

-a(t), 1 P9gndX (5
4~n + 2ýnwn in + W n 2qn a= t od (65)

~he r,

;n ratio of damping to critical viscous damping
in the nth mode

Cn circular frequency of the nth mode

p = mass distribution per unit length

a(t) = acceleration of the ground

The right hand side of this equation represents the generalized

force, a (tf pondx, divided by the generalized mass, n dx.

.For convenience let y =fJ Po ndx/>i pndx. This term has been

called the kinematic or distribution factor (Reference 24).
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The solution to the foregoing equation of motion for small damping

and for initial conditions of a, qn' and 4. equal to zero at t = 0,

is,

qn - . fnt a( r)en ( sin (An(t - T)dT

which when substituted into Equation 64 determines the response

of the structure.

There are several practical difficulties in determining the

response of the structure in the foregoing manner. Some of

these difficulties come from the evaluation of the integral with

practical acceleration records a(t); others arise from the

characteristics of the acceleration records such as statistical

scatter, damping, and determination of low-frequency components.

These difficulties may be present in problems other than ground

shock.

It is sometimes convenient to think of the relationship of

the generalized coordinates to quantities that can be measured

directly without a knowledge of the ground accelerations. In

effect, the structural system for which dynamic responses are

to be determined is replaced by a series of single-degree-of-

freedom systems. For example, the analog for the motion of

each mode of the missile on the stand can be represented by a

cantilever beam tuned to the principal frequency for the mode

of the missile. Hence, assuming an idealized single-degree-of-

freedom system such as a cantilever with an end mass, the

equation of motion for the mass is,

Q+Z 6+ 2 Q -a(t)
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This equation has the same form as Equation (65), so that if the motion

of the mass of the single-degree-of-freedom system is known (by

measurement or other means), the generalized coordinate for the nth

mode of the structure is given by

qn = YnQn

and the structural response is

u = .y Qn (66)
n

Now the motion, Q(t), of the mass is often difficult to measure

as a complete displacement-time history. Fortunately, it is possible

to make some predictions about the maximum value of the response of

the structure from a knowledge of only the peak values of the response

of the single-degree-of-freedom system, which are relatively easy to

calculate if the pulse input is known or to measure by means of reed

shock gages such as in the case of ground shock input. (See Reference 24.)

A shock gage may consist of a set of single-degree-of-freedom

systems, as shown in Figure 25. The frequency spectrum of the peak

displacements of the masses relative to the base which is being ac-

celerated is called the displacement shock spectrum and is given by

D(w1) = max t-" o "w(t--T) sinw (t -T)dT

max t~-O W01

Schematically, D and Q for a frequency w are shown in Figure 25 with

the associated ground displacement curve. A typical horizontal dis-

placement shock spectrum is shown in Figure 26.
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The greatest value of the response in Equation (66) would occur if

all the peaks of the components occurred simultatnously and in the same

phase. Since the peak value of Q(t) is D, then

U(X) -• Yn D(w n),n (X)

Having an expression for the displacement, other quantities of interest,

such as bending moment, can be obtained. The expression for bending

moment is,

Mcx) • YnD(cwn)mn( IX)

where mn (x) is the bending moment at position x in the nth mode.

These estimates of response are upper bounds; however, it has been

shown by several investigators (References 23, 25, Z6 and 27) that for

shock inputs such as earthquake or ground shock, the estimate is not

more than 15 percent conservative. The conservativeness of the re-

sponse when using single pulse shock inputs is discussed in detail in

- Reference 25.

Such a "shock-spectra" technique of analysis is also a very

valuable tool in determining the response of a missile during engine

thrust build-up if the boundary conditions do not change. For example,

if a missile is constrained in a launcher or if it is free-free as in the

case of a space vehicle at the time of engine ignition after a coast

period, an upper bound of response may be obtained by using a modal

analysis if the input force (engine thrust) is represented by its "shock

spectrum".
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APPENDIX

MODELS FOR THE LONGITUDINAL VIBRATIONS OF LIQUID
PROPELLANT MISSILES

A. Equations for a Simple Cylindrical Tank

A lumped parameter model is constructed to approximate the first

mode of vibration of a liquid-filled elastic tank which is considered to be

a tandem part of a missile as in Figure 21. The propellant tank is shown

in Figure 27. The force F in the figure is the force in the tank walls due

to the action of masses above the tank under consideration. P is theo

ullage pressure in the tank. Other quantities are evident from the figure.

The axial stress, r , and radial stress, ar , in the tank wall are;
x y

P R
-F

x zrrRt 2t (A. 1)

W

M, FLUIDO ASS
,P,, 12h

pofl l t t-- O fI1O Al AI"IE

FLUIO AC LEC.AtION a

Figure Z7. Propellant Tank
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P R( o0 pa (h -x)R(.2
y t t

Applying Hooke's law, the corresponding strains are;

1x E x -VT

z R .1 V p F v a (h. x (A. 3)

y ( - vx)

- q 2). Vr r: ' ' + pa (h - x)+ vF 2 1  (A. 4)

where;

E = Young's modulus

v = Poisson's ratio

For tanks with a very high radius to thiclness ratio, R/t, the bending

deflections caused by constraints at the base of the tank can be neglected.

With this assumption, the tank walls expand out into the shape of a simple

truncated cone. The displacements u and w are given by kinematics as;

R [(I Fx 2• 1V p PL h p x- (A. 5)
= E-- /o ,R "

L(



w =R .Ry

-- 1 P +pah- x) + F(A.6)
Eft 0 Z)o' 2J

In solving a longitudinal transient problem, the stresses due to

the static ullage pressure, P , can be added separately to the dynamic
0

stresses. Dropping these static terms, the displacement of the section

of the tank at the free fluid surface relative to the base is,

u(h) = [f- - + VPCh (A. 7)

The total mass of the propellant and a lumped spring constant for the

tank are respectively,

M = TR2hp (A. 8)

AE ZTrRtE (A. 9)K=h =h O.9

The displacement of Equation (A. 7) can be written as,

VM
F P A (A.lO)

u(h)- a K ----- (A. 10o

whiere;

x1 = coordinate of the tank position at free surface of
the liquid measured from static equilibrium.

x = coordinate of the tank base, measured from static
0 equilibrium



Assume now that the fluid can be treated as a rigid body, and

that its displacement is the vertical displacement of tLhe center of gravity

of the fluid which occurs when the tank walls expand from w = 0 to

w = w(x) as given by Equation (A. 6). Neglecting second order volumes,

this distance (see Figure 28) is,

x -x =------ /Z 2wRw(x) dx
p -o =

3M vF
-L -K (A. 11)

where, xp = coordinate of fluid cg, measured from static equilibrium

Eliminating F from Equations (A. 10) and (A. 11) and noting that

a = X, one obtains;

3M i'M 1
X _ o p + V IX - xo) + K i p (A. 12)

This equation can be rewritten using,

(x1-X)= (x1 -X )- (Xp -x)

as,

MR+(- vK X X ZYK .(Xx 0 (A. 13)

pp (3 - 2v (3 --- T . I -)

Notice that Equation (A. 13) corresponds to Figure 29 if one takes,

2,) (A5) K

K2 = 2  K
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C.3. KI

/xp-xo XP

-FP K .3
S~xo

o0 K2

F 4-U Xp~i

Figure Z8. Displacement of Fluid Figure 29. Longitudinal Model
due to Tank Wall of Propellant Tank
Expansion

The spring K3 has been incl-ided, because neither Equation (). 10) nor

(A. 11) gives the same deflections as found in the figure if K3 0. To

find K 3 , setR = 0 and make the figure match the equation,
P

•v F
X- o - = (A. 15)

Using Equation (A. 14) the force in spring K 2 is,

F 2 =. -F -Z~V K I ) F- ZvA216)

Also, the deflection of spring K 3 , using Equation (A. 10 with 1E 0, is
P

F
x -8-x
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Equilibrium of the lower bar in Figure 29 under these forces requires

that,

FZ V + K F (A. 17)
---- ) 3KR

Solving for K3 gives,

K = (3 zv) K (A.18)

In Figure 21, therefore, by using Equations (A. 14) and (A. 18)

f3 - Zvý

K 7  = - Zv K

B. Model for a Cylindrical Tank With a Flexible Lower Bulkhead

If, instead of having a rigid base, as implied for the tank in

Section A, the tank lower bulkhead has an equivalent spring constant

K.BH, the model in Figure 29 must be modified as shown in Figure 30.

It is evident that the static deflection of the liquid mass relative to the

reference plane x 0 is merely that due to the flexible tank plus that due

to the flexible lower bulkhead, so that the spring from the mass to the

reference plane is simply these two effective springs in series, as

shown. When a force F is applied to the tank skin from above, the
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0, ,lections of x and x with respect to the reference plane are the samep

ai if the bulkhead were rigid becauqe no further load [:i carried by the

bulkhead (I.e. It carries only the fluid). Thus,

F ~vF
-(.- ( 9)

as before, the new spring constants, K and K are now determined so

that these deflections indeed result. From Figure 30 and Equation. (A. 19)

one can write,

(X2 0= - K-

from which

R = K- iK 2  (n. 20)

KIH

3K

Kr2-2v1
KLK2

FKBH F
2 2 IF+ Mp X-P

Figure 30. Longitudinal Model of Propellant Tank With
Flexible Lower Bulkhead

"-80-



From Figure 30, K is computed to be,
2

f 2 -2v'

K KBRz fz - ZVN23- T- ) K+Bfl

Also from Figure 30 and Equation (A. 19),

-F -F

so that,

2A21

C. Model for a Semi-Monocoque Cylinder

If the cylinder is constructed from a skin-stringer design as shown

in Fiure 31 it is assumed that the stringers have negligible radial

displacement but that the skin will displace both radially and longitudinally.

The . force r.-th is either through the skin or the stringers, therefore

the stringers act in parallel with the skin. The model for the skin is

similar to the case in Section A. , but now,

(AE) skin
K M. h_m h

and the stringer spring constant is,

K (AE) stringer
s h
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r 2,KM2 1 K

F3 -] _ _

Figure 31. Section of Skin-Stringer Cylinder
and Longitudinal Model

D. Model for a Seni-Monocoque Cylinder With Partially Buckled Skin

A longitudinal model of a skin-stringer propellant tank with a

partially buckled skin is necessary for some of the ballistic missiles.

As in the previous section it is assumed that the axial load is trans-

mitted-by the stringers. Ks, and by the effective (unbuckled) skin, KMB,

where the latter is.

KMB ) effective

The spring-mass model to represent this case is shown in Figure 32.

The constants KI amd K are such that,

F
XI -X 0  K (A. 22)

I KB + K
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and the propellant mass, M , deflects if a portion of the load F, sayp

FMB' that is carried by KMB is transmitted by the unbuckled skin,

KM, i.e.

S- vF MB
p o KM

(see Equation A. 15) but,

FMB F w en (AE)kn

K K where KM hMB MB s

therefore,

x -v F KMB
p o K M (KMB + K5) A. 23

Equations (A. 22) and (A. 23) are the constraints to be satisfied.

Assuming, as before, that Y = 0 then from Figure 32 and
PEquation (A. 22),

FKI* K1(T3 22) KM +K + K K +K
q•=-•= W*+ z -z• 3 +s MB +

(x 1x K K+( 2  KM s M
1 3-TJ VIZ3•M

therefore,

KMB _ (2,2) KMKl
K__+_(3____1 (A. 24)

2 - 2V

2v- KM + K-I
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x Ki

x E " K3* Ks

L 3-2V1

IF+ MP ip

Figure 32. Longitudinal Model of Semi-Monncoque
Cylinder with Partially Buckled Skin

From Figure 32 and Equation (A. 23),

2z - 2V'

F 3 - 2  2KM KM (KMB + K)

(x- X K* +K

therefore,

K 3 - 2" K (A. 25)
3 ( 2vJ MB

Substituting Equation (A. 25) into Equation (A. 24) gives,

* - 2 2  KMB (A. 26)
K1 = M -KMB

The foregoing derived spring constants for Figure 32 are shown in

Figure 33.

"-84-



x F
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KL3 2  + _- J

xo [Z KM

Figure 33. Simplified Model of Figure 32
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