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ABSTRACT 

The motions and wakes of freely falling disks have been studied and it has been 

found that the diverse motions of the disks exhibit a systematic dependence on the 

Reynolds number, Re, and the dimensionless moment of inertia, I*.  The relation be- 

tween I* and Re along the boundary separating stable and unstable pitching oscilla- 

tions of the disk has been determined.  The Reynolds number for stable motion of a 

disk with large I* is 100 in agreement with the Reynolds number for stability of the 

wake of a fixed disk.  Slightly unstable disks of large I* were stabilized by re- 

ducing the moment of inertia.  The highest Reynolds number for stable disk motion 

was ±]2.     At higher Reynolds numbers the disks exhibited periodic pitching and 
translational oscillations.  The laminar wake behind certain of the oscillating 

disks consisted of a staggered arrangement of two rows of regularly spaced vortex 

rings similar to the wake observed behind liquid drops by Margarvey and Bishop. 

The dependence of the dimensionless frequency of oscillation on I* and Re was de- 

termined along the boundary for stable motion and at higher Reynolds numbers when 
the wake was turbulent.  Tumbling motions of the disks were observed when the Rey- 

nolds number was large Re > 2000 and I* was greater than a certain value, I* = 

10"2. 
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1.  INTRODUCTION 

The steady or unsteady motion of bodies with poor aerodynamic shapes cannot, 
at the present state of development of fluid mechanics, be calculated from the 
equations of motion for the flow.  Therefore, our understanding of the fluid 
mechanical aspects of the body motion and flow field must rely on the results of 
systematic experimental investigations in which the significant parameters are 
varied over a wide range.  This paper gives some results on various features of 
the steady and unsteady motion and flow over freely falling disks.  The disk was 
chosen for these studies because when the flow is directed normal to the face of 
the disk, it represents an extreme example of a poor aerodynamic shape. 

Some aspects of the flow field about a disk and other bluff bodies are al- 
ready known.  A summary of the known phenomena may be found in Goldstein.(1)  At 
very low Reynolds numbers when the inertial forces of the fluid can be neglected 
and the flow is steady (Stokes flow) 0berbeck(2) has computed the drag coefficient 
and the flow field near the disk.  At higher Reynolds numbers when inertial forces 
in the fluid first become important 0seen(3) has computed a correction term to 
the drag coefficient computed by Oberbeck.  At Reynolds numbers above 100 the flow 
field in the wake becomes unstable and steady flow about the disk is no longer 
observed.  In the case of two-dimensional bluff bodies a Karman vortex street(^) 
is developed in the wake.  In three dimensions, where the geometry is more com- 
plicated, the wake flow is periodic,(5>°) but not as simple as the two-dimensional 
case, because the vorticity that appears in the wake is not aligned in one direc- 
tion when it is formed.  Rosenhead, in an appendix to Stanton and Marshall's re- 
port, (5) has given an excellent discussion of the possible eddy systems in the 
wake of circular disks. We shall refer to his discussion later in the paper. 
At higher Reynolds numbers the flow in the wake behind the body becomes turbulent. 
Roshko(T) has described the turbulent wake, which includes vestiges of the Karman 
vortex trail, for the case of two-dimensional bluff bodies.  The three-dimensional 
turbulent wake structure is more complicated and has rot been studied in as much 
detail as the two-dimensional turbulent wake.  In the flow field and wake of a 
freely falling disk, one may expect to find vestiges of these phenomena.  In addi- 
tion, new phenomena that are caused by the motion of the disk as it moves about 
under the influence of the aerodynamic forces will appear. 

We began the present investigation with the aim of identifying and under- 
standing the more interesting and important features of the flow field and motion 
of a free disk.  In our description of the unsteady phenomena we will be concerned 
primarily with the dimensionless parameters upon which the unsteady motion and 
flow field depend.  After our investigation was well under way, we found the ex- 
cellent paper of Schmiedel(8) in which many features of the steady and unsteady 
flow field and motions of freely falling disks and spheres are described. Schmiedeis 
work covers the range of Reynolds numbers from creeping motion up to Reynolds num- 
bers of the order of 300. We will describe the flow phenomena using Schmiedells 
results and ideas at low Reynolds numbers and add our new observations in the low 
Reynolds number range and at higher Reynolds numbers. 

Manuscript released August, 1963, by the authors for publication as an ARL Technical 

Documentary Report. 



EXPERIMENTAL APPARATUS 

The experiments were performed by dropping disks made from materials of vary- 

ing density into containers filled with tap water or with solutions of distilled 

water and glycerol.  The disks were made from homogeneous metals or plastics whose 

specific gravity was greater than one.  All the disks were made by machining thin 

sheets of the disk material on a high speed lathe.  The disks were flat and the 

edges were square.  The large disks: were easily clamped on the rotating head stock 

with a rotating rubber pad mounted on the tail stock.  Small thin disks were glued 

on the end of a rod clamped in a chuck.  The glue used was Eastman 910 adhesive. 

In this way, very thin flat disks were made.  The disks were removed from the rod 

with a razor blade and soaked in an Epoxy resin solvent until clean.  The dimen- 

sions and density of the various disks were measured and are given in Tables I, 

II, and III. 

The fluid containers were Plexiglas tubes of 11, 15, and 30 cm diam of various 

lengths.  A square Plexiglas container 30 x 30 x 120 cm was used to photograph the 

disk motion and flow field.  The effect of container size on the motion and flow 

field of the disks was appreciable only when large amplitude pitching oscillations 

were observed.  These effects are discussed in Sections 3B, 3D* and 3E. 

The rate of descent of the disks was obtained by stop watch measurements of 

the time required for the disk to fall a known distance.  The frequency of disk 

oscillation was always low enough to allow the observer to measure an average 

frequency by counting the number of oscillations in a measured time interval.  The 

temperature of the tap water was measured and its viscosity was obtained from the 

tables of Bingham and Jackson.^"'  The specific gravity of the glycerol and dis- 

tilled water solution was measured with a float type hydrometer.  From the tempera- 

ture and specific gravity of the glycerol and water solutions the coefficient of 

viscosity was obtained by interpolation from the tables published in the Handbook 

of Chemistry and Physics.(*&*     We have checked our experimental procedures and. 
apparatus by comparing our drag coefficients with those measured by Schmiedel^ ' 

for Reynolds numbers less than 100.  The comparison is shown in Figure 5. 
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DESCRIPTION OF THE DISK MOTION AND FLOW FIELD 

The detailed motion and flow field of freely falling disks at very .low Reynolds 

numbers Is veil documented in the literature.  We will describe the sequence of 

events as the Reynolds number of the falling disk increases and supplement the dis- 

cussion with results from the literature and from our investigation. 

A.  FLOW AT VERY LOW REYNOLDS NUMBERS (Stokes Flow) 

At very low Reynolds numbers, Re = Ud/v, where U is the speed of fall, d is 

the disk diameter, and v the kinematic viscosity, Schmiedel'°J observed that a 

disk will fall vertically with the same orientation that it had initially. Gans' ^> 
has shown that at low Reynolds numbers where creeping motion obtains there is no 

aerodynamic moment produced by fluid pressure on a body that has three mutually 

perpendicular planes of symmetry.  Schmiedel(8) mentions that experiments in this 

range are very difficult because it was not easy to orient the disks initially 

with their faces horizontal but gives no data about the Reynolds number range in 

which this motion was found.  Squires and Squires*-  ' investigated the sedimenta- 

tion of thin disks at very Low Reynolds number but did not mention the range of 

Reynolds number in which a disk will maintain its initial orientation.  Examina- 

tion of their tabulated data on the drag of disks falling with their faces parallel 

and normal to the direction of motion shows that no drag measurements for disks 

falling edge on (with the face parallel to the direction of motion) were reported 

above a Reynolds number of 0.39«  We have not investigated in detail the boundary 

below which the disk attitude depends only on the initial orientation. On one 

occasion we observed a vertical fall of a disk with its face parallel to the ver- 

tical at Re = 1.9-  We attempted to repeat the experiment but the disk fell re- 

peatedly at a light angle to the vertical and hit the side of the container.  The 

Reynolds number in this case was also 1.9- 

It is certain that a Reynolds number of the order of one marks the upper limit 

of the Reynolds number range in which the disk falls vertically and maintains its 

initial orientation. 

B.  STEADY LAMINAR FLOW ABOVE Re = 1 

When the Reynolds number is greater than approximately one but less than 

approximately 100, a disk can be released with any initial orientation and will 

adjust itself to a horizontal attitude.  The disk will then fall vertically and 

steadily with its face normal to the direction of motion.  In this Reynolds num- 

ber range the drag coefficient is already different from the Stokes flow result 

for creeping motion computed by Oberbeck' ' but lies below the drag computed by 

0seen'3' j_n which the approximate effect of the inertial forces are considered. 

We believe that the inertial forces of the fluid are responsible for the tendency 

of the disk to fall face down.  In this connection Schmiede!*' '   mentions KirehoffV, 



proof' -*-3)   that the fluid pressure on an ellipsoid of revolution in translational 
motion in an ideal fluid produces a torque which vanishes only when the ellipsoid 

moves in the direction of one of the three principal axes.  Of these three pos- 

sible equilibrium states of motion Kirchoff showed that only motion in the direc- 

tion of the smallest axis is absolutely stable.  The thin disk is the limiting 

case of an ellipsoid of revolution and Kirchoff 's result suggests the reason for 

the observed orientation and stable motion of the disk in spite of the fact that 

the viscous flow about the disk and in the wake is hardly that of an ideal fluid. 

The steady motion and flow field about the disk were observed visually and 

photographs of the interesting features are shown in Figures 1, 2, 3, and k.     The 
disks were painted with a concentrated solution of aniline dye* and allowed to dry 

before they were dropped in the water. 

In Figure 1, a steadily falling disk is shown.  The wake is perfectly straight 

after the initial oscillation ceases.  The dark region behind the disk contains 

fluid in rotational motion that has passed near the disk and has carried away dye 

from the surface.  A close up picture of the slowly rotating fluid in the wake is 

shown in Figure 2.  The circular streaks are caused by inhomogeneities in the 

rotating dyed fluid which is in the shape of a distorted torus.  Stanton and Mar- 

shall(5) mention that in l877 Reynolds first pointed out the existence of the 

vortex ring behind a circular disk.  A very small fraction of the dyed fluid in 

the vortex ring is deposited in the thread-like wake.  The features of this steady 

flow field are quite similar to the steady flow behind spheres^ ' or behind drops 

of liquid falling through a less dense liquid.^ ^> 

When the disk reaches the bottom of the container and stops it releases the 

vorticity carried by the fluid behind the disk.  Figures 3 and h  show the details 
of the release.  The released vorticity takes the form of a vortex ring that is 

connected to the front of the disk by a thin axisymmetric sheet of dyed fluid. 

In the photographs, Figure 3 and h,  the optical image of the disk and vortex ring 
are formed by reflected light from the lower side of the container. 

We have measured the steady drag coefficient of the disks 

where p  is the fluid density, U is the terminal velocity, and r is the disk radius. 

The drag coefficients in the Reynolds number range 1 < Re < 105 are compared with 

the measurements of Schmiedel(°) in Figure 5.  We have obtained good agreement with 

Schmiedel's results and can conclude that our simple experimental methods give satis- 

factory accuracy.  Schmledel^ ' also considered the influence of the container wall 

*Methyl blue chloride, Allied Chemical and Dye Corporation. 
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on his drag coefficients and concluded that the influence was small.  We have used 
almost the cane diameter container in relation to disk diameter that Schmiedel 
used and can also state that the wail influenced the drag by no more than a few 

percent. 
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10 o Present Investigation 
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Figure 5.  Drag coefficient as a function of Reynolds 
number for thin disks in steady motion. 

C.  DAMPED PITCHING OSCILLATIONS 

In the Reynolds numbers range from approximately 1 to 100 damped pitching 
oscillations of the disk about a diameter were sometimes observed, see Figure 6. 
These oscillations remind one of Kirchoff' s'15) integration of the complete equa- 
tions of motion for the case of a solid of revolution that moves through an ideal 
fluid with its axis confined to one plane.  Kirchoff showed that regular pitching 
oscillations of the solid can occur about an axis normal to the plane of motion. 
The oscillations could be excited by inhomogeneities in the fluid or by disturb- 
ances of the initial attitude when the dick was released.  Evidence of damped 
oscillations caused by improper initial conditions can be observed in the wake 
trail at the top of Figure 1.  Figure 7 shows that random excitation of oscilla- 
tions caused by the disk falling at the same Reynolds number as Figure 1, through 
a medium that was not at rest.  Whenever the disk oscillates or is disturbed 
during its fall it releases a horseshow shaped loop of vorticity that is connected 
by a vortex sheet to the dyed fluid immediately behind the disk.  Rosenhead, in 
an appendix to Stanton and Marshalls report,(5) discusses the reason that horse- 
shoe shaped vortex loops arc observed when an a.xi symmetric wake is disturbed. 
The discussion relies upon the impossibility of a helical discharge of vorticity, 
Jeffreys;^ 15) anc] the known instability of axisymmetric sheaths or rings of 

vorticity. 

13 



CO 
9 

•H P> 
cd > P 
H o CO 
bu 3 •H 
•H 10 -d 

<.A 

0) .—. a 
H U CD 
Pui 0) 

P > 
0) CO 
H > -d 
,Q CU 
m tj co 
-P CD CO 

CO P 
to 

CD 
H 

a) p a) 
U 

<tn bD 
o a3 co 

ft 
p o 
C ö o 
CD 3 H 
o •H 
co Id X 
CD CD CD • 

■Ö S P> T3 
CD 

H -d O fH 
CO CD > CD 
0 ,Q P 

•H H Tj Ö 
+3 3 CD 3 
^H p ft O 
CU co CO o > ■H .3 ö 

id CO (D 

. 03 CD 0) 
C— O ^H 

a .3 03 
CU ■rH CO 

g M 
CD 
CO 

CO 

CD 

bO co u O 
•H •H O a 
Pn -Ö Ä 03 

bD X a CO 1 o 
-.H 03 •H •rH 
ft H X fl 

bO o P 
CO •H r( <& X ft M 

CU ft CO 
0) H 03 ■H 

£ P.) >d 
-p CD 

00 P »s 

bO CO g a <H m 0 
•H o > d t— 
o ö O ro, 

X3 o •H VO 
CO •rH P • 

p •H O 
CD o P 
JH S CD II 
3 ft 
P >^ CD u 
o h « (D • 

•H o -P o 
ft p 

CO 

CD c ) 
H 

O H U CO 
■H rH CD •H •II 
Pi •H -P 'd 
o O CO 0) 
o to > .M Pd co O co 
o ■d •H •\ 
& P CD T3 a 
o c H o 
}-* CD rH -\ 

-p •H •H CJ -3- 
CQ CO P CD o 

Ö CO CO If, 
CO •H ^^ o • JH T3 H 

MD p 
a 

l-i o 
CD CD •H >, II 
U £l H 

1 P Jrf CD to 
CO P en 

•H CH •H CO CD 
P^ O T3 e ti 

Ik 



The damping of the pitching oscillations was very great at low Reynolds num- 
bers and decreased monotonically as the Reynolds number increased until at Rey- 
nolds number of the order of 100 the damping was very small.  When the damping 
was very large the disk could he released with any desired inclination to the 
horizontal and would immediately assume a horizontal face down attitude without 
oscillating.  At higher Reynolds numbers damped pitching oscillations were ob- 
served.  The pitching oscillation was confined to a vertical plane normal to the 
diameter about which the disk first oscillated.  Detailed observations of the 
frequency of oscillation and the amount of damping were not made in the Reynolds 
number range below Re = 100. 

D.  BOUNDARY BETWEEN STABLE AND UNSTABLE PITCHING OSCILLATIONS 

When the Reynolds number was greater than 100 we observed that many of the 
disks were unstable.  Small pitching oscillations about a diameter with little 
translational motion of the center of mass ( see Figure 6 for example) increased 
in amplitude until appreciable translational motion of the center of mass in a 
vertical plane normal to the diameter defining the pitching oscillation was ob- 
served.  Once established, the larger amplitude motion was quite periodic and 
regular and would persist until the disk reached the bottom of the container. 
On the other hand some disks, made of different materials or with different di- 
mensions, exhibited only damped pitching oscillations which resulted in a steady 
descent at the same Reynolds number.  We have investigated the boundary between 
the stable and unstable oscillations as a function of the dimensionless parameters 
pertinent to the phenomena. 

The variables governing the phenomena are the fluid density, p , the disk 
density, p2, the average speed of fall, U, the disk diameter, d, the disk thick- 
ness, t, and the fluid viscosity, u.  From these six dimensional quantities 
three independent dimensionless numbers may be formed among which will be ob- 
tained a functional relation governing the stability problem. 

The three dimensionless numbers chosen are the dimensionless moment of inertia 
of the disk 

Pld
5   6l+Pld ' [  ' 

formed from the ratio of the moment of inertia of a thin disk about a diameter and 
a quantity proportional to the moment of inertia of a rigid sphere of fluid about 
its diameter, d, the Reynolds number, 

p,Ud 
Re - -~   , (3) 
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and  the thickness  ratio of the disk, 

T     -     * (h) 
d 

This choice of dimensionless numbers was made in an attempt to separate the 

purely geometric effect of the disk thickness on the fluid flow from the dynamic 

or inertial effect of the disk thickness. The thickness of the disk will always 

enter as an inertial effect through the dimensionless moment of inertia, I*, 

which will affect the pitching motion. But, if the thickness ratio, T, is small 

disks of different thickness should not have appreciably different aerodynamic 

characteristics. 

We have made numerous observations of the motion of thin disks falling in 

solutions of glycerol and distilled water to locate the boundary separating the 

damped stable motion of the disk from the unstable motion that occurred for 

Re > mo.  All but one of the disks used for these tests were made from steel 

shim stock as described in Section 2.  The thickness ratio, Tf   of the steel 
disks was always less than O.oh.     One disk, test l6, Table II, was made from 
Plexiglas and tested in distilled water. 

The experiment was very simple.  The disks were dropped in quiescent liquid 

and the motion was observed.  The results of the tests are shown in Table II, 

and Figure 8.  If the amplitude of disk oscillation increased it was recorded as 

unstable, U.  If the amplitude of oscillation was damped and the oscillations 

ceased before the disk reached the bottom of the container it was recorded as 

stable, S.  If the oscillation was visibly damped but so slowly that it did not 

stop oscillating before reaching the bottom of the 120 cm high container it was 
recorded as, SO, but was considered to be stable.  If the disk oscillation amp- 

litude appeared to be constant it was labeled, B, for boundary.  Each test with 

each disk was run a number of times in doubtful cases until the issue; S, SO, B, 

or U, was decided by the type of motion that appeared most frequently.  For larger 

I*, I* > 2 x 10"3, the decision S, SO, B, or U was easy to make.  When I* was 

smaller I* < 2 x I0"3 the decision became progressively more difficult.  As I* 

was reduced more tests of the same disk had to be made until the issue was de- 

cided.  Our points at the lowest I*, I* ■ 3-37 X 10-4, did not present any dif- 
ficulty compared to the greater scatter in the results of each test found near 

the peak maximum stable Reynolds number, at I* = 7*5 x 10~4. 

For determination of points near the boundary it was always necessary to use 

the 120 cm high container because the motion was sometimes only very slightly 

damped.  It was often necessary to allow the liquid to come to rest for about 

an hour after stirring.  We made special tests and found that we could always 

repeat our results near the stability boundary if we allowed the liquid to re- 

main at rest for an hour or more after stirring.  On one occasion we found a 

combination of disk and fluid in which the disk was otserved to be very slightly 

unstable with very slowly increasing amplitude of oscillation.  We covered the 
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*, as a function Figure 8.  Dimensionless moment of inertia, 
of Reynolds number near the boundary separating stable and un 
stable oscillations of thin freely falling disks. 

liquid and allowed it to settle over a weekend.  When the test was repeated two 
days later the results were the same.  We are confident that no destabilizing 
effects of disturbances in the fluid were overlooked.  We did not find any effect 
of wall interference on these tests and were able to reproduce our results in 
either a small or large diameter container.  The only influence of the walls 
that we noticed was a tendency for disk oscillations to cease when the disk was 
approximately one diameter from the bottom of the container. 

The results of the stability tests, shown on the plot of Figure 8, can be 
compared with the work of others.  It was Schmied el's' "' work that stimulated 
our investigation.  He reported steady disk motion below Re = 80 for all his 
disks which were made from gold, silver, and steel.  However, we had found very 
early that a relatively thick Plexiglas disk, with low I*, exhibited steady mo- 
tion at a Reynolds number of 183 and began to investigate the stability problem. 

f 5) We found, in the literature, the paper of Stanton and Marshall ■"   who were 
quoted by Simmons and Dewey'") to have observed the onset of wake oscillations 
behind a disk mounted in a small water channel at Re = 195.  However, in their 
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own tests, Simmons and Dewey reported the onset of wake oscillations behind a disk 

with the same thickness ratio, T = 0.1, mounted in a wind tunnel at Re = 300.  Up- 

on reading Gtanton and Marshalls paper it developed that their water channel was 

so narrow that the flow was practically a fully developed laminar pipe flow.  Sim- 

■OSI and Dewey overlooked the fact that Stanton and Marshall mention that they 
have almost a parabolic velocity profile in their channel and, in addition, base 

their Reynolds number on the mean velocity.  It is easy to understand xhe  dis- 
crepancy between the results of the two investigations if we recall that the 

vorticity in a laminar channel flow will always be opposite in sense of rotation 

to the vorticity generated by a disk placed in the center of the channel.  This, 

then, explains why sufficient vorticity for vake instability cannot be generated 

in the presence of the parabolic velocity profile until higher Reynolds numbers 

are attained. 

We decided that the cause of the unexplained difference between Schmiedel's 

work, Simmons and Deweys work, and our first tests which gave Reynolds numbers for 

steady motion of 80, 100, and 183 respectively resided in the inertial forces pro- 

duced by the disk motion.  This supposition is confirmed by our results, Figure 8, 

on the variation of the Reynolds number at which instability occurs as a function 

of I*.  For large I* the relatively large moment of inertia of the disk causes it 

to behave almost as if it were a fixed disk and the instability of motion begins 

at Re = 100 which coincides with the result of Simmons and DeweyC") for a disk 

mounted in a wind tunnel.  When I* is reduced the Reynolds number of the stabil- 

ity boundary increases and reaches a maximum value at Re = 172 and I* = 8 x 10"4. 

We believe that the increase in the Reynolds number for the onset of unstable mo- 

tion with decreasing I*, is caused by a favorable coupling between the disk pitch- 

ing motion and the generation, distortion, and motion of the vorticity behind the 

disk.  The tendency toward non-uniform vortex generation and shedding at the edge 

of the disk is probably reduced by the pitching motions of the disk but we have 

not attempted to construct a model to describe this effect.  We are presently in- 

vestigating the phase relationship between the position, aerodynamic torque, and 

vortex shedding of a large disk undergoing forced oscillations in a wind tunnel. 

We hope to gain a better understanding of the mechanisms which control the disk 

stability and motion from these tests. 

We have not been able to definitely explain the lower value of Re = 80 that 

Schmiedet"' found for oscillation of his disks. We can mention three possible 

reasons for the discrepancy:  First, Schmiedels disks were of larger thickness 

ratio, 0.007 < T < 0.02, than the disks that we used, O.OOU < T < 0.008, for our 

tests of the location of the stability boundary, Table II.  Second, Schmiedel 

may not have allowed his liquid to come completely to rest before making his 

tests.  Thirdly, Schmiedel observed oscillations on movie film over the central 

third of a ho  cm high container and may not have noticed slightly damped oscilla- 

tions. 
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E.  REGULAR PITCHING AND TRANSLATTONAL OSCILLATIONS 

The motion of the falling disks in the unstable region at Reynolds numbers 

greater than those on the boundary for stable motion was investigated in BOffie 

detail.  In the unstable region the most common type of motion that was observed 

was a simple extension of the pitching motion with little translational motion 

of the disk, that was observed near the boundary, tc a pitching motion of larger 

amplitude accompanied by a translational motion of the disk in a plane normal to 

the pitching axis.  The translational motion was usually confined to one plane and 

was periodic.  A definite frequency could be assigned to the oscillation in every 
case in which the translational motion was confined to a vertical plane.  A slight 

rotation of the plane of translational motion about a vertical axis was sometimes 

observed.  The frequency of oscillation, speed of descent, and amplitude of motion 

were always the same as the case of no rotation.  A definite spiral motion of the 

disk about a vertical axis was sometimes observed if the surface normal to the 

disk face did not lie in a vertical plane when the disk was released or if the 

disk met a disturbance in the fluid as it fell.  The spiral motion was irregular 

and difficult to repeat.  The irregularity of the motion prevented any quantative 

measurements of the frequency of rotation, speed of descent or amplitude of the 

spiral motion. We have discarded the tests in which spiral motion occurred. 

We have found that the unsteady wake of a disk executing small amplitude 

oscillations near the boundary for stable motion is laminar and contains two rows 

of staggered, equally spaced horseshoe shaped vortex loops on either side of the 

wake.  When the intensity of the vorticity in the horseshoe shaped vortex loops 

is relatively large the loops break away from the wake and form a staggered array 

of two rows of closed vortex rings.  An example of this type of wake is shown in 

Figure 9.  The pattern is very similar to that observed by Magarvey and Bishop^1 ' 

behind non-oscillating drops of liquid above a certain critical Reynolds number. 

Figure 10 shows some features of the flow field at a relatively high Reynolds 

number in the wake of disk in the case of regular pitching oscillations of large 

amplitude.  This motion was first photographed and described by Schmiedel.^°J  From 

the wake flow of Figure 10, it appears that the disk flies in curved descending 

arcs carrying with it bound vorticity and releasing a vortex at the extremes of 
the motion.  The released vortices are connected to each other by two trailing 

vortices from the edges of the disk, the flow in the wake usually appeared to 

be turbulent. 

Within this mode of oscillation there appeared a considerable variation in 

the frequency of the oscillation and the amplitude of the translational and 

pitching motion.  When the disks had a large moment of Inertia in comparison to 

a given volume of liquid, large I*, the pitching amplitude, fiequency of oscilla- 

tion, and falling speed were large ar.d the amplitude of translational motion was 

small.  When the moment of inertia was reduced, I* small, the pitching amplitude, 

frequency of oscillation and falling speed were small and the amplitude of trans- 

lational motion became very large.  The disks often encountered the sides of the 
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container when I* was small.  We were fortunate to be allowed access to The Univer- 
sity of Michigan ship model towing tank for free fall tests of large plastic disks 
at a time when the tank water had not been agitated for a few days.  We found large 
amplitude oscillations, typically of the order of a meter for tests 6y to '(2  of 
Table III.  On one occasion we tested a polystyrene disk of 1 ft diam with I* = 
1.2k  x 10"4.  The amplitude was so large that the disk glided slowly out of view 
down the tank and we did not see it again.  In this type of motion the slow oscil- 
lations were seldom confined to a single vertical plane because the disks were very 
sensitive to disturbances at the extremes of their motion which often caused a 
slight change in the attitude of the disk and resulted in a slight rotation of the 
vertical plane of oscillation. 

The data from tests in this mode of motion is collected in Table III.  In 
the problem of disk oscillations the frequency, n, enters as a variable that must 
be added to the variables already discussed in the stability boundary investiga- 
tion, Section JD.  Another dimensionless number, nd/lJ, the dimensionless frequency, 
is added to the previuuo dimensionless numbers I*, Re, and T, 

Using the same scheme as before we have found it possible to order the data 
of Table III on a plot, see Figure 11, of Reynolds number versus I* in which nd/U 
enters as a parameter.  For this plot we also measured the frequency of oscillation 
of a few disks on the stability boundary.  The data on the frequency of oscillation 
along the stability boundary are recorded in Figure 12.  Using the data of Table 

 Is I7I6-S202020I9-20  
295|30
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Figure 11.  Map of the dimensionless moment of inertia, I*, and the 
Reynolds number for freely falling disks of Table III that exhibited 
regular pitching oscillations or tumbling motion.  The numbers on the 
map indicate the location of each point and the magnitude of nd/UxlO2. 
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Figure 12.  Dimensionless frequency of oscillation, nd/l.T, as a func- 
tion of dimensionless moment of inertia, I*, along the boundary be- 
tween stable and unstable pitching motion of freely falling disks. 

Ill and Figure 12 we have labeled each point on Figure 11 with the measure value 
of the dimensionless frequency and sketched in curves of constant nd/u.  At low 
Reynolds numbers the dimensionless frequency of oscillation, nd/u, depends on both 
I* and Re.  At higher Reynolds numbers the dimensionless frequency, nd/u, becomes 
independent of Re.  This is a behavior one might expect when viscous effects are 
confined to a thin boundary layer and the aerodynamic force and moment coeffici- 
ents change only slowly with Reynolds number.  At large Reynolds numbers, Re = 104, 
a cross plot from Figure 11 of nd/u versus I* reveals that there is an approxi- 
mately linear relationship between I* and nd/u, see Figure 13. We have no ex- 
planation for this apparently simple behavior. 

Figure 15.  Dimensionless frequency of oscillation, nd/U, as a 
function of dimensionless mome'nt of inertia, I*, for freely- 
falling disks at a high Reynolds number, Re = 10 . 

We have used our data, Table III, to compute the weight of the disks when im- 
mersed in fluid.  An average upward force coefficient, CD, was defined and entered 
in Table III.  The fluid mechanical meaning of this force coefficient is not of 
much interest because in each case the motion is different.  A plot of Cp versus Re 
was made but the results showed a vri scatter.  Schmiedel(°) also mentions that 
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his drag coefficient data were widely scattered in the region of regular oscillation. 

We have not been able to include Schmiedel's'0' data on the dimensionless fre- 

quency of oscillating disks on our Figure II.  Schmiede! does not agree with our 

location for the stability boundary, Figure 8, and nis dimensionless frequency is 
in general U0$ higher than ours when R = 2.jQ.     Near the boundary for stable motion 
there is better agreement.  The general, behavior of nd/u with changes in I* and Re 

for Schmiedel's data is the same as we have found.  It is also significant that 

Schmieders drag coefficients are much greater (twice as great) than we have measured 

in the range of Reynolds number and I*, where the disks oscillate.  Schmiedel men- 

tions that he tested a few aluminum disks whose dimensionless frequency of oscilla- 

tion differed in an inconsistent way from his other observations.  Unfortunately, he 

did not include this data in his paper. 

We have noticed that the thickness ratio, T, has some effect on the value of 

the dimensionless frequency, nd/u.  The greatest discrepancy in nd/U for disks of 

different T was found at Re = 3000 and I* = 6.5 x 10~3.  In this case, see Figure 

11, the value of nd/U is increased by approximately 30$> when r  is increased from 
0.05 to O.063.  We also made a few tests with disks with sharp beveled edges.  The 

location of the data on the plot of Figure 11 and the value of nd/U changed very 

little, but the speed of fall and frequency of oscillation were increased when the 

edge was beveled.  We believe that our data for larger T, display the general fea- 

tures of the dependence of nd/u on I* and Re but may differ somewhat if compared 

with results for smaller values of T at the same Re and I*. 

We have also noticed an effect of the container diameter on the dimensionless 

frequency of oscillation, nd/u.  A number of disks were dropped in small con- 

tainers and in the ship model towing tank.  It was found that the value of nd/u 

was at most 15$ nigher for disks at large I* that exhibited large amplitude pitch- 

ing oscillations and approached the wall of the small container at the extremes 

of the oscillation. 

F.  TUMBLING MOTION OF DISKS 

When I* became larger the amplitude of pitching oscillation increased.  We 

have observed a few tests with heavy metal disks falling in water that exhibit 

a tumbling motion.  This type of motion can be observed when a coin is dropped 

in a pool of water.  In this motion I* is of the order of 10"2 or greater.  When 

the disk is released it may complete one or two oscillations of increasing pitch- 

ing amplitude and then completely overturn on the next cycle.  Once the disk has 

overturned it falls quite rapidly in an apparently ramdom manner.  The disks 
usually hit the container sides.  Their ultimate location on the bottom of a large 

container could never be predicted.  We also made a disk with a balsa wood frame 

covered with microfilm. When dropped in air, test 73, Table III, the value of 

I* was quite large and the disk tumbled.  Another disk was made of styrofoam and 

dropped in air, test 7^, Table III.  It also had a large I* and tumbled.  All 
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the tests in which the disks tumbled are shown by crosses on Figure 11.  The lowest 

value of I* for which we observed the tumbling motion.was I* = 1.3 x 10~2.  We have 

not made any attempt to define the boundary for tumbling motion although no es- 

sential difficulty should be encountered. 

Kirchoff's^1^ result on the integral of the equations of motion for an 
ellipsoid of revolution in an ideal fluid also includes the case of complete re- 

volutions (overturning) of the disk.  However, in an ideal fluid one would not 

find a random dispersion of the disk at the bottom of the container and the motion 
would be confined to a vertical plane if given the proper initial conditions. 
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k.     CONCLUSIONS 

An ox-derly description cf the gross features of the motion of freely falling 
disks has been given.  The Reynolds number for instability of the wake behind a 

fixed disk has been shown to be 100 in agreement with the investigation of Simmons 

and Devey.^ '  In the region of unstable laminar wakes behind disks executing 

regular pitching oscillations we have observed a staggered array of regularly 

spaced closed vortex loops similar to the configuration observed by Magarvey and 

Bishop^1^ behind drops of liquid.  Some new results have been obtained on the 

relation between I* and Re along the boundary between stable and unstable motions 

of freely falling disks and on the relation between I*, Re, and nd/U for regular 

pitching oscillations.  It should be possible to determine the relation between 

I* and Re along the boundary separating the tumbling motion .and regular pitching 

oscillations of falling disks. 
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