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ABSTRACT

The motions and wakes ¢f freely falling disks have been studied and it has been
found that the diverse motions of the disks exhibit a systematic dependence on the
Reynolds number, Re, and the dimensionless moment of inertia, I*¥, The relation be-
tween I* and Re along the boundary separating stable and unstable pitching oscilla-
tions of the disk has been determined. The Reynolds number for stable motion of a
disk with large I* is 100 in agreement with the Reynolds number for stability of the
wake of a fixed disk. Slightly unstable disks of large I* were stabilized by re-
ducing the moment of inertia. The highest Reynolds number for stable disk motion
was 172. At higher Reynolds numbers the disks exhibited pericdic pitching and
translational oscillations. The laminar wake behind certain of the oscillating
disks consisted of a staggered arrangement of two rows of regularly spaced vortex
rings similar to the wake observed behind liquid drops by Margarvey and Bishop.

The dependence of the dimensionless frequency of oscillation on I* and Re was de-

termined along the boundary for stable motion and at higher Reynolds numbers when

the wake was turbulent. Tumbling motions of the disks were observed when the Rey-
nolds number was large Re > 2000 and I* was greater than a certain value, I* =

L ™
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1. INTRODUCTION

The steady or unsteady motion of bodies with poor aerodynamic shapes cannot,
at the present state of development of fluid mechanics, be calculated from the
equations of motion for the flow. Therefore, our understanding of the fluid
mechanical aspects of the body motion and flow field must rely on the results of
systematic experimental investigations in which the significant parameters are
varied over a wide range. This paper gives some results on various features of
the steady and unsteady motion and flow over freely falling disks. The disk was
chosen for these studies because when the flow is directed normal to the face of
the disk, it represents an extreme example of a poor aerodynamic shape.

Some aspects of the flow field abiout a disk and other bluff bodies are al-
ready known. A summary of the known phenomena may be found in Goldstein.(l) At
very low Reynolds numbers when the inertial forces of the fluid can be neglected
and the flow is steady (Stokes flow) Oberbeck(2) has computed the drag coefficient
and the flow field near the disk. At higher Reynolds numbers when inertial forces
in the fluid first become important Oseen(5) has computed a correction term to
the drag coefficient computed by Oberbeck. At Reynolds numbers above 100 the flow
field in the wake becomes unstable and steady flow about the disk is no longer
observed. In the case of two-dimensional bluff bodies a Karman vortex street(4)
is developed in the wake. 1In three dimensions, where the geometry is more com-
plicated, the wake flow is periodic,(5;6) but not as simple as *the two-dimensional
case, because the vorticity that appears in the wake is not aligned in one direc-
tion when it is formed. Rosenhead, in an appendix to Stanton and Marshall's re-
port,(5) has given an excellent discussion of the possible eddy systems in the
wake of circular disks. We shall refer to his discussion later in the paper.

At higher Reynolds numbers the flow in the wake behind the body becomes turbulent.
Roshko(7) has described the turbulent wake, which includes vestiges of the Karman
vortex trail, for the case of two-dimensional bluff bodies. The three-dimensional
turbulent wake structure is more complicated and has rot been studied in as much
detail as the two-dimensional turbulent wake. 1In the flow field and wake of a
freely falling disk, one may expect to find vestiges of these phenomena. In addi-
tion, new phenomena that are caused by the motion of the disk as it moves about
under the influence of the aerodynamic forces will appear.

We began the present investigation with the aim of identifying and under-
standing the more interesting and important features of the flow field and motion
of a free disk. In our description of the unsteady phenomena we will be concerned
primarily with the dimensionless parameters upon which the unsteady motion and
flow field depend. After our investigation was well under way, we found the ex-
cellent paper of Schmiedel(8) in which many features of the steady and unsteady
flow field and motions of freely falling disks and spheres are described. Schmiedels
work covers the range of Reynolds numbers from creeping motion up to Reynolds num-
bers of the order of 300. We will describe the flow phenomena using Schmiedel's
results and ideas at low Reynolds numbers and add our new observations in the low
Reynolds number range and at higher Reynolds numbers,

Manuscript released August, 1963, by the authors for publication as an ARL Technical
Documentary Report.



2. EXPERIMENTAL APPARATUS

The experiments were performed by dropping disks made from materials of vary-
ing density into contalners filled with tap water or with solutions of distilled
water and glycerol. The disks were made from homogeneous metals or plastics whose
specific gravity was greater than one. All the disks were made by machining thin
sheets of the disk material on a high speed lathe. The disks were flat and the
edges were square. The large diske were easily clamped on the rotating head stock
with a rotating rubber pad mounted on the tall stock. Small thin disks were glued
on the end of a rod clamped in a chuck. The glue used was Fastman 910 adhesive.
In this way, very thin flat disks were made. The disks were removed from the rod
with a razor blade and soaked in an Epoxy resin solvent until clean. The dimen-
sions and density of the various disks were measured and are given in Tables I,
II, and III.

The fluid containers were Plexiglas tubes of 11, 15, and 30 cm diam of various
lengths. A square Plexiglas container 30 x 30 x 120 cm was used to photograph the
disk motion and flow field. The effect of contalner size on the motion and flow
field of the disks was appreciable only when large amplitude pitching oscillations
were observed. These effects are discussed in Sections 3B, 3D, and 3E.

The rate of descent of the disks was obtained by stop watch measurements of
the time required for the disk to fall a known distance. The frequency of disk
oscillation was always low enough to allow the observer to measure an average
frequency by counting the number of oscillations in a measured time interval. The
temperature of the tap water was measured and its viscosity was obtained from the
tables of Bingham and Jackson.(9) The specific gravity of the glycercl and dis-
tilled water solution was measured with a float type hydrometer. From the tempera-
ture and specific gravity of the glycerol and water solutions the coefficient of
viscosity was obtained by interpolation from the tables published in the Handbook
of Chemistry and Physics.(lo) We have checked our experimental procedures an?
apparatus by comparing our drag coefficients with those measured by Schmiedel 8)
for Reynolds numbers less than 100. The comparison is shown in Figure 5.
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TABLE III (Continued)
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3. DESCRIPTION OF THE DISK MOTION AND FLOW FIELD

The detailed motion and flow field of freely falling disks at very low Reynolds
numbers iz well documented in the literature. We will describe the sequence of
events as the Reynolds number of the falling disk increases and supplement the dis-
cussion with results from the literature and from our investigation.

A. TFIOW AT VERY IOW REYNOIDS NUMBERS (Stokes Flow)

At very low Reynolds numbers, Re = Ud/v, where U is the speed of fall, 4 is
the disk diameter, and v the kinematic viscosity, schmiedel(8) observed that a
disk will fall vertically with the same orientation that it had initially. Gans(1l)
has shown that at low Reynolds numbers where creeping motion obtains there is no
aerodynamic moment produced by fluid pressure on a body that has three mutually
perpendicular planes of symmetry. Schmiedel(8) mentions that experiments in this
range are very difficult because it was not easy to orient the disks initially
with thelr faces horizontal but gives no data about the Reynolds number range in
which this motion was found. Squires and Squires(le) investigated the sedimenta-
tion of thin disks at very low Reynclds number but did not mention the range of
Reynolds number in which a disk will maintain its initial orientation. Examina-
tion of their tabulated data on the drag of disks falling with their faces parallel
and normal to the direction of motion shows that no drag measurements for disks
falling edge on (with the face parallel to the direciion of motion) were reported
above a Reynolds number of 0.3%9. We have not investigated in detail the boundary
below which the disk attitude depends only on the initial orientation. On one
occasion we observed a vertical fall of a disk with its face parallel to the ver-
tical at Re = 1.9. We attempted to repeat the experiment but the disk fell re-
peatedly at a light angle to the vertical and hit the side of the container. The
Reynolds number in this case was also 1.9.

It is certain that a Reynolds number of the order of one marks the upper limit
of the Reynolds number range in which the disk falls vertically and maintains its
initial orientation.

B. STEADY LAMINAR FLOW ABOVE Re =1

When the Reynolds number is greater than approximately one but less than
approximately 100, a disk can be released with any initial orientation and will
adjust itself to a horizontal attitude. The disk will then fall vertically and
steadily with its face normal to the direction of motion. In this Reynolds num-
ber range the drag coefficient 1s alreadz different from the Stokes flow result
for creeping motion computed by Oberbeck 2) but lies below the drag computed by
Oseen 5) in which the approximate effect of the inertial forces are considered.

We believe that the inertial forces of the fluid are responsible for the tendency
of the disk to fall face down. In this comnection Schmiedel mentions Kirchof[ls
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proof(lj) that the fluid pressure on an ellipsoid of revolution in translational
motion in an ideal fluid produces a torque which vanishes only when the ellipsoid
meves in the direction of one of the three principal axes. Of these three pos-

sible equilibrium states of motion Kirchoff showed that only motion in the direc-
tion of the smallest axis is absolutely stable. The thin disk is the limiting

case of an ellipsoid of revolution and Kirchoff's result suggests the reason for
the observed orientation and stable motion of the disk in spite of the fact that
the viscous flow about the disk and in the wake is hardly that of an ideal fluid.

The steady motion and flow field about the disk were observed visually and
photographs of the interesting features are shown in Figures 1, 2, 3, and L. The
disks were painted with a concentrated solution of aniline dye* and allowed to dry
before they were dropped in the water.

In Figure 1, a steadily falling disk is shown. The wake is perfectly straight
after the initial oscillation ceases. The dark region behind the disk contains
fluid in rotational motion that has passed near the disk and has carried away dye
from the surface. A close up picture of the slowly rotating fluid in the wake is
shown in Figure 2. The circular streaks are caused by inhomogeneities in the
rotating dyed fluid which is in the shape of a distorted torus. Stanton and Mar-
shall(5) mention that in 1877 Reynolds first pointed out the existence of the
vortex ring behind a circular disk. A very small fraction of the dyed fluid in
the vortex ring is deposited in the thread-like wake. The fea?gfes of this steady
flow field are quite similar to the steady flow behind spheres or behind drops
of liquid falling through a less dense liquid.

When the disk reaches the bottom of the container and stops it releases the
vorticity carried by the fluid behind the disk. Figures 3 and L4 show the details
of the release. The released vorticity takes the form of a vortex ring that is
connected to the front of the disk by a thin axisymmetric sheet of dyed fluid.

In the photographs, Figure 3 and 4, the optical image of the disk and vortex ring
are formed by reflected light from the lower side of the container.

We have measured the steady drag coefficient of the disks

_ weight-bouyant force 1)
Cp = 1, B2 ? (
2l e

where Py is the fluid density, U is the terminal velocity, and r is the disk radius.
The drag coefficients in the Reynolds number range 1 < Re < 105 are compared with
the measurements of Schmiedel(8 in Figure 5. We have obtained good agreement with
Schmiedel's results and can conclude that our simple experimental methods give satis-
factory accuracy. Schmiedel also considered the influence of the container wall

*Methyl blue chloride, Allied Chemical and Dye Corporation.
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on his drag coefficients and concluded that the influence was small. We have used
almost the same diameter container in relation to disk diameter that Schmiedel
used and can alsc state that the wall influenced the drag by no more than a few
percent.,

. Schmiedelm
o Present Investigation |

(3) |
Oseen |

Oberbeck'?’

1.0 | ! 1 I [ I |
10 20 40 60 10 20 40 60 100 200

Re

Figure 5. Drag coefficient as a function of Reynolds
number for thin disks in steady motion.

C. DAMPED PITCHING OSCILLATIONS

In the Reynolds numbers range from approximately 1 to 100 damped pitching
oscillations of the disk about a diameter were sometimes observed, see Figure 6.
These oscillations remind one of Kirchoff's(l3) integration of the complete equa-
tions of motion for the case of a solid of revolution that moves through an ideal
fluid with its axis confined to one plane. Kirchoff showed that regular pitching
oscillations of the solid can occur about an axis normal to the plane of motion.
The oscillations could be excited by inhomogeneities in the fluid or by disturb-
ances of the initial attitude when the disk was released. Evidence of damped
oscillations caused by improper initial conditions can be observed in the wake
trail at the top of Figure 1. Figure 7 shows that random excitation of oscilla-
tions caused by the disk falling at the same Reynolds number as Figure 1, through
a medium that was not at rest. Whenever the disk oscillates or is disturbed
during its fall it releases a horseshow shaped loop of vorticity that is connected
by a vortex sheet to the dyed fluid immediately behind the disk. Rosenhead, in
an appendix to Stanton and Marshalls report,(5Y discusses the reason that horece-
shoe shaped vortex loops arc observed when an axisymmetric wake is disturbed.

The discussion relies upon the impossibility of a helical discharge of vorticity,
Jeffreys;(l5) and the known instability of axisymmetric sheaths or rings of
vorticity.

15
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The damping of the pitching oscillations was very great at low Reynolds num-
bers and decreased monotonically as the Reynolds number increased until at Rey-
nolds number of the order of 100 the damping was very small. When the damping
was very large the dick could be released with any desired ineclination to the
horizontal and would immediately assume a horizontal face dowvn attliude without
oscilllating. At higher Reymolds numbers damped pitching oscillations were ob-
served, The pitching oscillation was confined to a vertical plane normal to the
diameter about which the disk first oscillated. Detailed observations of the
frequency of oscillation and the amount of damping were not made in the Reymolds
number range below Re = 100.

D. BOUNDARY BETWEEN STABLE AND UNSTABLE PITCHING OSCILLATIONS

When the Reynolds number was greater than 100 we observed that many of the
disks were unstable., Small pitching oscillations about a dlameter with little
translational motion of the center of mass (see Figure 6 for example) increased
in amplitude until appreciable translational motion of the center of mass in a
vertical plane normal to the diameter defining the pitching oscillation was ob-
served. Once established, the larger amplitude motion was quite periodic and
regular and would persist until the disk reached the bottom of the container.

On the other hand some disks, made of different materials or with different di-
mensions, exhibited only damped pitching oscillations which resulted in a steady
descent at the same Reynolds number. We have investigated the boundary between
the stable and unstable oscillations as a function of the dimensionless parameters
pertinent to the phenomena.

The variables governing the phenomena are the fluid density, P, the disk
density, p,, the average speed of fall, U, the disk diemeter, d, the disk thick-
ness, t, and the fluid viscosity, p. From these six dimensional quantities
three independent dimensionless numbers may be formed among which will be ob-
tained a functional relation governing the stability problem.

The three dimensionless numbers chosen are the dimensionless moment of inertia
of the disk

I np b
I = sy e SR (2)
pld 6)-l>pld 7

formed from the ratio of the moment of inertia of a thin disk about a diameter and
a quantity proportional to the moment of inertia of a rigid sphere of fluild about
its diameter, d, the Reynolds number,

p,Ud
Re = = ’ (3)




and the thickness ratio of the dicgk,
t
Tl a2 L)
- (

This choice of dimensionless numbers was made in an attempt to separate the
purely geometric effect of the disk thickness on the fluid flow from the dynamic
or inertial effect of the disk thickness. The thickness of the disk will always
enter as an inertial effect through the dimensionless moment of inertia, I,
which will affect the pitching motion. But, if the thickness ratio, T, 1s small
disks of different thickness should not have apprecisbly different aerodynamic
characteristics.

We have made numerous observations of the motion of thin disks falling in
solutions of glycerol and distilled water to locate the boundary separating the
damped stable motion of the disk from the unstable motion that occurred for
Re > 100. All but one of the disks used for these tests were made from steel
shim stock as described in Section 2. The thickness ratio, T, of the steel
disks was always less than G.o4. One disk, test 16, Table II, was made from
Plexiglas and tested in distilled water.

The experiment was very simple. The disks were dropped in quiescent liquid
and the motion was observed. The results of the tests are shown in Table II,
and Figure 8. If the amplitude of disk oscillation increased it was recorded as
unstable, U. If the amplitude of oscillation was damped and the oscillations
ceased before the disk reached the bottom of the container it was recorded as
stable, S. If the oscillation was visibly damped but so slowly that it did not
stop oscillating before reaching the bottom of the 120 cm high container it was
recorded as, 50, but was considered to be stable. If the disk oscillation amp-
litude appeared to be constant it was labeled, B, for boundary. Each test with
each disk was run a number of times in doubtful cases until the issue; S, SO, B,
or U, was decided by the type of motion that appeared most frequently. For larger
I*, I» > 2 x 1073, the decision S, SO, B, or U was easy to make. When I* was
smaller I* < 2 x 10~ the decision became progressively more difficult. As I%
was reduced more tests of the same disk had to be made until the issue was de-
cided. Our points at the lowest I*, I* = 3.37 x 10-%, did not present any dif-
ficulty compared to the greater scatter in the results of each test found near
the peak maximum stable Reynolds number, at I¥ = 7.5 x 107%,

For determination of points near the boundary it was always necessary to use
the 120 cm high container because the motion was sometimes only very slightly
damped. It was often necessary to allow the liquid to come to rest for zbout
an hour after stirring. We made special tests and found that we could always
repeat our results near the stabllity boundary if we allowed the liquid to re-
main at rest for an hour or more after stirring. On one occasion we found a
combination of disk and fluid in which the disk was observed to be very slightly
unstable with very slowly increasing amplitude of oscillation. We covered the
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Figure 8. Dimensionless moment of inertia, I*, as a function
of Reynolds number near the boundary separating stable and un-
stable oscillations of thin freely falling disks.

liquid and allowed it to settle over a weekend. When the test was repeated two
days later the results were the same. We are confident that no destabilizing
effects of disturbances in the {luid were overlooked. We did not find any effect
of wall interference on these tests and were able to reproduce our results in
elther a small or large diameter container. The only influence of the walls

that we noticed was a tendency for disk oscillations to cease when the disk was
approximately one diameter from the bottom of the container.

The results of the stability tests, shown on the ?lOt of Figure 8, can be
compared with the work of others. It was Schmieders( work that stimulated
our investigation. He reported steady disk motion below Re = 80 for all his
disks which were made from gold, silver, and steel. However, we had found very
early that a relatively thick Plexiglas disk, with low I¥*, exhibited steady mo-
tion at a Reynolds number of 183 and began to investigate the stability problem.

We found, in the literature, the paper of Stanton and Marshall(5) who were

quoted by Simmons and Dewey(6 to have observed the onset of wake oscillations
behind a disk mounted in a small water channel at Re = 195. However, in their
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own tests, Simmons and Dewey reported the onset of wake oscillations behind a disk
with the same thickness ratio, T = 0.1, mounted in a wind tunnel at Re £ 100. Up-
cn reading Stanton and Marshalls paper 1t developed that their water channel was
so narrow that the flow was practically a fully developed laminar pipe flow. Sim-
mous and Dewey overlooked the fact that Stanton and Marshall mention that they
have almost a parabolic velocity profile in their channel and, in addition, base
their Reynolds number on the mean veloecity. It is easy to understand the dis-
crepancy between the results of the two investigations if we recall that the
vorticity in a laminar channel flow will always be opposite in sense of rotation
to the vorticity generated by a disk placed in the center of the channel. This,
then, explains why sufficient vorticity for wake instability cannot be generated
in the presence of the parabolic velocity profile until higher Reynolds numbers
are attained.

We decided that the cause of the unexplained difference between Schmiedel's
work, Simmons and Deweys work, and our first tests which gave Reynolds numbers for
steady motion of 80, 100, and 183 respectively resided in the inertial forces pro-
duced by the disk motion. This supposition is confirmed by our results, Figure 8,
on the variation of the Reynolds number at which instability occurs as a function
of I*, For large I* the relatively large moment of inertia of the disk causes it
to behave almost as if it were a fixed disk and the instability of motion begins
at Re = 100 which coincides with the result of Simmons and Dewey(6) for a disk
mounted in a wind tunnel. When I* is reduced the Reynolds number of the stabil-
ity boundary increases and reaches & maximum value at Re = 172 and I* = 8 x 1074,
We believe that the increase in the Reynolds number for the onset of unstable mo-
tion with decreasing I*, is caused by a favorable coupling between the disk pitch-
ing motion and the generation, distortion, and motion of the vorticity behind the
disk. The tendency toward non-uniform vortex generation and shedding at the edge
of the disk 1s probably reduced by the pitching motions of the disk but we have
not attempted to construct a model to describe this effect. We are presently in-
vestigating the phase relationship between the position, aerodynamic torque, and
vortex shedding of a large disk undergoing forced oscillations in a wind tunnel.
We hope to gain a better understanding of the mechanisms which control the disk
stability and motion from these tests.

We have not been able to definitely explain the lower value of Re = 80 that
Schmiedel(8) found for oscillation of his disks. We can mention three pocsible
reasons for the discrepancy: First, Schmiedel's disks were of larger thickness
ratio, 0.007 < T < 0.02, than the disks that we used, 0.00k < T < 0.008, for our
tests of the location of the stability boundary, Table II. Second, Schmiedel
may not have allowed his liquid to come completely to rest before making his
tests. Thirdly, Schmiedel observed oscillations on movie film over the central
third of a 4O em high container and may not have noticed slightly damped oscilla-
tions.

18



E. REGULAR PITCHING AND TRANSLATIONAL OSCILLATIONS

The motion of the falling disks in the unstable region at Reynolds numbers
greater than those on the boundary for stable motion was investigated in some
detail. In the unstable region the most common type of motion that was observed
was a simple extension of the pitching motion with little translational motion
of the disk, that was observed near the boundary, tc a pitching motion of larger
amplitude accompanied by a translational motion of the disk in a plane normal to
the pitching axis. The translational motion was usually confined to one plane and
was periodic. A definite frequency could be assigned to the oscillation in every
case in which the translational motion was confined to a vertical plane. A slight
rotation of the plane of translational motion about a vertical axis was sometimes
observed. The frequency of oscillation, speed of descent, and amplitude of motion
were always the same as the case of no rotation. A definite spiral motion of the
disk about a vertical axis was sometimes observed if the surface normal to the
disk face did not lle in a vertical plane when the disk was released or if the
disk met a disturbance in the fluid as it fell. The spiral motion was irregular
and difficult to repeat. The irregularity of the motion prevented any quantative
measurements of the frequency of rotation, speed of descent or amplitude of the
spiral motion. We have discarded the tests in which spiral motion occurred.

We have found that the unsteady wake of a disk executing small amplitude
oscillaticns near the boundary for stable motion is laminar and contains two rows
of staggered, equally spaced horseshoe shaped vortex loops on eilther side of the
wake. When the intensity of the vorticity in the horseshoe shaped vortex loops
is relatively large the loops break away from the wake and form a staggered array
of two rows of closed vortex rings. An example of this type of wake is shown in
Figure 9. The pattern is very similar to that observed by Magarvey and Bishop(lh)
behind non-oscillating drops of liquid above a certain critical Reynolds number.

Figure 10 shows some features of the flow field at a relatively high Reynolds
number in the wake of disk in the case of regular pitching oscillations of large
amplitude. This motion was first photographed and described by Schmiedel.(B) From
the wake flow of Figure 10, it appears that the disk flies in curved descending
arcs carrying with it bound vorticity and releasing a vortex at the extremes of
the motion. The released vortices are connected to each other by two trailing
vortices from the edges of the disk, the flow in the wake usually appeared to
be turbulent.

Within this mode of oscillation there appeared a considerable variation in
the frequency of the oscillation and the amplitude of the translatinnal and
pitching motion. When the disks had a large moment of inertia in comparison to
a given volume of liquid, large I*, the pitching amplitude, frequency of oscilla-
tion, and falling speed were large and the amplitude of translational motion was
smell. When the moment of inertia was reduced, I* small, the pitching amplitude,
frequency of oscillation and falling speed were small and the amplitude of trans-
lational motlon became very large. The disks often encountered the sides of the
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contalner when I* was small. We were fortunate to be allowed access to The Univer-
sity of Michigan ship model towing tank for free fall tests of large plastic disks
at a time when the tank water had not been agitated for a few days. We found large
amplitude oscillations, typically of the order of a meter for tests 67 to (2 of
Table ITTI. On one occaslion we tested a polystyrene disk of 1 ft diam with Ix =
1.24 x 10-4., The amplitude was so large that the disk glided slowly out of view
down the tank and we did not see it again. In this type of motion the slow oscil-
lations were seldom confined to a single vertical plane because the disks were very
sensitive to disturbances at the extremes of their motion which often caused a
slight change in the attitude of the disk and resulted in a slight rotation of the
vertical plane of oscillation.

The data from tests in this mode of motion is collected in Table III. 1In
the problem of disk oscillations the frequency, n, enters as a variable that must
be added to the variables already discussed in the stability boundary investiga-
tion, Section 3D. Another dimenslonless number, nd/U, the dimensionless frequency,
is added to the previous dimensionless numbers I*, Re, and T.

Using the same scheme as before we have found it possible to order the data
of Table III on a plot, see Figure 11, of Reynolds number versus I¥ in which nd/u
enters as a parameter. For this plot we also measured the frequency of oscillation
of a few disks on the stability boundary. The data on the frequency of oscillation
along the stability boundary are recorded in Figure 12. Using the data of Table
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Figure 11. Map of the dimensionless moment of inertia, I*, and the
Reynolds number for freely falling disks of Table III that exhibited
regular pitching oscillations or tumbling motion. The numbers on the
map indicate the location of each point and the magnitude of nd /Ux102,
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Figure 12. Dimensionless frequency of oscillation, nd/U, as a func-
tion of dimensionless moment of inertia, I¥, along the boundary be-
tween stable and unstable pitching motion of freely falling disks.

ITT and Figure 12 we have labeled each point on Figure 11 with the measure value
of the dimensionless frequency and sketched in curves of constant nd/U. At low
Reynolds numbers the dimensionless frequency of oscillation, nd/U, depends on both
I* and Re. At higher Reymolds numbers the dimensionless frequency, nd/U, becomes
independent of Re. This is a behavior one might expect when viscous effects are
confined to a thin boundary layer and the aerodynamic force and moment coeffici-
ents change only slowly with Reynolds number. At large Reynolds numbers, Re = 10%,
a cross plot from Figure 11 of nd/U versus I* reveals that there is an approxi-
metely linear relationship between I* and nd/U, see Figure 13. We have no ex-
planation for this apparently simple behavior.
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Figure 13. Dimensionless frequency of oscillation, nd/U, as a
function of dimensionless momeént of inertia, I¥, for freely
falling disks at a high Reynolds number, Re = 10%,

We have used our data, Table III, to compute the weight of the disks when im-
mersed in fluid. An average upward force coefficient, Cp, was defined and entered
in Table YII. The fluid mechanical meaning of this force coefficient is not of
much interest because in each case the motion is different. A plot of Cp versus Re
was made but the results showed a wide scatter, Schmiedel(8) also mentions that
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his drag coefficient data were widely scattered in the region of regular oscillation.

We have not been able to include Schmiedefs(a) data on the dimensionless fre-
quency of oscillating disks on our Figure 1l. Schmiedel does not agree with our
location for the stability boundary, Figure £, and his dimensicnless frequency is
in general 40% higher than ours when R = 250. Near the boundary for stable motion
there 1s better agreement. The general behavior of nd/U with changes in I* and Re
for Schmiedel's data 1s the same as we have found. It is also significant that
Schmiedel's drag coefficients are much greater (twice as great) than we have measured
in the range of Reynolds number and I*, where the disks oscillate. Schmiedel men-
tions that he tested a few aluminum disks whose dimensionless frequency of osecilla-
tion differed 1n an inconsistent way from his other observations. Unfortunately, he
dié not Include this data in his paper.

We have notlced that the thickness ratio, T, has some effect on the value of
the dimensionless frequency, nd/U. The greatest discrepancy in nd/U for disks of
different T was found at Re = 3000 and I¥* = 6.5 x 103, In this case, see Figure
11, the value of nd/U is increased by approximately 30% when T is increased from
0.05 to 0.063. We also made a few tests with disks with sharp beveled edges. The
location of the data on the plot of Figure 11 and the value of nd/U changed very
little, but the speed of fall and frequency of oscillation were increased when the
edge was beveled. We believe that our data for larger T, display the general fea-
tures of the dependence of nd/U on I¥ and Re but may differ somewhat if compared
with results for smaller values of T at the same Re and I*.

We have also noticed an effect of the container diameter on the dimensionless
frequency of oscillation, nd/U. A number of disks were dropped in small con-
tainers and in the ship model towing tank. It was found that the value of nd/U
was at most 15% uaigher for disks at large I* that exhibited large amplitude pitch-
ing oscillations and approached the wall of the small container at the extremes
of the osecillation.

F. TUMBLING MOTION OF DISKS

When I* became larger the amplitude of pitching oscillation increased. We
have observed a few tests with heavy metal disks falling in water that exhibit
a tumbling motion. This type of motion can be observed when a coin is dropped
in a pool of water. In this motion I* is of the order of 10°2 or greater. When
the disk is released 1t may complete one or two oscillations of inecreasing pitech-
ing amplitude and then completely overturn on the next cycle. Once the disk has
overturned it falls quilte rapidly in an apparently random manner. The disks
usually hit the container sides. Their ultimate location on the bottom of a large
container could never be predicted. We also made a disk with a balsa wood frame
covered with microfilm. When dropped in air, test 73, Table III, the value of
I* was quite large and the disk tumbled. Ancther disk was made of styrofoam and
dropped in air, test Tk, Table III. It slso had a large I* and tumbled. All
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the tests in which the disks tumbled are shown by crosses on Figure 11. The lowest
value of I* for which we observed the tumbling motion.was I* = 1.3 x 10-2, We have
not made any attempt to define the boundary for tumbling motion although no es-
sential difficulty should be encountered.

Kirchoff's(lj) result on the integral of the equations of motion for an
ellipsoid of revolution in an ideal fluid also includes the case of complete re-
volutions (overturning) of the disk. However, in an ideal fluid one would not
find a random dispersion of the disk at the bottom of the container and the motion
would be confined to a vertical plane if given the proper initial conditions.
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L, CONCLUSIONS

An orderly descripticn of the gross features of the motion of freely falling
disks has been given. The Reynolds number for instability of the wake behind a
fixed disk has been shown to be 100 in agreement with the investigation of Simmons
and Dewey.( ) In the region of unstable laminar wakes behind disks executing
regular pitching oscillations we have observed a staggered array of regularly
spaced closed vortex loops similar to the configuration observed by Magarvey and
Bishop(lh) behind drops of liquid. Some new results have been obtained on the
relation between I* and Re along the boundary between stable and unstable motions
of freely falling disks and on the relation between I*, Re, and nd/U for regular
piteching oscillstions. It should be possible to determine the relation between
I* and Re along the boundary separating the tumbling mction and regular pitching
oscillations of falling disks.
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